
Joonas Uusnäkki

 DESIGN PRINCIPLES FOR PROMPT ENGINEERING WITHIN
LARGE LANGUAGE MODELS: CASE STUDY ON SOFTWARE

MAINTENANCE

JYVÄSKYLÄN YLIOPISTO

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA
2023

I

ABSTRACT

Uusnäkki, Joonas
Design principles for Prompt Engineering within Large Language Models: Case
Study on Software Maintenance
Jyväskylä: University of Jyväskylä, 2023, 56 pp.
Information Systems, Master’s Thesis
Supervisors: Mikkonen, Tommi & Myllymäki, Pasi

Software maintenance is a significant phase in software´s lifecycle that is high-
lighted in large, business-critical systems. In this thesis, the impact of generative
AI on software maintenance is investigated. We conducted a constructive design
science research on the usage of Large Language Models (LLMs) in the analysis
of software code base, with 36 chats within 4 different LLMs, seeking systematic
approaches for enhancing software maintenance. We discovered that LLMs sys-
tematically produce insights and suggestions in software analysis within real
production systems. As a tool for the study, we introduce the PESD framework,
which serves as a foundation for prompt engineering within software develop-
ment environment, offering design principles for the prompt engineering pro-
cesses.

Keywords: generative AI, large language models, prompt engineering, software
maintenance, PESD framework, design science research

II

TIIVISTELMÄ

Uusnäkki, Joonas
Suunnitteluperiaatteet kehotesuunnittelulle suurissa kielimalleissa:
tapaustutkimus ohjelmistojen ylläpidosta
Jyväskylä: Jyväskylän yliopisto, 2023, 56 s.
Tietojärjestelmätiede, Pro gradu -tutkielma
Ohjaajat: Mikkonen, Tommi & Myllymäki, Pasi

Ohjelmistojen ylläpito on merkittävä vaihe ohjelmistojen elinkaarella, joka koros-
tuu suurissa, liiketoimintakriittisissä järjestelmissä. Tässä pro gradu-tutkiel-
massa tutkitaan generatiivisen tekoälyn vaikutusta ohjelmistojen ylläpitoon. To-
teutimme konstruktiivisen suunnittelutieteen tutkimuksen suurten kielimallien
käytöstä ohjelmistokoodin analyysissä 36 keskustelun avulla 4 eri mallilla etsien
systemaattisia lähestymistapoja ohjelmistojen ylläpidon parantamiseksi. Huo-
masimme, että suuret kielimallit tuottavat järjestelmällisesti näkemyksiä ja ehdo-
tuksia ohjelmistoanalyysiin todellisissa tuotantojärjestelmissä. Tutkimuksen työ-
kaluksi esittelemme PESD-viitekehyksen, joka toimii perustana kehotesuunnit-
telulle ohjelmistoympäristössä ja tarjoaa suunnitteluperiaatteet kehosuunnitte-
lun tueksi.

Asiasanat: generatiivinen tekoäly, suuret kielimallit, kehotesuunnittelu, PESD-
viitekehys, ohjelmistojen ylläpito, suunnittelutiede

III

FIGURES

FIGURE 1 Transformer architecture (Vaswani et al., 2017) 8

FIGURE 2 Prompt engineering techniques .. 12

FIGURE 3 Generative AI project life cycle (Barth et al., 2023) 15

FIGURE 4 Design Science Research framework (Hevner et al., 2004) 21

FIGURE 5 TextGen web UI ... 27

FIGURE 6 PESD framework ... 29

FIGURE 7 FEDS framework (Venable et al., 2016) .. 31

TABLES

TABLE 1 Examples of LLM model families ... 14

TABLE 2 Design Science Research .. 19

TABLE 3 DSR Contribution Types (Gregor & Hevner, 2013) 22

TABLE 4 IT artifacts ... 23

TABLE 5 Compared LLMs.. 26

TABLE 6 Prompt design principles with PESD framework 30

TABLE 7 Evaluation goals, objectives and artifact elements 32

TABLE 8 Evaluation episodes .. 34

TABLE 9 Results ... 35

TABLE 10 Detailed results .. 49

IV

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
FIGURES AND TABLES

1 INTRODUCTION ... 1

2 GENERATIVE AI .. 4

2.1 Artificial intelligence ... 4

2.2 Generative AI ... 5

2.2.1 Natural Language Processing .. 6

2.2.2 Large language models ... 6

2.2.3 Prompt engineering ... 11

2.3 AI models and GAI workflow ... 13

3 RESEARCH SETTING .. 16

3.1 Research questions .. 16

3.2 Case company: Nokia ... 17

3.3 Design Science Research methodology .. 18

4 CASE STUDY ... 24

4.1 Model selection .. 24

4.2 Design and development .. 27

4.2.1 Foundations of the framework ... 27

4.2.2 Introducing PESD framework and prompt design principles .. 28

4.3 Evaluation and results .. 31

5 DISCUSSION ... 36

5.1 Revisiting research questions ... 37

5.2 Implications and future research ... 38

5.3 Limitations .. 38

6 CONCLUSION .. 40

REFERENCES .. 41

APPENDIX .. 49

1

Software development as a field of expertise in engineering is unique and dy-
namic in its ways of working. In contrast to traditional products like books and
clothes, which are designed, developed, and delivered to customers as static en-
tities, software products differ significantly in their dynamic nature. Modern soft-
ware projects typically involve developers working on them for extended dura-
tions due to their ever-evolving requirements, rising complexity and the contin-
uously progressing nature of the industry (Jacobson et al., 2022). Practices of
DevOps, such as continuous-integration and continuous-delivery (CI/CD) act as
modus operandi in fast-phased industry, enabling teams to deploy products even
faster and leaving more time for innovation (Ebert et al., 2016). As a result, soft-
ware products often undergo continuous changes and updates to adapt to evolv-
ing needs and technological advancements, requiring varying frameworks and
ways of working.
 The Software (System) Development Life Cycle (SDLC) encompasses a
set of best practices and distinct phases designed to facilitate the development
and maintenance of exceptional information systems (Boehm, 1976). Its origins
can be traced back to the 1950s when programming languages began to be more
accessible and open to the public, leading to the establishment of structured
methodologies for software development. SDLC is widely used in software de-
velopment, system development, application development and other develop-
ment domains as a framework to organize tasks. The SDLC consists of different
phases that typically include planning, design, development, testing, release, and
maintenance (Ruparelia, 2010).
 From these phases, the maintenance phase acts as a crucial phase in soft-
ware´s lifecycle, as it takes away 80-90% of the costs according to research
(Koskinen, 2004). Software maintenance is one of the most crucial parts of SDLC.
It is an on-going process that initiates after the software product has been de-
ployed into production and continues its lifecycle. Maintenance involves resolv-
ing errors, adapting to new business environments with user requirements, and
other supportive tasks that maintains the system (Lientz et al., 1978). As the size
of systems expand, developers encounter varying issues in maintenance of the

1 INTRODUCTION

2

software, inhibiting their high quality in functionality and longevity, particularly
as the modern software systems are built using varying components as open-
source libraries and programming paradigms.
 These issues result in significant challenges in cases such as usage, de-
ployment, and testing when handling large or medium-large software systems,
particularly as the utilization and quantity of diverse technologies, code reposi-
tories, external components, and other crucial factors increase (Wei et al., 2016).
The problems can compound further if there are additional issues in technical
debt, such as the failure to update the software system, developers leaving the
company, and only a handful of developers being responsible for maintaining
the project, among others (Bogner et al., 2018).
 Research on developers maintaining the software has revealed that about
half of their work hours are dedicated to comprehending and understanding the
code they are responsible for maintaining, making it the largest cost factor in
SDLC (Standish, 1984). As such, maintenance process should be researched to
acquire more systematic and improved ways to maintain software systems
(Bogner et al., 2018). In this context, generative artificial intelligence (generative
AI/GAI) could provide innovative solutions for learning new concepts and
onboarding developers for entire codebases. Especially trainee level developers
could benefit from a feature where technologies such as generative AI present
introduce components, propose repair suggestions and give more sophisticated
examples about the application area or element itself (Bull & Kharrufa, 2023).
Thus, the maintenance phase is the primary target in the context of this thesis.
 In this thesis, we conduct an empirical study on generative AI's impact
on software maintenance. The key objective of our study is to investigate ways
to systematically gather outputs that provide value for researchers and develop-
ers using generative AI, specifically the large language models (LLMs). We con-
duct design science research on LLMs with a focus on producing a framework
for prompt engineering, with the evaluation done using four different models.
With this framework, we delve into finding systematic information on improve-
ments for software maintenance.
 Literature review for this thesis was done mainly via Google Scholar
search engine. Scientific publications were chosen from databases that varied
largely from journals to scientific conferences. Other databases that were used in
the making of this thesis were Elsevier, Springer Link, IEEE database and JYX
among others. Previously mentioned publishers and databases were targeted for
more specific searches. Keywords that were included in literature review were
mainly concepts about AI and software development such as “generative ai llm,”
software maintenance phases”, “NLP software development”, “life cycle costs
software product” and “p-tuning limitations”.
 Literature review was done rigorously with the focus on quality. This
was due to a massive rise in AI related themes in unpublished and published
publications which made it difficult to scan the literature diligently. Vast
amounts of pre-print papers on open databases have been in rise in the context
of generative AI, leaving the processes of peer review not known. Therefore,

3

scientific publications selected to be used in this thesis intend to have a classifi-
cation level of at least 2 or 3 on their submitted publication channels. Exception
is due for well-established scientific publications stored as arXiv pre-print publi-
cations. Classification is based on the publication channel search of Publication
Forum by the Finnish scientific community (JUFO-rating).
 Since the themes of the thesis are very novel and constantly developing,
the thesis uses gray literature when referencing the latest instalments on some of
the more practical notations: mainly when referencing the LLM usage and latest
phenomena, such as glitching tokens.
 The rest of the thesis is structured as follows. Chapter 2 includes the lit-
erature review on generative AI. In this chapter, AI’s history and current appli-
cations are presented. Generative AI’s essential principles are introduced with
their main functions on the phenomenon.
 Based on the literature review, Chapter 3 presents the study’s research
questions, research setting, and methodology. In this chapter, the thesis intro-
duces the main setting for the study: the intersection of AI and software mainte-
nance. The case company is also introduced. The methodology of Design Science
Research is introduced with its respective phases in this chapter. Additionally,
the basis for the empirical study is established through design science.
 Chapter 4 introduces the case study and results with the design and de-
velopment of our research artifacts. These artifacts are also evaluated in this
chapter. Results are presented with evaluations of previous research and practi-
cal implications.
 With the study results covered, Chapter 5 is based on a discussion about
the study. Study results are viewed and compared towards the research ques-
tions and hypotheses. Possible implications, limitations, and future research are
also discussed. Finally, in Chapter 6, the thesis concludes with the summarization
of the study and its findings.
 This thesis was produced with the help of generative AI applications,
specifically ChatGPT and Bard. These applications were primarily used to check
for possible grammar mistakes and swiftly find new information about the con-
cepts discussed in the thesis. The content in this thesis is based on scientific pub-
lications selected through a rigorous literature review. No text or other content
was purely copied straight from these applications' outputs without scientific ref-
erences, and modifications were made to ensure originality.

4

This chapter describes generative AI’s current characteristics, functions, and ap-
plications. The chapter gives an overview of LLMs, prompt engineering, and gen-
erative AI applications.

