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Abstract 

This thesis reviews six publications which investigate the effect of the surface 

on the electronic shell structure in large metal clusters. The Hiickel model is used to 

study the shell structure and cluster geometry of fee clusters. A tight binding model 

and the Monte Carlo technique is used to simulate metallic fee clusters at finite 

temperatures for determining the level spacing distribution at the Fermi energy. A 

potential-well approximation is used to study the shell structure in cuboctahedral 

and icosahedral clusters and also to calculate the band structure in cluster-assembled 

materials. The Woods-Saxon potential has been used to study the effect of the 

softness of the surface potential on the shell structure. The main results are as 

follows: (i) The surface faceting destroys the shell structure in fee clusters already 

when the cluster has of the order of 100 atoms. (ii) The icosahedral clusters have 

the same shell structure as the sphere up to about 1000 atoms. (iii) The surface 

roughness causes the level distribution to be a Wigner distribution. (iv) Using the 

Woods-Saxon potential a softness can be found where the shell structure is governed 

by the classical star orbit. However, real metal clusters are not soft enough to exhibit 

the signature of the star orbit. (v) If crystalline materials can be formed from magic 

metal clusters, they are expected to be semiconductors. 
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1. Introduction

Atomic clusters are a new class of many-body systems. The atoms are held 

together by the cohesive forces, and usually, the atoms are of the same element. As 

a consequence of the weak cohesive force, the cluster can easily lose a single atom 

or break up to a few small clusters. Generally, the clusters do not have the same 

structure as the bulk solid and the electronic properties of the clusters can differ 

remarkably from those of the bulk solid. One aim of the investigation of the atomic 

clusters is to follow the change of the different properties as a function of the cluster 

size from a single atom to the bulk solid. Many properties then depend on the ratio 

of the number of surface atoms to the total number of atoms . 
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Fig. 1. Production of sodium clusters [ from Ref. 1 ]. 

A typical experiment is shown in Fig. 1. The cluster source consist of a hot 

oven from which sodium liquid will escape by simple evaporation. Sodium vapour 

is held at 700 - 800 °C. The vapour is allowed to mix with a cold, inert noble 

gas. The mixture is expanded into a vacuum and the vapour particles will condense 

into clusters, resulting a narrow beam. The resulting internal temperature in the 

freshly formed clusters is supposed to be just some 100 - 200 °C below the oven 
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temperature. In the ensuing free flight the droplets will therefore loose sodium atoms 

by stepwise evaporation, cooling to about 100 - 200 °C. This evaporation process is 

sensitive to shell-like variations in the atomic separation energies. These variations 

are thought to be responsible for the step-like modifications of the experimentally 

observed size distributions. The size distribution of the clusters can be controlled 

by varying the oven-to-nozzle distance, the gas pressure and the oven temperature. 

The size distribution can be sampled by time-of-flight mass spectrometry[2]. 
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Fig. 2. The experimental shell structure for sodium [ from Ref. 1 ]. 

Fig. 2 shows an experimental cluster abundance IN obtained in this way[l]. 

In order to compensate for the effect of temperature and size, a weighted logarithmic 

derivatives, <b.1lnlN> Ko [1], have been scaled with the factor N½ exp( cN½ ), setting 

c = 0.65. The results have been plotted as a function of linear dimensions of the 
1 

clusters, ~ NJ. The shell dips are equidistantly spaced. The numbers below 

the minimums are the experimental magic numbers for sodium. Recently, the 

experimental research has been done abundantly[l,3 - 12]. 

The conduction electrons in a simple metal form almost a free electron 

gas. Many properties of metals can be explained by examining the homogeneous 

electron gas. The simplest model for the electronic structure of the alkali metal 

clusters is the jellium model[13 - 16]. In that model the metal ions are replaced by 
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a fixed homogeneous positive background distribution, which has the same density 

as the conduction electrons. In the spherical jellium model the background density 

is a homogeneous sphere. This model explains qualitatively the magic numbers 

observed in the experimental abundance spectrum[17,18]. They represent the filling 

of electron shells in the spherical potential well. 

The shell structure is defined as large energy gaps between the energy levels. 

In 1949 Goeppert-Mayer [19] and Haxel, Jensen and Suess [20] observed the shell 

structure to explain the stability of the magic numbers in the atomic nuclei. The 

electrons in the metal clusters have been described with the same kind of model 

since the first experiments. The magic numbers of the atomic nuclei differ from 

the atomic clusters. In 1984 Knight et al. [21] did the first experimental research 

for the shell structure and found the magic numbers for the sodium clusters. Later 

the shell structure was investigated also for K-[17,22], Cu-, Ag- and Au-clusters[23]. 

Shell structures were observed for the small metal clusters with less than 100 atoms. 

Recently, the electronic shell structure has been investigated experimentally up to 

3000 atoms[4] and the mass spectrum for sodium have been observed up to 22000 

atoms[3]. 

Both experimental and theoretical shell closings and gaps show oscillations 
1 

according to scale NJ in the shell structure, where N is the number of electrons. The 

bunches of the electron shells form long-range oscillations called supershells. This 

was first predicted by Balian and Bloch[24] using a spherical cavity as a potential 

well. The supershell structures can be seen only in clusters with more than 1000 

atoms. The intensity variation and phase shift of the supershell structure, was 

predicted by Nishioka et. al.[25]. In 1991 the existence of the supershells in sodium 

clusters was experimentally observed[4] {see Fig. 2). The effect of temperature on 

the supershell structure in large sodium clusters has also been investigated[26] and 

it was observed that the amplitude of the shell structure decreases with increasing 

temperature. 

The self-consistent jellium model explains well the experimentally observed 

supershell structure[27]. Genzken et. al.[28] have done the self-consistent calcula

tions of the supershell structure and observed the agreement with the experimental 
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results to be very good for the alkali metal clusters but poor in the case of alu

minium. However, it is often more illustrative to use the semiclassical interpretation 

where the supershell structure is a result from the interference of classical orbits. 

The effect of the interference arises from the difference of the lengths of the orbits. 

Recently, the simplified semiclassical theory for the electronic shell structure have 

been presented[29] by extending the semiclassical analysis by Balian and Bloch. 

The detailed shell structure is sensitive to the shape of the potential. Lerme et. 

al.[5,6] have suggested that the mass spectrum they have measured for Al could be 

explained by an electronic shell structure in a soft potential well. The aluminium 

requires an electron orbit twice as long as that needed to explain the electronic shells 

in a sodium. This can be explained with a classical star orbit. However, Genzken et. 

al.[28] indicate that in Al the electronic shell structure does not have a signature of 

the classical star orbit. The experimental evidence of the star orbit is still in doubt, 

since Martin et. al.[7] has shown that the observed shell structure can be explained 

with a geometrical packing of Al atoms in octahedral clusters. The relation of the 

classical star-orbit to the quantum mechanical level structure is studied in Section 

5. We have shown that for a soft potential the star orbit indeed dominates the shell

structure, but this is not the explanation to the experimental results for Al clusters. 

The spherically symmetric potential of the jellium model leads to a 

large degeneracy of the electron states corresponding to high angular momentum 

eigenvalues. In real clusters the effective potential is not strictly spherical while it is 

affected by the ionic structure. In 1991 the icosahedral symmetry was observed 

in the large magnesium clusters[8]. Group theory dictates that the maximum 

degeneracy is five for the icosahedron structure[30]. In sodium clusters magic 

numbers corresponding to the icosahedral packing have been observed in addition 

to the electronic magic numbers. In this thesis we have studied the possibility of the 

existence of the electronic shell structure in icosahedral and other faceted clusters. 

It is shown that the electronic shell structure is totally destroyed by the icosahedral 

symmetry only when the cluster has more than 1000 atoms. 

At finite temperatures many properties of metals depend on the density 

of states at the Fermi level. In clusters we have discrete energy levels and then 
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the important quantity will be the average level spacing at the Fermi level. The 

statistical distribution of level spacings determines the physical properties like the 

electronic specific heat[31]. We have developed a tight binding model for studying 

the level spacing statistics. The results show that the distribution is always a 

Wigner distribution, and the width of the distribution depends on the cluster size 

and temperature. 

Atomic clusters can serve as a source of new materials with unusual 

properties[32]. Recently, it was suggested[33] that a crystalline structure could be 

assemled from the magic metal clusters. The clusters would be weakly bound to 

each other and form a close packed structure like fee. A nonmetallic example of this 

kind material is the solid fullerene[34,35] where the fullerene molecules are bound 

together with van der Waals interactions. Jena and Khanna[33] suggested Al12Si 

as a candidate of clusters which could be used in assembling new materials. It has 

a compact icosahedron geometry and closed electronic shell due to its 40 valence 

electrons. The key question for the possibility of weakly bonded cluster material is 

the existence of narrow energy bands. To this end we have made model calculations 

for the band structures of materials assembled of metal clusters. 

2. Hiickel clusters and the shell structure

2.1. Formalism of the Hiickel model 

For calculating the electronic structure we need in many cases a model 

which takes into account the actual atomic positions. The tight binding model is 

perhaps the simplest such model. In the Hiickel model[36] the overlap of orbitals 

from neighbouring atoms is neglected. The resonance integrals are nonzero only for 

nearest neighbours. The electron energy levels are eigenvalues of the matrix 

H·· -{-/3 
,, - 0 

if i and J are nearest neighbours 
otherwise 

(1)
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where a and /3 are the Hiickel Coulomb and resonance integrals, respectively. In 

practise, the parameter a gives a constant shift in the energy spectrum and /3 its 

scale. At an infinite crystal the energy eigenvalue 1:(k) is 

1:(k) = a - /3 L exp(ik • r), (2) 
n.n. 

where k is the wave vector and the sum runs over all nearest neighbour sites r. For 

example, in fee lattice k • r = ½a(±k,, ±k;) and i,j = x,y; y,z; z,x. The parameter 

a is the lattice constant. 

