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ABSTRACT 

Mendoza Garay, Juan Ignacio 
Mimetic Relationships between Bodily Movement and Musical Structure: 
Theory, Measurement, and Application 
Jyväskylä: University of Jyväskylä, 2023, 107 p. + original articles 
(JYU Dissertations 
ISSN 2489-9003; 712) 
ISBN 978-951-39-9799-1 (PDF) 

Music moves us. It moves our body and our feelings. One needs to move the 
respiratory tract to sing, hands and fingers to play a musical instrument, 
perhaps the whole body to dance along with music. Even when one doesn’t 
move, one might be emotionally moved by the music. These movements—
actual or metaphorical—closely relate to the musical sound, as if one imitated 
the other. This coupling acts to communicate what is difficult to express 
otherwise: emotions. In effect, relations between music and bodily movement 
are numerous and diverse. The goal in this dissertation has been to examine 
specific aspects of such relations to gain a better understanding of them, as well 
as to use this understanding to devise novel digital musical instruments. First, a 
theoretical model was formulated to explain musical interaction. Here, people 
and musical instruments are regarded as agents that communicate by means of 
sensory signals organised in a hierarchical temporal structure of gestures at 
different timescales. This theory was utilised as a framework for the subsequent 
research, which dealt with measurement of different aspects of the framework. 
The first aspect related to modelling temporal segmentation of bodily motion. A 
method was developed and tested which is based on detection of change points, 
works in real time, and detects perceptually relevant gestures at different 
timescales. This method was applied to a novel gesturally controlled digital 
musical instrument, and to a system for musical sonification of daily activity to 
aid in reducing sedentarism. The second aspect of measurement provided new 
insights into the extent to which emotions may be conveyed by the body when 
playing an instrument or when dancing, and how this might be affected by 
perceptual sensory modalities and personality traits. The most salient factor 
was found to be not visual but auditory, with minor and major tonality being 
most strongly related to the perception of negative and positive emotions, 
respectively. Regarding movement, personality had a significant relationship 
with the way and extent that emotions were expressed in spontaneous dance, 
with Openness having the strongest relation, and Neuroticism and 
Conscientiousness the weakest. These contributions to knowledge serve to 
better understand musical phenomena and to advance innovation in the design 
of technologies for making music. 

Keywords: music, body, movement, emotion, personality, segmentation, 
instruments, machine learning, sonification, embodied, agency, gesture, control. 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Mendoza Garay, Juan Ignacio 
Mimeettisten kehon liikkeiden ja musiikillisten rakenteiden suhteet: teoria, mittaus 
ja soveltaminen 
Jyväskylä: Jyväskylän yliopisto, 2023, 107 s. + alkuperäiset artikkelit 
(JYU Dissertations 
ISSN 2489-9003; 712) 
ISBN 978-951-39-9799-1 (PDF) 

Musiikki liikuttaa meitä. Se liikuttaa kehoamme ja tunteitamme. Laulaakseen pitää 
liikuttaa hengityselimiä, soitinta soittaakseen käsiä sekä sormia ja musiikin 
mukana tanssiakseen ehkä koko kehoa. Vaikka ihminen ei liikukaan, musiikki 
saattaa liikuttaa häntä emotionaalisesti. Nämä liikkeet – todelliset tai metaforiset – 
liittyvät läheisesti musiikilliseen ääneen, ikään kuin toinen matkisi toista. Tämä 
kytkentä toimii välittäen asioita, joita on vaikea ilmaista muuten: tunteita. Musiikin 
ja kehon liikkeen väliset suhteet ovatkin lukuisia ja monelaisia. Tämän väitöskirjan 
tavoitteena on ollut tarkastella tällaisia suhteita tietyistä näkökulmista niiden 
ymmärtämiseksi paremmin sekä käyttää tätä ymmärrystä uusien digitaalisten 
soittimien kehittämiseen. Ensin kehitettiin teoreettinen malli musiikillisen 
vuorovaikutuksen selittämiseksi. Mallissa ihmiset ja soittimet nähdään toimijoina, 
jotka kommunikoivat aistisignaalien välityksellä. Aistisignaalit ovat järjestäytyneet 
hierarkkiseen ajalliseen rakenteeseen eri aikaskaaloilla. Tätä teoriaa käytettiin 
viitekehyksenä seuraavissa tutkimuksissa, joissa keskityttiin mittaamaan 
viitekehykseen liityviä näkökulmia. Ensimmäinen näkökulma liittyi kehon liikkeen 
ajallisen segmentoinnin mallintamiseen. Tutkimuksessa kehitettiin ja testattiin 
menetelmä, joka perustuu muutospisteiden havaitsemiseen, toimii reaaliajassa ja 
havaitsee merkitykselliset eleet eri aikaskaaloilla. Tätä menetelmää sovellettiin 
uuteen eleohjattavaan digitaaliseen musiikki-instrumenttiin ja päivittäistä 
toimintaa kuvaavaan musiikilliseen sonifikaatiojärjestelmään, jonka avulla voidaan 
mahdollisesti vähentää sedentarismia. Mittauksen toinen näkökulma tarjosi uutta 
tietoa siitä, missä määrin keho voi välittää tunteita instrumenttia soitettaessa tai 
tanssittaessa, ja miten aistikanavat ja persoonallisuuden piirteet voivat vaikuttaa 
tähän. Keskeisimpänä tekijänä havaittiin olevan auditiivinen aistikanava 
visuaalisen sijaan, ja molli- ja duuri-tonaliteetti liittyi vahvimmin negatiivisten ja 
positiivisten tunteiden aistimiseen. Spontaanissa tanssissa taas persoonallisuudella 
oli merkittävä yhteys tapaan, jolla tunteet ilmaistaan. Persoonallisuuden piirteistä 
avoimuudella oli vahvin yhteys, neuroottisuudella ja tunnollisuudella oli heikoin. 
Nämä tulokset auttavat ymmärtämään musiikillisia ilmiöitä paremmin. Lisäksi ne 
auttavat kehittämään innovaatioita, joita voidaan hyödyntää, kun suunnitellaan 
teknologioita musiikin tekemiseen. 

