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Abstract:  

This thesis examines the ways in which artificial intelligence (AI) can be used to study the 

impact of driving patterns, aiming to find a correlation between the variables influencing 

the driver's decision-making process by using data that can be gathered in various driving 

environments and terrains. This analysis will be helpful in developing a system that helps 

drivers modify their driving habits for increased vehicle efficiency and reduced damage to 

the environment. A T10G device from Aplicom Oy, containing important interfaces to the 

vehicle sensors via a CAN bus interface and on-device sensors that measure vehicle speed, 

latitude longitude and timestamp data, is used to analyze driving behavior. Data has been 

collected on multiple journeys both in-city and on highway in Finland and mapped onto the 

Finnish Transport Infrastructure Authority’s publicly available API which contains de-

tailed mapping of Finnish road and street networks as well as winter and summer speed 

limits with Geo coordinates, thus providing an accurate picture of driving behavior along 

the aforementioned path. This study expresses how incorporating machine learning is a 

fundamental shift in driving that will make it safer, more efficient, and environmentally 

friendly. The driving experience of the future will see more involvement from human-

machine interaction based on sustainability, safety, and accountability. 
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telematics. 

Suomenkielinen tiivistelmä:  

Tässä opinnäytteessä tutkitaan tapoja hyödyntää tekoälyä (AI) kuljettajan 

ajokäyttäytymisen analysointiin. Tavoitteena on löytää korrelaatio niiden eri tekijöiden 

väliltä jotka vaikuttavat kuljettajan tekemiin päätöksiin hyödyntäen kuljettajan 

ajoympäristöstä ja tiestöstä saatavilla olevaa ja kerättyä tietoa. Tämän pohjalta voidaan 

jatkossa kehittää järjestelmä joka auttaa kuljettajia kiinnittämään huomiota ajotapaan ja 

parantamaan ajamisen tehokkuutta ja vähentämään ajamisesta aiheutuu ympäristön 

kuormitusta. 

Aplicom Oy on toimittanut työtä varten T10G-telematiikkalaitteen, josta löytyy 

mittalaitteet ajoneuvon nopeuden, sijainnin ja ajan seuraamiseksi. Lisäksi laitteesta löytyy 

CAN-liitäntä, jonka avulla päästään lukemaan ajoneuvon omia antureita. Näiden tietojan 

avulla kuljettajan ajotapaa voidaan analysoida. Opinnäytteen lähtötiedoiksi ajotietoa on 

kerätty useilla ajokerroilla Suomessa kaupunkiliikenteestä ja moottoritieajosta. Analyysissa 

kerätyt tiedot on yhdistetty Trafin julkisen Digiroad-aineiston kanssa josta on saatu tiestön 

yksityiskohtaista nopeusrajoitus- ja geometriatietoa. Muodostetusta tietomallista voidaan 

muodostaa tarkka kuva kuljettajan ajokäytöksestä kyseisellä tieosuudella. 

Opinnäyte havainnollistaa osuvalla tavalla kuinka koneoppimista voidaan hyödyntää 

liikenteessä kuljettajan avustamiseksi tehden ajamisesta turvallisempaa, tehokkaampaa ja 

ympäristöystävällisempää. Tulevaisuuden liikenteessä tullaan hyödyntämään entistä 

enemmän tietokoneen ja kuljettajan yhteistyötä jotta vastuullisuuden, turvallisuuden ja 

kestävän kehityksen tavoitteet voidaan saavuttaa. 

Avainsanat: Tekoäly, koneoppiminen, kuljettajan ajokäyttäytyminen, taloudellinen 

ajaminen, telematiikka 
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Glossary 

ADAS Advanced Driver Assistance Systems 

CAN Controller Area Network 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

MQTT Message Queuing Telemetry Transport 

OTAP Over-The-Air Programming 

RTC Real-Time Clock 
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1 Introduction 

In this thesis, the emphasis is on analyzing driving behaviors in different scenarios and 

identifying patterns in driving style of a driver for improved vehicle efficiency. It is com-

monplace nowadays for automotive companies to utilize technology to introduce digital 

interfaces for reading engine data as well as other electronic components to evaluate vehi-

cle performance and diagnosis. 

The approach used to perform such data analytics starts by first clarifying the goal that has 

to be achieved. In this thesis, the goal is to utilize the data collected with Aplicom T10G 

device in order to identify patterns or events that can be useful in analyzing driving behav-

ior. Another important goal is to provide a thorough overview of different machine learn-

ing models with suitable driving parameters as input to process and how such models can 

help in identifying and correcting the driving behavior keeping in mind different terrains, 

external environment factors, driver's state, and vehicle data. Such statistical and logical 

analysis will be beneficial in creating an assisting system for a driver to correct their driv-

ing behavior for improved vehicle efficiency and reduced damage to the environment. 

The collected data will be correlated, and an overview of appropriate machine learning 

algorithms will be provided which can be valuable in analyzing different scenarios where 

driving data is available. This would not only analyze the current state of the vehicle and 

driver but also predict an appropriate driving style in the given driving conditions such that 

the driver will be able to adapt to better driving practices and improve their driving score. 

It would also reduce the chances of wear and tear on the vehicle and improve fuel efficien-

cy. 

This research will prove to yield numerous benefits including increased work efficiency, 

reduced carbon emissions, improved vehicle diagnostics and eco-driving. Furthermore, a 

reward system can be introduced which can be based on a driving score that will increase 

or decrease based on driving efficiency.  

This research aims to provide a framework of all the relating factors that could affect driv-

ers’ performance as well as a vehicle’s efficiency and provide correlations among varied 
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factors which could help in better-informed decision making. With the help of this system, 

visual feedback can be provided to the driver which would not only detail vehicle diagnos-

tics data but also provide an insight on the driver's performance throughout the ride, poten-

tially displaying statistics at the end of the trip which would differentiate between current 

performance and an ideal one for better efficiency. 
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2 KEY CONCEPTS 

This chapter focuses on explaining some of the key terms and concepts which are im-

portant in order to thoroughly understand the research. 

2.1 ADAS Systems 

According to the National Highway Traffic Safety Administration (NHTSA), Ad-

vanced Driver Assistance Systems (ADAS) are technological advancements that intro-

duce automation or improvements to vehicle systems, with the primary goal of enhanc-

ing safety and driving experience. These innovations assist drivers in avoiding acci-

dents, maintaining control of their vehicles, and overall, enhancing road safety. 

 

The European Automobile Manufacturers' Association (ACEA) describes that ADAS 

encompass a variety of safety technologies designed to aid vehicle drivers. These sys-

tems work towards making driving safer by enhancing road safety and reducing acci-

dent severity. They can assist drivers in accident avoidance or, when necessary, mini-

mize the impact of accidents. 

 

The Society of Automotive Engineers (SAE) defines ADAS systems in agreement 

with the ACEA in that ADAS encompass a wide array of electronic systems engi-

neered to support drivers during their journeys. These systems can automate tasks, is-

sue warnings or alerts, and enhance vehicle performance in various ways to improve 

safety and convenience. 

 

Automotive OEM (Original Equipment Manufacturer) represent ADAS as integrated 

technologies within vehicles that leverage sensors, cameras, and radar to provide driv-

er support. These technologies may include features like adaptive cruise control, lane-

keeping assistance, and traffic sign recognition, all working together to enhance both 

driver safety and convenience. 
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2.2 Controller Area Network 

Due to its durable and robust features, CAN (Controller Area Network) can be defined 

as a communication protocol and bus system that was originally created in the 1980s, 

primarily for the automotive industry. Microcontrollers and other devices can com-

municate in real time thanks to this two-wire, differential serial communication tech-

nology. With CAN High (CANH) and CAN Low (CANL) cables, differential signal-

ing is used to lessen electromagnetic interference and improve noise resistance. It 

functions as a multi-master system, providing flexibility and distributed networking by 

enabling multiple devices on the bus to initiate communication. Due to its priority-

based message arbitration mechanism, which gives higher-priority messages prefer-

ence over lower-priority ones, CAN provides deterministic communication, ensuring 

predictable transmission and reception times that are essential for real-time applica-

tions.  

Retransmission of messages is made possible by robust error detection and handling 

methods, which identify and report mistakes. The scalability of CAN enables both reg-

ular and extended message frames with 11-bit and 29-bit IDs, and can handle a range 

of communication rates, from kilobits to megabits per second. It is effective for little 

data packets thanks to its reduced transmission overhead. CAN has widespread ac-

ceptance in industrial automation, aircraft, medical devices, and other industries that 

require real-time, dependable communication despite its automobile industry roots. 
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3 METHODOLOGY 

3.1 Research Methods and Data Collection 

Telematics device play a pivotal role in vehicle performance monitoring and data collec-

tion. The driving behavior analysis is performed using Aplicom’s T10G device which fea-

tures important interfaces to vehicle and sensors that can be utilized for collecting data 

from in-vehicle sensors via a CAN bus interface. When assessing driving behavior, the 

CAN interface is very crucial. It offers immediate access to a multitude of data from the 

internal network of the car. Engine metrics, including RPM, fuel consumption, and engine 

load, can be monitored via the CAN interface. These parameters are essential for assessing 

driving effectiveness and vehicle health.  

 

Figure 1: Data Collection 

These devices have on board GNSS and GPS capability that provides accurate location of 

the vehicle and makes it possible to retrieve data from vehicle sensors at the current loca-

tion with timestamps. With the help of 4G communication the data is sent from vehicle to 

the cloud service and helps in performing data analysis remotely.  
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When the vehicle is operating, the device gathers data and uses the MQTT (Message 

Queuing Telemetry Transport) protocol to communicate it to a cloud server. After collec-

tion, the data is processed and examined to address research concerns about driving habits 

and vehicle efficiency. 

Chapter 4 presents a comprehensive study that sheds light on important aspects of driving 

behavior, vehicle performance, and road safety. The research questions posed are based on 

the vast variety of data that can be retrieved using the telematics device . 

3.2 Data Processing 

These devices being highly configurable via cloud service makes it easy to control the de-

vice remotely and program the device using the OTAP service. The data sent over the 

cloud contains unique device identifiers and is in the form of snapshots that contains GPS 

positioning, speed, acceleration metrics and data collected from vehicle’s CAN interface. 