2.1 Artificial intelligence

AI has been long described as the next great innovation and milestone in human
history. Although AI has been researched from the 1950’s until today, it was not
until the late 2010s that the first practical and business applications of AI began
to reach large user bases (Haenlein & Kaplan, 2019). With a tremendous growth
of user base, various entities, from private companies to public sector organiza-
tions, have started making investments in the adoption of AI applications and
the general development of AI (European Commission. Joint Research Centre.,
2020). Remarkable milestone AI-systems, such as IBM’s Deep Blue in 1997 and
Google’s AlphaGo in 2015, ensured AI to become the status quo in the search of
the next disruption in the digital world since the Internet (Haenlein & Kaplan,
2019). These significant contributions to AI development keep inspiring the next
generation of researchers and practitioners.
 Among the most leading and thought provoking AI-subgenres today is
generative AI, which has created fruitful discussions on opportunities and
threats within its usage and development (Dwivedi et al., 2023; Stokel-Walker &
Van Noorden, 2023). Generative AI consists of applications that receive input
data from user, processes the data via its own algorithms and models, and out-
puts data based on the used models’ parameters (Bull & Kharrufa, 2023; Kalyan
et al., 2021; Min et al., 2023). Output data depends on the application’s purpose
and model’s features, which can vary on uncounted amounts like translation to
another language, speech recognition, writing summaries and categorizing con-
text (Kalyan et al., 2021; Stokel-Walker & Van Noorden, 2023). Rise of generative

2 GENERATIVE AI

5

AI applications have inspired researchers to dive deeper into differing impacts
of AI, including societal, ethical, and economic impacts.
 One of the most prominent examples of generative AI is ChatGPT chat-
bot developed on top of the OpenAI research center's GPT (Generative Pre-
Trained Transformer) model family (OpenAI, 2022). ChatGPT is capable of gen-
erating human-like responses to users who ask the system various questions
based on input provided in the search field. The explosive growth of GPT based
applications has sparked discussions about the ethics, licensing, and cybersecu-
rity of AI applications (Dwivedi et al., 2023). However, considering these aspects,
the applications will become and are already part of our everyday lives, both in
the workplace and during leisure time. The integration of generative AI across
multiple domains represents a forward-looking path and is assured to undergo
extensive exploration within the research within various Information Systems (IS)
journals (Dwivedi et al., 2023).
 The competition in the development of AI models has provided users
and software developers with access to both commercial and open-source solu-
tions. Open-source AI solutions offer the opportunity to further develop solu-
tions freely into different components (Douglas Heaven, 2023). This competition
signifies a rapid pace of development, which calls for exploring the application
areas of AI further and keeping up with the pace of progress. To ensure that the
development of AI applications does not solely focus on technical aspects, it is
important to consider the social aspects of AI management as well (Berente et al.,
2021).

2.2 Generative AI

The domain of AI has been moving forward with outstanding pace. Numerous
applications of multiple varieties have risen in recent years, thanks to the ever-
developing power of computing. Applications have come far since the days of
Deep Blue, advancing the AI’s abilities to those of content generation, speech
recognition, trend recognition, service assistance and more, for instance.
 A subset of traditional machine learning that has gained massive popu-
larity and adoption in recent years is called generative AI. Generative AI is a sub-
set of AI that involves crafting content through user-provided data, which is pro-
cessed by a model employing advanced deep learning techniques. The content
generated by these models exhibits a strong interdependence with the datasets
employed during their training. The nature of the content can exhibit significant
variation based on the specific model in use, ranging from text and images to
more complex formats such as videos and audio.
 Generative AI gained great interest in practice and research from the
large success of ChatGPT, a natural language processing (NLP) based LLM ap-
plication that is accessible through web browser and app (OpenAI, 2022). Models
like ChatGPT and BERT have introduced substantial disruptions to the IS do-
main, sparking discussions on crucial aspects such as privacy, misinformation,

6

and discrimination (OWASP, 2023; Weidinger et al., 2021). These models used in
the generative AI have the potential to execute transformative changes to whole
industries, reshaping the future landscape of work itself.

2.2.1 Natural Language Processing

NLP is a subset of AI which focuses on interactions between humans and com-
puters (Min et al., 2023). NLP consists of developing the actual algorithms and
models beneath the AI applications that can interpret and generate human lan-
guage in usable and context aware way. NLP has been a field of study for decades,
originating from research on early AI and linguistics where statistical techniques
were used to find and index great quantity of text efficiently (Nadkarni et al.,
2011).
 NLP combines various other research fields to understand, interpret, and
generate human language text and speech, which some are presented here. NLP
has been used in research fields such as linguistics, psychology, and other fields
to extend and find solutions to complex scenarios (Goldberg et al., 2020; Manning,
2015).
 NLP is used in various digital services such as Siri or Alexa in voice
recognition tasks. LLMs using NLP technology are not only specifically used as
a singular applications but they are implemented in and integrated with third-
party applications. (Finnegan, 2023; Snapchat, 2023)
 NLP is used in LLMs as a way for users to communicate with the com-
puting models. LLMs functionality consist of user inputted prompt, the model,
and completion or output. Prompts are pieces of tasks formatted in text given to
LLM. Prompts define the functionality of the model itself as the tasks can in-
cludes role, purpose, target and even character the user intends the completion
to be. For instance, a painter can input “What is the best paint type for kitchen
cabinets” as a prompt. Poet can seek inspiration from LLM by prompting “Write
three regretful lines in the last stanza of this poem:” and include the yet finished
poem. Finally, a software developer can prompt questions like “Write me a basic
program that prints something in JavaScript” to achieve natural text to program-
ming language conversion via LLM.

2.2.2 Large language models

Generative AI uses variety of tools to function, the most known ones being pre-
viously referenced LLMs. LLMs are made of billions of parameters and are
trained with over trillions of datasets over days, weeks or even months to achieve
their functionality (Kaddour et al., 2023; Min et al., 2023; Mökander et al., 2023).
LLMs are employed for NLP, where users input text as prompts to the model,
which then endeavors to solve problems by emulating human-like behavior. This
is achieved through predictions based on machine learning. Examples of these
models and model families are GPT, Llama, BERT, BLOOM and FLAN-T5. All

7

the models previously mentioned are called foundation or base models. These
models often act as a mothership for other smaller and fine-tuned models, that
are available through third parties and as open-source codebases (Bommasani et
al., 2022).
 The factor that enables the computing efficiency of LLMs is an architec-
ture style called transformer architecture (Vaswani et al., 2017). Transformer ar-
chitecture defines a way for current language models to have superb memory
management and fast-phased completion time. This is due to transformer archi-
tecture’s ability for parallel computing from its multi-head attention mechanism
which increases the computing power significantly (Khan et al., 2022). With
transformer architecture, scalability of complex models and ability to control and
operate on large datasets is made possible (Khan et al., 2022; Wolf et al., 2020).
 As a preprocessing task, the tokenization process is completed before the
actual LLM tasks. Tokenization refers to process where input text is divided into
smaller units called tokens (Wolf et al., 2020). For instance, “Cat has a friend.” is
divided into [“Cat”, “has” “a”, “friend”, “.”] tokens. This way the actual models
can perform various tasks, as they lean on tokens rather than raw text. Tokeniza-
tion provides structure and manageability for the text.
 Transformer architecture is founded on both the encoder and decoder
components, each comprising several levels. Input prompts are passed to en-
coder which turns the text into tokens. These tokens are passed to decoder which
in turn creates new tokens. The capability is called sequence-to-sequence model-
ing which is vital in NLP related tasks. The tokenization is essential to the trans-
former architecture: it acts as a backbone for sequence-to-sequence modeling and
attention mechanisms through parallel processing (Vaswani et al., 2017). Trans-
former architecture is presented in Figure 1.

8

FIGURE 1 Transformer architecture (Vaswani et al., 2017)

The architecture of LLMs is not fixed and can vary, encompassing encoder-de-
coder models, encoder-only models, and decoder-only models. The selection of
the architectural design depends on the specific use cases. For example, GPT
based LLMs employ a decoder-only architecture, in which the model’s target is
to predict the next token from the input token. (Min et al., 2023)
 Another key concept in LLMs is embedding. Embeddings are vector rep-
resentations of words, sub-words, or tokens that enable the model to understand
the text data. The tokens of the model each are associated with an embedding
vector that gives tokens semantic information and context. Model learns these
embedding vectors during its training process. These vectors are used by model
to perform various tasks such as generating suggestions and understanding cer-
tain relations between tokens and words. Embedding is a highly effective method
when introducing a new concept to a model. (Kalyan et al., 2021)
 LLMs are built upon deep learning techniques that intricately utilize
model weights. Weights, in this context, represent the parameters of the model
that are fine-tuned during the training process via validation set (Berthelot et al.,
2019). These weights encapsulate the learned relationships between input data
and the desired outputs, enabling the model to generate coherent and

9

contextually relevant content. The magnitude and arrangement of these weights
determine the model's ability to understand patterns, make predictions, and ul-
timately generate meaningful and coherent responses or content (Kalyan et al.,
2021).
 Thus, the larger the model itself is, as in pre-training data, the better the
understanding of the prompt domain the model has (Kalyan et al., 2021). It is
evident that larger models consistently outperform their smaller counterparts in
terms of response quality. However, it is critical to acknowledge the significant
resource demands associated with these larger models. This accessibility chal-
lenge arises due to the substantial computational resources required, which
translate into elevated costs and accessibility barriers. Furthermore, the global
availability and supply chain disruptions of GPUs intensify this phenomenon
(Fung, 2023).
 Before a LLM can be used in action, it must be pre-trained. In the case of
NLP, pre-training contains the act of predicting the next word or missing word
in a sentence and thus training the entire model (Kalyan et al., 2021; Peters et al.,
2018). This way the model is deployed with the basic understanding of the lan-
guage. Pre-training is executed with large datasets, usually massive text corpuses,
containing billions of words and differing in size, quality, languages and genre
(Min et al., 2023). These corpuses are public databases that are available, such as
Wikipedia, BookCorpus or Oxford English Corpus. Pre-training uses unlabeled
data from these corpuses, which teaches the model the grammar, nuances, syntax,
and structure of language it is being laid open to. Pre-training is done generally
with ongoing parallelized processing on a large amount of graphics processing
units (GPUs) (Vaswani et al., 2017). GPU’s ability for massive processing power
harnesses LLMs to be pre-trained. The purpose of pre-training is to give the
model the basic understanding of the language, not to gain mastery in a special-
ized role in custom tasks.
 Customization is highly available for these models with fine-tuning. If
user intends to use LLMs only in their scoped environment, user can fine-tune
these models to achieve a customized model specifically for their use cases (How-
ard & Ruder, 2018). Fine-tuning is the process in which the pre-trained LLM is
modified to act as a specialist for given occasion that the user wants it to be. Fine-
tuning is conducted on pre-trained models via supervised learning by utilizing
user-labeled data as input to the model. Training uses supervised learning tech-
niques to adjust its internal weights on specific tasks (Brown et al., 2020). For
example, user could assemble a dataset or known server errors and label them as
critical and non-critical. With fine-tuning, there is no need to heavily train the
model again with potentially billions of data and the model can still be used with
relatively low effort. Fine-tuning would be beneficial for use cases in which there
is little-to-none need for general system but rather a specialist which can process
input data more effectively. (Min et al., 2023) This approach enables the model to
generate even more precise and contextually appropriate outputs for the given
prompted input.