Avainsanat: musiikki, keho, liike, tunne, persoonallisuus, segmentointi, 
instrumentit, koneoppiminen, sonifikaatio, ruumiillistuva, toimija, ele, ohjaus. 
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11 

1 INTRODUCTION 

Imagine this: 
It is a busy Saturday afternoon at the city. People are flocking towards the 

stadium, where a legendary rock band will be playing. While the scattered 
crowd moves towards the venue, a small group of concertgoers sings one of the 
band’s hit songs and a driver passing by honks the car’s horn to the rhythm of 
the singing. They smile to each other and continue their business. A few blocks 
from the stadium there is a small chapel where an exequy is taking place. A 
chamber trio plays a funeral march while the coffin is being taken out to the 
coach. The walking pace of those carrying the deceased matches that of the 
music. Yet a few blocks away there is a hall where a dance concert is about to be 
held. As with the concert in the stadium, many people arrive to the hall, but no 
one is singing or honking horns. Next to the concert hall there is a gymnasium 
where only one person is exercising. The lonely person could not get tickets for 
the concert at the stadium but listens to music of that band on a portable device 
with headphones. A song is starting with a tranquil riff by an acoustic guitar. 
The person stands in front of a heavily weighted bar, stretching neck, shoulders, 
and wrists. Distorted guitars and bass now enter the song playing heavy chords 
in staccato, as cymbals remark the rhythm’s accents. The song is building up. At 
the stadium everyone expects the legends of rock to appear. At the concert hall 
people have tidily gone to seat at their reserved places. Although the 
atmosphere at the hall is calm, the audience is expectant. Many hear in their 
head the famous classical music soon to be played, they can anticipate the 
dancing that might go along. At the gym, the person grabs the bar, inhales, 
seemingly all the muscles of their body tighten. The cymbals chime, the drums 
start playing a powerful march and the full band explodes in heavy metal. The 
weighted bar comes off the floor as the person pulls it energetically in four 
beats.  On the fifth beat the bar is laid down and every eight beats of the music 
the bar is lifted. At the stadium the band enters the stage amidst flashing lights 
and fireworks, immediately starting to play one of their classics. The crowd that 
before was scattered now moves together in unison, jumping to the beat of the 
music. The spotlight is on the guitarist, playing one of the most memorable 



 
  
 

12 
 

solos in the history of rock music. The long hair of the musician is blown by a 
hidden fan. The player, after a series of rapid melodies, holds and bends the last 
note with the left hand while moving the right hand in the air as if lifting 
something. When the hand reaches its maximum height and the guitar string 
reaches its maximum tension, the rest of the band stops playing. The note keeps 
ringing several seconds while the rockstar, immobile except for the waving hair, 
holds the invisible object in the air. The crowd is in ecstasy. At the concert hall 
the first movement of the concert has begun. The dancers sway, jump and twirl 
along with the music. In the pit, the conductor and the musicians of the 
orchestra also sway while playing the music, as if they were dancing too. The 
audience is apparently calm, but most of them move just a little bit sitting in 
place. Some slightly sway their whole body, some nod their head. Some gently 
tap their feet or their hands. Many feel an intense desire to move but stay put, 
they would be embarrassed otherwise. At the chapel the musicians had stopped 
playing as the coffin has been laid in the coach. A loved one is gone; it is time to 
move on. In an apartment in the building in front of the chapel a baby starts 
crying. The mother holds the baby and sings a lullaby. She gently rocks the 
baby to the rhythm of the song, then the baby stops crying. 

Music moves us. It literally moves us. It moves our body. It moves our 
feelings. But it does not always move us. It does not move everyone in the same 
way. Music may move us. How? Music can move us. Why? Could those 
questions or their answers help us to explore new ways or perhaps better ways, 
of making music?  

