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ABSTRACT

This paper introduces a multi-objective optimisation approach for the challenging problem of efficient sensor placement in water distribution

networks for contamination detection. An important question is, how to identify the minimal number of required sensors without losing the

capacity to monitor the system as a whole. In this study, we adapted the NSGA-II multi-objective optimisation method by applying centrality

mutation. The approach, with two objectives, namely the minimisation of Expected Time of Detection and maximisation of Detection Net-

work Coverage (which computes the number of detected water contamination events), is tested on a moderate-sized benchmark

problem (129 nodes). The resulting Pareto front shows that detection network coverage can improve dramatically by deploying only a few

sensors (e.g. increase from one sensor to three sensors). However, after reaching a certain number of sensors (e.g. 20 sensors), the effec-

tiveness of further increasing the number of sensors is not apparent. Further, the results confirm that 40–45 sensors (i.e. 31� 35% of the

total number of nodes) will be sufficient for fully monitoring the benchmark network, i.e. for detection of any contaminant intrusion

event no matter where it appears in the network.

Key words: centrality, contamination detection, early warning system, EPANET, optimisation, sensor, water distribution networks

HIGHLIGHTS

• It is possible to significantly reduce the number of undetected events by deploying only a few more sensors.

• Placing sensors on 31� 35% of nodes is sufficient for full monitoring of the case study network.

• Maximising the opportunity to detect events prioritises the selection of nodes that neither have the highest centrality nor the lowest.

• Minimising the detection time of events prioritises nodes with centrality at/close to the extremes.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Water quality is essential to civilian daily life and therefore water distribution networks (WDNs) belong to the critical infra-
structure of a region. In order to quickly and reliably detect contaminations, caused by leaks or malicious attacks, water

quality sensors are installed at strategically important positions in the network. The optimisation of the sensor placement
is of key importance when it comes to controlling the impact of contaminations. Yet the problem is difficult to solve, due
to the high complexity and large size of city-level water distribution systems.

From a mathematical point of view, the placement of multiple sensors in WDNs is a combinatorial optimisation problem.

The placement strategy aims to minimise the potential public health impact from any contamination intrusion with a limited
number of sensors (Hart &Murray 2010). The challenge is to find an optimal subset of node locations for installing sensors in
the WDN, which is represented as a set of interconnected nodes and edges. The subset selection problem faces a combina-

torial explosion of possibilities with a growing number of nodes. It is certainly not always the best idea to merely place sensors
at the most important locations, since the choice of any two sensors might be correlated. If one region is already covered by a
sensor, another sensor might not have to be added to this region, even if the region as such is of high strategic importance.

Another difficulty in the sensor placement problem is to consider the cost of sensors. It is a widely open question, i.e. how
many sensors are required to monitor a network, and the related question is: how fast the effectiveness of the network moni-
toring decreases when fewer sensors are installed?

Thus far, three main approaches of sensor placement are described in the literature: empirical/empirically based methods
(Bahadur et al. 2003; Berry et al. 2005; Ghimire & Barkdoll 2006; Trachtman 2006; Xu et al. 2008), topological methods
(Deuerlein et al. 2010; Perelman & Ostfeld 2011; de Arruda et al. 2014; Di Nardo et al. 2018), and optimisation methods.
Here, the empirically based methods refer to the ranking of potential sensor locations (Hart & Murray 2010) based on

expert information (e.g. data from geographical information systems). The topological methods refer to using topology infor-
mation of the WDNs to facilitate the identification of nodes suitable for sensor locations, e.g. by applying graph theory/
complex network approaches or metrics (Santonastaso et al. 2021). Among these methods, optimisation methods are the

most advocated ones today, given their capability to enable automated sensor placement based on hydraulic and water quality
simulations. Thus, a sensor network that minimises contamination risks could be automatically planned using computational
methods that perform an efficient search of potential solutions space.
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In the last years, the problem of the optimal sensor location has been faced through single-objective (Lee & Deininger