For a cluster the one-electron energy eigenvalues are determined numerically 

by diagonalising the Hiickel matrix. The energy units are chosen to be the Hiickel 

units (hu ), where a = 0 and /3 = 1. The total energy is the sum of the energies of the 

occupied one electron energy levels. Each energy level can occupy two electrons so 

that in the neutral clusters half of the energy levels are filled. The energy eigenvalues 

for the bulk (Eq. (2)) are between -12/3 and 4/3 in the fee lattice. Lindsay et. al.[37 

- 40) have investigated the application of the Hiickel model for small clusters. We

have studied the shell structure in the large clusters with different geometries[41].

2.2. Relation of the Hiickel model to the free electron model 

The simplest free electron model for the metal clusters is the spherical 

potential box with hard walls. The radial electron wavefunctions are the spherical 

Bessel functions. We can easily solve the level structure from the zeroes of these 

functions. For small clusters this model gives the same kind of shell structure as 

observed experimentally for all monovalent metals. We will now show that the 

Hiickel model gives the same shell structure as the free electron model. 

The Schrodinger equation of the free electron model is 

ti,2 
--V21/,(r) = 1:1/,(r). 

2m 
(3)
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By discretizing the wave function in a cubic grid (for numerical solution) we write
V2-ip as

1 (n.n. ) 
v72 -ip(ri) -t a2 � "Pi - CVJi ' (4)

where ri is a grid point, "Pi = 1/J(ri), a the lattice constant, and c the coordination
number (12 for fee). The Schrodinger equation can now be written as a set of linear
homogeneous equations:

(5) 

When these equations are written in the matrix form the Hamiltonian matrix is
equal to the Hiickel matrix of eq. (1), with

n,2 

/3=-. 2ma2 
(6) 

This shows that in the cubic mesh the discretized free electron model is the same as
the Hiickel model.

The Hiickel model takes a to be the actual lattice constant in the solid.
This means that the corresponding free electron model is accurate only for states
with wavelength long compared to the nearest neighbour distance (for the lowest
energy states). For a bulk lattice this means that t(k) is isotropic at small k [42].
In the tight binding model the electron wave function is zero outside the cluster
where there are no atoms. This corresponds to a hard wall potential at the surface
of the free electron clusters. For spherical clusters the lowest energy levels of the
Hiickel model are equivalent to the energy levels in a spherical potential box with
hard walls.
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2.3. Shell structure of spherical Hiickel clusters 

The discrete energy levels of the cluster move slowly and continuously
towards the bottom of the band when the cluster size increases. At the same time
the mutual distance between the energy levels decreases and the subshell structure
will cause the mixing of the energy levels. The shell structure is determined to
large energy gaps between the energy levels. Generally, the shell structure for metal
clusters is based on the assumption that the valence electrons are almost free and
they move in the nearly constant potential caused by positive ions. The number of
the electrons occupying the states below the large energy gap in the shell structure
is called a magic number. The magic numbers for the clusters are analogous with
nuclear magic numbers. For the nuclei these numbers correspond to the numbers
of neutrons and protons for which the nuclei are particularly stable. In the clusters
the magic numbers reflect shell closings arising from the quantisation of the motion
of delocalized electrons in a mean-field potential of high symmetry.

The spherical clusters are cut off from the fee lattice so that one atom is
in the center of the cluster. The density of states p can be used to study the shell
structure. In order to better visualise the shell structure the discrete levels have
been convoluted with a Lorenzian

r p(t) = I: ( )2 r2
II 

f- fi, + 
(7) 

where f11 are the energy eigenvalues. A suitable width is r = 0.1,8, which is about
lo 

of the energy gap between the energy shells. This width does not have any
physical meaning. Figure 3a shows the density of states for free electrons in a
spherical potential box. This is compared to the density of states for a Hiickel
cluster containing 959 atoms in Fig. 3b. Well below the Fermi energy the overall
structure of the Hiickel density of states is similar to the electronic shell structure
of free electrons in a spherical box. This is a consequence of the same Hamiltonian.
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Fig. 3. a) Density of states for free electrons in a spherical potential box and b) for a 

spherical Hiickel cluster of 959 atoms. The nwnbers above the peaks indicate the total 

nwnber of electrons at various shell closings. The Fermi energy of the Hiickel cluster is 

denoted by fF • 

When the cluster size increases more and more discrete energy shells are visible in 

the Hiickel model. This is also clearly seen in the results of Lindsay et. al.[40]. 

The highest energy levels of the Hiickel model are very different from those 

of the free-electron model. They have condensed to one bunch in the Hiickel model 

whereas in the free electron model they are clearly separate electron energy shells. 

Already near the Fermi energy there is a large difference between the two models. 

We can see from Fig. 3 that the fee Hiickel model gives the correct free electron 

shell structure at least up to the shell filling 338 which covers about one third of the 

states below the Fermi level. A similar result has been obtained for cube-shaped 

clusters[43]. The shell structure for cube-shaped clusters does not remind the shell 

structure in the spherical case, but low energy levels are the same for both models. 
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Fig. 4. Band structure for the fee lattice. The simple Hiickel model for three main crystal 

directions and the free electron parabola. 

Messmer[44] has utilized that by studying the electron structure as a function of the 

cluster size and of the width of the band in the Hiickel model. 

Figure 4 shows the tight binding energy bands in the (100), (110) and {111) 

directions in the standard Hiickel model and the free electron energy eigenvalue as 

a function of the wave vector k. The free electron energy eigenvalue and the Hiickel 

energy band coincide for small k-values. The energies depart from each other slowly 

with increasing k and for the high energies the models are entirely different. The 

simple Hiickel model i� au appro.ximatiou for the free electron model only at small 

k-values.

2.4. Effects of the geometry on the shell structure 

Polyhedral clusters with an fee lattice structure can be easily studied with 

the Hiickel model. Examples of different geometries are shown in Fig. 5. The 
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cubo-octahedron consists of 8 triangular (111) faces and 6 square (100) faces. The 

octahedron consists of 8 triangular (111) faces. The Wulff polyhedron has been 

formed from an octahedron with 1156 atoms by removing three layers of atoms from 

each corner. The Wulff polyhedron minimizes the total energy of an asymptotically 

large cluster. 

Sphere (959) Cubo-octahedron (923) 

Octahedron (670) Wulff polyhedron (1072) 

Icosahedron (923) 

Cube (666} 

Fig. 5. Examples of cluster geometries studied. The number inside of brackets indicates 

the number of atoms in cluster. 

An icosahedron cannot be formed from the fee lattice; there are two different 

distances between neighbouring atoms in the icosahedral structure. However, we 

assume that the resonance integral /3 has the same value for both of these distances. 

Icosahedron consists of twenty triangular (111) faces. The density of atoms and 

the number of nearest neighbours are largest on (111) face in fee lattice. The total 

energy for the structure which consists of these faces is generally smaller than that 

for the geometries formed from the other faces. The icosahedral cluster is the most 

spherical of all the faceted clusters considered. 

Figure 6 shows densities of states for different cluster geometries calculated 

with Hiickel model. The shell structure for a sphere is seen in Fig. 3b. The shell 

structure clearly visible in the spherical cluster is almost completely missing in 
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Fig. 6. Density of states ofHiickel clusters with different geometries. a) Cubo-octahedron 

(923). b) Icosahedron (923). c) Octahedron (670). d) Wulff polyhedron (640). 

the cubo-octahedral cluster. On the contrary the icosahedral cluster of about one 

thousand atoms shows a free electron shell structure similar to that of the spherical 

cluster at least up to a few hundreds of electrons. When the cluster size increases the 

number of the shells having free electron character increases. However, the increase 

of the visible electron shells is slower than the increase of the cluster size. 

The icosahedral cluster has not an fee packing of atoms. Consequently, the 

Hiickel model is not exactly the same as the free electron model even for the lowest 

electron states. This is due to the slightly different distances between the different 

nearest neighbours. However, the results suggest that the approximation is still valid 

and that the icosahedral cluster will have the free electron shell structure. There 

is experimental evidence[3] about icosahedral structure for larger clusters, but the 

shell structure have not been observed simultaneously, yet. 

The shell structure for the octahedron and for the cube is very different from 

that of a sphere. The Wulff construction shows more features of the shell structure 
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of the free electron sphere but even there the shell structure is different already
at very low energies. In conclusion, the faceting of the surface of the fee clusters
destroys the shell structure of nearly free electron metal clusters already when the
cluster size is about 100 electrons or less. The result seems to indicate that large
alkali metal clusters with observed magic numbers do not have crystalline packing
with a polyhedron shape. The only possible exception is the icosahedral structure,
where according to these results the shell structure should persist up to cluster sizes
of at least hundreds of atoms.

2.5. Beyond the nearest neighbour interaction in the 

H iickel model 

In the simple Hiickel model only the nearest neighbour resonance integrals
are nonzero. The model can be extended by allowing the parameter /3 to be distance
dependent. First we will demonstrate that the relation between the Hiickel model
and the free electron model can be made more accurate by a proper choice of
the distance dependence of /3. Secondly, we will study an exponential distance
dependence of /3.

