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ABSTRACT
We study the prospects of using quantum Monte Carlo techniques (QMC) to optimize the electronic wavefunctions and atomic geometries
of gold compounds. Complex gold nanoclusters are widely studied for diverse biochemical applications, but the dynamic correlation and
relativistic effects in gold set the bar high for reliable, predictive simulation methods. Here we study selected ground state properties of few-
atom gold clusters by using density functional theory (DFT) and various implementations of the variational Monte Carlo (VMC) and diffusion
Monte Carlo. We show that the QMC methods mitigate the exchange-correlation (XC) approximation made in the DFT approach: the
average QMC results are more accurate and significantly more consistent than corresponding DFT results based on different XC functionals.
Furthermore, we use demonstrate structural optimization of selected thiolated gold clusters with between 1 and 3 gold atoms using VMC
forces. The optimization workflow is demonstrably consistent, robust, and its computational cost scales with nb, where b < 3 and n is the
system size. We discuss the implications of these results while laying out steps for further developments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0174383

I. INTRODUCTION

Gold nanoparticles enjoy scientific and technological intrigue.
Abundant and non-toxic, gold compounds are commonly used in
catalysis,1,2 biomedicine,3,4 chemical sensing,5 light harvesting,6 and
numerous other applications. Gold is a noble element7 with special
characteristics, such as aurofilic interaction8 and strong relativistic
effects,9 which set the bar high for theoretical understanding.

The contemporary research on gold nanostructures leans heav-
ily on numerical calculation methods, which aid the synthesis and
engineering of technologies in all sizes.10 The smallest of gold
nanostructures gain from accurate first-principles calculation, which
employ the quantum mechanical understanding of particular atomic
configurations and their properties.11–13 Prediction and synthesis
of atomically precise gold nanoclusters, with all the prospects of
rational engineering of superatoms,14,15 stems from this concept.
Moving on studies of large and complex structures and their ther-
mal phenomena16–18 is possible through force fields, at the expense
of some theoretical rigor.

This work concerns the highly accurate first-principles cal-
culation of the quantum mechanical electronic structure of gold.

Over decades, the celebrated workhorse of applied calculations of
gold nanoclusters (and others) has been the density functional the-
ory (DFT).19 The DFT calculation has successfully predicted and
explained crystal structures,20 spectroscopy,21 optical response,22–24

and many other properties that can substantially inform the work
done in laboratories.25,26 The success of DFT lies in simplicity and
high performance, both numerically and quantitatively. Yet, the
exchange-correlation (XC) functional in the heart of DFT remains
an uncontrollable approximation, a seminal liability, which cannot
be assessed or controlled intrinsically.27 For this reason, numer-
ous DFT studies exist22–24 that benchmark and propose informed
choices of the XC functionals, to grapple with their systematic
errors. For instance, the local-density approximation (LDA) func-
tional appears accurate for predicting Au–Au bonds,23 likely due
to fortuitous error cancellation. Other studies praise generalized-
gradient approximation (GGA) functionals for obtaining structural
and optical properties, or using LDA together with an asymp-
totically correct time-dependent DFT (TDDFT) functional.22,24,28

This hidden knowledge combines experimental validation and ratio-
nal assumptions of transferability of the properties of given XC
functionals to new applications.
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In this work, we demonstrate that the XC dependency of DFT
in selected gold clusters (Aun and MeSAun, where n = 1, . . . , 3
and Me is CH3) can be reliably controlled by using the quantum
Monte Carlo (QMC) approach.29 Monitoring DFT with QMC is
not uncommon (e.g. Refs. 30 and 31) nor surprising, but to our
knowledge, very few QMC studies exist on small coinage metal
clusters (Ref. 32). Here we survey the variation of selected energetic
and structural properties based on selected self-consistent field
(SCF) methods and QMC, upon using Hartree–Fock (HF) or DFT
with various XC functionals. We show that the QMC methods
eliminate the XC dependency by an order of magnitude, and that
the computational cost follows similar n3 scaling with the system
size n in both SCF and QMC, although the QMC is 2–3 orders of
magnitude more expensive. Especially, our focus on structural opti-
mization addresses an open challenge within the QMC community:
numerous molecular ground and excited state structures and other
applications of variational Monte Carlo (VMC) forces have been
demonstrated with up to second row elements (e.g., Refs. 33 and
34), relaxation of transition metal compounds and beyond remains
an uncharted territory. With transition metals, there is anticipation
of difficulties in controlling sources of bias and statistical noise in
QMC force estimators,35,36 which we will encounter and discuss
here in practical terms. We use variational Monte Carlo (VMC) and
fixed-node diffusion Monte Carlo (DMC)29 with very conventional
single-determinant Slater-Jastrow wavefunctions. We use recent,
high-accuracy pseudopotentials37 in the scalar-relativistic formal-
ism. This leaves many sophisticated techniques up for renewal,
including multi-determinant wavefunctions,38 two-component
spinor.39

The remainder of the paper is organized as follows: In Sec. II
we briefly outline the theoretical background of the numerical prob-
lems and different SCF and QMC formulations that are relevant
for this work. In Sec. III we describe the respective implementation
and other computational details. In Sec. IV we present and discuss
results pure gold clusters, and in Sec. V thiolated gold compounds.
In Sec. VI we discuss the prospects of numerical performance based
on the physical results. In Sec. VII we summarize the work and
discuss next steps.