1992; Kumar et al. 1997; Ostfeld & Salomons 2004; Propato & Piller 2006; Woo et al. 2006) and multi-objective (Dorini
et al. 2006; Huang et al. 2006; Wu & Walski 2006; Preis & Ostfeld 2008; Yoo et al. 2015; He et al. 2018; Naserizade
et al. 2018; Sankary & Ostfeld 2018; Brentan et al. 2021; Ponti et al. 2021; Gautam et al. 2022; Giudicianni et al. 2022;
Shahra & Wu 2023) methodologies. Regarding methodologies, Ostfeld et al. (2008) compared 15 different approaches for
optimal sensor placement in the battle of the water sensor networks (BWSN). The currently available optimisers are
mainly based on integer programming (e.g. Lee & Deininger 1992), mixed-integer programming (e.g. Propato & Piller
2006; Zeng et al. 2018; Hooshmand et al. 2020), heuristic-based algorithms (e.g. Ghimire & Barkdoll 2006; Xu et al.
2013; Zhao et al. 2016), graph theory algorithms (e.g. Kessler et al. 1998; Diao & Rauch 2013; Nazempour et al. 2018;
Taha et al. 2021), and genetic algorithm schemes (e.g. Ostfeld & Salomons 2004; Janke et al. 2012; Jafari et al. 2021).
Although the optimisation methods are powerful tools for the placement of a fixed number of sensors, there are at least

two research challenges for further exploration. The first challenge is to know the number of sensors required for satisfactory
coverage of the network contamination detection, which is significantly under-researched. Shen & McBean (2011) assessed
the impacts of changes in the number of sensors on the detection time of contaminant intrusion events and sensor detection

redundancy. Optimal sensor placement solutions with increasing numbers of sensors (from 2 through 50) were obtained and
analysed for the City of Guelph water distribution system that has 3,402 junctions. The results revealed that the performance
improvement is the largest when increasing the number of sensors from 4 to 5 in the case of testing 2,912 intrusion events.

However, this study does not reveal the most appropriate number of sensors for that WDN, and coverage of 1.5% (i.e. 50
sensors out of 3,402 nodes) is comparably small for fully revealing the sensor number-monitoring performance correlation
(although the coverage rate is very reasonable since in practice it is restricted by the cost of sensors and their maintenance).
Diao & Rauch (2013) applied controllability theory to identify the minimum number of sensors (30–40% of the total number

of nodes) to ensure the detection of any contamination events no matter where it happens in the WDNs, i.e. fully monitoring.
However, the resulting sensor layout is not guaranteed to be an optimal solution as the method is based on analysing directed
graphs of the WDN without employing optimisation methods. Further, since 30–40% coverage is a tremendously high value,

whether the method overestimated the needed number of sensors still needs verification. Hence, to answer the questions left
from these two studies, it is worthwhile to work out optimal sensor placement solutions with increasing coverage rates, e.g.
from a very small percentage to a percentage sufficient for fully monitoring of WDN. Such an extensive set of results shall

reveal the trade-off between the number of sensors and the effectiveness of the monitoring. To obtain the results efficiently
and also ensure the quality of the results, the optimisation method, which is usually computationally expensive, needs to be
improved too.

The second challenge is the computational cost. There have been continuous efforts to improve the computational effi-

ciency and quality of results for the optimisation of sensor placement. Several studies considered potential variations of
nodal contamination probabilities in their multi-objective sensor placement (He et al. 2018; Naserizade et al. 2018; Cardoso
et al. 2020; Hu et al. 2021; Ponti et al. 2021). Compared with traditional genetic algorithms, the improved method can

increase the computational efficiency by approximately 10,000 times and also the detectability of contamination events by
2.6 times in achieved design solutions (He et al. 2018). Reduction of the nodal search space is another solution, i.e. selection
of a subset of nodes as candidates for placing sensors. For instance, Giudicianni et al. (2022) restrained optimal sensor place-

ment to nodes on hydraulic/topological-wise most important pipes and further narrowed the nodal search space by
incorporating logistic/economic criteria. Gautam et al. (2022) reduced nodal search space by 34 and 45%, respectively,
for two benchmarking WDNs by applying k-means clustering to select a subset of nodes prior to optimisation. Another

alternative solution is to avoid the recourse to hydraulic modelling, since water quality simulation can be time-consuming.
In this regard, techniques for topological analysis (e.g. graph theory/complex network analyses) are mostly used. Yoo
et al. (2015) applied Betweenness Centrality that generates optimal sensor locations based on WDN’s connectivity and
found that the solution tends to select nodes close to water sources and water mains. Giudicianni et al. (2020) made a cluster-