The device is also capable of handling events based on the provided configuration and per-

forming certain actions in the response. 

Table 1 below shows a few of the many factors and their sources and impact on driver's 

decision-making process and vehicle efficiency. 

Sensors Collected Data  Corelation  

Accelerometer Speed  Fuel Consumption, Speed limit  

GPS Position  Identifying terrain  

Engine  RPM, Fuel Level  Speed, Diagnostics  

Brake ABS Harsh braking 

Table 1. Corelation of sensors data and vehicle efficiency 

Figure 2 below highlights how the process of data collection goes for different drivers and 

its feeding to appropriate machine learning models which can help determine the patterns 

in their data and find out accurate correlations between distinct factors. This machine 
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learning model will now be capable of taking input fresh driving data and comparing it 

with the patterns identified and helping in determining the ideal values of different driving 

parameters.  

 

Figure 2. Data Processing 

The T10G device contains a 3-axis accelerometer which helps in determining vehicle 

speed and whether the driver is abiding by the location’s speed limit. In order to compare 

with the speed limitations imposed by the local Finnish authorities, the device is intended 

to gather real-time speed data along with GPS positions and timestamps. The Finnish 

Transport Infrastructure Authority offers a publicly accessible API that includes a thorough 

map of the country's street and road networks. Additionally, this database includes GPS-

coordinated summer and winter speed limits. 

Using the T10G telematics device, data has been gathered during multiple in-city and on-

highway trips in order to present a thorough overview. There is travel data from highways 

and within cities in this collection. 
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A more thorough examination of the real-world implementation of this service, emphasiz-

ing crucial elements of safe driving practices, is provided in Chapter 5.  

With the help of the accelerometer and braking data retrieved from the CAN interface, it 

becomes possible to detect harsh breaking events which not only tell about the psychologi-

cal behavior of the driver but also helps in determining the driving score. With sudden 

changes in the accelerometer data, events such as harsh braking or veering off road can be 

identified and can help in alerting the driver in real-time using the performance evaluation 

matrix. 

This analysis will also allow the determination of the change in speed in congested city 

areas, at intersections or at bus stops. Small changes of a few kilometers per hour during a 

short span of time can be negatively scored and indicate that the driving is not steady. 

Moreover, on highways there should be a maximum speed limit which should not be ex-

ceeded even momentarily and can be considered as highly dangerous and thus have a high-

er negative score. Maintaining a constant driving speed within the speed limit can be con-

sidered as efficient driving and point towards a positive score. However, such situations 

require careful consideration of the surrounding environment of the vehicle in order to 

avoid accidents and maintaining safe distance from surrounding vehicles.  

These analyses are also helpful for companies that employ heavy vehicle drivers and can 

determine their vehicle performance based on driving style for timely predictive mainte-

nance of the vehicles as well as optimizing the routes that the vehicle follows and result in 

lower fuel consumption and maintenance costs. 

The study explores these situations' dynamics and how they relate to the parameters under 

investigation. Beyond that, an investigation into corner case situations and constraints is 

conducted to make sure the analysis stays thorough and considers the intricacies of the real 

world. Later chapters will go into further detail regarding the appropriateness of particular 

parameters in various scenarios. The goal is to present a comprehensive understanding of 

the driving behavior analysis process while taking into account its nuances and real-world 

differences. To identify the best method for evaluating particular parameters, the collected 

data and its suitability is explained using a variety of machine learning techniques. 
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4 RESEARCH QUESTIONS 

Based on the extensive data gathered from various sources, including the on-device sen-

sors, the internal sensors of the car via CAN bus interface, this study identifies three key 

research problems in the field of driving behavior analysis. The following research is based 

on these questions, which are derived from the rich tapestry of data. The research questions 

are addressed meticulously below, exploring the many facets of driving behavior, vehicle 

performance, and road safety. The study provides insightful information that has broad 

consequences for vehicle efficiency as well as safe driving behaviors. 

4.1 How do current approaches, methods and algorithms automatically 

recognize, evaluate efficiency and forecast driver activity based on 

available online monitoring data? 

The application of diverse machine learning models designed for specific circum-

stances is often necessary to comprehend driving behavior patterns. In this analysis, 

we investigate several machine learning models, each specially designed to clarify 

pertinent driving parameters. Decision trees are one of these models, and they work 

well for identifying distinct, rule-based patterns in driving behavior. When it comes 

to managing intricate relationships between parameters, random forests shine, offer-

ing a more nuanced perspective of driver behavior. Classifying driving patterns is a 

strong suit for Support Vector Machines (SVMs), but sequential dependencies in da-

ta, like those in time-series analysis, are best handled by recurrent neural networks 

(RNNs). Using this heterogeneous collection of machine learning models, we hope 

to fully understand driving behavior and reveal insights that may be hidden with a 

single method. 

4.1.1 Decision Trees and Random Forests 

Driving patterns can be categorized using decision trees and its ensemble equiva-

lent, random forests. These models can identify particular driving behaviors, such 
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as erratic braking, forceful acceleration, or prolonged idling, and then initiate feed-

back based on these categories.  

 

• Decision Trees: 

 

i. Classification: Decision trees (Breiman et al, 1984; Quinlan 1986; 

1993) are versatile tools for categorizing different driving patterns 

through iterative data splitting based on input features like speed, 

acceleration, and brake usage. This makes them well-suited for pin-

pointing specific behaviors in driving data. 

 

ii. Interpretability: Decision trees (DT) are inherently transparent, of-

fering a structured hierarchical representation of decisions and con-

ditions graphically (Nagalla et al., 2017). This interpretability aids in 

understanding the driving features contributing to a particular behav-

ior, facilitating insights into, for instance, the characteristics of ag-

gressive acceleration. 

 

iii. Feedback Generation: After training on historical driving data, deci-

sion trees can be employed in real-time to recognize a driver's ac-

tions. When a specific behavior is detected following the decision 

tree's logic, immediate feedback can be delivered, possibly in the 

form of visual or auditory alerts. 
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Figure 3: Decision Trees 

Figure 2 elucidates the technical flow encompassing input features, the Decision 

Trees algorithm as the middleware processing unit, and the resultant output. The 

algorithm systematically processes a compiled dataset, employing training proce-

dures to develop models. It conducts evaluations based on input parameters such as 

brake usage, idle duration, speed, and acceleration. The algorithm discriminates 

driving behavior by predicting outcomes, particularly emphasizing forceful accel-

eration and harsh braking. Notably, a high probability prediction of "Erratic Brak-

ing" implies a driver propensity for abrupt and frequent braking, while a forecast of 

"Forceful Acceleration" denotes rapid and forceful acceleration tendencies. The 

technical intricacies lie in the algorithm's ability to discern patterns within the input 

data, facilitating nuanced predictions of distinct driving behaviors. 

• Random Forests (Ensemble of Decision Trees): 

 

i. Ensemble Approach: Random forests (RF), as ensemble learners, 

combine the predictions of multiple decision trees. These trees are 

constructed using distinct subsets of training data and features. This 

ensemble approach enhances the robustness and accuracy of pattern 

classification (Breiman, 2001). 
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ii. Handling Variability: Variability in driving patterns can pose chal-

lenges for a single decision tree model. Random forests excel in 

handling this variability as they capture different facets of the data 

through multiple trees. This adaptability enables them to account for 

various driver behaviors and environmental conditions. 

 

iii. Feedback Customization: Random forests facilitate more nuanced 

and personalized feedback. Rather than providing generic responses 

for broad categories like "aggressive driving," the ensemble can dif-

ferentiate between degrees of aggressiveness, offering tailored feed-

back based on the detected severity of the behavior. 

 

iv. Reducing Overfitting: Random forests are less prone to overfitting 

compared to individual decision trees and often outperform them 

(Dietterich, 2000). Overfitting occurs when models learn noise in 

the data, leading to poor generalization. By combining the predic-

tions of multiple trees, random forests mitigate overfitting concerns 

and offer more reliable results. 
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Figure 4: Random Forest 

The diagram illustrates the integral components of the system: input factors, the 

middleware algorithm, and the targeted output. In the context of Random Forest 

Trees (RFT) algorithm, the input parameters, including brake usage, idle duration, 

speed, and acceleration, undergo a feature extraction process to create a compre-

hensive dataset. The RFT algorithm then leverages this dataset for model training, 

employing an ensemble of decision trees to evaluate and predict driving behavior. 

The RFT algorithm's proficiency lies in its ability to discern complex patterns with-

in the input data, employing a multitude of decision trees that collectively contrib-

ute to the final output. For instance, specific decision trees focus on rapid accelera-

tion, while others scrutinize instances of harsh braking. Each decision tree encapsu-

lates a set of rules tailored to its assigned aspect of driving behavior analysis. 

The system's output, consequently, provides a detailed report elucidating specific 

driving behaviors, notably emphasizing forceful acceleration and harsh braking in-

cidents. This granular feedback, rooted in the Random Forest algorithm's intricate 

analysis, serves as a technical tool for discerning and improving driving practices. 
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It not only identifies problematic driving patterns but also provides actionable in-

sights for enhancing overall driving safety. 

Nagalla et al. (2017) utilized and compared the results of data extracted using deci-

sion trees, random forests and support vector machines to predict drivers’ gap ac-

ceptance behavior at intersections that lacked signals. The data included the cross-

ing vehicle type, the conflicting vehicle, vehicle speed and size of the spatial gap. 

Results showed that SVMs are not sensitive to class imbalance, but the CART algo-

rithm’s generated decision tree yielded important information about the driver’s de-

cision-making process. Decision trees and random forests both established the rele-

vance of several factors influencing the driver’s choice. Moreover, validating the 

models using skill scores revealed that, while the random forest model beat the 

SVM and DT models, the SVM and DT models performed relatively similarly. 

 

In summary, decision trees and random forests serve as valuable tools for the clas-

sification of driving behaviors and the generation of adaptive feedback. Decision 

trees offer transparency and interpretability, while random forests provide robust-

ness and adaptability by aggregating insights from multiple trees. These models en-

hance driving efficiency by accurately identifying specific behaviors and delivering 

targeted feedback to encourage safer and more fuel-efficient driving practices. 

4.1.2 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) serve as effective tools for categorizing driving 

behaviors and recognizing deviations from ideal conduct, thus contributing to driv-

er safety and offering relevant feedback. SVMs excel in binary classification tasks, 

distinguishing between optimal and non-optimal driving patterns based on learned 

decision boundaries in feature space. 

