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Methods: 96 children with overweight/obesity aged 8-11 years (10.01 ± 1.14) from the 1 

ActiveBrains project were included in this cross-sectional study. Anthropometric neonatal data 2 

were collected from birth records, whereas breastfeeding practices were reported by parents. A 3 

3.0 Tesla Siemens Magnetom Tim Trio system was used to acquire T1-weighted and resting-4 

state functional magnetic resonance images. Academic performance was assessed by the 5 

Woodcock-Muñoz standardized test. Hippocampal seed-based methods with post-hoc 6 

regression analyses were performed. Analyses were considered significant when surpassing 7 

Family-Wise Error corrections. 8 

Results: Birth weight showed a positive association with the connectivity between the 9 

hippocampus and the pre- and postcentral gyri, and the cerebellum. In addition, breastfeeding 10 

was negatively associated with the connectivity between the hippocampus and the primary 11 

motor cortex and the angular gyrus. Any breastfeeding in turn, showed a positive association 12 

with the connectivity between the hippocampus and the middle temporal gyrus. None of the 13 

connectivity outcomes related to early life factors was coupled with better academic abilities 14 

(all p>0.05).  15 

Conclusions: Our findings suggest that birth weight at birth and breastfeeding are associated 16 

with hippocampal connectivity in children with overweight/obesity. Despite this, how the 17 

results relate of academic performance remain a matter of speculation. Our findings suggest 18 

that clinicians should recognize the importance early life factors for potentially avoiding 19 

consequences on offspring’s brain development. 20 

 21 

Keywords: birth weight; brain; breastfeeding; hippocampus; cognition, obesity.  22 
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1. INTRODUCTION 1 

Environmental factors present in early life are particularly important for brain development 1. 2 

Early life factors such as anthropometric neonatal data (birth length and birth weight) and 3 

breastfeeding practices (exclusive and any breastfeeding) might have long lasting 4 

consequences in several key brain regions that support higher-level cognitive processes (i.e., 5 

planning, problem solving) later in life 2-4. Specifically, the hippocampus undergoes protracted 6 

functional and structural development after birth, which likely influences everyday activities, 7 

memory and learning, and in turn academic performance during childhood 1,5-7.  8 

There is extensive evidence of associations between early life factors and morphologic changes 9 

of the hippocampus later in childhood 5. For example, low birth weight has been associated 10 

with smaller hippocampal shape and volume in school-aged children 8,9. Along these lines, 11 

Anne et al. found that children that were born preterm and with very low birth weight had 12 

smaller hippocampal subfield volumes than age-matched term-born controls at 9 years 10. 13 

Interestingly, breastfed children showed larger hippocampal volumes at term equivalent age, 14 

but this association was not evident at 7 years of age 11. In contrast, recent evidence showed 15 

that length of exclusive breastfeeding was associated with hippocampus volume, but was not 16 

related to satiety or weight status 12. To our knowledge, only one previous study was designed 17 

to investigate the association of a single early life factor, birth weight, and the functioning of 18 

limbic areas such as the hippocampus. This study demonstrated that birth weight was related 19 

to more efficient limbic communication (meaning that information flow is maximized between 20 

regions within a network) at rest in adolescents 13. Thus, in contrast to the extensive literature 21 

on the relationship between early life factors and hippocampal structure 5,8-10,14, few previous 22 

studies have examined the relationship of early life factors with the function of the 23 

hippocampus in children.  24 
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There is evidence, however, that resting state functional connectivity (rsFC) of other regions, 1 

apart from the hippocampus, is sensitive to early life environment. For example, alterations in 2 

rsFC are evident at birth in networks related to motor function, language, and executive 3 

function 15. Previous studies on early life factors and rsFC have mostly focused on the 4 

amygdala, because of its involvement in affective and cognitive processes later in life 16,17. 5 