It seems that an attempt to answer may start by the simple observation 
that music is mimetic, in the sense that it involves mimicry, a close 
correspondence between the musical sound and the movement and posture of 
the human body. As in the story narrated above, correspondences exist between 
music (i.e., musical sound) and movement of the human body. Such movement 
may be that which produces a sound (e.g., playing an instrument, singing, 
honking a car’s horn), that which moves along with the sound (e.g., dancers 
dancing, rockstars gesticulating, mourners marching, lifters lifting weights) or 
that which is internal (i.e., imagining to move, being affected by the musical 
performance).  

The paragraphs above represent the origins of my motivations to start the 
research project described in this dissertation.  Those are, however, similar to 
the motivations for much research already conducted. Therefore, my research 
was planned to focus on specific problems and was arranged to proceed in 
three sequential areas: theory, measurement, and application. The area 
concerned with theory was intended to provide a general framework. The area 
concerned with measurement was intended to quantitatively evaluate aspects 
of the theoretical framework. The area concerned with application was intended 
to put into practice the outcomes of the foregoing theory and measurement. For 
each of these areas, surveys of previous research allowed me to identify the 
specific problems to investigate. To wit, the area of theory inquired on the 
structure of musical interaction among people and their musical instruments (in 
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the broadest sense, including novel and future digital musical instruments), 
where the role of the human body and its gestures are at the core. Towards the 
application of this theoretical framework, the area of measurement investigated 
the temporal segmentation of musical movement of the body (e.g., dancing) and 
the embodiment of musical emotions (i.e., how emotions may be conveyed by 
the body when playing an instrument or when dancing). The area of 
application comprised the development of novel technological applications for 
making music, based on the measurement of temporal segmentation of bodily 
movement. These explored the idea that broad movement of the human body 
may be used to make music, opposed to the capability of fine control that is 
usually expected from musical instruments. 

This dissertation is written around seven research articles and is organised 
in five sections. The next section (BACKGROUND) is an overview of previous 
research on the topics covered by the articles, providing background 
knowledge, context, and definitions. Section 3 (AIMS OF THE RESEARCH) 
succinctly explains motivations for, and goals of the studies reported in the 
articles, describing how they relate. Section 4 (METHODS AND RESULTS) is 
composed of summaries of the methods and results reported in the articles. 
Section 5 (DISCUSSION) examines the results of the studies, considering the 
linkages between them and offering suggestions for future research. 
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2 BACKGROUND 

2.1 Music and the human body 

2.1.1 Music moves us 

The idea that we can be moved by music is widespread and often a cliché. Why 
are we moved by music? Before attempting to answer that question, we need to 
understand what it means—the definition of—to be moved by music. But the 
idea is so prevalent that it seems not to need clarification. In specialised 
literature and popular science articles, the question “Why music moves us?” 
suffices to introduce the inquiry on the powerful effects of music (Garrido et al., 
2019; Hodges & Wilkins, 2015; Levitin, 2010; Schrock, 2009). Why might we take 
for granted that music moves us? What is in music so powerful to have such a 
strong and universal effect on us, individually and collectively?  

“To be moved” by something is generally understood as to be affected 
emotionally by something. The word “emotion” has historically been related to 
the “movement of the soul” and a “physical disturbance and bodily movement” 
(Dixon, 2012). Examples of early investigation of the matter may be found in 
ancient Greek philosophy. Schoen-Nazzaro (1978) analysed Plato’s and 
Aristotle’s writings on the purpose of music. Plato’s writings in his books The 
Laws and Republic, are quoted respectively: “music education should measure 
and order the movements of the soul” and “we can recognise in music different 
types of emotional movements”. Schoen-Nazzaro infers the following: 

For Plato music's power over emotional states is founded on its force as an imitation 
of emotion. When someone listens to a piece, he picks up its emotional movement 
and begins to move in the open way. To paraphrase Plato, musical movement, con-
taining an expression of emotion, conveys this emotion to the listener.  

Aristotle’s sayings in his books Problemata and De Anima, also emphasise that 
music and emotions are movements, as they can move faster and slower, up 
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and down. Schoen-Nazzaro interpreted this correspondence as facilitating the 
induction of movement into the listener’s soul. These ideas converge in the 
essential notion that bodily processes (feeling emotions and moving the body) 
resemble music and vice versa, the essence of the concept “mimesis”, appearing 
throughout this dissertation. 

Beyond semantics, analogies and speculation, an emotion is indeed a 
bodily process. It involves motion being covert as in electrochemical processes 
in the nervous system. It also may involve more noticeable motion such as 
bodily movements or posture indicating the feeling of such emotion, for 
example gesticulation with hands or facial expression. Hence, scholars have 
rightfully asserted that “music moves us to tears” when researching music 
(Weber, 1891), and “music moves us almost without our effort” when 
researching dance (Wilkinson, 1869). Being “moved by music” is an idea also 
present in more recent research dealing with the emotional effects of music 
(Margulis, 2007; Sievers et al., 2012; Ter Bogt et al., 2011; Zeiner, 2010). 
Moreover, “moved” (as in being emotionally affected or touched) has also been 
used as a quantitative measure for the emotional effect of music (Eerola et al., 
2016; Eerola et al., 2021; Juslin & Laukka, 2004; Vuoskoski & Eerola, 2017; 
Vuoskoski et al. 2022). Likewise, “being moved” as paronomasia, has been used 
in the description of research that has quantitatively measured bodily motion 
when listening to music (Burger et al., 2012; Demos & Chaffin, 2018; Solberg, 
2015; Swarbrick et al., 2019; Zelechowska et al., 2020) and the relations between 
musicians’ movement and their experienced emotions (Van Zijl & Luck, 2012). 