Better approximation for V2-ip than that in Sect. 2.2 can be obtained if
more lattice points are used. Including the second and the third neighbours the
wave vector "Pi can be developed as a series, which consist of partial derivatives of
"Pi with respect to x-, y- and z-axes in the fee lattice. By including the terms up to
the 4th power we can derive an _estimate

l 
( 

1n.n. 3n.n. ) 

r:,;,21Pi = 24a2 18 � "Pi - � "Pi - 1921/Ji ' (8) 

where the first sum goes over the first nearest neighbours and the second one over
the third nearest neighbours. The sum over the second nearest neighbours is zero.
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This discretization is equal to the Hiickel model where 

Hij { 

192 t,,2 

if i = J, 242ma2 ' 
18 ti.2 

if i and J nearest neighbours, -242ma2 • 
1 t,,2 

if i and J third neighbours, 24 2ma2 ' 
0 otherwise. 
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Fig. 7. Density of states for a sphere with 627 atoms. a) Ruckel model with nearest 

neighbour interactions, b) third nearest neighbour interactions included and c) Ruckel 

model with exponential distance dependence with T/ = 0.5. 
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Figure 7 demonstrates the effect of this correction to the Hiickel shell 

structure. The correction sharpens the peaks of the shell structure at small energies, 

but that effect does not extend the appearance of discrete shells closer to the 

Fermi surface. The third neighbour approximation does improve the estimate of 

the Laplace operator V2tp at long wavelengths, but it is not adequate when the 

wavelength becomes comparable to the lattice constant. The tight binding method 

(Hiickel) with the overlap of orbitals considered up to third nearest neighbours have 

been used to describe the surface roughness of a cluster[45]. 

We have also tried an exponential distance dependence for the atom-atom 

interaction. The Hiickel matrix elements are 

Hij = -,Bexp[-77(d- dnn)] (10) 

where 77 is a coefficient for the distance dependence, d is the distance between the 

atoms and dnn is the nearest neighbour distance. In the case of an fee lattice the 

77 --t oo limit recovers the original Hiickel model. 

Figure 7c shows the effects of the exponential distance dependence with 77 

= 0.5 on the electronic structure of sphere (627). The energies of the low lying 

states fall below -12,8, which is the lowest energy in original Hiickel model. The 

separation between low energy levels increases but the high lying levels stack more 

tightly together. The shell structure extends closer to the Fermi energy than in 

the simple Hiickel model. This can be understood by comparing the free electron 

parabola to distance dependent Hiickel band structure (like in Fig. 4). The energies 

depart from each other slowly with increasing k and for the high energies the models 

are entirely different. The energy dispersion of the tight binding bands becomes 

smaller when 77 decreases. A smaller energy dispersion means a smaller crystal field 

splitting[46). This explains why the shell structure is more clearly seen with smaller 

11· 
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2.6. Total energy of Hiickel clusters 

In the Hiickel model the total energy is defined as a sum of the energy 

eigenvalues below the Fermi energy. The lower is the total energy the more stable is 

the structure. The total energy per atom as a function of the cluster size is shown in 

Fig. 8 for several geometries. The total energy of spherical clusters oscillates strongly 

due to the roughness of the surface. The lines in Fig. 8 approach the asymptotic 

limit as the size of cluster increases to infinity. The asymptotic limit is the cohesive 

energy of the fee lattice, which in the Hiickel model is Ee = -2.62 hu. The exception 

is the icosahedral structure for which asymptotic limit is different. In general, the 

large departure of total energy from the asymptotic value can be accounted for by 

the surface energy. W,hen the size of cluster becomes larger the area of the surface 

increases, but the ratio of surface atoms to the bulk atoms decreases. That reduction 

of the ratio changes total energy toward the asymptotic limit. Including the surface 

energy the total energy per atom in large spherical clusters can be written as 

(11) 

where K is a geometrical constant (K = 1.9192), a the lattice constant and u the 

surface energy (in units of hu/ a2 ). 

The surface energies in the Hiickel model can be calculated using the 

moment method[47,48] to derive the local density of states. The projected density 

of states 9i( 1:) which corresponds to local density of states can be calculated in tight 

binding model (Hiickel model) without calculating the proper wave functions. The 

n
th moment of the density of states for an atom i can be defined as an integral 

(12)



- 17 -

-2.0 4-�-L...--L...--L...--L...--L...--'---'---'---'---'---t-

-2.1 

\ 

\ '.
\ ' 
\
� • 

SPHERE 

OCTAHEDRON 

COBO-OCTAHEDRON 

- - - - - ICOSAHEDRON 

CUBE 

WULFF POLYHEDRON 

�-2.3 ' 
',�\ ..

1-4 
Q) 

-2.4
', ---<--�--=·-------. ___ _ -- -·-.

-----.::..·:·...: ----
--- .. 

-2.5 -+--""T"""-...--...----r--,---,-----,,-----,--,---.---+-
0 100 200 300 400 500 600 700 800 900 1000 1100 

Cluster size N 

Fig. 8. Total energy per atom for different cluster geometries as a function of nwnber of 

atoms N. 

In practice the moment can be calculated from the Hamiltonian matrix: 

µ(n) - �� � H .. H· · H· · 
i - � � •'' � IJl JlJl •'' Jn-11' 

i1 h i .. -1 
(13) 

The matrix elements of Hamiltonian are nonzero only for the orbitals between 

nearest neighbours. Graphically, the moments can be calculated by combining n 

nearest neighbours, starting from the lattice site i and finishing to the same place. 

It is sufficient to compute the moments up ton = 8[49]. The moments for a bulk 

atom are shown in Table I.

The density of states 9i( f) can be estimated with the polynomial expansion 

(14) 

where fmin is the bottom of the band (-12 hu). The coefficients 'Y can be calculated 

by combining Eq. (12) and (14) to nine different equations (one for each moment). 
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Table I. The moments up to n = 8. 

Moment 

(0) 
µi 1 

(1) 
µi 0 

(2) 
µi 12 

(3) 
µi -48

(4) 
µi 540 

(5) 
µi -4320

(6) 
µi 42240 

(7) 
µi -403200

(8) 
µi 4038300 

The surface energy per surface atom is 

(15) 

where m denotes the atomic layer and 9b is the local density of states in the bulk. 

The surface energies for the three most tightly packed fee surfaces are given 

in Table II. The Wulff polyhedron (Fig. 5) is constructed by minimizing the surface 

energy of an infinitely large polyhedron. It consist of (111) and (100) surfaces, and 

can be obtained from the octahedron by cutting off the corners. Figure 8 shows that 

the total energy is smaller in that structure than in any other fee cluster with the 

same size. This indicates that if the lattice stTucture is restricted to be an fee, Hiickel 

clusters will have their asymptotic geometry already when the cluster has about 600 

atoms. Total energies of large icosahedral clusters are lower than those having an 

fee packing. However, there is no quarantee that the icosahedral geometries are the 
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Table II. Surface energies in the Hiickel model for the fee structure. 

Surface 

111 

100 

110 

Surface energy (hu/ a2) 

0.76 

1.00 

1.01 

actual ground states of the mathematical Hiickel model. It is interesting to note 

that also in the Lennard-Jones clusters the icosahedral geometries are more stable 

than the spherical or cubo-octahedral clusters[50,51]. However, when a Lennard

Jones cluster has more than 1600 atoms a truncated decahedron seems to be the 

energetically favoured geometry[52). 

3. Effect of surface roughness and the level
spacing distribution in clusters

3.1. Energy levels and the surface roughness 

The effect of the surface roughness is different for each individual cluster 

at a given time but the experiments measure only average properties over a large 

cluster ensemble. This leads to a statistical analysis of the level spectrum. The 

statistics of the level structure may play an important role in experiments where the 

information is gathered from a large number of clusters[31,53]. In nuclear physics the 

level statistics is used also in analyzing complicated spectra[54]. Theoretical work 

has been mainly based on the random matrix theory[55,56], which e.g. has been 

used to determine the electronic contribution to the specific heat and the magnetic 

susceptibility[31]. It should be noted that in the nuclear physics the level spacing 

distributions are extracted from the excitation spectra corresponding to quantum 

mechanical many-particle states, whereas in the atomic clusters the distribution of 
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single particle levels in the immediate vicinity of the Fermi level is i�portant in 

determining thermodynamic properties. In many experiments the size of the cluster 

is not exactly determined and the cluster ensemble contains a distribution of different 

sJZes. 

In order to be able to compute the level structure of a large number of 

clusters a simple model of lattice gas with a tight binding electronic structure is 

used. In the lattice gas model the sites of atoms form a uniform lattice but the 

occupation of lattice sites depends on the temperature. The lattice gas model has 

been extensively used to study plane surfaces of solids. A roughening transition will 

happen at the plane surface, when the free energy disappears. The free energy is 

connected to the formation of surface-steps and the surface becomes rough almost 

in a macroscopic scale. In the clusters we are interested in the small scale roughness 

and do not study the rougening transition. At a finite temperature the surface shape 

can vary from cluster to cluster. The change of the surface structure changes the 

energy levels. 

3.2. sp-Hiickel model 

A Hiickel band structure for s-electrons does not correspond well to a free 

electron band structure. The simple Hiickel model has anisotropic energy bands 

which destroy the shell structure[43]. The inclusion of long-range interactions and 

overlap-integrals can reduce the anisotropy but they do not reduce the density 

of states at the Fermi level[41,45]. Thus, the simple Hiickel model is not a good 

approximation for the free electron model at the Fermi surface. However, the simple 

Hiickel model can be improved by including more than one energy level for each 

atom. This can be done by taking linear combinations of s- and p-orbitals for each 

atom. This gives more freedom for the band structure and the parameters can be 

fitted to give a s-electron band which corresponds to the free electron parabola below 

the Fermi energy. We have done this for the fee structure, and used the obtained 

parameters to compute level structures of clusters. The calculated magic numbers 
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correspond well to the free electron magic numbers below the Fermi energy. We will 
call this model the sp-model. 