However, the influence of early life factors on rsFC of the hippocampus is still poorly 6 

understood 5. This represents an important gap in our understanding of how early life 7 

environment relates to brain function because rsFC of the hippocampus has been related to 8 

different health states in childhood and adulthood, including adolescent depression 18 and 9 

schizophrenia in young adults 19,20among others 19-22. In addition, hippocampal functional 10 

connectivity may relate to several behavioral changes 23, such as memory deficits 24, 11 

mathematical difficulties and nonverbal learning disabilities 25, among others 26,27, which may 12 

have implications for academic performance during childhood. Further, the hippocampus is a 13 

key region implicated in the regulation of food intake by detecting learned signals 28, being 14 

specifically important in a population with overweight/obesity, especially in youth when the 15 

hippocampus is still in developments 29. 16 

Therefore, this background highlights the importance of examining early life development of 17 

hippocampal rsFC and its academic implications in children, and particularly in children with 18 

overweight/obesity, who show altered hippocampal connectivity and worse executive function 19 

and academic performance 30-35. In the present study, we investigated the associations of early 20 

life factors such as anthropometric neonatal data (i.e., birth length and birth weight) and 21 

breastfeeding practices (i.e., exclusive and any breastfeeding) with hippocampal rsFC, and ii) 22 

tested whether connectivity related to early life factors is associated with long-term academic 23 

performance in children with overweight/obesity. 24 
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2. METHODS  1 

Participants 2 

We included 96 children with overweight/obesity (categorized based on World Obesity 3 

Federation cut-off points, which consist on an extrapolation to younger ages of the established 4 

cut-points in adults, BMI 25 and 30) 36,37 aged 8-11 years from the ActiveBrains project 38 5 

(www.profith.ugr.es/activebrains) with completed and valid measures of early life factors, 6 

brain connectivity and academic performance variables. Briefly, inclusion criteria were (a) no 7 

physical disabilities or neurological disorders; (b) absence of menstruation at the time of the 8 

baseline assessment, (c) right-handedness, and (d) no present Attention-Deficit Hyperactivity 9 

Disorder. This study is based on a cross-sectional analysis of baseline data prior to 10 

randomization to an exercise intervention. Parents or legal guardians were informed of the 11 

purpose of the ActiveBrains study and written informed consents were obtained. The project 12 

was approved by the Human Research Ethics Committee of the University of Granada, and 13 

was registered in ClinicalTrials.gov (identifier: NCT02295072). 14 

Measures 15 

Early life factors 16 

Weight (kg) and length (cm) at birth were collected from health records (i.e., physical medical 17 

record that parents had with the offspring’s perinatal information). In addition, parents were 18 

asked the following questions: (i) for how long (months) did the child receive only breast milk 19 

(neither formula or other liquid or solid)?, as an indicator of exclusive breastfeeding, and (ii) 20 

for how long (months) did the child receive any breast milk (combined with other liquid, 21 

formula, or solid)?, as an indicator of any breastfeeding 39. All measure were used as 22 

continuous variables. 23 

http://www.profith.ugr.es/activebrains
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Academic performance 1 

The version III of the Woodcock-Muñoz Tests of Achievement was used as a measure of 2 

academic performance (i.e., Spanish version of the Woodcock-Johnson III) 40. A trained 3 

member of the research staff administered the test for each child. The full administration time 4 

was between 100 to 120 min. We included standard score indicators of reading, writing 5 

mathematics and total achievement in the present analysis 41.  6 

Covariates 7 

Gestational age (weeks) was collected from health records; peak height velocity (PHV) was 8 

used as an indicator of pubertal maturity status in childhood and was obtained through the 9 

Moore et al. equation 42; PHV offset was computed by the difference between PHV and 10 

chronological age. Parents reported their maximum completed level of education and answers 11 

were categorized as: none of the parents had a university degree, one of the parents had a 12 

university degree or both parents had a university degree, based on our previous studies 4,39. 13 

Children’s cardiorespiratory fitness (CRF) was estimated through the 20-meter shuttle-run test 14 

and maximal oxygen consumption (VO2max, mL/kg/min) was calculated using the Lèger 15 

equation43. 16 

 17 

Resting state functional MRI (rsfMRI) 18 

MRI data acquisition and preprocessing 19 

Images were collected using a 3.0 Tesla Siemens Magnetom Tim Trio system (Siemens 20 