II. METHODS
We consider different numerical theories for solving the

non-relativistic first-principles electronic structure problem of N
ions and n electrons, stated by the Schrödinger equation in the
Born–Oppenheimer approximation for a given ionic geometry R:

H(R)∣Ψi(R)⟩ = Ei(R)∣Ψi(R)⟩, (1)

where, H, Ψi and Ei are, respectively, the Hamilton operator and
its eigenvalues and eigenfunctions for a state i. Here we only
consider scalar-relativistic calculation of the electronic structure,
where the average relativistic effects are embedded40,41 in the
pseudopotential.37

Following from Eq. (1), the potential energy surface (PES) for a
given state i is defined as

Ei(R) = ⟨Ψi(R)∣H(R)∣Ψi(R)⟩. (2)

Points of interest are the equilibrium geometries R0
i that locally

minimize the PES:

R0
i = arg min [Ei(R)]. (3)

The PES minimum is the best prediction of the equilibrium struc-
ture, in the absence of nuclear degrees of freedom. Thus, geome-
try optimization means finding the nearest local minimum of the
PES (although there could be many globally), so relaxing an ini-
tial R to Ri. Typical way of proceeding is minimizing the physical
unsigned forces on all ions, that can be computed from the gradients
of the wavefunctions. From here on we will lose the state num-
ber i and only consider the electronic ground state corresponding
to i = 0.

To evaluate E(R) from Eq. (2), we need to solve ∣Ψ(R)⟩
from Eq. (1) using a numerically tractable method. For a given
R, the approach in this work is to solve the energy-minimizing
wavefunction with a single-determinant Slater–Jastrow ansatz

ΨT(r) = J(r)S↑(r)S↓(r), (4)

where S↑↓(r) are the up/down are Slater determinants for the
respective spin species, J(r) is a Jastrow correlation factor and r
denotes the set of electronic coordinates. The Slater determinants
S↑↓ = det(D↑↓) are taken over population coefficients in a given
basis, such as a linear combination of atomic orbitals (LCAO). They
can be obtained from the SCF approaches, which treat the electronic
interaction based on a mean field. Here, we employ two SCF the-
ories, namely Restricted (open-shell) Hartree–Fock (RHF/ROHF)
and Kohn-Sham DFT. ROHF is used whenever the up/down spin
populations are non-symmetrical. The Jastrow factor is typically
expanded in terms of particle distances between distinguishable
species:42,43

J(r) =∑
ne

J1(r) +∑
ee

J2(r) +∑
nee

J3(r) + ⋅ ⋅ ⋅ , (5)

where ne, ee and nee refer, respectively, to nucleus-electron,
electron-electron and nucleus-electron-electron correlations. Fur-
thermore, each of Ja terms, where a = 1, . . . , 3, can be broken down
to two according to the electron spin alignments: nu/nd, uu/ud
and nuu/nud, where u/d refer to spin up/down and uu equals dd.
Higher order terms are not considered here. Different PESs ensue
depending on which ansatz degrees of freedom are simultaneously
optimized, for instance, whether the Jastrow factor is optimized up
to J2 or J3, or whether S↑(r) are re-optimized in the presence of J(r).

The correlated trial wavefunction ΨT(r) cannot be integrated
by conventional means, but it can be evaluated by random sampling:

EVMC
=
⟨ΨT ∣EL∣ΨT⟩

⟨ΨT ∣ΨT⟩
= ⟨EL⟩P (6)

where

EL(r) =
HΨT(r)
ΨT(r)

(7)

is the so-called local energy, and where importance sampling of rp

can be drawn from the distribution P(r) = ∣ΨT(r)∣2/∫ ∣ΨT(r)∣2 effi-
ciently by using the Metropolis algorithm. The coefficients of the
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wavefunction ΨT can be optimized to match the ground state by
minimization of ⟨EL⟩P, which is variational, or its variance.29 The
estimates of VMC energy are subject to finite noise, which can be
controlled by adjusting the finite number of samples.

The VMC ionic forces can be estimated from sampling the ana-
lytical gradients (d/dλ ≡ dλ, where λ is an ionic coordinate) of the
trial wavefunction:44

dλE = ⟨dλEL + (EL − E)dλ ln P⟩P, (8)

where E is an estimate of the total energy. The estimator faces
challenges at nodes, where dλΨT(r)/ΨT(r) diverges, leading to an
infinite variance problem for the estimator.45 The problem can be
treated by sampling a regularized function.44,46,47 To significantly
improve the statistical performance of the estimator, a space-warp
transformation is needed.36,48 The wavefunction gradients also call
for extra computation and cost-efficient algorithms.49 Furthermore,
it is important to calculate all terms that arise from dλ ln P, namely
all the derivatives of wavefunction coefficients, because neglecting
them induces estimator bias. This means that all calculation para-
meters contributing to P, including the orbital coefficients, must be
simultaneously optimized,35,50 which is done in the process of orbital
rotations.51–53