The characteristic capacity of music to affect the human body, including 
feeling of emotions and bodily movement, has been appealing as an object of 
scientific inquiry, people’s curiosity, and sheer fascination, for the whole of the 
history of humanity. It has not been, however, until the past century, possible to 
conduct rigorous research aided by technologies that measure bodily motion, 
brain activity, characteristics of sound, and so forth. This research has led to 
vigorous scholarly debate and formulation of explanatory theories, of which the 
following paragraphs present an overview. 

2.1.2 Embodied musical interaction 

Embodied Cognition is a research program based on the observation that the 
body is involved, or may even be essential, in cognitive processes (Lakoff & 
Johnson, 1980, 1999; Shapiro, 2011; Varela et al., 1991). The Embodied Cognition 
program is strongly rooted in the idea that the mind is shaped by enactive 
interactions with the environment, including other living beings. Likewise, 
“Embodied Music Cognition” (Leman, 2008) was proposed as a research 
paradigm based on evidence rather than speculation, facilitated by technologies 
to record human motion. The central idea of this paradigm is that an 
understanding of music perception needs to consider interaction, in which the 
role of the human body in an environment is essential.  

 According to the theory of Embodied Music Cognition, a person’s 
spontaneous movement when listening to music can reflect the person’s 
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perception of the music. The empirical study of this theory observes the 
correspondences between bodily movement and music based on qualitative 
and quantitative analysis (Haga, 2008). Qualitative investigation has observed, 
for example, that music teachers explain musical sound with bodily movements, 
especially with their hands (Fatone et al., 2011). Quantitative investigation has 
shown that bodily movement induced by music relates to features of the music, 
such as periodicity and kinetic energy (Toiviainen et al., 2010) or tonality 
(MacRitchie et al., 2013). It has been argued that moving the body (as in dancing) 
enhances the experience of music, and that the movement of a musician 
conveys information that complements or supplements the sound of the 
musical instrument. An example of such information is the communication of 
emotions (Leman & Godøy, 2010). In a review of theoretical and empirical 
research related to Embodied Music Cognition, Leman and Maes (2014a) 
propose that the human body is a mediator for meaning formation, linking 
performance and perception via mirroring processes. While the role of the 
human body in musical activity had been studied before (see Schneider, 2010), 
Leman’s work proposed a comprehensive line of research which since his initial 
coinage of the term Embodied Music Cognition in 2007 has been embraced, 
challenged, and built upon. 

Schiavio and Menin (2013) complement Leman’s (Leman, 2008) arguments 
proposing that understanding of musical activity may be improved by 
considering the motor knowledge of the body, rather than considering the body 
as only a mediator. Geeves and Sutton (2014) also complement Leman and 
Maes’ work (Leman & Maes, 2014a) pointing out that considering the body as a 
mediator separates perception from action, going against the principles of the 
theory (i.e., in its claim to be different from viewing body and mind as 
separated). Also, they challenge the dichotomy between perception and 
performance expressed in Leman and Mae’s work, presenting some empirical 
evidence of the exchange of information between performers and listeners. 
Nonetheless, later Leman and Maes (2014b) state that “the mechanisms behind 
music perception are the same for music performance”. Matyja (2016) made 
further criticism to the Embodied Music Cognition theory (Leman, 2008; Leman 
& Maes, 2014a), in particular the hypothesis that “embodied sensorimotor 
engagement is essential to both production and perception of music”, arguing 
that it doesn't rigorously connect with empirical research and advocating for 
more investigation. 

However, Leman, in the preface to his book where the denomination 
“Embodied Music Cognition” firstly appears in the literature, (Leman, 2008) 
commented that the book is an essay with ideas acknowledging its 
incompleteness. These ideas originated from the observation of the state of the 
art at the time, of systematic musicology, being highly interdisciplinary, 
strongly empirical, taking into account physiological and biomechanical 
processes (e.g., the brain, feeling of emotions, bodily motion), and facilitated by 
technologies to measure those processes (e.g., brain activity measurement and 
imaging, motion capture). Although the initial ideas expressed by Leman and 
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colleagues about Embodied Music Cognition as a theory and hypothesis have 
been questioned, there are general points of consensus. Firstly, that interaction 
is essential to music cognition and that the human body plays an important role 
in such interaction. Second, such interaction is enactive by necessity. 