Medical Solutions, Erlangen, Germany) with a 32-channel head coil. The complete procedure 21 

was published in a previous work of the present sample 44. High-resolution T1-weighted images 22 
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were acquired using a 3D magnetization-prepared rapid gradient-echo (MPRAGE) protocol. 1 

The parameters were as follows: repetition time (TR) = 2300 ms, echo time (TE) = 3.1 ms, 2 

inversion time (TI) = 900 ms, flip angle = 9º, field of view (FOV) = 256 x 256, acquisition 3 

matrix= 320 x 320, 208 slices, resolution = 0.8 x 0.8 x 0.8 mm, and scan duration of 6 min and 4 

34 s. The rsfMRI was composed of a series of 160 scans acquired using a Gradient Echo Pulse 5 

Sequence while participants rested with eyes closed. The parameters were as follows: TR = 6 

1000 ms, TE = 25 ms, flip angle = 80º, FOV = 240 mm, acquisition matrix= 240 x 240, 35 7 

slices, resolution = 3.5 x 3.5 x 3.5 mm, and scan duration of 5 min and 25 s. 8 

Preprocessing steps were carried out in FMRIB’s Software Library (FSL) version 5.0.7. The 9 

following steps were applied: (i) skull-stripping using brain extraction tool (BET), (ii) spatial 10 

normalization of the MPRAGE structural image to Montreal Neurological Institute (MNI) 11 

space, (iii) alignment of all rsfMRI frames to correct for head motion during the scan, (iv) co-12 

registration to each participant’s MPRAGE structural image and spatial normalization to MNI 13 

space, (v) the rsfMRI time courses were then band-pass filtered (0.1–0.01 Hz) to attenuate 14 

respiration and other physiological noise and to focus on signal frequencies associated with 15 

intrinsic connectivity, (vi) six affine transformation parameters from the alignment process, as 16 

well as the mean time courses from the brain parenchyma including white matter tissue and 17 

ventricles were included as covariates to further account for motion and physiological noise. 18 

We visually checked each individual image for acquisition artifacts, and one child was 19 

excluded due to visual image corruption.  20 

Seed creation and resting-state functional connectivity analyses 21 

 22 

FMRIB’s Integrated Registration and Segmentation Tool (FIRST) in FSL 5.0.7 was used for 23 

seed creation. FIRST is a semi-automated model based subcortical segmentation tool that use 24 
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a Bayesian framework from shape and appearance models obtained from manually segmented 1 

images from the Center for Morphometric Analysis, Massachusetts General Hospital, Boston, 2 

MA, USA 33. Briefly, two-stage affine registration is run to register the MPRAGE to standard 3 

MNI space using 12 degrees of freedom with 1 mm resolution and uses a subcortical mask to 4 

exclude voxels not corresponding (outside) to subcortical regions. Then, subcortical regions, 5 

including hippocampus, are separately segmented for each hemisphere. Manual volumetric 6 

region labels are parameterized as surface meshes and modeled as a point distribution model. 7 

The final segmentations of the hippocampus seeds were visually checked for quality control 8 

by one rater, and when there was any questionable segmentation, a second rater checked the 9 

images. In addition, after calculating framewise displacement, no further exclusions were 10 

performed (all framewise displacement <0.2).   In a first-level (single-subject), whole-brain 11 

voxel-wise functional connectivity network maps were created for left and right hippocampal 12 

seeds, for each participant using the pre-processed rsfMRI data. The residualized parameter 13 

estimate rsFC maps were converted to z scores (via Fishers r to z transformation) to achieve 14 

normality and were entered into higher level analyses.  15 

Statistical analysis 16 

Descriptive data by sex are presented as mean and standard deviation (SD) for continuous 17 

variables as well as number of cases (n) and percentage (%) for categorical variables.  In 18 

second-level (group) imaging analysis, the residualized parameter estimate rsFC maps were 19 

then included in two separate linear regression models to identify regions where connectivity 20 

with the right and left hippocampus was explained by each early life factors (birth weight, birth 21 

length, months of exclusive or any breastfeeding). Sex, gestational age, PHV, parental 22 

educational level and CRF were included as covariates in each of the second-level models. All 23 

the variables were mean centered prior to inclusion in the models. Correction for multiple 24 
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comparisons was performed using FSL’s automatic FEAT cluster-based thresholding at an 1 

alpha of p<.05, which is a method of Family-Wise Error correction based on Gaussian Random 2 