Fixed-node Diffusion Monte Carlo (DMC) is a projector
method, whose PES is given by

EDMC
=
⟨ΨT ∣EL∣Ψ0⟩

⟨ΨT ∣Ψ0⟩
, (9)

where Ψ0 refers to the projected ground state, given the fixed nodal
surface of ΨT . The projection to Ψ0 can be done according to

Ψ0 = lim
τ→∞

e−τH
∣Ψ⟩, (10)

which eventually propagates any state Ψ into Ψ0 that is not orthog-
onal to it. In practice, the propagator can be imposed to a walker
population using a finite time-step Δτ, leaving all parameters con-
trollable for systematic accuracy. Generally, the sources of numerical
error for DMC can be controlled to a high degree. The most sig-
nificant practical challenge remains the fixed-node error originating
from the SCF trial wavefunction. The choice of nodes conforms
to the variational principle, meaning better nodes are identified by
lower energy, but it also affects the evaluation of non-local projectors
that are prevalent in the modern effective core potentials (ECPs).

The DMC forces face the same difficulties as VMC, but also
an additional bias: the dλ ln P term cannot be readily computed,
because the mixed probability distribution P in DMC is not numeri-
cally attainable. Addressing the bias with the hybrid estimator54 does
not guarantee control of the bias.35,50 Advanced DMC force estima-
tors have been proposed in the literature44,50,55 but they call for extra
implementation and are left out of this work.

III. COMPUTATIONAL DETAILS
We perform numerical evaluation of the energies and forces, as

laid out in the earlier for different approaches: SCF, VMC and DMC.
First, the HF or DFT calculations are performed in GAMESS-US56

using RHF and ROHF methods, depending on the system, and com-
monly referred to as the SCF or DFT results depending on whether

or not HF is included. Single-determinant orbitals are considered
in two different LCAO bases: cc-pVDZ and cc-pVTZ (correlation-
consistent, polarized double/triple zeta). The bases are from the
correlation-consistent ECPs.37,57–59 The ECP for gold is for large
pseudo-valence Zeff = 19, which is more versatile and computation-
ally demanding as Zeff = 11 that is more common in applications.
The orbitals are computed based on HF and selected commonly used
DFT functionals, namely LDA, Perdew–Burke–Ernzerhof (PBE),
B3LYP and BLYP. Nexus workflow tool60 to manage the SCF
calculations.

Based on the SCF orbitals, we prescribe various QMC PESs
using ordinary workflows as implemented in the Cornell-Holland
ab initio materials package (CHAMP).61 The PESs and their selected
derived properties correspond to the following ansätze: In the VMC-
J12 workflow, we optimize 1 and 2-body Jastrow terms on frozen
orbitals and then evaluate it using VMC. In the VMC-J123 work-
flow, we append and re-optimize the VMC-J12 wavefunctions with
3-body Jastrow terms, then re-evaluate using VMC. In the DMC
workflow, we re-evaluate the VMC-J123 wavefunction using DMC.
In the VMC-OO workflow, we re-optimize orbital coefficients in
the presence of a VMC-J12 wavefunction. The total numbers of
thus optimized parameters vary between 359 (Au, ROHF, cc-pVDZ)
and 24 662 (MeSAu3, RHF, cc-pVTZ); a full table is given in
the Supplementary material. The Jastrow factors are implemented
according to Ref. 42 and optimized using the stochastic reconfig-
uration (SR) method62 in a conjugate gradient implementation.63

The orbital rotations are done in the full molecular orbital bases
using the SR method with τ = 0.01. In DMC, the T-move scheme64

is used to treat non-local projectors of the ECPs, with 12 randomly
rotated quadrature points. A linear extrapolation to zero DMC time-
step extrapolation is carried out with the following finite time-steps
Δτ: 0.008, 0.004, 0.002 Ha−1 (except ΔE of Au3 systems, only based
on Δτ = 0.008 Ha−1). DMC target populations of 50 walkers were
simulated on 128 parallel processes.

Based on direct sampling of the PESs we estimate selected
observables, namely energy differences and energy-minimizing
geometries. The geometries are obtained from fitting the energy
curve with a third order polynomial and locating minima. Their sta-
tistical uncertainties are estimated by statistical resampling of the
fitting of the PES.

Additionally, geometry optimization was performed in
CHAMP based on simultaneous orbital rotations and analytical
gradients (forces) in a VMC calculation with a two-body Jastrow.
The forces were estimated with an efficient estimator49 and using
a guiding function with ε = 0.01 to avoid an infinite variance
problem.46 The estimator is formally free of bias (see e.g., Refs. 35
and 50) when all Jastrow and orbital coefficients are simultane-
ously optimized, as is done in the VMC-OO workflow. Between
80, . . . , 120 iterations were calculated, where the geometry was
updated based on conjugate gradient descent62 with α = 0.1, . . . , 0.4
depending on the system. This was considered adequate to ensure
statistical convergence, in the absence of stopping criteria. No
symmetries or sophisticated Hessians were used in the process.
Estimates of derived structural properties, such as bond lengths and
dihedral angles, were calculated from geometry snapshots in the
iteration process. Their statistical errorbars were estimated from the
variance and sample auto-correlation of subsequent iterations of the
last about 50 samples of each parameter.
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The data, workflows and software are available in a data reposi-
tory.65 To control the results, we have employed additional methods
and implementations (including another QMC software66), whose
results are presented in the Supplementary material.