• Categorizing Driving Patterns: 
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i. Ideal vs. Aberrant Behavior: SVMs are trained on labeled datasets 

encompassing examples of both exemplary and non-standard driving 

behaviors. These behaviors encompass adherence to safe speeds, 

smooth maneuvering, and compliance with traffic rules. The SVM's 

learning process enables it to differentiate between these categories, 

establishing a clear boundary between them. 

 

ii. Speed Detection: A common application of SVMs in this context is 

the identification of speeding incidents. By analyzing data such as 

vehicle speed and road conditions, SVMs ascertain when a driver 

surpasses speed limits. This is instrumental in promoting road safety 

and adherence to traffic regulations. 

 

 

• Generating Feedback and Alerts: 

 

i. Real-time Surveillance: SVMs operate in real-time, continuously as-

sessing incoming sensor data as the driver operates the vehicle. This 

enables swift detection of deviations from the expected behavior and 

research indicates they can be of great benefit in real-time crash risk 

evaluation (Yu & Abdel-Aty, 2013).  

 

ii. Feedback Activation: Upon identifying deviations, SVMs can trig-

ger feedback responses. Feedback may manifest through visual cues 

on the dashboard, auditory alerts, or tactile feedback via the steering 

wheel or pedals (Chen & Chen, 2017). For instance, if a driver con-

sistently exceeds speed limits or executes sharp turns, the SVM may 

initiate visual warnings or issue audible alerts to foster safer driving 

habits. 
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iii. Tailored Feedback: SVMs can be fine-tuned to customize feedback 

based on the seriousness of the deviation. For instance, a minor 

speeding incident might lead to a subtle visual indicator, while a 

more significant violation could prompt a more immediate and pro-

nounced warning. 

 

• Elevating Driver Safety: 

 

i. The primary objective of utilizing SVMs in this capacity is to 

heighten driver safety and encourage responsible driving conduct. 

By promptly identifying and addressing deviations from recom-

mended behavior, SVM-based systems contribute to the reduction of 

accidents, the preservation of lives, and the prevention of traffic in-

fractions (Wang et al., 2019). 

 

ii. Furthermore, SVMs can be seamlessly integrated into comprehen-

sive telematics and driver assistance systems, supplying valuable da-

ta for analysis and reporting on driving performance. This data can 

be harnessed for coaching and educational programs designed to en-

hance driver skills and behaviors. 
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Figure 5: Support Vector Machines (SVM) 

Figure 4 delineates the fundamental components of the driving behavior analysis 

system, incorporating input factors, the middleware algorithm, and the targeted 

output. In the realm of Support Vector Machines (SVMs) analysis, discerning the 

pertinent input factors is pivotal. These factors encapsulate road features, vehicle 

position, interactions with other vehicles, pedestrian activity, adherence to traffic 

signs and signals, speed dynamics, obstacle detection, turn signals, traffic flow, and 

environmental conditions. SVMs, renowned for their efficacy in classification 

tasks, assimilate these factors as input parameters. The algorithm's middleware 

functions involve intricate mathematical transformations and hyperplane delinea-

tions within the feature space, enabling the classification of driving behavior pat-

terns. The anticipated outcomes, facilitated by SVM analysis, encompass categori-

zations such as safe driving, aggressive driving, and inattentive driving. SVMs ex-

cel in discerning complex relationships within high-dimensional datasets, rendering 

them adept at capturing nuanced patterns in driving behavior based on the amalga-

mated input features. This systematic analysis establishes a robust framework for 

real-time assessment and prediction of diverse driving behavior patterns. 
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Yu and Abdel-Aty (2013) investigated the SVM model’s predictive capabilities for 

real-time crash risk evaluation. Results showed that the SVM model’s classification 

accuracy can be enhanced by using a smaller sample size and that there is a need 

for a procedure for variable selection before the SVM model estimation.In sum-

mary, Support Vector Machines (SVMs) are valuable instruments for classifying 

driving patterns and detecting variations from ideal behavior. Their capacity to pro-

vide immediate feedback and activate alerts positions them as pivotal tools for en-

hancing driver safety, road traffic safety and endorsing prudent driving practices. 

Whether it involves identifying speeding incidents or pinpointing sharp turns, 

SVMs play an essential role in fostering safer road environments. 

4.1.3 Deep Neural Networks  

Deep neural networks, specifically CNNs and RNNs, offer robust capabilities for 

processing sequential driving data obtained from sensors and delivering adaptive 

feedback. These neural network architectures are well-suited to handle diverse data 

types, enhancing the comprehension of driving patterns and enabling context-aware 

responses. 

• Convolutional Neural Networks (CNNs): 

 

i. Spatial Data Processing: CNNs excel in the processing of spatial da-

ta, making them invaluable for analyzing images or video streams 

from in-vehicle cameras or external sensors (Lecun et al., 1998). 

Through convolutional layers, CNNs automatically extract pertinent 

features from images, enabling them to identify patterns and objects. 

 

ii. Object Recognition: In the driving context, CNNs are adept at de-

tecting objects like vehicles, pedestrians, traffic signs, and road 

markings. This capability is instrumental for assessing how the driv-

er interacts with the surroundings and for identifying potential haz-

ards or rule violations. Yan et al. (2016) utilized a CNN model to 
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generate labels identifying driver’s actions based on the movements 

of skin-like regions in driver images taken from the Southeast Uni-

versity Driving-posture Dataset with a 97.76% mean average preci-

sion, proving the effectiveness of the CNN model in recognizing 

driver actions. 

 

iii. Visual Feedback: By analyzing real-time camera inputs, CNNs can 

offer visual feedback to drivers. For instance, they can detect lane 

deviations and issue alerts or provide guidance during parking ma-

neuvers by recognizing obstacles and presenting visual cues on a 

display. 

 

 

Figure 6: Concurrent Neural Network (CNN) 

In the intricately designed system represented Figure 5, Convolutional Neural Net-

works (CNNs) serve as the central processing hub, extracting invaluable insights 

from both in-vehicle and external visual sensors. The in-vehicle camera data pro-
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vides a comprehensive view of the driver's behavior, including emotional states and 

attentiveness, while external environmental imaging captures the surrounding con-

ditions and potential obstacles. The CNN middleware, characterized by convolu-

tional layers, engages in sophisticated feature extraction, unraveling hierarchical 

patterns within the input images. Through a meticulous training algorithm, the 

CNN learns intricate relationships from datasets, becoming adept at discerning ob-

ject categories, identifying road markings for precise lane detection, and evaluating 

the driver's state, encompassing factors like drowsiness and emotional cues. Event 

detection capabilities further enable the CNN to pinpoint critical incidents such as 

accidents and damaged terrain. The resulting output encapsulates object recogni-

tion, lane detection, driver state assessment, and event detection, collectively con-

tributing to a holistic understanding of the driving scenario. This intelligent mid-

dleware plays a pivotal role in enhancing safety through collision prediction, real-

time assessments, and insightful recommendations, elevating the driving experience 

to new realms of efficiency and security. 

 

• Recurrent Neural Networks (RNNs): 

 

i. Sequential Data Handling: RNNs are explicitly designed for work-

ing with sequential data, rendering them ideal for processing time-

series sensor data commonly encountered in driving datasets. Such 

data may encompass readings from accelerometers, gyroscopes, 

GPS, and other sensors. Carvalho et al. (2017) determined that cer-

tain RNN configurations upon data collected using a smartphone ac-

celerometer provide results with a high accuracy for classifying 

driving events. 

 

ii. Temporal Relationships: RNNs capture temporal relationships in da-

ta by maintaining hidden states that evolve as the data unfolds. This 

capability allows them to recognize patterns in driving behavior that 
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develop sequentially, such as the rhythm of acceleration and brak-

ing. 

 

• Integration and Contextual Awareness: 

 

i. Both CNNs and RNNs can be seamlessly integrated into a unified 

system to harness their complementary strengths. For instance, 

CNNs can process visual data from cameras to detect road condi-

tions and objects, while RNNs can process time-series data to com-

prehend driver responses to visual cues. Virmani and Gite (2017) 

utilized both CNN and RNN models to analyze driver conduct along 

with a combined CNN with Long-Short Term Memory (LSTM) to 

give improved results in lesser response time. 

 

ii. Contextual awareness is a pivotal aspect of employing deep neural 

networks for driving feedback. The system can adapt its feedback 

based on the specific driving context, whether it involves highway 

driving, city traffic, or challenging weather conditions. This ensures 

that the feedback provided aligns with the driver's immediate cir-

cumstances and needs. 
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Figure 7: Recurrent Neural Network (RNN) 

The schematic in Figure 6 delineates the integral components of the system, en-

compassing input factors, the intermediary algorithmic processes, and the targeted 

output. Within this framework, the Recurrent Neural Network (RNN) assumes a 

pivotal role in conducting a nuanced analysis of driving behavior patterns. The 

RNN algorithm meticulously processes the sequential dataset acquired from diverse 

sources, notably accelerometers, gyroscopes, and GPS. This sequential dataset is 

employed for model training, facilitating the algorithm to discern intricate patterns 

inherent in the driving environment. 

The RNN's proficiency lies in its ability to recognize temporal dependencies and 

patterns within sequential data, making it particularly suited for analyzing driving 

behavior, which unfolds over time. The algorithm dynamically evaluates the pre-

dicted driving behavior based on the sequential input datasets, enabling a compre-

hensive understanding of the driver's interactions with the vehicle and the surround-

ing environment. 

The input factors, derived from sensors such as accelerometers and gyroscopes, 

capture the nuanced dynamics of the vehicle's movement and orientation. Simulta-
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neously, GPS data provides spatial context, enhancing the algorithm's capacity to 

comprehend the driver's position and navigation choices. The amalgamation of 

these factors forms a rich sequential dataset that serves as the foundation for the 

RNN's analytical processes. 

In terms of output, the RNN algorithm yields predictive insights into driving behav-

ior patterns. These outputs may encompass assessments of adherence to speed lim-

its, smoothness of acceleration and deceleration, lane-keeping proficiency, and re-

sponses to dynamic elements like traffic and pedestrians. Moreover, the algorithm 

has the potential to suggest areas for improvement in driving behavior, thereby con-

tributing to enhanced safety. By leveraging the capabilities of RNN-based analysis, 

this system empowers users to make informed decisions based on a sophisticated 

understanding of their driving habits and fosters a proactive approach to road safe-

ty. 