Field Theory. To further evaluate the link with academic performance, we performed 3 

regression analyses between this variable and the signal from those regions showing a 4 

significant association with the early-life factors in the preceding analyses. Signal extraction 5 

represents the strength of the functional connectivity between the seeds (left and right 6 

hippocampus) and the voxels showing a significant association with early-life factors.   A false 7 

discovery rate (FDR) was applied using the Benjamini and Hochberg method (q<. 05). 8 

Sensitivity analyses were carried out excluding children born preterm (gestational age < 37 9 

weeks, n=17). Sensitivity analyses were carried out excluding children born preterm 10 

(gestational age < 37 weeks, n=17). Descriptive and statistical analysis corresponding to 11 

extracted rsFC signal were performed in R (version 3.6.1; R Foundation for Statistical 12 

Computing, Vienna, Austria), and statistical significance was set at p < .05. 13 

3. RESULTS 14 

Table 1 shows the descriptive characteristics of the study sample. Higher birth weight was 15 

associated with increased rsFC between the left hippocampus and 2 clusters corresponding to 16 

the left precentral and postcentral gyri (k=267 and k=382 respectively; Table 2, Figure 1.A). 17 

In addition, higher birth weight was associated with increased rsFC between the right 18 

hippocampus and 3 clusters corresponding to the left and right postcentral gyri and cerebellum 19 

(k ranged from 258 to 421; Table 2, Figure 1.A). Birth length was not associated with 20 

connectivity of the hippocampus.  21 

Longer and exclusive breastfeeding was associated with decreased rsFC of the left 22 

hippocampus with the left angular gyri (k=369; Table 2, Figure 1.B) and of the right 23 

hippocampus with the primary motor cortex (k=250; Table 2, Figure 1.B). Any breastfeeding 24 



10 
 

was not associated with rsFC of the left hippocampus, but was positively associated with rsFC 1 

between the right hippocampus and middle temporal gyrus (k=329 Table 2, Figure 1.C). The 2 

results after excluding children born preterm from the analyses did not substantially change 3 

(see Table S1). 4 

Post-hoc analyses 5 

Table 3 shows the association between the early-life factor-related hippocampal rsFC and 6 

academic performance. There was a positive association between the connectivity of the right 7 

hippocampus with left primary motor cortex and mathematics (β= 0.225; p=0.019), although 8 

this association disappeared after FDR correction.  9 

4. DISCUSSION  10 

Our main finding suggests that early life factors were related to hippocampal connectivity in 11 

children with overweight/obesity. Specifically, birth weight, but not birth length, was 12 

associated with greater hippocampal rsFC. In addition, longer exclusive breastfeeding was 13 

associated with diminished hippocampal rsFC, and any breastfeeding was related to greater 14 

hippocampal rsFC. However, hippocampal rsFC was not coupled with better academic 15 

abilities. The present study expands the knowledge about the influence of early life factors on 16 

hippocampal structure by showing that birth weight and breastfeeding relate to hippocampal 17 

functional connectivity later in life, but its behavioral implications remain unknown. 18 

There are several potential mechanisms for how the targeted early life factors influence rsFC 19 

in the hippocampus of school-aged children. At a molecular level, low birth weight has been 20 

previously associated with hippocampal gene expression; this is related to neuronal maturation, 21 

transcription and apoptosis, which may in turn influence connectivity 45. Also, previous studies 22 
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suggested that the hippocampus may be highly vulnerable during fetal environment with 1 

functional consequences even at a period of hippocampal growth peak, around 9-11 years 5,46,47.  2 