IV. PURE GOLD SYSTEMS
We begin by performing SCF and QMC calculations of selected

few-atom gold structures, namely Au, Au2 and Au3. The molecules
will be assessed on common merits of accuracy that are derived from
the ground state energies, with the purpose of benchmarking the
alternative methods and their implementations. The results with five
different mean-field descriptions [R(O)HF, LDA, PBE, B3LYP and
BLYP] are given in the triple-zeta basis (cc-pVTZ).

A. Au1

The isolated gold atom, Au1, reflects the baseline of accuracy
for each of the methods. The atom is simulated in three ionization
states, Auq, where q = −1, 0, 1. Orbitals for the charged states, q = ±1,
are obtained with RHF and the neutral state, q = 0, with ROHF.
Correlation energies recovered from alternative QMC theories are
presented in Fig. 1 for the neutral gold atom. The total binding
QMC energies for the ground states are variational, and thus, dif-
ferences from the R(O)HF energy are viable merits of accuracy. The
VMC energies based on one and two-body Jastrows (J12) are the
highest by about 1.5 eV. Upon optimization of the three-body term,
the energy improves by another 0.5 eV, and by using DMC, by yet
another 1.0 eV. At all stages, performance of the R(O)HF vs DFT
orbitals in QMC is worse by 0.2–0.3 eV, because the lack of dynamic
correlations leads to poorer nodal surfaces. The QMC data based
on DFT functionals are highly consistent and the differences are
indistinguishable from statistical noise. In other words, the QMC
treatment of correlation in gold atom is highly independent of the
DFT. Understanding differences in the DFT results would require
investigation of advanced properties (see e.g., Ref. 67), whereas
the use of QMC effectively lifts this requirement for numerical
purposes.

FIG. 1. Correlation energies (eV) of neutral Au1 from different QMC imple-
mentations based on single-determinant ROHF orbitals from different SCF
methods.

In Table I we report derived energetic properties of the ground
state, namely the electron affinity (EA) and the ionization poten-
tial (IP) and compare them to well-known experimental values.68

The SCF data are largely spread with the relative standard deviation
(RSD) of over 32% for EA and 8% for IP, leading to high mean abso-
lute relative errors (MARE). The MARE and RSD of the SCF data
without HF, which is an outlier, are over 8% and 2%, respectively.
Even so, upon introduction of the J12 wavefunctions, the orbital
dependency vanishes to a high degree: The RSD drops by an order of
magnitude. The RSD numbers contain statistical noise and remain
upper bound estimates. Figure 2 illustrates how the spread of val-
ues from the mean-field are clustered and incrementally improved
by the QMC treatments.

The MARE of the J12 wavefunction is no better than DFT,
because of a (very consistent) systematic bias. The improvement
of accuracy from the J123 wavefunction is modest. The DMC is
better, but doesn not quite meet the experiment. Reasons for that
could be in the limitations of the single-reference wavefunction,
and ROHF orbitals. Also, the non-augmented basis sets are sub-
optimal for describing the diffuse anion, Au−. As already demon-
strated in the original publication of the ECP, single-determinant
DMC does not perform any better than this even in a two-
component spinor formalism.37 This underlines the challenges of
treating fully accurate dynamic correlation in coinage metals, such
as gold.

B. Au2

Next, we study the singlet ground state of the gold dimer, Au2,
where we predict the bond length dAu−Au and binding energy De. The
binding curve is computed along a regular grid of six displacements,
and then fitted to a third order polynomial, where the spectroscopic
properties are obtained. The molecular binding energy is estimated
according to

De = E0(Au2) − Ev(Au2) − 2E(Au), (11)

where E0(Au2) is the fitted minimum energy of the binding curve,
Ev(Au2) = 23.7 meV68 is the vibrational zero-point energy, and
E(Au) is the total energy for a corresponding neutral atom. Statis-
tical uncertainties of the fitted properties are estimated by random
resampling.

Fitted spectroscopic data from different binding curves are pre-
sented in Table II. The systematic accuracy of predicting the bond
length dAu−Au with the SCF is, on average, 2.5% (MARE) with almost
as high variability 1.8% (RSD). VMC with J12 optimized on frozen
orbitals reduces the systematic error and XC treatment by a factor
of 3. Optimizing three-body Jastrow terms only affects the results
modestly. DMC has the highest accuracy with MARE of about
0.6%.

The same pattern repeats in the prediction of De: VMC is
modestly more accurate, on average, than SCF, and much more
consistent. DMC is clearly the most accurate with MARE of 9%.
Our DMC results for De based on Eq. (11) are in a systematic dis-
agreement with an earlier work,37 where De was obtained by fitting
to a Morse potential. Another outlier is J123, whose data for De
contains a sizable inaccuracy based on estimation from Eq. (11).
It turns out that J123, as implemented in 42 performs much bet-
ter with Au atom than with an Au2 dimer, hence the poor energy
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TABLE I. Electronic affinities (EA; eV) and (right) the ionization potentials (IP; eV) of Au atom based on selected methods
and SCF orbitals. The MARE and RSD are estimated over the sets of orbitals.

