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A B S T R A C T

Consider a spatial blind source separation model in which the observed multivariate spatial
data are assumed to be a linear mixture of latent stationary spatially uncorrelated random
fields. The objective is to recover an unknown mixing procedure as well as the latent random
fields. Recently, spatial blind source separation methods that are based on the simultaneous
diagonalization of two or more scatter matrices were proposed. In cases involving uncontam-
inated data, such methods can solve the blind source separation problem, however, in the
presence of outlying observations, these methods perform poorly. We propose a robust blind
source separation method that employs robust global and local covariance matrices based on
generalized spatial signs in simultaneous diagonalization. Simulation studies are employed to
illustrate the robustness and efficiency of the proposed methods in various scenarios.

1. Introduction

Many modern datasets consist of multivariate, spatially indexed data sourced from geographical locations. For a proper statistical
analysis, one must account for the Tobler’s (1970) first law of geography which states that ‘everything is related to everything else,
but near things are more related than distant things.’ Hitherto, for univariate spatial data, considering the spatial dependence is quite
challenging since models need to be selected for the spatial covariance function. Such models conventionally have many parameters
to be estimated and to tackle the problem, it is frequently assumed that the data are stationary. Kleiber and Nychka (2012), Genton
and Kleiber (2015) point out that the model selection becomes even more challenging when the data are multivariate as the number
of parameters needed to model the additional cross-dependencies increases dramatically with increasing dimension.

Therefore, Nordhausen et al. (2015) suggested a blind source separation (BSS) approach for multivariate stationary spatial data
where it is assumed that the observable 𝑝-variate random field is a mixture of 𝑝 independent latent fields. Nordhausen et al. (2015)
suggest then, based on the simultaneous diagonalization of two moment-based matrices, a spatial blind source separation (SBSS)
method for estimating the 𝑝 latent fields, which can subsequently be interpreted and modeled individually. The original SBSS
approach has since then been extended for example in Bachoc et al. (2020), Muehlmann et al. (2022a). Muehlmann et al. (2021b)
showed that the SBSS approach can be beneficial for multivariate spatial prediction.

All the SBSS methods suggested thus far are based on second moments making them preferable for Gaussian latent fields.
However, these methods will most likely be inefficient for heavy-tailed latent fields and highly susceptible to outliers which are often
present in spatial data, as pointed out by Harris et al. (2014), Filzmoser et al. (2014), Ernst and Haesbroeck (2017). Robust statistical
methods are designed to address these issues. The methods are less sensitive to outliers and work better for other distributions than
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the Gaussian one. For a general overview of the robust methods, we refer to Huber and Ronchetti (2011), Hampel et al. (2011),
Maronna et al. (2019), where the focus is frequently on independent and identically distributed elliptical data. In this paper we
suggest robust SBSS methods that are based on the joint diagonalization of two or more matrices. We proceed as with SBSS, but we
replace the non-robust matrices with matrices based on spatial signs (for details, see Oja, 2010) and their extensions, as introduced
in Raymaekers and Rousseeuw (2019), by using ideas from the robust temporal BSS methods, as suggested in Ilmonen et al. (2015).

This paper is structured as follows. In Section 2 we recall the SBSS model and classical, non-robust covariance matrices that
an be used to solve the SBSS problem. Thereafter, the robust SBSS methods based on generalized spatial signs are introduced.
n Section 3, we compare the performances of the three robust candidates against their non-robust counterparts under different
istributional and contamination conditions. Additionally, bias and maximum bias curves are provided for comparing the robustness
roperties. In Section 4 the methods are compared using a real data example, after which the paper is concluded in Section 5.

. Robust SBSS

.1. SBSS model

Let 𝐱(𝐬) = {𝑥1(𝐬),… , 𝑥𝑝(𝐬)}⊤ be a 𝑝-dimensional random field where 𝐬 ∈  ⊆ R𝑑 denotes the location of the observation 𝐱(𝐬) and
denotes the spatial domain. We assume that 𝐱(𝐬) follows the SBSS model, i.e. 𝐱(𝐬) is a linear mixture of an underlying 𝑝-variate

latent field 𝐳(𝐬) = {𝑧1(𝐬),… , 𝑧𝑝(𝐬)}⊤ with independent components. We formalize this below.

Definition 1. An observable random field 𝐱(𝐬) ∈ R𝑝, where 𝐬 ∈ , follows the SBSS model if

𝐱(𝐬) = 𝜴𝐳(𝐬) + 𝝁, (1)

where full-rank 𝑝×𝑝 matrix 𝜴 is an unknown mixing matrix and 𝑝-vector 𝝁 is a nuisance parameter specifying the location. A latent
𝑝-variate random field 𝐳(𝐬) satisfies the following properties

SBSS1: E(𝐳(𝐬)) = 𝟎 and COV(𝐳(𝐬)) = 𝐈𝑝, for all 𝐬 ∈ 

SBSS2: 𝑧1(𝐬),… , 𝑧𝑝(𝐬) are mutually independent and COV
(

𝐳(𝐬), 𝐳(𝐬′)
)

= 𝜮(ℎ), where 𝜮 is a diagonal matrix with diagonal elements
depending on ℎ = ‖𝐬 − 𝐬′‖ for all 𝐬, 𝐬′ ∈ .

Above ‖ ⋅ ‖ denotes the Euclidean norm. Assumption SBSS1 fixes the scales and locations of the latent components and is
applied without loss of generality. Assumption SBSS2 states that the components are independent and that there are no spatial
cross-dependences between the latent components. Thus, we assume that the latent components are second-order stationary. Notice
that the above assumptions imply that the latent components are uniquely defined only up to permutation and sign. This is sufficient
for most practical applications. In the following, the sign changes will be represented by a 𝑝× 𝑝 sign-change matrix 𝐉 ∈  , where 
is a set of all possible 𝑝 × 𝑝 sign change matrices, i.e. diagonal matrices with diagonal elements being equal to ±1. The reordering
of components is expressed via a 𝑝× 𝑝 permutation matrix 𝐏 ∈  , where  is a set of all 𝑝× 𝑝 matrices having in each row and each
column exactly one value 1 with the rest of the values being 0. Componentwise heterogeneous rescaling is expressed via a 𝑝 × 𝑝
diagonal matrix 𝐂 ∈ , where  is a set of all 𝑝 × 𝑝 diagonal matrices having strictly positive diagonal elements.

The main goal of the SBSS method is to estimate a 𝑝 × 𝑝 matrix (e.g. 𝐖 = 𝜴−1) based on 𝐱(𝐬) only so that it can be used to
recover the latent sources in 𝐳(𝐬). We call 𝐖 an unmixing matrix, and it is formalized as a functional as follows (Miettinen et al.,
2015).

Definition 2. For a random field, 𝐱 = 𝐱(𝐬), following SBSS model specified in (1), a 𝑝×𝑝 matrix valued functional, 𝐖 is an unmixing
matrix functional if it satisfies the following:

(i) 𝐖(𝐱 − 𝐓), where 𝐓 is a location functional, recovers the latent components up to the permutation, sign change and scale,
i.e. 𝐖(𝐱 − 𝐓) = 𝐏𝐉𝐂𝐳, where 𝐳 = 𝐳(𝐬) and 𝐏 ∈  , 𝐉 ∈  and 𝐂 ∈ .