In the sp-model the overlap integrals are neglected and only nearest 
neighbour resonance integrals are assumed to be nonzero. For the bulk metal each 
element in the simple Hiickel Hamiltonian matrix is replaced by the following 4 x 
4 Hermitian matrix[42): 

1 1 1 1 .  1 1Hn = 1o cos( 2k,.a) cos( 2k11a) + 1o cos( 2k11a) cos( 2kza) + 'i'O cos( 2kza) cos(2k,.a),
1 1 1 1 1 1

H22 = Ep + 11 cos( 2k,.a) cos( 2kya) + 11 cos(2kza) cos( 2k,.a) + 12 cos(i11a) cos( 2kza),
1 1 1 1 1 1 

H33 = Ep + 11 cos( i11a) cos( iza) + 11 cos(2k,.a) cos( 2k11a) + 12 cos(2kza) cos( 2k,.a),
1 1 1 1 1 1 

H44 = Ep + 11 cos(iza) cos(2k,.a) + 11 cos(2k
11
a) cos(2kza) + 12 cos(i:ca) cos(2k11a),

H12 = i13 sin(ik,.a) cos(ik11a) + h3 sin(ik,.a) cos(ikza), 
H13 = h3 sin( ik11a) cos(ikza) + i13 sin( ik11a) cos( ik,.a), 
H14 = h3 sin(ikza) cos(ik,.a) + i13 sin(�kza) cos(ik11a), {16) 

H23 = -14sin(�k,.a)sin(�k
11
a), 

H24 = -14sin(�k,.a)sin(ikza), 
H34 = -14sin(�k

11
a)sin(�kza), 

where a is the lattice constant and E
p 

and -y's are the parameters of the tight binding 
model. First row ( column) of the matrix correspond to s-orbital, second P:z:-orbital, 
third P

y-orbital and fourth Pz-orbital. Due to the symmetry there will be only six 
parameters, one of which gives the energy scale. The parameters are chosen so that 
the energy bands for the three main crystal directions (111), (110) and (100) (rL, 
rK and rx, respectively) are free electron like up to the Fermi energy. In practice 
this is done by minimizing the mean square deviation of the calculated energy bands 
from the free electron parabola at the three directions between 0 and kp. Due to 
the numerous local minima in the space of six parameters it was necessary to use a 
Monte Carlo optimization method. The corresponding band structure is shown in 
Fig. 9 together with the free electron band. 

The matrix elements in Eq. (16) have been obtained by summing over 



6 

'-'5 

w 

ro 
> 3. 
i:: 

-� 2 

� 1 
i:: 

0 

r - X 
r - L 

r - K 

Parabola 

0 

- 22 -

2 3 
k 4 (!) s Wave vector � 

,,,, 
"-v ' 

6 
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the contributions of the nearest neighbours. The parity between the neighbouring 

orbitals determine the contribution as follows (see Fig. 10): 

Hi; ex { 

cos ½k:z:acos ½k11a 
• I • 1 /,COS 2k:z:asm zkya
• • 1 k 1 k 1, sm 2 :z:a cos 2 11a

• Ik • 1 k - sin 2 :z:a sm 2 11a

' if parity 
' if parity 
' if parity 
' if parity 

does not change, 
changes y-direction, m 

(17) 
changes 1n x-direction, 
changes tn both direction. 

The arrows in Fig. 10 present the interaction between the orbitals ( all arrows have 

not been drawn) and the sign beside the arrow is the parity. The interaction between 

the orthogonal orbitals is zero. Figure 10 present 2-dimensional planes cut from the 

3-dimensional structure. Fig. 10a shows P:z:-orbitals around the s-orbital. The

parity changes in the x-direction, because of the sign of the interaction between

orbitals changes. The parity does not change in the y-direction. The change of

parity is examined in all three planes (xy, yz, zx) for matrix element Hij and the

corresponding element is taken from Eq. (17). There is interaction between P:z:

orbitals in Fig. 10b. The interaction between every orbital is negative and therefore

the parity does not change.

The rules of Eq. ( 17) can now be used to determine the matrix for a cluster. 

The matrix elements will be denoted by Hijafi where i and j denote the atoms and 

a: and /3 the orbitals (s, P:z:, p11, Pz). In all cases i and j are the nearest neihgbours. 

In the case of an fee cluster we will have the following nonzero matrix elements: 

(18)



- 24 -

where n refers to the :i:-, y- or z-component and R = Ri - Rj is the vector between

the lattice sites i and j. 

3.3. Lattice-gas Monte Carlo 

An ensemble of clusters with a fixed number of atoms and a given 

temperature, is obtained using a Monte Carlo method with Metropolis algorithm(57]. 

The starting geometry is chosen to be a sphere and the atoms are bound to be in 

the fee lattice sites. In each Monte Carlo step one atom is moved from the cluster 

into an empty lattice site which can be either inside the cluster or on its surface. 

Evaporation of atoms or dissosiation of the cluster is not allowed. However, the 

clusters were allowed to have vacancies and overhangs. The total energy has to be 

calculated a few million times in order to get a good statistics. Thus, we need a fast 

method to estimate the total energy. 

Ab initio calculations and the effective medium theory(58] has shown that a 

good estimate for the total energy is obtained by calculating the number of nearest 

neighbours for each atom 

(19) 

where Ee is the cohesive energy, C; is the coordination number for atom j and Cb 

the coordination number in the bulk (12 for the fee structure). It has been proved(49] 

that the total energy in the Hiickel model depends principally on the coordination 

number for atoms. The "exact" total energy can be calculated as a sum over of 

occupied single electron eigenvalues. The approximative total energy corresponds 

to the "exact" total energy very well. It can be used to determine the ground state 

geometries of the lattice gas clusters. However, the approximative scheme is not 

applicable in very small clusters where the electronic shell structure has to be taken 

into account[59]. 

In the lattice gas model the melting transition of the clusters is not defined. 
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On the other hand, the lattice gas surface has a roughening transition(60]. The 

estimated roughening transition of (111) surface with the square root potential, Eq. 

(19), is about 0.65 Ee [61]. Using the cohesive energy of sodium, the temperature for 

the roughening transition is about 850 K. This is well above the melting temperature 

of sodium (371 K). This apparent discrepancy is a basic property of the lattice gas 

model(62]. 

The probability to move an atom in the Metropolis Monte Carlo simulation 

is strongly temperature dependent. The ground state geometries can be found by 

low temperature simulations. The ground state geometries consist basically of (111) 

surfaces. Small facets of (100) surfaces cut off the sharp corners. The ground state 

structures resemble Wulff polyhedra which correspond to the ground state geometry 

of an infinite cluster[41]. In the finite clusters the minimization of the surface energy 

gives slightly different structures and the actual shape depends on the number of 

atoms in the cluster. Examples of ground state clusters are shown at first column 

in Fig. 11. The ground state structures are far from spherical. This means that the 

electronic shell structure is not seen in these clusters. 

In the finite temperature studies we used ensembles with thousand clusters 

in each. Three cluster sizes were studied, 55, 138 and 249. The 55 and 249 clusters 

can be formed by taking closed spherical shells around the center atom. The number 

of atoms in 138 cluster correspond to the electron magic number. The most spherical 

structures are in the second column and the other columns show examples of the 

random clusters formed by Monte Carlo method. The 55 atom clusters have more 

indefinite forms than the 249 atom clusters. This is due to the variation of total 

energy per atom. The variation in the small clusters is bigger than on the big clusters 

because of the number of atoms. 

3.4. Shell structure in the sp-model 

The shell structure for the simple Hiickel model corresponded to the free 

electron model only in the low energy states well below the Fermi energy. The 
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llfo 55

138 

249 

Fig. 11. Examples of cluster geometries for 55, 138 and 249 atom clusters. From left 

to the right are the ground state geometry, the most spherical geometry and two random 

geometries from the Monte Carlo calculation, respectively. 

improvement for the shell structure which have been brought about by sp-model 

is seen in Fig. 12. The shell structures have been calculated for an fee cluster of 

249 atoms using different models. The discrete levels have been smoothened with 

a Lorenzian (from Eq. 7). A value 0.025 eV have been chosen for r (this width 

does not have any physical meaning). Figure 12a shows the density of states of 

the sp-Hiickel model. The shell structure is seen more clearly at high energies than 

in the simple Hiickel model, shown in Fig. 12b. Also the increase in the average 

density of states below the Fermi level, seen in 12b, is removed with the sp-model. 

Figure 12c gives the density of states in a spherical box with the radius of a 249 

atom sodium cluster. Figure 12d shows the density of states for the ground state 

geometry. The ground state geometry is strongly faceted. This is known to destroy 

the shell structure, as shown in Section 2. It is clear that the shell structure typical 

to a spherical cluster has completely vanished, in Fig. 12d. 

The sp-model does not show the shell structure of the free electron sphere 

all the way up to the Fermi energy. The reason for this is the roughness of the cluster 
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Fig. 12. Density of states in a 249 atom sodium cluster: a) sp-Hiickel model for a 

spherical fee cluster, b) simple Hiickel model for a spherical fee cluster, c) free electron 

sphere, d) the ground state cluster. 

surface. Even the most spherical fee cluster seems to have so rough surface that the 

energy gaps related to the shell structure disappear at the Fermi level. This gives 

more confidence to the suggestions that the large clusters, where the shell structure 

has been observed, do not have the lattice structure of the bulk metal. 