Leman, in his work, uses the phrase interaction with music, a concept 
connected to the idea that music is perceived by means of senses, that is, 
mediated by the human body. However, interaction with music, may fall short 
to describe the richness of musical phenomena, because when engaging in 
musical activity we don’t interact only with music, be it the score, the sound, or 
the meaning.  When engaging in musical activity we may also interact with 
other beings (living or inanimate) and in general with the environment. I 
contend that a better conceptualisation of music as an embodied phenomenon, 
is musical interaction. This term opens the possibility of viewing music as a 
process of communication, rather than solely an abstract object within the 
process of interaction. In this view the term embodied musical interaction may be 
applied to various modalities of musical experiences. For example, listening to 
musical sound (e.g., recorded music, a bird singing, a storm), observing a 
musical performance (which can be dancing along with music), playing a 
musical instrument, singing, and dancing to music, alone or with others. In sum, 
participating in one way or another in a musical activity. 

2.1.3 Musical gestures 

A useful construct to describe how musical interaction takes place is “musical 
gesture”. The term is closely connected with the more basic understanding of 
gesture as an action, usually a pose or movement of the human body, intended 
to express an idea or sentiment (Cambridge University Press & Assessment, 
n.d.; Merriam-Webster, n.d.). For example, waving a hand to greet or smiling to 
agree.  From this it is possible to infer that a gesture is finite (i.e., has a starting 
and an end), and that it is a linguistic object as it implies coding and decoding 
of meaning. These characteristics are connected to the various ways in which 
the term gesture has been used in musical contexts, which may be grouped in 
two categories (Leman & Godøy, 2010, pp. 5-10; Schneider, 2010, p. 71). 

The first category considers gestures by the literal definition, as 
movements or poses of the human body with the intention to express 
something. They can act as sources of information that supplement or 
complement musical sound. For example, a singer may move their hands to 
portray what they are singing; a guitarist playing heavy metal rock music may 
shake their head energetically to the beat. This notion is at least as early as 
classical Greek philosophy, in which gestures were seen as a means to realise 
mimesis, which literally meant a representation of mental and emotional states 
(Schneider, 2010, p. 77). The second category considers the properties of 
gestures applied to musical sound. This notion arguably derives from the 
observation that the intention in the production of music and the resulting 
musical sound are linked by bodily motion or lack thereof. For instance, 
production of vocal music requires the activation of the vocal organs, but it also 
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may involve the movement of other parts of the body to produce the singing 
utterance. Likewise, movement is required to play a musical instrument, for 
example blowing a tube, plucking a string, hitting an object, or pressing a key. 
The movement when singing or playing an instrument (including the human 
voice) normally corresponds directly to the sound, suggesting that the 
movement and therefore the gesture is present in the music itself. One could 
say that the sound has a shape.  This implies as well that the sounding gesture 
has the gestural properties of being finite and of carrying information, often 
expressing a sentiment. Take for instance a sung melody rising in pitch. This 
melody is finite, obviously it cannot be produced beyond the lung capacity of 
the singer. The melody rising in pitch requires an effort, therefore a stress, 
which in turn communicates the corresponding sentiment.  A similar process 
occurs when a person is excited and yells. These analogies suggest the mimetic 
nature of musical gestures. 

There are many and notable examples in published literature about the 
use of the phrase and concept “musical gesture”, in the description and analysis 
of music (Schneider, 2010; Mazzola et al., 2016). Numerous writings use the first 
category definition, but during the twentieth century the usage of the second 
category progressively gained more strength. Possibly so because its 
metaphorical nature served first to the speculative explanation of how music 
communicates and later to scientific scrutiny of those speculations.  

For example, Parker (1894, p. 229) considered gesture as complementary 
to music, but not a part of music: 

 
All changes of the body which manifest mental states –changes not included in any 
of the other modes of expression- may be classified under the general name of 
gesture.  

 
Other early examples may be found in writings of several authors mentioning 
composer and choir conductor J.F. Bridge’s method for teaching music notation 
to his singers based in “musical gestures”. The method consisted of figures 
made with arms and fingers depicting notes and rests (Novello et al., 1894; 
Simpson et al., 1894; Wurm, 1896). Similarly, Coomaraswamy regarded as 
“musical gesture” the hand motion of Indian singers, that may be expressive (as 
in acting) and may follow the music (Devi et al., 1913, pp. 4-5). Also, in a lecture 
on music and other arts, British composer H. W. Davies discussed the 
resemblance of music to gesture, remarking that they both develop in time 
(Music in Relation to Other Arts, 1910). 

In an analysis of Cherubino, the character in Mozart’s opera “The 
Marriage of Figaro”, Lee (1881, p. 227) begins considering the gesture of the 
performer and the music as separate, both working towards expressing the 
state of mind of the character. Then, both facets are merged in the following 
comment: 

 
What, then, can music give us, with all its powers of suggestion and feeling, if it 
cannot give us this? It can give us one thing, not another: it can give us emotion, but 
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it cannot give us the individual whom the emotion possesses. With its determined 
relations between the audible movement and the psychic movement, it can give us 
only musical gesture, but never musical portrait; the gesture of composure or of 
violence, the solemn tread of self-possessed melody, the scuffling of frantically 
rushing up and down, of throbbing, quivering, gasping, passion-broken musical 
phrases; it can give us the rhythm which prances and tosses in victory, and the 
rhythm which droops, and languishes and barely drags itself along for utter despair. 
 

