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ABSTRACT 

Xu, Huashuai 
Harmonization of multi-site MRI data  
Jyväskylä: University of Jyväskylä, 2023, 73 p. + original articles 
(JYU Dissertations 
ISSN 2489-9003; 736) 
ISBN 978-951-39-9884-4 (PDF) 

Combining magnetic resonance imaging (MRI) data from different sites is now 
common to improve research with larger, more varied groups, which makes 
studies more powerful and representative. However, this approach faces 
challenges due to differences in MRI scanners that can distort results. Two 
methods, independent component analysis (ICA) and general linear model 
(GLM), are used to correct these site effects, but they struggle to fully remove 
them without affecting the data's real signals, especially when these signals are 
related to the very scanner differences they aim to correct. 

In this thesis, we introduced an effective noise-reduction method utilizing 
the dual-projection (DP) concept grounded on independent component analysis 
(ICA) to mitigate site-specific influences in combined data. This method can 
separate the signal effects from the identified site-related components and then 
remove site effects without losing signals of interest. To validate the method's 
effectiveness, we simulated two scenarios, one where the site and signal variables 
are correlated and another where they are not. 

Structural and functional MRI data from the Autism Brain Imaging Data 
Exchange II and a traveling subject dataset from the Strategic Research Program 
for Brain Sciences were employed to test the ICA-DP methods for removing site 
effects and preserving signal effects.  

We also proposed an innovative multimodal denoising approach that 
employs a dual projection (DP) methodology grounded on linked independent 
component analysis (LICA) to remove the site effects. Compared with unimodal 
studies, using LICA on multimodal MRI data offers a more precise estimation of 
site effects. Structural and functional MRI data from Autism Brain Imaging Data 
Exchange II validated the LICA-DP methods. 

In conclusion, our approaches using ICA-DP and LICA-DP have 
demonstrated their efficacy in mitigating site-related influences while 
maintaining biological variation. Such a strategy can greatly boost the validity of 
neuroimaging studies, and we are confident it will be an indispensable resource 
for forthcoming research. 

Keywords: multi-site, magnetic resonance imaging, site effects, biological 
variability, multimodal, dual-projection, independent component analysis 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Xu, Huashuai 
Monen sivuston MRI-tietojen harmonisointi 
Jyväskylä: Jyväskylän yliopisto, 2023, 73 s. + alkuperäiset artikkelit 
(JYU Dissertations 
ISSN 2489-9003; 736) 
ISBN 978-951-39-9884-4 (PDF) 

Magneettikuvauksen (MRI) tietojen yhdistäminen eri paikoista on nykyisin 
yleistä, jotta tutkittavaksi saadaan suurempia ja monimuotoisempia ryhmiä, 
mikä tekee tutkimuksista tehokkaampia ja edustavampia. Kuitenkin tämä 
lähestymistapa kohtaa haasteita johtuen MRI-laitteiden eroista, jotka voivat 
vääristää tuloksia. Näiden paikkakohtaisten vaikutusten korjaamiseen käytetään 
kahta menetelmää, riippumattomien komponenttien analyysia (ICA) ja yleistä 
lineaarista mallia (GLM), mutta niillä on vaikeuksia poistaa ne täysin 
vaikuttamatta datan todellisiin signaaleihin, erityisesti kun nämä signaalit 
liittyvät juuri niihin skannerieroavaisuuksiin, joita ne pyrkivät korjaamaan. 

Tässä väitöskirjassa ehdotetaan tehokasta kohinanpoistomenetelmää, joka 
soveltaa kaksiprojektion (DP) teoriaa riippumattoman komponenttianalyysin 
(ICA) pohjalta poistaakseen paikkakohtaiset vaikutukset yhdistetystä datasta. 
Tämä menetelmä voi erottaa signaalivaikutukset tunnistetuista 
paikkakohtaisista komponenteista ja poistaa sitten paikkavaikutukset 
menettämättä kiinnostuksen kohteena olevia signaaleja. Validoidaksemme 
menetelmän tehokkuuden simuloimme kaksi eri skenaariota, joissa toisessa 
paikka- ja signaalimuuttuja korreloivat ja toisessa eivät. 

ICA-DP-menetelmiä paikkavaikutusten poistamiseksi ja 
signaalivaikutusten säilyttämiseksi on testattu käyttäen useita erilaisia 
rakenteellisia ja toiminnallisia magneettikuvausaineistoja. Väitöskirjassa 
esitetään myös uudenlainen monimuotoinen kohinanpoistomenetelmä 
paikkavaikutusten poistamiseksi, jossa kaksiprojektiomenetelmä (DP) 
yhdistetään linkitetyn riippumattomien komponenttien analyysin (LICA) kanssa. 
Yksimuotoisiin tutkimuksiin verrattuna LICA:n käyttö monimuotoisissa MRI-
tiedoissa tarjoaa tarkemman arvion paikkavaikutuksista. LICA-DP-menetelmän 
toimivuus todennettiin olemassa olevien rakenteellisten ja toiminnallisten MRI-
aineistojen avulla. ICA-DP- ja LICA-DP-menetelmät osoittautuvat tehokkaiksi 
tavoiksi paikkavaikutusten poistamiseksi ja biologisen vaihtelun säilyttämiseksi. 
Tämä lähestymistapa voi merkittävästi parantaa neurokuvantamistutkimusten 
validiteettia, luoden arvokkaan työkalun myös tuleville tutkimuksille. 

Avainsanat: monipaikkainen, magneettikuvaus, paikkavaikutukset, biologinen 
vaihtelu, multimodaalinen, kaksoisprojektio, riippumattomien komponenttien 
analyysi 
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1 INTRODUCTION 

Since its beginning in the early 1990s, magnetic resonance imaging (MRI) has 
become a popular tool for understanding the structure and function of the human 
brain and detecting brain diseases (Eklund et al., 2016). MRI encompasses 
various modalities, each with its unique capabilities. For example, functional 
magnetic resonance imaging (fMRI) measures brain activity by detecting changes 
in blood flow and oxygenation levels; structural MRI provides high-resolution 
images of the brain's structure and captures the differences in tissue properties, 
such as gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), to create 
detailed, three-dimensional images of the brain's anatomy. With its non-invasive 
nature, MRI has revolutionized our understanding of the brain and continues 
advancing our cognitive science knowledge. 

Most neuroimaging studies typically take place within a single research site, 
which often limits the ability to gather large datasets with ample sample sizes. 
This limitation, resulting from small sample sizes, may impede the detection of 
true differences (type II errors) and even increase the likelihood of detecting false 
differences (type I errors) due to lenient thresholds (Radua et al., 2020). The use 
of small sample sizes and the lack of harmonization across independent studies 
pose challenges in achieving satisfactory reliability and reproducibility in 
neuroimaging research (Nichols et al., 2017). Given this, multi-site studies have 
gained acceptance to overcome these limitations by providing increased 
statistical power to detect group differences and longitudinal changes, ultimately 
enhancing reliability and reproducibility. 

In this chapter, we will first briefly introduce MRI data. Then, we will 
introduce multi-site data pooling, including its advantages and challenges. 
Finally, we will illustrate the motivation of the conducted research. 
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1.1 Magnetic resonance imaging  

As a non-invasive imaging technique in recent years, MRI has played an 
increasingly important role in investigating brain structure, function, 
development, and pathologies, with the increasing flexibility and power to 
answer scientifically interesting and clinically relevant questions (Smith et al., 
2004). 

In the context of neuroimaging research, MRI has become an indispensable 
tool for studying the human brain and its complex mechanisms. It enables 
researchers to investigate various aspects of brain function, such as neural 
activity, brain connectivity, and anatomical abnormalities. By providing detailed 
images with exceptional spatial resolution, MRI allows for identifying and 
characterizing brain regions and their involvement in various cognitive processes 
and neurological disorders. 

One of the critical advantages of MRI is its versatility. It offers multiple 
imaging modalities that can be employed to examine different aspects of brain 
structure and function. Structural MRI (sMRI) provides detailed anatomical 
information, allowing researchers to study brain morphology and detect 
structural changes associated with diseases or developmental processes. 
Functional MRI (fMRI) measures changes in blood flow and oxygenation levels, 
providing insights into temporally changing brain activity and connectivity 
during different tasks or resting states (Sui, Adali, et al., 2012; Sui, Yu, et al., 2012). 

Over the past thirty years, numerous techniques and models have been 
developed to harness and interpret fMRI data. One commonly used method is 
the frequency-domain analysis. Y. F. Zang and colleagues introduced the concept 
of the amplitude of low-frequency fluctuations (ALFF) for a voxel's time series, 
which quantifies the overall signal power within the 0.01–0.1 Hz low-frequency 
range (Y. F. Zang et al., 2007). The fractional ALFF (fALFF), a subsequent 
refinement of ALFF, was presented by Zou et al. (2008), focusing on the 
proportion of power in the low-frequency band relative to the entire frequency 
spectrum. Additionally, regional homogeneity analysis, known as ReHo, has 
gained traction (Y. Zang et al., 2004). ReHo offers a voxel-centric assessment of 
brain activity by examining the synchronization of a voxel's time series with its 
immediate neighbors, utilizing Kendall's coefficient of concordance. This metric 
is instrumental in probing the localized synchronization of fMRI signals within 
the brain (Y. Zang et al., 2004). 

 Compared to other imaging techniques, Electroencephalography (EEG), 
and Magnetoencephalography (MEG), MRI offers several advantages: 1) It 
provides detailed anatomical visualization of the brain, allowing for the 
identification of structures and abnormalities with excellent spatial resolution. 2) 
MRI combines functional and structural imaging capabilities, integrating insights 
into brain activity and connectivity with anatomical details. With its non-
invasiveness and safety, MRI offers a comprehensive approach to understanding 
the human brain.  
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However, despite its numerous advantages, there are challenges associated 
with MRI studies. The high initial investment, ongoing operational costs, and 
maintenance requirements are important considerations when utilizing MRI for 
medical imaging. The majority of neuroimaging research is carried out at 
individual sites, which often restricts the potential to gather extensive datasets. 
In Andy W. K. Yeung’ survey (Yeung, 2018), in all 388 papers, 138 (35.6%) studies 
analyzed data from 25 or fewer subjects, and only 21 studies (5.4%) had 101 or 
more subjects. Studies in a single research site with small sample-size datasets 
have an increased risk of producing false positives or missing true effects (low 
statistical power), wasting research funding on studies with a low chance of 
achieving their objective (Szucs & Ioannidis, 2017). Thus, using small sample 
sizes can generate irreproducible results. 

With the advancement of neuroimaging methods and information 
technology, leveraging big data has gained traction in neuroimaging research for 
many reasons. First, bigger sample sizes bolster statistical power and yield more 
dependable outcomes (Yu et al., 2018). Second, they better reflect broader 
populations, making the findings more universally relevant with more 
significant real-world impact (A. A. Chen et al., 2022). Lastly, samples ranging 
from several to tens of thousands in emerging research domains are frequently 
essential to pinpoint subtle effects (Takao et al., 2014; Han et al., 2023). 

Using data from multiple sites is often inevitable to obtain data with a large 
sample size for neuroimaging studies. Consequently, multi-site MRI research is 
on the rise, enhancing the robustness of statistical evaluations to discern group 
variations, track long-term changes, and also bolster the consistency and 
replicability of neuroimaging investigations. 

1.2 Multi-site MRI studies: advantages and challenges 

To address these challenges from single-site studies, multi-site studies have 
gained prominence, wherein data from different research sites are pooled 
together to increase sample sizes and enhance statistical power. 

In recent years, there has been a significant emphasis on collecting multi-
site MRI data in neuroimaging. Several notable studies have emerged that aim to 
leverage the advantages of pooling data from multiple research sites to gain 
insights into the human brain. We list here some studies: 

• The Adolescent Brain Cognitive Development (ABCD) study 
(https://abcdstudy.org/): a large-scale, longitudinal, multi-site 
investigation aimed at understanding the impact of biological and 
environmental factors on developmental outcomes.  

• Enhancing NeuroImaging Genetics Through Meta-Analysis (ENIGMA) 
study (https://enigma.ini.usc.edu/): a collaborative network of 
researchers working together on a range of large-scale studies that 

https://abcdstudy.org/
https://enigma.ini.usc.edu/


 
 

18 
 

integrate data from 70 institutions all over the world (Thompson et al., 
2014).  

• Autism Brain Imaging Data Exchange Ⅰ & II (ABIDE Ⅰ & II) dataset 
(https://fcon_1000.projects.nitrc.org/indi/abide/): a consortium openly 
sharing 2156 datasets, including 1112 (536 individuals with Autism 
Spectrum Disorder (ASD) and573 age-matched controls) from ABIDE I, 
and 1044 (487 individuals with ASD and 557 controls) from ABIDE II (Di 
Martino et al., 2014, 2017) 

• Depression Imaging REsearch Consor-Tium (DIRECT) dataset 
(https://rfmri.org/REST-meta-MDD): 2428 functional brain images 
processed with a standardized pipeline across all participating sites (X. 
Chen et al., 2022; Yan et al., 2019). 

The ABCD study focuses on brain structure and function throughout childhood 
and adolescence, utilizing multimodal magnetic resonance imaging (MRI) data 
acquired from 29 different scanners at 21 locations across the United States 
(Casey et al., 2018). One significant advantage of ENIGMA consortium is the 
implementation of standardized protocols for preprocessing MRI data, which 
effectively reduces the heterogeneity across sites due to methodological factors. 
Consistent preprocessing pipelines are applied across all sites to obtain multiple 
MRI modalities (Radua et al., 2020). 

Joint efforts across multiple sites provide a golden chance to gather broader 
and more varied participant groups, amplifying the research's statistical strength 
and making the findings more reflective of the broader population. By pooling 
data from multiple sites, researchers can access a broader range of participants, 
including individuals from different demographic backgrounds, geographical 
locations, and clinical populations. This increased sample size and diversity 
strengthens the statistical analyses and allows for more robust generalizations 
and a better understanding of the underlying phenomena being investigated.  

Nevertheless, integrating MRI data from multiple sites brings the challenge 
of non-biological sources of variability known as site effects. These site effects 
arise from the inherent differences in MRI scanners, including field strength, 
manufacturer specifications (e.g., Siemens vs. GE), models (e.g., Philips Ingenia 
vs. Philips Achieva), software versions, and various imaging parameters (Dudley 
et al., 2023). Even when MRI data collection parameters are ideally matched 
across locations, a feat that's often difficult or unattainable, site-related 
discrepancies remain an inherent aspect of multi-site investigations. (Dudley et 
al., 2023; Fortin et al., 2017, 2018). 

Site effects can confound the interpretation of results and mask or distort 
the actual underlying biological effects for nearly all MRI modalities, including  

• T1-Weighted Imaging (T1WI) (J. Chen et al., 2014; Fortin et al., 2018; 
Maikusa et al., 2021; Parekh et al., 2022; Radua et al., 2020); 

• Diffusion-Weighted Imaging (DWI) (Fortin et al., 2017);  
• functional MRI (fMRI) (Biswal et al., 2010; Groves et al., 2011; Li et al., 

2020);  

https://fcon_1000.projects.nitrc.org/indi/abide/
https://rfmri.org/REST-meta-MDD
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• Magnetic Resonance Spectroscopy (MRS) (Bell et al., 2022).  

These site effects can introduce unwanted biases into the data, potentially 
overshadowing genuine biological effects and leading to spurious findings 
(Onicas et al., 2022). They have also been shown to be significantly more 
straightforward to detect than biological effects by statistical analysis and 
machine learning methods (Hu et al., 2023). 

1.3 Main contributions  

Consequently, careful consideration and mitigation strategies are essential to 
account for and minimize the impact of site effects when pooling data across 
different sites. Due to the complex nature of site effects, traditional statistical 
methods (inclusion of site in a lineal modal as a mean effect) for adjusting the 
confounders are inadequate to account for site effects sufficiently (Hu et al., 2023). 
Two main techniques, independent component analysis (ICA) and general linear 
modal (GLM), for removing site effects face challenges when completely 
eradicating site effects and preserving signal effects when signals of interest (e.g., 
age, sex) correlate with site-related variables. In order to better remove site effects 
and protect signal effects, the motivations of our studies can be concluded from 
two aspects.  

When dealing with single-modality MRI data, we often encounter a hurdle 
wherein the conventional independent component analysis (ICA) methods are 
insufficient to mitigate the site effects completely. This variability may lead to 
confounding results in our analysis if not accounted for. We propose a novel 
approach involving a dual projection (DP) method to address this issue more 
effectively (Hao et al., 2023; Xu, Hao, et al., 2023). This method can separate the 
signal effects correlated with site variables from the identified site effects for 
removal without losing signals of interest. Simulated, vivo structural and 
functional MRI data from Autism Brain Imaging Data Exchange II and a traveling 
subject dataset from the Strategic Research Program for Brain Sciences, were used 
to test the ICA-DP methods. This method is designed to provide a more robust 
and comprehensive removal of these site effects, thereby enhancing the reliability 
and reproducibility of MRI data analysis. 

When dealing with multimodal MRI data, We implement DP in linked 
independent component analysis (LICA) and denoise site effects from multi-
modality data. The advantage of multimodal fusion is that it can capitalize on the 
strength of each modality in a joint analysis compared with a separate analysis 
of each (Xu, Li, et al., 2023). Firstly, LICA is used to identify more site-related 
noise components from multimodal MRI data. Then we use DP method to 
separate the signal effects from the identified site effects. In this way, we can 
remove more site effects without losing signals of interest. A dataset from Autism 
Brain Imaging Data Exchange II and a traveling subject dataset from the Strategic 
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Research Program for Brain Sciences were used to test the proposed LICA-DP 
denoising method. 

To evaluate the efficiency of the harmonization methods, we employ a 
range of methodologies to both visualize and quantify site-related effects prior to 
and following the denoising process. Furthermore, we appraise the performance 
of the denoising techniques based on their capacity to retain the integrity of the 
signal effects. 

1.4 Structure of the dissertation  

The structure of this dissertation is listed as follows: Chapter 1 introduces the 
advantages and challenges of multi-site MRI studies. In Chapter 2, we introduce 
the basic multi-site MRI harmonization methods. Chapter 3 briefly summarizes 
the included articles and lists the contributions of the authors to the articles. 
Chapter 4 presents the discussion and conclusion of this dissertation, as well as 
the research limitations and future directions. Chapter 5 presents the conclusion 
of this dissertation. 
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2 METHODS 

In this chapter, we first introduce various multi-site data harmonization methods, 
including the approach we proposed. Subsequently, we describe the datasets 
utilized to validate the effectiveness of these methods, the preprocessing of the 
data, and the multi-site harmonization process. Finally, we delineate the criteria 
employed to assess the efficacy of the multi-site data harmonization methods. 

2.1 Harmonization methods 

Many statistical and machine learning methods have been developed to model, 
attenuate, or eliminate site effects (Descoteaux et al., 2022; Hu et al., 2023). 
Machine learning models can be challenging to interpret. They often act as 'black 
boxes', providing little insight into how they are making their decisions. This can 
be problematic when trying to understand the significance of the findings. So, we 
only introduce and compare different statistical methods here, including their 
foundations and critical advantages and disadvantages.  

2.1.1 GLM and ComBat 

The first attempts utilize sites as variates in a general linear model (GLM), also 
referred to as residual harmonization. GLM method adjusts the images for site 
effects via linear regression without considering the confounding between site 
and signal variables (e.g., age, sex) (Fortin et al., 2018). 

Statistical foundation 

The GLM model can be written as follows:  

𝑌𝑌non-denoised =  𝑋𝑋sites𝛽𝛽sites +  𝜀𝜀 ,                                                (1) 
where 𝑌𝑌non-denoised is the original data, 𝑋𝑋sites is the design matrix for the site effects, 
the corresponding regression coefficient 𝛽𝛽sites  can be obtained using ordinary 
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least squares (OLS), 𝜀𝜀  is the residual. The modification is carried out by 
deducting the site-associated term: 

𝑌𝑌denoised
GLM =  𝑌𝑌non-denoised −  𝑋𝑋sites𝛽𝛽sites .                                           (2) 

The adjusted GLM (AdGLM) method utilizes sites as covariates in a general 
linear model. 

𝑌𝑌non-denoised =  𝑋𝑋signal𝛽𝛽signal + 𝑋𝑋sitesβsites + 𝜀𝜀 ,                             (3) 

where  𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and 𝛽𝛽𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  are the design matrix and corresponding regression 
coefficient of the biological signal. By removing the site effects, the denoised data 
by AdGLM is:  

𝑌𝑌denoised
AdGLM =  𝑌𝑌non-denoised −  𝑋𝑋sites𝛽𝛽sites .                                         (4) 

ComBat (Fortin et al., 2017, 2018; Johnson et al., 2007) is a GLM-derived 
method based on the empirical Bayes approach. The ComBat approach was 
initially proposed for microarray gene expression data (Johnson et al., 2007); its 
main objective was to refine the location/scale model for limited data sets. The 
technique assumes that the data can be modeled as a linear combination of signal 
variables and site influences, encompassing both additive and multiplicative 
factors:  

𝑌𝑌non-denoised = 𝛼𝛼 +  𝑋𝑋signal𝛽𝛽signal + 𝛾𝛾 + 𝛿𝛿𝛿𝛿 ,                              (5) 

where 𝛼𝛼 is the average value, 𝑋𝑋signal is the design matrix for the signal variables 
and 𝛽𝛽signal is the corresponding regression coefficient, 𝛾𝛾 and 𝛿𝛿  are the additive 
and multiplicative factors, respectively. Subsequently, ComBat standardizes the 
data by eliminating the impacts of mean and signal variables:  

Ynormalized =   𝑌𝑌non-denoised −  𝛼𝛼 −  𝑋𝑋signal𝛽𝛽signal .                         (6) 

In the end, ComBat employs an empirical Bayes (EB) methodology to obtain a 
refined estimation of the site-specific adjustment factor 𝛾𝛾∗  and site-specific 
scaling factor 𝛿𝛿∗ . In detail, this Bayesian approach generalizes the AdGLM 
approach described above, incorporating empirical priors over the site-specific 
means and variances. This integration results in partial pooling across the 
features (Descoteaux et al., 2022). After eliminating these site-specific influences 
and reintegrating the effects of the average and signal variables, we ultimately 
obtain the denoised data via ComBat: 

𝑌𝑌denoised
ComBat =  

𝑌𝑌non-denoised −  𝛼𝛼 −  𝑋𝑋signal𝛽𝛽signal −  𝛾𝛾∗

𝛿𝛿∗
+ 𝛼𝛼 +  𝑋𝑋signal𝛽𝛽signal .      (7) 

Advantages and disadvantages 

GLM is simple and easy to implement. However, its major limitation is that it 
neglects to incorporate biological signals of interest. This oversight inevitably 
results in losing biologically meaningless and meaningful biases while regressing 
out site effects. Consequently, its application is generally not recommended. 

The adjusted GLM can be readily applied in any statistical framework, 
facilitating various regression evaluations. As demonstrated in Equation 4, if the 
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design matrix of the site effects Xsites and biological signal design matrix  𝑋𝑋signal 
are orthogonal and uncorrelated with each other, estimating and interpreting site 
effects is relatively straightforward. Under such circumstances, the site merely 
functions as an additive effect, which can be readily estimated and eliminated 
without influencing the signal effects (J. Chen et al., 2014). 

Nevertheless, neuroimaging studies incorporating data from multiple sites 
often unmet this ideal condition. For instance, many individual neuroimaging 
samples are confined to a specific age range, which results in a correlation 
between age and site effects. In such contexts, removing an estimate of the site 
effects may inadvertently eliminate variations of biological signals. To be more 
specific, consider a hypothetical study across two sites exploring mild cognitive 
impairment in senior individuals. In this scenario, Site A typically recruits 
participants who are older than those at Site B, and Scanner A has a propensity 
to gauge cortical thickness higher than Scanner B. Without accounting for 
scanner effects, the impact of age would likely be misestimated. This 
underestimation arises as the variable of interest (i.e., age) is associated with the 
image feature (i.e., cortical thickness), and a site/scanner effect is apparent in 
both. When employing the AdGLM on the data that incorporates both scanner 
and age variables, the collinearity of these variables may induce instability in 
estimating the regression coefficients, the signal effects  𝑋𝑋signal 'compete' with the 
site effects 𝑋𝑋sites and diminish their association with the dependent information. 
As a result, the model might either overstate or understate the influence of these 
variables. Although meticulous study planning and participant recruitment can 
mitigate the issue of multicollinearity, it is often challenging, if not impossible, to 
entirely eradicate selection bias in multi-site studies (Descoteaux et al., 2022; 
Dudley et al., 2023). Nygaard et al. (2016) showed that the AdGLM method 
resulted in overconfident group outcomes with uneven samples.  

In summary, the AdGLM technique may decrease statistical power and 
obscure genuine impacts when a significant variable within the study group is 
not uniformly spread across scanning devices, leading to multicollinearity in the 
general linear model(Dudley et al., 2023). 

