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Highlights
In ecology, the observation process
(howwe collect data) can be as complex
as the biological process we are investi-
gating.

Failure to account for complex observa-
tion processes leads to uncertainty, bi-
ased inference and poor predictions,
resulting in misleading research results.

Often, field scientists are best placed to
describe observation problems that
Advances in statistics mean that it is now possible to tackle increasingly sophis-
ticated observation processes. The intricacies and ambitious scale of modern
data collection techniques mean that this is now essential. Methodological re-
search to make inference about the biological process while accounting for the
observation process has expanded dramatically, but solutions are often pre-
sented in field-specific terms, limiting our ability to identify commonalities be-
tween methods. We suggest a typology of observation processes that could
improve translation between fields and aid methodological synthesis. We pro-
pose the LIES framework (defining observation processes in terms of issues of
Latency, Identifiability, Effort and Scale) and illustrate its usewith both simple ex-
amples and more complex case studies.
occur but are excluded from discussions
about how to tackle these problems sta-
tistically.

Statisticians are often unaware of the nu-
ances of observation processes leading
to the problems being ignored, or tack-
led on a case-by-case basis.

We propose a typology of observation
problems and inferential solutions,
hence facilitating the linkages between
field protocols and statistical treatments.

1School of Biodiversity, One Health and
Veterinary Medicine, University of
Glasgow, Glasgow, G12 8QQ, UK
2Centre for Research Into Ecological and
Environmental Monitoring, School of
Mathematics and Statistics, University of
St Andrews, St. Andrews, Scotland, UK
3School of Mathematics and Statistics,
University of Glasgow, Glasgow, G12
8TA, UK
4Department of Biological and Environ-
mental Science, P.O. Box 35 FI-40014,
University of Jyväskylä, Jyväskylä,
Finland

*Correspondence:
fergusjchadwick@gmail.com
(F.J. Chadwick).
Increasing complexity of observation processes in ecology
Modern ecologists are called upon to tackle crises in the environment, as well as deal with ongo-
ing scientific tasks of data collection and analysis. Technological advances in our ability to collect
and analyse observations should give us unparalleled capacity to address emerging crises, but,
instead, we are frequently stymied by the overwhelming scope and complexity of analysing our
ever-more complex and multifaceted data. Techniques for collecting data have become almost
as complex as the underlying biological processes (see Glossary) we are trying to understand.
Environmental DNA [1], remote sensing [2], biologging [3], and citizen science [4] all help get us
closer to the spatial, temporal, and taxonomic coverage we need to meet contemporary ecolog-
ical challenges. However, they also introduce complexities which need to be addressed through
sophisticated statistical analyses that are often devised as dedicated solutions to particular data
sets. Therefore, a counterpart analytical crisis results from the fact that statistical methods that
pay proper attention to these difficulties can appear disconnected, and overly specialist. As a re-
sult, advanced methods are rarely shared between fields, leading to duplication of solutions and
inhibiting us from identifying methodological gaps that could benefit many fields.

Current solutions to these crises are thin on the ground. As ecology transforms itself into a hard
science [5], part of the solution is to encourage ecologists to become more quantitative [6,7]. Al-
though statistical literacy is arguably higher than ever amongst applied ecologists, we must still
rely on close collaborations between ecologists and statisticians for method development. Alter-
natively, the analytical crisis can be circumvented by relying more heavily on experimental design.
Many classical statistical techniques were developed for designed experiments, involving careful
controls of confounders, high numbers of replicates and unbiased measurements. Unfortunately,
the nature and scale of ecological questions in the 21st century are not always amenable to
experimental design. GPS-tagged animals do not remain within predefined study areas, citizen
scientists reconcile their observation efforts with their day jobs and, crucially, there is no Latin square
for climate change. The focus on experimental design and user-friendly statistical methods can lead
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx https://doi.org/10.1016/j.tree.2023.10.009 1
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Glossary
Biological process: target of inference
or prediction for the ecologist,
encompassing all topics of ecological
study.
Designed experiment: experiment
focusing on a particular relationship
between response and explanatory
variables, where as many as possible of
the confounding (or nuisance) variables
are kept constant.
Effort (issues of): amount and
distribution of observations of the
phenomenon of interest and the amount
of information contained within (recording
an organism to the genus-level represents
a lower amount of effort than the species
level).
Functional form: mathematical
relationship between two variables.
These can be simple transformations
(such as a link-function in a generalised
linear model) or a more complex
modelled relationship that incorporate
an element of randomness (e.g., a
model that identifies clusters in data).
Generative model: a model that is
meaningfully decomposed into
interpretable parameters and submodels,
and from which data can be simulated.
Identifiability (issues of): inability of a
model to make unambiguous estimates
of its constituent parameters and thus
make precise and accurate inferences
about the relationships between its
components (due to parameter
redundancy or insufficient signal in the
data).
Latency (issues of): where some or all
parts of the biological process are not
directly observed, and thus inference
must be made indirectly through its
impact on observable parts of
the system.
Latent state/variable: state or variable
that is not directly observed but must be
inferred using observable parts of the
system (i.e., observed variables).
Observable state/variable: state or
variable that is directly observed and
measured, generally to substitute for or
help infer a latent variable which may be
hard to observe or is truly unobservable.
Non-transferability: situation where a
model fits observationswell in one context
but predicts poorly in novel contexts.
Common causes of non-transferability
include under- or overfitting.
Observation processes: methods by
which an ecological phenomenon is
recorded as data and represented
during data analysis.
researchers to make strong simplifying assumptions rather than rigorously tackle the more challeng-
ing features of their data, to analyse them as if they were gathered in a designed experiment, yielding
conclusions that are neither robust nor reproducible (McElreath’s statistical golems [8]).