ing of the WDN and next employed different topological centrality metrics to identify the most central nodes of each cluster
for quality sensor placement. These studies significantly advanced the field, yet most of them focus on the development of
preliminary analysis to assist optimisation or replace optimisation with other techniques. Hence, there is still a lack of

exploration on how to improve the optimisation algorithms, e.g. by integrating cutting-edge techniques from graph theory/
complex network analysis. According to the two challenges above, this paper aims to explore the trade-off between the
number of sensors and the effectiveness of the monitoring by using a wide range of sensor coverage rates. The work is
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done by applying a novel centrality-guided multi-objective genetic algorithm (CG-MOGA), which integrates the centrality

metric into the mutation operator to guide the optimisation towards interesting areas of the search space, yet, in an unbiased
way.. This technique combines principles from general-purpose metaheuristics for multi-objective optimisation, i.e. the non-
dominated sorting genetic algorithm (NSGA-II) (Deb et al. 2002), with the tailored mutation operator. The centrality-guided

mutation is particularly designed for node-subset selection problems in complex networks and has previously been used suc-
cessfully for the multi-node immunisation of complex networks (Maulana 2017). Here it is used for the first time in the
context of WDN sensor placement.

For the following sections, the problem formulation for the multi-objective sensor placement will be introduced, followed

by the application of the CG-MOGA on a moderate-sized WDN model. Next, the results are discussed highlighting the key
findings and conjectures. Finally, we summarise our main conclusions and propose directions for extended work and future
research.

2. METHOD

Overall, the methodology for the optimal sensor placement is to use multi-objective optimisation to minimise the expected
time of detection of contaminant events (F1 in Equation (1)) and maximise the detection network coverage (F2 in Equation
(2)). Further, to reduce the number of decision variables for the reduction of the computational burden, a subset of nodes is

selected as sensor candidates based on using centrality (see section 2.2) in the mutation operator of the optimisation
algorithm.

2.1. Problem formulation

The sensor placement problem is formulated as a multi-objective optimisation as described by the following equations.

minimise F1 ¼

Pm

i¼1
td,i

m
, td [ [0, ts] (1)

maximise F2 ¼
Xm

i¼1

Si (2)

where td is the detection time of contamination event i, td ¼ min
j

tj, j ¼ [1, n], where tj denotes the first time of detection at the
jth sensor location, and n denotes the total number of sensor candidates; ts denotes the simulation duration; Please note that

if td . ts, the contamination event is regarded as undetected. m is the total number of contamination scenarios. In Equation
(2), S ¼ 1 if a contamination event is detected at any sensor and otherwise 0; thus,

Pm
i¼1 S denotes the total number of

detected contamination events, named as the detection network coverage.

2.2. Centrality-guided multi-objective optimisation

We adopted the NSGA-II (Maulana et al. 2017) algorithm to execute the multi-objective optimisation problem formulation
but made an improvement in the algorithm’s mutation operator in order to elevate the intensity of search in parts of the net-

work that likely impacts the system’s performance. A general guideline in genetic algorithms is that the mutation operator
should be unbiased. When searching large search spaces (with many possible locations for placing sensors), it might be
impossible to find interesting solutions merely by chance. However, intensification of the search in relevant regions without

biasing the mutation operator can be achieved by the proposed centrality-guided mutation.
We represent the sensor selection by means of a bit-vector x with xi ¼ 1 if node vi is selected. i.e. a sensor is placed at this

location, and xi ¼ 0, otherwise. The genetic algorithm maintains a population of individuals. Non-dominated sorting is used
in combination with crowding distance for each layer of equal dominance rank in the selection (Maulana et al. 2017). For the
mutation operator, each node vi in the network is assigned an individual mutation probability pi. This value is proportional to
its centrality in the network. Centrality is a metric in graph theory and network analysis, which gives an estimation on how
important a node or edge is for the connectivity or the information flow of the network (EMBL-EBI Training 2022). Here we

consider the eigenvector centrality as a non-local centrality measure. It is non-local and thus the importance of a node for the
network is not only measured based on its direct neighbours but with respect to its influence on the entire network. The eigen-
vector centrality of a network can be computed by standard linear algebra operations. Let A denote the adjacency matrix of
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the network, and let (lmax,umax) ¼ argmax
l,u

{ljAu ¼ lu} denotes the principal eigenvalue and eigenvector of the network.