ComBat first demonstrated its practical utility when applied to voxel-level 
fractional anisotropy (FA) values derived from two diffusion MRI datasets 
(Fortin et al., 2017). Subsequent research corroborated ComBat's effectiveness on 
various neuroimaging features, including cortical thickness (Fortin et al., 2018) 
and functional connectivity (Yu et al., 2018). Since its initial introduction and 
validation, ComBat has achieved extensive recognition and utilization in the field 
of MRI imaging (Beer et al., 2020; Bell et al., 2022; Da-ano et al., 2020; 
Eshaghzadeh Torbati et al., 2021; Horng et al., 2022; Meyers et al., 2022; Orlhac et 
al., 2021; Radua et al., 2020). From 2017 onwards, more than 50 imaging research 
projects have cited ComBat as their preferred method for site effect rectification 
(Orlhac et al., 2021). ComBat demands minimal computational resources. 
Moreover, its implementations are available in R, Matlab, and Python, catering 
to higher-dimensional data types like voxel-based morphometry. This 
underscores its widespread adoption by the neuroimaging community 
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(Descoteaux et al., 2022). ComBat enhances the reliability of estimated 
parameters in smaller samples using a Bayesian approach. It is more effective in 
mitigating site effects while preserving the biologically relevant effects than 
AdGLM.  

While ComBat has emerged as a promising tool for harmonization across 
multi-site neuroimaging studies, it is essential to note that it is also with its 
limitations. First, ComBat inherently presumes that the signal characteristics of 
various features originate from a uniform distribution, having a consistent mean 
and variance for every site. However, this assumption may not be tenable if the 
target distribution exhibits heteroscedasticity. Heteroscedasticity refers to the 
condition where the standard deviation of the predicted variable is inconsistent. 
For instance, the variable of cortical thickness may display a higher degree of 
variance in older individuals than in younger ones. 

Second, sites with smaller data sets are subjected to more extensive 
regularization compared to those with larger data sets. This can result in 
unbalanced adjustments, particularly when there are significant discrepancies in 
sample sizes between sites. For example, The site-specific shift factor 𝛾𝛾∗ in a data 
set with two sites with N1= 10000 samples and N2= 100 will be different from the 
𝛾𝛾∗ of two sites with N1= 500 and N2= 500 (Descoteaux et al., 2022).  

Further, like AdGLM, ComBat can not deal with the collinear problem. 
ComBat operates on the assumption that site effects are independent of the signal, 
and it does not account for site-by-signal interactions. This implies that ComBat 
is ideally suited for scenarios where the biological effects presumed to influence 
the variables of interest are uniformly distributed across sites, thus enabling their 
estimation across all subjects. However, issues arise when there is strong 
collinearity between biological signals and a site. For instance, consider a 
scenario where one site predominantly contains a cohort of young subjects while 
one site contains older ones. ComBat's model's assumptions are violated in such 
situations, leading to potentially inaccurate and biased adjustments. 
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2.1.2 ICA and ICA-DP 

Independent component analysis (ICA) is a data-driven computational method 
that decomposes the data matrix into a set of statistically independent non-
Gaussian maps and associated courses (e.g., time, subject). The method is often 
applied to digital images, in signal processing, and in many other areas. ICA is a 
type of blind source separation (BSS) technique. 'Blind' because it operates 
without a model of the source signals, and "source separation" because the aim is 
to extract the original source signals from a set of mixed signals. 

Statistical foundation 

Firstly, the ICA method decomposes the data into independent spatial maps and 
their corresponding loadings. 

𝑌𝑌non-denoised = 𝐴𝐴 ∗ 𝑆𝑆 ,                                                           (8) 
where S is the spatial map, and A is the corresponding loadings. For juxtaposition 
against our ICA-DP technique, we refer to the conventional ICA as ICA-SP 
(single projection). To maintain the signal effects, the ICA-SP approach solely 
discards components purely associated with site effects and retains the mixed 
components untouched.  

𝑌𝑌denoised
ICA-SP =  𝑌𝑌non-denoised −  𝐴𝐴sites𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴sites)𝑌𝑌non-denoised .              (9)  

where 𝐴𝐴sites  is the course of pure site-related components, the pinv() function 
refers to the computation of the Moore-Penrose pseudoinverse of a matrix. The 
pseudoinverse is a generalization of the matrix inverse for matrices that may not 
be square or invertible. 

The algorithm of ICA consists of these general steps: 1) Centering: The 
observed signals are centralized by subtracting their means; 2) Whitening: This 
step transforms the data so that potential correlations are removed, and the 
variance for each component is equalized. A popular whitening method is 
principal component analysis (PCA); 3) Algorithm Iteration: In this stage, an 
iterative algorithm is used to maximize the statistical independence of the 
estimated components.  

To eradicate the site effects, we introduced the ICA-DP technique (Hao et 
al., 2023). Initially, ICA-DP distinguishes the signal effects from the mixed 
components (during the first projection phase):  

𝐴𝐴sites
′ =  𝐴𝐴mixed −  𝑉𝑉𝑉𝑉𝑉𝑉signal𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑉𝑉𝑉𝑉𝑉𝑉signal�𝐴𝐴mixed ,                                 (10) 

where 𝐴𝐴mixed  is the course of mixed components and 𝑉𝑉𝑉𝑉𝑉𝑉signal  is the signal 
variable. Then [ 𝐴𝐴sites 𝐴𝐴sites

′  ] is utilized as the whole site effects to be regressed out 
(second projection procedure). 

𝑌𝑌denoised
ICA-DP =  𝑌𝑌non-denoised −  [ 𝐴𝐴sites 𝐴𝐴sites

′  ]𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝([ 𝐴𝐴sites 𝐴𝐴sites
′  ])𝑌𝑌non-denoised. (11)  

 



 
 

26 
 

 

FIGURE 1  The steps involved in the ICA-DP noise-reduction technique  (a) Identifying 
the loadings that are associated with noise variables retrieved by ICA. This 
includes mixed loadings that show significant correlation to noise and signal 
and those that are solely significantly linked to noise. (b) Refining the mixed 
loadings to only those correlated with noise (𝐋𝐋CN) by projecting out the sig-
nal-related data. (c) Securing cleaned data by excluding the comprehensive 
noise-associated components (𝐋𝐋N,𝐋𝐋CN) 

Advantages and disadvantages 

ICA has been widely used to identify and remove structured noise components 
from fMRI signals, such as head motion-related (McKeown et al., 2003), 
physiological (McKeown et al., 1998), and scanner-induced noise (J. Chen et al., 
2014; Feis et al., 2015).  

As a data-driven approach, 1) ICA does not assume a specific statistical 
model and, therefore, can be more flexible in handling complex and unknown 
distributions of the data; 2) ICA can separate the MRI data into independent 
spatial components. This ability to decompose the data into its essential elements 
can be beneficial in identifying and removing site effects; 3) ICA has the ability 
to separate mixed signals into their original sources without requiring prior 
knowledge of the sources or the mixing process. This is particularly useful when 
the cause of the site effects is unknown. 

Compared with GLM-based methods, which assume a constant effect for 
each site and ignore within-site day-to-day variations in these effects, ICA 
facilitates the determination and removal of site effects via data-driven instead 
of formulating covariates to represent the site effects grounded in robust 
presumptions.  
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However, there are also assumptions of ICA: 1) The sources are statistically 
independent of each other; 2) The sources are non-Gaussian; 3) There are at least 
as many observations (mixed signals) as there are sources. 

The greatest challenge in using ICA to remove site effects is that the 
components obtained from ICA are often correlated with both the site and the 
biological signal (named mixed components). Generally, we do not modify these 
mixed components to preserve biological variabilities. Consequently, this leads 
to incomplete removal of site effects. 

To address this issue, we introduce the ICA-DP method to mitigate site 
effects. Within ICA-DP, mixed components from ICA are divided into segments 
exclusively linked to signal and those solely connected to site discrepancies, 
using a projection process. Site effects drawn from mixed components through 
this projection phase are amalgamated with other distinct site-related 
components. These are then eliminated from the data via a second projection step.  

2.1.3 LICA and LICA-DP 

In 2011, Adrian R. Groves proposed the Linked independent component analysis 
(LICA) method (Groves et al., 2011). LICA is a multivariate data analysis method 
that allows researchers to identify common features across multiple modalities. 
LICA was developed to extend the capabilities of standard ICA and allow for 
data integration from multiple modalities. 

Statistical foundation 

The main highlight of LICA is that it treats multiple datasets simultaneously 
rather than considering them individually. These datasets can be different 
imaging modalities (such as structural and functional MRI) from the same 
subjects or the same imaging modality acquired under different conditions. LICA 
can find shared or linked components across different datasets, which can help 
identify common underlying biological or physiological effects. 

LICA is designed to capture covariance trends across various modalities. It 
facilitates simultaneous ICA decompositions on diverse modalities while 
ensuring the subject weights remain the same across them. In this sense, LICA 
provides a kind of "joint" ICA solution. This approach can lead to more 
interpretable results, as it takes advantage of the relationships among the 
datasets to find common patterns of variability. Moreover, LICA balances the 
information content from different modalities, even permitting a modality to be 
excluded from a specific component. A distinct feature of a LICA component 
includes its spatial maps (one for each modality) and the subject loadings that are 
shared across modalities (shown in Figure 2) and may involve multiple (named 
multimodal components) or only modality (unimodal components). Whereas the 
spatial maps indicate the spatial variability at the group level, the subject 
loadings shed light on a subject's particular influence on the component (Doan et 
al., 2017). 
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FIGURE 2 A summary of the preprocessing pipelines and process of LICA (Cited from 
(Groves et al., 2012)). 

Since its introduction, LICA has found extensive applications in neuroimaging 
research (Sui, Adali, et al., 2012; Sui, Yu, et al., 2012). Adrian R. Groves utilized 
LICA to scrutinize age-related effects across multiple imaging modalities (Groves 
et al., 2012).  

Li et al. (2020) proposed a denoising technique for multimodal imaging 
metrics that utilized LICA as a novel approach to mitigate site influences from 
multi-study data, and the novel method has demonstrated superior performance 
over the standard GLM and conventional single-modality ICA denoising 
methods in mitigating site effects in multimodal MRI data. 

To retain the signal effects, the traditional LICA method (we rename the 
traditional LICA as LICA-SP for comparison with the LICA-DP method below) 
selectively eliminates only those components exclusively related to site effects 
and leaves mixed components (those correlated with both the site and the signal) 
untouched. 
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𝑌𝑌denoised
LICA-SP =  𝑌𝑌non-denoised −  𝐴𝐴sites𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴sites)𝑌𝑌non-denoised .                 (12)  

To remove the site effects more thoroughly, we have introduced the LICA-
DP method, which aims to implement DP in LICA and denoise site effects from 
multi-modality data. Firstly, LICA is used to identify more site-related noise 
components from multimodal MRI data. Then we use DP method to separate the 
signal effects from the identified site effects. 

𝑌𝑌denoised
LICA-DP =  𝑌𝑌non-denoised −  [ 𝐴𝐴sites 𝐴𝐴sites

′  ]𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝([ 𝐴𝐴sites 𝐴𝐴sites
′  ])𝑌𝑌non-denoised.  (13) 

Advantages and disadvantages 

The advantages of the LICA method stem from the benefits of multimodal fusion. 
Multimodal fusion refers to using a common symmetric model that explains 
different sorts of data. Different modalities can provide different types of 
information, giving a more comprehensive view of the subject matter. For 
instance, in neuroimaging, structural MRI can provide detailed anatomical 
information, functional MRI can provide information about brain activity, and 
diffusion MRI can provide information about white matter connectivity. A 
primary motivation for multimodal fusion is to take advantage of the cross-
information provided by diverse imaging methods, which in turn can be helpful 
for uncovering patterns of related changes across various modalities when they 
exist.  

Relative to traditional GLM and single-modality ICA denoising techniques, 
denoising methods rooted in LICA are superior in eliminating site-associated 
influences (Li et al., 2020). The superior performance of LICA is attributable to its 
distinctive linkage function. The linkage function in linked ICA is a way to create 
a shared association between different modalities. The idea is to assume that a 
common latent variable or factor links different types of data. The linkage 
function quantifies this relationship by constraining the subject weights to be the 
same across modalities. It ensures that the independent components (ICs) 
derived from the different modalities are meaningfully related or 'linked' to each 
other. In simpler terms, imagine two different brain images (one showing brain 
structure and another showing brain function) for the same subjects. These are 
two different modalities. If certain structural changes in the brain are associated 
with specific functional changes, the LICA's linkage function helps capture and 
represent that relationship. So, instead of treating these two types of data as 
entirely separate, the linkage function allows LICA to analyze them connected, 
revealing insights that might be missed if each modality were analyzed 
independently. In this way, LICA can identify components more related to site 
difference (Li et al., 2020; Xu, Li, et al., 2023), thus more effectively modeling and 
eliminating site effects. 

In addition, LICA is a Bayesian ICA method, differing from traditional ICA 
methods like FastICA (Hyvärinen & Oja, 2000). LICA directly integrates 
dimensionality reduction into the ICA methodology by applying automatic 
relevance determination (ARD) priors on the components (Bishop, 1999; Roberts, 
2001). The eliminated components (or part-components) are removed from the 
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model during the iteration. This step precludes any further inference on these 
spatial maps bearing zero weight, making the process more efficient (Groves et 
al., 2011). 

A primary challenge in employing LICA to eliminate site effects is the 
frequent correlation of the derived components with both the site and the 
biological signal, resulting in what we refer to as mixed components. Typically, 
to retain biological variability, we refrain from modifying these mixed 
components, which unfortunately leads to incomplete removal of site effects. 

To address this issue, we introduce the LICA-DP method designed to 
remove site effects effectively. In the LICA-DP framework, mixed components 
generated by LICA are dissected into parts solely related to the signal and 
exclusively to site differences, achieved by applying a projection process. Site 
effects isolated from the mixed components via this projection step are added 
with other pure site-related components. These are then cleared from the data 
using a second projection procedure. 

2.2 Dataset  

Our research utilized simulated, structural, and functional MRI data to test our 
proposed ICA-DP and LICA-DP methods. 

2.2.1 Simulated data 

Our research incorporated simulated data in two aspects: 1) Firstly, we evaluated 
the impact of varying degrees of correlation between signal and noise variables 
on the ICA-DP method. Two distinct types of relationships were simulated 
between subject loadings and signal/noise variables: i) The signal variable was 
not significantly correlated with the noise variable; however, subject loadings 
were linearly correlated with either the signal, noise variables, or both. ii) The 
signal variable was significantly correlated with the noise variable, with subject 
loadings being linearly correlated with either the signal, noise variables, or both. 
2) Secondly, we assessed the influence of the number of subjects and modalities 
on the performance of LICA.  

The spatial components used in the simulations were derived from 
standard brain templates (ThomasYeoLab), and details on subject courses can be 
found in Chapter 3. 

2.2.2 ABIDE Ⅱ 

The Autism Brain Imaging Data Exchange (ABIDE II) is an initiative to broaden 
the horizons of brain connectomics research 
(http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html) in Autism 
Spectrum Disorder (ASD). As a continuation of the initial ABIDE effort (ABIDE 
I), which released 1112 datasets in 2012 (Di Martino et al., 2014), this expanded 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
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multi-site open-data resource comprises resting-state functional magnetic 
resonance imaging (MRI), accompanying structural MRI, and phenotypic 
datasets. Images manifesting conspicuous artifacts, extensive head movement 
(exceeding one voxel size), or incomplete scanning of the whole brain were 
excluded from our study. After strict quality control, we obtained Cortical 
Thickness (CT) and Pial Surface Area (PSA) data for 952 subjects (comprising 428 
Autism Spectrum Disorder (ASD) patients and 524 Healthy Controls (HC)), Grey 
Matter (GM) data for 913 subjects (ASD: 402, HC: 511), and functional MRI (fMRI) 
data for 795 subjects (ASD: 341, HC: 454). Data were gleaned from 18 different 
sites, encompassing various manufacturers such as Siemens, Philips, and GE. The 
specific acquisition parameters are detailed in Tables 1 and 2, while demographic 
information is presented in Table 3. 

TABLE 1  Scanning parameters for functional MRI data from ABIDE II.  The data were 
collected from 18 different sites: Erasmus University Medical Center (EMC), 
ETH Zürich (ETH), Georgetown University (GU), Indiana University (IU), 
Kennedy Krieger Institute (KKI), Katholieke Universiteit Leuven (KUL), Ore-
gon Health and Science University (OHSU), Olin Neuropsychiatry Research 
Center (ONRC), Stanford University (SU), University of California Davis 
(UCD), University of California Los Angeles (UCLA), University of Miami 
(UM), University of Utah School of Medicine (USM), Barrow Neurological 
Institute (BNI), Institut Pasteur and Robert Debré Hospital (IP), NYU Lan-
gone Medical Center (NYU), San Diego State University (SDSU), Trinity Cen-
tre for Health Sciences (TCD). 

Sites Scanners TR/TE (ms) FA (degree) Voxel Size 
EMC GE MR750 2000/30 85 3.6 × 3.6 × 4.0 
ETH Philips Achieva 2000/25 90 3 × 3 × 3 
GU Siemens TriTim 2000/30 90 3 × 3 × 3 
IU Siemens TriTim 813/28 60 3.4 × 3.4 × 3.4 
KKI Philips Achieva 2500/30 75 3 × 3 × 3 
KUL PhilipsAchieva 2500/30 90 1.6 × 1.6 × 3.1 
OHSU Siemens TriTim 475/30 60 3 × 3 × 3 
ONRC Siemens Skyra 2500/30 90 3.8 × 3.8 × 3.8 
SU GE SIGNA 2000/30 80 3.4 × 3.4 × 3.5 
UCD Siemens TriTim 2000/24 90 3.5 × 3.5 × 3.5 
UCLA Siemens TriTim 3000/28 90 3 × 3 × 4 
UM GE Healthcare 2000/30 75 3.4 × 3.4 × 3.4 
USM Siemens TriTim 2000/28 90 3.1 × 3.1 × 4 
BNI Philips Ingenia 3000/25 80 3.8 × 3.8 × 4 
IP Philips Achieva 2700/45 90 3.6 × 3.7 × 4 
NYU Siemens Allegra 2000/15 90 3 × 3 × 4 
SDSU GE MR750 2000/30 90 3.4 × 3.4 × 3.4 
TCD Philips Achieva 2000/27 90 3 × 3 × 3.2 
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TABLE 2 Scanning parameters for structural MRI data from ABIDE II.  

Sites Scanners TR/TE (ms) FA (degree) Voxel Size 
EMC GE MR750 1664/4.24 16 0.9 × 0.9 × 0.9 
ETH Philips Achieva 3000/3.9 8 0.9 × 0.9 × 0.9 
GU Siemens TriTim 2530/3.5 7 1 × 1 × 1 
IU Siemens TriTim 2400/2.3 8 0.7 × 0.7 × 0.7 
KKI Philips Achieva 3500/3.7 8 1 × 1 × 1 
KUL PhilipsAchieva 2000/4.6 8 1 × 1 × 1.2 
OHSU Siemens TriTim 2300/3.58 10 1 × 1 × 1.1 
ONRC Siemens Skyra 2200/2.88 13 0.8 × 0.8 × 0.8 
SU GE SIGNA 5.9/1.8 11 1 × 1 × 1 
UCD Siemens TriTim 2000/3.16 8 − 
UCLA Siemens TriTim 2300/2.86 9 1 × 1 × 1.2 
UM GE Healthcare -/- 12 1 × 1 × 1 
USM Siemens TriTim 2300/2.91 9 1 × 1 × 1.2 
BNI Philips Ingenia 2500/3.1 9 1.1 × 1.1 × 1.1 
IP Philips Achieva 2500/5.6 30 1 × 1 × 1 
NYU Siemens Allegra 2530/3.25 7 1.3 × 1.3 × 1.3 
SDSU GE MR750 2683/3.17 8 1 × 1 × 1 
TCD Philips Achieva 3000/3.9 8 0.9 × 0.9 × 0.9 

TABLE 3 Demographic information of the multi-site ABIDE II data. 

Sites Structural 
(ASD/HC) 

CT PSA fMRI 

EMC 38(18/20) 38(18/20) 38(18/20) 27(14/13) 
ETH 25(8/17) 32(9/23) 32(9/23) 29(7/22) 
GU 76(33/43) 77(33/44) 77(33/44) 68(27/41) 
IU 36(18/18) 37(18/19) 37(18/19) 37(18/19) 
KKI 165(32/133) 165(32/133) 165(32/133) 148(25/123) 
KUL 7(7/0) 27(27/0) 27(27/0) 25(25/0) 
OHSU 84(33/51) 88(35/53) 88(35/53) 84(33/51) 
ONRC 45(16/29) 45(16/29) 45(16/29) 41(15/26) 
SU 32(15/17) 32(15/17) 32(15/17) 31(14/17) 
UCD 26(13/13) 26(13/13) 26(13/13) -- 
UCLA 24(12/12) 24(12/12) 24(12/12) 24(12/12) 
UM 19(7/12) 19(7/12) 19(7/12) -- 
USM 29(13/16) 32(16/16) 32(16/16) 21(9/12) 
BNI 55(29/26) 58(29/29) 58(29/29) 57(29/28) 
IP 53(22/31) 53(22/31) 53(22/31) 34(13/21) 
NYU 104(75/29) 104(75/29) 124(75/29) 89(61/28) 
SDSU 57(32/25) 57(32/25) 57(32/25) 54(30/24) 
TCD 38(19/19) 38(19/19) 38(19/19) 26(9/17) 
Total 913(402/511) 952(428/524) 952(428/524) 795(341/454) 
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2.2.3 Traveling subjects 

We utilized a traveling subject dataset from the DecNef Project Brain Data 
Repository (https://bicr-resource.atr.jp/srpbsts/), compiled by the Strategic 
Research Program for the Promotion of Brain Science (SRPBS) (Tanaka et al., 2021; 
Yamashita et al., 2019). This dataset included nine healthy male participants, 
ranging in age from 24 to 32 years. Each participant underwent T1-weighted MRI 
scans across 12 distinct centers. These centers employed 3T scanners from various 
manufacturers: Siemens, GE, and Philips. 

The advantage of the traveling subject dataset is that the subjects in each 
site are the same, excluding the influence of other variables (e.g., age, gender). 
Three sites (ATT, UTO, and YC2) were excluded because of the duplicate data. 

TABLE 4 Scanning parameters for functional MRI data. 

Sites Scanners TR/TE (ms) FA (degree) Voxel Size 
ATT SiemensTimTrio 2500/30 80 3.3 × 3.3 × 3.2 
ATV Siemens Verio 2500/30 80 3.3 × 3.3 × 3.2 
COI Siemens Verio 2500/30 80 3.3 × 3.3 × 3.2 

HUH GE Signa HDxt 2500/30 80 3.3 × 3.3 × 3.2 
HKH Siemens Spectra 2500/30 80 3.3 × 3.3 × 3.2 
KPM Philips Achieva 2500/30 80 3.3 × 3.3 × 3.2 
SWA Siemens Verio 2500/30 80 3.3 × 3.3 × 3.2 
KUT SiemensTimTrio 2500/30 80 3.3 × 3.3 × 3.2 
KUS Siemens Skyra 2500/30 80 3.3 × 3.3 × 3.2 
UTO GE MR750W 2500/30 80 3.3 × 3.3 × 3.2 
YC1 Philips Achieva 2500/30 80 3.3 × 3.3 × 3.2 
YC2 Philips Achieva 2500/30 80 3.3 × 3.3 × 3.2 
 

TABLE 5 Scanning parameters for structural MRI data. 

Sites Scanners TR/TE (ms) FA (degree) Voxel Size 
ATT SiemensTimTrio 2300/2.98 9 1 × 1 × 1 
ATV Siemens Verio 2300/2.98 9 1 × 1 × 1 
COI Siemens Verio 2300/2.98 9 1 × 1 × 1 

HUH GE Signa HDxt 1900/2.38 10 0.8 × 0.75 × 0.75 
HKH Siemens Spectra 6788/1.928 20 1 × 1 × 1 
KPM Philips Achieva 7.1/3.31 10 1 × 1 × 1 
SWA Siemens Verio 2300/2.98 9 1 × 1 × 1 
KUT SiemensTimTrio 2000/3.4 8 0.9375 × 0.9375 × 1 
KUS Siemens Skyra 2300/2.98 9 1 × 1 × 1 
UTO GE MR750W 7.7/3.1 11 1 × 1.0156 × 1.0156 
YC1 Philips Achieva 6.99/3.176 9 1 × 1 × 1 
YC2 Philips Achieva 7.01/3.155 9 1 × 1 × 1 

https://bicr-resource.atr.jp/srpbsts/
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2.3 Data preprocessing 

The preprocessing workflow for structural and functional MRI data employed 
widely accepted steps. 