Orbitals SCF J12 J123 DMC

EA EXPT 2.31
RHF 0.320 06 1.67(3) 1.77(3) 2.01(2)
LDA 2.440 45 1.78(3) 1.87(3) 2.11(2)
PBE 2.088 36 1.75(3) 1.88(3) 2.16(2)

BLYP 2.062 16 1.81(3) 1.86(3) 2.12(2)
B3LYP 1.930 98 1.75(3) 1.88(3) 2.10(2)

MARE (%) 25.7 24.04 19.88 9.09
MAREa (%) 10.59 23.12 18.96 8.17

RSD (%) 32.19 2.06 1.87 2.09
RSDa (%) 8.17 1.03 0.36 1.09

IP EXPT 9.23
RHF 7.693 72 8.86(3) 8.95(3) 9.11(2)
LDA 9.906 81 8.87(3) 8.95(3) 9.18(2)
PBE 9.537 34 8.93(3) 8.95(3) 9.14(2)

BLYP 9.518 17 8.89(3) 9.02(3) 9.15(2)
B3LYP 9.345 17 8.94(3) 9.03(3) 9.14(2)

MARE (%) 6.34 3.58 2.69 0.91
MAREa (%) 3.76 3.48 2.6 0.8

RSD (%) 8.4 0.34 0.39 0.26
RSDa (%) 2.22 0.31 0.39 0.18

aHF data excluded as an outlier.

FIG. 2. Convergence of (left) the electronic affinities (EA; eV) and (right) the ionization potentials (IP; eV) of Au atom based on selected methods and SCF orbitals. The VMC
methods (J12, J123) remove the orbital dependency, and increasing accuracy up to DMC brings the results closer to experiment (dashed line).

(over 50% MARE!). This is not the case with another implemen-
tation of J123,43 as detailed in Supplementary material. Improving
the systematic accuracy from here is left for another work. The val-
ues of MARE and RSD for QMC are upper bounds and could be
reduced, on average, by practicing more accurate (and expensive)
optimizations.

Yet, the main reason for the comparison is to set up con-
text for the last column of Table II, VMC-OO. The data precedes
full reoptimization of the J12 and orbital coefficients of the VMC
wavefunction, but also the ionic geometry. The process implicitly
removes dependency on the initial orbitals, and hence, in terms of
RSD, the data quality far supersedes J12 and J123, let alone SCF.
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TABLE II. The predicted equilibrium bond lengths (dAu−Au; Å) and binding energies (De; eV) of Au2 from selected methods based on variable orbitals.

Orbitals SCF J12 J123 DMC VMC-OO

dAu−Au EXPT 2.471 9
RHF 2.591 55 2.47(2) 2.506(12) 2.479(9) 2.503(6)
LDA 2.455 2 2.48(2) 2.483(11) 2.476(8) 2.486(2)
PBE 2.510 48 2.50(2) 2.488(12) 2.508(10) 2.490(2)

BLYP 2.543 68 2.491(14) 2.484(12) 2.485(10) 2.5137(7)
B3LYP 2.534 06 2.51(2) 2.510(13) 2.484(9) 2.495(5)

MARE (%) 2.5 0.74 0.9 0.59 1.04
RSD (%) 1.8 0.56 0.47 0.46 0.4

De EXPT 2.27
RHF 0.852 13 1.71(6) 1.16(7) 1.98(4) 1.83(5)
LDA 2.958 95 1.67(6) 1.10(5) 2.08(4) 1.81(7)
PBE 2.336 25 1.60(6) 1.12(6) 2.14(4) 1.85(5)

BLYP 2.146 49 1.68(7) 1.02(5) 2.09(5) 1.82(5)
B3LYP 1.997 58 1.67(6) 1.07(6) 2.09(4) 1.82(6)

MARE (%) 22.63 26.57 51.68 8.66 19.5
RSD (%) 30.23 1.55 2.01 2.28 0.5

FIG. 3. The trace of convergence of dAu−Au of Au2 in VMC-OO geometry optimiza-
tion based on different starting orbitals and geometries from the corresponding
SCF methods. Black dashed line is the experimental reference.

The systematic accuracy (MARE) is not significantly different from
frozen-orbital VMC, and it cannot par with DMC. Still, the crucial
point of turning the XC functional dependency of SCF to something
more robust is clearly demonstrated in the results and illustrated in
Fig. 3.

C. Au3

Next, we study the 2B2 state of neutral gold trimer Au3 in
three different isomer configurations that are characterized by the
isosceles triangle θ. The isomers will be referred to as I (θ ≈
65○), II (θ ≈ 125○) and III (θ ≈ 180○) and their data will com-
pared to similar structures from an a spin-unrestricted open-shell

coupled-cluster singles doubles perturbative triples [UCCDS(T)]
benchmark study.69 We perform geometry optimization of each iso-
mer using ROHF orbitals in SCF and VMC-OO. We also compute
single-shot VMC and DMC energies at the reference structures for
analysis of computational cost and energy differences.