(ii) 𝐖 is affine equivariant in the sense that if 𝐱 is a random field and 𝐱⋆ = 𝐀𝐱 + 𝐛 is its affine transformation, where 𝐀 is an
invertible 𝑝 × 𝑝 matrix and 𝐛 is a 𝑝-vector, then it holds that if 𝐖 and 𝐖⋆ are computed from 𝐱 and 𝐱⋆, respectively, then
𝐖⋆ = 𝐏𝐉𝐖𝐀−1, for some 𝐏 ∈  and 𝐉 ∈  .

The above definition implies that if 𝐖 is an unmixing matrix functional, so is 𝐏𝐉𝐂𝐖 for all transformation matrices 𝐏 ∈  , 𝐉 ∈ 
and 𝐂 ∈ . Thus, we have a whole set of matrices equivalent to 𝐖. The scales of unmixing matrices can be fixed in the estimation
procedure, and often it is required that the scales are fixed in such a way that COV(𝐏𝐉𝐂𝐖(𝐱 − 𝐓)) = 𝐈𝑝, however, the order and
signs of the rows of 𝐖 still remain unidentified. Similarly, if a location functional other than the mean is used, the centering may
be performed differently when some of the components are skew. For a detailed discussion on the identifiability of unmixing matrix
functionals, see e.g. Ilmonen and Paindaveine (2011) and references therein.

Next, we review the local covariance matrices that are proposed in the literature to solve the SBSS problem and provide their
2
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2.2. Local covariance matrix functionals

BSS problems are frequently solved by the simultaneous diagonalization of two or more scatter matrices (Nordhausen and Oja,
018; Nordhausen and Ruiz-Gazen, 2022). In Nordhausen et al. (2015), the estimation of 𝐖 is based on the use of local covariance

matrix functionals (LCOV). Let us assume that we have 𝑛 fixed spatial locations 𝐬1,… , 𝐬𝑛 in  which index the random fields by
𝐱(𝐬1),… , 𝐱(𝐬𝑛). For simplicity, we write 𝐱𝑖 = 𝐱(𝐬𝑖). The LCOV is defined as

LCOV(𝑓 ) = 1
𝑛
√

𝐹𝑛,𝑓

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑓 (𝐬𝑖 − 𝐬𝑗 )E

(

(

𝐱𝑖 − E(𝐱𝑖)
) (

𝐱𝑗 − E(𝐱𝑗 )
)⊤

)

, (2)

where 𝑓 ∶ R𝑑 → R is a kernel function and

𝐹𝑛,𝑓 = 1
𝑛

𝑛
∑

𝑖,𝑗=1
𝑓 2(𝐬𝑖 − 𝐬𝑗 )

s a normalizing function. The kernel functions used in Bachoc et al. (2020) are

all kernel: 𝑓 (ℎ) = 𝐼(ℎ ≤ 𝑟), where 𝑟 ≥ 0.

Ring kernel: 𝑓 (ℎ) = 𝐼(𝑟𝑖𝑛 < ℎ ≤ 𝑟𝑜𝑢𝑡), where 𝑟𝑖𝑛, 𝑟𝑜𝑢𝑡 ≥ 0 and 𝑟𝑖𝑛 < 𝑟𝑜𝑢𝑡.

Gauss kernel: 𝑓 (ℎ) = exp(−0.5(𝛷−1(0.95)ℎ∕𝑟)2), where 𝛷−1(0.95) is the 95% quantile of a standard normal distribution and 𝑟 > 0.

Above 𝐼(⋅) denotes the indicator function. The use of a ball kernel implies that only those locations that are separated by a maximum
distance of 𝑟 receive a positive weight. The ring kernel assigns positive weights only to those locations that are separated by a
minimum of 𝑟𝑖𝑛 and a maximum of 𝑟𝑜𝑢𝑡. The Gauss kernel can be considered as a smooth version of the ball kernel. In our simulation
studies presented in Section 3 we use only ball and ring kernels. Notice that a special case of LCOV(𝑓 ) is obtained using the ball
kernel with 𝑟 = 0. We denote such kernel as 𝑓0. As 𝐹𝑛,𝑓0 = 1, we have

LCOV(𝑓0) =
1
𝑛

𝑛
∑

𝑖=1
E
(

(

𝐱𝑖 − E(𝐱𝑖)
) (

𝐱𝑖 − E(𝐱𝑖)
)⊤

)

,

and thus, LCOV(𝑓0) corresponds to a regular covariance matrix.

2.3. Location vector and covariance matrix functionals based on signs

In Nordhausen et al. (2015), an unmixing matrix functional 𝐖 is found by simultaneously diagonalizing LCOV(𝑓0) and LCOV(𝑓 ).
Naturally, the separation performance depends heavily on the choice of 𝑓 and, as is well known from the time series context, the use
f several covariance matrices in the estimation of the unmixing matrix improves the performance of a BSS method (Miettinen et al.,
016). Bachoc et al. (2020) extended the approach based on two local covariance matrices so that 𝐖 is found by jointly diagonalizing
COV(𝑓0) and LCOV(𝑓1),… ,LCOV(𝑓𝐾 ), where 𝑓1,… , 𝑓𝐾 are 𝐾 different kernels. It is also argued that the most natural choice for
ernels would be to choose 𝐾 non-overlapping ring kernels. We return to simultaneous and joint diagonalization later in this section.
s neither the mean vector used for centering nor the LCOV(𝑓 ) are robust, the methods based on these quantities are highly sensitive

o outliers and inefficient when random fields originate from heavy-tailed distributions. Therefore, we propose robust counterparts
or the methods presented in Nordhausen et al. (2015), Bachoc et al. (2020), Muehlmann et al. (2024) in the following.

When selecting robust location vectors and covariance matrix functionals that will be used to define robust unmixing matrices
, we reference the time series context by Ilmonen et al. (2015). First, we replace LCOV(𝑓0) and the mean vector that is used for

entering with the Hettmansperger-Randles (HR) shape matrix and location vector (Hettmansperger and Randles, 2002), which are
nown to be affine equivariant. Recall that for the 𝑝-variate random fields 𝐱𝑖 = 𝐱(𝐬𝑖), 𝑖 = 1,… , 𝑛, the HR functionals for the location
ector and shape matrix, denoted by 𝐓 and 𝐕, solve

1
𝑛

𝑛
∑

𝑖=1
E
(

𝐔(𝐲𝑖)
)

= 𝟎 and 𝑝
𝑛

𝑛
∑

𝑖=1
E
(

𝐔(𝐲𝑖)𝐔(𝐲𝑖)⊤
)

= 𝐈𝑝, (3)

where 𝐔(⋅) is a spatial sign score defined as 𝐔(𝐲) = 𝐲∕‖𝐲‖, for 𝐲 ≠ 𝟎, and 𝐔(𝟎) = 𝟎 (Möttönen and Oja, 1995), 𝐲𝑖 = 𝐕− 1
2 (𝐱𝑖 − 𝐓),

= 1,… , 𝑛, and 𝐕 is standardized so that tr(𝐕) = 𝑝 (for example). The resulting location vector 𝐓 is known as the transformation–
etransformation (TR) spatial median (Chakraborty et al., 1998), and matrix 𝐕 is Tyler’s shape matrix (Tyler, 1987) with respect to
he TR spatial median. For the robustness and efficiency properties of HR estimates under the elliptical model, see Hettmansperger
nd Randles (2002).