Structural MRI: Grey Matter (GM) images were created from high-spatial 
resolution structural MR images using FSL-VBM 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM). The process began with 
removing non-brain tissue, followed by GM segmentation. GM images were then 
non-linearly registered to the MNI 152 standard space. The resulting images were 
concatenated and averaged to form a study-specific grey matter template. 
Subsequently, all native GM images were non-linearly registered to this study-
specific template. The modulated GM images were then smoothed using an 
isotropic Gaussian kernel (sigma = 3mm). 

fMRI: The raw fMRI data underwent preprocessing with FSL FEAT 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT), which included removing the 
first six volumes, motion correction, and spatial normalization to the standard 
MNI space. Two functional modalities, ALFF and ReHo, were generated from 
the preprocessed fMRI data using DPABI (Yan et al., 2016). For ReHo, spatial 
smoothing (with Full Width at Half Maximum (FWHM) of 6 mm) was performed 
after the ReHo calculation. In contrast, for ALFF, spatial smoothing was 
conducted prior to the calculation (Jia et al., 2019). 

2.4 Denoising process 

We utilized the Matlab version of ComBat 
(https://github.com/Jfortin1/ComBatHarmonization) in our study, and the 
input  𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 was set as group differences (ASD/HC), age, and sex. We utilized 
FSL MELODIC (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) for the ICA-
related analysis. First, ICA was utilized on the original data to categorize 
components into pure noise, pure signal, and mixed categories. We used the 
Pearson correlation coefficient and Analysis of Variance (ANOVA) to identify 
signal, noise, and mixed components. For numerical variables such as group 
differences (ASD/HC), age, and sex, we determined the nature of the 
components by calculating the Pearson correlation coefficient between subject 
loadings and these variables. Since we cannot calculate the Pearson correlation 
from categorical variables, we used ANOVA to calculate the correlation between 
loadings and site differences. To be specific, we grouped the loadings that came 
from the same site together. Then, we used a one-way ANOVA with multiple 
(the number of sites) levels to determine the correlation between loadings and 
site differences. Components only associated with the signal variable (p < 0.05, 
Bonferroni correction) were identified as pure signal components, while those 
only related to the noise variable were designated as pure noise components. 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
https://github.com/Jfortin1/ComBatHarmonization
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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Components related to signal and noise variables were categorized as mixed 
components. Only pure noise components were utilized for the ICA-SP method 
to regress out the site effects. On the other hand, for the ICA-DP method, all 
components linked to noise, encompassing the mixed ones, were used to mitigate 
the site influences. The noise impacts derived from both the mixed and purely 
noise components are deemed the combined site-associated noise effects targeted 
for elimination by the ICA-DP technique. 

We downloaded the LICA tool from the FSL website 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA), and after unzipping, we placed 
it within the Matlab directory (https://uk.mathworks.com/). As LICA can 
autonomously determine the optimal number of components needed to describe 
the data, we preset a large number of components, allowing LICA to 
downweight and discard the weaker components gradually. The identification 
of site-related components is the same as that used in ICA-related methods.  

2.5 Evaluate the denoising results 

We employed a series of analyses to compare our DP-related denoising methods 
in terms of their ability to eliminate site effects and retain signal effects.  

For the visualization of site effects, we employed t-distributed Stochastic 
Neighbor Embedding (tSNE) (Van Der Maaten & Hinton, 2008) to examine the 
distribution of data points, assessing whether they tended to cluster by site. tSNE 
is a machine learning algorithm designed for visualization of high-dimensional 
data by projecting it into a two-dimensional space, while preserving the pairwise 
similarities of the original data points as closely as possible. It is particularly well-
suited for the visualization of complex datasets in fields like bioinformatics or 
speech analysis, where the data can have hundreds or even thousands of 
dimensions. 

Group-level F-test was also implemented to identify regions significantly 
varied due to site differences. The evaluation utilized a generalized linear model 
execution of a one-way ANOVA, with the site as the factor and age, sex, and 
group distinction (ASD/HC) as covariates. 

Demonstrating that a harmonization technique effectively eliminates site 
effects is crucial, and it is equally important to prove the preservation of 
biological variability in the data. A method that eradicates both site effects and 
biological effects is scientifically unproductive (Fortin et al., 2018). We utilized 
age, sex, and group differences (ASD/HC) as variables of interest to assess the 
preservation of biological variability in the various harmonization methods 
discussed in this study. Besides t-SNE and group-level tests, the Pearson 
correlation coefficient between median image measures and age of all the 
subjects was used to show the relationship. 

All results presented in the study utilized Matlab 
(https://uk.mathworks.com/), BrainNet (Xia et al., 2013), and FSLeyes 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes) for visualization. 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA
https://uk.mathworks.com/
https://uk.mathworks.com/
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3 OVERVIEW OF INCLUDED ARTICLES  

This chapter presents the overview of each study, including methods, main 
results, and the author's contributions. 

3.1 Article I: Removal of site effects and enhancement of signal 
using dual projection independent component analysis for 
pooling multi-site MRI data  

Hao, Yuxing, Huashuai Xu, Mingrui Xia, Chenwei Yan, Yunge Zhang, Dongyue 
Zhou, Tommi Kärkkäinen, Lisa D. Nickerson, Huanjie Li, and Fengyu Cong 
(2023). Removal of site effects and enhancement of signal using dual projection 
independent component analysis for pooling multi-site MRI data. European 
Journal of Neuroscience, 58(6): 3466-3487, https://doi.org/10.1111/ejn.16120  

Methods 

ICA tends to identify components that represent a blend of signal and noise 
instead of separating them into distinct components. In the past work, only those 
components linked with scanner effects but not correlated with signals of interest 
were removed to maintain relevant signals. So, traditional ICA is regarded as a 
conservative denoising method since mixed components are retained. 

To overcome this challenge in ICA-based methods, we propose a new 
technique called ICA with dual-projection (ICA-DP) technique for mitigating site 
effects. ICA-DP separates mixed components derived from ICA into segments 
solely associated with the signal and those solely linked to noise using a 
projection process. The noise effects isolated from the mixed components are 
combined with the other ICA components that reflect site variance and removed 
from the data with a second projection step.  

We evaluate this new technique with simulated MRI data and in vivo multi-
site datasets, and compare the performance of ICA-DP against traditional ICA 
and ComBat denoising methods. For the simulated data, the relationships 

https://doi.org/10.1111/ejn.16120
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between subject courses and signal/noise variables are shown in Tables 6 and 7. 
For the structural MRI data, we utilized data from the first 13 sites within the 
ABIDE database and 9 sites in the traveling-subject dataset. 

TABLE 6 Component loadings are linearly correlated with signal and noise variables, 
while the signal variable is not significantly correlated to the noise variable. 

#Component Signal Variable (r/p) Noise Variable (r/p) 
1 0.9425(0) 0.3999(3.8e-5) 
2 0.2999(2.4e-3) 0.9728(0) 
3 -- 0.5999(4.2e-11) 
4 0.5999(4.2e-11) -- 

TABLE 7 Component loadings are linearly correlated with signal and noise variables, 
while the signal variable is significantly correlated to the noise variable. 

Correlation between 
signal and noise 

#Component Signal Noise 

0.2999 (2.4e-3) 1 0.7946(0) 0.2412(1.6e-2) 
 2 0.2590(9.3e-3) 0.7959(0) 

0.4999 (1.2e-7) 1 0.7962(0) 0.4279(8.9e-6) 
 2 0.3447(4.5e-4) 0.7859(0) 

0.6999 (5.6e-16) 1 0.7957(0) 0.5932(7.8e-11) 
 2 0.4993(1.2e-7) 0.7761(0) 

 

Results 

Figure 3 presents the components tied to signal and noise isolated by ICA from 
hypothetical data before and after noise reduction, given the lack of significant 
correlation between signal and noise variables. Figure 3(a) depicts outcomes for 
spatially independent data, whereas Figure 3(b) outlines results when the initial 
two components spatially intersect. In the absence of a correlation between signal 
and noise variables, noise reduction outcomes are analogous for both spatially 
independent and dependent datasets. Every denoising technique proficiently 
eliminates the standalone noise component #3 and retains the standalone signal 
component #4. Yet, the ICA-SP approach falls short in purging noise influences 
from the mixed components #1 (more attuned to the original data's signal) and 
#2 (more attuned to the original data's noise). In such contexts, ICA-DP, GLM, 
and ComBat exhibit similar efficiencies. The mixed components #1 and #2 
witness a purging of noise influences, with an amplification of the signal effect 
by enhancing its correlations with the signal variable post-denoising through 
ICA-DP, GLM, and ComBat. These two mixed components are consolidated into 
one, predominantly tied to the signal variable. Areas linked to noise are also 
eradicated post-denoising with ICA-DP, GLM, and ComBat. 

Figure 4 showcases the denoising effects on the two mixed components 
when a significant correlation exists between the signal and noise variables. 
Three distinct correlation intensities between these variables are modeled. Figure 
4(a) outlines the outcomes for spatially independent data, whereas Figure 4(b) 
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displays the results when the first two components are spatially overlapped. Of 
all denoising methodologies, solely ICA-DP adeptly diminishes noise while 
amplifying the signal effects, regardless of the correlation between signal and 
noise variables in both modeled datasets. 

 

 

FIGURE 3 Denoising effects on the signal- and noise-related components when the sig-
nal variable shows no significant correlation with the noise variable. (a) 
When the spatial maps of all 10 components are spatially independent, (b) 
Similar patterns are observed when the spatial maps of the first two compo-
nents are spatially overlapped.  

 



 
 

39 
 

 

FIGURE 4 Denoising effects on the two mixed components when the signal variable dis-
plays a significant correlation with the noise variable. Mix #1 is more associ-
ated with the signal variable, while Mix #2 is more related to the noise varia-
ble in the non-denoised data. (a) In the scenario where the spatial maps of all 
10 components are spatially independent. (b) Similar denoising outcomes are 
observed when the spatial maps of the first two components are spatially 
overlapped.  
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Figures 5 and 6 show the site effects before and after harmonization. The 
site effects for both datasets globally affect the non-denoised GM data. While the 
ICA-SP approach has diminished the site effects, its removal has not been 
adequate. Once processed by both ICA-DP and ComBat, there are no notable 
regions linked to site variables in either dataset. 

Figures 7–8 present the group-level analyses for signal effects, 
encompassing age and group differences (ASD/HC). The ICA-DP method 
amplified the signal effects by identifying a greater number of regions with 
significant signal differences. In contrast, both ComBat and ICA-SP diminished 
the signal effects, leading to fewer regions or regions with diminished 
significance.  

 

FIGURE 5 Dimension reduction visualization by t-SNE before and after denoising for 
ABIDE II and traveling subject datasets.  The site-cluster distribution of 
ABIDE II dataset before denoising indicates the site effects, and it decreases 
when the data points are randomly distributed after denoising. For the trav-
eling subject dataset, the subject-cluster distribution indicated the dominance 
of subject heterogeneity, as the subjects from this dataset are the same ones 
scanned at different centers (subject numbers labeled the data points). No 
significant difference existed before and after denoising, and subject hetero-
geneity was well preserved. 
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FIGURE 6 The group-level evaluation concerning site effects before and after noise re-
duction.  Both ComBat and ICA-DP completely eliminated site effects. How-
ever, while ICA-SP managed to decrease these effects, noticeable regions im-
pacted by site effects remain discernible.  

 

FIGURE 7 Age effects before and after site-effect removal.  (a) The relationship between 
age and median GM value before and after site-effect removal. The Pearson 
correlation values were as follows: -0.4746 (Non-denoised), -0.5689 (ComBat 
denoised), -0.3617 (ICA-SP denoised) and -0.8493 (ICA-DP denoised). (b) A 
group-level analysis of GM maps regarding age effects before and after data 
denoising. The negative correlations with age become more pronounced after 
the denoising process, even though such effects were not apparent in the 
original, non-denoised data. 
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FIGURE 8 Group-level analysis of GM maps for group difference (ASD/HC) before and 
after data denoising.  No significant regions were found from the data de-
noised by ComBat and ICA-SP, while ICA-DP could increase the significance 
of the regions related to ASD/HC. 

Research contributions 

Our study introduced the ICA-DP method to address the issue that traditional 
ICA methods cannot completely remove site effects. This method thoroughly 
eliminated site effects and retained the biological signals of interest. Simulated, 
vivo structural MRI data from Autism Brain Imaging Data Exchange II and a 
traveling subject dataset from the Strategic Research Program for Brain Sciences, 
were used to test the ICA-DP methods.  

Authors’ contributions  

Huashuai Xu and Yuxing Hao contributed equally to this study, proposing the 
ideas of the whole study, analyzing the data, and writing and revising the 
manuscript. Yunge Zhang and Donagyue Zhou downloaded the data and 
preprocessed them. Chenwei Yan helped me modify some pictures in this article. 
Mingrui Xia, Tommi Kärkkäinen, Lisa D. Nickerson, Huanjie Li, and Fengyu 
Cong supervised the whole study and revised the manuscript. 
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3.2 Article II: Harmonization of multi-site functional MRI data 
with dual-projection based ICA model  

Xu, Huashuai, Yuxing Hao, Yunge Zhang, Dongyue Zhou, Tommi Kärkkäinen, 
Lisa D. Nickerson, Huanjie Li, and Fengyu Cong (2023). Harmonization of multi-
site functional MRI data with dual-projection based ICA model. Frontiers in 
Neuroscience, 17, 1225606, https://doi.org/10.3389/fnins.2023.1225606  

Methods 

This research delves into the application of our ICA-DP denoising technique in 
harmonizing fMRI data sourced from the ABIDE II. Through frequency-domain 
and regional homogeneity examinations, two modalities, namely amplitude of 
low frequency fluctuation (ALFF) and regional homogeneity (ReHo), are 
employed to benchmark our method against two well-regarded harmonization 
techniques: ICA and ComBat. 

In determining the efficacy of these harmonization techniques, we adopt an 
array of visualization and quantification methods to analyze site effects both pre 
and post-denoising. Moreover, we gauge each denoising method's capability to 
retain signal effects. 

Results 

Figures 9 and 10 show the site effects before and after harmonization. Both non-
denoised modalities were universally impacted by site effects. While attempting 
to manage these site effects, the ICA-SP method only achieved limited success, 
leaving residual site-related biases in the data. Following denoising with ICA-DP 
and ComBat, brain regions exhibited site-related differences after their 
application, showcasing their robustness. 

Figures 11-14 display the group-level analyses for signal effects, including 
age, sex, and group differences(ASD/HC). ICA-DP preserved and even 
increased the signal effects by detecting more significantly different regions 
related to signals, while ComBat and ICA-SP decreased the signal effects with 
fewer or less significant regions, suggesting a potential suppression of real signal 
effects. 

https://doi.org/10.3389/fnins.2023.1225606
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FIGURE 9 Visualization of dimension reduction using t-SNE prior to and following site 
effects removal (Sites).  The distribution of sites grouped together before de-
noising showcased the site effects. This effect diminished as the data points 
became more scattered after denoising. 

 

FIGURE 10 Group-level analysis for site effects before and after denoising. The site im-
pacts were fully mitigated by ComBat and ICA-DP. While ICA-SP lessened 
these effects, certain notable areas remained evident. 
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FIGURE 11 Associations between age and ALFF with different denoising strategies. "Pos-
itive" association indicates increasing amplitude with increasing age, 
whereas "Negative" refers to decreasing amplitude with increasing age. As-
sociations with age are enhanced by ICA-DP and weakened by ICA-SP and 
ComBat. 

 

FIGURE 12 Associations between age and ReHo with different denoising strategies. 
"Positive" refers to significantly increasing amplitude with increasing age, 
whereas "Negative" refers to significantly increasing amplitude with decreas-
ing age. The age effects are enhanced by ICA-DP, while weakened by ICA-SP 
and ComBat. 
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FIGURE 13 Group differences between ASD and HC before and after denoising.  From 
the data denoised with ICA-SP, no notable regional differences are observed. 
Data denoised with ComBat revealed reduced regions, whereas ICA-DP en-
hanced the prominence of regions associated with ASD/HC. A FWE-corr p-
value of less than 1 for non-cleaned data suggested that the tested regions 
from ICA-DP denoised data were not reintroduced artifacts. 
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FIGURE 14 Sex differences before and after denoising.  "Male < Female" refers to signifi-
cantly greater amplitude in females, whereas "Male > Female" refers to sig-
nificantly greater amplitude in males. ICA-DP amplified the effects related to 
sex, whereas ICA-SP and ComBat diminished them. 

Research contributions 

This study extended the ICA-DP method to functional magnetic resonance data, 
further validating its effectiveness in both eliminating site effects and preserving 
biological signals. 

Authors’ contributions  

Huashuai Xu proposed the ideas of the whole study, analyzed the data, and 
wrote and revised the manuscript. Yunge Zhang and Donagyue Zhou 
downloaded the data and preprocessed them. Yuxing Hao contributed to the 
guidance of methods. Tommi Kärkkäinen, Lisa D. Nickerson, Huanjie Li, and 
Fengyu Cong supervised the whole study and revised the manuscript. 
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3.3 Article III: Enhancing performance of linked independent 
component analysis: Investigating the influence of subjects 
and modalities  

Huashuai Xu, Tommi Kärkkäinen, Huanjie Li, and Fengyu Cong (2023). 
Enhancing performance of linked independent component analysis: 
investigating the influence of subjects and modalities. In 2023 International 
Conference on Computers, Information Processing and Advanced Education 
(CIPAE), pp. 726-732. IEEE. 

Methods 

In this research, we assess the influence of the number of subjects and modalities 
on the performance of LICA, employing both simulated multimodal MRI data 
and real multimodal MRI datasets from ABIDE II. The use of simulated data 
enabled us to evaluate the impact of variations in the number of subjects and 
modalities. Real multi-site MRI data were deployed to underscore the benefits of 
multimodal fusion in identifying site-related components and mitigating site 
effects. 

To evaluate the impact of the number of subjects on the LICA results, we 
opted for three distinct component quantities: 10, 20, and 30. For each chosen 
component number (with all simulated components being spatially 
independent), the number of subjects ranged from 40 to 200 (inclusive of 40, 50, 
60, 70, 80, 90, 100, 150, 200). The effectiveness of LICA was determined by 
calculating the correlation between the spatial maps and subject courses 
generated by LICA and those implemented in the simulation. 

We explored the impact of the number of modalities on LICA results from 
two perspectives of view: 1) We repeatedly input the aforementioned simulated 
data (considered as Pseudo multimodal data) as different modalities into LICA 
to ascertain the influence of modality count; 2) We initially established an 
interesting multimodal component by defining a signal variable related to one 
component in each modality at varying levels (Table 8), and considered the 
remaining nine components as non-interest components. This multimodal 
component, derived from LICA, was employed to examine the effects of the 
number of subjects and modalities on LICA. The number of subjects used in this 
context was 100. 

In this study, to match the number of subjects in each site, we employed 
ALFF, fALFF, and ReHo to assess the performance of LICA in the context of 
multimodal data fusion. 
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TABLE 8 Correlation between signal and subject courses and correlation among sub-
ject courses from different modalities.  There is one component related to the 
signal variable in each modality, and the correlation coefficient ranges from 
0.4 to 0.9, with 0.1 intervals. The corresponding correlation coefficients 
among subject courses from different modalities can be seen in the right col-
umn. 

Correlation between signal and subject 
courses 

Correlation among subject courses from 
different modalities 

0.4 0.16 
0.5 0.26 
0.6 0.36 
0.7 0.49 
0.8 0.64 
0.9 0.81 

 

Results 

Our simulation findings revealed that enhancing the number of modalities and 
subjects can improve outcomes when LICA fails to accurately recover spatial 
maps or subject courses. The correlation among subject courses from diverse 
modalities, the number of modalities, and the selection of components for 
decomposition all influence LICA's linking performance. Furthermore, our 
results derived from real-world datasets illustrated the benefits of multimodal 
fusion via LICA, which includes  

• the identification of an increased number of site-related components and  
• the removal of a greater amount of site effects. 
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FIGURE 15 The influence of the number of subjects on recovering spatial maps and sub-
ject courses of LICA.  (A) Given 10 independent components, LICA can suc-
cessfully recover all components from the data with over 40 subjects. How-
ever, there are two correlated components that ought to be independent 
when the subject count is exactly 40; (B) In the presence of 20 independent 
components, LICA can extract all components from the data with more than 
80 subjects and achieve full component independence when the subject count 
exceeds 150; (C) For scenarios with 30 independent components, LICA can 
retrieve all components from the data with over 100 subjects and ensure com-
plete component independence when the number of subjects is greater than 
200. 
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FIGURE 16 The influence of the number of modalities on recovering spatial maps and 
subject loadings  when the number of sources is 30, and the number of sub-
jects is 90. LICA can retrieve a larger number of simulated multimodal com-
ponents when multiple modalities are used compared to a single modality. 

 

FIGURE 17 The influence of the number of modalities on the linking performance.  The 
signal-related components from multiple modalities can not be linked when 
they are weakly correlated (less than 0.16) and can start to be linked with the 
increase of the correlation (larger than 0.25). As the number of modalities in-
creases, LICA begins to link the related components earlier, and the correla-
tion between the corresponding components and signal variable also be-
comes stronger. 
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FIGURE 18 Components from LICA based on a single modality (ALFF, fALFF) and two 
modalities.  (A) The correlation of subject courses among all the components 
generated by LICA on ALFF and fALFF; (B) The spatial maps of the signifi-
cantly related components from ALFF and fALFF; (C) The correlation with 
age from a single modality and two modalities; (D) The correlation with site 
difference from a single modality and two modalities. 

 

FIGURE 19 Group-level analysis for site effects before and after denoising.  As the num-
ber of sites increases, more significantly different regions are related to sites. 
LICA based on multiple modalities can remove more site effects than LICA 
based on a single modality. 
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Research contributions 

This study analyzed the impact of the number of modalities and the number of 
subjects on the results of the LICA method, and explored how to achieve optimal 
performance with LICA. 

Authors’ contributions  

Huashuai Xu proposed the ideas of the whole study, analyzed the data, and 
wrote and revised the manuscript. Tommi Kärkkäinen, Huanjie Li, and Fengyu 
Cong supervised the whole study and revised the manuscript. 

3.4 Article IV: Harmonization of multi-site MRI data with dual-
projection based Linked ICA model  

Huashuai Xu, Yuxing Hao, Yunge Zhang, Dongyue Zhou, Tommi Kärkkäinen, 
Lisa D. Nickerson, Huanjie Li, and Fengyu Cong. Harmonization of multi-site 
MRI data with dual-projection based Linked ICA model. To be submitted, 2023 

Methods 

In the study, we introduce an innovative multimodal harmonization strategy, 
employing a Linked Independent Component Analysis (LICA)-based Dual 
Projection (DP) methodology, crafted meticulously to mitigate the site effects. 
This technique possesses the capability to segregate the signal effects from the 
discerned site effects discretely. For the empirical validation of the proposed 
LICA-DP denoising methodology, we utilized a dataset derived from the Autism 
Brain Imaging Data Exchange II.  

In order to gauge the efficacy of the harmonization methodologies, we 
employ a multitude of techniques, both for the visualization and quantification 
of site effects before and after the harmonization process. Moreover, we appraise 
the harmonization methods concerning their proficiency in maintaining the 
integrity of signal effects. 

Results 

For the structural MRI data, we utilized data from the first 13 sites within the 
ABIDE database and 9 sites in the traveling-subject dataset. Figures 20-23 show 
the results from unimodal MRI data, including the site and signal (Age, sex, 
group differences(ASD and HC)) effects before and after harmonization. LICA-
DP is either equivalent to or surpasses traditional ICA methods in mitigating site-
specific effects while simultaneously retaining the integrity of the biological 
signal.  

Figures 24-27 show the results from unimodal MRI data, including the site 
and signal (Age, sex, group differences(ASD and HC))effects before and after 
harmonization. When data from the ALFF and ReHo modalities are fused, both 
LICA-SP and LICA-DP can achieve superior (or at least equivalent) outcomes 
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regarding removing site effects. In the statistical testing of signals, the results do 
not exhibit significant discrepancies compared to those obtained from unimodal 
analyses. 

 

 

FIGURE 20 Site effects before and after harmonization.  For all three modalities, data 
points tended to cluster by site, indicating the objective existence of site-spe-
cific effects. After harmonization, the distribution of data points became ran-
dom and no longer tended to cluster by site. From the group-level analysis 
results, the impact of site effects was global across the brain. ComBat could 
eliminate site effects, while LICA-SP could partially remove them. Regarding 
ALFF and ReHo metrics, LICA-DP was proficient in eliminating site effects. 
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FIGURE 21 Age effects before and after harmonization.  "Positive" association indicates 
increasing amplitude with increasing age, whereas "Negative" refers to de-
creasing amplitude with increasing age. Associations with age are enhanced 
by LICA-DP and weakened by ComBat. 
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FIGURE 22 Sex effects before and after harmonization.  "Male < Female" refers to signifi-
cantly greater amplitude in females, whereas "Male > Female" refers to sig-
nificantly greater amplitude in males. The sex effects are enhanced by LICA-
DP while weakened by LICA-SP and ComBat. 
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FIGURE 23 Group differences (ASD/HC) before and after harmonization.  Fewer regions 
were found from the data denoised by ComBat and LICA-SP, while LICA-DP 
could increase the significance of the regions related to ASD/HC. 
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FIGURE 24 Site effects before and after harmonization (multimodal).  Combining ALFF 
and ReHo modalities can eliminate site effects more effectively than uni-
modal. However, the mitigation of site effects is worse when ALFF, ReHo, 
and GM modalities are employed concurrently. 