10

Although LLMs possess considerable potential to affect numerous fields and
ways of working, they also are accompanied with their own challenges. Selection
of these challenges are presented here.
 LLMs possess limitations of at least two kinds, which can be addressed
with different techniques. Training methodologies, such as pre-training and fine-
tuning, target the first kind of limitations. These limitations arise when the model
is not precisely trained to perform in the intended user domain, leading to pecu-
liar outputs and misinformation from the model, irrespective of its familiarity
with the domain itself. Ensuring alignment between user expectations and the
model's output is a critical issue when employing LLMs in a specific problem
domain. (Weidinger et al., 2021)
 The second kind of limitations occurs when the model lacks sufficient
familiarity with the input domain due to missing information. This deficiency
arises from the absence of details and relationships between crucial concepts
within the domain. For instance, models developed and trained before the year
2020 would lack information on the COVID-19 virus or the war in Ukraine, not
to mention any potential missing narratives and voices from the dataset. To ad-
dress these limitations, one must introduce the missing information, for example
with prompt engineering techniques, through training techniques via APIs with
injected data, or through vector databases. In the latter case, the required infor-
mation is loaded into a vector database, which maps data points to vectors that
are then matched with the existing data based on the best match. The choice of
techniques to employ depends on the size and complexity of the available infor-
mation. (Weidinger et al., 2021)
 Datasets, with which these models are trained on, are in critical position
when examining models’ integrity and functionality. Bias is one of the most un-
fortunate assets of AI which is formed based on these datasets that represent hu-
man societies throughout time (Akter et al., 2021). Because these datasets are set
on historical data, bias can be shown in unfortunate situations. For example, in-
stances of political biases have been found in LLMs, thereby contributing to the
polarization on the outputs of these models (Feng et al., 2023).
 AI hallucinations is also a major problem in the usage of LLMs. AI hallu-
cinations refer to data outputs where the end results are not based on the actual
training data. Hallucinations may occur when the model is unfamiliar with the
actual domain it is being used and its coverage on the used data is not competent.
These hallucinations can be divided into intrinsic and extrinsic hallucinations.
Intrinsic hallucinations occur when the output data does not logically relate to
the input prompts state. Extrinsic hallucinations are present in outputs where the
output data cannot be evaluated and reviewed based on search engines or other
information sources. (Ji et al., 2023)
 At the corporate level, the cost factor emerges as pivotal in influencing
the decision to acquire and utilize LLMs. LLMs use substantial amount of com-
puting power in their operations, which in turn can affect the deployment of
these LLMs in private and public organizations as the pre-training process of a
LLM can cost millions of dollars. The computing power and data storage needed

11

to pre-train and fine-tune these models are centralized for handful of large or-
ganizations, leaving the research and development efforts away from other or-
ganizations. (Kaddour et al., 2023; Min et al., 2023)
 Glitching tokens have also played a part in LLM obstacles. Glitching to-
kens are usually a specific input words that unexpectedly cause the model to
make a malfunction to the output. Outputs act as odd and bizarre as they do not
have a logical reference to the original input prompt. These types of tokens can
occur when data of pre-trained model and the actual token differ. (Rumbelow &
mwatkins, 2023)
 Last, for their massive need for computing power and energy to be
trained and operated on, LLMs requirement for immense energy has a substan-
tial effect on the ICT sector’s carbon footprint (Freitag et al., 2021; Strubell et al.,
2019). As every energy-consuming innovation, LLMs and AI in general will be
subjects to larger constraints on consumption and carbon emissions on ICT-sec-
tor, if we aspire them to become positive for our environment (Freitag et al., 2021).

2.2.3 Prompt engineering

As stated, fine-tuning a LLM can enable the model to perform contextually accu-
rately within the user's desired scope. However, there exists a much more light-
weight alternative for modifying the model's outputs: prompt engineering.
 Prompt engineering is a technique in which the user of a LLM or similar
AI tool is designing and implementing effective prompts to seek certain behavior
and output. Like fine-tuning, the purpose of prompt engineering is to accessibly
affect the models for it to produce context-aware outputs. Desired outputs are
pursued through effective input prompts, which can be attained with attention
given on clarity, context, instructions, examples, bias, evaluation, and sensitivity.
Prompt engineering is highly effective and valuable in situations where user pur-
sues specification from the model that is used in relatively general purposes.
Model retraining is not directly involved in prompt engineering, which falls be-
low pre-training and fine-tuning. Instead, prompt engineering is done in the ac-
tual application interface and executed with different tactics, such as in-context
learning.
 In-context learning (ICL) is a major, behavioristic phenomenon where
LLMs learn and adapt from different the different states of input prompts. Within
ICL, the model parameters remain unaltered, and the phenomenon occurs as an
integral part of prompt engineering. ICL is pursued via task-related examples
that are given to the model. This can be pursued with prompt engineering that
incorporates n-shot learning, generally categorized to zero-shot, one-shot or few-
shot learning. (Brown et al., 2020)
 Zero-shot, one-shot, and few-shot learning pertain to data availability
and context in machine learning. They operate differently depending on the
data's availability: the less data the model is exposed to, the more challenging its
task becomes, requiring greater effort in computing context-aware outputs. In the
context of LLMs, the techniques can also be labeled as zero-shot prompting. With
these machine learning techniques, LLMs can be enabled to interpret new

12

domain areas and tasks without resource consuming pre-training or fine-tuning
(Sung et al., 2018).
 Zero-shot learning is a technique where a LLM is harnessed with tasks
that are not labeled during the training process. With this, the model must work
harder to achieve a context-based outputs within completely new problem. Zero-
shot learning is typically practiced as single prompts to the model system.
 One-shot learning differs from zero-shot learning in that it gives the
model one labeled example. With this example, the goal is to issue the model
better chances to make correct prediction.
 Few-shot learning deals with same kind of prompts but gives labeled ex-
amples to the model. This technique provides the model partly examples for it to
solve the novel problems it is faced. The aim of one-shot learning is to develop
the context-awareness of the model on limited examples.
 With these prompt engineering techniques, model can be employed to
act as the user intends it to behave. The illustrations of these techniques are pre-
sented in Figure 2.

FIGURE 2 Prompt engineering techniques

In Figure 2, we present a few examples of n-shot learning. The steps required to
incorporate these techniques into prompt engineering involve ensuring cohesive
and context-aware text, verifying the logic behind the task, and providing more
information about the task domain. These techniques can be applied in any do-
main, irrespective of their themes, and they may take some time for the desired

13

logic to be discovered by the model. N-shot learning is not solely used to obtain
a straightforward answer from the model app but rather to deploy the model
with context, making it ready for more complex tasks in the domain throughout
the prompt lifecycle and beyond.
 On top of prompt engineering, there is a technique that acts also with
NLP LLMs as they are: prompt tuning (p-tuning). In prompt tuning, the model
is harnessed with example data and logic, just like in prompt engineering. How-
ever, prompt tuning uses data called soft prompts, AI-created input data that is
put into a model in the start of personalized prompts. Soft prompts cannot be
edited or viewed in text: they consist of continuous embeddings that are detected
by AI, which are abstract and random in their nature (Qin & Eisner, 2021). With
this process the AI cannot explain why it chose these soft prompts which can
create risks when using LLM affected by the prompt tuning process, such as bias
(Khashabi et al., 2022).
 Prompt engineering on the other hand uses hard prompts as discrete
ones that are created by human users. The objective of prompt tuning is the same
in prompt engineering: to use the standard pre-trained model as a specialist in
designated domain. Prompt tuning differs from prompt engineering also in ca-
pabilities to vary its expertise in various domains more swiftly and easily.
Prompt tuning is practiced with a smaller, trainable model that creates task spe-
cific tokens via encoding (Lester et al., 2021).

2.3 AI models and GAI workflow

To develop AI applications for various purposes, it is essential to understand the
fundamental principles behind the underlying principles. The algorithms of the
latest AI models are primarily based on machine learning and deep learning tech-
niques, which have evolved over time to process unstructured data, such as
speech or images (LeCun et al., 2015). Among these models, LLMs have
gained noticeable attention within the research and practical communities. These
models function as applications, chatbots, algorithms and more where learning
form user inputted data acts as a backbone for the model’s purpose. They can
"converse" with users and respond to different inputs in a manner that appears
aware or human-like (Dwivedi et al., 2023).
 As software evolves, it is essential to consider the versions and develop-
mental aspects such as processing power and size of the applications when con-
sidering them to be used in a study or as a part of business process. LLMs have
been deployed and have gone through changes during their development since
last decade´s massive rise in their quantity. Table 1 represents some of the key
model families, chosen architecture, release year, their developer(s) and if the
model is open-source or not. Open-source validation is based on whether the
model is fully open-source, allowing developers to modify them with techniques
such as fine-tuning.

14

TABLE 1 Examples of LLM model families

Model families Architecture Release Developer Open
source

GPT Decoder-only Jun 2018 OpenAI No

BERT
PaLM

Encoder-only
Decoder-only

Oct 2018
Apr 2022

Google
Google

Yes
Yes

Llama Encoder-only Feb 2023 META Yes

Throughout the years, various models have been developed, allowing us to gain
an overview of these models based on their respective functionalities. Models
that are in the most large-scale usage right now tend to use the encoder-only ar-
chitecture for their functionality on NLP.
 GPT model family (Generative Pre-trained Transformer) is developed
and maintained by OpenAI research center. GPT family is based on decoder-only
architecture and enjoys clearly the greatest popularity at the moment from all
LLMs with GPT-3.5 and GPT-4.0 available on ChatGPT (GlobalData, 2023).
 BERT is a language model family introduced by Google (Devlin et al.,
2019). It has a decoder-only architecture and is based on transformer architecture.
BERT introduced bidirectional context, which powers the model to gain under-
standing of the context with analysis on left and right sides of input words. Bidi-
rectional context is achieved with a technique called Masked LM (MLM). This
technique gained popularity and made it possible to models derived from BERT
and others to be suited for their specific tasks even better (Devlin et al., 2019).
 PaLM is a decoder-only-based LLM family with an architecture derived
from the transformer architecture. Its initial release was in 2021, with PaLM 2
being released in May 2023, featuring improvements in coding, reasoning, and
language capabilities. PaLM 2 is used, for example, as a part of Google's Bard
application, serving as the primary technology that enables communication be-
tween the user and the model. (Chowdhery et al., 2022; Ghahramani, Zoubin &
Google, 2023)
 Llama is based on decoder-only architecture. It was created by Meta in
February 2023 and has since gained popularity. As in July 2023, Llama 2 was re-
leased to the public as open-source project for research and commercial use with
even more parameters than its precursor. (Meta, 2023a, 2023b)
 When a development team starts to work on a generative AI project, they
must take into notice multiple aspects in different phases. Following workflow
divides the generative AI project into phases regarding scope, model selection,
adaption and alignment and application integration.
 First, the development team analyses the business problem that they are
facing. In this phase, the requirements are specified to match the business prob-
lem. Requirements present the current altercations of the system and are de-
signed to lead the development team to choose a model to be used in the project.
Second, a model must be selected to match the use case definitions. This is one of
the most crucial steps in the workflow as the model usage is affected by use cases,
computing resources, domain-specific tasks, and business environments. Selec-
tion of the model typically involves the choice between already pre-trained and

15

possibly fine-tuned model or choosing to pre-train your own model. Latter of
these takes substantial total of resources and therefore already pre-trained mod-
els tend to be in favor.
 Third, after choosing the model, the development team adapts the model
to be in use in their business domain. This phase can behave as an iterative one
as the adaptation and alignment of the model can be executed in various ways:
with prompt engineering, fine-tuning, human feedback, prompt tuning, and
more. Evaluation is also a key part in this phase as the development team must
be sure that their model is working correctly in their use cases.
 Finally, the model is integrated to applications as third-party app, plugin,
standalone app or as other. In this phase, model is optimized to be deployed in
the said use case. As the model is integrated to an application, the application
becomes AI-enabled as it is powered by LLM. This workflow is presented in Fig-
ure 3.

FIGURE 3 Generative AI project life cycle (Barth et al., 2023)

16

This chapter describes the case company, case system, and the research setting of
the empirical study. The chapter presents the implemented research methodol-
ogy and justifies the choice with its respective phases.

3.1 Research questions

Research questions are formulated at the intersection of generative AI and soft-
ware maintenance. These inquiries aim to address the ongoing debate in prob-
lem-solving, focusing on the comparison between the utilization of AI solutions
and traditional human-powered approaches. Research questions and their hy-
potheses are presented as follows:

RQ1: How to systematically evaluate LLM outputs in software maintenance?

 Hypothesis: It is feasible to construct a framework that facilitates objective

comparison of outcomes.

RQ2: How can generative artificial intelligence help software developers in
system management and maintenance?

 Hypothesis: Generative artificial intelligence can help systematically when

organizing system development points and management.

RQ3: How generative artificial intelligence manage development to reduce

technical debt?

 Hypothesis: Technical debt can be detected in the system using generative

artificial intelligence, but a larger scope of technical debt cannot be
identified.

3 RESEARCH SETTING

17

With the research questions in mind, the object of the study is to develop design
principles to the prompt engineering and to develop an intelligent framework to
utilize LLMs in software development. This is done as a Proof-of-Concept (PoC)
project where the design principles are tested with a case system containing pro-
duction code in real life software system product.