LCOVs based on a kernel 𝑓 are replaced by the generalized local spatial sign covariance matrices (gLSSCMs) which build upon
3

he generalized spatial sign covariance matrix (gSSCM) proposed by Raymaekers and Rousseeuw (2019) and are defined as follows.
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Definition 3. Assume 𝑛 locations 𝐬1,… , 𝐬𝑛 in  and write 𝐱𝑖 = 𝐱(𝐬𝑖), 𝑖 = 1,… , 𝑛, for a 𝑝-dimensional multivariate random field. The
gLSSCM is then defined as

gLSSCM(𝑓,𝑤)

= 1
𝑛
√

𝐹𝑛,𝑓

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑓 (𝐬𝑖 − 𝐬𝑗 )E

(

𝑤(𝑟𝑖)𝑤(𝑟𝑗 )
(

𝐱𝑖 − 𝐓
) (

𝐱𝑗 − 𝐓
)⊤

)

,
(4)

where 𝐓 is a location vector functional, 𝑟𝑖 = ‖𝐱𝑖 − 𝐓‖ and 𝑤 ∶ R → R is a radial function.

When 𝑓 is chosen as the ball kernel with 𝑟 = 0, gLSSCM reduces to gSSCM as defined in Raymaekers and Rousseeuw (2019).
Notice that their choice for a location vector functional 𝐓 is a 𝑘-step least trimmed squares (LTS) estimator, however, we prefer
to use the HR location vector. Raymaekers and Rousseeuw (2019) studied the robustness properties of gSSCM under elliptical
distributions using influence functions and asymptotic breakdown points. Several suggestions for radial functions (𝑤) are also listed.
In our simulation studies presented in Section 3 we use the following functions:

Spatial sign:

𝑤(𝑟) = 1∕𝑟.

Winsor:

𝑤(𝑟) =

{

1 if 𝑟 ≤ 𝑄,
𝑄∕𝑟 if 𝑄 ≤ 𝑟.

Quadratic Winsor:

𝑤(𝑟) =

{

1 if 𝑟 ≤ 𝑄,
𝑄2∕𝑟2 if 𝑄 ≤ 𝑟.

The cutoff 𝑄 is defined as 𝑄 = 𝑟(ℎ), where 𝑟(ℎ) is the ℎth-order statistic of {𝑟1,… , 𝑟𝑛} and ℎ = (𝑛 + 𝑝 + 1)∕2.
Before introducing robust unmixing matrix functionals, we state in the following proposition that gLSSCM(𝑓,𝑤) is an orthogonal

equivariant functional. This property is required to obtain a genuine unmixing matrix functional (Oja et al., 2006).

Proposition 1. Let 𝐓 be any affine (or orthogonal) equivariant location vector functional. Thus, gLSSCM(𝑓,𝑤) is an orthogonal equivariant
functional such that if 𝐱⋆ = 𝐔𝐱 + 𝐛, where 𝐱 is a 𝑝-variate random field, 𝐔 is an orthogonal 𝑝 × 𝑝 matrix and 𝐛 is a 𝑝-vector, then for
gLSSCM⋆(𝑓,𝑤) and gLSSCM(𝑓,𝑤) based on 𝐱⋆ and 𝐱, respectively, it holds that gLSSCM⋆(𝑓,𝑤) = 𝐔gLSSCM(𝑓,𝑤)𝐔⊤.

The proof is straightforward as kernel and radial functions are invariant with respect to the orthogonal transformation.

2.4. Robust unmixing matrices

In Tong et al. (1990) and Belouchrani et al. (1997), BSS problems are solved in the time series context using the simultaneous
and joint diagonalizations of two or more covariance matrices, respectively. Later, similar concepts have been applied in various
BSS settings. For recent reviews, see for example Pan et al. (2022), Nordhausen and Ruiz-Gazen (2022). Next, we propose robust
unmixing matrix functionals based on the location vector and covariance matrix functionals introduced in the previous section. For
convenience, hereinafter, we denote 𝐕0 as the HR shape matrix and 𝐕𝑘 as the gLSSCM(𝑓𝑘, 𝑤), 𝑘 = 1,… , 𝐾. As before, 𝐓 is the HR
location vector functional.

We start by defining a robust unmixing matrix functional that uses the simultaneous diagonalization of two matrices. For that
we require an additional assumption to ensure that the resulting unmixing matrix is identifiable.

SBSS3: 𝑧1(𝐬),… , 𝑧𝑝(𝐬) follow symmetric probability distributions.

Notice that under the SBSS model (1) with assumptions SBSS1-SBSS3, 𝐓 = 𝝁, 𝐕0 = 𝜴𝜦0𝜴⊤ and 𝐕𝑘 = 𝜴𝜦𝑘𝜴⊤, where 𝜦0 and
𝜦𝑘 are diagonal matrices. Thus, all matrices involved possess the so-called independence property (Nordhausen and Tyler, 2015),
i.e. they are diagonal matrices for random fields with symmetrically distributed, independent components. Therefore we suggest
the following new functional.

Definition 4. Consider a random field, 𝐱(𝐬), following the SBSS model (1) and satisfying assumption SBSS3. The 𝑝×𝑝 matrix-variate
functional 𝐖2𝐕 is defined as the matrix which simultaneously diagonalizes 𝐕0 and 𝐕1. Thus, 𝐖2𝐕 solves

𝐖2𝐕𝐕0𝐖⊤
2𝐕 = 𝐈𝑝 and 𝐖2𝐕𝐕1𝐖⊤

2𝐕 = 𝐃,

where 𝐃 is a diagonal matrix with diagonal elements in decreasing order.

The resulting latent fields are standardized with respect to 𝐕0 and uncorrelated with respect to 𝐕1. In practice, 𝐖2𝐕 and 𝐃 can
be found as an eigenvalue-eigenvector solution for 𝐕−1𝐕 .
4
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Proposition 2. The 𝑝 × 𝑝 matrix 𝐖2𝐕 defined in Definition 4 is a genuine unmixing matrix functional in the sense of Definition 2 if and
only if the diagonal elements of 𝜦1 are distinct.

As 𝐕0 is affine equivariant and 𝐕1 is orthogonal equivariant and both functionals possess the independence property, the proof
follows from Theorem 2 in Oja et al. (2006).

Remark 1. We consider the unmixing matrix 𝐖2𝐕 more robust than the original one introduced in Nordhausen et al. (2015) as all
individual parts of 𝐖2𝐕 are of a robust nature. This will be evaluated in more detail in a simulations study later.

As the performance of 𝐖2𝐕 naturally depends on the chosen kernel (𝑓1), it is often better to perform the joint diagonalization
of several local covariance matrices. This is formalized in the following.

Definition 5. Consider a random field, 𝐱(𝐬), following the SBSS model (1) and satisfying assumption SBSS3. The 𝑝×𝑝 matrix variate
functional 𝐖𝐾𝐕 is the 𝑝 × 𝑝 matrix that maximizes

𝐾
∑

𝑘=1
‖diag

(

𝐖𝐾𝐕𝐕𝑘𝐖⊤
𝐾𝐕

)

‖

2
𝐹

under the constraint, 𝐖𝐾𝐕𝐕0𝐖⊤
𝐾𝐕 = 𝐈𝑝. Here ‖ ⋅ ‖𝐹 denotes the Frobenius norm and 𝑑𝑖𝑎𝑔(𝐀) is a diagonal matrix with the diagonal

elements as in 𝐀.

Proposition 3. The 𝑝 × 𝑝 matrix 𝐖𝐾𝐕 defined in Definition 5 is a genuine unmixing matrix functional in the sense of Definition 2 if and
only if for each 𝑖, 𝑗 = 1,… , 𝑝, there exists a 𝑘 ∈ {1,… , 𝐾} such that [𝜦𝑘]𝑖𝑖 ≠ [𝜦𝑘]𝑗𝑗 .