In summary, deep neural networks, encompassing CNNs and RNNs, play a pivotal 

role in the analysis of driving data. While CNNs are adept at processing spatial data 

from various sensors, RNNs excel in handling sequential data from a myriad of 

sources. These networks empower the delivery of adaptive feedback by discerning 

objects, patterns, and temporal dependencies, ultimately contributing to safer and 

more efficient driving practices. 

4.1.4 Clustering Algorithms 

Clustering algorithms, such as k-means or hierarchical clustering, offer valuable 

capabilities in grouping similar driving patterns together. This clustering process 

helps identify shared behaviors among drivers and can facilitate the provision of 

feedback by drawing comparisons between an individual driver's behavior and 

those of others with similar driving profiles. 

• Utilizing Clustering Algorithms for Driving Behavior: 
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i. Grouping Similar Patterns: Clustering algorithms work by partition-

ing a dataset into groups or clusters based on the similarity of data 

points. In the context of driving behavior, these algorithms have 

been utilized to examine various features and characteristics of how 

drivers operate their vehicles (Yang et al., 2022). Similar driving 

patterns, such as consistent speed, smooth acceleration, or adherence 

to traffic rules, tend to result in data points clustering together within 

the same group. 

 

ii. Behavioral Insights: By categorizing drivers into clusters, these al-

gorithms provide a means to gain insights into common behaviors. 

For instance, one cluster might represent cautious and law-abiding 

drivers, while another might include drivers who tend to speed or 

take risks. This clustering helps in understanding the prevailing driv-

ing tendencies within a dataset. Ping et al. (2019) utilized an unsu-

pervised spectral clustering algorithm to determine the fuel efficien-

cy of driving behavior based on naturalistic driving data. Results 

showed that this can effectively identify the connection between 

driving behavior and fuel consumption, allowing the latter’s feature 

prediction which can be used practically in advanced driving assis-

tance systems. 
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Figure 8: K-Means Clustering Algorithm 

 

• Feedback and Comparison: 

 

i. Identifying Deviations: Once a driver is categorized into a specific 

cluster, their driving behavior can be compared to the norms and 

commonalities within that cluster. This comparison allows for the 

detection of deviations from typical behavior. For example, if a 

driver in a cluster known for cautious driving suddenly exhibits ag-

gressive behavior, such as excessive speeding or abrupt lane chang-

es, this can trigger feedback alerts. 

 

ii. Tailored Feedback: The feedback provided can be tailored based on 

the nature and degree of deviation. For instance, if a driver typically 

falls within a cluster of cautious drivers and temporarily deviates 

from this pattern, the feedback may consist of gentle reminders to 

return to safer driving practices. Conversely, if a driver consistently 

displays risky behavior compared to their cluster peers, the feedback 

may be more assertive and emphasize the need for improvement. 

 

• Enhancing Driving Behavior and Safety: 
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i. The use of clustering algorithms in this manner contributes to en-

hancing driving behavior and overall safety. By placing drivers into 

clusters based on similarities in behavior, it becomes possible to not 

only identify deviations but also offer targeted feedback aimed at 

correcting or improving those behaviors (Ping et al., 2019). 

 

ii. Over time, this feedback loop can lead to safer and more responsible 

driving practices. It can encourage drivers to align their behavior 

with the norms of their respective clusters, promoting adherence to 

speed limits, safe following distances, and courteous driving habits. 

 

• Privacy Considerations: 

 

i. It's crucial to acknowledge the importance of privacy in this pro-

cess. While clustering algorithms are effective for feedback and 

behavior improvement, it's imperative to handle data in compli-

ance with privacy regulations, ensuring the anonymization of driv-

er data and the protection of personal information throughout the 

analysis and feedback process (Nasr Azadani & Boukerche, 2022). 

Benyahya et al. (2022) analyzed the potential data privacy breach-

es and security considerations as well as their respective mitigation 

techniques and debated how best to limit them while maximizing 

the benefits of Automated City Shuttles (ACS) that would provide 

efficient and accessible transportation in smart cities. 

 

In conclusion, clustering algorithms like k-means and hierarchical clustering play a 

crucial role in identifying common driving behaviors and enabling tailored feed-

back based on comparisons with similar driving profiles. This approach contributes 

to safer roads, encourages responsible driving practices, and can lead to improved 

overall driver behavior and safety. 
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4.1.5 Reinforcement Learning Algorithms for Adaptive Driving Feedback: 

Reinforcement learning (RL) algorithms, including the advanced variant known as 

deep reinforcement learning (DRL), provide a real-time and adaptable method for 

delivering feedback based on a driver's actions. These algorithms have the capacity 

to learn and enhance driving behaviors through a process involving the reinforce-

ment of certain actions while penalizing others. 

• Distinctive Features of Reinforcement Learning: 

 

i. Trial-and-Error Learning: Reinforcement learning algorithms func-

tion on the principle of learning through experimentation. They ac-

quire knowledge by actively engaging with the driving environ-

ment, taking actions, and receiving feedback in the form of rewards 

or penalties. 

 

ii. Agent and Environment: In the context of driving, the driver and the 

vehicle constitute the agent, while external factors such as road 

conditions, traffic, and environmental elements form the environ-

ment (Hu et al., 2019). The agent makes driving decisions within 

this environment, seeking to optimize cumulative rewards over 

time. 

 

• Real-time Feedback and Adaptation: 

 

i. Immediate Feedback: Reinforcement learning excels in delivering re-

al-time feedback. As the driver takes actions, the RL system continu-

ally assesses these actions and provides instantaneous feedback based 

on their consequences. 
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ii. Adaptive Behavior: RL algorithms excel at adapting driving behav-

iors by optimizing expected cumulative rewards. Actions that lead to 

positive outcomes and safer driving practices are encouraged with 

rewards, while actions that pose risks or result in suboptimal out-

comes are discouraged with penalties. Shan et al. (2020) utilized this 

approach to adaptably balance between the path tracking accuracy 

and the passenger experience in fully autonomous vehicles. 

 

• Reward and Penalty Mechanisms: 

 

i. Reward Signals: In the driving context, reward signals can be de-

signed to promote desired behaviors (Pandey et al., 2010). For in-

stance, maintaining safe following distances, adhering to speed limits, 

and executing smooth lane changes can be positively reinforced. Re-

wards can also be utilized to encourage eco-friendly driving, such as 

minimizing fuel consumption. 

 

ii. Penalties: Conversely, RL algorithms have the capability to impose 

penalties for unsafe or inefficient actions. Aggressive driving behav-

iors like sudden braking, rapid acceleration, or tailgating can incur 

negative rewards. These penalties serve as deterrents against risky ac-

tions and promote safer and more efficient driving practices. 
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Figure 9: Re-inforcement Learning 

The schematic illustration in Figure 8 delineates the intricate interplay between in-

put factors, the middleware algorithm's operational facets, and the coveted output in 

the realm of driving behavior pattern analysis. In this technical framework, the rein-

forcement learning algorithm assumes a pivotal role. It meticulously processes the 

amassed dataset, embarks on the training of intricate models, and subsequently as-

sesses the predicted driving behavior. The algorithm derives insights from a multi-

faceted input array, encompassing parameters such as speed, acceleration, fuel con-

sumption, brake utilization, and gyroscopic datasets. The culminating output mani-

fests predominantly as a comprehensive driver score, a nuanced amalgamation of 

rewards and penalties. This score serves as a comprehensive indicator, furnishing 

valuable feedback on driving proficiency. By delineating areas for potential en-

hancement, the algorithm contributes to the cultivation of safer and more adept 

driving practices. 

• Learning and Optimization: 
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i. Deep Reinforcement Learning: Deep reinforcement learning (DRL), 

which integrates RL with deep neural networks, is especially effective 

for intricate tasks like driving. DRL models can acquire intricate driv-

ing strategies and behaviors by processing extensive sensor data, in-

cluding information from cameras and other sources (Kiran et al., 

2022). 

 

ii. Continuous Enhancement: RL systems consistently refine driving be-

havior through an iterative learning process. As experience accumu-

lates, the algorithm becomes progressively skilled at making decisions 

that prioritize safety, efficiency, and adherence to traffic rules. 

 

• Safety and Adaptability: 

 

i. RL algorithms prioritize safety by minimizing actions that result in ad-

verse outcomes. Marchesini et al. (2022) adapted this principle to propose 

a safety-oriented search complementing deep RL algorithms such that the 

policy is biased toward safety in an evolutionary penalty optimization.  

 

RL algorithms prioritize safety by minimizing actions that result in adverse out-

comes (Marchesini et al., 2022). They can dynamically adjust driving behavior to 

respond to evolving road conditions, traffic scenarios, and unexpected incidents. 

4.1.6 Hidden Markov Models (HMMs) 

Hidden Markov Models (HMMs) are a suitable choice for modeling sequences of 

data, making them valuable for the analysis of driving behavior patterns over time. 

HMMs are especially adept at capturing the shifts or transitions between various 

driving states and can offer feedback based on these transitions. 
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• Modeling Sequential Data with HMMs: 

 

i. Sequential Nature: Driving behavior unfolds sequentially, involving a se-

quence of actions and events as time progresses. HMMs are specifically 

designed to model such sequential data, where each state within the mod-

el represents a particular aspect or condition of the driving behavior. 

 

ii. State Transitions: HMMs excel at capturing the transitions that occur be-

tween states. In the context of driving, these states can represent different 

driving behaviors or conditions, like safe driving, aggressive maneuvers, 

abrupt braking, or lane changes (Li et al., 2016). The transitions between 

these states signify shifts in driving behavior. 

 

• Analyzing Driving Patterns: 

 

i. Recognizing Driving States: HMMs can be trained on historical driving 

data to identify and characterize distinct driving states. These states might 

encompass safe driving practices, risky behaviors, or specific driving sit-

uations such as highway driving or urban traffic. 

 

ii. Transition Analysis: Through the analysis of transitions between these 

states, HMMs reveal patterns in a driver's conduct. For example, they can 

detect when a driver transitions from a state of safe driving to one marked 

by risky behaviors, such as sudden acceleration (Li et al., 2016). This 

transition analysis provides insights into driving habits. 