Developing that line of thought, Leichtentritt (1924) in an analysis of 
contemporary German music, used the term “musical gesture” to refer to the 
quality of music by which it expresses emotion, however much detached from 
the bodily component: 

 
Thus we find in Erdmann's short piano pieces all the characteristic traits of 
Schönberg's manner: the conciseness, aphoristic brevity, the so-called atonality, the 
sudden jumps from high to low notes in the melodic line, the absence of regular, 
periodic construction, the abruptness of the musical "gesture", expressive of sighs, 
passionate outbursts of frenzy, sadness, etc. in rapid alternation. 
 

In an analysis of a Duo for Violin and Piano of 1942 composed by Roger 
Sessions, Schubart (1946) wrote that it “begins with a musical gesture similar to 
that of the Piano Sonata, and creates a mode of quiet lyricism”. 
Correspondingly, a review of “A Dictionary of Musical Themes” by Harold 
Barlow (E.B., 1949, p. 273) uses the term “opening gesture” solely to refer to the 
melody at the beginning of Schubert’s D minor Quartet. 

Sessions himself, in his essay “The Musical Experience of Composer, 
Performer, Listener” (Sessions, 1950), states that “A melodic motif or phrase is 
indeed a vocal gesture” (p.19), and elaborates:  

 
Music is significant for us as human beings principally because it embodies 
movement of a specifically human type that goes to the roots of our being and takes 
shape in the inner gestures which embody our deepest and most intimate responses 
(p.19). 
 

He comments further that “each musical phrase is a unique gesture and 
through the cumulative effect of such gestures we gain a clear sense of a quality 
of feeling behind them” (p.24). He suggests that the gesture may be 
communicated by a different means than the human body or the musical sound, 
the score: “the composer has attempted to indicate (I can find no better word) 
by means of a vastly complex system of symbols the essentials of what I have 
called a musical gesture” (p. .77). In contrast Waldbauer in an analysis of 
Bartók’s “Four Pieces” for two pianos (Waldbauer, 1960), uses the terms gesture 
and musical gesture solely to indicate intention, when writing that “Bartók in 
1920 managed to shorten this section [the fugue] and yet at the same time made 
it convey a larger gesture” and “The pervading percussiveness [...] modifies the 
original musical gesture; it narrows the range of possible musical meaning by 
reinforcing one single aspect”.  
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The historical development of the idea of gesture in music suggests an 
interest in inherent qualities of musical phenomena that extend beyond the 
musical sound, into the human psyche and culture. The concept of gesture had 
been useful to describe in a single word a musical unit of meaning. With 
advancements of audio technologies and the possibilities they offered, the 
concept of gesture remained applicable to the new aesthetics of electroacoustic 
music. In early publications on the aesthetics of electroacoustic music, gesture is 
at the core of analyses and discussions. In 1985, Wishart defined gesture as an 
articulation, by an agent, of a continuum whose dimensions are pitch and 
timbre (essentially spectrum), and space (Wishart, 1996, p. 17, pp. 109-115). An 
example of this provided by Wishart is the description of how gestural 
information may be encoded to control Morton Subotnick’s “Ghost Box”, a 
voltage-controlled electronic musical instrument (p. 105). The gesture would be 
encoded by manipulating knobs in real time, controlling voltages that were 
recorded as audio signals in a tape. Afterwards, those signals could be decoded 
by the system and mapped to sound. This paradigm is still being used for the 
gestural control of audio workstations and electronic musical instruments, 
albeit taking advantage of digital technologies. The system that allows to record 
a gesture that can then be decoded and translated into sound, is analogous to 
the composer imprinting the gesture in the musical score, which can be then 
executed by a musician. This is consistent with the ideas expressed by Sessions. 
However, the remarkable difference is that the new technology allowed to 
literally, not metaphorically, encode the movement of their own hand.  

The concept of articulation of spectrum and space in time as suggested by 
Wishart, was elaborated by Smalley (1986), hinting a definition of gestures as 
the spectral shapes (p. 62) or spatial trajectories (p. 91) of sounds that mirror 
instrumental and vocal sounds (p. 62), suggesting causality from human 
activity (p. 82), specifically that of the human body (p. 83). Smalley also touches 
upon, albeit tangentially related to gestures, the mimesis occurring in 
electroacoustic music as “musical materials and structures find resemblances 
and echoes in the non-musical world” (p. 64). Emmerson (1986) elaborated on 
the notion of mimesis in electroacoustic music, as “the imitation not only of 
nature but also of aspects of human culture not usually associated directly with 
musical material” (p.17). In the same text, Emmerson remarks the subjectivity in 
the decisions made by the composer of electroacoustic music when combining 
sounds. He states that “Loose terms such as ‘gesture’ may abound, but it is to 
this area, combining psychology of music with investigation of deeper levels of 
symbolic representation and communication, that future research must 
urgently be addressed”. Emmerson’s concern echoes the struggle of 
contemporary and past authors in defining gesture in more concrete terms. 