The proof of this proposition follows the same outline given in the time series context in Matilainen et al. (2015) and in the
patial case in Bachoc et al. (2020), together with the additional requirement of symmetry required for the independence property.
o solve the maximization problem given in Definition 5, many algorithms exist, as discussed in Illner et al. (2015). We will use
he algorithm based on Givens rotations, as outlined in Clarkson (1988).

emark 2. We consider the unmixing matrix 𝐖𝐾𝐕 more robust than the ones introduced in Bachoc et al. (2020) as all individual
arts of 𝐖𝐾𝐕 are of a robust nature. This will again be evaluated in more detail in a simulations study later on.

Finally, notice that we denote the unmixing matrix estimate corresponding to 𝐖2𝐕 and 𝐖𝐾𝐕 as 𝐖̂2𝐕 and 𝐖̂𝐾𝐕, respectively.
The estimates are obtained by using the sample counterparts, 𝐓̂ and 𝐕̂0,… , 𝐕̂𝐾 , in the unmixing matrix estimation. In the following
section, we discuss the efficiency and robustness properties of the two new proposals based on simulation studies.

3. Simulation studies

Simulation studies are performed to compare the proposed robust SBSS methods with the non-robust SBSS methods of Nord-
hausen et al. (2015), Bachoc et al. (2020) and to verify the performance of the robust SBSS method in the presence of outliers and
when the latent fields are non-Gaussian. All SBSS methods are implemented in the R package SpatialBSS (Muehlmann et al., 2022c),
and the simulation study can be reproduced using R 4.2.1 (R Core Team, 2022) together with the RandomFields (Schlather et al.,
2022), JADE (Miettinen et al., 2017), sp (Pebesma and Bivand, 2005), rgdal (Bivand et al., 2022) and ggplot2 (Wickham, 2016)
packages. Note that the package RandomFields is no longer in CRAN but can be used in R 4.2.1.

3.1. Generation of the latent random fields

In the simulation studies the sample locations 𝐬1,… , 𝐬𝑛 are uniformly generated points on the map of Finland, which is presented
in Fig. 1 together with the sampled points, where 𝑛 = 1000. The latent random fields are generated using the Matérn correlation
function defined by

𝐾(ℎ; 𝜈, 𝜙) = 1
2𝜈−1𝛤 (𝜈)

(

ℎ
𝜙

)𝜈
𝐾𝜈

(

ℎ
𝜙

)

, (5)

where ℎ = ‖𝐬𝑖 − 𝐬𝑗‖ is the Euclidean distance between two locations 𝐬𝑖 and 𝐬𝑗 , 𝜈 > 0 is a scale parameter, 𝜙 > 0 is a range parameter,
𝛤 is the gamma function, and 𝐾𝜈 is the modified Bessel function of the second kind with shape parameter 𝜈.

To compare the methods in the presence of outliers, the Gaussian random fields are contaminated to have either global or local
outliers. For stationary random fields, global outliers are extreme values in magnitude, whereas local outliers are not extreme in
magnitude but do not follow the local spatial correlation structure. Two types of global outliers are examined, uniformly occurring
outliers and aggregated outliers. The uniform globally contaminated Gaussian random fields 𝐱𝛼𝑙(𝐬𝑖) are generated as

𝐱𝛼𝑙(𝐬𝑖) = (1 − 𝛾𝛼𝑖 )𝐱(𝐬𝑖) + 𝛾𝛼𝑖 (𝐱(𝐬𝑖) + 𝑙𝟏𝑝), (6)

where 𝐱(𝐬𝑖), 𝑖 = 1,… , 𝑛, is a 𝑝-variate Gaussian random field, 𝛾𝛼𝑖 are independently and identically distributed Bernoulli variables
with 𝑃 (𝛾𝛼𝑖 = 1) = 𝛼, 𝑙 ∈ R, and 𝟏𝑝 is a 𝑝-vector of ones. The contamination rate, i.e. 𝛼 ∈ [0, 1∕2), defines the proportion of observations
5

to be contaminated.
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Fig. 1. Map of Finland with 𝑛 = 1000 uniformly sampled points and ring kernels for radii 20, 40, 60 and 80 km.

The global aggregated outliers are generated to 𝑚 clusters using the ideas of Kerry and Oliver (2007). The aggregated outliers
are generated by randomly selecting 𝑚 sample locations as cluster center points. The observations are sorted based on the distance
to any of the center points. The proportion 𝛼 of the observations are selected to be contaminated based on the lowest distance. The
aggregated globally contaminated Gaussian random field 𝐱̃𝛼𝑙 is then generated as

𝐱̃𝛼𝑙(𝐬𝑖) = (1 − 𝛿𝑖)𝐱(𝐬𝑖) + 𝛿𝑖(𝐱(𝐬𝑖) + 𝑙𝟏𝑝), (7)

where 𝛿𝑖 = 1 if the 𝑖th observation is selected to be contaminated, otherwise 𝛿𝑖 = 0.
For generating local outliers, we need to define a neighborhood 𝑖 for each sample location 𝐬𝑖, 𝑖 = 1,… , 𝑛. One approach is

to consider a neighborhood that contains a fixed number of 𝑘 observations. Thus, 𝑖 contains 𝑘 − 1 nearest points 𝐬𝑖. Another
approach is to construct the neighborhood so that it contains all points within a range 𝑟. Thus, 𝑖 contains all points 𝐬𝑗 for which
‖𝐬𝑖 − 𝐬𝑗‖ < 𝑟 (Ernst and Haesbroeck, 2017). In the following simulations the latter approach is used with 𝑟 = 10 km. The outliers are
generated following the procedure of Ernst and Haesbroeck (2017) and reviewed next.

1. Sort the observations 𝐱𝑖 = 𝐱𝑖(𝐬𝑖), 𝑖 = 1,… , 𝑛, from the highest to the lowest by the first principal component score (PC-1)
according to Harris et al. (2014).

2. Set 𝑘 as 𝛼𝑛∕2 rounded to the nearest integer, and select the set of local outlier points 𝑆𝑜𝑢𝑡 by finding 𝑘 observations with the
highest PC-1 values and 𝑘 observations with the lowest PC-1 values on the condition that for all 𝐬𝑖, 𝐬𝑗 ∈ 𝑆𝑜𝑢𝑡 it holds that
𝑖 ≠ 𝑗 .

3. Generate the local outliers by swapping observations 𝐱𝑖 and 𝐱2𝑘+1−𝑖, 𝑖 = 1,… , 𝑘, where the observations 𝐱1,… , 𝐱2𝑘 are sorted
based on their PC-1 values from the smallest to the largest.

Fig. 2 illustrates a three-variate Gaussian field with and without local and global outliers with a contamination rate of 𝛼 = 0.05.
Finally, to compare the performance of the methods when the distribution of the latent fields is heavy-tailed, we generate

Student’s 𝑡𝑣-distributed random fields, where 𝑣 is the degree of freedom. We denote the univariate 𝑡𝑣-distributed random fields
by 𝑥𝑡𝑣 (𝐬𝑖) and compute them as in Muehlmann et al. (2021b) by generating 𝑣 + 1 zero-centered Gaussian random fields 𝑥𝑗 (𝐬𝑖) with
unit variance and applying

𝑥𝑡𝑣 (𝐬𝑖) =
√

𝑣 𝑥1(𝐬𝑖)
√

∑𝑣+1
𝑗=2 𝑥𝑗 (𝐬𝑖)2

,

for 𝑖 = 1,… , 𝑛.