We now proceed to study the clusters at finite temperatures. In order to 

get an ensemble of clusters with different geometries we have used a temperature of 

800 Kin simulations (at 400 K the cluster remains mainly in its ground state). Each 

cluster with a different surface shape has a different electronic structure. The main 

differencies occur close to the Fermi level. Figure 13a shows the density of states 

for 5 clusters chosen arbitrarily from the ensemble of 970 clusters. The density of 

states is very similar in each cluster only upto about 1.5 eV where the minimum 

corresponds to the shell closing 58. At larger energies the shell structure differs 
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Fig. 13. a) Density of states for five random clusters. b) The average density of states for 

the ensemble of 970 clusters of 249 atoms. The discrete eigenvalues have been convoluted 

with a Lorenzians with the width of a) 0.3 eV and b) 0.025 eV. 

from cluster to cluster. Figure 13b shows the average density of states for the whole 

ensemble of 970 clusters at 800 K. The average shell structure shows clear minima 

still at the free electron shell closings (Fig. 12c) 92, 138 and 186 (the actual minima 

indicated at the figure are 92, 130 and 188 but the small deviations could be due 

to the insufficient statistics). It is important to notice that the average density of 

states shows the shell structure at as high energies as the most spherical cluster in 

the lattice gas model. 

3.5. Level spacing statistics 

At a finite temperature the electronic properties of the clusters depend on 

the distribution of energy levels near the Fermi level. The geometry of the cluster 

has an effect on the distance between neighbouring levels. In case of an infinite free 

electron metal the average level spacing around the Fermi level is 

(20) 

where N is the number of electrons. We have studied the level spacing distribution 
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for the fee lattice gas clusters formed by Monte Carlo method. The electronic 

structure is calculated using the sp-Hiickel model. The level spacing distribution 

has only been determined close to the Fermi level ( six level spacings around the 

Fermi level). From the 1000 clusters we have then obtained 6000 level spacings 

which is enough to determine the distribution. 
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Fig. 14. Level spacing distribution for the clusters generated using the Monte Carlo 

method. a) 55 atom clusters at 800 K and b) 249 atom clusters at 800 K. The Poisson 

and Wigner distributions are shown for comparison. 

F igure 14 shows the level spacing distribution for two sizes of clusters (55 

and 249). The Poisson distribution (the dashed lines) 

(21) 

and the Wigner distribution (the dotted lines) 

(22) 

have been drawn for comparison. A and Bare the normalization constants and Eave 

is the average level space. It is clear that in both cases the distribution fits to the 

Wigner distribution. 
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In nuclear physics context the level spacing distribution is usually analyzed 

• using the random matrix theory[56], which is shown to give the Wigner distribution.

The elements of a random matrix are random numbers with a Gaussian distribution.

In the simple Hiickel model the matrix elements are either 1 or O depending whether

the corresponding atoms are nearest neighbours or not, respectively. In sp-model the

matrix elements can have seven different values. These kind of 'random matrices'

seem also to produce a Wigner distribution for the large eigenvalues(63]. Small

eigenvalues show the shell structure and the Poisson distribution. This may be due

to the fact that only the matrix elements corresponding to the surface atoms are

'random'.
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Fig. 15. Width of the level spacing distribution (R = 31:1N /4€F) as a function of the 

cluster size. The black dots are the average level spacing determined using seven levels 

close to the Fermi level and the open circles are estimates for the level spacings at the 

Fermi level. 

Bucher et al.[64] have studied the level spacing statistics with a model closely 

related to ours. They have used the simple Hiickel model and generated the cluster 

geometries by evaporating atoms from a cubo-octahedron. Their results show that 

the distribution in the middle of the band is a Wigner distribution which becomes 

narrower when the temperature rises. Tanaka and Sugano[65] have simulated the 

level statistics in two and three dimensional tight binding models and studied the 

relation of the tight binding model to the random matrix theory[63]. They found out 

that the distribution could be fitted with a Brody distribution which approaches to 
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the Wigner distribution when the roughness increases. Ratcliff[66] has studied the 

level spacing distribution using free electrons confined by irregular hard walls. The 

study is limited only to a single large angular momentum state, hut the resulting 

distribution is again a Wigner distribution. 

Figure 15 shows the average width of the level spacing distribution as a 

function of the cluster size. The width increases towards the bulk-value� from Eq. 

(20). The average level spacing increases with the size of the cluster. The increase 

of the temperature roughens the surface and also makes the average level spacing 

narrower. The average level spacing is nearer the bulk-value in random spherical 

clusters than in the Monte Carlo clusters. The physical interpretation is that less 

spherical clusters have narrower energy bands and thus smaller average level spacing. 

The Monte Carlo method used to produce the cluster ensembles neglected 

all shell structure effects. In reality the clusters having a larger energy gap just 

at the Fermi level would have a reduced total energy ( the levels below the Fermi 

level would be pushed down). This could appear in the level spacing distribution 

as a slightly larger energy gap just at the Fermi level than the neighbouring gaps. 

To mimic this effect we have calculated the total energy of cluster ensembles also 

summing exactly the one electron energy eigenvalues. These clusters whose 'exact' 

total energy is below the approximative total energy of Eq. (19) have a clearly larger 

average gap at the Fermi level as seen in Fig. 15. The opening of a larger gap at 

the Fermi level is clearly seen at the zero temperature calculations[59]. 

4. Shell structure in large nonspherical metal
clusters

4.1. Theoretical model 

The effects of the geometry of a cluster on the shell structure have been 

studied already in paragraph 2.4. There it was shown that the surface faceting of 

the fee cluster can destroy the electronic shell structure when the cluster has about 

100 electrons. Recently, a set of magic numbers for large simple metal clusters have 
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been observed(3,8,12]. These correspond to the geometrical packing of atoms in an 

icosahedral structure. In the case of sodium clusters the magic numbers between 

1500 - 3000 atoms can be determined either by the electronic structure(4] or by the 

geometry(2] depending upon the experimental conditions. 

The Hiickel model used in Sect. 2 corresponds to a potential box with hard 

walls and it can be used only for a cubic structure. Here we want to develope a model 

which is as good for icosahedral as for cubic clusters. For large sodium clusters, the 

effective potential of the electron inside the cluster is nearly constant. A reasonable 

approximation for the effective potential is then a finite potential well with a depth 

determined by 

(23) 

where </> is the work function of the metal and fF the Fermi energy measured from the 

bottom of the conduction band. For spherical clusters, the radius is determined by 

ro = N113r8, where N is the number of atoms in the cluster and r6 the Wigner-Seitz

radius. 

Fig. 16. The difference between geometries of spherical and nonspherical clusters 

(perturbation potential). The difference between potentials is restricted within a narrow 

region close to the cluster surface (marked with+ or-). The sign is the sign of perturbation 

potential. ro is the radius of spherical cluster and R( 0, </>) is the angle-dependent distance 

defined as the distance from the center of the cluster to its surface. 

The nonspherical clusters are described by using nonspherical potential wells 
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with the same depth, Eq. (23), and volume as the spherical cluster. The finite 

potential well can be changed to the wanted geometry by adding a perturbation 

potential Ll V (r), which is defined as the difference between the potentials of 

spherical and nonspherical clusters as follows: 

LlV(r) = Vo{O[R(O,</>)- r] - O(ro - r)} (24) 

where O is the step function. We can see from Figure 16 that the difference between 

the spherical and nonspherical potentials is restricted within a narrow region close 

to the cluster surface. If the surface of the nonspherical cluster is closer (further) 

to the center of the cluster than the surface of spherical cluster, the perturbation 

potential has a positive (negative) value. 

In order to calculate the electron levels for nonspherical case we start from 

the solution of the Schrodinger equation for the spherical geometry, 

(25) 

where Yim(O,</>) are the spherical harmonics. The radial wave function Rnz(r) 

and the corresponding energy eigenvalue are obtained numerically. The energy 

eigenvalues for the nonspherical potential well can be obtained by diagonalizing 

the Hamiltonian matrix 

(nlmlHo + LlVln'l'm'), (26) 

where Ho is the single-particle Hamiltonian for the spherical potential well. Because 

the perturbation potential of Eq. (24) is nonzero only close to the radius ro, it is 

convenient to expand the radial wave function as 

Rnz(r) = Rnz(ro) + R�z(ro)(r - ro), (27) 

where R�1 
is the derivative of Rnz. The integration over the distance r in Eq. (26) 

can then be done analytically. 
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4.2. Shell structure in icosahedral and cubo-octahedral 

clusters 
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Fig. 17. Level structure of a 309-atom sodium cluster approximated with a square-well 

potential. For the nonspherical clusters the angular momentum is only approximately 

correct. The long lines represent the levels of the spherical well. The short lines on the 

left-hand side represent the levels of the cubo-octahedral well, and those on the right-hand 

side represent the levels of the icosahedral well. 

The energy eigenvalues for the nonspherical geometry are formed by 

diagonalizing the matrix of Eq. (26). The wave function for each energy eigenvalue 

are also obtained from the diagonalisation. The wave function has as many 

components as the dimension of the matrix, and n, l and m are not any more 

good quantum numbers. However, if the perturbation is weak one of the expansion 

coefficients is much larger than the others and we can associate n, l and m numbers 

also to the perturbed states. Thus, the energy eigenvalues can be labelled according 

to the quantum numbers as seen in Figure 17. The level mixing is small for the small 

clusters but with the increasing cluster size the mixing becomes more important, 

and thus the labelling of the energy eigenvalues becomes more difficult. 
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Figure 17 shows the electronic shell structures for spherical, icosahedral 

and cubo-octahedral potential wells corresponding to clusters with 309 atoms. The 

degeneracy of each level is 21 + 1 (plus the spin degeneracy) in the spherical case but 

the levels split in the nonspherical case, since the maximum degeneracy in the cubic 

( cubo-octahedral) symmetry group is three and in the icosahedral one it is five. In 

the case of the icosahedral cluster the splitting of nl-levels remains smaller than the 

energy difference between the different I-shells, whereas for the cubo-octahedron the 

splitting is about the same magnitude as the difference between the shells. Therefore, 

the icosahedral 309-atom cluster will have the main shell structure closely similar 

to that of the spherical cluster. 