 

• Providing Feedback Based on Transitions: 

 

i. Feedback Mechanisms: HMMs can activate feedback mechanisms in re-

sponse to identified transitions. For instance, if a driver frequently shifts 

from a safe driving state to a risky behavior state, the system can deliver 



 

32 

 

real-time feedback. This feedback could take the form of visual or audito-

ry alerts, encouraging the driver to adopt safer driving habits. 

 

ii. Tailored Guidance: HMMs also enable tailored guidance. When transi-

tion analysis uncovers that a driver often switches to risky behavior dur-

ing specific road conditions or traffic scenarios, the feedback can be per-

sonalized to address these particular situations, offering targeted recom-

mendations on how to enhance driving performance. 

 

• Advancing Driving Behavior: 

 

i. Systems based on HMMs contribute to the improvement of driving be-

havior by raising awareness of transitions and their significance. By of-

fering feedback regarding these transitions, drivers gain insights to make 

informed decisions that promote safer and more responsible driving prac-

tices. 

 

ii. Furthermore, HMMs play a role in creating driver profiles and uncover-

ing behavioral trends. This information proves valuable for long-term 

driver enhancement initiatives and for evaluating driving practices across 

various conditions, assisting individuals in becoming more conscientious 

and skilled drivers. 
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Figure 10: Hidden Markov Models (HMM) 

In the realm of Hidden Markov Models (HMMs) for driving behavior analysis, the 

diagram in Figure 9 showcases a symbiotic relationship among input factors, the 

middleware algorithm, and outputs. The reinforcement learning paradigm within 

the algorithm processes data, training HMM models with features like speed, accel-

eration, GPS, timestamp, and steering angle. 

As a probabilistic graphical model, the HMM adeptly captures latent states underly-

ing driving behaviors. Transition probabilities represent temporal dependencies, 

while emission probabilities link states to observable features. Outputs include risk 

predictions and insights into specific driving habits, such as rapid accelerations, 

harsh braking, lane shifts, and sharp turns. 

The HMM's ability to model temporal dependencies enables it to grasp sequential 

patterns, offering a holistic view of driving behavior. This technical middleware 

enhances safety insights, indicating areas for improvement. In summary, the HMM 

serves as a powerful tool for probabilistic modeling, decoding intricate patterns 
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from diverse inputs and contributing to intelligent transportation systems and safety 

applications. 

Li et al. (2016) utilized this model to measure the stability and the risk of driver be-

havior at intersections, discovering that in the dilemma zone driver behavior is of 

lower stability and higher risk as compared to that in other areas around intersec-

tions. In summary, Hidden Markov Models (HMMs) are a suitable choice for mod-

eling and comprehending sequential driving data. Their strength lies in capturing 

transitions between different driving states and offering valuable insights that en-

hance our understanding of driving patterns (Zhang et al., 2014). By triggering 

feedback mechanisms tied to these transitions, HMMs contribute to the cultivation 

of safer and more responsible driving practices, ultimately fostering improvements 

in driver behavior over time. 

4.1.7 Gradient Boosting Algorithm 

Gradient boosting algorithms like XGBoost and LightGBM are versatile tools ap-

plicable to both classification and regression tasks related to the analysis of driving 

patterns. Renowned for their impressive predictive accuracy, these algorithms play 

a pivotal role in furnishing feedback based on anticipated results within the realm 

of driving behavior analysis. 

• Employing Gradient Boosting for the Analysis of Driving Patterns: 

 

i. Dual Capabilities in Classification and Regression: Gradient boosting 

algorithms, notably XGBoost and LightGBM, demonstrate their ver-

satility by accommodating a wide array of driving pattern analysis 

tasks. These encompass classification undertakings such as the identi-

fication of hazardous driving behaviors and regression assignments 

like the prediction of factors such as fuel efficiency or driver perfor-

mance metrics (Mousa et al., 2019). 
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ii. Emphasis on Predictive Precision: An inherent strength of gradient 

boosting algorithms lies in their remarkable predictive accuracy 

(Mousa et al., 2019). They are adept at capturing intricate relation-

ships within driving data, enabling highly accurate forecasts and clas-

sifications. This precision is especially valuable when it comes to 

scrutinizing and comprehending driving behavior. 

 

• Feedback Informed by Predicted Outcomes: 

 

i. Tailored Guidance: XGBoost and LightGBM are equipped to offer 

feedback to drivers based on their anticipated driving outcomes. For in-

stance, if the algorithm anticipates an elevated probability of aggressive 

driving behavior, the system can issue real-time feedback or alerts to 

promote safer and more responsible driving practices. 

 

ii. Personalized Recommendations: These algorithms can generate indi-

vidualized recommendations aimed at enhancing specific facets of driv-

ing behavior. If, for instance, the prediction suggests excessive fuel 

consumption, the system can provide suggestions for adopting eco-

friendly driving techniques to optimize fuel efficiency. 

 

• Exploring Feature Importance: 

 

i. Comprehending Driving Patterns: XGBoost and LightGBM extend fea-

ture importance analysis, facilitating a deeper comprehension of which 

factors or characteristics exert the most significant influence on driving 

patterns. This insight proves invaluable in identifying the primary de-

terminants of particular behaviors and tailoring feedback accordingly. 

 

ii. Detecting Risk Factors: In the context of driver safety, these algorithms 

have the capacity to spotlight critical risk factors contributing to unsafe 
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driving practices (Mousa et al., 2019). By pinpointing these factors, the 

system can offer focused feedback and interventions to mitigate risks. 

 

• Real-time and Continuous Feedback: 

 

i. Swift Response: The real-time capabilities inherent to gradient boosting 

algorithms empower immediate responses to driving behaviors. Should 

a driver exhibit behavior aligned with unsafe or inefficient driving pat-

terns, the system can promptly dispense feedback or alerts, facilitating 

prompt corrective actions. 

 

ii. Persistent Enhancement: By delivering feedback rooted in predicted 

outcomes, these algorithms play a pivotal role in perpetually refining 

driving behavior. Over time, drivers can cultivate safer, more efficient 

habits as they receive guidance and insights shaped by the algorithm's 

prognostications. 

 

 

Figure 11: Gradient Boosting Algorithm 
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As shown in Figure 10, in applying Gradient Boosting algorithms to driving behav-

ior analysis, key input factors include speed, acceleration, GPS coordinates, brake 

intensity, and steering angle. These factors are processed by the middleware algo-

rithm, which orchestrates an ensemble of decision trees, iteratively refining the 

model to discern driving patterns. The output encompasses practical insights such 

as fuel efficiency estimates, route optimization suggestions, collision predictions, 

and driver statistics. By analyzing speed dynamics, acceleration patterns, and steer-

ing behavior, the algorithm transforms complex input data into actionable out-

comes, promoting safer driving practices. 

Mousa et al. (2019) developed an XGB classifier to identify factors contributing to 

crash and near-crash (CNC) events and evaluated its performance against three oth-

er machine learning algorithms. Their results showed that the XGB model outper-

formed the other three algorithm models, giving an 85% detection accuracy and 

identifying intersection influence and driver behavior as the biggest contributors to 

detecting CNCs. 

In summary, gradient boosting algorithms like XGBoost and LightGBM are versa-

tile assets for both classification and regression tasks pertaining to driving patterns. 

Their exceptional predictive accuracy enables highly precise feedback and recom-

mendations grounded in projected results, fostering safer, more conscientious, and 

more efficient driving practices. Moreover, their feature importance analysis and 

real-time feedback capabilities render them indispensable components for the ad-

vancement of driving behavior and safety. 

4.1.8 Auto Encoders 

Autoencoders represent a type of neural network architecture employed for tasks 

such as reducing the dimensionality of data and learning essential features. When 

applied to the analysis of driving behavior, autoencoders become valuable assets. 

They possess the capability to extract pertinent features from intricate driving da-
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tasets and play a pivotal role in identifying distinctive patterns that influence the ef-

ficiency or inefficiency of driving (Xie et al., 2018). 

• Autoencoders for Feature Extraction: 

 

i. Dimension Reduction: Autoencoders are structured to compress com-

plex, high-dimensional driving data into a more simplified representa-

tion, often referred to as the latent space or encoding. This process sim-

plifies the data while preserving its critical attributes. In the context of 

analyzing driving behavior, this dimensionality reduction simplifies the 

intricate data, making it easier to recognize significant patterns. 

 

ii. Feature Discovery: Autoencoders can learn and uncover relevant fea-

tures from the input data. As they adapt and train on the driving dataset, 

they acquire the ability to emphasize distinct attributes and characteris-

tics that exert a substantial influence on driving efficiency (Xie et al., 

2018). These acquired features may encompass elements like speed var-

iations, patterns of acceleration, lane-keeping behaviors, or responses to 

traffic signals. 

 

iii. Customization: Autoencoders have also been trained to ignore the im-

pact of features considered irrelevant in various scenarios, such as trees 

(Wang et al., 2022). This indicates the wide range of applications of au-

toencoders. 

 

• Discerning Driving Patterns: 

 

i. Efficiency vs. Inefficiency: Through the utilization of autoencoders, it 

becomes feasible to differentiate between driving patterns that contrib-

ute to efficiency and those that lead to inefficiency. For example, the 

neural network can recognize that maintaining a consistent speed within 



 

39 

 

legal limits positively correlates with fuel efficiency, whereas frequent 

rapid acceleration and deceleration negatively impact it. 

 

ii. Contextual Awareness: Autoencoders also consider the context in 

which driving patterns occur. They can discern, for instance, that ag-

gressive acceleration might be appropriate on highways but not in con-

gested urban traffic, underscoring the importance of context-aware driv-

ing behavior analysis. 

 

 

Figure 12: Auto Encoders 

As shown in Figure 11, in the context of Auto Encoder algorithms for driving be-

havior analysis, pivotal input factors such as Engine speed, acceleration, GPS, Gy-

roscope, fuel consumption, and steering angle collectively contribute to the mid-

dleware's neural network. This Auto Encoder middleware excels at compressing 

and reconstructing these inputs, creating a latent space representation that captures 

underlying patterns. The reinforcement algorithm processes the dataset, facilitating 

model training and evaluation. 
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The Auto Encoder's proficiency lies in results like Anomaly detection, Obstacle 

detection, recognition of erratic driving patterns, and identification of abnormal 

vehicle operation. Anomalies are deviations from learned patterns, detected when 

the reconstructed output significantly differs from the actual input. This nuanced 

approach contributes to safer driving by assessing behavior and suggesting areas 

for improvement. In summary, the Auto Encoder's adeptness at learning intricate 

patterns positions it as a crucial middleware in driving behavior pattern analysis. 