The works mentioned until this point had been phenomenological, 
speculative, and subjective. Not that they are less valuable, at least for the 
purpose presented here, in the quest for a historically grounded definition of 
musical gesture. One of the first attempts of systematic research on musical 
gesture may be found in the work of Fay (1974). That work describes an 
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experiment that was conducted to investigate memory and attention when 
listening to music. A group of students were asked to compare the time 
experienced when listening to silence and music. The task was done two times, 
the second time the group was asked to clap when presented with silence. The 
results showed that both times a majority experienced the music as being longer 
in duration, than the silence. Also, the spontaneous clapping had a frequency of 
about 60 BPM (i.e., one clap per second), a figure consistent with observations 
by later studies (Fraisse, 1982; Styns et al., 2007). These results were not 
conclusive but led to several hypotheses and speculation about the experience 
of musical time, considering the interaction of memory, attention, and 
expectation. This reasoning resulted in a rationale for music analysis based on 
segmentation of musical patterns. Hence, a musical gesture was defined as a 
meaningful unit derived from the segmentation process. Later, Schneider (2010) 
elaborated on these ideas concluding that “A musical gesture thereby may 
exhibit properties known from Gestalt theory (e.g., completeness, 
distinctiveness, conciseness) yet the aspect of ‘movement’, and of temporal–
dynamic organisation is often of special importance”. 

The central ideas that define the concept of musical gesture presented so 
far have remained more or less unaltered, being at the core of a wealth of 
research on Embodied Music Cognition. Still, a noteworthy theoretical 
development in the understanding of the perception and cognition of musical 
gestures, is the incorporation of “chunking”. This may be seen as an extension 
of the segmentation process noted by Fay, whereby musical—bodily and 
sounding—gestures are perceived in different timescales. Shorter-scale gestures 
are grouped or fused together into larger entities (i.e., chunks) in a process that 
has been called coarticulation (Godøy, 2011). Furthermore, this process may 
integrate different sensory modalities (e.g., auditory, visual) to produce the 
chunks. Godøy (2014) gives as examples of coarticulation “the fusion of a rapid 
succession of tones and finger motion into what we perceive holistically as an 
ornament, or [...] the fusion of drum sounds and associated mallets/hand/arm 
motion into a rhythmical groove pattern”. This notion implies that gestures 
may contain smaller gestures, in a hierarchical structure of nested gestures, 
hypergestures (Mazzola, 2012; Mazzola et al., 2016, p. 168). 

Take for instance a musical phrase that overall goes from a low pitch to a 
high pitch. That is a gesture, as its abstract meaning may be “going up”. The 
phrase may be decomposed in smaller chunks such as motives and into its 
atomic units, the notes. Also, the phrase may be part of a bigger structure, for 
example succeeded by a phrase going to a low pitch, forming an overall “arc” 
gesture. It may be the case that these sounds are performed by a musician that 
moves along with the sound. For example, a clarinettist might move the 
instrument upwards when playing an ascending motive or describing an arc 
when the melody is also an arc (Wanderley et al., 2005). Perhaps a more 
obvious example is the case in which a dancer would stretch the body upwards 
when the sound rises in pitch and depict an arc when the sound (e.g., a melody) 
rises and then decays in pitch. However, these are simplistic examples. It is not 
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always the case that the correspondences between sound and motion are 
evident. On the contrary, often they are complex. Furthermore, the perception 
of gestures and its hierarchical grouping, in either or both sensory modalities, is 
not straightforward. It depends much on context, including the subject (e.g., the 
person) and all the intricacies of individuality. Since a prime focus of this 
dissertation is bodily movement, the following subsection presents a succinct 
survey on research conducted towards the understanding of segmentation of 
bodily motion.  

2.2 Segmentation of bodily motion 

2.2.1 Human visio-temporal segmentation 

The cognition of musical gestures requires a process that parses signals of 
sensory organs into meaningful chunks. For the case of signals carrying 
information about bodily motion, temporal segmentation is defined as the 
perception and cognition of distinct successive chunks in time. These perceived 
units are semantically meaningful, they are essential to understand what an 
observed subject is doing. Studies on perceived visual temporal segmentation 
have consisted of experiments in which people manually annotate the timing of 
segment boundaries in video. Newtson (1973) employed recordings of a subject 
performing a sequence of actions such as “seated writing”, “standing up”, 
“walking”, and “lighting a cigarette”. Zacks et al. (2001) used video recordings 
of a subject performing the activities “making a bed”, “doing the dishes”, 
“fertilising a houseplant”, and “assembling a saxophone”. Hard et al. (2006) 
used animations of abstract figures interacting with one another and with static 
figures, where moving figures performed the activities “chase” and “hide and 
seek”.  