 

 

FIGURE 25 Age effects before and after harmonization (multimodal).  "Positive" associa-
tion indicates increasing amplitude with increasing age, whereas "Negative" 
refers to decreasing amplitude with increasing age. 
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FIGURE 26 Sex effects before and after harmonization (multimodal).  "Male < Female" 
refers to significantly greater amplitude in females, whereas "Male > Female" 
refers to significantly greater amplitude in males. 

 

FIGURE 27 Group differences (ASD/HC) before and after harmonization (multimodal). 
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Research contributions 

This study combined the DP and LICA methods to introduce the LICA-DP 
approach, which is designed to remove site effects from multi-modal magnetic 
resonance data. 

Authors’ contributions  

Huashuai Xu proposed the ideas of the whole study, analyzed the data, and 
wrote and revised the manuscript. Yunge Zhang and Donagyue Zhou 
downloaded the data and preprocessed them. Yuxing Hao contributed to the 
guidance of methods. Tommi Kärkkäinen, Lisa D. Nickerson, Huanjie Li, and 
Fengyu Cong supervised the whole study and revised the manuscript. 
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4 DISCUSSION  

This thesis investigated the harmonization of multi-site MRI data. This chapter 
will discuss our findings on MRI data harmonization methods and some 
limitations in the view of methodology. We will also point out some future 
directions of current research. 

4.1  Findings of multi-site MRI data harmonization methods  

We begin by discussing the performance of the ICA-DP method in the multi-site 
harmonization of unimodal MRI data. Then, we discuss the LICA-DP method's 
performance in harmonizing both single and multimodal data across multiple 
sites. 

4.1.1 ICA-DP 

We proposed the ICA-DP denoising method, which utilizes dual-projection in 
independent component analysis. This method adeptly and thoroughly 
eradicates site-related biases, simultaneously amplifying signal-related details. 
The performance of ICA-DP is particularly notable when the site effects are 
correlated with signal variables. ICA-DP could effectively eliminate site effects 
while enhancing signal-related information, regardless of the correlation 
between site and signal variables. Indeed, our method's enhancement of 
biological signals stems from our approach to dealing with noise components. 
We first regress out the influence of biological signals for each identified noise 
component prior to its application for denoising. As a result, the fraction of 
physiological signals in the denoised data becomes relatively larger, streamlining 
the identification of brain areas genuinely linked to the desired signals via 
statistical tests.  

Based on the results from the simulated data, ICA-SP faces challenges in 
fully negating site interferences when the site-related components are 
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significantly correlated with signal variables. While the GLM-based denoising 
technique is proficient and parallels ICA-DP when the signal and noise variables 
lack significant correlation, GLM displays excessive purification, often sidelining 
signal-relevant details when these variables are highly correlated. ComBat 
surpasses GLM and the traditional ICA method, adeptly eradicating site effects 
and retaining or amplifying some signal effects when there is no correlation 
between signal and site variables. However, ComBat falters in wholly negating 
site effects when these variables overlap, especially when mixed components 
correlate more with the signal. 

Analyzing results from the ABIDE II and traveling-subject datasets, ICA-
DP outperformed both ICA-SP and ComBat in denoising site interferences. 
Significant areas impacted by site effects, which ICA-SP failed to negate fully, 
became undetectable post-ICA-DP and ComBat. Variations between sites in the 
traveling data and internal subject fluctuations across the nine sites in the 
traveling-subject set markedly diminished after denoising with ICA-DP. 
Moreover, subject heterogeneity within the traveling-subject dataset was well 
preserved after denoising with ICA-DP. 

In addition, ICA-DP excelled in enhancing biological variability, such as age, 
sex effects, and group differences between individuals with ASD and healthy 
controls (HC), compared to ICA-SP and ComBat. 1) for structural MRI data, site 
effects hinder the detection of true age and group effects. However, after 
denoising with ICA-SP, ICA-DP, and ComBat, the true age effects on GM are 
discovered. Of these, ICA-DP identifies the most age-linked regions, strongly 
enhancing the negative correlation between age and GM. The median GM and 
age relationship improves from -0.4746 (non-denoised) to -0.8493 after denoising 
with ICA-DP (Figure 7). Moreover, ICA-DP enhances group differences 
(ASD/HC) (Figure 8). 2) for ALFF and ReHo, ICA-DP enhances the assessment 
of biological signals, including the effects of age, sex, and group difference 
(ASD/HC) (Figures 11-14).  

These enhancements in biological variability may be attributed to the larger 
proportion of site-related components chosen for denoising with ICA-DP, which 
increases the weights of the signal of interest, making detection more 
straightforward. Additionally, other variables of interest are effectively 
preserved by incorporating them into the first projection of the ICA-DP denoising 
method (Eq. (10)). As a result, ICA-DP stands out as the premier technique for 
negating site effects while retaining biological variations among the discussed 
methods. 

Moreover, unlike ICA-SP, ICA-DP's efficacy in denoising site effects and 
enhancing signals remains unswayed by the number of ICA decomposition 
components chosen. It consistently eradicates site biases and amplifies signals, 
irrespective of the component count chosen. 

4.1.2 LICA-DP 

LICA can be applied to single-modality data, uniquely differentiating it from the 
traditional ICA through an intrinsic characteristic: a definitive upper limit on the 
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number of components it can obtain. Intriguingly, LICA may not always achieve 
the anticipated number of components, introducing a layer of complexity in its 
application. 

LICA skillfully intertwines dimensionality reduction within the standard 
ICA process, harnessing the prowess of components' Automatic Relevance 
Determination (ARD) priors, as (Roberts, 2001) expounded. This integration 
ensures that components deemed irrelevant—or part-components—are 
judiciously excised throughout the computational journey, thereby 
circumventing further analysis of zero-weight spatial maps, optimizing 
computational resources, and elevating the model's efficiency (Groves et al., 
2011). In a comparative study involving our ICA-DP research (Hao et al., 2023; 
Xu, Hao, et al., 2023), where the number of components for ICA decomposition 
was set to 100, 150, and 200, LICA decomposition intriguingly yielded a scant 99 
components for ALFF data, 83 for ReHo data, and a mere 80 for GM data. 

Regarding denoising performance, LICA-DP mirrored ICA-DP in 
eradicating site effects from ALFF and ReHo data, adeptly obliterating site-
specific effects. Conversely, its performance wavered with GM data, failing to 
fully eradicate site-specific effects, which appear intricately linked to the 
suboptimal number of components derived through LICA. A subsequent 
adjustment of mixed components for signal effects (Eq.12) revealed that these 
components persisted and correlated with site-specific variables post-denoising 
procedure (Eq.13). Thus, the inability to fully cleanse GM data of site-specific 
effects roots itself in the limited components derived through LICA, thereby 
impacting the denoising process. Given that LICA-SP does not address mixed 
components, it inherently cannot fully expunge site-specific effects. Conversely, 
the ComBat method consistently and successfully eliminates site-specific effects. 

Results underscore that LICA-DP is adept at purging site-related effects 
while concurrently amplifying the detection of biologically relevant signals, 
including effects related to age, sex, and group differences (ASD/HC). 

Despite LICA-SP's inability to fully extinguish site-specific effects, it 
outperforms in retaining signal effects compared to our previous ICA-SP results 
(Hao et al., 2023; Xu, Hao, et al., 2023). This is markedly observable in testing age 
effects on GM and ALFF data, where LICA-SP mirrors results nearly identical to 
those garnered using LICA-DP. 

Originally conceived for the fusion analysis of multimodal data, the LICA 
method has paved the way for researchers to discern common features across 
diverse modalities. We have delved deeply into exploring modality quantity and 
its ensuing impact on LICA outcomes (Xu, Li, et al., 2023). 

When data from ALFF and ReHo modalities are conjointly integrated, both 
LICA-SP and LICA-DP exhibit a capability to achieve, at a pinnacle, superior or 
at least equivalent outcomes in proficiently mitigating site effects. This is 
especially evident in ReHo, where even LICA-SP manages to obliterate the site 
effects entirely. This remarkable capability is attributed to the fusion of two 
modalities (ALFF and ReHo), leading to a more abundant component spectrum 
that robustly correlates with site effects. However, caution arises during the 
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statistical testing of signals: the utilization of a more significant component 
number to eliminate central effects concurrently diminishes signal variables (Age, 
Sex, and Group differences between ASD and HC). Contrarily, our LICA-DP 
method first regresses the signal contribution used in the denoising components, 
subsequently deploying it to eradicate site effects, thereby averting potential 
signal damage. 

4.2 Limitations 

It is essential to note that a limitation of our proposed harmonization method 
arises when the noise variable exhibits a strong relationship with the signal 
variable. In such cases, ICA-DP may struggle to eliminate the intersection effects 
of both site and signal variables. This limitation is intrinsic to the inherent 
correlation between the noise and signal variables. However, it is worth 
mentioning that in our simulations, high correlation values between noise and 
signal variables were deliberately chosen, and such situations are unlikely to 
occur frequently in real data studies. 

Also, our DP-based methods focus on preserving the desired biological 
signals while potentially neglecting the preservation of certain non-target 
variables. 

4.3 Future directions 

Differences among sites pose a significant challenge when consolidating data 
from various scanners. Consequently, accurately identifying and removing 
scanner-related noise from MRI data is crucial for enhancing both the accuracy 
and reliability of data-sharing studies. Our futural research aims to identify 
stable, site-specific effects, thereby contributing to overcoming this barrier.  

In addition, we plan to develop more accurate statistical methods to explore 
the specific contribution of different scanner parameters to specific site effects. 
This work is crucial for merging multi-site MRI data. It is fundamental to reveal 
the mechanism of site effects on MRI data and to develop the next-generation 
version of MRI data harmonization. 

Our ongoing research is primarily dedicated to advancing the development 
of our methodology. Looking ahead, we are excited to direct our efforts toward 
practically implementing these methodologies in various clinical applications. 
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5 CONCLUSION  

Integrating multi-site MRI data can improve the statistical power and the 
reliability and reproducibility of neuroimaging research. However, the presence 
of site effects complicates data analysis and makes it difficult to interpret the 
results. Removing these effects is crucial for successful multi-site data fusion. 
Additionally, preserving signals of interest is critical in any denoising strategy. 
Traditional ICA methods can not remove site effects inadequately or preserve the 
signal effects. To address these limitations, we propose a dual-projection data-
driven method based on ICA that effectively eliminates noise while preserving 
the signal of interest.  

ICA-DP method has effectively removed site effects while maintaining the 
integrity of biological variations. By harmonizing multi-site MRI data, our 
method bolsters the robustness and precision of analyses. This approach greatly 
uplifts the reliability of neuroimaging investigations, marking ICA-DP as a 
promising asset for upcoming research endeavors. A limitation of ICA-DP is that 
it cannot eliminate the intersection effects related to both site and signal variables 
when the site variable is strongly related to the signal variable (as illustrated in 
Figure 4); despite the harmonization, the refined data remain associated with site 
effects due to the intrinsic correlation between the site influences and signal 
elements. 

Compared to unimodal, the advantage of multimodal fusion is that it can 
capitalize on the strength of each modality in a joint analysis. The estimation of 
site effects utilizing LICA on multimodal MRI data yields a more accurate model 
than those produced by single-modality ICA. This precision improvement 
reinforces the LICA method's effectiveness in accurately modeling site effects. So, 
we implement DP in LICA and denoise site effects from multi-modality data. The 
LICA-DP method underscores a significant advancement in eliminating site 
effects while preserving biological variability. 

We emphatically advocate for researchers to adopt the ICA-DP and LICA-
DP techniques to harmonize MRI data. 
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YHTEENVETO (SUMMARY IN FINNISH) 

Integroimalla usean paikan MRI-tietoja voidaan parantaa tilastollista tehoa sekä 
neurokuvantamistutkimusten luotettavuutta ja toistettavuutta. Kuitenkin paik-
kakohtaisten vaikutusten esiintyminen vaikeuttaa datan analysointia ja tulosten 
tulkintaa. Näiden vaikutusten poistaminen on välttämätöntä onnistuneelle 
usean paikan datan yhdistämiselle. On myös kriittistä säilyttää kiinnostuksen 
kohteena olevat signaalit missä tahansa kohinanpoistomenetelmässä. Perinteiset 
riippumattomien komponenttien analyysia (ICA) käyttävät menetelmät eivät ky-
kene poistamaan paikkakohtaisia vaikutuksia riittävästi tai säilyttämään signaa-
livaikutuksia. Ratkaistaksemme nämä rajoitukset ehdotamme ICA:n pohjalta 
DP-ICA-kaksiprojektiomenetelmää. 

ICA-DP-menetelmä poistaa tehokkaasti paikkakohtaiset vaikutukset säilyt-
täen biologisen vaihtelun. Yhdistämällä usean paikan MRI-tiedot, menetel-
mämme mahdollistaa robustimman ja tarkemman analyysin. Tämä lähestymis-
tapa parantaa merkittävästi neurokuvantamistutkimusten validiteettia ja on lu-
paava työkalu tulevia tutkimuksia varten. 

Väitöskirjassa esitetään myös uudenlainen monimuotoinen kohinanpoisto-
menetelmä paikkavaikutusten poistamiseksi, jossa kaksiprojektiomenetelmä (DP) 
yhdistetään linkitetyn riippumattomien komponenttien analyysin (LICA) kanssa. 
Tämän etuna on, että näin voidaan hyödyntää aineiston eri modaliteettien (esiin-
tymismuotojen) vahvuuksia yhteisessä analyysissä. Paikkavaikutusten arvioimi-
nen LICA:lla monimuotoisten MRI-tietojen pohjalta tuottaa tarkemman mallin 
kuin mitä saataisiin yksimuotoisen ICA:n avulla. Tämä tarkkuuden parantumi-
nen korostaa LICA-menetelmän tehokkuutta paikkavaikutusten tarkassa mallin-
tamisessa. LICA-DP-menetelmä on merkittävä edistysaskel paikkavaikutusten 
eliminointimenetelmissä, jotka samalla säilyttävät mittausaineiston biologisen 
vaihtelun. 

Suosittelemme voimakkaasti, että tutkijat käyttävät ICA-DP- ja LICA-DP-
menetelmiä MRI-datan kohinanpoistoon. 
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Abstract 

Combining magnetic resonance imaging (MRI) data from multi-site studies is a popular 

approach for constructing larger datasets to greatly enhance the reliability and reproducibility 

of neuroscience research. However, the scanner/site variability is a significant confound that 

complicates the interpretation of the results, so effective and complete removal of the 

scanner/site variability is necessary to realize the full advantages of pooling multi-site datasets. 

Independent component analysis (ICA) and general linear model (GLM) based harmonization 

methods are the two primary methods used to eliminate scanner/site effects. Unfortunately, 

there are challenges with both ICA-based and GLM-based harmonization methods to remove 

site effects completely when the signals of interest and scanner/site effects-related variables are 

correlated, which may occur in neuroscience studies. In this study, we propose an effective and 

powerful harmonization strategy that implements dual projection (DP) theory based on ICA to 

remove the scanner/site effects more completely. This method can separate the signal effects 

correlated with site variables from the identified site effects for removal without losing signals 

of interest. Both simulations and vivo structural MRI datasets, including a dataset from Autism 

Brain Imaging Data Exchange II and a traveling subject dataset from the Strategic Research 

Program for Brain Sciences, were used to test the performance of a DP-based ICA 



 

 

harmonization method. Results show that DP-based ICA harmonization has superior 

performance for removing side effects and enhancing the sensitivity to detect signals of interest 

as compared with GLM-based and conventional ICA harmonization methods. 

Keywords: dual projection, harmonization, independent component analysis, magnetic 

resonance imaging, multi-site, site effects 

 

1 Introduction 

It is now common practice to pool multi-site magnetic resonance imaging (MRI) datasets to 

study brain biomarkers of neuroscience, neuropsychiatry, and neurology to promote rigor and 

reproducibility of results (Button et al., 2013; Eickhoff et al., 2016; Van Horn & Toga, 2009). 

However, combining multiple datasets does introduce site-related effects, which confounds 

effects of interest, and complicates the interpretation of the final results (Casey et al., 1998; 

Focke et al., 2011; Friedman et al., 2008; Pohl et al., 2016; Takao et al., 2011; Venkatraman et 

al., 2015; Vollmar et al., 2010; Wegner et al., 2008; Zivadinov & Cox, 2008). Site-related effects 

arises from differences in scanners manufacturers, field strengths, hardware, software, pulse 

sequences, quality control, and data quality across sites (Jovicich et al., 2009). It has been 

shown that differences in acquisition parameters and software and hardware upgrades during 

data collection using the same scanner have non-negligible effects on almost all image-derived 

phenotypes from structural images (such as cortical surface and gray matter volume), diffusion-

weighted images (such as diffusion tensor image (DTI) measures), and functional MRI (fMRI) 

data (Groves et al., 2011; Li et al., 2020). Hence, effective removal or deconfounding of site-

related variability from the MRI data is a critical step to ensure the accuracy and reproducibility 

of findings generated from combined datasets.   

Several approaches have been proposed for the harmonization of multi-site MRI data, 

including methods based on the general linear model (GLM) (Fennema-Notestine et al., 2007; 

Glover et al., 2012; Venkatraman et al., 2015), and data-driven unsupervised learning methods 

such as independent component analysis (ICA) (Chen et al., 2014; Li et al., 2020) and recently 

proposed deep learning methods (C Monte-Rubio et al., 2022; Dinsdale et al., 2021; Tian et al., 

2022). Two of the most popular methods to eliminate or minimize the site-related effects are 

based on GLM and ICA (Chen et al., 2014). GLM-based harmonization method is easy to 

implement and often used in multi-site MRI data studies to minimize the site-related effects, in 

this case, it utilizes site/study variables as covariates of no interest in group-level GLM analysis 

to control for site-related effects. Fortin et al. (Fortin et al., 2017) have adapted a GLM-based 

technique called ComBat (Johnson et al., 2007), an empirical Bayesian method for data 

harmonization that is popular in the field of genetics, to remove unwanted variation induced by 

sites while preserving the signal-related variation in neuroimaging studies. ComBat has been 

applied to harmonize DTI measures (Fortin et al., 2017), cortical thicknesses and functional 

connectivity measures (Yu et al., 2018), magnetic resonance spectroscopy measures (T. K. Bell 



 

 

et al., 2022), and positron emission tomography (PET) outcomes (Orlhac et al., 2018) showing 

good performance for removing site effects. ICA is an unsupervised data-driven statistical 

method that factorizes or decomposes the image data into a set of statistically independent non-

Gaussian components reflecting different sources that generate the measured imaging data. And 

the site-related components can be removed by regressing them from the original data to 

generate a harmonized clean dataset for further analysis (Chen et al. 2014). In this case, the ICA 

has been used to do a data-driven estimation of the site/scanner-related covariates of no interest 

that are regressed out of the data rather than creating covariates to model the site-scanner effects 

based on strong assumptions (e.g., regressors are used that assume a constant effect for each 

site/scanner, which ignores within-site/data to day variations in these effects). ICA is typically 

applied to harmonize individual MRI modalities, however, our previous work (Li et al., 2020) 

proposed a harmonization method for multi-modal imaging measures that implemented linked 

ICA (LICA) (Groves et al., 2011) as a novel approach to eliminate scanner effects from multi-

study data. LICA simultaneously decomposes the multi-modal imaging data (for example, 

structural plus diffusion MRI-derived measures) into a set of multi-modal components and a 

set of subject loadings quantifying the strength of each multi-modal component in each 

individual, with components reflecting true signals of interest as multi-modal covariance 

patterns, as well as artifacts and variability related to uninteresting effects like scanner and site 

differences. We found that several of the resulting LICA components from an analysis of multi-

study data with scanner effects were associated with scanner variations and that these patterns 

could be effectively regressed from the data to obtain harmonized data relatively free from 

scanner effects. We showed that multi-modal ICA-based harmonization was more effective at 

removing scanner-related effects compared with the conventional GLM and single-modality 

ICA harmonization methods. The reason for its superior performance is that even though all 

three approaches involve regression to remove scanner effects from the data, the data-driven 

estimates of the scanner effects from LICA of multi-modal MRI data provided more accurate 

model of site effects than assuming a constant effect or estimating effects based on single 

modality ICA to use as nuisance covariates for harmonization. 

In the present study, we aim to address another limitation of current methods for 

harmonization scanner/site effects, namely existing methods for harmonization site/scanner 

effects ignore the possibility of correlations between these effects and the effects of interest. 

For the conventional GLM approach, site-related variables are included as covariates of no 

interest or may be regressed out of data prior to higher-level statistical modeling, which may 

lead to the removal of interesting signals that are correlated with scanner/site variables and to 

weaker specificity of harmonization. While ComBat tries to preserve the signal-related 

variation when harmonization scanner/site effects, similar to the conventional GLM approach, 

it also assumes a constant effect for all datasets collected from the same site or the same scanner 

state, thus also ignoring the day-to-day variations in scanner performance. While ICA and LICA 

can identify scanner/site effects that capture day to day variations in scanner performance (Li 



 

 

et al., 2020), both approaches are vulnerable to identifying components that reflect a mixture 

of signal and scanner/site effects, rather than separating the effects into two separate 

components. In our previous work, to retain signals of interest, only components that were 

associated with site effects and not signals of interest (e.g., had subject loadings that correlated 

only with site variables and not variables of interest) were removed from the data while mixed 

components were retained as a conservative approach to harmonization (Chen et al., 2014; Li 

et al., 2020). One possibility to address this limitation for ICA-based techniques is to run the 

ICA with several different model orders to identify a decomposition with stable pure site effects 

related components not mixed with signals of interest. In practice, it is challenging to do this as 

different mixtures may arise at different model orders such that it may not be possible to have 

full separation at any model order. 

To solve this problem for ICA-based methods, we propose a new ICA with dual-projection 

(ICA-DP) technique for harmonization scanner/site effects. In this study, we focus on single 

modality ICA, with extension to multi-modal ICA to be done in future work. For ICA-DP, 

mixed components from single-modality ICA are separated into a part related to signal only 

and a part related only to site effects by applying a projection procedure. The site effects 

extracted from the mixed components via the projection step are combined with the other ICA 

components that reflected only site/scanner variance and are then removed from the data using 

a second projection procedure. Our new method is tested using simulated MRI data and in vivo 

multi-site datasets to assess the performance of ICA-DP compared to conventional ICA and 

ComBat harmonization methods.

 

2 Methods 

2.1 Dual-projection harmonization improvement  

2.1.1 Traditional ICA-based harmonization 

ICA decomposition model for group structural MRI data can be expressed as: 

𝐘 = 𝐋𝐒,                                                                  (1) 

where 𝐘 ∈ ℝ𝑀×𝑁 denotes the original data to be decomposed, 𝐒 ∈ ℝ𝑅×𝑁 contains independent 

spatial maps and 𝐋 ∈ ℝ𝑀×𝑅 contains their corresponding loadings. And 𝑀, 𝑁 and 𝑅 denote the 

number of subjects, voxels and components, respectively.  

When removing site effects of multi-site structural MRI data, the original ICA-based 

harmonization methods (Chen et al., 2014; Li et al., 2020) only eliminate the pure site-related 

components (only related to site effects) to avoid discarding useful information such as 

diagnoses or symptom measures. For comparison, we designate this ICA-based harmonization 

method as ICA-SP (single projection) as it only uses one step of projecting: 

𝐘𝑐𝑙𝑒𝑎𝑛
𝐼𝐶𝐴−𝑆𝑃 =  𝐘𝑜𝑟𝑖𝑔 − 𝐋𝑁 ∙ 𝑝𝑖𝑛𝑣(𝐋𝑁) ∙ 𝐘𝑜𝑟𝑖𝑔 ,                                   (2) 

where 𝐋𝑁 is the loadings of pure site effects components (components related to site effects) 



 

1https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlob

al/Parcellations/ 

 

and 𝐘𝑐𝑙𝑒𝑎𝑛
𝐼𝐶𝐴−𝑆𝑃 is the harmonized data derived from ICA-SP harmonization methods.  

Though it may preserve signal-related information well, it is too soft to remove the site 

effects as it does nothing with the mixed components and is more than likely to find site effects 

in its harmonized data.  

2.1.2 Proposed ICA-DP harmonization 

The ICA-DP harmonization procedure is summarized in Fig. 1. ICA-DP is inspired by the 

dual-regression approach for projecting a participant's fMRI data onto a set of spatial maps 

derived from ICA of multi-subject fMRI data to identify subject-level spatial maps 

corresponding to each group level component (Beckmann et al., 2009; Filippini et al., 2009; 

Nickerson et al., 2017).