3.2. Finite sample efficiencies

In the simulations, we use 𝑛 = 1000 and 𝑛 = 2000 as the number of locations. For both setups the locations are generated once
nd kept constant throughout the simulations. The 𝑝-variate latent random fields, with dimension 𝑝 = 3, are freshly sampled in each
imulation iteration.
6
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Fig. 2. Three-variate Gaussian field before contamination (first column), after adding 5% of local outliers (second column), after adding 5% of global outliers
(third column) and after adding two clusters of aggregated outliers (fourth column). The local outliers are marked with black borders.

Two different Matérn covariance models are considered. Parameters 𝜈𝑖 and 𝜙𝑖 for latent field 𝑖 defining the Matérn correlation
structure are selected according to Bachoc et al. (2020). The range parameters 𝜙𝑖 are scaled to match the dimensions of the map
of Finland. Therefore, model 1 uses (𝜈1, 𝜙1) = (2, 20), (𝜈2, 𝜙2) = (1, 20) and (𝜈3, 𝜙3) = (0.25, 20), and model 2 uses (𝜈1, 𝜙1) = (6, 24),
(𝜈2, 𝜙2) = (1, 30) and (𝜈3, 𝜙3) = (0.25, 20). The chosen Matérn correlation functions are presented in Fig. 3.

In every simulation setting the latent fields are generated independently 2000 times for each covariance model. The unmixing
matrix estimates 𝐖̂ to be compared are the SBSS estimates based on local covariance matrices (LCOV(𝑓 )), as defined in Nordhausen
et al. (2015), Bachoc et al. (2020), and the robust estimates utilizing spatial sign (RSBSS-S), Winsor (RSBSS-W) and quadratic
Winsor (RSBSS-Q) as the radial functions. For each method, the effect of the number of kernels 𝐾 is examined by comparing the
performances for 𝐾 = 1,… , 4. The parameters of the ring kernels are given in Table 1, where 𝐾 = 1 corresponds to a ball kernel with
radii 𝑟 = 20. The ring radius are presented in Fig. 1, which has the map of Finland, and in Fig. 3, which has the Matérn correlation
functions. As all unmixing matrix estimates are affine equivariant, we choose 𝜴 = 𝐈 as the true mixing matrix.
7
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Table 1
Parameters for the ring kernels with varying number of rings 𝐾 = 1,… , 4.
The parameter vector 𝐫(𝑖) = (𝑟(𝑖)𝑖𝑛 , 𝑟

(𝑖)
𝑜𝑢𝑡) defines the parameters for the 𝑖th

ring.
𝐾 𝐫(1) 𝐫(2) 𝐫(3) 𝐫(4)

1 (0, 20)
2 (0, 20) (20, 40)
3 (0, 20) (20, 40) (40, 60)
4 (0, 20) (20, 40) (40, 60) (60, 80)

Fig. 3. Matérn covariance functions for the first latent field (solid red line), the second latent field (dashed green line) and the third latent field (dotted blue
line) used in the simulation studies. Parameters (𝜈, 𝜙) are (2, 20), (1, 20), (0.25, 20) in model 1 and (6, 24), (1, 30) and (0.25, 20) in model 2. The dotted vertical
lines at distances 20, 40, 60 and 80 km illustrate the boundaries of ring kernels.

There are many performance measures to compare different BSS approaches in simulation studies as for example reviewed
n Nordhausen et al. (2011). Some of them require that all algorithms scale the latent components using the same scale measure
hich is not the case in our comparison. A measure not affected by the scaling is the minimum distance (MD) index (Ilmonen et al.,
010; Lietzen et al., 2020), which is a function of the gain matrix 𝐆̂ = 𝜴𝐖̂.

The MD index is calculated as

MD(𝐆̂) = 1
√

𝑝 − 1
inf
𝐂∈

‖𝐂𝐆̂ − 𝐈𝑝‖, (8)

where  is a set of all the matrices of the form 𝐂 = 𝐏𝐉𝐒, where 𝐏, 𝐉 and 𝐒 are transformation matrices as defined in Section 2. The
MD index takes values in the range of 0 to 1, where 0 corresponds to the optimal value.

To simplify the interpretation of the MD indices in our simulation studies easier, the average MD index of a random guess in
the case of 𝑝 = 3 is calculated. Based on 10000 random matrices generated by filling their elements independently from a standard
normal distribution, an average random MD index of 0.78 is obtained. Therefore, if MD(𝐆̂) > 0.78, the result is no better than a
random guess.

In the first simulation study, the performances of the methods are compared when the latent fields are Gaussian and there are no
outliers present. The results presented in Fig. 4 imply that the robust methods perform very similarly to SBSS. For model 1 and when
𝑛 = 1000, the best performing methods use two rings, whereas when 𝑛 = 2000 the methods that use the ball kernel perform slightly
better than the others. For model 2, the methods that use multiple rings display similar performances. The methods based on two or
three rings deliver the best results. Notice that although the data here are uncontaminated Gaussian, the classical unmixing matrices
do not necessarily perform better than the new proposals. The performance depends on how well the eigenvalues of the local scatter
functionals are separated. This will in general differ here as the matrices considered are not necessarily proportional to each other
in a similar fashion as the traditional scatter matrices are in an iid framework. In fact, the RSBSS-S method slightly outperforms the
classical SBSS method, when the number of kernels is not the optimal one. This implies that even in the uncontaminated case, the
RSBSS-S method is less sensitive to nonoptimal choice of kernels than SBSS. Similar behavior is present for RSBSS-W and RSBSS-Q
methods as well under model 1, when the number of kernels is 4. For other kernel settings and under model 2, the differences
between RSBSS-W and RSBSS-Q are negligible as compared to SBSS.

The second simulation study compares the methods in presence of uniformly generated global outliers. The uniform globally
contaminated Gaussian random fields are generated using the contamination rate of 𝛼 = 0.05. The results presented in Fig. 5 show
that the performance of SBSS in the presence of uniform global outliers is as bad as a random guess. When compared with the
uncontaminated case, the performances of the robust methods drop only marginally when more than one ring kernel is used, but
more noticeably when the ball kernel is used. RSBSS-Q performs slightly better than RSBSS-S and RSBSS-W. The best results are
obtained when at least two rings are used.
8
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Fig. 4. MD indices of 2000 trials for SBSS, RSBSS-S, RSBSS-W and RSBSS-Q for the Gaussian random fields under model 1 (left) and under model 2 (right)
when 𝑛 = 1000 (black borders) and 𝑛 = 2000 (gray borders). The dotted line represents the average MD index of a randomly generated gain matrix.

Fig. 5. MD indices of 2000 trials for SBSS, RSBSS-S, RSBSS-W and RSBSS-Q for Gaussian random fields with 5% uniformly generated global outliers under
model 1 (left) and under model 2 (right) when 𝑛 = 1000 (black borders) and 𝑛 = 2000 (gray borders). The dotted line represents the average MD index of a
randomly generated gain matrix.