• Enhancing Driving Efficiency: 

 

i. Feedback and Optimization: Once pertinent features and patterns are 

identified, autoencoders can play a pivotal role in offering feedback and 

guidance to drivers. For instance, if the analysis reveals that smoother 

acceleration and braking patterns result in improved fuel efficiency, the 

system can provide real-time feedback to encourage such driving be-

haviors. 

 

ii. Personalization: Autoencoders permit the tailoring of feedback to align 

with individual driving habits and preferences. Drivers can receive per-

sonalized recommendations designed to suit their unique driving sce-

narios and requirements, further enhancing their driving efficiency. 

 

In summary, autoencoders, as a neural network architecture, excel in dimensionali-

ty reduction and feature learning. Their aptitude for extracting essential features 

from driving data and revealing influential patterns has a significant impact on en-

couraging safer, more efficient, and context-aware driving behaviors. Autoencoders 

empower the creation of intelligent systems capable of delivering real-time feed-

back and recommendations, ultimately promoting improved driving practices and 

sustainability on the road. 
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4.2 Can real-time feedback and coaching improve driving efficiency and 

what is the most effective method for delivering feed-

back/assistance? 

Onboard vehicle systems that use historical data can provide real-time coaching and 

feedback. There are several studies showing how real-time feedback and coaching can 

directly impact driving efficiency. Drivers can receive quick feedback on their driving 

style and fuel efficiency via sophisticated telematics systems. Additionally, drivers 

may adopt more fuel-efficient habits on the road as a result of this feedback. Wick-

ramanayake and Bandara (2016) proposed a method of enhancing the fuel economy of 

fleet vehicles using a real-time driver behavior monitoring and feedback system with 

feedback being provided through mobile devices based on individual driver profiles 

and other real-time data including route information, traffic and weather data. They es-

timated that up to 20% further fuel savings can be achieved by drivers adopting more 

efficient driving behavior. Additionally, fleet managers can use previous data to build 

driver improvement and behavior-targeting training programs. 

 

The effectiveness of the distribution mechanism chosen will depend on the real-time 

feedback and coaching. The feedback and coaching can directly contribute to the 

change in driving patterns that might affect vehicle efficiency and environmental fac-

tors, in order to maximize driving efficiency. Driving style changes including erratic 

acceleration, abrupt braking, excessive speeding, and extended idling can significantly 

reduce fuel efficiency and increase emissions, which have an impact on the environ-

ment. Real-time feedback systems are used to address these problems, giving drivers 

direction and data in real-time so they can change their driving practices in favor of 

more environmentally-friendly ones. Rolim et al. (2017) assessed how real-time feed-

back impacted the driving behavior of bus drivers and the variables influencing fuel 

consumption. Their research results provided valuable insights for bus companies to 

improve their operational strategies and update their training programs. 
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Several methodologies exist to deliver real-time feedback which include visual dis-

plays on the dashboard or heads-up display, audio alerts, haptic feedback through re-

sistance or vibrations in the steering wheel, smartphone applications, and linked vehi-

cle systems. To accommodate variations in driving patterns, machine learning algo-

rithms can be employed to provide adaptive feedback. These algorithms can analyze 

the historical driving data and the real-time sensors inputs to tailor the feedback and 

coaching based on the individual driving behaviors and contextual factors (Rolim et 

al., 2017). 

 

Real-time feedback aims to reduce not only fuel consumption but also greenhouse gas 

emissions and air pollution in order to protect the environment. It makes recommenda-

tions for actions that are customized to the particular circumstances and variances in 

driving styles, such as slower acceleration on uphill routes or prudent use of air condi-

tioning to save energy. 

 

Real-time feedback systems' efficacy also depends on user acceptance and involve-

ment. Picco et al. (2023) studied the responses of 628 Dutch drivers on the potential 

use of a system monitoring and providing feedback on their driving. Results indicated 

that most drivers were neutral to positive about the prospect of receiving feedback af-

ter monitoring their driving and that the driver acceptability could be increased if per-

sonalization of the monitoring and feedback device was allowed. Increased driver re-

ceptivity to coaching is brought on by clear, unobtrusive feedback that produces meas-

urable results, such as better fuel economy and less environmental impact as well as 

the option to personalize the system. Therefore, the most successful strategy incorpo-

rates a range of feedback modalities, adaptive algorithms, an emphasis on user interac-

tion and system personalization, all geared at encouraging environmentally friendly 

driving practices that benefit both drivers and the environment. 
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4.3 How can past driving data be used to develop more accurate and 

effective models to reduce costs and improve fuel/driving (which one 

is better here?) efficiency? 

Past driving data serves multiple purposes including improving driving efficiency, 

providing a proactive approach to maintenance prediction, enhancing fuel efficiency 

and thus reducing costs, and even optimizing traffic and routing. This can ultimately 

lead to the development of better and more accurate models to reduce costs and im-

prove efficiency. 

4.3.1 Proactive Maintenance Prediction: 

Manufacturers of automobiles and fleet managers can benefit significantly from this 

wonderful opportunity to approach maintenance with a forward-thinking mindset by 

analyzing past driving data (Lee et al., 2020). This entails using predictive modeling 

and data analysis to predict component failures or maintenance requirements far 

more accurately than with typical preventative care techniques. 

 

• Enhanced Predictive Accuracy: 

A vehicle's performance and behavior over time can be learnt from historical 

driving data. Numerous factors are included in this data, including as wear and 

tear patterns, engine performance measures, and a thorough maintenance histo-

ry. Through the use of sophisticated analytics and machine learning algorithms 

to this plethora of data, organizations can acquire a profound comprehension of 

the degradation and failure of different components over time and can identify 

possible problems well in advance of serious failures (Chen et al., 2019). 

 

• Optimized Maintenance Scheduling: 

Optimizing maintenance schedule is one of the main advantages of proactive 

maintenance prediction. Organizations may precisely schedule maintenance 

tasks by using past data-driven insights, as opposed to waiting for an unex-
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pected component failure (Chen et al., 2019). In order to minimize needless ear-

ly replacements and to prevent failures and disruptions, this entails determining 

the optimal time to maintain or replace a component. As a result, maintenance 

schedules can be adjusted to better suit the vehicle's real condition, increasing 

both their effectiveness and affordability. Wolf et al. (2023) provide a standard-

ized description model to help efficiently introduce predictive maintenance 

models in the automotive industry. 

 

• Mitigating Financial Burden: 

Forecasting maintenance needs in advance can significantly reduce the financial 

strain brought on by unexpected malfunctions and expensive repairs (Chen et 

al., 2021). Organizations that experience unexpected component failure not on-

ly have to pay for the cost of replacing or repairing the damaged parts, but they 

also have to pay for other expenses including vehicle downtime, lost productivi-

ty, and possible damages or injuries. Organizations can save these monetary 

losses by using previous data to anticipate and prevent failures. Since the organ-

izations cover both the direct costs of repairs and the indirect costs of interrup-

tions to operations, the cost reductions are significant. 

 

• Increased Operational Efficiency: 

Operational efficiency declines when unanticipated breakdowns occur in vehi-

cles. Reduced productivity results from idle cars and thrown off work sched-

ules. Proactive maintenance prediction, on the other hand, reduces the likeli-

hood of unplanned downtime by ensuring that vehicles stay in optimal function-

ing order (Mesgarpour et al., 2013). As a result, vehicles are able to continue 

operating and fulfilling their intended functions without interruption, which in-

creases operational efficiency. 

 

• Prolonged Vehicle Lifespan: 

Historical driving data helps extend the life of automobiles by proactively ad-

dressing maintenance needs. Components are properly maintained and replaced 
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when necessary, minimizing the wear and tear brought on by usage over time 

(Mesgarpour et al., 2013). As a result, vehicles can continue to perform effec-

tively and efficiently for a longer period of time, giving businesses a great re-

turn on their investment and lowering the need for vehicle replacements. 

 

In a nutshell, proactive maintenance prediction is a data-driven method that makes 

use of past driving information to foresee and avoid component failures or mainte-

nance requirements. Through proactive measures, maintenance schedules are im-

proved, financial burdens are reduced, operational efficiency is increased, and vehi-

cle lifespans are extended. Organizations can save time and money while assuring 

the dependability and lifespan of their fleets of vehicles by switching from reactive 

to preventative care methods.  

4.3.2 Fuel Efficiency Enhancement: 

In the effort to maximize fuel efficiency in vehicles, historical driving data is cru-

cial. This information is used as a starting point for developing sophisticated algo-

rithms and models that aim to steadily lower fuel use. Organizations can find valu-

able insights that improve fuel efficiency by carefully examining past driving pat-

terns, speed changes, acceleration and deceleration rates, and a variety of other per-

tinent characteristics. Here is a closer look at the advantages and techniques used: 

 

• In-Depth Analysis of Driving Patterns: 

Past driving statistics reveals an extensive number of details about how auto-

mobiles are driven over time. This includes information on variables including 

the frequency of violent acceleration, quick deceleration, and idle times. Organ-

izations can acquire a thorough understanding of driving habits and patterns 

that affect fuel efficiency by carefully studying this data. 

 

• Identifying Fuel-Consuming Habits: 
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Analyzing historical data has several benefits, one of which is the capacity to 

pinpoint fuel-consumption patterns. For instance, data analysis may show that 

frequent braking and strong acceleration are closely related to higher fuel use. 

With this understanding, motorists can intentionally modify their behavior to 

develop more relaxed driving practices. This entails accelerating gradually, an-

ticipating stops, and keeping constant speeds. These behavioral adjustments can 

result in immediate fuel savings. Recent research has utilized a framework for 

predicting energy consumption in vehicles using a machine learning-based 

framework on driving data compiled from fifty-five electric taxis in Beijing 

(Zhang et al., 2020). 