The hippocampus is a key region involved in learning and memory as well as in higher order 3 

cognitive processes. Previous structural brain studies showed that compared with term-born 4 

controls, premature-born babies had reduced hippocampal volume during childhood 8,9, and 5 

even during adulthood; and this was coupled with cognitive consequences 48,49 . Functional 6 

studies in adults showed that the activation of the hippocampus was associated with BMI and 7 

in turn, worse decision making, suggesting that body weight is closely tied to both brain 8 

function and cognitive outcomes 50. In addition, disrupted hippocampal connectivity during 9 

adolescence, mainly within the limbic network, was partially explained by birth weight 13. In 10 

the present study, birth weight was mainly associated with greater functional connectivity 11 

between the hippocampus and frontal and parietal regions, namely, precentral and postcentral 12 

gyri. Both precentral and postcentral gyri are related to sensorimotor and somatosensory 13 

systems, and have been recognized as being disrupted in obesity 51,52. Specifically, while the 14 

precentral gyrus participates in planning and execution, the postcentral gyrus is a key related-15 

obesity region involved in sensory processing and taste processing in children and adolescents 16 

with excess weight 53. Decreased activation in the precentral and postcentral gyrus has been 17 

associated with loneliness 51 and cue reactivity scores 54, both behaviors that might be affected 18 

in obesity during childhood 55,56. In addition, we found that birth weight was related to greater 19 

rsFC between the right hippocampus and left cerebellum, and we previously showed that both 20 

birth weight and birth length were also associated with cerebellar volume 39. Further, the 21 

cerebellum is functionally heterogeneous, and specifically the association focused on left 22 

posterior cerebellar lobule, which is involved mainly in spatial task, emotion and executive 23 

function 57. In this line, the hippocampal-cerebellar functional connectivity has a key role in 24 

supporting spatial navigation in different neurological disorders, suggesting a possible clinical 25 
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implication of reduced hippocampal-cerebellar connectivity 58. Collectively, our results 1 

support the role of birth weight on functional connectivity between the hippocampus and 2 

sensorimotor and motor regions in children with overweight/obesity. However, future studies 3 

should examine the influence of anthropometric neonatal indicators (i.e., birth weight/length) 4 

on functional connectivity in larger samples using graph- based network analysis of rsfMRI to 5 

expand our understanding of early life development of the brain as a complex network. 6 

Surprisingly, we found that exclusive breastfeeding was associated with a diminished 7 

connectivity between the hippocampus and the angular gyrus, and the primary motor cortex. 8 

Greater hippocampal-angular gyrus connectivity has been related to episodic memory, and 9 

reduced communication between these regions might lead to reduced ability to creatively think 10 

and to imagine an episodic future event in young adults (age range 19 to 26 y) 59. However, we 11 

did not find any negative academic impact in relation to the lower hippocampal-angular gyrus 12 

connectivity in the present childhood sample. Consequently, while these unexpected results 13 

might be explained by the possible functional reorganization in response to early life adversity 14 

of offspring’s, future studies including other variables (e.g., better characterization of early life 15 

stress or diet, among others) that help to understand this result are needed 60,61. In addition, any 16 

breastfeeding was associated with greater connectivity between hippocampus and middle 17 

temporal gyrus. A recent study has shown that connectivity between the hippocampus and 18 

middle temporal gyrus is a critical neural basis for novelty and usefulness processing during 19 

concept construction, perceptual motor system (including precentral and postcentral gyrus) 62, 20 

and linguistic and nonlinguistic semantic-level processes or memory 63. However, we did not 21 

find a relationship between hippocampal connectivity and behavior (i.e., academic 22 

performance) in this sample of children with overweight/obesity. This lack of association, 23 

however, does not preclude the possibility that these networks are implicated in other 24 

unmeasured behavioral or cognitive processes.  25 
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Collectively, we did not find any links with academic achievement indicators of the 1 

connectivity previously relate with early life factors. Similarly, a previous study with the 2 

present sample on early life factors and gray matter volume also failed to find any link with 3 