In the third simulation study, the methods are compared in the presence of aggregated global outliers. The aggregated globally
contaminated Gaussian random fields are generated using the number of aggregated clusters 𝑚 = 2 and the contamination rate of
𝛼 = 0.05. The results presented in Fig. 6. In the presence of aggregated global outliers, the performance of SBSS is nearly as bad as
in the presence of uniform global outliers. The performances of the robust methods drop only marginally overall as compared to
the uncontaminated setup. For RSBSS-Q, the performance drops slightly more when the ball kernel is used. For RSBSS-Q, the best
results are obtained with two ring kernels under model 1 and with four ring kernels under model 2. The results of RSBSS-S and
RSBSS-W are very similar to the results in uncontaminated case, meaning that the ball kernel is the best option under model 1 when
𝑛 = 1000 and two ring kernels is the best option in other scenarios. For uniform global outliers, the performance drop of the robust
methods is noticeable when the ball kernel is used, whereas for aggregated global outliers, the robust methods are not as sensitive
to the choice of the number of kernels.

In the fourth simulation study, locally contaminated Gaussian fields are generated using the contamination rate of 𝛼 = 0.05.
The results are presented in Fig. 7. When introducing local outliers to Gaussian fields, the differences between performances of
the non-robust and robust methods are not as significant as those in the case with global outliers, although SBSS still performs
worse than the robust methods. In this setup, the RSBSS-S and RSBSS-Q methods using three or four rings perform the best overall,
although the difference is not significant when compared with the performance of RSBSS-W.

In the fifth simulation study, 𝑡3-distributed random fields are generated to compare the performances of the methods when the
atent fields are heavy-tailed. The results in Figs. 8 show that the performance of SBSS decreases, particularly when multiple rings
9
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Fig. 6. MD indices of 2000 trials for SBSS, RSBSS-S, RSBSS-W and RSBSS-Q for Gaussian random fields with 5% aggregated global outliers under model 1 (left)
and under model 2 (right) when 𝑛 = 1000 (black borders) and 𝑛 = 2000 (gray borders). The dotted line represents the average MD index of a randomly generated
gain matrix.

Fig. 7. MD indices of 2000 trials for SBSS, RSBSS-S, RSBSS-W and RSBSS-Q for the Gaussian random fields with 5% local outliers under model 1 (left) and
nder model 2 (right) when 𝑛 = 1000 (black borders) and 𝑛 = 2000 (gray borders). The dotted line represents the average MD index of a randomly generated

gain matrix.

are used, whereas the performances of the robust methods remain stable. For the robust methods, the best performing methods use
the ball kernel for model 1 and two rings for model 2. RSBSS-S and RSBSS-W slightly outperform RSBSS-Q in this setup.

In general, all robust SBSS methods display similar performances. They perform as well as SBSS when the random fields are
Gaussian and outperform SBSS in other simulation setups, particularly in presence of uniform or aggregated global outliers. The
robust methods become less sensitive to uniform global outliers and local outliers when multiple rings are used instead of the ball
kernel. This is because to perform well, the eigenvalues of 𝐕̂−1

0 𝐕̂1, where 𝐕̂0 and 𝐕̂1 are sample counterparts of matrices given
n Definition 4, have to be distinct. With finite samples, this may not be true, thus the use of several matrices 𝐕̂1,… , 𝐕̂𝑘 (that is,
everal ring kernels) often gives better performance. In presence of aggregated global outliers, the results are more similar to the
ncontaminated setup for all number of kernels. The simulations were repeated by sampling the locations independently in each
rial, and the results remained the same. In conclusion, robust methods are generally safer options than SBSS; in addition to their
erformance being similar to that of SBSS in the Gaussian setting, they still perform consistently better in presence of outliers or
on-Gaussian data. To guarantee high efficiency under contaminated data, robust methods should be used with multiple ring kernels
ather than with the ball kernel to avoid a decrease in performance. The RSBSS-S and RSBSS-Q methods appear to tolerate uniform
lobal outliers and local outliers slightly better than RSBSS-W, which might be because of the fact that the spatial sign and the
10

uadratic Winsor radial functions downweight the outliers more heavily than the Winsor radial function. However, for aggregated
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Fig. 8. MD indices of 2000 trials for SBSS, RSBSS-S, RSBSS-W and RSBSS-Q for 𝑡3-distributed random fields under model 1 (left) and under model 2 (right)
when 𝑛 = 1000 (black borders) and 𝑛 = 2000 (gray borders). The dotted line represents the average MD index of a randomly generated gain matrix.

global outliers and 𝑡3-distributed data, a heavy downweighting might not be beneficial as RSBSS-Q is slightly outperformed by
RSBSS-S and RSBSS-W, although the differences are small.

3.3. Bias and maximum bias curves

In an iid setting, the robustness properties are often evaluated using influence functions and bias curves, however, such concepts
are difficult to extend even to a time series framework as pointed out for example by Maronna et al. (2019, Chapter 8.11). This is
then even more difficult in a spatial data framework where there is no natural order in the observations and where there are two
competing asymptotic frameworks (in-fill and increasing domain asymptotics) available.

To study the robustness properties of the different methods discussed in this paper, we use ideas of Rousseeuw (2006), Muler
et al. (2009) to get a notion of bias and maximum bias curves of the estimated unmixing matrices in the case of contaminated
random fields. We use as the bias of an unmixing matrix estimate 𝐖̂ in case of contaminated Gaussian random fields 𝐱𝛼𝑙(𝐬𝑖), as
defined in (6) measured at a specific set of 𝑛 locations 𝐒, the MD index as follows

Bias(𝐖̂,𝜴, 𝛼,𝐒) = MD(𝐆̂), (9)

and the maximum bias is measured by

MB(𝐖̂,𝜴, 𝛼,𝐒) = sup
𝑙∈𝐿

MD(𝐆̂). (10)

Thus, bias and maximum bias are conditional on a specific map with a specific sample size and maximum bias might change for
different configurations of the map or sample sizes. Due to finite sample, the bias is not zero even in the uncontaminated case.
Nevertheless, we think this approach gives a meaningful comparison and ordering of the SBSS methods under consideration in the
presence of uniform global outliers.

In our concrete case we sampled 𝑛 = 1000 locations and then repeatedly generated a three-variate uniform globally contaminated
Gaussian random field under model 1 using a contamination rate of 𝛼 = 0.05. Based on our empirical investigations, the bias curves
reach their maximum either when 𝑙 ∈ (0, 100], or when 𝑙 → ∞. Therefore, the maximum bias for varying 𝛼 is in practice approximated
using 𝑙 = {1, 2,… , 100, 1000, 2000}. The bias curves presented in Fig. 9 show that the bias of SBSS increases significantly, when 𝑙 > 1.
The bias increase is fastest for the ball kernel, but decelerates when more kernels are used. The bias of the robust methods varies
before 𝑙 = 3, and remains stable when 𝑙 > 3. For all robust methods, the biases are higher when the ball kernel is used compared
with the biases obtained when multiple ring kernels are used. RSBSS-S and RSBSS-W have very similar biases, and the lowest bias
is obtained when RSBSS-Q is used with multiple ring kernels.

The maximum bias curves presented in Fig. 10 show that SBSS breaks down instantly when at least one large outlier is present
in the data. For the robust methods, the maximum bias increases almost linearly when the fraction of outliers increases from 5% to
25%. When the fraction of outliers is more than 22%, all maximum bias curves stay above the limit of a random guess. When the
contamination rate 𝛼 < 0.17, RSBSS-Q has the lowest maximum bias, whereas RSBSS-W has the highest one. The maximum bias of
RSBSS-S is in between these two. When 𝛼 > 0.17, all of the robust methods exhibit similar performances. For all the robust methods,
the maximum bias is larger when the ball kernel is used, and the results are very similar when multiple ring kernels are exploited.