 

• Route Optimization: 

The optimization of a route also heavily relies on historical driving data. For 

example, fleet operators can use historical data to pinpoint the routes that will 

use their cars' fuel most efficiently. This entails looking at previous travel 

routes, traffic patterns, and the effect of different route selections on fuel use. 

Organizations can cut fuel usage and total transportation expenses by selecting 

the best routes based on historical data (Bozorgi et al., 2017). Liu et al. (2023) 

constructed energy consumption estimation models for 33 vehicle types based 

on large quantities of historical driving data which were utilized in eco-routing 

optimization simulation experiments under various traffic conditions and sever-

al road networks. Results indicated up to 11.50% energy-saving improvement 

as compared to the conventional path planning approach. 

 

• Cost Savings and Environmental Benefits: 

Historic driving statistics provides data-driven insights that can result in real 

cost savings. Reducing fuel expenses immediately affects an organization's bot-

tom line. Additionally, environmental footprint can be reduced by optimizing 

fuel usage, which can create a win-win situation for both cost-conscious busi-

nesses and eco-conscious people by lower greenhouse gas emissions. 

 



 

47 

 

• Continuous Improvement: 

Organizations can continuously improve their strategies over time by conduct-

ing data analysis on a regular basis and tracking the results of fuel efficiency 

measures. The continuous fuel savings and further operational optimization are 

made possible by this iterative procedure (Linda & Manic, 2012). 

 

In conclusion, improving fuel efficiency through analysis of past driving data en-

tails a variety of steps, including detailed examination of driving patterns, identifi-

cation of fuel-consuming habits, route optimization, real-time feedback, and coach-

ing. Organizations can significantly cut costs, reduce their environmental effect, and 

constantly improve their fuel economy tactics by utilizing historical data. Linda and 

Manic (2012) utilized historical vehicle performance data combined with GPS in-

formation on fixed routes to model the most fuel-efficient driving behavior.  By 

comparing current vehicle state with the optimum state from the model, an optimum 

control action is generated which provides the most fuel-efficient cruise control op-

tion. Data-driven strategies such as this help the bottom line while also helping to 

make transportation more environmentally friendly and sustainable. 

4.3.3 Optimized Traffic and Routing: 

In order to create extremely effective navigation systems, it is essential to make use 

of historical traffic and route data. Through the use of insights from vast historical 

traffic patterns and route choices, these systems are made to make travel more effi-

cient (Bozorgi et al., 2017). For fleet operators as well as individual drivers, the in-

tegration of historical data into navigation and routing systems yields numerous 

significant benefits. 

 

• Intelligent Traffic Management: 

An in-depth study of traffic patterns and congestion points that have evolved 

over time is possible with the use of historical traffic data. Through the analysis 

of this abundant historical data, navigation systems are able to make informed 
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choices about route planning and optimize travel routes (Bozorgi et al., 2017). 

This intelligence makes travel more predictable and efficient by reducing delays 

brought on by traffic congestion. 

 

• Time Savings: 

Optimized traffic and routing systems significantly save time for both individual 

drivers and fleet operators. By avoiding traffic congestion and selecting the most ef-

ficient routes, travel times are reduced (Bozorgi et al., 2017). This is particularly 

crucial for fleet operators, where time saved directly impacts the efficiency of de-

liveries, service appointments, and overall operational productivity. 

 

• Fuel Conservation: 

Efficient routing based on historical traffic data also has an impact on fuel conser-

vation (Zhang et al., 2020). Avoiding stop-and-go traffic and choosing the shortest, 

most efficient routes directly translates into fuel savings. This not only reduces fuel 

expenses but also contributes to a reduction in overall fuel consumption and green-

house gas emissions, making it an environmentally responsible practice. 

 

• Cost Reductions: 

Cost savings are a significant benefit of optimized traffic and routing systems. Re-

duced travel times and fuel consumption lead to lower operational costs for fleet 

operators. For individual drivers, less time spent on the road and lower fuel expens-

es result in personal cost savings. These cumulative cost reductions make optimized 

traffic and routing a valuable investment. 

 

• Data-Driven Decision-Making: 

The incorporation of historical traffic data into navigation systems embodies a data-

driven approach to travel. This means that decisions regarding routes and travel 

times are based on concrete historical insights rather than guesswork. This data-

driven decision-making not only leads to efficiency gains but also instills confi-

dence in the chosen routes (Bozorgi et al., 2017). 
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In conclusion, optimized traffic and routing systems leverage historical traffic and 

route data to provide intelligent and efficient navigation. By avoiding traffic conges-

tion, minimizing travel times, conserving fuel, reducing costs, and enhancing customer 

satisfaction, these systems offer numerous benefits for both individual drivers and fleet 

operators. The data-driven approach ensures that travel decisions are grounded in his-

torical insights, leading to more predictable and efficient journeys on the road. 
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5 Practical Exploration: Evaluating Overspeeding, Under-

speeding, Harsh Braking, and Rapid Acceleration 

The Aplicom T10G device is capable of calculating the speed with the help of an accel-

erometer. Furthermore, with the help of GNSS, the GPS coordinates are also available with 

the device in order to have full data sets of speed at different locations with accurate 

timestamps throughout the journey. The goal is to use the device to collect real-time data 

on speed along with GPS coordinates and timestamps to compare with the speed limits set 

by the local Finnish authorities. In Finland, the Finnish Transport Infrastructure Authority 

provides a publicly available API containing detailed mapping of Finnish road and street 

networks. This database also contains speed limits for both summer and winter seasons 

with Geo coordinates. 

Comprehensive travel data has been gathered over multiple journeys, including in-city and 

on-highway scenarios, using the T10G telematics device. This dataset offers a thorough 

summary of travel data collected from urban and highway settings. The device continuous-

ly collects vehicle speed data with corresponding GPS coordinates and a valid timestamp 

and sends the data via MQTT to the cloud. Each data entry contains latitude, longitude, 

speed and timestamp.  

This study's methodology takes a multimodal approach to processing geographical data, 

starting with the careful mapping of data obtained from the device or through Digiroad 

API. The gathered information, which mainly takes the form of data snapshot along with 

gps coordinates, is next organized and formatted into a CSV file.  

Figure 13 showcases an all-inclusive collection of information obtained by T10G device. 

At various places throughout the route, the data snapshot structure provides a full summary 

of the collected data and connects with particular GPS locations at specific timestamps. 
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Figure 13: Data Snapshot Structure 

One of the most important aspects of the data preparation technique is the adjustment of 

errors in arctan computations. In the setting of geodetic coordinates, where precision in 

longitudinal and latitudinal values is crucial, this adjustment becomes extremely relevant. 

A corrective procedure is used to address this, involving use of 1-degree geodesic coordi-

nates. This tactical adjustment improves the accuracy of calculated coordinates, providing 

a more realistic depiction of geographic places. This is an essential step in order to guaran-

tee consistency and correct irregular geodesic shifts. 

The dataset goes through to a transformational algorithm after the correction stage. In the 

geometric space, this procedure is essential to mapping geodetic coordinates onto a Euclid-

ean plane. The transformation offers a more logical framework for calculating distances 

and relationships between spatial points, acting as a basic element for further analytical 

procedures. 

After being translated into a Euclidean space, the equated dataset is subjected to additional 

analytical inspection in order to derive meaningful insights. Events like excessive accelera-

tion calculations and overspeeding detection are carried out with precision. The UTM 
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(Universal Transverse Mercator) zone for Central Finland is EPSG:32635 and WGS84 

(World Geodetic System 1984) is EPSG:4326. 

 

Figure 14: Graphical view of speed limit violations (Speed vs Speed Lim-

it) 

In figure 14, different red dots highlight instances of observed speed limit violations on the 

plotted speed versus speed limit analysis graph. This visual representation displays spots 

where legally required thresholds were crossed, thus capturing departures from the pub-

lished speed restrictions. These points are important because they raise awareness of possi-

ble violations of traffic laws and raise questions about obeying speed limits. This analytical 

method offers a useful perspective on driver behavior, enabling a thorough comprehension 

of speed limit compliance and the identification of particular areas where enforcement ac-

tions or interventions may be necessary to encourage safer driving habits. 
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Figure 15: Speed Limit Violations – Over Speeding (Geo-coordinates) 

(Map Data from OpenStreetMap under ODbL License, 

https://www.openstreetmap.org/copyright) 

Figure 15 above shows a map displaying the location coordinates where the speed was 

above the permitted speed limit and therefore over-speeding is detected (indicated by red 

circles). The collected device data containing GPS coordinates are mapped with the 

DigiRoad API speed limits defined resulting in availability of both speed and speed limits 

data at specific geo coordinates. In this way, it became possible to identify when the driver 

exceeded the speed limit specified by authorities. 

In this case, real-time data gathering, analysis, and API integration allows the monitoring 

and improving of driving style while supporting wider traffic control and road safety initia-

tives. 
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Figure 16: Underspeeding Detection (Geo-coordinates) 

(Map Data from OpenStreetMap under ODbL License, 

https://www.openstreetmap.org/copyright) 

The figure 16 shows the locations on the GPS map where underspeeding incidents oc-

curred throughout the trip. A crucial element uncovered by the data gathered with T10G 

device is underspeeding, which is defined as vehicle speeds that are below ideal or speci-

fied boundaries. With the availability of speed and speed limits data for gps coordinates, it 

become possible to effectively identify the underspeeding events. The blue markers on the 

map identify spots where vehicle went underspeeding while the gray markers represent the 

converging data that points towards sudden drop in speed. 

Underspeeding is hazardous because it can make travel times longer, disrupt traffic flow 

generally, and even jeopardize safety. This highlights how crucial it is to comprehend un-

derspeeding incidents and take appropriate action in order to maximize transportation effi-

ciency and uphold traffic safety regulations. 
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Figure 17: Rapid Acceleration Events 

(Map Data from OpenStreetMap under ODbL License, 

https://www.openstreetmap.org/copyright) 

The GPS map in the figure 17 illustrates the scattered occurrences of rapid acceleration 

events during the course of the trip. One noteworthy characteristic identified from the ex-

tensive dataset gathered by device is rapid acceleration, which is defined as sudden and 

significant increases in vehicle speed. 