Realistically, therefore, we generally cannot simplify the methods or the data needed. However,
we believe that we can simplify observation process modelling by developing a shared typol-
ogy of associated problems. Our typology will aim to: (i) aid communication between field scien-
tists and statisticians; (ii) make it easier to navigate the complex literature on closely related
problems and their solutions; and (iii) help identify methodological gaps for further research. It
will achieve Aim 1 by providing a basis for discussion between the two disciplines, allowing prob-
lems to be elicited in a comprehensive way using a shared language. By its nature, a typology cre-
ates a set of axes onto which problems and their methods can be placed. These conceptual axes
(Box 1), make it easier to identify closely related problems and alternative solutions (Aim 2), and
thus, to explore different model types andmakemethodological synthesis easier. Methods occu-
pying the same problem space can even be unified. Unification often leads to rapid progress as
previously disjointed efforts become focused, techniques are shared, and crucial gaps identified.
These leaps forward have been seen in the unification of biodiversity metrics [9], the illustration of
Poisson point processes [10] as the underlying method in MaxEnt [11] and presence-only model-
ling [12], and the rebranding of a huge number of methods under the banner of ‘hidden Markov
models’ [13]. Conversely, sparse areas in problem space show areas where new techniques are
desperately needed (Aim 3). A successful typology, therefore, helps identify the observation pro-
cesses at play, navigate the possible solutions, and direct methods development to where it will
be most productive.

The LIES Framework
A shared typology for observation problems needs to meet the following criteria. It must be suf-
ficient to describe all observation problems in ecology (Table 1). To make the typology efficient,
the problem types must exist independently and be useable in combination to describe more
complex problems; be understandable to field scientists and statisticians; and rooted in the
existing methodological literature where possible. Finally, the framework will be most effective if
it is widely adopted which requires friendly packaging.

Later, we define each of the concepts in non-technical language. We illustrate each with pure
form motivating examples (Figure 1, Key figure) rooted in the statistical literature. We make
these canonical examples simple but realistic and present the concepts using the moniker LIES
(latency, identifiability, effort, scaling) of omission, reminding us that failure to model obser-
vation processes correctly is to risk dishonesty. Finally, we draw from publications across the lit-
erature to demonstrate that the framework can describe real-world observation problems as one
or a combination of these four problem types (Box 1).

Latency – relevance of data collected
Motivation
Biological phenomena are often hard to observe directly. Sometimes this is due to practical con-
straints. It may be possible to weigh the dry biomass of an organism, however, it is often more
feasible (and less destructive) to measure a related variable such as the dimensions of the organ-
isms [14,15]. In other cases, the phenomenon we are interested in is not directly observable, per-
haps because it is conceptual in nature (e.g., ecosystem equilibrium or autocorrelation) or has
ceased to be observable (e.g., historical species abundance). In such cases, we refer to the quan-
tity of interest as a latent variable. To infer the unobservable, we need to infer it using the im-
pacts of the latent variable on observable variables. For example, we cannot directly observe
2 Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx



Box 1. The LIES workflow in practice

Johnston et al. identified four key challenges in analysing citizen science data caused by observer behaviour (Table I) [89].
In this box, we show how the LIES framework can be used to identify whether any are promising targets for conceptual and
methodological synthesis and how this might be done.