Based on the results above we consider RSBSS-Q with several kernels to be the best performing method. The use of several
11
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Fig. 9. Bias curves of SBSS, RSBSS-S, RSBSS-W and RSBSS-Q for the globally contaminated Gaussian field 𝐱𝛼𝑙(𝐬𝑖) = (1 − 𝛾𝛼𝑖 )𝐱(𝐬𝑖) + 𝛾𝛼𝑖 (𝐱(𝑠𝑖) + 𝑙𝟏𝑝), where the
ontamination rate is 𝛼 = 0.05 and 𝑙 varies in the 𝑥-axis. The dotted black line represents the average MD index of the randomly generated mixing matrix.

Fig. 10. Maximum bias curves of RSBSS-S, RSBSS-W and RSBSS-Q for the globally contaminated Gaussian field 𝐱𝛼𝑙(𝐬𝑖) = (1 − 𝛾𝛼𝑖 )𝐱(𝐬𝑖) + 𝛾𝛼𝑖 (𝐱(𝑠𝑖) + 𝑙𝟏𝑝), where 𝛼
aries in the 𝑥-axis. The dotted black line represents the average MD index of the randomly generated mixing matrix.

imilar in terms of performance. They do not lose much in performance in the Gaussian framework, however, they are clearly better
n the other settings considered. Out of the robust methods, we prefer RSBSS-Q as it appears, performance-wise, to be in between
SBSS-S and RSBSS-W. However, compared with RSBSS-S, it has the advantage of producing weights for observations, which can
e exploited for (global) outlier identification. Based on the simulations and the bias curves, RSBSS-Q also appears to have the best
olerance against the global outliers. In the presence of local outliers the robust methods perform only slightly better than their
on-robust counterparts, which should be investigated in future research.

. A real data example

To illustrate the introduced methods we consider a geochemical dataset that has already been considered in the context of outlier
etection by Filzmoser et al. (2005). Specifically, we use a dataset derived from the Kola geochemical mapping project (Reimann
t al., 2008) that comprises 617 soil samples from the organic layer (O-horizon) taken at different locations alongside the Kola
eninsula covering Norway, Finland and Russia. This dataset is available in the R package StatDA (Filzmoser, 2020). The left panel
f Fig. 11 shows all considered sample locations. For each sample, the concentrations of the chemical elements As, Cd, Co, Cu, Mg,
b and Zn are measured. Co, Cu, As, Cd and Pb can be considered as contaminants originating from smelters whereas Mg and Zn are
ot emitted by smelters; rather, Mg is influenced by marine aerosols from the Arctic coast (Reimann et al., 2000; Filzmoser et al.,
005). Thus, these effects might lead to unusual observations that can be treated appropriately by the introduced robust methods.
12
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Fig. 11. Map of sample locations and rings with radii of 25, 50, 75 and 100 km (in UTM zone 35) depicting the kernel choices (left panel). Boxplots of
neighboring sample locations captured by the kernels for each sample location (right panel).

Table 2
Pseudoeigenvalues of the (robust) local covariance matrices (normalized to unit sum) for the four used spatial

BSS methods and all six latent components.
IC1 IC2 IC3 IC4 IC5 IC6

SBSS 0.5499 0.4004 0.0388 0.0078 0.0030 0.0001
RSBSS-S 0.6530 0.3017 0.0350 0.0078 0.0019 0.0007
RSBSS-W 0.6144 0.3385 0.0356 0.0089 0.0020 0.0005
RSBSS-Q 0.6478 0.3108 0.0296 0.0090 0.0015 0.0014

As the dataset consists of relative concentration measurements we treat it as compositional data and use the log-ratio
methodology to account for the relativeness. Specifically, we transform the data into centered log-ratio coordinates (clr). With clr
coordinates, the interpretations of the loadings are straightforward; however, they are collinear, which prevents the application of
BSS methods. To solve this issue, one conventionally transforms the data further into isometric log-ratio coordinates (ilr). Interpreting
ilr coordinates is more involved but they are of full rank. The transformation from clr into ilr coordinates is achieved by an orthogonal
transformation 𝐔 (denoted as the contrast matrix), which reduces the dimension of the clr coordinates by one. With ilr coordinates,
BSS methods can be applied unhindered to estimate an unmixing matrix 𝐖̂; moreover, due to the affine equivariance property
of the introduced methods, this orthogonal transformation does not change the estimated latent components. To use the simple
interpretation in terms of clr coordinates, we combine the contrast and estimated unmixing matrix with the loadings matrix by
𝐔𝐖̂. For the present dataset, the dimension in ilr coordinates equals 𝑝 = 6 and the contrast matrix is formed by using pivot ilr
coordinates. Details on the employed coordinate systems and the use of the log-ratio methodology in geochemistry can be found
in Filzmoser et al. (2018), the use of the log-ratio methodology in the context of (S)BSS is discussed in Muehlmann et al. (2021a),
Nordhausen et al. (2021, 2015) in detail.

To apply the introduced SBSS methods, suitable kernel functions need to be selected. Thus far, no concrete theoretical guidelines
have been reported; hence, the kernel functions are best chosen by domain experts. However, the unavailability of domain knowledge
can result in vague practical guidelines. From a theoretical viewpoint, every kernel choice should deliver the same latent components
if the underlying statistical model holds and the spatial covariance functions are different for the chosen kernels as illustrated in
Fig. 3 with different boundaries for the ring kernel functions. Based on these two considerations, a meaningful kernel setting might
be found by applying the methods with many different kernel settings and choosing the ones with consistently stable results. For
the present dataset, a characteristic spatial variation length of 50 km may be employed as this was found to be a suitable in the
context of SBSS on a similar dataset derived from the Kola project by Nordhausen et al. (2015). Moreover, the simulations above
and the outline in Bachoc et al. (2020) hint that using more kernels is a safe choice. Thus, next we compare the results of SBSS with
those of the three introduced RSBSS methods, all with four ring kernels using radii of 25, 50, 75 and 100 km (in UTM zone 35).
The circles in the left panel of Fig. 11 depict these choices, and the boxplots on the right panel show the number of neighboring
sample locations captured by the kernel choices for each sample location.

For the RSBSS-W and the RSBSS-Q methods the radial function values can be depicted on a map (Fig. 12 upper panels). In both
maps two clusters of low values in the heavy-metal-industry regions can be observed and low radial function values are assigned
to the Norway coast region. These low values might originate from the contamination from the smelters and the marine effect. The
boxplot (Fig. 12 lower panel) reflects the nature of the radial functions: higher values are observed in the RSBSS-Q method due
to the square and for both methods roughly half of the observations are downweighted. The most downweighted observations are
mainly the observations with high occurrences of As, Cu and Co, or the observations with a high occurrence of Pb. The observations
with high As, Cu and Co are present in clusters in the heavy metal industry regions as aggregated outliers, and are not outliers
13
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Fig. 12. Maps of the radial function values for the Winsor function (RSBSS-W) (upper left) and the quadratic Winsor function (RSBSS-Q) (upper right). Boxplots
of the values depicted on the maps (bottom).