In Table III, we present bond lengths dAu−Au, dihedral angles
θ and energy differences ΔE to the lowest-energy isomer of Au3.
It is immediately seen that HF fails to bind the Au3-I isomer and
mistakenly relaxes it to Au3-II. This can be attributed to failures in
addressing the strong influence of d-electron correlation in these
species.69,70 Generally, in each isomer the DFT methods overesti-
mate dAu−Au by 0.02, . . . , 0.06 Å, except LDA, which underestimates
it by around 0.05 Å. On the other hand, VMC-OO very strongly pre-
dicts the same bond lengths as UCCSD(T). While the bond length
converges to a common regime, the dihedral angle θ is not signif-
icantly improved. A finite-difference study with DFT suggests that
the force-constant matrices regarding a change in θ in isomers I and
II are, respectively, more than 15 and 217 times smaller than those
regarding dAu−Au. Thus, the poor resolution of angles is a conse-
quence of a poor signal-to-noise ratio, which is further elaborated
in in Sec. V.

In the last column of Table III, we consider energy differences
with respect to the predicted lowest-energy isomer by each method.
The DFT methods (except LDA) identify Au3-II as the lowest-energy
isomer, in contrast to the UCCSD(T) benchmark suggesting Au3-
I. The VMC-OO results are not statistically significant to dictate
whether I or II is the lowest-energy isomer. However, the DMC
results are more clearly in agreement with UCCSD(T). The DMC
runs were based on UCCSD(T) geometries instead of VMC-OO
for convenience, because they were almost identical in dAu−Au but
resolving θ from VMC-OO was less reassuring for the reasons stated
above.
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TABLE III. Bond lengths dAu−Au, dihedral angles θ and energy differences ΔE from
SCF and VMC-OO calculations of isomers I-III of Au3. The VMC-OO results are based
on BLYP starting orbitals, and UCCSD(T) data are from Ref. 69.

Isomer Method dAu−Au (Å) θ (deg) ΔE (EH)

I RHF 2.680 37 127.490 15
LDA 2.545 85 64.624 96 0.0
PBE 2.609 06 66.574 76 0.112 55

BLYP 2.642 46 69.732 25 0.214 28
B3LYP 2.630 77 69.751 44 0.136 91

VMC-OO 2.570(2) 69.43(10) 0.000(12)
DMC 2.58 65.28 0.00(3)

UCCSD(T) 2.58 65.28 0.0

II RHF 2.680 81 127.378 69 0.0
LDA 2.480 56 138.920 92 0.010 49
PBE 2.555 04 138.209 9 0.0

BLYP 2.594 57 139.796 69 0.0
B3LYP 2.592 3 134.027 01 0.0

VMC-OO 2.526 6(10) 140.88(10) 0.04(3)
DMC 2.53 126.36 0.04(3)

CCSD(T) 2.53 126.36 0.117 1

III RHF 2.688 96 180.0 0.020 83
LDA 2.504 32 180.0 0.158 1
PBE 2.575 1 180.0 0.094 96

BLYP 2.614 22 180.0 0.082 02
B3LYP 2.608 59 180.0 0.067 89

VMC-OO 2.544(2) 179.29(10) 0.084(13)
DMC 2.55 180.0 0.12(3)

UCCSD(T) 2.55 180.0 0.1908

V. STRUCTURAL OPTIMIZATION OF THIOLATED
GOLD MOLECULES

Let us now compare DFT and VMC-OO methods in predicting
the geometries of the following series of thiolated gold structures:
(MeSAu)n, where (Me is CH3) and n = 1, . . . , 3. Progression of
the system size will help us investigate calculation merits, such as
accuracy and computational cost, in view of chemically interesting
applications.

In Table IV we present estimates of selected structural prop-
erties of (MeSAu)n, based on the DFT and VMC-OO calculations,
including a reference from an earlier PBE study.12 The bond lengths
obtained from VMC-OO are generally shorter by 0.02, . . . , 0.1 Å
compared to PBE, BLYP and B3LYP, whereas LDA underestimates
most of the bond lengths compared to VMC. While we do not
present a high-accuracy control of the accuracy, it is clear that
VMC-OO efficiently removes the orbital dependencies coming from
the starting orbitals, as it should. We elaborate and discuss in the
Supplementary material how different structural parameters con-
verge to the same statistical locality, albeit with different statistical
properties. A scheme like this alleviates one from performing an
exhaustive scan of different DFT functionals to find reasonable
starting orbitals for this scheme.

For dihedral angles, the performance of VMC-OO is not deci-
sively improved over DFT. This is due to the angles being soft

parameters, i.e., their force-constants are low. The stiffness (force-
constant) is directly proportional to the signal (force) near the
equilibrium. Therefore, the signal-to-noise ratio is much more
favorable in stiff bonds, such as C–H, than in soft parameters,
such as dihedral angles. Furthermore, as the geometry update is
not aware of parametric definitions, the soft parameters follow a
Markov chain random walk with high autocorrelation. We have
estimated, approximately, that the parameter stiffnesses in (eV/Å)2

for (MeSAu)1 are as follows: 660 for C–H bond, 120 for S–C
bond, 12 for Au–S bond, 39 for S–C–H bond angle, and 7.2
for Au–S–C bond angle. For instance, the signal-to-noise ratio is
over 90 times higher for the C–H bond than for the Au–S–C
angle.