academic achievement scores 39. Thus, it is possible that in our sample of children with 4 

overweight/obesity, the lack of variability in terms of adiposity may mask an association of 5 

functional network connectivity with academic achievement 64. Further research examining the 6 

academic implications of the early life factors-hippocampal rsFC comparing normal-weight 7 

children and those with overweight/obesity is needed.  8 

The present study expands the existing literature, which has mainly examined morphologic 9 

associations of the hippocampus with early life factors, by demonstrating that early life factors 10 

such as birth weight and breastfeeding practices also relate to hippocampal connectivity in 11 

children with overweight/obesity. However, some limitations of this study should be 12 

acknowledged. The retrospective cross-sectional design precludes our ability to draw causal 13 

interpretations between the targeted early life factors and rsFC of the hippocampus. In addition, 14 

parents self-report of breastfeeding practices did not clarify whether the practices were 15 

formula-fed, and parents could have potentially misunderstood the meaning of “exclusiveness” 16 

of breastfeeding 65, which may explain, in part, the unexpected association of breastfeeding 17 

practices. Also, we obtained relatively short resting-state fMRI scans. The reason for this was 18 

that children are susceptible to more movement and cannot tolerate long scanning times 66. 19 

Despite this, similar scan time has shown to be reliable in populations with similar 20 

characteristics 66. Lastly, we focused on a specific limited age range (i.e., children aged 8-11y) 21 

and population of children with overweight/obesity, and the lack of a normal weight group 22 

limit the extrapolation of our findings to other age or weight status groups. In addition, we did 23 

not collect information about feeding or hunger status during the MRI session, and different 24 

pattern of feeding has may alter brain connectivity 67. Additionally, we did not collect 25 
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information about dietary patterns of mothers, stress or birth complication, which has been 1 

associated to hippocampal features of offspring 6. The current findings provide new insights 2 

and prompt questions for future studies to further understand hippocampal functional 3 

connectivity in this population. The study has the strength in that it provides a unique 4 

contribution to the literature on early life programming of hippocampal functional connectivity 5 

in children with overweight/obesity. Clinical relevance of this findings is to help clinicians to 6 

recognize the importance of anthropometric neonatal data and infant feeding for potentially 7 

avoiding the negative consequences brain development. Therefore, interventions aiming at 8 

improving prenatal health and promoting breastfeeding in infancy may be implications for 9 

influencing hippocampal connectivity later in life. 10 

In conclusion, our findings suggest that birth weight at birth and breastfeeding practices are 11 

associated with hippocampal functional connectivity in children with overweight or obesity at 12 

ages 8-11. Future research on the association of these changes with a greater range of 13 

behavioral outcomes is needed.  14 
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Table 1. Characteristics of study sample. 

 

Table 2. Significant clusters in the association of early life factors associated with 
hippocampal connectivity in the left and right seeds. 

 

Table 3. Associations of early-life factor-related hippocampal connectivity with academic 
performance*. 
 

Figure. 1. Clusters showing association between early life factors and left and right 

hippocampal resting state functional connectivity. The color represent seed for left (green) 

and right hippocampi (yellow), as well as positive (light blue) and negative (red) association. 

Figures A shows birth weight cluster associated with left and right hippocampal seed. Figure 

B and C shows exclusive and any breastfeeding with left and right hippocampal seed, 

respectively. L: left, R: Right, FC: functional connectivity. 



Table 1. Characteristics of study sample.  

  All  Boys Girls 

N n   n   n   

Physical characteristics  96   60   36   

Age (yr)  
 

10.01 ± 1.14 
 

10.16 ± 1.14 
 

9.78 ± 1.13 

Weight (kg) 
 

55.65 ± 11.15 
 

56.66 ± 10.69 
 

53.97 ± 11.85 

Height (cm) 
 

143.81 ± 8.32 
 

144.69 ± 7.37 
 

142.34 ± 9.64 

Peak height velocity offset (yr) 
 