Then, the eigenvector centrality is given by the components ui, i¼ 1,… ,m of umax. The resolving process starts with an
approximation or a random vector u0, followed by an iteration of ukþ1 ¼ Auk and ukþ1 ¼ ukþ1=m(ukþ1) until the desired pre-
cision is achieved, i.e. uk converges to the dominant eigenvector of A and m(ukþ1) converges to the dominant eigenvalue of A
(Collins et al. 2021). The m(ukþ1) denotes the signed component of the maximal magnitude of vector ukþ1, which is intro-
duced for normalisation of uk to avoid data overflow. A good example of the computation process can be found in
Meghanathan (2015). Since the matrix A of WDN is sparse, each vector-matrix product can be performed in linear time
in the size of the graph.

The described mutation operator intensifies the search in more promising regions proportional to the centrality of nodes
while still maintaining the possibility to access all points in the search space by means of mutation. More specifically,
when the mutation process in the genetic algorithm happens, different weights are assigned for each potential sensor candi-

date according to their eigen-centrality value. The sensor candidates with higher weights are more likely to be selected in the
mutation process. The process of mutation is as follows:

1. Let xi ¼ 1 if vi is selected and xi ¼ 0 otherwise.
2. Let s :¼ P

(1� xi)ui // Sum of centralities of non-selected nodes
3. Let pi ¼ (1� xi)ui=s // only non-selected nodes have a positive probability

4. Choose sensor node vi proportional to pi
5. Change state of sensor node vi to selected by setting xi ¼ 1
6. Set xi ¼ 0 for randomly chosen node vi with xi ¼ 1 // Makes sure that the total number of selected nodes remains constant

(that is equal to n)

For details of the centrality mutation, the reader is referred to Lan et al. (2018).
The optimisation results in Pareto fronts for different numbers of installed sensors, while the objectives are maximising net-

work coverage and minimising the time of contamination event detection.

3. CASE STUDY

The case study focuses on the battle of the water sensors network1 (BWSN1) (Ostfeld et al. 2008). The system (Figure 1),

composed of 126 junctions, 168 pipes, 1 constant head source, 2 tanks, 2 pumps, and 8 valves, is subject to a varying
demand pattern of 96 h.

Thus, the simulation period is 96 h, with time steps 1 h for hydraulic and water quality equal to 5 min. Once the contami-
nant reaches any node (i.e. the concentration of the contaminant at the node is .0), the event is regarded as being detected,

and the time, until detection is recorded as tj, and used to compute objective functions. Otherwise, the event would be
labelled as undetected. These steps are repeated until all nodes have been considered as the contamination source (i.e.
129 contamination events in total). This process is a simplification given the fact that the precision of the sensors do have

limitations as contaminants with very low concentration may not be detectable. However, this is out of the scope of this
study yet an important question for future research. The nodal injection of the contaminant is simulated by imposing a
mass booster source (set as 3,000 mg/L) for the duration of 2 h from the beginning of the simulation period. Regarding

the dynamics of the pollutant, the nonlinear dynamics of the contaminant in the network are considered. Accordingly, the
settings in the EPANET software are chosen as bulk reaction order¼ 1.5; global bulk coefficient¼�1.0; limiting concen-
tration¼ 0.01 (using this parameter ensures that the contaminant would not vanish in the system). Additionally, the dead-

end nodes (the nodes at the downstream end of a branch pipe, i.e. here nodes 13, 16, 36, 38, and 125) are assigned a base
demand of 2.0 gallons/min (0:45 m3=h).

Regarding coverage, if based on the evaluation of a node a contamination event is detected, this incidence is marked. After
the entire set of contamination events has been considered as the contamination source, we check the number of marked

events in each node as the detection network coverage of these potential sensors. In total, there are 45 nodes which are
selected as candidates for placing sensors. A full list of the candidate nodes is provided in Table 1. In the table, the longest
detection time is 87,900 s. This is roughly 24.4 h which is smaller than 96 h (the simulation period). Therefore, data from the

simulation are all valid for optimisation.
Since there is a lack of guidance on sensor numbers, we proposed a clear comparison over a different number of sensors’

capability in dealing with the two objective functions defined in Section 2.1. Therefore, this case study needs to work through
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nine experiments with the improved algorithms. The number of sensors suggested for each experiment is 1, 3, 5, 10, 15, 20, 30,
40, 45.