Categorise observation processes in terms of LIES and synthesise within problem

Spatial bias and reporting preferences

Using the LIES framework, we found commonalities between spatial bias and reporting preferences. Both are issues of
heterogeneous effort (across space and taxonomy, respectively) and latency (treating frequency of observations as related
to underlying abundance). Citizen scientists are motivated to record by convenience (site accessibility and ease-of-identi-
fication) and ecological interest (site biodiversity and species interest, e.g., rarity status). Convenience can sometimes be
predicted using covariates as effort proxies. While this is often effective for spatial bias, reporting preferences are less pre-
dictable. Targeting ecologically interesting sites and species leads to identifiability problems in distinguishing between
observation and biological processes.

Observer differences

Citizen scientists vary in skill so their effective effort in terms of information gathered differs. Observer-level random effects
and skill-scores can be used to estimate effective effort but these methods also need to account for skill improving with
experience. A common solution is to use time as a proxy for effort changingwithin an individual but records are increasingly
anonymised to prevent mathematical identifiability of individual observers. In these cases, a latent variable of effort can be
used instead to estimate the combined effective effort.

False-positive error

Speciesmisclassifications, where Species A is observed but recorded as Species B, are common in citizen science data and can
lead to practical identifiability problems when estimating species-habitat associations. If the species’ habitats overlap, then the
degree of association may be overstated for Species B. If the record is false positive and the species do not overlap at that loca-
tion, the habitat association for Species B will be incorrect. Many methods have been developed for dealing with false-positive
errors, but they often have mathematical identifiability issues due to equal likelihood support for the species being present-
and-correctly-identified or absent-and-falsely-reported. Alternatively, we could frame the species’ identity as a latent variable
and infer the correct classification by, for example, linking with habitat data from systematic studies.

Find analogous problems in other areas

We have identified the most promising areas for joint method development (spatial bias and reporting preferences) and the
existingmethods for tackling them (using covariate proxies and latent states to estimate effective effort). The next step is to
seek out analogous situations in other areas (both ecological and non-ecological). One way to do this would be to distil the
identified problems into search terms for a literature review. If the LIES framework were widely used, this step would be
simplified as methods would be precategorised. Instead, we need to think how to translate the types of problems we have
found into useful search terms (Table II). Literature search protocols should be applied to ensure the search is exhaustive.
We advocate refining the searches by promising other fields to achieve a more in-depth assessment of the methods being
used (commonly used methods are not always the most promising).

Synthesise methods from analogous problems

Excluding ecological problems, a quick literature search suggests survey design in public health and economics suffer from
similar problems, motivating a more refined literature search to identify methods used to solve survey-design problems.
The suggested methods are data integration and adaptive survey design. These approaches are effective at tackling a
wide range of observation problems and are discussed later.

Using the aforementioned search terms without excluding ecological problems, the dominant scenario to appear
is distance sampling. In distance sampling, effort is split into two components: the area covered (i.e., the length
or number of transects, confusingly, known within this field as effort) and the detectability function (how the ability
of observers to see an animal decays with distance). These structures naturally map onto the citizen science
problems we are unifying. Biases can be used in the estimation of either component. Area covered could be
modelled as a function of spatial gradients and recent species sightings, and detectability could change with habitat or species.

Naturally, distance sampling data deviate from citizen science data. In citizen science data, we often do not know the tran-
sect taken by the observer. Distance sampling also makes core assumptions which may be violated for citizen science
data. In Table III, we propose potential (untested) adaptations to these problems.

Trends in Ecology & Evolution
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Proxies: observed state/variable that
has a well-defined functional relationship
with a latent state/variable.
Scaling (issues of): any discrepancy
between the resolution or extent (of,
e.g., space, time, or taxonomy) at which
the data are collected, and the process
of inferential interest occurs.
Sensitivity analysis: exploring the
relationship between perturbations to a
model’s inputs and the consequent
changes in its outputs.
Typology (of observation
processes): in general, refers to the
classification of observations (both at the
level of data collection and data analysis)
according to their characteristics. Here,
it refers to aminimal set of characteristics
that can be used to describe any
observation problem.
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The viability of this approach will depend heavily on how effectively the proposed solutions in Table III are. Adaptations to
and violations of these assumptions mean the uncertainty in these parameters may be large and some bias will remain but
because the distance sampling framework was designed for structured surveys integration of unbiased surveys is straight-
forward.