-2.33 ± 0.96 
 

-2.65 ± 0.78 
 

-1.80 ± 1.01 

Cardiorespiratory fitness (mL/kg/min)* 
 

40.86 ± 2.77 
 

40.84 ± 2.77 
 

40.90 ± 2.82 

Body mass index (kg/m2) 
 

26.70 ± 3.69 
 

26.90 ± 3.79 
 

26.36 ± 3.53 

Body mass index category (n,%) 96 
 

60 
 

36 
 

Overweight  
 

25 (26.0) 
 

16 (26.7) 
 

9 (25.0) 

Obesity type I  
 

41 (42.7) 
 

27 (45.0) 
 

14 (38.9) 

Obesity type II  
 

30 (31.2) 
 

17 (28.3) 
 

13 (36.1) 

Parental education university level (n,%) 96 
 

60 
 

36 
 

None of the parents 
 

64 (66.7) 
 

43 (71.7) 
 

21 (58.3) 

One of the two parents 
 

17 (17.7) 
 

10 (16.7) 
 

7 (19.4) 

Both parents 
 

15 (15.6) 
 

7 (11.7) 
 

8 (22.2) 

Neonatal characteristics 
      

Birth weight (g) [1370-4600] 94 3343.72 ± 542.25 59 3358.98 ± 579.32 35 3318.00 ± 480.28 

Birth length (cm) [40-57] 85 50.69 ± 2.68 57 50.61 ± 3.02 28 50.86 ± 1.84 

Gestational age (week) [26-43] 96 38.62 ± 2.59 60 38.57 ± 2.59 36 38.70 ± 2.63 

Breastfeeding practices (months) 92 
 

59 
 

33 
 

Exclusive breastfeeding†  [0-16] 
 

3.19 ± 3.24 
 

3.53 ± 3.53 
 

2.58 ± 2.59 

Any breastfeeding‡ [0-43] 
 

7.06 ± 8.03 
 

6.81 ± 7.18 
 

7.50 ± 9.44 

Academic performance (standard score)** 96 
 

60 
 

36 
 

Mathematics 
 

102.02 ± 10.68 
 

102.37 ± 11.23 
 

101.44 ± 9.82 

Reading 
 

108.55 ± 12.92 
 

108.33 ± 11.08 
 

108.92 ± 15.67 

Writing 
 

113.99 ± 11.99 
 

112.55 ± 11.91 
 

116.39 ± 11.91 

Total Achievement 
 

109.49 ± 11.66 
 

108.98 ± 10.67 
 

110.33 ± 13.25 

Values are mean ± SD or percentage. *Measured by the 20-m shuttle run test; †Months the child received only breast milk. †Months the 
child received breast milk combined with other liquid, or solid. **Measured by the Bateria III Woodcock-Muñoz Tests of Achievement. 

 



A. Birth weight B. Exclusive breastfeeding

C. Any breastfeeding

β= 0.445

β= 0.439

β= 0.470

β= 0.450

β= 0.425

β= -0.430

β= -0.394

β= 0.475



 

Table 3. Associations of early-life factor-related hippocampal connectivity with academic performance*. 

Early life factor Seed Cluster location Mathematics   Reading   Writing   Total achievement 

   
  β p-value p-FDR β p-value p-FDR β p-value p-FDR β p-value p-FDR 

Birth weight 

L 
hippocampus 

L precentral  gyrus -0.006 0.949 0.949 -0.05 0.614 0.702 -0.006 0.948 0.948 -0.041 0.664 0.997 

L postcentral gyrus 0.185 0.051 0.204 0.117 0.228 0.633 -0.139 0.14 0.282 0.067 0.467 0.997 

R 
hippocampus 

L cerebellum 0.079 0.412 0.593 -0.078 0.429 0.633 -0.122 0.202 0.323 -0.059 0.525 0.997 

R postcentral gyrus 0.098 0.309 0.593 0.092 0.347 0.633 -0.142 0.134 0.282 0.02 0.832 0.997 

L postcentral gyrus 0.072 0.445 0.593 0.069 0.475 0.633 -0.147 0.116 0.282 0.00 0.997 0.997 