Table 3
Loadings matrices from clr to ICs for SBSS, RSBSS-S, RSBSS-W and RSBSS-Q (in order from top to bottom).

clr(As) clr(Cd) clr(Co) clr(Cu) clr(Mg) clr(Pb) clr(Zn)

IC1 1.02 −0.11 0.01 −1.32 0.28 0.16 −0.04
IC2 −0.18 0.29 0.52 −0.26 −1.58 0.86 0.35
IC3 2.75 −0.86 −0.48 −0.17 −0.08 −0.91 −0.25
IC4 −0.24 0.60 −1.53 1.15 0.36 1.09 −1.43
IC5 0.04 −1.65 −0.50 0.38 −0.42 0.19 1.94
IC6 0.08 −2.58 1.10 −0.44 0.50 1.78 −0.44

IC1 0.02 −0.10 0.11 −0.51 0.04 0.39 0.05
IC2 0.34 −0.13 −0.18 −0.13 0.61 −0.49 −0.01
IC3 1.29 −0.27 −0.13 −0.15 −0.23 −0.61 0.10
IC4 −0.03 0.03 −0.66 0.49 0.28 0.55 −0.67
IC5 0.06 0.80 0.05 −0.07 0.15 −0.13 −0.85
IC6 0.16 −1.11 0.45 −0.18 0.27 0.75 −0.34

IC1 −0.04 0.10 −0.05 0.51 −0.18 −0.30 −0.04
IC2 0.26 −0.06 −0.21 −0.00 0.60 −0.54 −0.04
IC3 1.31 −0.27 −0.12 −0.19 −0.19 −0.64 0.10
IC4 0.00 0.07 −0.67 0.50 0.27 0.52 −0.69
IC5 0.03 0.77 0.08 −0.09 0.15 −0.11 −0.84
IC6 0.16 −1.13 0.43 −0.17 0.28 0.76 −0.33

IC1 0.05 −0.14 0.12 −0.50 −0.01 0.44 0.04
IC2 0.39 −0.12 −0.15 −0.21 0.59 −0.52 0.01
IC3 1.26 −0.21 −0.17 −0.10 −0.25 −0.63 0.10
IC4 −0.05 0.03 −0.67 0.50 0.32 0.54 −0.67
IC5 −0.03 1.14 −0.10 −0.01 0.04 −0.35 −0.69
IC6 0.23 −0.78 0.42 −0.18 0.30 0.62 −0.61

when they are compared with adjacent observations. In contrast, the observations with high Pb appear to occur more randomly
and are clear outliers when they are compared with adjacent observations. The three most extreme Pb values are 1110.0, 388.0
and 284.0 in the original scale, when 97.5% of the data are in the range of [4.07, 47.4]. For these observations, the assigned the
weights are 0.239, 0.175, 0.124 by RSBSS-W and 0.015, 0.031 and 0.057 by RSBSS-Q, from the highest observation to the lowest
14
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Fig. 13. Maps for the first latent field for the SBSS (upper left), RSBSS-S (upper right), RSBSS-W (lower left) and RSBSS-Q (lower right) methods. The fields
are scaled to have zero median and mean absolute deviation equal to one. The outliers with unusually high occurrence in Pb are marked by triangles.

one. For both methods, these weights are within five smallest weights. These observations are marked as triangles in Figs. 13 and 14,
where the northernmost triangle shows the extreme Pb value. The weights provided by RSBSS-W and RSBSS-Q appear to be useful
in outlier detection, as the most downweighted 10% of the observations match well with the outlier detection results of Filzmoser
et al. (2005).

After applying all four methods, several values/tools can be used to elaborate on the results. In the first step, the pseudoeigenval-
ues of the (robust) local covariance matrices highlight the importance of the separated latent random fields. According to Table 2,
all four methods emphasize the first two latent fields. The robust methods emphasize the first latent field more than SBSS, whereas
SBSS has a stronger weight in the second latent field.

On inspecting the loading matrices (from clr to ICs) for all four methods in Table 3, it becomes evident that the first component
is formed with high loadings for Cu and As for the classical SBSS. In contrast, by downweighting the outlying observations, robust
SBSS methods emphasize Cu and Pb. In addition, the RSBSS-W method has a small loading of Mg, which is not present in the other
two robust methods. The maps of the first latent component illustrated by Fig. 13, all show clear clusters around the heavy metal
industry regions. The fields resulting from the robust methods have considerably high values in the locations with the three largest
Pb values, which are marked as triangles. For the second latent component, the classical SBSS considers Mg and Pb and, to a lesser
extent, Co and Zn to be important. The robust methods favor the Mg, Pb and As, but assign a very low loading value to Zn (in
contrast to the classical SBSS). Moreover, Cu is set to zero in the RSBSS-W method but not in the other two robust ones. The maps
for the second latent field (Fig. 14) show a clear separation between the coastal region and the inland. The most noticeable difference
between the results of SBSS and the robust methods is in loading of the Pb in the first latent field. A plausible explanation is that
to capture behaviors similar to that obtained using the robust methods, the classical SBSS method has to ignore the entire element
with such large outliers. Overall, the first latent field might separate the industrial contamination effect from the background and
15
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Fig. 14. Maps for the second latent field for the SBSS (upper left), RSBSS-S (upper right), RSBSS-W (lower left) and RSBSS-Q (lower right) methods. The fields
are scaled to have zero median and mean absolute deviation equal to one. The outliers with unusually high occurrence in Pb are marked by triangles.

Table 4
Pairwise MD indices between different loadings matrices (from ilr to ICs).

SBSS RSBSS-S RSBSS-W RSBSS-Q

SBSS 0.00 0.31 0.25 0.45
RSBSS-S 0.00 0.00 0.15 0.23
RSBSS-W 0.00 0.00 0.00 0.32
RSBSS-Q 0.00 0.00 0.00 0.00

the second one the marine effect from the background. A more in-depth interpretation of the different results can be provided by
domain experts.

Lastly, the differences in the loading matrices for the four different spatial BSS methods can be quantified by calculating the
MD index amongst all pairwise combinations, as shown in Table 4. As already hinted by the interpretation of the loadings matrices,
the results of SBSS, when compared with those of its robust counterparts, differ considerably. The most significant differences were
observed when SBSS was compared with RSBSS-Q. RSBSS-S and RSBSS-W delivered similar results, whereas RSBSS-Q, having heavier
downweighting for the outlying observations, displayed slightly different results also when compared with RSBSS-S and RSBSS-W.

5. Discussion and conclusion

We suggested a novel robust BSS method for stationary spatial data which, based on our simulation studies, is more efficient
than the classical method for heavy-tailed fields and robust against global and local outliers. Notably, the robustness of our method
against local outliers is only minimally better than that of the classical method. Overall, we noticed that the effect of local outliers
16
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on the estimates appeared less severe than that of global outliers. All the methods discussed herein require a data analyst to decide
which kernels and how many of them to use for the local covariance matrices. Piccolotto et al. (2022) suggested a visual analytic
approach to guide the choice for classical methods, and we believe that their approach is also applicable to the framework suggested
herein.

The robust methods proposed in this paper utilize (generalized) spatial signs. In future works, we will explore other approaches
or increasing the robustness of the SBSS method, particularly considering local outliers. SBSS was recently extended to non-
tationary spatial data (Muehlmann et al., 2022a), and another objective of ours is to develop robust methods for this setting.
urthermore, we intend to develop the large sample properties of the suggested methods in the future studies. The challenge here
s that for spatial methods there are two asymptotic frameworks available, infill asymptotics and increasing domain asymptotics.
hese will be explored in a separate study. As shown using the example in Section 4, several components appear to have very small
seudoeigenvalues, indicating that these components may be white noise. Muehlmann et al. (2024) provided a test for the number of
hite noise components in the classical SBSS context and we believe that a similar test can also be provided for the robust methods.
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