For the optimisation based on NSGA-II, the parameter settings are population size¼ 90, mutation rate¼ 5%, crossover
rate¼ 30%, and generation number¼ 3,000. These parameter values are decided based on pre-testing. For example, the
mutation rate is kept relatively low to avoid unnecessary delay in reaching convergence. In addition, the previous Pareto

front is used to replace the ‘random’ initialised population for new optimisations. For instance, for optimisation of the
five-sensor case, the Pareto front from three-sensor optimisation is used to generate the initial population.

4. RESULTS AND DISCUSSIONS

Figure 2 shows the comparison of all Pareto Fronts obtained using a different number of sensors. To avoid the Pareto fronts
being very close to each other, the Base-10 logarithm of the Detection Network Coverage is used for the horizontal axis for

better illustration. It can be seen that the logarithm of detection network coverage increases dramatically (i.e. significant
improvement of detection network coverage) by deploying only a few more sensors, e.g. increase from one sensor to three
sensors. This observation is similar to the study from (Shen & McBean 2011), which reveals the Pareto front performance

improvement is the largest when increasing the number of sensors from 4 to 5 in their case study testing 2,912 intrusion
events. After reaching a certain number of sensors (e.g. 15 sensors), the effectiveness of further increasing the number of sen-
sors is not apparent, as the Pareto fronts are very close to each other while the detection time fluctuates.

As Figure 2 illustrates, the logarithm of detection network coverage increases dramatically from around 0.9 (1 sensor) to
2.06 (30 sensors), denoting an increase in the number of detected events from 8 to 114, with the expected time of detection
fluctuating in a range of approximately. 3,500 to 12,000 s. After reaching 40 sensors, both the logarithm of detection network
coverage and expected time of detection have only negligible differences, i.e. from about 2.09 (i.e. 124 detected events, 40

sensors) to about 2.11 (129 detected events, 45 sensors) for the former, and from about 9,500 s (40 sensors) to 8,300 s (45
sensors) (about 20 min difference) for later. This observation confirms that 40–45 sensors (i.e. 31� 35% of the total
number of nodes) will be sufficient for fully monitoring the benchmark network. This result is consistent with that from

Diao & Rauch (2013), who conclude that the full monitoring of the same network requires sensor placement on 36.4% of
nodes. Hence, this research verifies that solving optimal sensor placement problems, even when two objectives are con-
sidered, results in a similar minimum number of required sensors to the graph-based method (Diao & Rauch 2013). It is

Figure 1 | Layout of BWSN network 1 (Ostfeld et al. 2008).
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Table 1 | Full list of the 45 candidate nodes for sensor placement

Sensor candidate node Frequency (coverage) Detection time (s) Eigenvector centrality

26 8 3,225 0.389607

118 7 6,900 0.264835

64 7 1,056 0.074546

91 6 6,350 0.144328

8 6 2,500 0.123821

80 5 10,800 0.374543

106 5 1,380 0.232671

101 5 4,440 0.199984

112 5 9,360 0.075092

76 4 41,775 0.655913

21 4 2,475 0.606180

130 4 3,900 0.301279

73 4 16,575 0.206232

131 4 1,600 0.091494

45 4 7,800 0.082226

123 4 10,650 0.082226

110 4 750 0.025722

36 3 62,100 0.672393

84 3 1,900 0.657461

85 3 12,700 0.425350

48 3 3,500 0.184193

39 2 10,800 0.438871

52 2 1,500 0.415769

10 2 87,900 0.328839

72 2 7,350 0.185071

93 2 1,800 0.136205

66 2 7,950 0.074522

13 2 37,950 0.000000

83 1 300 1.000000

37 1 300 0.752721

38 1 300 0.672393

82 1 300 0.646136

126 1 300 0.445138

114 1 300 0.419577

74 1 300 0.342580

100 1 300 0.337818

125 1 300 0.309490

124 1 300 0.290348

42 1 300 0.251222

99 1 300 0.199984

41 1 300 0.198965

50 1 300 0.184193

(Continued.)
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thus safe to use the graph-based method to quickly identify the required minimum number of sensors without employing a

computationally expensive optimisation process. However, future research is still needed to systematically compare the opti-
mal solutions with graph-based solutions in order to check the possibility of replacing optimal sensor placement completely
with the graph-based method.