Use the LIES problem space to identify complementary data

While we often motivate observation problems using examples of already collected data, the LIES framework can also be
used in the design of data collection by thinking about the LIES problem spaces.

Imagine that each of the four elements of LIES defines an axis in problem space. The problem space contains all possible
observation problems and allows them to be related to each other. Each axis extends indefinitely (indicating ever more ex-
treme problems in that space). The axes are not necessarily continuous and may be summaries of other problems (e.g., a
practical identifiability problem and a mathematical identifiability problem may occur at the same point on the identifiability
axis if the problems are similarly severe, even though they are qualitatively different).

In a perfect experiment, we happily exist at the origin of this problem space, with zero observation problems. While the per-
fect experiment is unachievable, we can use the LIES problem spaces to try to get as close to perfect as is achievable. We
recommend using the LIES framework as a conversation tool for field scientists and statisticians when designing data col-
lection protocols. The process should be iterative and precautionary.

When the experiment is underway, time can be taken to establish whether the protocol is effective in minimizing observa-
tion problems and, if not, whether the protocol can be adjusted to do so. This process is known as adaptive survey design
and can follow much the same path as the original experimental design process, with the added benefit of testable data.
For example, if a key area has not been surveyed, then effort may be redistributed to ensure it is captured, or if the data are
noisier than expected, it may be necessary to increase sample size to achieve identifiability.

Establish a joint modelling framework

A natural extension to this line of thinking is data integration. In data integration, we look for data sources that occupy com-
plementary parts of LIES problem spaces, which together can bring us closer to the origin. For example, using the frame-
work outlined earlier, we might combine citizen science data that has issues of latency, identifiability, and effort, with
professional data. The transect data does not have the same latency and identifiability problems, but because it is more
expensive to conduct it has effort problems. Fortunately, the effort problem is complementary to the citizen science data.
The spatial biases in the transect data are known and reporting preferences are standardized across observers.

Table I. Four key citizen scientist behaviour challenges categorised in terms of the LIES framework

Challenge Latency Identifiability Effort Scaling

Spatial bias Moderate Major Major None

Observer differences None Moderate Major None

Reporting preference Moderate Major Major None

False-positive errors Minor Major None None

Table II. Translating problems defined using LIES into more general search terms for a literature reviewa

Problem summary Proposed Boolean search profile

Latency Frequency of observations is a function of
biological process but relationship is
unknown.

(‘unknown’ OR ‘hidden’ OR ‘latent’ OR
‘confounded’ OR ‘biased’ OR ‘nonidentifiable’ OR
‘identifiability’) AND
(‘observation process’ OR ‘effort’ OR ‘effort surface’)
AND (‘econometrics’ OR ‘public health’) NOT
(‘ecology’ OR ‘biodiversity’)

Identifiability Observations are confounded with
process of interest.

Effort Observations are biased and may be
predicted using proxies.

Scale Not applicable

aThis is intended as an illustrative and nonexhaustive way that one could find analogous problems and solutions in anothe
field.

(continued on next page
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Table III. Assumptions of distance sampling, how they may be violated in citizen science data, and potential
methods to address or ameliorate these violations

Assumption Consequence of violation Citizen science data
violations

Potential solution

The transect
line is known.

The location of the observer
is unknown.

The route taken by the
citizen scientist is generally
not known.

Incorporate citizen scientist
movement model. Beware
this is likely to lead to high
uncertainty due to
identifiability issues between
transect location (centroid of
kernel) and detectability
(kernel decay) function.

All animals on
the transect
line are
detected.

Strong bias in model
estimates.

Likely to depend on the skill
of the observer.

Observer skill can be
included using covariates or
random effects. Integration
with unbiased data source.

Animals are
randomly and
evenly
distributed
within
transects.

Strong bias in model
estimates if observations are
not independent (e.g., if
species move in flocks or
family groups).

Routes taken by citizen
scientists are unlikely to be
independent so double
counting is possible.

Incorporate citizen scientist
movement model that can
account for
non-independence.

Animals do not
move before
detection.

Bias is generally negligible. May depend on skill and
practice of observer,
(e.g., animals avoid noisy
observer or are attracted to
food or artificial mating calls).

Observer skill can be
included using covariates or
random effects. Integration
with unbiased data source.

Measurements
(angles and
distances) to
animals are
exact.

Bias is negligible if error is
random, but systemic error
leads to moderate bias.