First, the subject series is decomposed by ICA, and the resulting subject loadings 𝐋, of each 

component that reflects the strength of the corresponding variables represented in the IC map 

(could be interesting signal, scanner/site effects, or a mixture) are labeled as loadings for pure 

site effects components 𝐋𝑁 , pure signal components 𝐋𝑆 , or mixed components 𝐋𝑀  by 

calculating the correlations between the loadings and all the signal and site effects variables 

(i.e., components exhibiting significant associations p<0.05 are identified as signal- and/or site 

effects-related ones).  

 

Fig. 1. The procedures of ICA-DP harmonization method. (a) Identifying the loadings extracted by ICA that related 

to site effects variables (including mixed ones that significantly correlated to both site effects and signal, and the 

ones only significantly correlated to site effects). (b) Correcting the mixed loadings to only site effects-related ones 

(𝐋𝐶𝑁) by projecting out signal-related information. (c) Obtaining cleaned data by removing the integral site effects-

related components (𝐋𝑁 , 𝐋𝐶𝑁). 

The first projection procedure is used to separate the signal effects out from 𝐋𝑀 as below: 

𝐋𝐶𝑁 =  𝐋𝑀 −  𝐕𝑆 ∙ 𝑝𝑖𝑛𝑣( 𝐕𝑆)  ∙ 𝐋𝑀 ,                                                 (3) 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/


 

1https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlob

al/Parcellations/ 

where 𝐕𝑆 denotes the variables of interest (signals to be preserved, e.g., age, gender or health 

condition), 𝐋𝐶𝑁 denotes the corrected site effects contributions to the mixed components, and 

𝑝𝑖𝑛𝑣(∙) denotes the Moore-Penrose inverse (pseudoinverse) of a non-square matrix. Thus, the 

signal information is projected out from 𝐋𝑀 and we can identify the site effects for the mixed 

components.  

Then [𝐋𝑁 , 𝐋𝐶𝑁]  represent the total site-related effects present in the data, which are then 

cleaned from the subject series via a second projection procedure:  

𝐘𝑐𝑙𝑒𝑎𝑛
𝐼𝐶𝐴−𝐷𝑃 =  𝐘𝑜𝑟𝑖𝑔 − [𝐋𝑁 , 𝐋𝐶𝑁] ∙ 𝑝𝑖𝑛𝑣([𝐋𝑁, 𝐋𝐶𝑁]) ∙ 𝐘𝑜𝑟𝑖𝑔,                               (4) 

where 𝐘𝑜𝑟𝑖𝑔 denotes the subject series of spatial maps and 𝐘𝑐𝑙𝑒𝑎𝑛
𝐼𝐶𝐴−𝐷𝑃 denotes the harmonized 

MRI data free from site/scanner effects that can be used for further analysis.  

 

2.2 Study Data 

2.2.1 Simulated Data 

The simulated structural MRI data, including 100 subjects, were generated in this study. For 

each subject, the data was generated by computing 10 spatial maps and one set of ground truth 

subject loadings (Eq. 1). Each component map was multiplied by the corresponding subject 

loading, and then they were added together to obtain the simulated MRI data for each subject. 

The spatial maps were gotten by combining different areas of the standard brain template as 

shown in Fig. 21. To make our simulated data much closer to real MRI data, two kinds of spatial 

maps were simulated, one is all the spatial maps of 10 components were spatially independent 

and the other is two components' spatial maps were overlapped (Fig. 2). For each condition, 

100 subjects were generated, and the subject-specific data shared the same spatial maps, and 

the difference was the weights in its loadings corresponding to the spatial maps. Three different 

types of relationships between subject loadings and signal/site effects variables were simulated 

in this study: (1) signal variable was not significantly correlated to site effects variables; subject 

loadings were linearly correlated to signal and (or) site effects variables (Table 1). Among the 

10 components, the first four components were significantly related to signal and (or) site 

effects variables, and the other components were not related to the variables we are interested 

in. Components 1 and 2 are mixed components, which are related with both signal and site 

effects variables. The difference is that component 1 is much more related to signal, and 

component 2 is more correlated to site effects. Component 3 is pure site effects components, 

which only significantly correlated with site effects variable. Component 4 is a pure signal 

component that only significantly correlated with signal variable; (2) Signal variable is 

significantly correlated to site effects variable, subject loadings are linearly correlated to signal 

and (or) site effects variables (Table 2). Since the signal variable was significantly correlated to 

the site effects variable, there were no pure signal or site effects components under this 

condition, so we selected the first 2 components as mixed components, component 1 is much 

more related to the signal, and component 2 is much more correlated to site effects. Three 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/


  

 

different correlation levels (from low to high) between signal and site effects variables were 

simulated in this study to show the harmonization power of ICA-DP.  

 

Fig. 2. Ten independent brain spatial maps used to simulate MRI data. Situation1: there is no overlap among all the 

spatial maps; Situation 2: The first two components were spatially overlapped, and the other 8 components share the 

same maps with situation 1. 

Table 1 Pearson correlation coefficients and corresponding p values by correlating variables and loadings.  

#Component Signal Variable (r/p) Site Effects Variable (r/p) 

1 0.9425(<0.0001) 0.3999(<0.0001) 

2 0.2999(0.0024) 0.9728(<0.0001) 

3 -- 0.5999(<0.0001) 

4 0.5999(<0.0001) -- 

Note: Component loadings are linearly correlated with signal and site effects variables, while the signal variable is 

not significantly correlated to the site effects variable. Components 1 (more related to signal) and 2 (more related 

to site effects) are mixed components. Component 3 is only related to the site effects variable, and component 4 is 

only related to the signal variable. The relationship of loadings and variables is expressed by r-value and p-value. -

- denotes not significantly correlated. 



  

 

Table 2 Pearson correlation coefficients and corresponding p values by correlating variables and loadings.  

Correlation between Signal 

and Site Effects 
#Component Signal Site effects 

0.2999 (2.4e-3) 1 0.7946(<0.0001) 0.2412(<0.0001) 

 2 0.2590(0.0093) 0.7959(<0.0001) 

0.4999 (<0.0001) 1 0.7962(<0.0001) 0.4279(<0.0001) 

 2 0.3447(0.0005) 0.7859(<0.0001) 

0.6999 (<0.0001) 1 0.7957(<0.0001) 0.5932(<0.0001) 

 2 0.4993(<0.0001) 0.7761(<0.0001) 

Note: Component loadings are linearly correlated with signal and site effects variables, while signal variable is 

significantly correlated to site effects variable. Components 1 (more related to signal) and 2 (more related to site 

effects) are mixed components. The relationship of loadings and variables is expressed by r-value and p-value. Three 

different correlation levels between signal and site effects variables are simulated in this study with r-values of 

0.2999 (p=0.0024), 0.4999 (p=1.2e-7), and 0.6999 (p=5.6e-16), corresponding to low, medium and high correlation 

levels. 

2.2.2 Multi-site MRI data from ABIDE II 

High spatial resolution structural MRI data of 606 subjects (including Autism Spectrum 

Disorder (ASD) patients: 225, Healthy Controls (HC): 381) were obtained from Autism Brain 

Imaging Data Exchange II dataset (ABIDE II) (http://fcon_1000.projects.nitrc.org/indi/abide/ 

abide_II.html). The data were collected from 13 different sites, all the data were acquired from 

3T scanner with different manufacturers (Siemens, Philips, and GE) (Di Martino et al., 2017). 

The acquisition parameters: scanner/site and imaging-related details, including repetition time 

(TR), echo time (TE), flip angle (FA), and voxel size in Table 3. The demographic information: 

ASD/HC, gender, and age are summarized in Table 4. Subjects with ASD could be divided into 

two categories: ASD only and ASD with comorbidity (Attention-Deficit/Hyperactivity 

Disorder, anxiety or others) (Di Martino et al., 2017). 

Table 3 Scanning parameters and demographic information of the multi-site ABIDE II data.  

Sites Scanners TR/TE (ms) FA (degree) Voxel Size 

EMC GE MR750 1664/4.24 16 0.9×0.9×0.9 

ETH PhilipsAchieva 3000/3.9 8 0.9×0.9×0.9 

GU Siemens TriTim 2530/3.5 7 1×1×1 

IU Siemens TriTim 2400/2.3 8 0.7×0.7×0.7 

KKI PhilipsAchieva 3500/3.7 8 1×1×1 

KUL PhilipsAchieva 2000/4.6 8 1×1×1.2 

OHSU Siemens TriTim 2300/3.58 10 1×1×1.1 

ONRC Siemens Skyra 2200/2.88 13 0.8×0.8×0.8 

SU GE SIGNA 5.9/1.8 11 1×1×1 

UCD Siemens TriTim 2000/3.16 8 1×1×1 

UCLA Siemens TriTim 2300/2.86 9 1×1×1.2 

UM GE Healthcare -/- 12 1×1×1 

USM Siemens TriTim 2300/2.91 9 1×1×1.2 

Note: The data were collected from 13 different sites: Erasmus University Medical Center (EMC), ETH Zürich 

(ETH,), Georgetown University (GU), Indiana University (IU), Kennedy Krieger Institute (KKI), Katholieke 

Universiteit Leuven (KUL), Oregon Health and Science University (OHSU), Olin Neuropsychiatry Research Center 

(ONRC), Stanford University (SU), University of California Davis (UCD), University of California Los Angeles 

(UCLA), University of Miami (UM), University of Utah School of Medicine (USM). 

http://fcon_1000.projects.nitrc.org/indi/abide/%20abide_II.html
http://fcon_1000.projects.nitrc.org/indi/abide/%20abide_II.html


  

 

In this study, the site differences are defined as nuisance variables to eliminate, while group 

differences (ASD/HC), age and gender are regarded as signal variables. The correlation 

coefficients among these variables are summarized in Table 5. Since site differences are 

categorical variables and calculating the correlation coefficients between categorical variables 

and numeric variables directly is not achievable, we used ANOVA to calculate the significant 

levels of signal variables and site effects variables to identify the independent components 

related to site effects significantly. For ICA analysis, the components that only significantly 

correlated to site variables were regarded as pure site effects components, and the components 

that significantly correlated to both site and signal variables were regarded as mixed 

components. 

Table 4 Demographic information of the multi-site ABIDE II data collected from 13 sites.  

Sites ASD/HC ASD with comorbidity Male/Female Age Range (Mean) Full IQ Standard Score (Mean) 

EMC 18/20 11 31/7 6.40~10.66 (8.28) -- 

ETH 8/17 -- 25/0 13.83~29.42 (22.43) 82~133 (112.84) 

GU 33/43 -- 51/25 8.06~13.88 (10.74) 92~149 (119.17) 

IU 18/18 -- 28/8 17~54 (24.61) 80~135 (116.36) 

KKI 32/133 29 103/62 8.02~12.99 (10.36) 83~143 (113.26) 

KUL 7/0 1 7/0 18~25 (21.71) 73~146 (103.86) 

OHSU 33/51 23 52/32 7~15 (10.94) 72~140 (113.11) 

ONRC 16/29 5 32/13 18~31 (23.24) 86~146 (111.76) 

SU 15/17 2 29/3 8.42~12.99 (10.99) 93~151 (115.31) 

UCD 13/13 4 19/7 12~17.83 (15.03) 83~128 (107.96) 

UCLA 12/12 -- 19/5 7.75~15.03 (11.04) 78~141 (107.96) 

UM 7/12 -- 14/5 7.3~14.3 (10.32) 98~144 (115.72) 

USM 13/16 -- 24/5 9.12~38.86 (21.21) 73~144 (108.5) 

 

Table 5 The relationship of signal and site effects variables for real MRI data (p values). 

Correlation Site ASD vs HC Age Gender 

Site <0.0001 <0.0001 <0.0001 0.0004 

ASD vs HC <0.0001 <0.0001 - <0.0001 

Age <0.0001 - <0.0001 - 

Gender 0.0004 <0.0001 - <0.0001 

 

2.2.3 Traveling subjects 

To further validate the site effects removing efficiency of ICA-DP, the high spatial resolution 

structural MRI data from a traveling-subject dataset including 9 healthy participants (all males, 

age: 27±2.6) scanned at 12 different sites from the DecNef Project Brain Data Repository 

(https://bicr-resource.atr.jp/srpbsts/) were used in this study. For T1-weighted MRI data of the 

12 different sites, there were two phase-encoding directions (PA and AP), three MRI 

manufacturers (Siemens, GE, and Philips) with seven scanner types (TimTrio, Verio, Skyra, 

Spectra, MR750W, SignaHDxt, and Achieva) and four channels per coil (8, 12, 24, and 32) 

(Maikusa et al., 2021; Tanaka et al., 2021). Scanning parameters, including repetition time (TR), 

echo time (TE), flip angle (FA), and voxel size, are summarized in Table 6. Three sites (i.e., 

ATT, UTO, and YC2) were excluded for harmonization analysis because they contain duplicate 

data (there are 7 duplicate images in ATT and ATV, 2 same images within both YC2 and UTO). 



  

 

As the images from this dataset are the same groups under different sites, site effects variables 

and subject variables (including subject labels, age, etc.) are uncorrelated.  

Table 6 Scanning parameters of the traveling-subject dataset.  

Sites Scanners TR/TE (ms) FA (degree) Voxel Size 

ATT SiemensTimTrio 2300/2.98 9 1×1×1 

ATV Siemens Verio 2300/2.98 9 1×1×1 

COI Siemens Verio 2300/2.98 9 1×1×1 

HKH Siemens Spectra 1900/2.38 10 0.8×0.75×0.75 

HUH GE Signa HDxt 6788/1.928 20 1×1×1 

KPM Philips Achieva 7.1/3.31 10 1×1×1 

KUS Siemens Skyra 2300/2.98 9 1×1×1 

KUT SiemensTimTrio 2000/3.4 8 0.9375×0.9375×1 

SWA Siemens Verio 2300/2.98 9 1×1×1 

UTO GE MR750W 7.7/3.1 11 1×1.0156×1.0156 

YC1 Philips Achieva 6.99/3.176 9 1×1×1 

Note: The datasets include 9 healthy subjects undergoing T1-weighted MRI scans at 12 different sites, and all of 

them used 3T scanners and the same acquisition parameters but with different manufacturers and hardware versions 

(Siemens, GE, and Philips). 

 

2.3 Data analysis 

For both the ABIDE II dataset and the traveling dataset, the modulated gray matter (GM) 

images were analyzed with FSL-VBM (Douaud et al., 2007) 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ FSLVBM), an optimized VBM protocol (Good et al., 

2001) carried out with FSL tools (Smith et al., 2004). First, structural images were brain-

extracted and grey matter-segmented before being registered to the MNI 152 standard space 

using non-linear registration (Andersson et al., 2007). The resulting images were averaged and 

flipped along the x-axis to create a left-right symmetric, study-specific grey matter template. 

Second, all native grey matter images were non-linearly registered to this study-specific 

template and "modulated" to correct for local expansion (or contraction) due to the non-linear 

component of the spatial transformation. The modulated GM images were then smoothed with 

an isotropic Gaussian kernel with a sigma of 3 mm.  

 

2.4 Comparison of ICA-DP with other harmonization methods 

General linear model (GLM) harmonization(Maikusa et al., 2021; Venkatraman et al., 

2015; Yamashita et al., 2019) and ComBat harmonization(Fortin et al., 2017) are two main 

model-baesd methods for removing site effect differences (see the Supplementary Information 

for detailed descriptions of these methods). To examine the advantages of our proposed 

methods, we compared ICA-DP with ICA-SP and these model-based harmonization methods 

in terms of site effect removal and biological variability preservation. 

2.4.1 Site effects removing with ICA-SP/DP methods 

Firstly, ICA was applied to the non-harmonized data to identify pure site effects components, 

pure signal components and mixed components. For simulated data, the Pearson correlation 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/%20FSLVBM


  

 

coefficient between subject loadings and signal (or site effects) variable was used to measure 

the properties of components. Those components only related with the signal variable (p < 0.05) 

were identified as pure signal components; those components only related with the site effects 

variable (p < 0.05) were identified as pure site effects components; those components related 

with the signal and site effects variables (p < 0.05) were identified as mixed components.  

For the real MRI data from ABIDE II and the traveling-subject data, we used the Pearson 

correlation coefficient and ANOVA to identify signal, site effects and mixed components (age, 

gender, and group difference(ASD/HC) were signal variables of interest). The subject loadings 

from one site were divided into one variable, then 13 levels- for ABIDE II and 9 levels- for the 

traveling-subject data. ANOVA was used to calculate the significant levels of subject loadings 

and site differences and identify the independent components related to site effects significantly. 

Finally, those components whose p-values of ANOVA were significant (using Bonferroni 

correction to adjust for multiple comparisons, adjusted p < 0.05) were identified as site effects 

components. The intersection of signal components and site-related components were mixed 

components.  

For the ICA-SP method, only pure site effects components were used to regress the site 

effects. For the ICADP method, all the site effects components, including the mixed ones, were 

used for site effects removal. The site effects extracted from the mixed and pure site effects 

components will be regarded as the integral site-related effects for removal by ICA-DP. All the 

ICA analyses were based on MATLAB and FSL MELODIC.  

2.4.2 Site effects removing with GLM and ComBat methods 

For the GLM-based harmonization method, the site difference is regarded as the covariates 

to be regressed out. For ComBat harmonization method, firstly, ComBat normalizes the data 

by removing the effect of the overall mean and signal variables. Then, using an empirical Bayes 

framework, ComBat estimates additive and multiplicative site effects. The final harmonized 

data could be obtained by removing these site effects and adding the signal-related information 

back. In our study, the performance of GLM was only evaluated with simulation data. The main 

reason is that ComBat is a GLM-derived model and is more powerful than the original GLM 

model. Thus, for real MRI data, only the performance of ICA model and ComBat model were 

compared. 

2.4.3 Evaluating the harmonization results 

For simulated MRI data, ICA was utilized to the non-harmonized and harmonized data to 

extract and identify the signal- and site effects-related components to compare the 

harmonization effects of all the methods.  

For the real MRI data, a set of analyses were applied to show the performance of site effects 

elimination and biological variability preservation (including age effects and group difference 

(ASD/HC)) for all the harmonization methods. For site effects removal evaluation, T-

distributed stochastic neighbor embedding (t-SNE) was used to visualize the heterogeneity 



  

 

related to sites of non-harmonized data and harmonized data by projecting their dominant 

features into a 2D space. We could assess the efficiency of the harmonization methods by 

checking whether there are site-clustered distributions or noticeable inter-site heterogeneities 

after site effects removal. Group F-test was also applied to both the non-harmonized data and 

the harmonized data derived from different methods to test the significant difference regions 

caused by the site difference. For age effects evaluation, the Pearson correlation coefficient 

between median GM and age of all the subjects from ABIDE II data was calculated to show 

their relationship. The median GM per subject was obtained by calculating the median of 100 

regions of interest (using a standard brain template, FSLMNI152_1mm, in FSL parcelled by 

Schaefer et al., 2018). One-way ANOVA analysis was also applied to both the non-harmonized 

data and the harmonized data derived from different methods to test the significant difference 

regions caused by age. For group difference (ASD/HC) evaluation, group t-test was applied to 

both the non-harmonized data and the harmonized data derived from different methods to test 

the significant difference regions caused by the group difference. FWE-corrected p < 0.05 using 

non-parametric permutation testing with threshold-free cluster enhancement (TFCE) (Smith & 

Nichols, 2009) in FSL's Randomise (Winkler et al., 2014), with 5,000 permutations was used 

to find the significant regions.  

 

3 Results 

3.1 Simulation Harmonization Results  

For simulated data, the data were decomposed into 10 components based on the simulation. 

Fig. 3 shows the signal- and site-effects-related components of simulated data extracted by ICA, 

before and after harmonization, when the signal variable is not significantly correlated to the 

site-effects variable. The results are shown in Fig. 3(a) when the spatial maps of all 10 

components are spatially independent. Fig. 3(b) shows the results when the first two 

components are spatially overlapped. When the signal variable is not correlated to the site 

effects variable, the results for spatially independent and spatial dependent data are similar. All 

the harmonization methods could remove pure site effects component #3 and preserve pure 

signal component #4. However, the site effects cannot be removed from the mixed components 

#1 (more related to signal for the original data) and #2 (more related to site effects for the 

original data) by ICA-SP method. The performance of ICA-DP, GLM and ComBat were 

comparable under this situation, the site effects in the mixed components #1 and #2 were 

effectively removed and the signal effect was enhanced by increasing its correlation levels with 

the signal variable after ICA-DP, GLM and ComBat harmonization. The two mixed 

components were combined into one component that is only significantly related with signal 

variables. The site effects-related regions were also removed after harmonization with ICA-DP, 

GLM, and ComBat methods. 



  

 

 
Fig. 3. Harmonization effects on the signal- and site-effects-related components when the signal variable is not 

significantly correlated to the site-effects variable. (a) Results when the spatial maps of all 10 components were 

spatially independent. (b) Results when the spatial maps of the first two components were spatially overlapped. For 

the non-harmonized data, components #1 and #2 are two mixed components, named Mix #1 (more related to the 

signal variable) and Mix #2 (more related to the site effects variable), component #3 is pure site effects component 

and component #4 is a pure signal component. The pure site effects component was removed by all the harmonization 

methods. The two mixed components were combined into one component that is only significantly related with 

signal variable. The site effects-related regions were also removed after harmonization with ICA-DP, GLM, and 

ComBat methods. ICA-SP cannot harmonize the site effects from the two mixed components. 

 



  

 

Fig. 4 shows the harmonization effects on the two mixed components when the signal 

variable significantly correlates to the site effects variable. Three different correlation levels 

between the signal and site effects variables were simulated. Fig. 4(a) shows the results when 

the spatial maps of all 10 components were spatially independent. Fig. 4(b) shows the results 

when the spatial maps of the first two components were spatially overlapped. Among all the 

harmonization methods, only ICA-DP could effectively weaken the site effects while 

strengthening the signal effects when signal and site effects variables are correlated for two 

types of simulated data. 

ICA-SP harmonization could not remove the site effects from the mixed components, as both 

the extracted spatial maps and correlation coefficients between subject loadings and site effects 

variable of the mixed components were not changed after being harmonized by ICA-SP, 

compared to that of non-harmonized data.  

GLM harmonization showed the most aggressive harmonization performance while 

eliminating the site effects-related information at the expense of destroying the signal-related 

information. After being harmonized by GLM, both components #1 and #2 were not correlated 

to site effects variable. Besides, component #2 was not correlated to the signal variable any 

longer and the correlation between component #1 and signal variable also became lower, which 

became more severe with the increasing correlation levels between signal and site effects 

variables.  

ComBat harmonization could not remove the site effects when the mixed component is more 

related with signal effects (component #1) and showed aggressive harmonization performance 

that also removes signal effects when the mixed component was more correlated with site 

effects variable (component #2). When all the 10 components are spatially independent, after 

ComBat harmonization, both spatial maps and subject loadings of the mixed component #1 

were not changed, in contrast, the mixed component #2 was not related with both signal and 

site effects variables any longer. When the two mixed components are spatially overlapped, the 

site effects could not be effectively removed by ComBat when the mixed component was more 

related to signal variable (component #1) and showed aggressive harmonization performance 

that removed some signal effects when the mixed component was more related with site effects 

(component #2). Both spatial maps and subject loadings of the mixed component #1 (more 

related to signal) did not change significantly, in contrast the mixed component #2 (more related 

to site effects) was less correlated to both signal and site effects variables.  

After being harmonized by ICA-DP, the original mixed components #1 and #2 were merged 

into a single component that was more related to signal variable and the site-related effects were 

effectively decreased. Some spatial areas related to site effects were also removed (highlighted 

with white circles), especially for lower correlation between signal and site effects variables. 

Fig. 4(b) shows that the removed spatial parts only cover the unique parts of component #2 and 

do not involve the overlapping parts. Though the merged component after being harmonized 

by ICA-DP was still mixed component, the correlation coefficient between its loading and 



  

 

signal variable was strengthened for all the signal to site effects correlation levels, and the 

correlation levels to site effects variable were contributed by the inherent relationship between 

signal and site effects variables. Thus, there is no site-specific effect in the mixed component 

after being harmonized by ICA-DP. ICA-DP showed the most powerful harmonization 

performance, which could remove all the site-specific effects and enhance the signal effects.  

 

Fig. 4. Harmonization effects on the two mixed components when the signal variable is significantly correlated to 

the site effects variable. Mix #1 is more related to the signal variable, and Mix #2 is more related to the site effects 

variable for the non-harmonized data. Three different correlation levels between signal and site effects variables 



  

 

were simulated in this study to test the harmonization performance of all the harmonization methods. (a) When the 

spatial maps of all 10 components were spatially independent. (b) Results when the spatial maps of the first two 

components were spatially overlapped. After being harmonized by ICA-DP, Mix #1 and #2 were merged into a single 

component more related to signal variable, and the site-related effects were effectively decreased. Some spatial areas 

related to site effects were also removed (highlighted with a white circle), especially for lower correlation between 

signal and site effects variables. Among all the harmonization methods, only ICA-DP could effectively weaken the 

site effects while strengthening the signal effects when signal and site effects variables are correlated. 