To further understand the sensor node selection, analysis of the design solutions reveals that maximising detection network
coverage reasonably results in the selection of nodes with high coverage (see as Table 1 for the values of the coverage), and
minimising the expected time of detection leads to the selection of nodes with short detection times (see as Table 1), which

are reasonable too. In terms of centrality, the nodes with high coverage (i.e. the ability to detect more contamination events)
are the nodes that neither have the highest eigenvector centrality nor the lowest eigenvector centrality, as shown in Figure 3 –

the left column for instance. Figure 4 plots the eigenvector centrality of all sensor candidate nodes and sensors in each set of
solutions. Contrarily, the nodes with short detection times have a wide range of eigenvector centrality values including both

the highest (i.e. 1) and lowest (i.e. 0). Interestingly, minimisation of the expected time of detection tends to select nodes with
their eigenvector centrality at/close to the extremes (i.e. the highest and lowest value), as shown in Figure 4 – the right
column.

However, one common fact for both cases (maximising the Detection Network Coverage or minimising the expected time
of detection) is that, for any number of sensors, the solutions select sensor nodes with a wide range of centralities, rather than
only focus on selecting high/low centrality nodes. Figure 4 shows an example of the physical locations of the placed sensors.

Table 1 | Continued

Sensor candidate node Frequency (coverage) Detection time (s) Eigenvector centrality

14 1 300 0.075469

16 1 300 0.000000

129 1 300 0.000000

Figure 2 | All Pareto Fronts for different sensors number(s) (Sensor numbers:1, 3, 5, 10, 15, 20, 30, 40, 45).
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Figure 3 | Eigenvector centrality of sensors in each set of solutions and all sensor candidate nodes.
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It can be seen that the sensors are spread over the network, which covers the highly looped areas in the centre of the network
and many dead ends. More sensors are deployed in the highly looped regions due to the more complicated topology and flow

patterns (e.g. bi-directional flows that change over time), yet fewer sensors are required for branched pipelines. The wide
range of the centrality values may result from the diversified roles and positions of the selected sensor nodes, which however
definitely need future research to further explore the correlations.

Figure 4 | Sensor layout of the 40 sensors solution with network detection coverage maximised.

Figure 5 | Comparison between classic NSGA II and the centrality-guided NSGA II (NSGA-II-CG).
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Lastly, a comparison between the centrality-guided NSGA II (NSGA-II-CG) and classic NSGA II is made. For benchmark-

ing, the optimal solution of a three-sensor design is generated by using the 45 nodes in Table 1 as the candidate pool and
enumerating all possible combinations of three-sensor solutions (C(45, 3) ¼ 14, 190). Next, the NSGA-II and NSGA-II-CG
are implemented for the same optimisation, respectively. It is found that the centrality-guided algorithm does not increase

the computational load and also leads to solutions that are much closer to the optimal solution (Figure 5). Although increas-
ing the Generation Number (e.g. from 1,000 to 3,000) helps to improve solutions from both the NSGA-II and NSGA-II-CG
methods, the improvement from the classic NSGA-II is not as significant as the NSGA-II-CG, reflected by the distance to the
optimal solution.

5. CONCLUSIONS

This study proposed a novel centrality-guided multi-objective optimisation method for optimal sensor placement in WDNs.

The method uses two objectives, minimising the detection time of contaminant events and maximising the number of detect-
able events, respectively. Based on a case study on the BWSN1 network, the following conclusions are reached:

• It is possible to significantly reduce the number of undetected events by deploying only a few more sensors, e.g. to increase
the number of sensors from one sensor to three sensors.

• Placing sensors on 31� 35% of the total number of nodes will be sufficient for full monitoring of the case study network.

This result is consistent with the graph-based method. Further, this study proves that any further increase in the number of
sensors will have marginal effects on both objectives.

• The centrality-guided multi-objective optimisation method reveals that maximising the opportunity to detect contamination

events prioritises the selection of nodes that neither have the highest eigenvector centrality nor the lowest eigenvector cen-
trality; yet minimising detection time of contamination events prioritises the selection of nodes with their eigenvector
centrality at/close to the extremes (i.e. the highest and lowest value).
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