It is quite difficult to see the overall shell structure from Fig. 17. Therefore, 

it is more illustrative to plot the density of states according to Eq. (7). The value 

of the width r = 0.001 a.u. The electronic structure of complete icosahedral and 

cubo-octahedral sodium clusters have been calculated between 147 :::; N :::; 1415. 

The energy eigenvalues for 147- and 309-atom clusters have been calculated by 

including all bound basis states of the spherical potential well in the Hamiltonian 

matrix. For larger clusters the number of nlm-basis functions have been restricted 

to be about 450. 

Figure 18 shows the densities of states for the 309- and 923-atom icosahedral 

and cubo-octahedral sodium clusters. In each figure, the density of states of a 

spherical cluster with the same size is shown with a dashed line. The selection of 

the size of the cluster has been done on the grounds that the outermost shell is 

closed. The Fermi level changes from about -0.08 to -0.07 a.u. when the cluster 

size increases from 309 to 1415 atoms. We can see from Fig. 18a that the magic 

numbers are the same for the icosahedron and for the sphere still above the Fermi 

level. However, we notice that in details the subshell behaviour in the two cases is 

different. For the cubo-octahedron in Fig. 18b, only the lowest energy levels are 

the same as for the sphere. The situation is similar both in 147-atom cluster and in 

309-atom cluster. The correspondence of the energy levels of the cubo-octahedron

compared to sphere does not reach the Fermi level. The level structure of the 

smallest cubo-octahedral clusters agree with that obtained by Martins(67] using an 
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Fig. 18. Density of states of the 309- and 923-atom sodium cluster calculated for a 

spherical ( dashed lines), ( a,c) icosahedral, (b,d) cubo-octahedral square well. The numbers 

below the energy gaps indicate the corresponding magic numbers. Italic numbers denote 

the magic numbers for the icosahedral or cubo-octahedral potential. A boldface number 

is used when the spherical and polyhedral potential give the same magic number. 

ab initio pseudopotential approach. 

For clusters from 561 to 1415 atoms, the shell structure have been calculated 

only close to the Fermi level. From Fig. 18c we can see that up to the Fermi energy 

the main shell structure of the icosahedral clusters is still quite similar to that of 

a sphere. This is valid also in the case of a 561-atom cluster. The exact numbers 

corresponding to the shell fillings are different, however. It should be noted that the 

grouping of the levels of different angular momentum values is sensitive to the details 

of the spherical potential. Therefore, it is not surprising that when the spherical 
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potential is replaced with an icosahedral potential, the exact magic numbers can 

change even if the shell structure is still very similar to that of a sphere. This is 

clearly seen in the case of the 309-atom cluster in Fig. 18a, where the sphere gives 

a deeper minimum for the shell closing at 186 electrons, whereas in the case of the 

icosahedral cluster the competing minimum at 196 electrons is deeper. For the large 

(more than 561 atoms) cubo-octahedral clusters, the results of the shell structure 

are only approximative due to the approximation in Eq. (27). This approximation 

and the less spherical geometry of the cubo-octahedron than that of the icosahedron 

cause that the disturbation in the shell structure due to the mixing of the included 

levels with the excluded levels, seen in Fig. 18d, is much greater in the case of 

cubo-octahedral clusters than in the icosahedral ones (Fig. 18c). 

4.3. Deformed liquid clusters 

The large magic numbers corresponding to the electronic shell structure 

have been observed experimentally for warm clusters[4]. They could either be in the 

liquid state or have liquid-like surface. The shape of the cluster will then be different 

from that of a crystalline cluster. The surface tension will force the liquid clusters 

to be spherical but at finite temperatures there will be fluctuations at the surface 

structure. It is then important to know the effect of the shape oscillations to the 

electronic shell structure. Using the potential-well approximation such effect can be 

studied. The energy of the surface-wave excitation can be estimated from the liquid 

drop model where the cluster energy is determined from the surface and curvature 

energies. This model gives good average estimates for the size dependence of the 

total energy of jellium clusters[68]. In small clusters, there is an interplay between 

the shell structure and the deformation of the clusters that has been studied using 

spheroidal[69,70] or octupole deformations[71]. 

Since we are concentrating on large clusters, the shell structure effects 

on the deformation can be neglected. For simplicity, we assume the liquid to be 

incompressible. In the calculations the potential well has been taken to be a prolate 

spheroid. The energy associated to the deformation is estimated solely from the 
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increase of the surface energy (in small clusters the change in the one-electron 

spectrum would also be an important part of the total energy). The equipartition 

theorem requires that each surface mode has an energy of the order 

(28) 

Defining the amplitude of the surface wave by x = (b- ro)/ro, where bis the shorter 

semiaxes of the spheroid, we obtain for small deformations 

E 
2 2 

8w ex: r0x 

The change in the energy eigenvalues due to the deformation[72] is 

(29) 

(30) 

when [r0 - R( 0, q> )] ex: x. Combining Eqs. (28), (29) and (30), and using the fact 

that ro ex: N113, we get the following important result:

(31) 

This means that for a given temperature the effect of the surface waves on the energy 

levels decreases when the cluster size increases. On the other hand, for a given size 

the effect of the surface waves on the energy levels increases with temperature. The 

energy difference between the major shells in a spherical cluster is proportional to 

N-113• The relative disturbance of the surface waves on the shell structure decreases

when the cluster size increases and depends only weakly on the temperature.

Figure 19 shows the level structure of a 1415-atom cluster as a function 

of the degree of the deformation (b/ a-ratio, a and b are the semiaxes of spheroid). 

Only the prolate case and the levels close to the Fermi level were considered. If the 

deformation decreases below 0.99, the energy levels start to cross each other. 
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Fig. 19. Single-electron energy levels for a prolate spheroidal potential well as a function 

of the deformation (b/a). The numbers in parentheses show the radial and angular 

quantum numbers ( n,l). n = 1 corresponds to the lowest state for each angular momentum. 

Figure 20 shows the density of states for a prolate spheroid corresponding 

to a 309-atom sodium cluster. The densities of states are shown corresponding to an 

average instantaneous deformation at 800 K and for the melting temperature. The 

effect of the deformation is fairly small even at the higher temperature. This is true 

also for a 923-atom cluster. If the temperature increases or the size of the cluster 

decreases, the deformation of the cluster will increase. The shell closing numbers 

of the spheroid correspond to those of a sphere only for few lowest energy levels 

because of the deformation ( seen in Fig. 20b ). 

The spheroidal deformation ( quadrupole deformation) is the simplest 

surface-wave mode. In a real sample of clusters, many different surface modes will 

exist. However, the energy of any higher multipole mode estimated from the surface 

energy corresponds to an amplitude smaller than that of the quadrupole mode. This 

follows from the faster increase of the surface area for the higher multipoles. It is then 
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Fig. 20. Density of states of a spheroidal 309-atom sodium cluster. The deformations 

correspond to temperatures (a) 371 K and (b) 800 K. 

expected that the quadrupole mode has the largerst effect on the shell structure of 

liquid clusters. The melting point and the boiling point decreases when the cluster 

becomes smaller. In each cluster these are lower than in bulk solid. The higher 

temperature considered, 800 K, is already difficult to achieve in small clusters, since 

they would start to evaporate atoms. We can conclude that the surface fluctuations 

in liquid sodium clusters do not destroy the main features of the electronic shell 

structure. 
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5. Existence of the star orbit in metal clusters

5.1. Supershell structure 

The shell structure was defined as large energy gaps between the energy 

levels. The modulation of the shell structure is called supershell structure[25]. It is 

illustrated in figure 21 which shows the shell structure for free electrons in a cavity. 

The radius of spherical potential box corresponds to 10000-atom cluster. The energy 

eigenvalues have been obtained from the zeros of the Bessel functions. The density of 

states are given as a function of wave vector k in order to make the peaks to appear 

approximately equi-distant. The difference between the peaks is b.k = 0.5 x N-1/3

A-1. For each single-particle energy fnl, a wave vector kn1 is defined in atomic units

as

(32) 

In order to visualize the supershell structure clearly, the discrete energy levels are 

smoothened with a Lorenzian. In practice, this is done by adding an imaginary part 

ki to each knl· The level density is given by 

(33) 

where ki is chosen to be 0.13 x N-1/3 A-1, which is a quarter of the spacing of

successive shells. 

The supershell structure is clearly seen in Fig. 21. The first node is 

located in the place which corresponds to 1000 electrons. The shell structure which 

corresponds to short-wavelength periodic oscillations disappear almost completely in 

that place. Thus, the observation of supershells requires more than 1000 electrons. 

Between the nodes e.g. when k = 0.5 A -1, the shell structure is clearly seen. The

second node locates in the place which corresponds to 3000 electrons. After that 

there is a weaker minimum at about 10000 electrons. The supershell effect has been 

observed experimentally up to 3000 electrons[4]. 
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Fig. 21. The shell structure of free electrons as a function of wave vector k. The radius 

of the spherical potential well corresponds to a 10000-atom cluster. 

It is often illustrative to use a semi-classical interpretation of the shells 

and the supershells. Periodic electronic shells are closely associated with a simple 

classical periodic orbit inside the potential. On the basis of the classical Bohr atomic 

model the electron orbits must have an integer number of wave lengths. In spherical 

potential the supershell structure is a consequence of the interference of two classical 

closed periodic orbits, triangular and square ones[24). The interference is a result of 

the difference of the lengths of the two trajectories. The neighbouring shell spacing 

is proportional to the inverse of the length of the shortest orbit (triangle), while the 

supershell spacing is proportional to the inverse of the leng�h difference between two 

orbits, which is almost 11 times the shell spacing. 