 

3.2 Real Datasets Harmonization Results  

After harmonization, we performed a set of analyses to show the elimination of site effects 

and the preservation of biological variability, i.e., HC/ASD and age for the ABIDE II dataset, 

and subject heterogeneity for the traveling subject dataset. For the data from ABIDE II, they 

were decomposed into 50, 100 and 150 independent components, by calculating the correlation 

levels of subjects' loadings and variables with the analysis of variance (ANOVA) for each 

component, we identified the numbers of pure site effects components were 27, 56 and 96, 

respectively, and the numbers of mixed components were 23, 42 and 49, respectively. The 

traveling-subject data were decomposed into 50 independent components, and 10 pure site 

effects components and 16 mixed components were identified. 

Fig. 5 shows the tSNE-2D projection of ADIDE II and traveling subject datasets before and 

after harmonization. The t-SNE was utilized to project the data into two dimensions by using 

the two dominant features of the non-harmonized data and harmonized data, to visualize the 

distribution of site effects and indicate whether it could be eliminated after harmonization. For 

the ABIDE II dataset, the data points of the non-harmonized data showed site-clustered 

distribution as most of the centers had their own specific cluster area, except for some 

intersections among centers UCLA, OHSU, and ETH. And the site-clustered distribution 

disappeared after being harmonized by any of the harmonization methods. For the traveling 

subject dataset, the projected data points of the non-harmonized data from the same subject 

tend to be clustered into one cluster, i.e., the first two projected features were dominated by the 

subject heterogeneity rather than site effects. Though significant difference was not found 

before and after harmonization, the subject heterogeneity was well preserved after 

harmonization. 



  

 

 
Fig. 5. Dimension reduction visualization by t-SNE before and after harmonization for ABIDE II and traveling 

subject datasets. The site-cluster distribution of the ABIDE II dataset before harmonization indicated the site effects, 

and it decreased when the data points were randomly distributed after harmonization. For the traveling subject dataset, 

the subject-cluster distribution indicated the dominance of subject heterogeneity, as the subjects from this dataset are 

the same ones scanned at different centers (the data points were labeled by subject numbers). There was no significant 

difference before and after harmonization, and subject heterogeneity was well preserved after harmonization. 

In Fig. 6(a), diagnostic plots were presented for all the subjects from the two datasets, and 

the different colors represent different sites. For each subject, the GM measurements were 

summarized into a boxplot. The different range of GM values among sites was reduced after 

harmonization, and the ICA-based harmonization showed efficient reduction. Fig. 6(b) shows 

the median GM values distribution of the subjects from different sites. The standard deviation 

values for the medians of Median GM were calculated across subjects. After harmonization, 

the site effects decreased noticeably for all the harmonization methods.  



  

 

 

Fig. 6. (a) Site-sorted boxplots of GM. Each boxplot represents the GM values distribution of 100 regions of interest 

(ROI) for every subject. The ranges indicated differences among sites and among subjects. (b) Site-sorted boxplots 

of median GM. Each boxplot represents the distribution of median GM values for all subjects from the same site. 

The fluctuates indicated the inter-site difference. The standard deviation values for the medians of Median GM across 

subjects, before and after harmonization, are 1)ABIDE II Dataset: 0.0472 (Non-harmonized), 0.0250 (ComBat 

harmonized), 0.0209 (ICA-SP harmonized), 0.0251 (ICA-DP harmonized); 2)Traveling Subject Dataset: 0.0115 

(Non-harmonized), 0.0046 (ComBat harmonized), 0.0078 (ICA-SP harmonized), 0.0071 (ICA-DP harmonized).  

The boxplots presented in Fig. 7, for non-harmonization data and harmonization data, 

summarized the distribution of the median GM for each subject, revealing heterogeneity among 

different subjects. The subject heterogeneity was not destroyed by all the harmonization 

methods and preserved well after being harmonized by ICA-DP, and the trends of median GM 

for each subject, before and after harmonization, are shown in Fig. 7(b). Besides, the intra-

subject difference (represented by the height of each box in Fig. 7 (a) and the standard variation 

of median GM for each subject in Fig. 7 (c)), as a representation of site effects, had been most 

significantly reduced after ComBat and ICA-DP harmonization (Fig. 7(c)).  



  

 

 

Fig. 7. (a) Subject-sorted boxplots of median GM. The fluctuates indicated the inter-subject difference and the height 

of each box indicated the intra-subject (inter-site) difference. The standard deviation values for the medians of 

Median GM across subjects, before and after harmonization, are 0.0147 (Non-harmonized), 0.0139 (ComBat 

harmonized), 0.0116 (ICA-SP harmonized), and 0.0149 (ICA-DP harmonized). (b) The median values of Meidan 

GM for each subject, before and after harmonization. The trends show the difference among subjects. (c) The 

standard deviation value of median GM for each subject, before and after harmonized. 

Fig. 8 shows the group-level analysis for site effects from the two datasets. The non-

harmonized GM data was globally affected by the site effects for both datasets. Although the 

site effects had been alleviated by the ICA-SP method, it could not remove them sufficiently. 

After being harmonized by ICA-DP and ComBat, no significant regions were associated with 

site variable for both datasets (FWE-corrected p < 0.05). 



  

 

 

Fig. 8. Group-level analysis for site effects before and after harmonization. Site effects were removed completely by 

Combat and ICA-DP. Though ICA-SP reduced the site effects, some significant regions still could be found.  

As a biological variable of interest, age effects of the ABIDE II dataset, before and after 

harmonization, were shown in Fig. 9. The correlation between age and median GM before and 

after harmonization with the ABIDE dataset was shown in Fig. 9(a). The median GM were 

sorted by age and the data from different scanning centers were in different colors. Pearson 

correlation coefficients between age and median GM from non-harmonized data and 

harmonized data were calculated, which were -0.4746 (Non- harmonized), -0.5689 (ComBat 

harmonized), -0.3617 (ICA-SP harmonized), -0.8493 (ICA-DP harmonized), respectively. The 

correlation coefficients indicated that the negative correlation between GM and age was 

strengthened by ICA-DP and ComBat, especially for ICA-DP. Fig. 9(b) shows the group-level 

analyses for age. Site effects confound us to find the true age effects. The negative age effects 

were not found in the non-harmonized data because of the existence of site effects, removal of 

the effects by all the harmonization methods, especially for ICA-DP, could reveal the negative 

age effects that are not detected from the non-harmonized data.  



  

 

 

Fig. 9. (a) Relationship between age and median GM before and after site effects harmonization. The Pearson 

correlation coefficient was -0.4746 (Non-harmonized), -0.5689 (ComBat harmonized), -0.3617 (ICA-SP 

harmonized), and -0.8493 (ICA-DP harmonized). (b) Group-level analysis of GM maps for age effects before and 

after data harmonization. The negative age effects (significance level) were enhanced after harmonization, and they 

could not be detected in the non-harmonized data when testing age group differences.  

Fig. 10 shows the group difference (ASD/HC) before and after harmonization. ICA-DP 

increased the group effects by detecting more significantly different regions related to ASD and 

HC, while ComBat and ICA-SP decreased the group effects as no significant regions were 

tested from the data harmonized by them. Compared to the non-thresholded group difference 

maps from non-harmonized data (first row), the regions associated with group difference 

(ASD/HC) from ICA-DP-based harmonized data could also be found in the non-harmonized 

data. In other words, ICA-DP only strengthened the signal that should be there rather than 

reintroducing artifacts. 



  

 

 

Fig. 10. Group-level analysis of GM maps for group difference (ASD/HC) before and after data harmonization. No 

significant regions were detected from the data harmonized by ComBat and ICA-SP, while ICA-DP could increase 

the significance of the regions related to ASD/HC. FWE-corr p < 1 was shown for non-harmonized data to indicate 

that the regions tested from ICA-DP harmonized data were not reintroduced artifacts. 

Fig. 11 shows the harmonization performance of the two ICA-based harmonization methods 

under different choices of component numbers when running ICA algorithms. The ICA-SP 

could not remove the site effect completely, though it decreased more site effects as the number 

of components increased, and the information related to signal variable (ASD/HC) could not 

be detected from the data harmonized by it under any component number choosing, indicating 

that this kind of soft harmonization based on ICA could neither remove the site effects 

completely nor reveal the information related to covariates of interest. In contrast, after being 

harmonized by ICA-DP, the information that related to site effects could not be tested and there 

were some regions that significantly correlated to ASD/HC could be revealed from the 

harmonized data, indicating good performance and importance for eliminating site effects and 

the ability to unveil the signal related information concurrently and showing no affection of 

which number of components were chosen. 



  

 

 

Fig. 11. Harmonization performance of the two ICA-based harmonization methods under different component 

numbers (50, 100, and 150). After being harmonized by ICA-DP, site effects were removed completely and ASD/HC 

group differences were significantly enhanced (the regions related to ASD/HC could not be detected before 

harmonization) without the affection of component number.  

4 Discussion 

In this paper, we proposed a dual-projection ICA-based harmonization method that can 

remove the site effects more effectively and completely while enhancing the signal effects. This 

method shows superior performance when the site effects are also related with signal variables. 

The Matlab codes of ICA-DP harmonization are available at https://github.com/Yuxing-

Hao/ICA-DP_Harmonization.git. 

ICA-DP was developed to clean the site effects more completely and effectively when the 

site and signal effects are correlated. Based on the simulation results (Figs. 3, 4), it was found 

that ICA-DP can eliminate the site effects effectively while enhancing the signal-related 

information, whether the site and signal variables are correlated. The benefits of ICA-DP are 

contributed by two reasons: first, ICA-DP can extract all the site-related effects with the first 

projection even though some site effects are mixed with the signal effects that could not be 

extracted from original ICA method; second, ICA-DP is more stable than original ICA method, 

as it can extract and remove all the site effects without the limitation of model order selection; 

third, compared to standard GLM and ComBat model whose regressors have the same value 

for all participants in the same sites, site-related effects are better captured by ICA-DP, which 

can capture day-to-day variations in scanner performance. Compared with ICA-DP, ICA-SP, 



  

 

GLM and ComBat showed different defects when harmonization the site effects. For ICA-SP, 

it encountered a problem that it failed to eliminate the site effects completely when the site-

related components also significantly correlated to signal variables (Figs. 3, 4). The GLM-based 

harmonization method performed well and was comparable to ICA-DP when the signal and site 

effects variables are not significantly correlated (Fig. 3(a)). However, GLM showed aggressive 

harmonization performance that will remove or decrease the signal-related information when 

the signal and site effects variables are significantly correlated. The signal distortion became 

worse when the correlation coefficients between the signal and site effects variables increased 

(Fig. 4). Though ComBat-based harmonization method showed better performance than GLM 

and original ICA-based harmonization performance which can effectively remove site effects 

while keeping or strengthening some signal effects when signal and site variables are not 

correlated. However, ComBat could not completely remove the site effects when signal and site 

variables are correlated when the mixed components are more correlated with the signal (Fig. 

4). Meanwhile, we found that ComBat showed aggressive harmonization that also removed 

signal effects when the mixed components are more related with site effects.  

Based on the results of the ABIDE II dataset and the traveling-subject dataset, ICA-DP also 

shows superior performance on harmonization site effects than ICA-SP and ComBat. The 

significant regions of GM that related to site effects, which cannot be completely removed by 

ICA-SP, were not detectable after harmonizing with ICA-DP and ComBat (Fig. 8). The inter-

site variation of the traveling data and the intra-subject variation among nine sites for the 

traveling subject dataset were most significantly reduced after harmonization with ICA-DP (Fig. 

6). Moreover, subject heterogeneity of the traveling subject dataset was also well preserved 

after being harmonized by ICA-DP (Figs. 5, 7).  

In addition, ICA-DP also shows superior performance in enhancing biological variability 

(i.e., age effects and group difference between ASD and HC) compared with ICA-SP and 

ComBat based on the results of the ABIDE II dataset. Site effects hinder us from finding the 

true age and group effects. The age effects detected with GM of the non-harmonized ABIDE II 

are opposite with the recognized results (Gennatas et al., 2017; Groves et al., 2012). After being 

harmonized by ICA-SP, ICA-DP, and ComBat, the true age effects on GM were discovered. 

Among all the three methods, ICA-DP finds the most significant regions related to age and the 

negative correlation between age and GM was most strongly enhanced by ICA-DP. The 

relationship of median GM and age was enhanced from -0.4746 (non-harmonized) to -0.8493 

after being harmonized by ICA-DP (Fig. 9). In addition, compared to ICA-SP and ComBat, 

only ICA-DP enhanced the group effects (ASD vs. HC) by detecting more significantly group 

different regions which cannot be effectively detected by the non-harmonized data (Fig. 10), 

indicating the importance of removing site effects in multi-site data. The notable enhancements 

of the biological variabilities (i.e., age effects and ASD vs. HC) may be attributed to the larger 

proportion of site-related components that we selected for ICA-DP harmonization, which could 

increase the weights of signal we are interested in and make the signal-related information 



  

 

easier to be detected. On the other hand, this may lead to the other variables that we are not 

interested in not being well preserved. To protect other variables that we may be interested in, 

we just need to add these variables to 𝐕𝑆 in the first projection of the ICA-DP harmonization 

method (Eq. (1)). Thus, the ICA-DP is the most effective method for harmonizing site effects 

and preserving biological variability among the methods discussed above. Moreover, unlike 

ICA-SP, the performance of ICA-DP in site effects harmonization and signal enhancement was 

not affected by the number of components chosen for ICA decomposition. It could clean the 

site effects and strengthen the signal under any selected component number (Fig. 11).  

Finally, as a limitation of the proposed harmonization method, when the site effects variable 

is strongly related to the signal variable (Fig. 4), ICA-DP could not eliminate the intersection 

effects that are related with both site and signal variables (neither do other methods except 

GLM, the most aggressive one destroying signal-related information severely), thus the 

harmonized data are still correlated to site effects because of the inherent correlation between 

site effects and signal variables (Nevertheless, the correlation values in our simulation is really 

high and hardly appear in real data study). Another limitation to consider is the selection of the 

number of components to be extracted by ICA. Though we validated that the performance of 

ICA-DP in site effects harmonization and signal enhancement were not affected by the number 

of components chosen for ICA decomposition under three different selections for the number 

of components (see Figure. 11), it is not sufficient and verification methods should be developed 

further. However, to some extent, ICA-DP allows users to choose the number of components 

according to their own standard.  

Overall, the dual-projection harmonization method is more effective and powerful in 

removing site effects while preserving signal-related information than other methods mentioned 

above, and can enhance the sensitivity to detect signals of interest and remove all the effects 

that are only contributed by site difference. Compared to Combat, it is a data-driven method 

rather than utilizing the manually designed covariates for regressing. ICA-DP harmonization 

method has great potential for large-scale multi-site studies to produce combined data free from 

study-site confounds. 

 

5 Conclusion 

While combing the multi-site MRI data has great convenience that enhances the statistical 

results and obviates some of the shortcomings of the single-site study, the site effects come 

naturally, confounding the MRI data analysis and making the results hard to interpret. The 

traditional methods designed to eliminate the site effects encounter incomplete or aggressive 

harmonization, i.e., cannot eliminate the site effects well or may destroy the signal-related 

information. To tackle these shortcomings, we proposed a dual-projection data-driven method 

based on ICA, which can better eliminate the site effects and preserve the signals of interest. 

And we strongly recommend that researchers use the ICA-DP method to harmonize the MRI 



  

 

data as it can extract subject-specific loadings that correspond to the signal or site effects 

variable. 

 

Abbreviations: DP, dual-projection; DTI, diffusion tensor image; GLM, general linear model; 

GM, gray matter; ICA, independent component analysis; ICA-DP, ICA-dual projection; ICA-

SP, ICA-single projection; LICA, linked ICA; MRI, magnetic resonance imaging; PET, 

positron emission tomography; t-SNE, t-distributed stochastic neighbor embedding.  
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Modern neuroimaging studies frequently merge magnetic resonance imaging 
(MRI) data from multiple sites. A larger and more diverse group of participants 
can increase the statistical power, enhance the reliability and reproducibility 
of neuroimaging research, and obtain findings more representative of the 
general population. However, measurement biases caused by site differences 
in scanners represent a barrier when pooling data collected from different sites. 
The existence of site effects can mask biological effects and lead to spurious 
findings. We  recently proposed a powerful denoising strategy that implements 
dual-projection (DP) theory based on ICA to remove site-related effects from 
pooled data, demonstrating the method for simulated and in vivo structural MRI 
data. This study investigates the use of our DP-based ICA denoising method for 
harmonizing functional MRI (fMRI) data collected from the Autism Brain Imaging 
Data Exchange II. After frequency-domain and regional homogeneity analyses, 
two modalities, including amplitude of low frequency fluctuation (ALFF) and 
regional homogeneity (ReHo), were used to validate our method. The results 
indicate that DP-based ICA denoising method removes unwanted site effects for 
both two fMRI modalities, with increases in the significance of the associations 
between non-imaging variables (age, sex, etc.) and fMRI measures. In conclusion, 
our DP method can be applied to fMRI data in multi-site studies, enabling more 
accurate and reliable neuroimaging research findings.

KEYWORDS

multi-site, site effects, functional magnetic resonance imaging, independent 

component analysis, dual-projection

1. Introduction

Functional magnetic resonance imaging (fMRI) has become a popular tool for understanding 
the human brain and detecting brain diseases since its inception in the 1990s (Eklund et al., 
2016). Over the past three decades, countless methods and paradigms have been adopted to 
utilize and interpret fMRI data. One popular approach is frequency-domain analysis. Zang et al. 
proposed the amplitude of low frequency fluctuations (ALFF) for a voxel’s time series, and it 
measures the total signal power in the low-frequency range is computed as the total power in the 
low frequency range (0.01–0.1 Hz; Zang et al., 2007). Another popular approach is based on 
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regional homogeneity analysis, or ReHo (Zang et al., 2004), which 
computes a voxel-based measure of brain activity that evaluates the 
synchronization between the time series of a given voxel and its nearest 
neighbors using Kendall’s coefficient of concordance that is used to 
investigate the local coherence of fMRI signals in the brain (Yang 
et al., 2020).

Most neuroimaging studies are conducted within a single research 
site, with limited capabilities for collecting large sample-size datasets. 
Smaller sample sizes and lack of harmonization across independent 
studies present challenges in achieving acceptable reliability and 
reproducibility of neuroimaging research (Nichols et al., 2017). As a 
result, multi-site fMRI studies are becoming increasingly common to 
increase the power of statistical analyses to detect group differences, 
longitudinal changes, and, in turn the reliability and reproducibility of 
neuroimaging research. While combining multiple datasets across 
different studies is beneficial for the development of neuroscience, the 
existence of site effects makes pooling multi-site datasets challenging. 
Site effects can confound actual effects of interest and make the final 
results hard to interpret for fMRI data (Biswal et al., 2010; Groves 
et  al., 2011; Li et  al., 2020). Hence, effectively eliminating or 
minimizing the site effect is necessary for the fusion of multi-site 
fMRI data.

Recently, a new technique, independent component analysis 
(ICA) with dual-projection (ICA-DP), was proposed for removal of 
site effects in multi-site structural MRI data (Hao et al., 2023). For 
ICA-DP, mixed components are separated into a part related to signal 
only and a part related only to noise by applying a projection 
procedure. The noise effects extracted from the mixed components via 
the projection step and other pure noise components are then 
removed from the data using a second projection procedure. 
Compared with traditional ICA and ComBat (COMbining BATches), 
which is a general linear modal (GLM)-derived method based on the 
empirical Bayes approach (Johnson et al., 2007; Stein et al., 2015; 
Fortin et al., 2017, 2018; Beer et al., 2020; Cetin-Karayumak et al., 
2020; Da-ano et al., 2020; Pinto et al., 2020; Cackowski et al., 2021; 
Eshaghzadeh Torbati et al., 2021; Maikusa et al., 2021; Bell et al., 2022; 
Orlhac et al., 2022), ICA-DP method demonstrates superior denoising 
while preserving the signals of interest.

In this paper, we introduce the use of ICA-DP to harmonize fMRI 
data collected from multiple sites. We apply ICA-DP to the data from 
Autism Brain Imaging Data Exchange II (ABIDE II) and compare its 
performance with two other common harmonization methods: ICA 
and ComBat. To assess the effectiveness of the harmonization 
methods, we utilize various techniques for visualizing and quantifying 
site effects before and after denoising. Additionally, we evaluate the 
denoising methods in terms of their ability to preserve signal effects.

2. Methods

2.1. Multi-site fMRI data

We utilized data from Autism Brain Imaging Data Exchange II 
(ABIDE II) to investigate the impact of site effects on ALFF and ReHo, 
and the performance of ICA-DP for denoising site effects and 
preserving signal effects.

Neuroimaging data from 1,114 subjects collected by 18 different 
sites with various scanner manufacturers (Simens, Philips, and GE) 

(Di Martino et al., 2017) were obtained from the ABIDE II dataset.1 
We excluded images with obvious artifacts, large head movement 
(larger than one voxel size), and incomplete scanning of the whole 
brain. After strict quality control, functional MRI data of 795 subjects 
[Autism Spectrum Disorder (ASD) patients: 341, Healthy Controls 
(HC): 454] in 16 sites (data from two centers were fully excluded) were 
included in our study. The acquisition parameters: scanner and 
imaging-related details, including repetition time (TR), echo time 
(TE), flip angle (FA), voxel size, and demographic information (ASD/
HC, sex, and age), are summarized in Table 1.

In this study, the site differences are defined as noise variables, and 
group differences (ASD/HC), age, and sex are regarded as signal 
variables. The correlation coefficients among these variables are 
summarized in Table 2. Since site differences are categorical variables, 
it is not achievable to directly calculate the correlation coefficients 
between categorical and numeric variables. We  used ANOVA to 
calculate the significant levels of signal variables and site variables.

2.2. Data preprocessing

The raw fMRI data were preprocessed with FSL FEAT, including 
removing the first six volumes, motion correction, and spatial 
normalization to standard MNI space. Two functional modalities, 
ALFF and ReHo, were generated from the preprocessed fMRI data 
with DPABI (Yan et al., 2016). For ReHo, spatial smoothing (with Full 
Width at Half Maximum (FWHM) of 6 mm) was performed after 
ReHo calculation, but for ALFF, spatial smoothing was completed 
before the calculation (Jia et al., 2019).

2.3. Harmonization methods

Two most widely used harmonization methods: ComBat and 
traditional ICA, were applied in this study to show the performance 
of ICA-DP on site-effects removal. We now describe the three different 
strategies below.

2.3.1. ComBat
ComBat is a GLM-derived method based on empirical Bayes 

approach. The method assumes that the data can be modeled as a 
linear combination of signal variables and site effects, which includes 
additive and multiplicative factors:

 Y XNon denoised signal signal− = + + +α β γ δε  1( )

where  is the average value, Xsignal is the design matrix for the 
signal variables and signal is the corresponding regression coefficient, 

 and  are the additive and multiplicative factors, respectively. Then 
ComBat normalizes the data by removing the effects of average and 
signal variables:

 Y Y XNormalized Non denoised signal signal= − −− α β  2( )

1 http://fcon_1000.projects.nitrc.org/indi/abide/ abide_II.html
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Finally, ComBat uses an empirical Bayes (EB) framework to get 
an improved estimate of site effects γ ∗ and δ ∗, after removing these 
site effects and adding the effects of average and signal variables back, 
we finally get the denoised data by ComBat:

 

Y
Y X

X
Denoised
ComBat Non denoised signal signal

sig

=
− − −

+ +

−
∗

∗
α β γ

δ
α nnal signalβ  3( )

2.3.2. ICA and ICA-DP
ICA is a data-driven strategy that decomposes the data matrix into 

a set of statistically independent non-Gaussian maps together with 
associated courses (e.g., time, subject).

 Y A SNon denoised− = ∗  4( )

where S is the spatial map and A is the corresponding courses. 
Compared with our ICA-DP, we rename the traditional ICA as ICA-SP 
(single-projection). To preserve the signal effects, ICA-SP method only 

removes those pure site-related components (related to site effects 
only), and leaves those mixed components without any process.

 Y Y A pinv A YDenoised
ICA SP

Non denoised Sites Sites Non denoi
−

− −= − ( ) ssed  5( )

where ASites is the course of pure site-related components.
In order to eradicate the site effects, we proposed the ICA-DP 

method in our previous study (Hao et  al., 2023). Firstly, ICA-DP 
separates the signal effects from the mixed components:

 A A Var pinv Var ASites Mixed Signal Signal Mixed
′ = − ( )  6( )

where AMixed  is the course of mixed components and VarSignal  is 
the signal variable. Then A ASites Sites

′⎡
⎣

⎤
⎦ is utilized as the whole site 

effects to be regressed out.

 

Y Y A A

pinv A A

Denoised
ICA DP

Non denoised Sites Sites

Sites

−
−

′= − ⎡⎣
⎤
⎦

SSites Non denoisedY′
−⎡

⎣
⎤
⎦( )  7( )

TABLE 1 Scanning parameters and demographic information of the multi-site ABIDE II data.