Rapid acceleration occurrences are recognized, which leads to a critical analysis of its pos-

sible disadvantages. Frequent or excessive rapid acceleration can result in less fuel effi-

ciency, more wear and tear on car parts, and an increased risk of collisions. This is because 

abrupt increases in speed have the potential to surprise other drivers and jeopardize general 

road safety. 
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Figure 18: Rapid Acceleration Convergence 

(Map Data from OpenStreetMap under ODbL License, 

https://www.openstreetmap.org/copyright) 

The figure 18 provides a closer view of the consecutive data points which are used to eval-

uate the rapid acceleration. This representation is the outcome of considering a series of 

data points rather than just one isolated snapshot. The red marker identifies the rapid accel-

eration event, whereas orange markers represent the convergence points where were con-

sectively evaluated in order to recognize rapid acceleration event. The green markers rep-

resent the journey trajectory. 

To compute rapid acceleration points, the latitude and longitude values within the data 

CSV file underwent a sorting process based on geodesic coordinates. Subsequently, these 

sorted coordinates were employed to derive acceleration and time values. The acceleration 

threshold values were then applied to identify points exceeding the specified limits. These 

identified points constitute rapid acceleration points, and the neighboring points within 

close proximity of the acceleration value of each rapid acceleration point are designated as 

moderation points.  
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Figure 19: Harsh Braking Events 

(Map Data from OpenStreetMap under ODbL License, 

https://www.openstreetmap.org/copyright) 

The figure 19 represents harsh braking events during the entire journey. The GPS map 

provides a clear visual depiction of the locations of hard braking incidents that occur over 

the trip. These occurrences, as inferred from the data obtained by means of the deployment 

of device, corresponding to sudden and violent stops at particular points in the journey. 

The data CSV file was subjected to a thorough analysis in order to identify hard braking 

points. This involved carefully sorting the latitude and longitude values according to their 

geodesic coordinates. These sorted coordinates then provided the basis for deriving the 

matching time and acceleration values. Finding data points that exceeded predetermined 

negative acceleration threshold values was the next stage. Extensive examination was con-

ducted to confirm that these negative acceleration readings clearly indicated the vehicle's 

deceleration phase, supporting the brake value computation. 

The identified points with severe braking behavior were identified, and another aspect of 

this study involved moderation point definitions. These moderation points captured data 

points that were near the hard braking points that were found, more precisely, those that 

were within a small range of the acceleration linked to the main harsh braking point. This 
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sophisticated method offers a finer-grained comprehension of the dynamics of the vehicle 

during braking incidents, making an extensive evaluation of braking patterns possible. 

 

 

Figure 20: Harsh Braking Convergence 

(Map Data from OpenStreetMap under ODbL License, 

https://www.openstreetmap.org/copyright) 

The figure 20 represents a closer view to harsh braking event at a certain gps location dur-

ing the journey. The light-red marker shows harsh braking event whereas the light-blue 

markers show the approaching deacceleration that represents the moderation area of con-

vergence in the case of harsh braking. 

Important insights into the variability and central patterns of driving behavior measure-

ments have been obtained from the practical analysis. Even though statistical analysis has 

been effectively utilized in this study to assess driving events, a potential direction for fu-

ture research is to perform the same analysis with the help of suitable machine learning 

models described in Chapter 4, and compare the performance in different aspects which 

could produce high quality insights. This comparison analysis may take into account fac-

tors such as processing efficiency, sensitivity to changes in driving circumstances, and 
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event detection accuracy. Furthermore, investigating ensemble approaches that integrate 

machine learning and statistical techniques may provide a synergistic solution by utilizing 

the advantages of each methodology. 
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6 Future Work 

Promising future directions exist in driving behavior analysis research with the potential to 

lower environmental impact, increase road safety, and improve driving pleasure in general. 

6.1 Comparative Analysis of Statistical and Machine Learning Ap-

proaches 

Develop a more comprehensive understanding of the strengths and limits of both tech-

niques by performing a thorough comparative analysis. A precise evaluation of the sensi-

tivity and performance trade-offs can be achieved by analyzing the event detection accura-

cy for both statistical techniques and machine learning models. 

Machine learning algorithms can demonstrate effectiveness in predicting and classifying 

driving events due to their capacity to identify subtle trends within large, intricate datasets. 

Examining the degree to which each approach adjusts to changes in driving circumstances, 

such as weather, traffic volume, and kind of road, may help create more resilient models 

that work in a variety of situations. 

In particular, a direct comparison between the outcomes produced by statistical methods 

and machine learning models would be very informative to further deepen our understand-

ing and evaluate the robustness of our findings. Furthermore, investigating ensemble tech-

niques that combine the results of machine learning and statistical analysis may offer a 

hybrid approach. Combining the benefits of both approaches, ensemble techniques may 

increase the overall accuracy and reliability of driving event detection. 

6.2 Driver Profiling - based on parameters / scoring system / reward 

system 

Parameters: Establish a thorough set of factors for driver profiling such as braking pat-

terns, speed, acceleration, and compliance with traffic laws. 
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Scoring System: Establish a system of scoring that measures driving behavior and allows 

drivers to track and enhance their profiles. 

Reward System: Establish a system of rewards for safe and responsible driving, providing 

drivers who get high ratings with real benefits such as lower insurance premiums, fuel sub-

sidies and road tax reductions. 

6.3 Emotion Recognition 

To determine a driver's emotional state, integrate emotion recognition technology into au-

tomobiles. This may be useful in determining stress levels and emotional reactions to road 

conditions. 

Conduct behavior studies in conjunction with psychologists and behavior scientists to in-

vestigate the relationship between driving behavior and emotional states. It might be possi-

ble to spot trends that could result in more specialized interventions. 

6.4 External Environment Monitoring 

Increase the vehicles' capacity to observe their surroundings. This can involve monitoring 

air quality for pollution levels, climate, and traffic patterns. 

Data Integration: Examine the combined information from multiple sources to determine 

how external factors affect driving safety and behavior. This may have an impact on safety 

features, driver alerts, and route planning. 

6.5 GUI Vehicle Dashboard (Real-time analysis/feedback) 

Real-Time Analysis: Create an intuitive dashboard in cars that offers real-time driving 

behavior analysis. Drivers are able to view feedback regarding their performance and driv-

ing patterns. 
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Behavior Insights: Provide drivers with safety advice, eco-driving guidelines, and cus-

tomized recommendations together with visuals and insights to assist them understand 

their driving habits. 

6.6 Centralized Driving Pattern Recognition for Organizations (Com-

merical Vehicles) - Route Optimization 

Establish a single, centralized platform that will allow fleet managers of commercial vehi-

cles to assess and identify driving trends throughout their whole fleet. 

Route optimization: Make use of this information to plan commercial vehicles' routes in a 

way that maximizes efficiency, minimizes fuel consumption, and lessens environmental 

effect. Additionally, based on driving habits, this can entail predictive maintenance. 

 

To accomplish these objectives, it is imperative to leverage cutting-edge technology, data 

analytics, and behavioral insights. Furthermore, ethical and data privacy concerns must be 

met in all facets of driving behavior analysis. 
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7 Conclusion 

A new era in our comprehension of the dynamic interplay between humans and automo-

biles has emerged from the junction of driving behavior analysis and machine learning 

algorithms. This research has involved a thorough exploration of the complex network of 

data produced by modern cars, which are powered by cutting-edge sensors and telematics 

systems. 

 

The complex nature of driving behavior is one important insight. Algorithms for machine 

learning have highlighted the significance of customized strategies for various situations. 

Nuanced insights regarding driver actions have been uncovered thanks to the use of deci-

sion trees, which can interpret discrete, rule-based patterns, and random forests, which are 

adept at managing complicated interactions between factors. Sequential dependencies in 

time-series data were captured by recurrent neural networks (RNNs), whereas support vec-

tor machines (SVMs) excelled in the classification of driving patterns. 

 

Several current models, approaches and algorithms can be used to automatically recognize, 

evaluate efficiency and forecast driver activity based on available online monitoring data. 

Among these models are decision trees, which are effective in recognizing unique, rule-

based patterns in driving behavior. Random forests excel at managing complex relation-

ships between parameters and provide a more nuanced understanding of driver behavior. 

Research has shown that ensembles such as random forests often outperform individual 

decision trees partially due to reduced overfitting (Dietterich, 2000). Support Vector Ma-

chines (SVMs) excel at classifying driving patterns, but recurrent neural networks (RNNs) 

perform best when dealing with sequential dependencies in data, such as those in time-

series analysis. Our goal is to gain a comprehensive understanding of driving behavior and 

uncover insights that might be obscured by a single approach by utilizing this diverse set of 

machine learning models. 

 

As to how historical data can be utilized in coaching and real-time feedback systems, nu-

merous studies demonstrate the immediate influence that coaching and real-time feedback 
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may have on increasing productivity. Thanks to advanced telematics systems, drivers can 

quickly obtain feedback on their driving style and fuel efficiency. The most effective ap-

proach combines a variety of feedback modalities, adaptive algorithms, and a focus on user 

interaction and system customization, all of which are intended to promote eco-friendly 

driving behaviors that are advantageous to both drivers and the environment. 

 

With regards to how historical data can be used to create more precise and efficient mod-

els, its various purposes, such as boosting fuel economy and hence cutting expenses, pre-

dicting maintenance needs proactively, optimizing traffic and routing, and improving driv-

ing efficiency, provide a basis for more precise and superior models that will save expens-

es and improve fuel and driving efficiency. 

 

It became clear that certain cases required specialization. The machine learning technolo-

gies enabled people to drive responsibly, whether it was through driver profile and reward 

systems that offered individualized incentives or through eco-friendly driving systems that 

encourage sustainability and responsible conduct. 

 

A common topic was real-time empowerment, which was made possible by the advance-

ment of GUI vehicle dashboards. These displays have given drivers the autonomy to make 

wise decisions by giving them immediate feedback and insights into their driving habits. 

But enormous power also comes with great responsibility, and a strong ethical framework 

is necessary to guide the proper gathering and use of driving data. 

 

Looking ahead, there is a lot of promise for AI-driven driving behavior analysis. The 

knowledge gathered from this study highlights the fact that machine learning is a funda-

mental shift in driving that will make it safer, more effective, and ecologically friendly. 

The driving experience of the future is expected to go beyond simple transportation and 

instead involve human-machine interaction based on sustainability, safety, and accounta-

bility. 
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