Figure 22 shows a triangular orbit inside the sphere. It consists of the three 

changes of direction of an electron at each whole turn around the sphere. The length 

of the orbit between each change of direction is marked by quantum number n and 

the length of an orbit between each turn is marked by quantum number l. If half 

of the length of n is marked by m, then n = 2m and l = 6m. The difference 

between lengths is obtained by adding one unit to the length of m. Thus, we have 
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Fig. 22. Most important classical closed orbits in a spherical potential. The ratio of the 

radial to angular oscillations is shown in each case. 

n1 = 2m + 2, 11 = 6m + 6, D.n = n1 - n = 2 and D.l = 11 - l = 6. The relation 

of the difference of the quantum numbers D.n : D.l = 1 : 3 for the triangular orbit. 

The five-point star orbit, seen in Fig. 22, consist of five changes of direction of the 

electron at two turns. Thus n = 2m and l = 10m for two turns and we can take 

l = 5m for one turn. Therefore, the relation is D.n : D.l = 2 : 5. In a energy

level structure the classical orbits can be observed from the differences of quantum

numbers ( D.n and D.l) between two near and successive energy levels.

In a spherical potential the energy levels have a degeneracy determined 

by magnetic quantum number m. The degeneracy is 2(21 + 1) (including spin 

degeneracy). With the total number N of the constituent particles the amount 

of degeneracy is of the order N113. All states with the same n + l (2n + l)

are completely degenerate in the Coulomb (harmonic-oscillator) potential. This 

additional degeneracy gives the total degeneracy proportional to N213. In a square

well potential the additional degeneracy is smaller and the total degeneracy will 

be proportional to N112[73]. The wave number difference Sk between neighbouring

shells in Fig. 21 is approximately 

�k ~ -lN-1/3u _ r
8 

, 

where r6 is the Wigner-Seitz radius and N the number of electrons. 

corresponding energy difference bf at the Fermi level is then 

(34) 

The 

(35)
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where kF is the Fermi wave vector and fF the Fermi energy. The total number 

of states in the energy range Cf at the Fermi level is N x CE/ fF = N213• Since

in the square well the number of states in each shell is of the order N112, the

relative strength of the shells to the background level density is of the order 

Nl/2 / N2/3 = N-1/6.

5.2. Electron orbits in the Woods-Saxon potential for Al 

clusters 

Recent experiments revealed[5,7] that the shells in Al clusters are twice 

denser with respect to the electron number than in alkali-metal clusters. Lerme 

et al.[5,6] suggested that mass spectra of Al clusters could be explained from a 

semi-classical picture that a five-point star orbit plays a dominant role in the shell 

structure. They argue that a particle moving classically cannot make a sharp turn 

from a soft wall unless it collides almost perpendicularly. This condition excludes 

the existence of the triangular and the square orbits in a suitably soft potential. 

The experimental evidence of the star orbit is, however, not strong. Martin et al.[7] 

has shown that the observed shell structure of the Al clusters could be explained 

from geometrical packing of ions in octahedra. Their explanation is similar to the 

case of large ( N> 1000) Na clusters produced at low temperature, where icosahedral 

packing of ions determine the shell structure. The idea of Lerme et al. on the effect 

of five-point star orbit is, however, interesting enough to pursue further. Although 

it may not be the origin of the shell structure of Al clusters, the five-point star orbit 

might be important in other systems. 

The potential of a spherical metal cluster is simulated with the Woods-Saxon 

potential 

V(r) -
Vo 

- - 1 + ea(r-ro)' (36) 

where Vo is the depth of the potential well, ro the radius of the potential and a 

a parameter determining the potential softness. For making a connection to real 

metals we choose Vo to be the sum of the Fermi energy (measured from the bottom 

of the conduction band) and the work function. The radius of the potential is 
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Fig. 23, Electron energy levels for three different values of a. The radius and the depth 

of the potential correspond to a 1000 electron Al cluster. 

chosen to be ro = r 8N1l3, r8 being the electron density parameter and N the

number of electrons in the cluster. The calculations have been made in the potential 

which depth and the radius correspond to Al cluster with 1000 valence electrons. 

With three different values of the softness parameter a the Woods-Saxon potential 

corresponds to a harmonic potential, a soft potential and a hard potential well. 

The level structures for Al clusters for three a-values are shown in Fig. 23 

m separate columns for different n-values. For a = 0.2 (Figure 23a) degenerate 

levels have the ratios Lln : Lll = 1 : 2, which correspond to the pendulum orbit in 

Fig. 22. Increase of the a lifts the levels with n � 2 up leaving the levels with n 

= 1 unchanged. At a = 0.4 (Figure 23b) the levels of n = 3 are nearly degenerate 

to those of n = 1 with the angular-momentum difference Lll = 5 corresponding to 

the classical five-point star orbit. It should be noted, however, that the degeneracy 

-

,-

-

-
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ci = 0.4 a.= 1.3 

• Fig. 24. Classical closed orbits at the Fermi energy (-0.15 a.u.) for Woods-Saxon

potentials corresponding to 1000 electron Al clusters. All orbits with less than two turns

around the center are shown ( except the pendulum and the sphere).

at higher n-values is not very good. Levels with n = 2 lie in the middle of two

neighbouring levels with n = 1. A further increase of a pushes then = 2 levels up.

They become eventually degenerate with the n = 1 levels with the ratio .6.n : .6.1

= 1 : 3 and then go up further to be degenerate to the levels with the ratio 1 : 4. 

This competition of the degeneracies with the two different ratios (1 : 3 and 1 : 4) 

is the quantum-mechanical origin of the supershell structure. The clusters with N 

= 1000 are indeed in the nodal region of the supershell structure for Al. 

The classical closed orbits have been derived numerically for different values 

of a. The value a = 0.2 gives only ellipse-type orbits in accordance with a perfect 

harmonic oscillator. The simplest classical orbit for a = 0.4 is the five-point star, 

shown in Figure 24. The hard wall potential, a = 1.3, gives also the triangle and 

square orbits in addition to several star orbits. Note that the five-point star has 

much softer corners in the case of a = 0.4 than in the case of a = 1.3. 

At the moment the density of states cannot be investigated experimentally 

expect for the Fermi energy region. The shell structure of the Al clusters have been 

observed in the mass spectrum after near-threshold ionization of the cluster beam, 

thus only at the Fermi level. Therefore, the energy difference between the lowest 
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Fig. 25. The difference between the lowest unoccupied and the highest occupied energy 

level as a function of N113, where N is the number of electrons in the cluster.

unoccupied and the highest occupied levels is calculated for each N.

t:J..E.(N) = fN+l - fN. (37) 

To make the calculation simple the potential is fixed with the radius 

parameter at N = 1000, and electrons are put in up to each size of the cluster. 

The t:J..E.(N) have been plotted as a function of N113 in Fig. 25 for a = 0.4 and

1.3. The discrete levels have been convoluted with a Lorenzian from Eq. (7) (r =

0.048). When the t:J..E.(N) is large the ionization potential is expected to be large, and 

therefore the magic numbers should be observed. Peaks are equi-distantly placed 

in the a = 1.3 and for a = 0.4 each peak is divided into two peaks except for the 

first three. It will depend upon the experimental resolution whether these peaks are 

separately observed or not. The clusters with valence electrons less than 3000 have 
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the largest l-value less than 20 and have only a limited amount of the degeneracy, 

and therefore clear differences in the number of degenerate states in the main- and 

sub-shells exist. Consequently, if two shells could be separated in experiments, the 

peaks ( or minima) would be not equally spaced as a function of N113. This finding

strongly suggests that the equally spaced magic numbers observed by Lerme et al. 

are not due to the classical five-point star orbit. 

5.3. Self-consistent jellium calculations 

The properties of large alkali metal clusters can be described using the 

jellium model. The interacting valence electrons move in an external potential 

provided by a homogeneous positive background charge. At the cluster surface the 

background charge goes abruptly to zero. The jellium model has been mainly used 

for spherical clusters but also nonspherical small clusters have been studied[74]. The 

electronic many-body problem is usually solved using the Kohn-Sham method[75] 

with the local density approximation for the exchange and correlation energy[76]. 

The many-body problem then reduces to that of solving a single-electron Schrodinger 

equation 

{38) 

where the one-particle effective potential Vef 1( r) is the sum of the electrostatic 

potential ip and the local exchange-correlation potential µ:cc : 

¼f!(r) = -ip(r) + µ:cc(n(r)), (39) 

where the electron density is 

n(r) = L l1Pi(r)l2 • (40) 

The self-consistent equations are solved by a numerical iteration. The electronic shell 

structure can be seen in the density of states of the single-particle energies fi, The 
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Fig. 26. The self-consistent effective potential of the jellium model for four different Al 

clusters. 

self-consistent effective potential Veff can be directly compared to the Woods-Saxon 

potential. 

The electronic properties of Na clusters have been estimated[27] from the 

self-consistent jellium model. This model explained the experimentally observed 

supershell structure very well[27]. We have used the jellium model to study the shell 

structure in large Al clusters. The degeneracy with the ratio 2 : 5 was observed in 

the level structure of 440 and 462 electron Al clusters only in a limited low-energy 

part of the spectrum[77] and does not play any significant role in the shell structure. 

Related results have been provided recently by a jellium-model calculation for Al 

clusters[28], which produced a similar shell structure as for alkali-metal clusters and 

no signature of the classical star orbit was seen. 