Linked to first violation,
citizen scientists are unlikely
to give distances so these
must be inferred.

Incorporate citizen scientist
movement model. Beware
this is likely to lead to high
uncertainty due to
identifiability issues between
transect location (centroid of
kernel) and detectability
(kernel decay) function.

Trends in Ecology & Evolution
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ecological equilibrium but we might observe the direction and speed at which the ecosystem is
moving towards or away from it [16,17]. Similarly, we cannot travel through time to see the abun-
dance of historical species but their impacts might persist into the observable present day [18].
Table 1. A comprehensive typologya

Relevance of observation Reliability of observation

Data
collection

Latency – what do the variables collected
mean biologically?

Effort – how completely, precisely, and accurately have
the observations captured the whole biological
process?

Data
analysis

Scaling – what does the scale at which
the parameter is estimated mean
biologically?

Identifiability – how completely, precisely, and
accurately has the parameter been captured?

aObservation problems can be introduced during data collection or analysis. There are two sides to these problems: the
relevance of the observation to the biological process and the reliability of the observations made. This motivates a (compre-
hensive) typology of four core concepts.

Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx 5



Key Figure

These panels illustrate how the four types of observation process can af-
fect the same image

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 1. Latency: the image is recorded as six observed variables, namely the red, green, blue, hue, saturation, and light
layers of the image. The latent variable, the image, can only be fully reconstructed by combining either the first or second
row of images. Effort: the images are observed with heterogeneous effort. In the lefthand picture, the pattern of the effort
is so strong it makes it hard to determine what the underlying surface looks like. In the righthand image there is an effort
gradient from the top to the bottom of the image. Scaling: the process of data aggregation (to create a coarse scale) or
disaggregation (to get a finer scale) is illustrated using pixels. Each pixel has a single value. Aggregating pixels requires
averaging the values of the original pixels to create a single larger pixel. The averaging process can homogenise key
details making the image hard to parse (bottom right). Disaggregating pixels generates smaller pixels whose average will
be that of the original pixel, allowing noise to be introduced (top left). Identifiability: the image can be viewed as an elephant
or a swan (first two pictures). When a parameter can take multiple equally plausible values, we have a mathematical
identifiability issue. There can also be practical identifiability issues (third image), where uncertainty is so high that the truth
may not be discernible.

Trends in Ecology & Evolution
OPEN ACCESS
Latency thus encompasses small to large degrees of discrepancy between the observable and
latent variables.

It might be possible to find a closely related observable variable to act as a proxy for the latent
variable. The key to successfully using a proxy variable is to acknowledge it is different to the latent
variable by modelling the relationship between the two. The relationship may be linear and require
a simple scale factor adjustment. There may be a known functional form that describes the re-
lationship between the two. Functional forms are defined mathematically and can sound compli-
cated, but they are actually often motivated from our biological understanding. For example, the
trophic connection between predator and prey depends on their density and the shape of this de-
pendence is informed by ecological experimentation and theory [19,20]. To quantify predator
6 Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx
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intake, therefore, we do not simply use raw prey numbers, but we adjust the intake based on the
density of the two groups.

Sometimes the situation is even more challenging and multiple observable variables are needed
to infer a latent state. For example, to infer ecosystem stability, it is necessary to use the observed
abundances from all the species in the ecosystem [21,22], and their lagged effects on one an-
other [23]. Similarly, animal behaviour is often latent from us due to practical constraints (constant
direct observation of individuals is extremely resource intensive). Instead, we rely on easily ob-
servable variables such as an animal’s location through time (i.e., telemetry data) in combination
with environmental covariates to infer behavioural states [24].

It can be tempting to assume the observable variables are equivalent to the latent variables to
makemodelling simpler. Unfortunately, in cases where the relationship between the two is not ac-
counted for generally leads to poorer models that fail to capture the process, often leading to
non-transferability [25–27].

Existing statistical methods
Entire textbooks are written on latent variable models [28–30]. The aim of latent variable methods
in ecology is to map that which is easily observed into a biologically meaningful space. It is, there-
fore, useful to think of both latency and the models to tackle latency existing on a continuum.
Proxies can be accommodated using the linear predictors and link functions in generalised linear
models (GLMs). The coefficients can rescale proxies and link functions can approximate
functional forms. For example, a quadratic term in the linear predictor can be used to represent
intermediate optimum values while a logit-link function can accommodate saturation effects for
binary outcomes.