Generally, the statistical performance of VMC-OO decreases
approximately with n−1/2 beyond the computational scaling (t ∼ n3

).
This has been analyzed in Table V, where we present the rela-
tive uncertainties of the VMC forces in all calculations. Moreover,
the pseudo-valence Zeff has an intrinsic effect on the force vari-
ance (i.e., inverse statistical efficiency) of each individual atomic
species. This property has been systematically studied,34,35 and it is
generally accepted that higher Zeff comes with a higher variance,
because the trial wavefunction is probably less exact. Theorizing
ratios of force variances in heterogeneous compounds is complex,
because the elements affect each other through local energy vari-
ance. Here, based on a series of qualitative similar particles, we
observe that the respective force uncertainty ratios of Au:S:C:H
are fixed to ∼11:3:3:1. On the other hand, the rescaled uncertainty
σFn−1/2 remains effectively constant. The latter point confirms that
the force variance is extensive,71 i.e., it scales linearly with the sys-
tem size n. A broad conclusion is that the statistical properties of
forces can be reliably predicted in this workflow. A specific result
is that coinage metals, such as gold, which are by far the hard-
est to converge statistically in this ensemble, might benefit from
using a cheaper pseudopotential (Zeff = 11) for geometry relaxation
purposes.

VI. ACCURACY AND COMPUTATIONAL COST
Finally, we present a coarse summary of some relevant merits

of accuracy and prospects of the computational cost. The com-
parison is made between selected DFT, VMC, and DMC data, as
presented in this work, excluding R(O)HF as an outlier for practical
purposes.

Thus, we consider the mean absolute deviation (MAD) and
standard deviation (STD) over DFT results from LDA, PBE, BLYP
and B3LYP, and their counterparts in VMC-J12, VMC-OO and
DMC, where applicable. Furthermore, a basis-set effect (BSE) is
computed as an absolute deviation between results from double-
zeta and triple-zeta bases. This uncommon merit of accuracy is
reported here as a probe for sensitivity of the basis set. The energy
data contains EA/IP results from Au, De of Au2 and the energy
displacements of Au3-II and Au3-III from Au3-I. The geomet-
ric data is based on bond length predictions in Au2, Au3 and
MeSAun with n = 1, . . . , 3; the dihedral angles are left out, because
they lack external reference data and the QMC results have poor
signal-to-noise ratios. The VMC results are aggregated from both
VMC-J12 and VMC-OO. The DMC data is scarce and relatively
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TABLE IV. Structural properties of MeSAun with n = 1, . . . , 3 based on SCF and VMC-OO geometry optimizations, and a reference DFT study.12

n Method Au–Au Au–S S–C C–H Au–S–C Au–S–Au

1 LDA 2.197 52 1.818 41 1.104 8 104.024 9
PBE 2.239 63 1.830 72 1.096 39 104.517 15

BLYP 2.275 1.852 28 1.093 67 104.770 2
B3LYP 2.264 04 1.835 29 1.088 29 104.482 72
VMC 2.213(2) 1.806(3) 1.077 8(5) 105.55(9)

2 LDA 2.640 29 2.425 67 1.828 03 1.103 41 105.945 29 66.037 13
PBE 2.714 46 2.484 58 1.840 09 1.095 05 107.776 11 66.359 83

PBE12 2.76 2.50 1.83 67.1
BLYP 2.778 61 2.537 76 1.862 49 1.092 39 108.401 67 66.554 1

B3LYP 2.7557 2.512 74 1.8429 1.087 24 108.199 57 66.625 71
VMC 2.677(8) 2.472(6) 1.815(3) 1.077 2(2) 110.65(2) 65.83(13)

3 LDA 2.904 72 2.320 89 1.833 19 1.102 82 107.976 51 77.445 8
PBE 2.9919 2.363 69 1.845 02 1.094 5 108.912 35 78.537 42

PBE12 3.02 2.38 1.84 78.7
BLYP 3.075 65 2.402 76 1.867 56 1.091 78 109.223 49 79.617 85

B3LYP 3.054 24 2.384 29 1.8461 1.086 69 109.364 76 79.685 37
VMC 2.998(2) 2.349 0(9) 1.821 1(12) 1.076 48(7) 111.17(3) 79.24(7)

TABLE V. Relative statistical uncertainties of the VMC forces per each atomic species
in (MeSAu)n, where n = 1, . . . , 3: the middle panels show the mean uncertainties on
Au, S and C atoms per that of H, whereas the rightmost panel shows the force uncer-
tainty for H with different n but same number of samples. The numbers demonstrate
very regular scaling of the force uncertainties with the system size.

n Au/H S/H C/H H n−1/2

1 11.3 3.0 3.4 0.0022
2 10.1 3.0 3.3 0.0022
3 10.2 3.1 3.1 0.0022

noisy, so the comparison likely undermines its prospects for mak-
ing accurate predictions. Generally, the QMC data is subject to
statistical fluctuation, which overestimates MAD, STD and BSE by
a modest amount. The MAD are not reported without an exter-
nal reference. A full list of values is available in the supplementary
material.