Sites Scanners TR/TE (ms) FA (degree) Voxel Size ASD/HC Male/Female Age

EMC GE MR750 2000/30 85 3.6 3.6 4.0 14/13 22/5 8.39 ± 1.03

ETH Philips Achieva 2000/25 90 3 3 3 7/22 29/0 23.36 ± 4.59

GU Siemens TriTim 2000/30 90 3 3×3 27/41 46/22 10.89 ± 1.62

IU Siemens TriTim 813/28 60 3.4 3.4 3.4 18/19 28/9 24.62 ± 7.59

KKI Philips Achieva 2500/30 75 3 3 3 25/123 89/59 10.37 ± 1.27

KUL PhilipsAchieva 2500/30 90 1.6 1.6 3.1 25/0 25/0 23.76 ± 5.10

OHSU Siemens TriTim 475/30 60 3 3 3 33/51 52/32 11.00 ± 2.04

ONRC Siemens Skyra 2500/30 90 3.8 3.8 3.8 15/26 30/11 23.24 ± 4.09

SU GE SIGNA 2000/30 80 3.4 3.4 3.5 14/17 28/3 10.94 ± 1.14

UCLA Siemens TriTim 3000/28 90 3 3 4 12/12 19/5 11.04 ± 2.46

USM Siemens TriTim 2000/28 90 3.1 3.1 4 9/12 17/4 24.34 ± 7.49

BNI Philips Ingenia 3000/25 80 3.8 3.8 4 29/28 57/0 38.86 ± 15.41

IP Philips Achieva 2700/45 90 3.6 3.7 4 13/21 16/18 22.37 ± 10.97

NYU Siemens Allegra 2000/15 90 3 3 4 61/28 81/8 9.24 ± 4.78

SDSU GE MR750 2000/30 90 3.4 3.4 3.4 30/24 46/8 13.19 ± 3.06

TCD Philips Achieva 2000/27 90 3 3 3.2 9/17 26/0 15.98 ± 3.23

The data were collected from 13 different sites: Erasmus University Medical Center (EMC), ETH Zürich (ETH), Georgetown University (GU), Indiana University (IU), Kennedy Krieger 
Institute (KKI), Katholieke Universiteit Leuven (KUL), Oregon Health and Science University (OHSU), Olin Neuropsychiatry Research Center (ONRC), Stanford University (SU), University 
of California Los Angeles (UCLA), University of Utah School of Medicine (USM), Barrow Neurological Institute (BNI), Institut Pasteur and Robert Debré Hospital (IP), NYU Langone 
Medical Center (NYU), San Diego State University (SDSU), Trinity Centre for Health Sciences (TCD).

TABLE 2 The relationship of signal and noise variables.

Correlation Site ASD vs. HC Age Sex

Site 1.000(0.0000) 3.26e-18 2.29e-183 3.38e-18

ASD vs. HC 3.26e-18 1.000(0.0000) – 0.1984(1.69e-8)

Age 2.29e-183 – 1.000 (0.0000) −0.1223(5.50e-4)

Sex 3.38e-18 0.1984(1.69e-8) −0.1223(5.50e-4) 1.000(0.0000)
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2.4. Denoising process

For the ComBat-based method, the input Xsignal  was set as 
group difference (ASD/HC), age, and sex.

For ICA-based methods, the data were decomposed into 100, 150, and 
200 independent components. Pearson correlation and Analysis of 
Variance (ANOVA) were applied to identify signal, noise, and mixed 
components based on Hao et al. (2023). Components that only significantly 
correlated with the signal variables (p < 0.05, with Bonferroni correction) 
were classified as pure signal components. Conversely, those solely 
correlated with the noise variable were identified as pure noise components. 
Components related to both signal and noise variables were categorized as 
mixed components. For ALFF, we identified 79, 120, and 166 pure site-
related components, and 21, 29, and 34 mixed components; For ReHo, 
we identified 83, 136, and 179 pure site-related components, and 15, 10, 
and 11 mixed components. The ICA-SP method exclusively utilized pure 
noise components to eliminate site effects, whereas the ICA-DP method 
employed all noise-related components, including mixed ones, for site 
effects removal. In the ICA-DP approach, both mixed and pure noise 
components were used to extract noise effects that are considered as 
integral site-related noise effects and used for removal. Both ICA methods 
were implemented using widely used software packages for neuroimaging 
data analysis, namely MATLAB and FSL MELODIC. FSLeyes2 and 
BrainNet (Xia et al., 2013) were used to present the results.

2.5. Evaluation of data denoising

We used several strategies to assess the performance of the three 
different denoising methods in terms of eliminating the site effects and 
preserving the signal effects. To visualize the site effects, we  used 
t-distributed stochastic neighbor embedding (t-SNE) to observe the 
distribution of the data points, with a tendency to be clustered by site 
or not. Group F-test was also used to find the significant differences in 
ALFF and ReHo for brain regions associated with site differences. It is 
also important to show whether the methods can preserve the signal 
effects well. In this study, we used age, sex, and group difference (ASD/
HC) as variables of interest. In addition to t-SNE and group-level tests 
of ASD vs. HC, the Pearson correlation coefficient between median 
ALFF, ReHo and age was also assessed. For each modality, the median 
value for each subject was obtained by calculating the median of 100 
regions of interest.3 Then, the obtained values were sorted by age 
distribution, where different colors represent data from different sites.

3. Results

3.1. Visualization and quantification of site 
effects

Figure 1 shows the tSNE-2D projection of ALFF and ReHo before 
and after site effects denoising. The tSNE can project the data into two 

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes

3 https://github.com/ThomasYeoLab/CBIG/tree/master /stable_projects/

brain_ parcellation/Schaefer2018_LocalGlobal/Parcellations/

vectors, which can be regarded as the two dominant features of the 
data. The data points of the non-denoised data showed site-clustered 
distribution as most of the centers had their own specific cluster areas, 
while this site-clustered distribution disappeared after being denoised 
by any of the denoising methods.

Figure 2 shows the group-level analysis for site effects. The analysis 
was based on a generalized linear model implementation of one-way 
ANOVA (factor: sites; covariates: age, sex, and group difference (ASD/
HC)). Both two non-denoised modalities were globally contaminated by 
site effects. Though ICA-SP method decreased site effects, it was not very 
effective at denoising them. However, compared with our previous 
results applying ICA-SP to denoise site effects from structural MRI data 
(Hao et al., 2023), ICA-SP method did denoise site effects better for fMRI 
data, since purer site-related components were identified. After denoising 
with ICA-DP and ComBat, there were no brain regions with ALFF or 
ReHo that were associated with site difference (FWE-corrected p < 0.05).

3.2. Visualization and quantification of 
signal effects

3.2.1. Age effects
Figure 3 shows the tSNE-2D projection of ALFF and ReHo before 

and after site effects denoising. The data points of the non-denoised 
data did not show age-clustered distribution, while this age-clustered 
distribution appeared after being denoised by ICA-DP.

Figure 4 displays the correlation between the median values of the 
connectivity measures across the whole brain and age for each of the 
two modalities. For ALFF, the Pearson correlation coefficients 
were − 0.3552 (Non-denoised), −0.1287 (ComBat denoised), −0.2603 
(ICA-SP denoised), −0.8525 (ICA-DP denoised), respectively. For 
ReHo, the Pearson correlation coefficients were − 0.0684 
(Non-denoised), −0.0090 (ComBat denoised), 0.0513 (ICA-SP 
denoised), −0.4640 (ICA-DP denoised), respectively. From a whole-
brain perspective, only the ICA-DP method enhanced the correlation 
between the two modalities and age.

Figures 5, 6 show the group-level analyses for age on ALFF and 
ReHo, and correlations between age-related regions and age. In order 
to better rule out the influence of ASD, we only analyzed the age 
effect of healthy people. The group-level analyses were based on a 
generalized linear model implementation of one-way ANOVA 
(factor: age; covariates: sex). Figure  5 shows the results from 
ALFF. The negative age effects were not found in the non-denoised 
data because of the existence of site effects, removal of the effects by 
all the denoising methods, especially for ICA-DP, could reveal the 
negative age effects not detected from the non-denoised data. From 
the results of ICA-DP, regions positively associated with age included 
Cerebellum, Thalamus, Temporal Lobe, and Frontal Lobe; regions 
negatively associated with age included Parietal Lobe, Temporal 
Lobe, and Frontal Lobe for the non-denoised data. Figure 6 shows the 
results from ReHo. The results had the same tendency as those from 
ALFF. Site effects masked the negative age effects. Removal of the 
effects by ComBat and ICA-DP could reveal the negative age effects 
not detected from the non-denoised data. There were no age effects 
detected after denoising by ICA-SP. From the results of ICA-DP, 
regions positively associated with age included the Frontal Lobe, 
Parietal Lobe, and Temporal Lobe; regions negatively associated with 
age included Occipital Lobe, and Parietal Lobe.
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In summary, ICA-DP increased the age effects by detecting more 
significantly different regions related to age, while ComBat and ICA-SP 
decreased the age effects with fewer or no significant regions.

3.2.2. Sex effects
Figure 7 shows the tSNE-2D projection of ALFF and ReHo before 

and after site effects denoising. The data points of the non-denoised 

FIGURE 1

Dimension reduction visualization by t-SNE before and after denoising (Sites). The site-clustered distribution before denoising indicated the site effects, 
and it decreased when the data points were randomly distributed after denoising.

FIGURE 2

Group-level analysis for site effects before and after denoising. Site effects were removed entirely by ComBat and ICA-DP. Though ICA-SP reduced the 
site effects, some significant regions still could be found.
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data did not show sex-clustered distribution, which appeared after 
being denoised by ICA-DP.

Figure 8 displays the group-level analyses for sex on the two fMRI 
modalities. The group-level analyses were based on a generalized linear 
model implementation of one-way ANOVA (factor: sex; covariates: 
age, and group difference (ASD/HC)). For ALFF, we observed several 
regions that were significantly greater in males, including the Frontal 
Lobe, Thalamus, and Temporal Lobe.; regions significantly greater in 
females included Occipital Lobe for the non-denoised data. After 
denoising, our ICA-DP widened the boundaries of these regions, while 

the other two methods resulted in the disappearance of these regions. 
For ReHo, no regions were associated with sex. After denoising with 
ICA-DP, we identified regions associated with sex. Specifically, regions 
significantly greater in males included Frontal Lobe, Parietal Lobe, and 
Occipital Lobe; regions significantly greater in females included 
Cerebellum, and Temporal Lobe.

Similar to the results for age effects, ICA-DP increased the sex 
effects by detecting more significantly different regions related to sex, 
while ComBat and ICA-SP decreased the sex effects with fewer or less 
significant regions.

FIGURE 3

Dimension reduction visualization by t-SNE before and after denoising (Age). No age-clustered distribution before denoising, and the age-clustered 
distribution appeared after denoising by ICA-DP.

FIGURE 4

Relationship between age and whole-brain median ALFF, and ReHo. For ALFF, the Pearson correlation coefficients were� −� 0.3552 (Non-denoised), 
−0.1287 (ComBat denoised), −0.2603 (ICA-SP denoised), −0.8525 (ICA-DP denoised), respectively; for ReHo, the Pearson correlation coefficients 
were� −� 0.0684 (Non-denoised), −0.0090 (ComBat denoised), 0.0513 (ICA-SP denoised), −0.4640 (ICA-DP denoised), respectively.
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3.2.3. Group difference (ASD/HC)
Figure 9 shows the tSNE-2D projection of ALFF and ReHo before 

and after site effects denoising. The data points of the non-denoised 
data could not be divided into two groups according to the group 
difference (ASD/HC), and only ICA-DP method could enhance the 
group effects by distinguishing ASD and HC.

Figure  10 demonstrates the impact of denoising on group 
differences between individuals with autism spectrum disorder (ASD) 
and healthy controls (HC). The group-level analyses were based on a 
generalized linear model implementation of one-way ANOVA (factor: 
group difference (ASD/HC); covariates: age and sex). The results 
revealed that ICA-DP enhanced the group effects by identifying more 
regions that were significantly different between the two groups, 
whereas ComBat and ICA-SP decreased the group effects by detecting 
fewer or less significant regions. When compared to the 
non-thresholded group difference maps from the original data (first 
row), it could be  seen that the regions associated with group 
differences (ASD/HC) from ICA-DP-based denoised data were also 

present in the original data. This suggested that ICA-DP only amplified 
the existing signal and did not introduce new information.

4. Discussion

In this study, we applied the ICA-DP method to the multi-site 
harmonization of ALFF and ReHo, and compared it to traditional ICA 
and ComBat methods for removing site effects and preserving 
biological variability. The results showed that our ICA-DP method can 
better remove site effects and preserve physiological signals compared 
with two other approaches for denoising, ICA-SP, and ComBat.

In the non-denoised data, site effects objectively exist in both 
modalities: 1) original ALFF and ReHo both show a trend of clustering 
by site (Figure 1), even if the data from the same site have different 
distributions of age, sex, and group difference (ASD/HC). To some 
extent, the statistical differences caused by site differences are greater 
than those caused by other biological variables (Figures  3, 7, 9). 

FIGURE 5

Associations between age and ALFF with different denoising strategies. “Positive” association indicates increasing amplitude with increasing age, 
whereas “Negative” refers to decreasing amplitude with increasing age. Associations with age are enhanced by ICA-DP and weakened by ICA-SP and 
ComBat.
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FIGURE 7

Dimension reduction visualization by t-SNE before and after denoising (Sex). No sex-clustered distribution before denoising, and there was a light sex-
clustered tendency after denoising by ICA-DP.

FIGURE 6

Associations between age and ReHo with different denoising strategies. “Positive” refers to significantly increasing amplitude with increasing age, whereas 
“Negative” refers to significantly increasing amplitude with decreasing age. The age effects are enhanced by ICA-DP, while weakened by ICA-SP and ComBat.
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Moreover, these large site differences may mask the examination of 
biological effects (Eshaghzadeh Torbati et al., 2021). 2) The results of 
the F-test indicate that the two modalities all show obvious site 
differences, and the impact is whole-brain.

Regarding denoising performance, both ICA-DP and ComBat 
methods can thoroughly remove site effects: (1) the denoised data no 
longer clusters by site; F-test results no longer have significantly 
correlated activation regions with site variables. The traditional ICA 
can only remove the effects of site effects to some extent and cannot 
eradicate it, because the traditional ICA method only removes the 
influence of pure noise components and does not deal with mixed 
components. If the proportion of mixed components in all 
components is relatively large, or the site effects in mixed components 
are relatively apparent, the denoising ability of the traditional ICA 
method will be greatly discounted; on the contrary, the ICA method 
will have better denoising effect.

In addition to evaluating the performance of the three methods 
in removing site effects, it is equally important to evaluate their 

ability to preserve biological signals. To this end, we define age, sex, 
and group difference (ASD/HC) as variables of interest. The results 
show that our ICA-DP method effectively removes site effects while 
also enhancing the examination of biological signals, including the 
effects of age, sex, and group difference (ASD/HC). The other two 
methods reduced the examination of these biological effects. Our 
method’s enhancement of biological signals is due to the fact that 
for each noise component identified, we  first regress out the 
influence of biological signals and then use it for denoising so that 
the proportion of physiological signals in the denoised data is 
relatively large and it is easier to detect brain regions that are 
related to signals through statistical tests. From another perspective, 
this might result in other variables, in which we are not interested, 
not being well preserved (Hao et al., 2023). The other limitation of 
the proposed harmonization method is that when the noise variable 
is strongly related to the signal variable, ICA-DP could not 
eliminate the intersection effects related to both site and 
signal variables.

FIGURE 8

Sex differences before and after denoising. “Male < Female” refers to significantly greater amplitude in females, whereas “Male > Female” refers to 
significantly greater amplitude in males. The sex effects are enhanced by ICA-DP, while weakened by ICA-SP and ComBat.
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FIGURE 9

Dimension reduction visualization by t-SNE before and after denoising (ASD vs. HC). The data points of the non-denoised data were randomly 
distributed, and only the data points after denoising by ICA-DP could be divided into two groups according to the group difference (ASD/HC).

In 2010, Biswal et al. conducted a study on age and sex in a large 
sample of fMRI data from 35 sites. They also reported site effects. 
Although they did not remove the site effect in their study and just 
utilized sites as covariates in a generalized linear model (GLM), they 
still identified some brain regions that were significantly correlated 
with age and sex in the ALFF. In some of our results (age and sex effect 
of ALFF), we also found activation regions that highly overlap with 
Biswal’s results. Because we  used different datasets and different 
sample sizes, our results are highly overlapping, but not exactly the 
same. In addition, we believe that if we apply our method to their 
dataset and remove the site effect with ICA-DP, more similar activation 
regions related to age and sex will be founded.

Regarding the statistical results of group differences between 
individuals with autism spectrum disorder (ASD) and healthy controls 
(HC), our research identified similar brain regions that have been 
highlighted in previous studies. For example, in patients with ASD, 
increased ALFF in the Temporal Lobe and Frontal Lobe while 
decreased ALFF in the Occipital Lobe was also found compared to HC 
(Wang et al., 2023). Participants with ASD also showed increased 
ReHo in the Frontal Lobe and decreased ReHo in the Temporal and 
Frontal Lobe compared to HC (Paakki et al., 2010; Canario et al., 2021; 
Wang et al., 2023).

To the best of our knowledge, there are only a few studies focused 
on the harmonization of multiple sites for ALFF and ReHo to reveal 
their associations with age, sex, and group difference (ASD/HC). Thus, 
we are cautious in interpreting the results until the same results can 
be repeated on a large sample dataset from a single center.

5. Conclusion

The combination of multi-site MRI data has the potential to 
increase the statistical power and improve the reliability and 

reproducibility of neuroimaging research. However, the analysis of 
MRI data is often confounded by site effects. Removing these site 
effects is a critical step in the process of multi-site data fusion. In 
addition, preserving signals of interest is a major concern when 
applying any denoising strategy. ICA-SP and ComBat reduced 
associations with age and sex.

In contrast, our ICA-DP method has proven to be effective in 
removing site effects and preserving biological variability. With our 
ICA-DP method, multi-site fMRI data can be  harmonized, thus 
allowing for more robust and accurate analysis. This approach can 
significantly enhance the validity of neuroimaging research, and 
we believe it will be a valuable tool for future studies.
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FIGURE 10

Group differences between ASD and HC before and after denoising. No significant differences in regions were found from the data denoised by ICA-
SP, and fewer regions were found from the data denoised by ComBat, while ICA-DP could increase the significance of the regions related to ASD/HC. 
FWE-corr p <� 1 was shown for non-denoised data to indicate that the regions tested from ICA-DP denoised data were not reintroduced artifacts.
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Abstract—In recent years, neuroimaging studies have 

increasingly been acquiring multiple modalities of data. The 

benefit of integrating multiple modalities through fusion lies in 

its ability to combine the unique strengths of each modality 

when analyzed collectively, as opposed to examining each one 

individually. In 2011, Adrian R. Groves proposed the Linked 

independent component analysis (LICA) method, which 

simultaneously models and discovers common features across 

multiple modalities. LICA has emerged as a powerful 

technique for analyzing multivariate data, particularly in 

neuroimaging and biomedical signal processing. The 

performance of LICA can be affected by the number of 

subjects and modalities. However, the detailed influence of the 

number of subjects and modalities on its performance remains 

an open question. In this study, we test the effects of the 

number of subjects and modalities on the performance of 

LICA using both simulated multimodal MRI data and the real 

multimodal MRI datasets from Autism Brain Imaging Data 

Exchange II (ABIDE II). Simulated data were utilized to 

evaluate the influence of subjects and modalities' variabilities. 

Real multi-site MRI data were used to demonstrate the 

advantages of multimodal fusion in identifying site-related 

components and removing site effects. Based on the simulation 

results, we found that increasing the number of modalities and 

subjects can improve the results when LICA can not recover 

the spatial maps or subject courses well. The correlation 

among subject courses from various modalities, the number of 

modalities, and the choice of components for decomposition all 

affect the linking performance of LICA. Our results from real-

world datasets also demonstrated the advantages of 

multimodal fusion by LICA: 1) identify more site-related 

components; 2) remove more site effects. 

 

Keywords— LICA, multimodal, multi-site, site effects 

I. INTRODUCTION 

In recent years, it has been common for neuroimaging 
studies to acquire multiple modalities of data from the same 
individual using different imaging techniques [1]. Different 
forms of brain data can provide various perspectives on both 
the function and structure of the brain. For instance, 

functional magnetic resonance imaging (fMRI) measures 
cerebral activity through the observation of alterations in 
blood circulation and oxygen levels; structural MRI provides 
high-resolution images of the brain's structure, and captures 
the differences in tissue properties, such as gray matter 
(GM), white matter (WM), and cerebrospinal fluid (CSF), to 
create detailed, three-dimensional images of the brain's 
anatomy [2], [3]. These data are usually analyzed separately, 
and the joint information among these modalities can not be 
used. One primary incentive for employing multimodal 
fusion is to capitalize on the interconnected data offered by 
diverse imaging methods. This can be particularly beneficial 
for discerning trends of correlated alterations across multiple 
types, when they exist. Multimodal fusion refers to using a 
common symmetric model that explains different sorts of 
data [4]. Since integrating information from differing data 
types can lead to more accurate and comprehensive insights, 
efficient and appropriate multimodal fusion methods are 
necessary for the development of neuroimaging studies. 

Several methods have been developed to address the 
challenges of multimodal data fusion, including but not 
limited to Linked Independent Component Analysis (LICA), 
Joint Independent Component Analysis (jICA), and 
multimodal Canonical Correlation Analysis (mCCA). More 
details can be seen in Sui's reviewing paper [2]. 

jICA is a multivariate data fusion method that extends 
traditional ICA to integrate information from multiple 
modalities. The main goal of jICA is to identify shared 
independent components across the different datasets while 
accounting for their inherent relationships [5]. jICA 
concatenates the datasets from different modalities along a 
specific dimension (usually subjects or time points). The 
concatenated data is then subjected to ICA to extract the joint 
independent components that capture the shared information 
across the modalities. By incorporating the inter-modality 
relationships, jICA allows for identifying common latent 
factors and investigating their effects on each modality. jICA 
has the assumption that the number of independent 
components is equal across modalities. However, different 
modalities may have different spatial source histograms. So 



jICA has the potential loss of modality-specific information. 
Since different modalities may have different noise levels 
and a different number of voxels, jICA will be dominated by 
the largest-variance modalities or the modalities with the 
most voxels if the scaling is mismatched. So jICA requires 
the same resolution and smoothing instead of optimized 
values for all modalities. mCCA is a data fusion technique 
that extends traditional CCA to handle multiple modalities 
simultaneously. The main goal of mCCA is to identify linear 
combinations (called canonical variates, CVs) from each 
dataset, such that the correlations among these canonical 
variates are maximized across all modalities [6], [7]. mCCA 
has the capability to identify common patterns and 
underlying latent factors across multiple modalities. 
However, it also has some limitations, such as the 
assumption of linear relationships between the datasets and 
the reliance on the covariance structure, which might not 
capture complex, nonlinear relationships. 

In 2011, Adrian R. Groves proposed the Linked 
independent component analysis (LICA) method [8]. LICA 
is an advanced multivariate data fusion technique that allows 
researchers to identify common features across multiple 
modalities. It is similar to independent component analysis 
(ICA), a method for identifying and separating independent 
sources in a single dataset. In addition, LICA extends the 
basic principles of ICA to allow for data integration from 
multiple modalities. Unlike jICA, which concatenates 
datasets and extracts a single set of independent components 
(ICs) representing shared information, LICA operates by 
linking the ICs of each dataset through a common set of 
mixing coefficients. This approach allows LICA to model 
both the shared and modality-specific information while 
accounting for the relationships between the datasets. 

Compared with jICA and mCCA, LICA offers several 
advantages: 1) flexibility: modalities can potentially have 
completely different units, signal-to-noise ratios (SNR), 
voxel counts, spatial smoothing levels, and intensity 
distributions; 2) specificity: LICA automatically determines 
the optimal weighting of each modality, and also can detect 
single-modality structured components when present. These 
qualities make LICA a promising approach for the 
integration of multimodal data. 

Since being proposed, LICA has been widely used in 
neuroimaging studies [1], [9]. Adrian R. Groves used LICA 
to analyze the age effects from multiple modalities [1]. Li 
proposed a denoising method [9] for multimodal imaging 
measures that implemented LICA as a novel approach to 
remove site effects from multi-study data, and the novel 
method showed more effective performance at removing 
site-related effects compared with the conventional single-
modality ICA denoising methods. The performance of LICA 
is affected by the number of subjects and modalities. 
However, few studies have investigated the influence of 
these parameters. To show the best power of LICA in 
neuroscience studies, in this study, we test the effects of the 
number of subjects and modalities on the performance of 
LICA using both simulated multimodal MRI data and the 
real multimodal MRI datasets from Autism Brain Imaging 
Data Exchange II (ABIDE II). Simulated data were 
employed to assess the impact of variability in subjects and 
modalities, while real multi-site MRI data were utilized to 
showcase the benefits of multimodal fusion in terms of 

identifying site-related components and mitigating site 
effects. 