While hidden states often require sophisticated modelling structures, it is useful to start from the
simplest form: the generalised linear mixed effects model (GLMM) or hierarchical model. Random
effect structures in GLMMs correspond to distributional assumptions about complex latent phe-
nomena for different data groupings [25]. For example, site-level random effects are often used to
estimate within-site variability caused by underlying processes such as site history and location.
Stepping up in complexity slightly, multilevel hierarchical models (nested GLMMs) use information
from different levels of the data to constrain the latent variable estimation while hidden Markov
models use autocorrelation to reconstruct stochastic time series of hidden states [13].

The key to effectively tackling latency is to improve our biological understanding of the latent phe-
nomenon [25,31]. Latent variables are often hardest to estimate and interpret when they are only
weakly constrained by prior knowledge and model structure. By imposing boundaries informed
by, for example, expert prior elicitation [32], we can often improve computation, inference, and
model transferability.

Effort – reliability of data collected
Motivation
The aim of data collection is to try to gather information-rich observations of the biological pro-
cess with the minimum bias and maximum precision [33]. A key tenet of traditional experimen-
tal design is to spread observation effort evenly among sampling units so that the observation
process does not distort the underlying biological process [34]. Other than in highly controlled
conditions, true homogeneous effort is almost impossible, leading to over-recording of some,
for example, seasons, years, regions, individuals or population classes, and under-
representation of others.
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx 7
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Uneven effort often arises from practical constraints. There are limits to where observers can be
sent for safety reasons [35] or due to administrative boundaries [36]. Sometimes unevenness is
deliberate. Data collected alongside a rabies vaccination campaign will generally be targeted to-
wards rabies hotspots [37,38]. In these cases, stratified effort is uneven but its distribution is
known and can be accounted for in the analysis.

The situation is more complex for opportunistically collected data. The distribution of citizen sci-
entists (Box 1) [39], fisheries bycatch surveys [40], or deer–vehicle collisions [41] are all driven by
processes that are rarely measured directly and are often driven by multiple other processes.
Sometimes these drivers are spatial (e.g., deer–vehicle collisions depend on traffic flow; fishing
boats minimise their travel time to fish stocks; and citizen scientists like to record in attractive lo-
cations near to where they live). There are also cultural drivers of what is reported – legal penalties
reduce reporting of deer–vehicle collisions and fisheries bycatch, while citizen scientists more
likely to report rare or invasive species. As a result, we frequently need to analyse data where
the effort distribution is not only uneven but also unknown.

Existing statistical methods
Uneven effort can be accounted for statistically. In general, to retrieve the biological process from
our data, we simply need to offset or reweight our observations per unit effort. We can think of this
as an offsetting exercise [42]; however, first we need to quantify effort across different sample
units. The challenge of this grows with the degree to which effort is unknown. Where effort is
fully known, the offset can be incorporated into the model as data.

Where effort is in any way unknown, it must be inferred and the degree to which it is unknown de-
termines the complexity of the modelling required to infer it [39]. Here, effort becomes a latent var-
iable. In the earlier section, we discussed issues of latency between the observation process and
the biological process. Here, we have latency between different parts of the observation process.
We may be able to use similar modelling techniques to tackle latent effort. However, while we
often have a good understanding of biological mechanisms with which to model latent biological
processes, modelling latent effort requires an understanding of human behaviour.

In parallel with the methods to address issues of latency, there are three levels of complexity used
when inferring effort. The first is to use a proxy variable for effort based on an assumed functional
form. For example, in amateur wildlife recording, researchers use the frequency of a focal species
or recorder’s list length for a given site-visit as a measure of recording effort [39]; however, this
makes strong assumptions about how the focal species and biodiversity are distributed. A relax-
ation of this relationship is to assume a particular functional form linking effort to the variable. Dis-
tance sampling (Box 1) is perhaps the most obvious use of this technique, where effort (the
detection function) decays with distance from the observer [43].