3.2 Case company: Nokia

With great possibilities in AI, a variety of research areas have opened in both
technical and societal disciplines. Companies have taken on the task of investing
in research projects that explore AI to develop their products, work practices, and
overall business operations. One such company is the telecommunications cor-
poration Nokia Solutions and Networks Oy, which invests in various product
development and innovation projects. As a case company, Nokia provides the
framework for this master's thesis in the context of telecommunications software,
where software utilizing AI is expected to become more prevalent.
 Investments in machine learning and AI, particularly in applications for
mobile networks, will enable relevant AI-powered network applications and
platforms in the near future (Maeder, 2023). Like other major IT companies,
Nokia also prioritizes application development in its operations. Various appli-
cation development teams at Nokia work on the same software, aiming to im-
prove software using different methods. Therefore, the findings of this thesis
could be beneficial for other teams in Nokia as well.
 As stated before, introduction of AI-powered applications in large cor-
porations is critically hard. This holds true for Nokia also, as the company is run
with massive amounts of data. This data should be handled with extra care as
LLMs possess vulnerabilities in data privacy, security breaches and others as
stated in LLM06 in OWASP analysis (OWASP, 2023).
 Case system is a data-heavy backend system that consists of millions of
lines of code, varies in its programming languages and has been maintained for
multiple years. The system has been built with opportunistic design where un-
expected and unplanned opportunities have risen during the development and
maintenance processes due to the evolution of external libraries and subsystems
(Mäkitalo et al., 2020). Open-source libraries are heavily in-use with the system,
and it is tied to other sub-systems within Nokia’s solutions. In the past, develop-
ment has been done internally via Nokia’s own team and external consultants
have been used in development of system components. System acts as a vital part
of the application ecosystem but endures with quiet information and technical
debt within earlier selection of technologies and compact development team.
Also, system acts as a bottleneck for high-value data between subsystems, which
increases the importance of the system even more.
 With technical debt we are referring to all code base related debt with
libraries, programming language choices, frameworks, requirements, documen-
tation, architectures and other that arise from the compromised tasks done

18

during fast-phased software development environment (Cunningham, 1993).
One of the purpose of this study is to answer the call to come up with improved
solutions to manage technical debt (Li et al., 2015; Melo et al., 2022). As a case
system, the ever-growing requirement management acts as in a key role when
choosing what to develop or upgrade next. This process is in a vital position in
development team as they have to make decisions on task management regard-
ing stakeholder needs, prioritization, validation, documentation, assigning and
other aspects (Li et al., 2014). A study has shown that the lack of detail in system
requirement documentations leads to indistinct requirements, adding up to the
technical debt (Melo et al., 2022). Generative AI would give more insight into the
management of these tasks, therefore answering the research call previously
mentioned.
 Case company’s role in the study is to provide the target system and
needed resources for the research team. The incentive for the case company is to
help find efficient and innovative solutions to the issues in management and
maintenance of the target system and likewise systems. Thus, future systems
could benefit from larger scale usage of LLMs in multiple phases in their lifecycle.

3.3 Design Science Research methodology

The case study of this thesis in done as a constructive work, utilizing Design Sci-
ence Research methodology. Design Science Research (DSR) is a research meth-
odology that combines the goals of design and research to develop and evaluate
innovative solutions to practical problems (Peffers et al., 2007). DSR is particu-
larly applied in the field of information systems, engineering, and technology to
explore and evaluate new artifacts and to seek understanding on practical prob-
lems. With its iterative and constructive process, DSR creates an effective frame
for researchers and practitioners.
 In Information Systems (IS), DSR is used in creation and evaluation of
socio-technical artifacts that can vary from frameworks and methods to tools and
software systems, typically divided into foundations and methodologies (Gregor
& Hevner, 2013; Hevner et al., 2004). The creation process, actions and effects of
these artifacts are reviewed to enhance the existing knowledge base in the do-
main research field.
 DSR research is based on varying stages, all of which serve a specific pur-
pose. Stages are organized to provide a structured and systematic approach to
addressing complex problems while maintaining the principles of scientific in-
quiry (Hevner et al., 2004; Peffers et al., 2007). The methodology gives a clear way
to generate hypotheses, run an experiment and evaluate the artifact based on its
iterative process. With this process, other researchers can execute the same re-
search based on the same scientific parameters presented in the study under ex-
amination. The stages of DSR are regularly divided into phases presented in Ta-
ble 2, derived from prior research (Hevner et al., 2004; Peffers et al., 2007).

19

TABLE 2 Design Science Research

Research phases Objective

1. Problem identification and
motivation

Identifying clear research problems to seek so-
lution for and justifying them.

2. Objective definition Defining the research objectives, checking the
status of artifact scope and formulating re-
search questions.

3. Design and
development

Creating solution to address the problem. The
design process incorporates existing theory
and practical knowledge.

4. Presentation Illustration of the new artifact and demonstrat-
ing its functionality in its operational environ-
ment.

5. Evaluation Evaluating the created solution using objective
measures and methods. The evaluation aims to
demonstrate that the solution meets the de-
fined requirements and provides practical util-
ity.

6. Communication Informing the research results to external par-
ties, including the scientific community and
other relevant stakeholders.

In the context of this thesis, design science provides a scientific methodology for
the empirical study, target being the integration of generative AI into the mainte-
nance phase of large software system. The functionality and features of this ap-
proach are examined using design science. Furthermore, the knowledge base in-
volved in IS research will increase due to the empirical study. The phases of DSR
are presented below with more detail.
 Problem identification and motivation phase consist of targeted real-
world problems that are identified and viewed in the scope of IS. Definitions
should be done to problems that are either novel or expansive. This way the tar-
get of the study is expanding the knowledge base of the research field, not veri-
fying, and viewing problems that are already been explored in previous research
in the same nature.
 Object definition phase presents the clear research targets as objectives,
which requires an excellent awareness of current operating models and expertise
in artifact’s operation. These objectives can be quantitative, as in improvements
of the latest features or actions of the artifact, or qualitative, as in expected be-
havior and performance of new artifacts, based on their roles derived from re-
search problems.
 Design and development phase acts as the most practical phase in DSR.
Here the actual artifact is created in its respectful operating environment. The
artifact is developed with the focus on prior design principles and theories. These
are derived from previous research and industry’s state-of-the-art practices.
 During the presentation phase, the artifact is transitioned into a practical
setting. Within this phase, the demonstration of the artifact's functionality is

20

showcased to the appropriate audience. The artifact is depicted within its opera-
tional context, illustrating how it functions in its intended environment.
 The evaluation phase is where the most attention should be paid in the
design research. Within this phase is the opportunity to test the effectiveness of
the approach on the case artifact. Evaluation is done to analyze artifact within the
stated research objectives and if it aligns with the requirements and practicalities
listed in the hypothesis. In our case, the evaluation is done by incorporating LLM
outputs into real-life development scenarios within development team and ana-
lyzing the outcomes based on FEDS-framework (Venable et al., 2016).
 Finally, the communication phase consists of revealing the study results
to the research community and broader audience. To enlarge the knowledge base
on design science, it is most important to share the results.
 Thus, the study demonstrates the potential benefits of generative AI and
analyzes the possibilities brought by generative AI based on the results, through-
out the software development life cycle. Such intelligent development could be
applied into agile methodologies, where software developers could have better
knowledge base for system development (Perkusich et al., 2020).
 Fundamental research framework of DSR is presented as follows: DSR is
based on real-life phenomenon, where environment, consisting of people, organ-
izations, and technology, provides a platform to research via business and organ-
izational needs and targets. Knowledge base is acting as a growing database for
best practices to be applied into future IS research. IS research presents the act of
development and evaluation of the artifacts and theories. The framework is pre-
sented in Figure 4. (Hevner et al., 2004)

21

FIGURE 4 Design Science Research framework (Hevner et al., 2004)

With the DSR framework, the study harnessed a clear scientific framework that
acts as the backbone for the empirical study. The core contribution to the
knowledge base for our study is presented next.
 Knowledge base consists of differing research aspects. With the design
artifact developed in a DSR study, the research contributions can be divided into
three levels according to their respective natures and maturity (Gregor & Hevner,
2013). The levels represent their abstraction type, varying from practical tools to
highly applicable theories. These abstraction levels of artifacts are presented in
Table 3.

22

TABLE 3 DSR Contribution Types (Gregor & Hevner, 2013)

 Contribution Types Example Artifacts

More abstract,
complete, and

mature
knowledge

Level 1: Situated implementation
of artifact

Software products, applied
processes

Level 2: Nascent design theory—
knowledge as operational princi-
ples/architecture

Frameworks, methods, de-
sign principles, models

More specific,
limited, and
less mature
knowledge

Level 3: Well-developed design
theory about embedded phenom-
ena

Design theories

When viewing this thesis´ research setting and questions, we can divide these
aspects into presented contribution types. RQ1 and RQ2 seek answers to the man-
agement and maintenance capabilities of LLM by exploring the usage of LLMs
in software development processes. Thus, the outcome for RQ1 and RQ2 will be
a particular type of new artifact in a form of method or framework for this kind
of development. RQ3 is based on finding new solutions to minimize technical
debt, thus determining a process artifact with specialized prompts. With RQ3,
the situational factor of LLMs in the development workflow makes it an applied
process. Hence, the outcomes from our design science research are as follows:

• RQ1 & RQ2: Level 2: Framework/method.

• RQ3: Level 1: Applied process

As IS research is practiced in natural environment and deals with practical sys-
tems and their life cycles, the thesis is dealing with IT artifacts. IT artifacts are
traditionally divided into constructs, models, methods, and instantiations
(March & Smith, 1995). Within the themes of this study, there are multiple IT
artifacts dealt with. Artifacts vary based on their natures, consisting of existing
software, development frameworks and methodologies. In Table 4, the IT arti-
facts present in the research setting are shown.

23

TABLE 4 IT artifacts

IT artifact Artifact type Level Properties

Case system Instantiation Primary - Data-heavy backend
system

LLM Model Primary - Multiple models

Development frame-
work

Method Primary - Case study
artifact:
PESD framework

Development environ-
ment

Construct Secondary - VS Code
- GitLab-server

User Interface for LLM Construct Secondary - Text generation web UI

Version control system Construct Secondary - Git

Programming lan-
guages

Construct Secondary - Typescript
- NodeJS

From these IT artifacts, the case system, LLM, and development framework act
as primary artifacts in the research setting. All the other IT artifacts listed act as
secondary artifacts, supporting the research as enabling forces that make the soft-
ware development environment actionable.
 In the presentation phase, the applied designs, prompt inputs and exam-
ple outputs are presented by considering the protected nature of the case com-
pany’s protected data. The model's functionality is outlined in the phase as well
as the framework of the developed artifact. We also argument on what decisions
went through on the design choices of our input prompts and the whole work-
flow of the developed artifact.
 The findings in this DSR study are communicated to the public as a part
of JYX-library. JYX-library is a known research repository managed by the Uni-
versity of Jyväskylä. JYX consists of theses and dissertations in digital format.

24

This chapter deals with the development and evaluation of the study’s artifact.
With the empirical setting and methodology described, we delve into the pro-
cesses involved in creating and assessing the study's artifact. Finally, the evalua-
tion of the development of the artifact and the study's results is presented.