Figure 26 shows the effective potential for jellium clusters corresponding to 

the density of Al (ra = 2.07). The softness of total self-consistent potential outside 

the cluster radius (r>ro) is fairly insensitive to the potential inside. We can then 

conclude that the jellium-based models for Al clusters give potentials which are not 

soft enough for making the classical star orbit important. The exact shape of the 

potential is sensitive to the number of electrons in the cluster. This is due to the 

fact that only a small number of levels give dominant contributions to the density. 

However, the softness of the potential outside the surface is insensitive to the number 
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Fig. 27. The level spectrwn of the mixed AlNa cluster. 

of electrons. The same is true for the self-consistent electron density in the surface 

region, but the Friedel oscillations inside the cluster depend sensitively on exact 

number of electrons in the cluster. Outside the jellium surface ( ro) the effective 

potential corresponds to the Woods-Saxon potential with a softness parameter a =

0.6. On the other hand, inside the jellium radius the potential is clearly harder, 

corresponding to the Woods-Saxon potential with a large a-value. 

The potential of a planar surface for high-density metals ( small r 6) is 

harder than the potential for the low density metals (large r6)[78]. However, in 

spherical clusters this is compensated with the smaller radius of the high-density 

metal clusters. The net effect is that the potential effectively becomes slightly softer 

for high-density metals (like Al) than for low-density metals (like Na). The shell 

structure changes in favour of the five-point star orbit by adding a low density Na 

(r6 = 3.93) positive background layer on the spherical high density Al (r6 
= 2.07) 

cluster. The effective potential outside the jellium edge is then clearly softer than 

that of Al clusters. The Fermi energy which for Al clusters of the same size is at 

about -0.14 a.u., is for AlNa -0.11 a.u .. The electronic level energies for AlNa (450 

electrons) are shown in Figure 27. The levels of n = 1 and 3 are degenerate with 

the ratio 2 : 5 at the Fermi level. Since the degeneracy of the levels of n = 1 and 2 

with the ratio 1 : 3 is not completely broken at the Fermi level, the shell structure 
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is not entirely governed by the classical five-point star orbit, but it may be possible 

to extract the influence of the five-point star orbit. 

6. Solids composed of metal clusters

6.1. Bandstructure calculation for cluster materials 

Atomic clusters can serve as a source of new materials with uncommon 

properties[32]. The crystalline structure could be assembled from the magic metal 

clusters[33]. The electronic, optical, magnetic and structural properties of clusters 

are size specific. The possibility that materials with desired properties can be made 

by changing the size and composition of cluster aggregates is limitless. However, it 

is difficult to produce large quantities of clusters of specific size, and the clusters 

can interact with each other and coalesce to form larger clusters thus destroying the 

original properties. Khanna and Jena[33] have shown that it is possible to select 

clusters in such a way that the cluster-cluster interaction can be very weak. They 

suggested Al12Si as a candidate of clusters which would be used in assembling new 

materials where the clusters retain their identity. It has a compact icosahedral 

geometry and a closed electronic shell due to its 40 valence electrons. In the case of 

monovalent metals, the 8 atomic alkali clusters have a high symmetry, whereas in 

the case of 20 atom cluster the situation is still unclear[79,80]. 

The key requirement for the possibility of weakly bonded cluster material is 

the existence of narrow energy bands. We assume that the simple metal clusters with 

a closed electronic shell are nearly spherical and can be adequately described with 

the spherical jellium model. The self-consistent potential is then nearly constant 

inside the cluster and be reasonably approximated with a square well 

V(r) = -VoO(R - r), ( 41) 

where Vo = -iii - EF, iii being the work function of the metal, fF the Fermi energy 

and R is the cluster radius, R = r8N113.
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The different energy bands are denoted by the single electron states in a single potential 

well. The Fermi energy is between 2p and lg bands. 
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Fig. 29. Energy bands for fee Al12Si. The lattice constant is 22 a.u. 

The cluster assembled material is approximated by making a lattice of the 

potentials of the individual clusters. Since the van der Waals bonded materials have 
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a tendency to form closed packed structures we consider only the fee lattice. The 

electronic band structure is solved using a plane wave basis. Due to the simplicity 

of the potential a good accuracy has been obtained with about 2000 plane waves. 

Figure 28 shows the development of the energy bands from the discrete 

cluster energy levels when the lattice constant becomes smaller. The figure is 

obtained by computing the energy eigenvalues for five high symmetry points (r, 

X, W ,L and K) in the Brillouin zone. The Fermi energy lies in the gap between the 

2p and lg states. These bands start to overlap when the lattice constant is about 

21.2 a.u.. The distance between the neighbouring potential wells is at that point 

about 1.0 a.u .. At so close distance the Al-Al distance between the neighbouring 

clusters would be smaller than the Al-Al distance within an Al12Si cluster. This 

means that if an fee crystal is formed from Al12Si clusters it will be insulating. It is 

expected that the intercluster Al-Al distance in a weakly bonded cluster material is 

clearly larger than the intracluster Al-Al bond. 

Figure 29 shows the band structure for Ali2Si crystal with the lattice 

constant of 22 a.u .. The figure confirms that the band minima and maxima are 

obtained at the high symmetry points of the Brillouin zone. At the Fermi level the 

smallest gap is at the r-point, but the smallest gap can be also at other symmetry 

points or there can be an indirect gap as between Id and 2s shells. The effective 

mass of electrons m* is 
ri,2 

m* = lJ2E I (42) 

where f is the energy and k the wave vector. Numerically this is obtained from 

the difference of energy ( �f) and distance ( ll.k) of two successive calculated points 

around the r-point in Fig. 29. The effective masses of electrons at the bottom of 

the 'conduction band' (lg) are 0.42 and 0.26 and those of the holes of 'valence band' 

(2p) are 0.47 and 0.20. These values, as also the energy gap, correspond well to 

those of the common semiconductors. 
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6.2. Discussion on cluster materials 

The overall bandstructure is insensitive to the details of the potential 

parameters. The results for Na20 and Nas cluster materials are qualitatively similar 

to those obtained for the model potential mimicing Al12Si[8l]. The use of the self

consistent effective potentials of the jellium model could slightly change the size of 

the band gap but it would not change the qualitative features obtained with the 

model potentials. The band structure calculations show that if an fee crystal can be 

formed from nearly spherical metallic clusters it will have a band gap at the Fermi 

level. This gives a possibility of van der Waals bonded materials. The total energy 

of such a material would probably be larger than that of a homogeneous bulk metal 

or alloy. Khanna and Jena[33] have shown that two Mg4 clusters form a weakly 

bound cluster molecule where the individual four atomic clusters are only slightly 

disturbed from their isolated structures. Saito and Ohnishi[82] have used the jellium 

model to study the interaction of two 19 atom sodium clusters. They also found a 

cluster molecule but due to the open electron shell the two clusters were strongly 

bound together at a relatively short distance. 

The jellium model could be used to study the physisorption between two 

Na20 clusters. Pachero and Ekardt[83] have studied the van der Waals interaction 

between small sodium clusters in the jellium model. The asymptotic formula for the 

attractive potential would give an estimate of the possible binding energy between 

the clusters. Since sodium clusters are known to be fairly soft and the atoms are 

mobile already well below the melting temperature[S0,84], it is then likely that the 

clusters would melt together in trying to assemble the cluster material. 

A better candidate for a cluster assembled material would be Al12Si where 

the electronic magic number is accompanied with a compact highly symmetric 

icosahedral geometry. Unfortunately, the jellium model is not suitable in calculating 

the interaction between Al clusters, because the negative surface energy in the 

jellium model would always favour a cluster material as compared to a homogeneous 

jellium. It should be stressed that the repulsive interaction coming from the closed 

electron shells are needed for making the physisorbed state possible between two 
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Ah2Si icosahedra. Without the electronic shell effects two icosahedra brought close 

to each other would immediately melt together forming one larger cluster[85]. The 

latest calculations seem to show that it is not possible to maintain the Al12Si clusters 

in a solid but the clusters will coalesce to a bulk Al metal with substitutional Si 

impurities[86]. 

7. Summary

The Hiickel model for a cubic lattice was shown to be the same as the 

discretized free-electron model in the cubic mesh. It can be used to study the shell 

structure corresponding the free-electron model at low energies. Using this method 

it was shown that for a cube, octahedron, cubo-octahedron and Wulff polyhedron 

the shell structure is different from that of a sphere already when the number of 

electrons is less than about 100. 

A tight binding model with s- and p-electrons was used to study the effects 

of the surface roughness on the shell structure. It was found that fee clusters have 

always so rough surface that at the Fermi level the shell structure is disturbed 

although just below the Fermi energy it is clearly seen. An ensemble of clusters 

at a finite temperature can have an average density of states which shows the 

shell structure although all of the individual clusters do not have the same shell 

structure. The level spacing distribution of clusters at a finite temperature was a 

Wigner distribution with the width slightly smaller than expected from the bulk 

density of states. 

A potential well was used to study the shell structure in icosahedral clusters 

and in liquid clusters. The icosahedral clusters have the same shell structure as a 

sphere up to about 1000 electrons. It was shown that the surface fluctuations in 

liquid clusters do not destroy the main electronic shell structure. The relative effect 

of the surface fluctuations on the shell structure becomes smaller when the cluster 

size increases. 

Shell structure in the Woods-Saxon potential changes continuously from the 
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hard-wall limit to the harmonic-oscillator limit when the softness of the potential 

is increased. Investigations with both the Woods-Saxon potential and the self

consistent jellium model gave negative results to the suggestion[5,29) of the dominant 

contribution of the classical five-point star orbit to the shell structure of the Al 

clusters. However, the shell structure changes in favour of the five-point star orbit 

by adding a Na layer on the spherical Al cluster. 

Bandstructure calculations with model potentials indicated that if cluster 

assembled crystals could be formed from spherical metal clusters they are expected 

to be semiconductors. 
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