The most complex method for inferring effort relies on multiple observable variables or known
relationships. One approach is to use validation data collected with known effort. For the range of
the validation data, the biological process is well characterised, meaning that differences in the
overlap of the two data types can be attributed to (and used to model) effort. Most effort models
use covariates to predict effort but some use properties of how effort is distributed, such as spa-
tial autocorrelation [44] or phylogenetic information-sharing [45–47]. The best approach to
modelling effort may need to be case specific and determined through model comparison
[48,49] due to dependence on the inferential quantity of interest and amount of data available,
as some elements of effort heterogeneity will play more important roles in some questions
than others.
8 Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx
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Scaling – relevance of inference made
Motivation
Determining the relevant scale for analysis is challenging and often overlooked [50–52]. For sta-
tistical models to be ecologically relevant, the signal detected needs to have a biological interpre-
tation. Yet, frequently, our models are designed to look for signal in raw data where the scale is
determined by equipment precision and encoding, leading to a discrepancy between the scale
of inference and that of the biological process [53]. Indeed, the relevant scale may be variable-
specific or a single variable may impact at multiple scales [54]. For example, phylogenetic dis-
tance may lead to trait autocorrelation at a large scale (organisms within an order are more similar
than those in different orders) but negative correlation at a small scale (closely related species
within a genus may be more different than more distantly related species in the genus). To
reach the scale relevant to the biological process, our model needs to be able to change how
neighbouring regions in the data are grouped together or divided. To do so, we need to under-
stand what proximity means in variables like space, time, and taxonomy, and how these units
can be sensibly aggregated (or disaggregated).

Proximity needs to be defined in biologically sensible ways that may be nonlinear and directional.
For example, geographic proximity might be defined in terms of landscape resistance to a partic-
ular organism [55,56], but also in terms of that organism’s mobility [57]. Temporal proximity may
be determined by latitude with rapid seasonal changes in weather towards the poles and more
smooth transitions in the tropics. Similarly, taxonomic proximity can be defined by a combination
of morphometrics, genomics, and functional traits.

Aggregation operations often make an implicit mean-field assumption: that a system’s behaviour
is defined by the average value (e.g., of a covariate) across the system, so combining small units
into larger units will lead to the same inference [58]. However, aggregation of fine-scale processes
into coarser scale observations can eliminate our ability to detect signals [59]. A forager can be
more efficient if all the prey in its home range is concentrated at one known location, and it may
not matter if weather conditions are generally clement if a single storm can ruin a season’s breed-
ing [57]. In niche space, aggregating environments into coarse habitat classes might group to-
gether distinct habitats that are recognized very differently by a species [60]. Using fine-scale
data may lose the signal by obscuring the environmental context within which the important biol-
ogy is unfolding. Different biological processes may interact with the same covariates at different
scales. For example, where a wolf moves in the next minute may be influenced by habitat com-
position within 200 m, whereas where a wolf establishes its home range may be influenced by
habitat composition within 20 km.

Existing statistical methods
Both too much and too little aggregation can lead to discrepancies between our data and the bi-
ological process making us vulnerable to over- and underfitting issues [59]. Statistical diagnostics
for these issues are common [61], but finding the appropriate scale is more challenging. One op-
tion is to fit models at multiple scales and compare using model-selection procedures [62]. A
more sophisticated approach is to treat scale (or scales) as a parameter to be estimated [63] or
to model scales hierarchically [64].

While conceptually simple, these approaches can be computationally prohibitive or limited by
data availability. When aggregating at a particular scale, it is necessary to perform costly numer-
ical integration for each candidate scale (although costs can be reduced using analytical tricks
such as fast Fourier transformation algorithms [65]). Another common method is to use a dis-
tance decay kernel [66], such that distant observations bear lower importance. The scale
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx 9



Trends in Ecology & Evolution
OPEN ACCESS
parameter is then the decay coefficient [67], [68]. Estimating nonlinear effects is becoming easier
thanks to R packages like INLAbru [69], which extends fast approximate Bayesian methods [70]
in a user-friendly way to accommodate more complex models.

Identifiability – reliability of inference made
Motivation
We build statistical models to identify relationships. The richness with which we can describe
these relationships by our models will depend on the model definition. If the model is well defined
[71] and the data contain sufficient signal, the parameters capture the real relationships and ex-
clude alternative explanations. Advances in statistical computing have removedmany constraints
on model specification, making specifying interesting, biologically relevant, generative models
easier. Even then not all relationships are identifiable by all models (mathematical identifiability)
or without sufficient data (practical identifiability) [72].

Mathematical identifiability issues can arise in simple situations. A population’s growth may bewrit-
ten unambiguously as a balance equation between birth and death rates, but even with unlimited
data, it is impossible to estimate birth and death rates if both are unknown as there are infinite plau-
sible combinations that are consistent with any growth rate. As model complexity grows, mathe-
matical identifiability problems can bemuch more subtle (see discussion of multicollinearity in [73]).