4.1 Model selection

When choosing the right LLM for research purposes, one must consider the do-
main in which the model is used for. Models tend to be more efficient when they
are fine-tuned or even pre-trained before using them in a scoped setting. These
processes should be conducted rigorously, as training the model with second-
rate datasets carries a significant risk of introducing bias and generating fictitious
scenarios (Kaddour et al., 2023).
 There are thousands of different models available through open-source
with substantial amount of those that are fine-tuned by singular contributors
with different techniques or purposes, with free open-source models being
widely available for anyone to develop and utilize. Some examples of model for-
mats are reduced memory and computation cost by quantized models (GPTQ
method) and commodity hardware-run models (GGUF/GGML). GPTQ based
models have been quantized to reduce memory and computing cost in develop-
ing and using these models (Frantar et al., 2023). With this, the quantization is
done by representing the model weights with less accurate data types such as
int16 rather than int64 (Hugging Face, 2023a). GGUF-models and formerly
GGML-based models are also made to be run as quantized models with libraries
such as llama.cpp, which enables models to be run on a CPU.
 Generally, the size of LLMs is measured by the number of parameters
they contain. The amount can vary largely from hundreds of billions to one bil-
lion parameters. For the models that are used in consumer hardware the quantity
is commonly varying from 1, 7, 13, 30 to 65 billion. The GPUs and CPUs available

4 CASE STUDY

25

in consumer hardware are capable of functioning with these sizes, although not
comparing to actual cloud-based applications such as ChatGPT with its GPT-4
rumored to include as many as 1.8 trillion parameters (Schreiner, 2023). Due to
the freedom to modify the software, access to the underlying software logic, and
mostly absence of commercial software licenses, the thesis uses open-source
models in the empirical part of the study.
 During the design and development part of this thesis, we performed a
search for compatible models for our use case. These models were selected based
on their ability to be run locally on Nokia’s own laboratory server computer con-
taining NVIDIA T4 GPU with 16GB memory. Also, we, evaluated models with
our Lenovo laptop setup which consisted of Windows 10 Enterprise operating
system, Intel processor 11th Gen Intel(R) Core (TM) i7-1185G7 @ 3.00GHz with 4
Core(s), 8 Logical Processor(s), 16GB of RAM and no external or internal GUIs
available. We first started our empirical study on a local laptop environment, but
quickly realized that we needed more computing power for our LLMs to run
smoothly with our codebase as we changed to the server computer environment.
 Models that were selected for the thesis included Vicuna, Code Llama,
Dolphin, and WizardLM. Vicuna is a chat assistant that is derived from the orig-
inal Llama by fine-tuning the model with user-shared conversations, targeting
research on LLMs (LMSYS Org, 2023; LMSYS Org & Hugging Face, 2023). Code
Llama was created by fine-tuning the Llama 2 model to better suit coding domain.
The model is intended to use in code generation, coding completion, debugging,
code related natural language tasks and other (Meta, 2023c; Meta & Hugging
Face, 2023). Dolphin is a LLM that is based on MistralAI. Dolphin´s dataset is
based on Microsoft´s Orca and is licensed with Apache-2.0 (Hartford & Hugging
Face, 2023b). WizardLM is a LLM that is also based on the original Llama model,
finetuned with complex open-domain instructions called Evol-Instruct (Hartford
& Hugging Face, 2023a; Xu et al., 2023). These models were selected for the study
for their open-source nature, state-of-the-art technology, and lightweight size.
Also, the compared models have been listed in the Open LLM Leaderboard with
high performance their weight classes (Hugging Face, 2023b). In our specific use
case, we employ models consisting of 7B parameters. This choice enables these
models to be executed more seamlessly within our computing environment. Ta-
ble 5 lists models and their use cases.

26

TABLE 5 Compared LLMs

LLM Model size Training Developer(s)

Vicuna

7B Pre-trained &
Fine-tuned

LMSYS Org

Code Llama 7B

Pre-trained &
Fine-tuned

Meta

Dolphin 7B Pre-trained Hartford, Eric
/Mistral AI

WizardLM 7B Pre-trained Hartford, Eric
/WizardLM

Because of the research setting being highly private, we are using a local envi-
ronment. This is due to the high risk in data leakage which is stated as one of the
top risks in LLM implementation (OWASP, 2023). We decided to use open-source
solution of Text Generation (TextGen) web UI due to its popularity, customiza-
bility and flexibility to run different models locally (oobabooga, 2022/2023).
TextGen web UI can be downloaded as zip-file for all popular operating systems
from Windows to Linux, macOS, and WSL. The application can also be installed
via command line with additional settings such as CPU mode only.
 To use the LLMs locally, they must be downloaded to be used via com-
mand line or in 3rd party software. Models can be used as they are, or model
usage can be modified with parameter modifying. For example, max new tokens-
parameter can be modified to assign the model a limit on how many new tokens
a model can output. Free-to-use LLMs are openly available to be downloaded
from AI communities such as Hugging Face where users can upload their own
LLMs. Also, communities tend to rank open LLMs in their precision, availability,
model size and other parameters for users to choose and evaluate their chosen
model (Hugging Face, 2023b). These models tend to be modifications of base
models, such as Llama or BERT, that are fine-tuned or formatted in distinct ways.
TextGen web UI can download these models straight from the Hugging Face
model repository, which enables user to experiment with different models and
settings. To interact with the models, we utilized the chat functionality, which
includes chat, chat-instruct, and instruct modes. We present example prompts
with their respective outputs in appendix, with prompt example 1, 2, and 3. Fig-
ure 5 presents the chat view of the UI.

27

FIGURE 5 TextGen web UI

In addition to the chat view, the TextGen web UI also features the default view
and notebook view. The default view has widened input and output spaces.
When pressing "generate," the model begins to extend the input text by predict-
ing the next words as tokens. The same functionality is implemented in the note-
book view, but the notebook view only contains one textbox.

4.2 Design and development

Below, we present the design and development of our study's design artifact. We
motivate the development of the artifact with references to research and present
the artifact along with its use cases and core design principles.

4.2.1 Foundations of the framework

Developmental steps taken for the design principles during the study were de-
rived from a workflow that was presented in Chapter 2 within Figure 3. We di-
vided the design into following steps.

For the foundational or base model that is intended to be AI assistant, an initial
prompt is needed. This initial prompt describes the context and a role to the
model itself. Example text can be something like this:

“You are a coding assistant specialized in C# and .NET development. You are expert in
embedded systems with data-driven operations within video games.”

28

Secondly, we provided the model a task. This task should be in line with the task
that the developer is working on. Developer should describe the task as straight-
forward as possible. Example text can be something like this:

“Help me with one file that contains utilities for version check function.”

Next, the actual problem target is submitted to the model itself. In our example,
the source code of a single file is submitted to the model as an input. Example
text can be something like this:

“Here is the content of the file: {content}. Help me refactor it to smaller components.”

However, developer must keep in mind that if the input prompt is too large, the
model might not have the computing power to process the prompt via the pro-
cessing entity. For example, the GPU might not have the memory required to be
allocated to the prompt processing.

After gaining outputs from the model, developer can seek to improve clarity and
context with searching for more detailed information from the model itself. Out-
puts of the model should be evaluated based on developer´s desired or assumed
outcome. Example text can be something like this:

“From the previous code snippet, what does function XYZ return? What would you do
differently in this situation?”

4.2.2 Introducing PESD framework and prompt design principles

As prompt engineering requires input prompts from the user through the de-
ployment of zero-shot, one-shot, or few-shot learning, users must devise solu-
tions to gather information from prompt outputs. Prompt engineering appears
to be relatively casual when users type in their inputs to generative AI applica-
tions. This poses a problem when conducting a rigorous search for information
on selected topics from the target artifact: one input could yield separate outputs
than other inputs, even if they target the same artifact component. This can lead
to misinformation in various situations, for example, if the artifact is reviewed by
multiple developers or the prompts contain unintuitive text for humans (Kad-
dour et al., 2023; Mökander et al., 2023). Research has shown interest at present-
ing prompt patterns and specific domain frameworks within prompt engineering
(Lo, 2023; White et al., 2023). A set of definite design principles are also needed,
leading to better inputs. Thus, a general framework for prompt engineering
should be established to standardize prompt inputs, clarify the prompt engineer-
ing workflow, and enable the rigorous evaluation of LLMs.
 With this in mind, we present prompt engineering software develop-
ment (PESD) framework. PESD can be used for various tasks in software devel-
opment, such as test generation, refactoring, or test generation. Also, it can be

29

used to evaluate the truthfulness, context-awareness, and accuracy of the used
LLM. The framework is presented in Figure 6.

FIGURE 6 PESD framework

The phases of the framework represent the workflow of intelligent development
where software development meets AI through usage of LLM. Developer starts
with role definition, where a role is assigned to the model itself, such as test en-
gineer expert, backend specialist, or similar. Next, the task is defined for the
model with the context presented, for example as in code function, test file or an
error message. If the output does not meet expectations with high quality, the
developer offers more details within the context of the prompt until the expecta-
tions are met. After satisfying outputs are provided, the developer documents
the process and the outputs by evaluating the chosen model and its level of suc-
cess in the process. This way the development team can have insights whether
the model is useful for their purposes or not. The PESD framework contributes
to the knowledge base as a framework referenced within the contribution types
of RQ1 and RQ2.
 The framework is primarily targeted to be used with minor LLMs in pa-
rameter size such as 13B, 7B and smaller models, although the principles can be
applied to more powered LLMs, like GPT-3.5 As such, framework suits well in
local environment development or similar, where computing power is limited.
 Utilizing the PESD framework, we conducted an empirical study within
the actual development environment. Initially, we assessed the performance of
various models when subjected to standardized prompts, subsequently compar-
ing the resulting outputs. This process enabled us to select the model for deploy-
ment in the empirical phase of our study. We continued inputting the same
prompts to the models until our GPU's VRAM was exhausted. This way, we
gained an understanding of which of the tested models were most suitable for
our development environment. Prompt design principles acts in prompts with

30

few-shot learning prompts, having more depth than zero-shot learning prompts.
The design principles contribute to the knowledge base as applied processes ref-
erenced within the contribution type of RQ3. The prompts that we used are
shown in Table 6.

TABLE 6 Prompt design principles with PESD framework

Phase Principles Prompt example

1. Role definition

- Narrow the role for the
use case.

- List artifacts that are
dealt within the role.

- Define the target of the
role, if necessary.

You are a coding assistant spe-
cialized in Typescript and
node.js development. You are an
expert with a large software sys-
tem that is business-critical, con-
tains hard to maintain code and
has technical debt.

2. Task definition - Communicate the task
as if addressing an ex-
pert.

Analyze a component X that has
entities Y and Z.

3. Context
explanation

- Focus on clarity.
- Ask about the model´s

suggestions.

Here is the content of the compo-
nent: {context}. What would you
modify to increase maintainabil-
ity? Show me your modifica-
tions.

4. Offer details - Emphasize attention on
past outputs: what was
not provided with
them?

What does entity Z do? What
would you do differently with it?

These prompts can be employed as individual prompts or combined into one,
depending on the specific task at hand. As the Table 6 present, there are no
prompt inputted into the model in phases 5 and 6. Phases 5 and 6 are evaluation
based that are needed to weigh in the value of the tested model. Chosen models
for the study were used in search of systematic maintenance enhancements with
these same prompts used in analysis of various software components. All these
models were run with the same parameters in the TextGen web UI, with attention
to the following: the maximum amount of new output tokens was set to 1455,
temperature was set to 0.7, and "truncate the prompt up to this length" was set to
2048. The maximum output tokens represent the output length of the model, tem-
perature represents the creativity of the model´s outputs, and "truncate the
prompt up to this length" represents the limit at which the leftmost tokens are
removed if the prompt exceeds the given length.
 As test targets, we used three files that each had varying functions and
components aimed at prechecking specific software versions and conditions in
given software component. Files were selected based on their differing complex-
ities and relevancy in the case system´s functionality. First file was smaller with
around 20 lines of code, containing only one main function with two subfunc-
tions. Second file had more complexity in it, with 57 lines of code, containing

31

more subfunctions. Third file had the most complexity with 162 lines of code with
functions varying in their nature. On average, we had six prompt inputs within
our chats, with four being initial prompts and two involving detailed inquiries.
 From this, we analyzed a total of 36 chats, divided among four models,
with three files and three chats each. With three chats repeated within each file,
we were able to validate each chat to minimize anomalous results.