Exclusive 
breastfeeding 

L 
hippocampus L angular gyrus -0.05 0.608 0.695 -0.037 0.711 0.711 0.08 0.405 0.540 -0.004 0.963 0.997 

R 
hippocampus L primary motor cortex 0.225 0.019#  0.152 0.176 0.075 0.600 0.051 0.598 0.683 0.181 0.054 0.432 

Any breastfeeding R 
hippocampus R  middle temporal gyrus 0.084 0.383 0.593 0.095 0.338 0.633 0.141 0.141 0.282 0.132 0.159 0.636 

Values are standardized regression coefficients (β). Analyses were adjusted for sex, peak height velocity offset (years), parent education university level (neither/one/ both) and 
cardiorespiratory fitness (mL/kg/min). L: Left, R: Right *Measured with the Bateria III Woodcock-Muñoz Tests of achievement. FDR: False discovery rate. # This association disappears 
after FDR correction 

 
 



  

Table 2. Significant clusters in the association of early life factors associated with hippocampal connectivity in the left and right seeds. 

Explicative variable Seed 
Nature of 

association 
Cluster location Cluster size Peak Z 

Peak MNI 

coordinates 

 

Birth weight 

Left hippocampus 
Positive L precentral gyrus 267 3.81 -54, 10, 26 

 Positive L postcentral gyrus 382 4.34 -44, -36, 48 

 

Right hippocampus 

Positive L postcentral gyrus 421 3.86 -44, -40, 54 

 Positive R postcentral gyrus 409 4.28 54, -20, 44 

 Positive L cerebellum 258 4.02 -16, -80, -48 

 
Exclusive breastfeeding 

Left hippocampus Negative L angular gyrus 369 4.30 -52, -56, 40 

 Right hippocampus Negative L primary motor cortex 250 4.21 -36, -24, 46 

 Any breastfeeding Right hippocampus Positive R middle temporal gyrus 329 3.47 70, -26, -20 

 R: Right; L: Left; MNI: Montreal neurologic institute. Analyses were adjusted for sex, peak height velocity offset (years), parent education 
university level (neither/one/both), gestational age (weeks) and cardiorespiratory fitness (mL/kg/min). Birth length was not associated to 
hippocampal resting state functional connectivity. 
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Table S1. Significant clusters in the association of early life factors associated with hippocampal connectivity including sensitivity 

analysis (Excluding preterm born, <37 weeks). 

Explicative variable Seed 
Nature of 

association 
Cluster location 

Peak MNI 

coordinates 
β  p-value β-sens 

p-value-

sens 

Birth weight 

Left 

hippocampus 

Positive L precentral gyrus -54, 10, 26 0.445 < 0.001 0.441 < 0.001 

Positive L postcentral gyrus -44, -36, 48 0.439 < 0.001 0.432 < 0.001 

Right 

hippocampus 

Positive L postcentral gyrus -44, -40, 54 0.470 < 0.001 0.465 < 0.001 

Positive R postcentral gyrus 54, -20, 44 0.450 < 0.001 0.400 0.001 

Positive L cerebellum -16, -80, -48 0.425 < 0.001 0.420 < 0.001 

Exclusive 

breastfeeding 

Left 

hippocampus 
Negative L angular gyrus -52, -56, 40 -0.430 < 0.001 -0.453 < 0.001 

Right 

hippocampus 
Negative L primary motor cortex -36, -24, 46 -0.394 < 0.001 -0.426 < 0.001 

Any breastfeeding 
Right 

hippocampus 
Positive R middle temporal gyrus 70, -26, -20 0.475 < 0.001 0.438 < 0.001 

R: Right; L: Left; MNI: Montreal neurologic institute. Analyses were adjusted for sex, peak height velocity offset (years), parent education 

university level (neither/one/both), gestational age (weeks) and cardiorespiratory fitness (mL/kg/min). Birth length was not associated to 

hippocampal resting state functional connectivity. β-sens and p-value-sens corresponding to values of sensitivity analysis excluding preterm 

born (<37 weeks) children, n =17. 
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