Comparison of the energetic accuracy is presented in the top
panel of Fig. 4. Both MAD and STD of the DFT results are over
0.2 eV, and the BSE is about 0.07 eV. The DFT approach is as good

as it is consistent. VMC and DMC successfully mitigate the spread
(STD <0.1 eV), but VMC faces trouble in predicting the right ener-
gies with MAD over 0.3 eV. DMC has the lowest MAD of 0.11 eV,
which could be further by focusing the effort on more advanced
wavefunctions.

Similar comparison of the geometry effects is given in the bot-
tom panel of Fig. 4. The MAD of DFT is around 0.05 Å but the
STD is only 0.03 Å, signaling systematic biases, such as overesti-
mation of bond lengths. The VMC and DMC come out as equally
good, about 0.015 Å accurate. The DMC numbers are only based
on Au2, in the absence of practical geometry relaxation techniques
being studied in this work. The results from both QMC approaches
are pervaded by statistical noise, which undermines their true merits
but also underlines their practical challenges.

Finally, we study scaling of the computational cost with sys-
tem size n based on our calculations of Aun and (MeSAu)n, where
n = 1, . . . , 3. The approach is empirical in the sense that we compare
the actual mean running times T of various workflows on com-
mon hardware. Scaling fits of the form T(n) = anb are presented
in the Supplementary material for various energy and geometry

FIG. 4. Mean MAD, STD and BSE for predicting energies (top) and geometries (bottom). The data is averaged over DFT, VMC and DMC data from various gold molecules
presented in this study, where applicable.
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workflows. Based on the prefactors a, the SCF runs based on R(O)HF
are by far the cheapest; VMC is two orders of magnitude more costly,
and DMC is two more orders of magnitude costlier. Besides this
order-of-magnitude ballpark, the prefactor has little importance, as
it is characterized by the software, hardware, physical problem and
choices of the stopping criteria. Some of this is discussed in the
supplementary material. The effective scaling exponent b is consis-
tently between 2 and 3, as also anticipated.29,30 This is a significant
property related, on one hand, to an efficient implementation of
VMC-OO forces,49 and on the other hand, because most other high-
accuracy wavefunction methods have b > 4, such as coupled-cluster
singles doubles perturbative triples [CCSD(T)] with b = 7.29 Finally,
increasing the basis set from double-zeta to triple-zeta effectively
triples the convergence time of the SCF. The effect on VMC-OO is
about 50% increase because of more gradients to compute, but in
VMC-J123 and DMC the effect is almost negligible.

Many conclusions can be drawn from this section that only
confirm what has been known in the past about the accuracy and
scaling properties of QMC. A prospective strategy for maintain-
ing beyond-DFT accuracy in the predictive simulation of molec-
ular gold compounds would be through using VMC for geome-
try optimization, and then DMC for energies and other derived
properties.

VII. SUMMARY AND OUTLOOK
We have studied first-principles calculation of small gold par-

ticles using common DFT and QMC methods. Simulating selected
pure and thiolated gold molecules (Aun and MeSAun, where
n = 1, . . . , 3), we have shown that QMC provides more consistent
and accurate results than DFT with different XC functionals. We
demonstrate that the mean spread between selected XC function-
als is over 0.2 eV for energies and 0.04 Å for bond lengths, whereas
the respective numbers are less than 0.03 eV and 0.02 Å for QMC
(containing statistical noise). The effects due to basis set are also
more modest with QMC. The QMC approach provides a consis-
tent treatment of the dynamic correlation, but perfect agreement
with the experiment remains elusive. For better predictive accuracy,
we look forward to using with multi-configuration trial wavefunc-
tions and a two-component spinor technique39 to treat spin–orbit
coupling.

Much of the work is focused on geometry optimization with
the VMC-OO approach. The proof of concept is to show that the
method is efficient and robust even for coinage metal compounds,
albeit facing new statistical challenges. Indeed, the consistent predic-
tion of atomic distances far exceeds that of DFT, but dihedral angles
show little improvement due to poor signal-to-noise ratios. Gen-
erally, we observe that the scaling of statistical properties with the
system size obeys well-known laws: the computation of VMC forces
scales with n3 (in an efficient implementation), and the force vari-
ance with n1. Simple remedies outside of estimator techniques would
be considering pseudopotentials with lower pseudo-valences Zeff

35

and curve-fitting instead of gradient minimization to address soft
parameters (see e.g., Refs. 72 and 73). While the prospect of robust
DMC forces adds both accuracy and cost, a reasonable strategy
for the meanwhile could be as follows: use VMC-OO for geome-
try optimization and DMC for everything else. For example, in Au3

the QMC approaches predicted the correct structures and order-
ing of isomer energies, the latter of which most DFT functionals
failed.

Whether admitted or not, the applied simulations of coinage
metal compounds need a high-standard calculation method to
control DFT, which will remain the main workhorse. We have
demonstrated QMC approaches that are simple and effective in
addressing the XC dependency of DFT, and also two or more orders
of magnitude more expensive. This is the price to pay for higher
quality.

SUPPLEMENTARY MATERIAL

Supplementary material is provided featuring figures, bench-
mark data and data tables that support the discussion.
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