4.3 Evaluation and results

Evaluation acts as the core phase of DSR. In this phase, the DSR is acting as a
scientific method to evaluate new artifacts with rigor and relevance. Evaluation
makes sure that the study acts on high quality scientific standards, is harnessed
to criticism and scrutiny and meets the practical utilities to enlarge knowledge
base that was set for the artifact itself. Hence, the dual purpose of evaluation
should be done with relevancy and rigor, mirroring on behavioral science theo-
ries, if the methodology is to be labeled as science (Hevner et al., 2004; Venable
et al., 2016).
 The evaluation process can be approached through various methodolo-
gies, one of which is the Framework for Evaluation in Design Science (FEDS)-
framework. This framework offers a comprehensive evaluation structure, com-
prising four distinct facets tailored to the specific characteristics of the artifact
under examination (Venable et al., 2016). Withdrawing from FEDS-framework,
the evaluation of the case study is going to have multiple episodes based on the
evaluation strategy. Strategies are presented in Figure 7.

FIGURE 7 FEDS framework (Venable et al., 2016)

32

FEDS consist of four steps that are (1) explicate the goals of the evaluation, (2)
choose the evaluation strategy or strategies, (3) determine the properties to eval-
uate, and (4) design the individual evaluation episode(s). In phase 1, we must
explicit goals with four different goals in mind. Goals are achieved in varying
phases of the evaluation process and can be iteratively reviewed. Iterative pro-
cess enables the modifications of the artifact elements based on the evaluation
process. These goals are presented in Table 7.

TABLE 7 Evaluation goals, objectives and artifact elements

Goal Objective Artifact elements

Rigor Efficacy and effective-
ness:

- Outcome caused
by the artifact

- Artifact works in
real life situa-
tions

- Case system´s code base acts as
the target of real-life scenario, we
do not test our framework with
example code bases

- Analysis is only done via LLM as
non-human agent

- Interpretation of outputs is done
via human developer

Uncertainty
and risk re-
duction

Human/social risks &
technical risks:

- Early detection
- Support higher

quality

- Risk of data leakage in PoC-pro-
ject is minimized with laboratory
server environment

- Risk of data corruption is in-
creased when fine-tuning the
model with flawed or erroneous
code base

Ethics Safety and risks for envi-
ronment, humans, ani-
mals etc.

- Increased power consumption
- Evaluation is not putting re-

searchers at risk

Efficiency

Goals compared to re-
sources:

- Time
- Money

- Resources were sufficient for
PoC-project.

- For larger projects, more compu-
ting power via higher amount of
GPUs or private cloud would be
necessary

- The study was done without
strict deadlines

In phase 2, we choose evaluation strategy to begin with. Given the technical com-
plexities and the human-centric management inherent in the utilization of LLMs
within software system environments, our evaluation strategy aligns with the
Technical Risk & Efficacy approach as delineated within the FEDS-framework.
This is due to the artifact being used by human users in highly technical settings,
initiating the evaluation from artificial environment towards more naturalistic
one. Evaluation is also heavily reliant on the technical capacity and limitations of
LLMs, contributing to the decision to proceed with this strategy.

33

In phase 3, we define properties to be evaluated. These properties can vary from
features and applications to requirements and design goals. The primary objec-
tive is to ensure that these properties are unique and valid to the artifact's usage
environment. The properties to be evaluated in our LLM environment are as fol-
lows:

• Validity: the model outputs correct answers depending on the con-
text

• Value: the model outputs contribute real value to software mainte-
nance

• Competence: the ability to process complex inputs from the user

• Convenience: the models are easy to setup in LLM application

Finally with properties set, phase 4 introduces the design of evaluation episodes.
These episodes focus on the actual evaluation of the artifact: episodes are pre-
sented in Figure 7 as triangles that start from formative/artificial and finish as
summative/naturalistic. Within this phase, researchers should consider follow-
ing key points: environmental constraints, analysis of goals in evaluation and
evaluation episode quantity and order of execution. As indicated in Table 4, the
primary IT artifacts in our research settings were the case system, LLMs, and our
development framework. Environmental constraints for these artifacts consist of
resource intensity and scalability, especially concerning the LLM itself. With the
case system comprising hundreds of files, we had to restrict our empirical study
to three different files, varying in complexity, domain, and functionality. Our
evaluation goals were analyzed and organized from broadest to most detailed:
we first evaluated our computing environment, then individual models, and
lastly our prompts. Subsequently, we assessed our framework since all other en-
vironments had already been examined and evaluated. This way, we could min-
imize resource intensity by optimizing our input prompts and scaling up the
framework for even larger prompts.
 We employed the Technical Risk & Efficacy strategy, which paved the
way for us to mitigate technical risks through early evaluations of properties
within our LLM environment. We noticed relatively early that our local laptop
environment would not be powerful enough for the optimal usage of LLMs. With
this, we transformed our environment by switching to laboratory server com-
puter with significantly more computing resources via remote access of case com-
pany´s own private network. Therefore, we could improve our research environ-
ment and hence test our prompt design principles even better.
 To determine the most suitable model for our research, we conducted a
small comparative test of different models using PESD framework, as noted in
“Model selection” subchapter. This allowed us to choose the model based on our
own experiment in addition to the external reviews within AI communities.
 Prompt evaluation process enabled us to identify the optimal initial mod-
els that were used in our use case. Also, we modified our framework artifact with
the addition of “Output evaluation” and “Offer details” to gain more valuable

34

outputs from the models themselves. The evaluation episodes within our empir-
ical study are presented in Table 8.

TABLE 8 Evaluation episodes

Episodes and goals with or-
der of execution

Objective Actions

1. Environment
evaluation

Check the preconditions
for optimal model usage

- Test the local application´s
power with the LLMs
- Change local environment to
the lab server environment

2. Model evaluation Check model output va-
lidity and value

- Conduct the empirical study
with standardized prompt
principles
- Mirror the outputs on the
files processed
- Change models according to
their context validity and real
value of outputs

3. Prompt evalua-
tion

Check that the prompts
used are optimal and
targeted for use cases

- Test prompt designs with the
PESD framework
- Change prompt designs ac-
cording to outputs and GPU
memory allocation limits

4. Framework evalu-
ation

Test the framework
phases in varying situa-
tions

- Modify framework phases
after selection of the model
and initial prompts

After these episodes, we came up with further development of PESD framework
that had improvements in model selection, prompt design, and in its phases. We
changed from Falcon LLM by Technology Innovation Institute of Abu Dhabi (TII)
to WizardLM when comparing their outputs within our standardized prompts
and came to conclusion that WizardLM would suit our research setting better
(Technology Innovation Institute, 2023). With the final framework established,
we begun to systematically gather data as chats with the designed prompts for
PESD framework.
 Here, we present the results of our empirical study, derived from prompt
engineering chats created using the PESD framework. Chats were saved as JSON
files, containing input prompts from users and the corresponding output an-
swers from the model. These chats are analyzed based on four properties out-
lined in this chapter: validity, value, competence, and consistency. Validity as-
sesses the relevance of the context in the chat, while value evaluates whether the
model's outputs bring value to the user's needs. Competence gauges the model's
ability to handle complex inputs with logic, and consistency assesses the ease of
setting up and using the model.
 As stated, the analysis comprises 36 chats that were individually ana-
lyzed. The analysis was conducted with the perspective that the target user was
a junior or trainee-level developer. Due to data security concerns, we do not dis-
play these chats with the results. We summarized the results using mean values

35

to simplify the findings with overall value. The summarized results are presented
in Table 9, with more detailed information available in appendix Table 10.

TABLE 9 Results

LLM Validity
(High, mid,
low, none)

Value
(High, mid,
low, none)

Competence
(High, mid,
low, none)

Convenience
(High, mid,
low, none)

Vicuna High = 6
Mid = 2
Low = 1
None = 0

Overall: High

High = 1
Mid = 4
Low = 3
None = 1

Overall: Mid

High = 3
Mid = 3
Low = 3
None = 0

Overall: Mid

High = 9
Mid = 0
Low = 0
None = 0

Overall: High

Code Llama High = 4
Mid = 4
Low = 1
None = 0

Overall: Mid

High = 0
Mid = 4
Low = 4
None = 1

Overall: Low

High = 4
Mid = 4
Low = 1
None = 0

Overall: Mid

High = 9
Mid = 0
Low = 0
None = 0

Overall: High

Dolphin High = 2
Mid = 4
Low = 3
None = 0

Overall: Mid

High = 0
Mid = 2
Low = 6
None = 1

Overall: Low

High = 1
Mid = 5
Low = 3
None = 0

Overall: Mid

High = 9
Mid = 0
Low = 0
None = 0

Overall: High

WizardLM

High = 2
Mid = 4
Low = 2
None = 1

Overall: Mid

High = 0
Mid = 1
Low = 2
None = 6

Overall: None

High = 1
Mid = 3
Low = 2
None = 3

Overall: Low

High = 9
Mid = 0
Low = 0
None = 0

Overall: High

36

This chapter summarizes the research results and reflects them in relation to the
prior research. Future implications and outlooks are discussed, and the practical
implications are noted.
 As evident from the results, the analysis of individual properties reveals
the capabilities of the models. Among all the properties, convenience had the
highest score across all the models, as the setup process was easy and straight-
forward with each model. Second was validity: all the models were able to inter-
pret the context of inputs and questions, scoring at least at an intermediate level.
The third property was competence, where all the models scored at an interme-
diate level. Their ability to comprehend the relative complexity of the inputs was
impressive, although the outputs did not consistently present highly relevant
value. The value property scored the least, as outputs varied from erratic to
value-generating ones. The most accurate observation was that when the size and
complexity of the target file increased, the inconsistency of outputs also increased.
 Overall, the Vicuna model demonstrated the most success with the set of
properties, averaging high in validity, mid in value, mid in competence, and high
in convenience. Code Llama secured the second position in terms of model usage
success, followed by Dolphin in the third position and WizardLM in the fourth
and last position.

5 DISCUSSION

37

5.1 Revisiting research questions

Here we reflect the research questions with the empirical results.

RQ1: How to systematically evaluate LLM outputs in software maintenance?

 Hypothesis: It is feasible to construct a framework that facilitates objective

comparison of outcomes.

Findings suggest that an effective framework was possible to be established. The
effectiveness of the PESD framework was evaluated through a rigorous process
with standardized prompt inputs. This way, we discovered facilitated compari-
son of prompt outputs, which provided insights into the properties of validity,
value, competence, and convenience of four different LLMs. The PESD frame-
work presents clear phases on how to systematically evaluate LLMs with explicit
prompt design principles. Thus, the findings align with our hypothesis.

RQ2: How can generative artificial intelligence help software developers in
system management and maintenance?

 Hypothesis: Generative artificial intelligence can help systematically when

organizing system development points and management.

Findings suggest that, while maintenance analysis can be systematically con-
ducted with small LLMs, the analysis itself is modest. Nevertheless, the models
consistently performed well within their outputs, offering suggestions on how to
modify and advance software maintenance within the inputted files. These sug-
gestions were consistent across different models, averaging an intermediate score
within differing models. Thus, the PESD framework enables researchers and de-
velopers to systematically gain knowledge on the management, maintenance,
and development of case artifacts. The findings align with our hypothesis, alt-
hough not as strongly as anticipated.

RQ3: Can generative artificial intelligence manage development to reduce
technical debt?

 Hypothesis: Technical debt can be detected in the system using generative

artificial intelligence, but a larger scope of technical debt cannot be
identified.

Findings suggest that with prompt engineering using the PESD framework
within smaller LLMs, we do not obtain advanced information on technical debt
within the case system. Identifying technical debt is typically challenging, and

38

the analysis on singular files within our research timeframe makes it even more
difficult. The environmental constraint of our case system's size became evident
when conducting the empirical study. In the future, the usage of different LLMs
with multiple users and a larger quantity of varying files could reveal technical
debt over time. The findings align moderately with our hypothesis.