Practical identifiability problems result from trying to make inferences from finite data. Even math-
ematically identifiable models may be unable to estimate relationships with precision if the noise-
to-signal ratio is high, there is strong collinearity between covariates [73], or the model is only
weakly identified [71]. Indeed, problems of latency, effort or scaling can contribute to practical
identifiability issues. The severity of identifiability issues may depend on the model’s purpose.
For inference, identifiability is essential. For prediction, an individual parameter’s identifiability
may not matter so long as the overall effect is identifiable [74]. Similarly, a parameter might only
be identified when normalised or transformed. For example, a covariance matrix may not be iden-
tifiable but the corresponding correlation matrix is [75].

Existing statistical methods
The relationship between the model definition and the quantity of interest defines both types of
identifiability problem. We can think of the models working in two directions. In the forward direc-
tion, we simulate from the model. In the inverse direction, we estimate model parameters using
data. We can use the forward direction to identify issues of mathematical identifiability by testing
whether simulated quantities are affected by the specific model parameters [76]. If changing the
model parameter values does not affect the quantities generated, there are mathematical
identifiability issues. Once we have ruled out mathematical identifiability issues, we can explore
the inverse. Here, we use data on the quantity of interest to estimate the model parameters. If
many parameterisations are plausible given the data, we have high uncertainty and practical
identifiability issues. Methods to assess these problems have been unified under the topics of
sensitivity analysis [76] and uncertainty quantification [77,78], respectively.

Sensitivity analysis is solely a function of the model definition (i.e., is not affected by data), and can
be conducted using directed acyclic graphs (DAGs; particularly popular in the causal inference
literature [79]), inspection of the mathematical definition of a model [71], or simulation based
methods [80]. Although mathematical identifiability problems are data-invariant, they are often
found when fitting to data, for example, poor sampling in Markov chain Monte Carlo (MCMC)-
based algorithms [81] or singularity in the Hessian matrix [71] is often indicative of mathematical
identifiability problems in the model.
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Outstanding questions
What data integration methods are
missing? Many problems can be
overcome by integrating
complementary data types
(e.g., combining fine scale data at a
few locations with coarser data across
a larger area to overcome issues of
scale), however, the key is in identifying
them.

How do we incorporate observation
process modelling into teaching?
Complex observation processes are
rarely emphasised in statistics
courses but most students will need
to tackle them. Would emphasising
the observation process guard
against defaulting to interpretation of
patterns in data as biological signal?

Can we link observation processes to
experimental design techniques? How
can simulating from models with
observation processes improve data
collection? Can we think of
experimental design as a set of
techniques to minimise identifiability
issues while focusing effort on a small
part of the biological process?

Can the LIES framework be utilised be-
yond the fields of ecology and evolu-
tion?
Uncertainty quantification depends on both the model definition and the noise-to-signal ratio in
the data. If the model is over-parameterised or the data are uninformative, then there will be
high uncertainty in the parameter estimates. Power analyses, in either Frequentist [82] or Bayes-
ian [83] paradigms, often rely on using simulated data to estimate the nature and amount of data
required to identify a relationship to a given precision. It is important to also assess how uncer-
tainty changes under model misspecification (e.g., by using surrogate models for simulation)
[84] as this is almost guaranteed. Model selection can also be a useful tool for comparing candi-
date models [85]. There are two main forms of model selection. Continuous model-space
methods carry out variable selection parametrically as part of the model-fitting process, for exam-
ple, penalised complexity [86] in the Bayesian paradigm and LASSO in the Frequentist [87]. Dis-
crete model-space methods involve fitting candidate models independently and choosing a
preferred model based on a separate metric to the fitting process (e.g., information criteria
[85,88]). Continuous model-space approaches benefit from internal logical consistency but can
be computationally burdensome and challenging to implement.

Concluding remarks
Field scientists and statisticians face an ongoing challenge of how to tackle urgent complex ques-
tions with complex data sources (see Outstanding questions). Eliciting the observation processes
requires field science and statistical teams that work closely together and are motivated to under-
stand one another. Where these teams do not exist, observation processes go unaccounted for,
and any inference and policies made as a result are compromised. Where these teams succeed,
they generate methodological advances, but advances which are often siloed due to field-specific
language. Without breaking down these siloes, we stifle our progress. The typology we propose
herein is one route through this impasse. However, we believe that it already offers a fresh per-
spective on observation processes that can lead to methodological synthesis, innovation, and in-
sight as well as provide a mental roadmap through challenging terrain.
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