II. METHODS 

A. Study data 

1) Simulated data  
To assess the effect of the number of subjects on the 

LICA results, we used three different component numbers of 
10, 20, and 30, and for each choice of component numbers 
(all the simulated components are spatial independent), the 
number of subjects varied from 40 to 200 (40, 50, 60, 70, 80, 
90, 100, 150, 200). The criterion for evaluating LICA is 
calculating the correlation between the spatial maps and 
subject courses generated from LICA and those used in the 
simulation. The simulated MRI data, including the different 
number of sources and subjects, were generated in this study. 
For each subject, the data were generated by computing 
spatial maps and one set of ground truth subject courses. 
Each component map was multiplied by the corresponding 
subject course, and then they were added together to obtain 
the simulated MRI data for each subject. The spatial maps 
(shown in Fig. 1) were obtained by combining different areas 
of the standard brain template 
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable
_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parc
ellations/ ). 

# 1-10 # 11-20 # 21-30

 

Fig. 1. 30 independent brain spatial maps used to simulate MRI data.  

We assessed the effect of the number of modalities on the 
LICA results from two perspectives of view: 1) We input the 
simulated data mentioned above repeatedly (regarded as 
Pseudo multimodal data) as different modalities into LICA to 
evaluate the influence of the number of modalities; 2) one 
interesting multimodal component was set firstly by defining 
a signal variable, which is related to one component in each 
modality at different levels (see Table 1) and regarded the 
other nine components as non-interested components. This 
multimodal component from LICA was used to evaluate the 
effects of the number of subjects and modalities on LICA. 
The number of subjects we used here was 100. 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/


TABLE I.  There is one component related to the signal variable in 
each modality, and the correlation coefficient ranges from 0.4 to 0.9, with 
0.1 intervals. The corresponding correlation coefficients among subject 

courses from different modalities can be seen in the right column. 

Correlation between signal and 
subject courses 

Correlation among subject courses 
from different modalities 

0.4 0.16 

0.5 0.25 

0.6 0.36 

0.7 0.49 

0.8 0.64 

0.9 0.81 

 

2) Multi-site MRI data from ABIDE II 
A total of 309 participants were sourced from five 

distinct locations, using various equipment manufacturers 
such as Siemens, Philips, and GE. This data was obtained 
from the Autism Brain Imaging Data Exchange II (ABIDE 
II) dataset, accessible through [10]. We omitted images that 
contained noticeable artifacts, exhibited significant head 
movement (exceeding the size of a single voxel), or lacked 
comprehensive brain scans. Following rigorous quality 
control, we included functional MRI data for 309 subjects in 
our analysis—comprising 91 individuals with Autism 
Spectrum Disorder (ASD) and 218 Healthy Controls (HC). 
Relevant scanning and demographic variables, like repetition 
time (TR), echo time (TE), flip angle (FA), voxel 
dimensions, as well as ASD/HC categorization, gender, and 
age, are outlined in Table 2. 

For each subject, six modalities of MRI data were 
generated, including grey matter (GM), cortical thickness 
(CT), pial surface area (PSA), and three functional MRI 
outcomes: regional homogeneity (ReHo), amplitude of low 
frequency fluctuation (ALFF), fractional amplitude of low 
frequency fluctuations (fALFF). In this study, to match the 
number of subjects in each site, we utilized ALFF, fALFF, 
and ReHo to test LICA in terms of multimodal data fusion. 

TABLE II.  Parameters for Scanning and Demographic Details for 
Multi-Site ABIDE II Dataset. The data were collected from 5 different sites: 

Erasmus University Medical Center (EMC), ETH Zürich (ETH), 
Georgetown University (GU), Indiana University (IU), Kennedy Krieger 

Institute (KKI) 

Sites Scan- 

ners 

TR/TE 
(ms) 

FA  

(deg- 

ree) 

Voxel  

Size 

ASD/ 

HC 

Gen-
der 

Age 

EMC GE  

MR750 

2000/ 

30 

85 3.6*3.6 

*4.0 

14/13 22/5 8.39 

±1.03 

ETH Philips 
Achieva 

2000/ 

25 

90 3*3 

*3 

7/22 29/0 23.36 

±4.59 

GU Siemens 
TriTim 

2000/ 

30 

90 3*3 

*3 

27/41 46/22 10.89 

±1.62 

IU Siemens 
TriTim 

813/ 

28 

60 3.4*3.4 

*3.4 

18/19 28/9 24.62 

±7.59 

KKI Philips 
Achieva 

2500/ 

30 

75 3*3 

*3 

25/123 89/59 10.37 

±1.27 

 

In this study, the site differences are defined as noise 
variables, and group differences (ASD/HC), age, and gender 
are regarded as signal variables. We used data from two to 
five sites to validate the LICA method. 

B. Data preprocessing  

We preprocessed the initial fMRI datasets using FSL 
FEAT, which involved the exclusion of the first six volumes, 
alongside procedures for motion rectification and spatial 
standardization to the conventional MNI coordinate system. 
Utilizing DPABI [11], two distinct functional parameters, 
namely ALFF (Amplitude of Low Frequency Fluctuations) 
and ReHo (Regional Homogeneity), were derived from the 
cleansed fMRI information. For ReHo, spatial refinement 
was carried out post-calculation, using a Full Width at Half 
Maximum (FWHM) value of 6 mm. In contrast, for ALFF, 
this spatial smoothing process was executed prior to the 
actual calculation [12]. 

C. Run LICA and post analysis 

We downloaded the LICA tool from FSL website 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA), and then put it 
under Matlab (https://uk.mathworks.com/ ) folder after 
unpacking. About the setting of the number of components, 
1) for the simulated data, we just set the number of 
components as same as in the simulation since we knew the 
ground truth; 2) for the real MRI data, since LICA can 
automatically determine the number of components that are 
needed to describe the data optimally, we just preset a large 
number of components, then allow LICA to downweight and 
eliminate the weak components gradually.  

The subject courses for each component were assessed 
for relationships with site and signal using the Pearson 
correlation coefficient. As the differences between sites are 
categorical in nature, direct correlation coefficient 
calculations between categorical and numerical variables are 
not feasible. To assess the significance levels of subject 
trajectories and site-specific variables, we employed 
Analysis of Variance (ANOVA) methods. 

III. RESULTS 

We first show the results from simulated data, including 
the influence of the number of subjects and modalities. Then, 
we show the results from the real-world fMRI outcomes 
from the ABIDE II dataset, including the signal- and site-
related components and denoising results from a single 
modality and multiple modalities. 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA
https://uk.mathworks.com/


A. Results from simulated data 

Similarities of Spatial Maps Similarities of Subject Courses 

(A) 10 Sources

(B) 20 Sources

(C) 30 Sources

The Influence of the Number of Subjects

 

Fig. 2. The influence of the number of subjects on recovering spatial maps 
and subject loadings of LICA. (A) When there are 10 independent 

components, LICA can recover all the components from the data 

when the number of subjects is larger than 40, and there are two 
correlated components that should be independent when the number 

of subjects is 40; (B) when there are 20 independent components, 

LICA can recover all the components from the data with more than 80 
subjects, and can get all totally independent components when the 

number of subjects is more than 150; (C) when there are 30 

independent components, LICA can recover all the components from 
the data with more than 100 subjects, and can get can all totally 

independent components when the number of subjects is more than 

200. 

 

Fig. 3. The influence of the number of subjects on recovering spatial maps 
and subject loadings of LICA. The r-values were obtained by 

computing the mean values of correlation coefficients between the 

components identified by LICA and used in the simulated data. LICA 
can recover all the components only when the number of subjects is 

large enough: a minimum of 40 subjects were required to recover 10 

components, 80 subjects for 20 components, and 100 subjects for 30 

components. 

Figs. 2 and 3 showed the influence of the number of 
subjects on recovering spatial maps and subject loadings of 
LICA. When the number of independent components is 10, 
all the simulated components can be recovered by LICA. 
However, two components are correlated when the number 
of subjects is not large enough (say 40). In other words, the 
10 components generated by LICA are not as totally 
independent as those used in the simulation. As the number 
of subjects increases, all 10 simulated independent 
components can be recovered from LICA. When the number 
of independent components is 20, LICA can only recover 
parts of the simulated components when the number of 

subjects is less than 80. Specifically, 14 components can be 
recovered when the number of subjects is 40 and 19 
components can be recovered with 60 subjects. In addition, 
LICA can recover all 20 components when the number of 
subjects is more than 80 and recover all the totally 
independent components when the number of subjects is 
more than 150. The same trend can be observed when the 
number of independent components is 30. The numbers of 
subjects needed to recover all the 30 components and all the 
independent components are 100 and 200, respectively. 

Similarities of Spatial Maps Similarities of Subject Courses 

The Influence of the Number of Modalities

 

Fig. 4. The influence of the number of modalities on recovering spatial 

maps and subject loadings when the number of sources is 30 and the 

number of subjects is 90. LICA can recover more simulated 
multimodal components from multiple modalities than a single 

modality. 

Figs. 4 and 5 show the influence of the number of 
modalities from two different perspectives of view. From 
Fig. 4, when the number of sources is 30 and the number of 
subjects is 90, LICA can only recover 25 components from a 
single modality. To increase the number of modalities, we 
repeatedly added the same data into LICA. In this way, 
Pseudo multimodal data can be obtained. LICA can recover 
all 30 components from multiple modalities but can not get 
30 totally independent multimodal components even with 4 
modalities.  

Fig. 5 shows the influence of modalities from another 
perspective of view. The biggest highlight of the LICA 
method is its linking function. However, few studies have 
focused on the linking performance of LICA. In this study, 
we explore how the correlation among subject courses from 
different modalities affects the linking performance of LICA. 
To better focus on the linking performance of LICA, we 
selected 10 components and 100 subjects, which have proved 
that LICA can fully recover all components in this case. The 
results show that the signal-related components from each 
modality can not always be linked, although they are all 
related to the signal variable and correlated to each other. 
Specifically, linking performance can not be realized when 
the signal-related components among modalities are weakly 
correlated (correlation coefficient < 0.16). As the correlation 
increases, the linking function of LICA starts to play a role 
(correlation coefficient = 0.25 for three and four modalities 
and 0.49 for two modalities). When the correlation 
coefficients are large but not large enough (less than 0.81), 
the choices of the number of components can affect the 
linking performance. For example, when the correlation 
coefficient of the signal-related components among multiple 
modalities is 0.25, LICA can recover either one linked 
multimodal component or three modality-specific 
components, and the results strongly depend on the choice of 
the number of components. When the correlation coefficients 
are large enough (more than 0.81), the choices of the number 
of components can not affect the linking performance 
anymore. LICA can always obtain the multimodal 



component and significantly increase the correlation with the 
signal variable.  

 

Fig. 5. The influence of the number of modalities on the linking 

performance. The signal-related components from multiple modalities 

can not be linked when they are weakly correlated (less than 0.16) 
and can start to be linked with the increase of the correlation (larger 

than 0.25). As the number of modalities increases, LICA begins to 

link the related components earlier, and the correlation between the 

corresponding components and signal variable also becomes stronger. 

B. Results from the ABIDE II dataset 

1) Linking performance 

A

D
C

B

 

Fig. 6. Components from LICA based on a single modality (ALFF, 

fALFF) and two modalities. (A) The correlation of subject courses 

among all the components generated by LICA on  ALFF and fALFF; 
(B) The spatial maps of the significantly related components from 

ALFF and fALFF; (C) The correlation with age from a single 

modality and two modalities; (D) The correlation with site difference 

from a single modality and two modalities 

Fig. 6 shows the linking performance of LICA using two-
site data from ABIDE II. We first used LICA to analyze 
ALFF and fALFF, respectively, and then fused the two 
modalities with LICA. LICA can generate seven components 
with ALFF data and eight components with fALFF data. 
Among them, the subject courses of one ALFF component 
(#3) and one fALFF component (#1) were highly correlated 
(Fig. 6A). The corresponding spatial maps are shown in Fig. 
6B, which are related to both age and site variables. When 
LICA was used to merge ALFF and fALFF data, these two 
correlated components were linked together as one 
multimodal component, and the correlation coefficients of 
the multimodal components with age and site variables were 
increased.  

2) Denoising results 

TABLE III.  Results from LICA decomposition. Numbers marked in 
red in parentheses represent pure site-related components, and in black 
represent mixed components (related to both site difference and signal 

variables) 

Data Subjects Coms from 
ALFF 

Coms from 
ALFF+fALFF 

Coms from 
ALFF+fALFF+ReHo 

2 
Sites 

56 7(0+1) 11(0+2) 15(0+3) 

3 
Sites 

124 13(0+2) 23(2+3) 28(5+9) 

4 
Sites 

161 17(3+3) 23(6+3) 32(9+8) 

5 
Sites 

309 42(13+5) 46(21+8) 66(23+7) 

 

Table 3 shows the LICA decomposition results. The 
results have the same tendency as those from simulated data: 
with more subjects and/or modalities, LICA can obtain more 
components. In this study, only pure site-related components 
(numbers in red) were used to regress out from the original 
non-denoised data for the goal of site denoising.  

Fig. 7 shows the tSNE-2D projection of ALFF data from 
various sites (3, 4, and 5) before and after site effects 
denoising. The tSNE can project the data into two vectors, 
which can be regarded as the two dominant features of the 
data. The data points of the non-denoised data show site-
clustered distribution as all the centers have their own 
specific cluster areas, while this site-clustered distribution 
decreases after being denoised by LICA based on a single 
modality and even disappears by LICA based on multiple 
modalities. Fig. 8 shows the group-level analysis for site 
effects. The non-denoised ALFF data were globally affected 
by the site effects. Though all the LICA (based on a single 
modality and multiple modalities) methods can remove parts 
of the site effects, the methods can not alleviate the whole 
site effects. In addition, LICA based on multiple modalities 
can remove more site effects than LICA based on a single 
modality(FWE-corrected p < 0.05). 

tSNE 2D Projection of ALFF data from ABIDE II

 

Fig. 7. Dimension reduction visualization by t-SNE before and after 

denoising. The site-cluster distribution before denoising indicated the 

site effects, and it decreased when the data points were randomly 

distributed after denoising. 
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Fig. 8. Group-level analysis for site effects before and after denoising. As 

the number of sites increases, more significantly different regions are 

related to sites. LICA based on multiple modalities can remove more 

site effects than LICA based on a single modality 

Age effect (Positive), FWE-corr p < 0.05 Age effect (Negative), FWE-corr p < 0.05 
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Fig. 9. Group-level analysis for age effects before and after denoising. 

"Positive" refers to significantly increasing amplitude with increasing 
age, whereas "Negative" refers to significantly increasing amplitude 

with decreasing age. 

Fig. 9 displays the results of a group-level examination 
focused on the impact of age. To more effectively isolate age 
effects without the influence of ASD, we limited our analysis 
to healthy individuals. This group-level study employed a 
generalized linear model featuring a one-way ANOVA 
approach, with age as the factor and gender as a covariate. 
Negative age effects were not observable in the original, 
non-denoised data, due to the presence of site-specific 
influences. However, after applying various denoising 
techniques to remove these site effects, the concealed 
negative age impacts became evident. 

IV. DISCUSSIONS 

In this study, we test the performance of LICA using 
simulated and multimodal data from ABIDE II. Simulated 
data were used to test the influence of the number of subjects 
and modalities, and multimodal MRI data from ABIDE II 
were used to evaluate the linking and denoising performance. 

Regarding the number of components obtained by LICA, 
it's important to note that LICA is a Bayesian form of ICA, 
setting it apart from traditional ICA approaches like FastICA. 
LICA integrates dimensionality reduction directly into the 
ICA procedure by utilizing automatic relevance 
determination (ARD) priors on the components themselves. 

[13], [14]. During the interaction, eliminated components (or 
part-components) are eradicated from the model, avoiding 
additional inference on these zero-weight spatial maps. So, 
the number of components obtained by LICA has an upper 
limit, and the expected number of components may not be 
achieved sometimes.  

There are two ways to obtain more reliable components 
with LICA: increasing the number of subjects and 
modalities. The approximate relationship between the 
number of subjects and the number of components is a four-
fold relationship. That is to say, LICA can obtain 10 
components (if they exist) from the data with more than 40 
subjects and 20 components from the data with more than 80 
subjects. 

The linking function is the most prominent highlight of 
the LICA method. LICA can automatically determine the 
optimal weighting of each modality and detect single-
modality structured components when present. This study 
profoundly evaluates how correlation among subject courses 
from various modalities affects the linking performance. In 
general, the realization of the linking function requires 
certain conditions. It can only be realized when components 
from two or more modalities are highly correlated. In 
addition, the number of modalities and the choice of 
component setting also influence the linking performance.  

When the defined signal-related components from each 
modality are weakly correlated (0.16), the linking function 
can not be realized even when we increase the number of 
modalities and choose the smaller numbers for 
decomposition. As the correlation among subject courses 
from different modalities increases, the linking function 
plays a role via the increase of modalities and appropriate 
composition settings. For example, when the correlation 
coefficient = 0.25, via setting 10 as the number for 
composition, the linking performance can be realized from 
three and four modalities but not from two modalities, which 
means the number of modalities influences the linking 
function. Also, if we set 11 as the number for decomposition, 
LICA can obtain modality-specific components rather than 
shared ones. When the correlation coefficients are large 
enough (> 0.81), the number of modalities and choices of the 
number of components can not affect the linking 
performance anymore. LICA can always obtain the shared 
component and the correlation of the multimodal component 
generated from LICA with the signal variable is larger than 
that of the single modal component (Fig. 5). 

Results from real MRI data (Fig. 6) can also confirm the 
conclusions above. The strongly correlated components from 
various modalities will be linked and generate a shared 
component more related to age and site variables.  

Regarding the evaluation results of denoising, since our 
research only focuses on pure site-related components, and 
those mixed components usually contribute to the larger 
proportion of site effects, so all methods cannot alleviate the 
whole site effects. LICA based on multiple modalities can 
remove more site effects than LICA based on a single 
modality. 

V. CONCLUSIONS  

In conclusion, when LICA can not recover the spatial 
maps or subject courses well, both increasing the number of 
modalities and the number of subjects can improve the 



results. The factors affecting the linking function include the 
correlation among subject courses from various modalities, 
the number of modalities, and the choice of components for 
decomposition. Our results from real-world datasets also 
demonstrated the advantages of multimodal fusion by LICA: 
1) identify more site-related components; 2) remove more 
site effects and find age effects masked by site effects. 

ACKNOWLEDGMENT  

This work was supported by STI 2030 - Major Projects 
2022ZD0211500, Science and Technology Planning Project 
of Liaoning Provincial (no. 2022JH2/10700002 and 
2021JH1/10400049), National Natural Science Foundation 
of China [grant numbers 91748105 & 81471742], National 
Foundation in China [grant number JCKY 2019110B009], 
and the scholarship from China Scholarship Council(No. 
201806060167). 

REFERENCES 

 
[1] A. R. Groves et al., “Benefits of multimodal fusion analysis on a 

large-scale dataset: Life-span patterns of inter-subject variability in 
cortical morphometry and white matter microstructure,” Neuroimage, 
vol. 63, no. 1, pp. 365–380, 2012, doi: 
10.1016/j.neuroimage.2012.06.038. 

[2] J. Sui, T. Adali, Q. Yu, J. Chen, and V. D. Calhoun, “A review of 
multivariate methods for multimodal fusion of brain imaging data,” J 
Neurosci Methods, vol. 204, no. 1, pp. 68–81, 2012, doi: 
10.1016/j.jneumeth.2011.10.031. 

[3] J. Sui, Q. Yu, H. He, G. D. Pearlson, and V. D. Calhoun, “A Selective 
Review of Multimodal Fusion Methods in Schizophrenia,” Front 
Hum Neurosci, vol. 6, no. February, pp. 1–11, 2012, doi: 
10.3389/fnhum.2012.00027. 

[4] K. J. Friston, “Modalities, modes, and models in functional 
neuroimaging,” Science (1979), vol. 326, no. 5951, pp. 399–403, 
2009, doi: 10.1126/science.1174521. 

[5] V. D. Calhoun, T. Adali, N. R. Giuliani, J. J. Pekar, K. A. Kiehl, and 
G. D. Pearlson, “Method for multimodal analysis of independent 

source differences in schizophrenia: Combining gray matter structural 
and auditory oddball functional data,” Hum Brain Mapp, vol. 27, no. 
1, pp. 47–62, 2006, doi: 10.1002/hbm.20166. 

[6] N. M. Correa, Y. O. Li, T. Adali, and V. D. Calhoun, “Canonical 
correlation analysis for feature-based fusion of biomedical imaging 
modalities and its application to detection of associative networks in 
Schizophrenia,” IEEE Journal on Selected Topics in Signal 
Processing, vol. 2, no. 6, pp. 998–1007, 2008, doi: 
10.1109/JSTSP.2008.2008265. 

[7] N. M. Correa, T. Adalı, Y. Li, and V. D. Calhoun, “Canonical 
correlation analysis for data fusion and group inferences: examining 
applications of medical imaging data,” IEEE Signal Process Mag, no. 
July, pp. 39–50, 2010. 

[8] A. R. Groves, C. F. Beckmann, S. M. Smith, and M. W. Woolrich, 
“Linked independent component analysis for multimodal data 
fusion,” Neuroimage, vol. 54, no. 3, pp. 2198–2217, 2011, doi: 
10.1016/j.neuroimage.2010.09.073. 

[9] H. Li et al., “Denoising scanner effects from multimodal MRI data 
using linked independent component analysis,” Neuroimage, vol. 208, 
no. September 2019, p. 116388, 2020, doi: 
10.1016/j.neuroimage.2019.116388. 

[10] A. Di Martino et al., “Enhancing studies of the connectome in autism 
using the autism brain imaging data exchange II,” Sci Data, vol. 4, 
pp. 1–15, 2017, doi: 10.1038/sdata.2017.10. 

[11] C. G. Yan, X. Di Wang, X. N. Zuo, and Y. F. Zang, “DPABI: Data 
Processing & Analysis for (Resting-State) Brain Imaging,” 
Neuroinformatics, vol. 14, no. 3, pp. 339–351, Jul. 2016, doi: 
10.1007/s12021-016-9299-4. 

[12] X. Z. Jia et al., “RESTplus: an improved toolkit for resting-state 
functional magnetic resonance imaging data processing,” Science 
Bulletin, vol. 64, no. 14. Elsevier B.V., pp. 953–954, Jul. 30, 2019. 
doi: 10.1016/j.scib.2019.05.008. 

[13] C. M. Bishop, “Variational principal components,” IEE Conference 
Publication, vol. 1, no. 470, pp. 509–514, 1999, doi: 
10.1049/cp:19991160. 

[14] R. Choudrey and S. Roberts, “Flexible Bayesian independent 
component analysis for blind source separation,” 2001. [Online]. 
Available: http://inc2.ucsd.edu/ica2001/047-choudrey.pdf 

 

 

 



IV 

HARMONIZATION OF MULTI-SITE MRI DATA WITH 
DUAL-PROJECTION BASED LINKED ICA MODEL 

by 

Huashuai Xu, Yuxing Hao, Yunge Zhang, Dongyue Zhou, Tommi 
Kärkkäinen, Lisa D. Nickerson, Huanjie Li, and Fengyu Cong, 2023 

To be submitted 

Request a copy from the author. 


	Harmonization of Multi-Site MRI Data
	Abstract
	Tiivistelmä
	Acknowledgements
	Acronyms
	Figures and tables
	Contents
	List of included articles
	1 Introduction
	1.1 Magnetic resonance imaging
	1.2 Multi-site MRI studies: advantages and challenges
	1.3 Main contributions
	1.4 Structure of the dissertation

	2 Methods
	2.1 Harmonization methods
	2.2 Dataset
	2.3 Data preprocessing
	2.4 Denoising process
	2.5 Evaluate the denoising results

	3 Overview of included articles
	3.1 Article I: Removal of site effects and enhancement of signal using dual projection independent component analysis for pooling multi-site MRI data
	3.2 Article II: Harmonization of multi-site functional MRI data with dual-projection based ICA model
	3.3 Article III: Enhancing performance of linked independent component analysis: Investigating the influence of subjects and modalities
	3.4 Article IV: Harmonization of multi-site MRI data with dual-projection based Linked ICA model

	4 Discussion
	4.1  Findings of multi-site MRI data harmonization methods
	4.2 Limitations
	4.3 Future directions

	5 Conclusion
	Yhteenveto
	References
	ORIGINAL PAPERS
	I REMOVAL OF SITE EFFECTS AND ENHANCEMENT OF SIGNAL USING DUAL PROJECTION INDEPENDENT COMPONENT ANALYSIS FOR POOLING MULTI-SITE MRI DATA
	II HARMONIZATION OF MULTI-SITE FUNCTIONAL MRI DATA WITH DUAL-PROJECTION BASED ICA MODEL
	III ENHANCING PERFORMANCE OF LINKED INDEPENDENT COMPONENT ANALYSIS: INVESTIGATING THE INFLUENCE OF SUBJECTS AND MODALITIES
	IV HARMONIZATION OF MULTI-SITE MRI DATA WITH DUAL-PROJECTION BASED LINKED ICA MODEL