5.2 Implications and future research

The results of the empirical study suggest diverse implications for scientific and
practical targets regarding LLM usage. Our findings propose that developers
could leverage LLMs for their usage with the PESD framework as a standardized
way to gather knowledge on case artifacts rather than singular prompts. Prompt
engineering works best when analyzing singular functions or files in their devel-
opment system, not whole systems. The PESD framework enables developers
and researchers to use and evaluate their chosen LLMs and the outputs referred
to their own use cases. Prompt design principles provide practical ways to im-
plement personalized prompts with advanced outputs rather than relying on
zero-shot learning prompts.
 Software maintenance could be enhanced through the systematic appli-
cation of the PESD framework when analyzing individual files. Moreover, the
learning process for a new developer is improved by incorporating prompt engi-
neering into novel software components unfamiliar to the developer. However,
more extensive research, involving larger models, different systems, and a
greater quantity of prompts, is necessary for significant advancements in larger-
scale maintenance. In the future, organizations will harness the power of LLMs
through specialized applications, leveraging from chatbots to automated code
reviews, powered by entities such as OpenAI’s Assistant API (OpenAI, 2023).
With these applications, organizations can advance their operations in custom-
ized situations such as onboarding to the codebase. This will require systematic
approaches, ones that we have presented here as prompt design principles and a
prompt engineering software development framework.

5.3 Limitations

Studying a system with AI used in the industry comes with limitations. As LLM-
based application like ChatGPT have proposed several security vulnerabilities
for organizations, the data leaks have lead organizations to prohibit the usage of
these applications and begin to create their own applications (Bloomberg, 2023;
Reuters, 2023). From this, organizations need to develop their LLMs with cloud
solutions or internal server computers, both which can lead to cost-heavy solu-
tions with larger LLMs requiring unique competence, especially with pretraining
(Dwivedi et al., 2023; Kaddour et al., 2023). Thus, smaller LLMs could fit more

39

properly with an organization's needs, especially when using the models only for
smaller or general tasks. However, choosing smaller models leads to a significant
loss in accuracy and prediction naturally.
 LLMs are generally run in cloud environments or via GPUs due to their
large computing requirements. However, CPUs can also be used when running
LLMs, although it is certainly slower and more power-consuming than GPUs or
applications running in cloud environments. Since the private nature of the target
system led the study to use a local environment and smaller LLMs, lower com-
putational power was utilized. Also, we only had a single researcher working on
the empirical study with specific files; we could have acquired different and more
versatile data if more than one researcher had analyzed model behavior on soft-
ware maintenance.
 With the case system being a backend system with specific programming
languages and paradigms, we could have obtained different data if we had ana-
lyzed different systems containing components in the frontend or databases. Also,
the laboratory server solution, with its notable configurations and installation
processes, performs poorly when scaled for a larger number of developers, as the
GPU quantity would rise rapidly. The NVIDIA T4 GPU that we used likewise
had limitations in CUDA VRAM and computing power when allocating memory
in its usage. Therefore, a cloud-based solution would be preferable in the future.

40

In conclusion, this thesis delves into the dynamic intersection of generative AI
and software development, emphasizing the continuous evolution and adapta-
tion in response to technological advancements.
 The challenges faced in maintaining large and complex software systems
demand innovative solutions. As a response to maintenance challenges, such as
complexity, costs, and technical debt, this thesis focuses on the potential of gen-
erative AI to provide systematic refinements in software product maintenance.
 Generative AI, particularly in the context of software onboarding and
supporting developers, holds promise for introducing new concepts, proposing
repair suggestions, and offering sophisticated examples related to the application
area and software components. The thesis aims to contribute to the development
of more efficient and systematic approaches to software maintenance via LLMs.
 The empirical study conducted as part of this thesis seeked to uncover
insights and innovative solutions for enhancing the maintenance of software sys-
tems through prompt engineering. As a result, we present PESD framework for
systematic prompt engineering with design principles for singular prompts.
With PESD framework, we conducted an evaluation with 36 different chats with
4 different LLMs. Findings suggest that the PESD framework produced consisted
outputs with average of intermediate value. The PESD framework and prompt
design principles contribute to the knowledge base as a framework and applied
processes with contribution types aligned with the research questions.
 As we move forward in the ever-evolving landscape of software devel-
opment, the findings from this study contribute to the ongoing discourse on op-
timizing software processes. The potential applications of generative AI in this
context open avenues for more efficient, cost-effective, and innovative software
practices, ultimately advancing the field of software development.

6 CONCLUSION

41

REFERENCES

Akter, S., McCarthy, G., Sajib, S., Michael, K., Dwivedi, Y. K., D’Ambra, J., &
Shen, K. N. (2021). Algorithmic bias in data-driven innovation in the age
of AI. International Journal of Information Management, 60, 102387.
https://doi.org/10.1016/j.ijinfomgt.2021.102387

Barth, A., Chambers, M., Eigenbrode, S., & Fregly, C. (2023, June). Generative AI
project lifecycle. Coursera. https://www.coursera.org/learn/generative-ai-
with-llms/home/welcome

Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Managing artificial
intelligence.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., & Raffel, C. A.
(2019). MixMatch: A Holistic Approach to Semi-Supervised Learning.
Advances in Neural Information Processing Systems, 32.
https://proceedings.neurips.cc/paper_files/paper/2019/hash/1cd138d0
499a68f4bb72bee04bbec2d7-Abstract.html

Bloomberg. (2023, May 1). Samsung Bans ChatGPT, Google Bard, Other Generative
AI Use by Staff After Leak. Bloomberg.
https://www.bloomberg.com/news/articles/2023-05-02/samsung-bans-
chatgpt-and-other-generative-ai-use-by-staff-after-
leak?in_source=embedded-checkout-banner

Boehm, B. W. (1976). Software Engineering. IEEE Transactions on Computers,
25(12), 1226–1241. https://doi.org/10.1109/TC.1976.1674590

Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2018). Limiting technical
debt with maintainability assurance: An industry survey on used
techniques and differences with service- and microservice-based systems.
Proceedings of the 2018 International Conference on Technical Debt, 125–133.
https://doi.org/10.1145/3194164.3194166

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S.,
Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch,
S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q.,
Demszky, D., … Liang, P. (2022). On the Opportunities and Risks of
Foundation Models (arXiv:2108.07258). arXiv.
https://doi.org/10.48550/arXiv.2108.07258

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu,
J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot
Learners. Advances in Neural Information Processing Systems, 33, 1877–1901.

42

Bull, C., & Kharrufa, A. (2023). Generative AI Assistants in Software Development
Education (arXiv:2303.13936). arXiv.
https://doi.org/10.48550/arXiv.2303.13936

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A.,
Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K.,
Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N.,
Prabhakaran, V., … Fiedel, N. (2022). PaLM: Scaling Language Modeling
with Pathways (arXiv:2204.02311). arXiv.
https://doi.org/10.48550/arXiv.2204.02311

Cunningham, W. (1993). The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger, 4(2), 29–30.
https://doi.org/10.1145/157710.157715

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding
(arXiv:1810.04805). arXiv. https://doi.org/10.48550/arXiv.1810.04805

Douglas Heaven, W. (2023, May 12). The open-source AI boom is built on Big Tech’s
handouts. How long will it last? MIT Technology Review.
https://www.technologyreview.com/2023/05/12/1072950/open-source-
ai-google-openai-eleuther-meta/

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K.,
Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H.,
Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S.,
Bose, I., Brooks, L., Buhalis, D., … Wright, R. (2023). Opinion Paper: “So
what if ChatGPT wrote it?” Multidisciplinary perspectives on
opportunities, challenges and implications of generative conversational AI
for research, practice and policy. International Journal of Information
Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. IEEE
Software, 33(3), 94–100. https://doi.org/10.1109/MS.2016.68

European Commission. Joint Research Centre. (2020). Estimating investments in
general purpose technologies: The case of AI investments in Europe. Publications
Office. https://data.europa.eu/doi/10.2760/506947

Feng, S., Park, C. Y., Liu, Y., & Tsvetkov, Y. (2023). From Pretraining Data to
Language Models to Downstream Tasks: Tracking the Trails of Political Biases
Leading to Unfair NLP Models (arXiv:2305.08283). arXiv.
https://doi.org/10.48550/arXiv.2305.08283

Finnegan, M. (2023, May 23). Microsoft’s M365 Copilot AI assistant gets third-party
app integrations. Computerworld.
https://www.computerworld.com/article/3696979/microsoft-s-m365-
copilot-ai-assistant-gets-third-party-app-integrations.html

43

Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh, D. (2023). GPTQ: Accurate Post-
Training Quantization for Generative Pre-trained Transformers
(arXiv:2210.17323). arXiv. https://doi.org/10.48550/arXiv.2210.17323

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G. S., & Friday, A.
(2021). The real climate and transformative impact of ICT: A critique of
estimates, trends, and regulations. Patterns, 2(9), 100340.
https://doi.org/10.1016/j.patter.2021.100340

Fung, B. (2023, August 6). The big bottleneck for AI: A shortage of powerful chips |
CNN Business. CNN. https://www.cnn.com/2023/08/06/tech/ai-chips-
supply-chain/index.html

Ghahramani, Zoubin, & Google. (2023, May 10). Introducing PaLM 2. Google.
https://blog.google/technology/ai/google-palm-2-ai-large-language-
model/

GlobalData. (2023, August 29). ChatGPT dominates LLM mentions on social
media in 2023, Bards distant second, reveals GlobalData. GlobalData,
Business Fundamentals. https://www.globaldata.com/media/business-
fundamentals/chatgpt-dominates-llm-mentions-on-social-media-in-2023-
bards-distant-second-reveals-globaldata/

Goldberg, S. B., Flemotomos, N., Martinez, V. R., Tanana, M. J., Kuo, P. B., Pace,
B. T., Villatte, J. L., Georgiou, P. G., Van Epps, J., Imel, Z. E., Narayanan, S.
S., & Atkins, D. C. (2020). Machine learning and natural language
processing in psychotherapy research: Alliance as example use case.
Journal of Counseling Psychology, 67(4), 438–448.
https://doi.org/10.1037/cou0000382

Gregor, S., & Hevner, A. (2013). Positioning and Presenting Design Science
Research for Maximum Impact. MIS Quarterly, 37, 337–356.
https://doi.org/10.25300/MISQ/2013/37.2.01

Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On
the Past, Present, and Future of Artificial Intelligence. California
Management Review, 61(4), 5–14.
https://doi.org/10.1177/0008125619864925

Hartford, E., & Hugging Face. (2023a, April 28). Ehartford/WizardLM-7B-
Uncensored · Hugging Face. https://huggingface.co/ehartford/WizardLM-
7B-Uncensored

Hartford, E., & Hugging Face. (2023b, September 18). Ehartford/dolphin-2.1-
mistral-7b · Hugging Face. https://huggingface.co/ehartford/dolphin-2.1-
mistral-7b

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in
Information Systems Research. MIS Quarterly, 28(1), 75–105.
https://doi.org/10.2307/25148625

44

Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text
Classification (arXiv:1801.06146). arXiv.
https://doi.org/10.48550/arXiv.1801.06146

Hugging Face. (2023a, September 22). Quantization.
https://huggingface.co/docs/optimum/concept_guides/quantization

Hugging Face. (2023b, October 17). Open LLM Leaderboard—A Hugging Face
Space by HuggingFaceH4.
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Jacobson, I., Sutherland, J., Kerr, B., & Buhnova, B. (2022). Better Scrum through
Essence. Software: Practice and Experience, 52(6), 1531–1540.
https://doi.org/10.1002/spe.3070

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A.,
& Fung, P. (2023). Survey of Hallucination in Natural Language
Generation. ACM Computing Surveys, 55(12), 248:1-248:38.
https://doi.org/10.1145/3571730

Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., & McHardy, R.
(2023). Challenges and Applications of Large Language Models
(arXiv:2307.10169). arXiv. https://doi.org/10.48550/arXiv.2307.10169

Kalyan, K. S., Rajasekharan, A., & Sangeetha, S. (2021). AMMUS: A Survey of
Transformer-based Pretrained Models in Natural Language Processing
(arXiv:2108.05542). arXiv. https://doi.org/10.48550/arXiv.2108.05542

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M. (2022).
Transformers in Vision: A Survey. ACM Computing Surveys, 54(10s), 200:1-
200:41. https://doi.org/10.1145/3505244

Khashabi, D., Lyu, S., Min, S., Qin, L., Richardson, K., Welleck, S., Hajishirzi, H.,
Khot, T., Sabharwal, A., Singh, S., & Choi, Y. (2022). Prompt Waywardness:
The Curious Case of Discretized Interpretation of Continuous Prompts
(arXiv:2112.08348). arXiv. http://arxiv.org/abs/2112.08348

Koskinen, J. (2004, February 2). Software Maintenance Costs. Archive.Ph.
https://archive.ph/oBlIr

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
Article 7553. https://doi.org/10.1038/nature14539

Lester, B., Al-Rfou, R., & Constant, N. (2021). The Power of Scale for Parameter-
Efficient Prompt Tuning (arXiv:2104.08691). arXiv.
https://doi.org/10.48550/arXiv.2104.08691

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on
technical debt and its management. Journal of Systems and Software, 101,
193–220. https://doi.org/10.1016/j.jss.2014.12.027

Li, Z., Liang, P., & Avgeriou, P. (2014). Chapter 9—Architectural Debt
Management in Value-Oriented Architecting. In I. Mistrik, R. Bahsoon, R.

45

Kazman, & Y. Zhang (Eds.), Economics-Driven Software Architecture (pp.
183–204). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-410464-
8.00009-X

Lientz, B. P., Swanson, E. B., & Tompkins, G. E. (1978). Characteristics of
application software maintenance. Communications of the ACM, 21(6), 466–
471. https://doi.org/10.1145/359511.359522

LMSYS Org. (2023, March 30). Vicuna: An Open-Source Chatbot Impressing GPT-4
with 90%* ChatGPT Quality | LMSYS Org. https://lmsys.org/blog/2023-
03-30-vicuna

LMSYS Org, & Hugging Face. (2023, November 22). Lmsys/vicuna-7b-
v1.3 · Hugging Face. https://huggingface.co/lmsys/vicuna-7b-v1.3

Lo, L. S. (2023). The CLEAR path: A framework for enhancing information
literacy through prompt engineering. The Journal of Academic Librarianship,
49(4), 102720. https://doi.org/10.1016/j.acalib.2023.102720

Maeder, A. (2023, January 26). AI/ML unleashes the full potential of 5G-Advanced.
Nokia. https://www.nokia.com/blog/aiml-unleashes-the-full-potential-
of-5g-advanced/

Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., & Capilla, R. (2020).
On opportunistic software reuse. Computing, 102(11), 2385–2408.
https://doi.org/10.1007/s00607-020-00833-6

Manning, C. D. (2015). Computational Linguistics and Deep Learning.
Computational Linguistics, 41(4), 701–707.
https://doi.org/10.1162/COLI_a_00239

March, S. T., & Smith, G. F. (1995). Design and natural science research on
information technology. Decision Support Systems, 15(4), 251–266.
https://doi.org/10.1016/0167-9236(94)00041-2

Melo, A., Fagundes, R., Lenarduzzi, V., & Santos, W. B. (2022). Identification
and measurement of Requirements Technical Debt in software
development: A systematic literature review. Journal of Systems and
Software, 194, 111483. https://doi.org/10.1016/j.jss.2022.111483

Meta. (2023a, February 24). Introducing LLaMA: A foundational, 65-billion-
parameter language model. https://ai.facebook.com/blog/large-language-
model-llama-meta-ai/

Meta. (2023b, July 18). Meta and Microsoft Introduce the Next Generation of
Llama. Meta. https://about.fb.com/news/2023/07/llama-2/

Meta. (2023c, August 24). Introducing Code Llama, an AI Tool for Coding. Meta.
https://about.fb.com/news/2023/08/code-llama-ai-for-coding/

Meta, & Hugging Face. (2023, November 22). Codellama/CodeLlama-7b-Instruct-
hf · Hugging Face. https://huggingface.co/codellama/CodeLlama-7b-
Instruct-hf

46

Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen, T. H., Sainz, O., Agirre,
E., Heintz, I., & Roth, D. (2023). Recent Advances in Natural Language
Processing via Large Pre-Trained Language Models: A Survey. ACM
Computing Surveys. https://doi.org/10.1145/3605943

Mökander, J., Schuett, J., Kirk, H. R., & Floridi, L. (2023). Auditing large
language models: A three-layered approach. AI and Ethics.
https://doi.org/10.1007/s43681-023-00289-2

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural
language processing: An introduction. Journal of the American Medical
Informatics Association, 18(5), 544–551. https://doi.org/10.1136/amiajnl-
2011-000464

oobabooga. (2023). Text generation web UI [Python].
https://github.com/oobabooga/text-generation-webui (Original work
published 2022)

OpenAI. (2022, November 30). Introducing ChatGPT.
https://openai.com/blog/chatgpt

OpenAI. (2023, June 11). New models and developer products announced at DevDay.
https://openai.com/blog/new-models-and-developer-products-
announced-at-devday

OWASP. (2023, August 26). OWASP Top 10 for Large Language Model Applications
| OWASP Foundation. https://owasp.org/www-project-top-10-for-large-
language-model-applications/

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design
Science Research Methodology for Information Systems Research. Journal
of Management Information Systems, 24(3), 45–77.
https://doi.org/10.2753/MIS0742-1222240302

Perkusich, M., Chaves e Silva, L., Costa, A., Ramos, F., Saraiva, R., Freire, A.,
Dilorenzo, E., Dantas, E., Santos, D., Gorgônio, K., Almeida, H., &
Perkusich, A. (2020). Intelligent software engineering in the context of
agile software development: A systematic literature review. Information
and Software Technology, 119, 106241.
https://doi.org/10.1016/j.infsof.2019.106241

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., &
Zettlemoyer, L. (2018). Deep contextualized word representations
(arXiv:1802.05365). arXiv. https://doi.org/10.48550/arXiv.1802.05365

Qin, G., & Eisner, J. (2021). Learning How to Ask: Querying LMs with Mixtures of
Soft Prompts (arXiv:2104.06599). arXiv.
https://doi.org/10.48550/arXiv.2104.06599

Reuters. (2023, May 19). Apple restricts use of OpenAI’s ChatGPT for
employees, Wall Street Journal reports. Reuters.

47

https://www.reuters.com/technology/apple-restricts-use-chatgpt-wsj-
2023-05-18/

Rumbelow, J., & mwatkins. (2023). SolidGoldMagikarp (plus, prompt generation).
https://www.alignmentforum.org/posts/aPeJE8bSo6rAFoLqg/solidgold
magikarp-plus-prompt-generation

Ruparelia, N. B. (2010). Software development lifecycle models. ACM SIGSOFT
Software Engineering Notes, 35(3), 8–13.
https://doi.org/10.1145/1764810.1764814

Schreiner, M. (2023, July 11). GPT-4 architecture, datasets, costs and more leaked.
THE DECODER. https://the-decoder.com/gpt-4-architecture-datasets-
costs-and-more-leaked/

Snapchat. (2023). What is My AI on Snapchat and how do I use it? Snapchat
Support. https://help.snapchat.com/hc/en-us/articles/13266788358932-
What-is-My-AI-on-Snapchat-and-how-do-I-use-it-

Stokel-Walker, C., & Van Noorden, R. (2023). What ChatGPT and generative AI
mean for science. Nature, 614(7947), 214–216.
https://doi.org/10.1038/d41586-023-00340-6

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations
for Deep Learning in NLP (arXiv:1906.02243). arXiv.
https://doi.org/10.48550/arXiv.1906.02243

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H. S., & Hospedales, T. M.
(2018). Learning to Compare: Relation Network for Few-Shot Learning.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1199–
1208. https://doi.org/10.1109/CVPR.2018.00131

Technology Innovation Institute. (2023, June 20). Tiiuae/falcon-7b-
instruct · Hugging Face. https://huggingface.co/tiiuae/falcon-7b-instruct

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., & Polosukhin, I. (2017). Attention is All you Need. Advances in
Neural Information Processing Systems, 30.
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee2435
47dee91fbd053c1c4a845aa-Abstract.html

Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: A Framework for
Evaluation in Design Science Research. European Journal of Information
Systems, 25(1), 77–89. https://doi.org/10.1057/ejis.2014.36

Wei, L., Liu, Y., & Cheung, S.-C. (2016). Taming Android fragmentation:
Characterizing and detecting compatibility issues for Android apps.
Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, 226–237. https://doi.org/10.1145/2970276.2970312

Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., Cheng,
M., Glaese, M., Balle, B., Kasirzadeh, A., Kenton, Z., Brown, S., Hawkins,
W., Stepleton, T., Biles, C., Birhane, A., Haas, J., Rimell, L., Hendricks, L.

48

A., … Gabriel, I. (2021). Ethical and social risks of harm from Language Models
(arXiv:2112.04359). arXiv. https://doi.org/10.48550/arXiv.2112.04359

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A.,
Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to
Enhance Prompt Engineering with ChatGPT (arXiv:2302.11382). arXiv.
https://doi.org/10.48550/arXiv.2302.11382

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P.,
Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., … Rush, A. M.
(2020). HuggingFace’s Transformers: State-of-the-art Natural Language
Processing (arXiv:1910.03771). arXiv.
https://doi.org/10.48550/arXiv.1910.03771

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao, C., & Jiang, D.
(2023). WizardLM: Empowering Large Language Models to Follow Complex
Instructions (arXiv:2304.12244). arXiv.
https://doi.org/10.48550/arXiv.2304.12244

49

APPENDIX

TABLE 10 Detailed results

Chat Validity
(High, mid,
low, none)

Value
(High, mid,
low, none)

Competence
(High, mid,
low, none)

Consistency
(High, mid,
low, none)

vicuna-1file-1 High Mid High High

vicuna-1file-2 High High High High

vicuna-1file-3 High Mid High High

vicuna-2file-1 High Mid Mid High

vicuna-2file-2 Mid Mid Mid High

vicuna-2file-3 Mid Low Mid High

vicuna-3file-1 Low None Low High

vicuna-3file-2 High Low Low High

vicuna-3file-3 High Low Low High

codellama-1file-1 High Mid High High

codellama-1file-2 High Mid High High

codellama-1file-3 High Mid High High

codellama-2file-1 Mid Low Mid High

codellama-2file-2 Mid Low Mid High

codellama-2file-3 Mid Mid High High

codellama-3file-1 High Low Mid High

codellama-3file-2 Low None Low High

codellama-3file-3 Mid Low Mid High

dolphin-1file-1 High Mid Mid High

dolphin-1file-2 Mid Low Mid High

dolphin-1file-3 High Mid High High

dolphin-2file-1 Low Low Mid High

dolphin-2file-2 Mid Low Mid High

dolphin-2file-3 Mid Low Mid High

dolphin-3file-1 Low None Low High

dolphin-3file-2 Low Low Low High

dolphin-3file-3 Mid Low Low High

wizard-1file-1 High None Mid High

wizard-1file-2 High Low Mid High

wizard-1file-3 Mid Low Mid High

wizard-2file-1 Mid None Low High

wizard-2file-2 None None None High

wizard-2file-3 Low None None High

wizard-3file-1 Mid Mid High High

wizard-3file-2 Mid None Low High

wizard-3file-3 Low None None High

50

Prompt example 1: Dolphin model (ehartford/dolphin-2.1-mistral-7b).
Cohesive text with a focus on the current context.

Prompt example 2: Code Llama (codellama/CodeLlama-7b-Instruct-hf).
Some hallucinations with the context being the same as the input.

51

Prompt example 3: Code Llama (codellama/CodeLlama-7b-Instruct-hf).
The correct context with the input providing actual value in line with the input.

	1 Introduction
	2 Generative AI
	2.1 Artificial intelligence
	2.2 Generative AI
	2.2.1 Natural Language Processing
	2.2.2 Large language models
	2.2.3 Prompt engineering

	2.3 AI models and GAI workflow

	3 Research setting
	3.1 Research questions
	3.2 Case company: Nokia
	3.3 Design Science Research methodology

	4 Case study
	4.1 Model selection
	4.2 Design and development
	4.2.1 Foundations of the framework
	4.2.2 Introducing PESD framework and prompt design principles

	4.3 Evaluation and results

	5 Discussion
	5.1 Revisiting research questions
	5.2 Implications and future research
	5.3 Limitations

	6 Conclusion
	References
	Appendix