These studies have asked the annotators to indicate boundaries of 
segments at different timescales, as motions may be described as a whole or its 
constituent parts.  This is often referred to as granularity, a relative measure of 
detail in the description. For instance, a motion picture shows a person that 
walks to a chair, then sits down. The segmentation of this picture at a coarse 
granularity will result in two segments: walking and sitting. Each of those 
segments may be decomposed in segments of shorter duration, at a fine 
granularity. For example, the walking segment may be further segmented into 
each of the steps. Likewise, the sitting segment may be decomposed into motion 
that, once walking has ended, brings the body down to the chair, and another 
segment where the subject stays still while sitting. However, the segment in 
which the subject sits down may be considered a transition. Furthermore, the 
steps in the walking segment may be grouped such that each segment has a 
step of the left leg and the right leg, constituting segments at an intermediate 
level of granularity.  
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The results of the studies cited above indicate moderate agreement among 
annotators. Also, they observed that coarse-granularity boundaries matched 
fine-granularity boundaries, showing that the latter are sub-divisions of the 
former and vice versa. These findings are consistent with the theories 
expounded in the previous subsection. Kahol et al. (2004) did a similar 
experiment, in which two choreographers were presented with videos showing 
a dance routine and were asked to indicate segmentation points. The points 
annotated by one choreographer were significantly different to the other, with 
most segments of one being significantly longer than those of the other. This 
suggests that each choreographer had their own strategies for segmentation, 
thus it was not possible to establish that either was better or correct. Following 
the same experimental paradigm, Bläsing (2015) used stimuli composed of 
dance movements and annotators were professional and amateur dancers, and 
non-dancers. The results indicated that previous knowledge of the movement 
patterns had an influence on the resulting segmentation. The segments 
indicated by professional and amateur dancers tended to be of coarser 
granularity than those indicated by non-dancers. This suggests that the initiated 
in the art could group movement patterns into a cohesive idea, while those not 
knowledgeable would focus on the motion patterns without identifying links to 
cluster them in chunks. Likewise, Zacks et al. (2009) observed that perceived 
segmentation boundaries depend on context information when available, and 
on kinematics (i.e., movement features such as velocity, acceleration, amount of 
motion, etc.) if no context is available. Also, kinematics were found to correlate 
more with fine-granularity segmentation than with coarse-granularity 
segmentation. 

2.2.2 Automatic temporal segmentation 

The findings that kinematic features correlate with perceived segmentation at 
fine granularity and that those segments can be grouped in larger chunks, are 
crucial for the automation of segmentation. This is so because kinematic 
features can be measured by sensing technologies such as accelerometers or 
video tracking. The data from these devices may be processed in such a way 
that the kinematic features are grouped, emulating human perception. This 
process may be incorporated in a wide variety of applications that require the 
identification of patterns in signals. In what follows, a brief review is presented 
of research on automatic temporal segmentation methods developed for 
technologies that can measure human motion, such as optical marker-based 
motion capture and accelerometry. One key advantage of the former is that it 
can measure the position of limbs and torso. These can represent posture and its 
changes over time, from which time-derivatives (i.e., velocity, acceleration), and 
other characteristics (i.e., features) of motion can be computed. However, it 
requires an expensive and bulky apparatus that usually can only be 
accommodated in a laboratory. Accelerometry only measures acceleration, 
meaning less information about motion, but it has the advantage that sensors 
(accelerometers) are small, cheap, and reliable. These capabilities make possible 
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their incorporation into portable devices such as mobile phones and wearable 
devices. Example applications are the detection of activities (Noor et al., 2017) 
and of falls (Redmond et al., 2010), both in the context of assisted living for the 
elders (Ni et al., 2015). Accelerometers have also seen extensive use in the 
development of gesturally controlled digital musical instruments. A cornucopia 
of examples may be found in the NIME Proceedings Archive (n.d.). Temporal 
segmentation is one of the key processes to identify gestural patterns in the 
accelerometers’ signals, which may be used in various ways for the control of 
musical sound, a topic elaborated in the next subsection. However, the lack of a 
method for fully automatic segmentation for digital musical instruments has 
been noted as an open problem (Caramiaux & Tanaka, 2013). 

The implementation of automatic temporal segmentation is affected, 
among other factors, by the variability in human perception (if the system is 
meant to match human perception). However, the findings on perceived 
segmentation mentioned above are robust and have served as principles to 
devise automatic systems. Bodily movements at a coarse level of granularity 
have been called gestures (Mitra & Acharya, 2007) or activities (Ahad et al., 2008; 
Lara & Labrador, 2013). At a finer level of granularity, the movements 
considered to be the shortest indivisible units have been called primitives (Lin et 
al., 2016). Following this logic, Krüger et al. (2007) proposed a framework in 
which movements with semantic meaning are composed by shorter coherent 
units, thus formulating a heuristic for segmentation of human motion in two 
levels of granularity. Other studies have proposed segmentation in three levels 
of granularity. Bernard et al. (2017) proposed a model ordered from finer to 
coarser granularity, consisting of kinematic features, single patterns and groups 
of patterns. “Kinematic features”, as outlined in the previous subsection, refers 
to any of the univariate time series that can be derived from motion (e.g., 
position or angle of each articulation of the body, velocity, acceleration, etc.). 
Dreher et al. (2017) proposed a model composed of perceptual granularities. In 
that model, coarse granularity is composed of activities (e.g., jumping, walking), 
medium granularity is composed by actions (e.g., step with left foot, step with 
right foot) and fine granularity is composed by motion primitives (e.g., lift a 
foot for a step, return the foot to the floor). However, there are no published 
studies that have extensively tested the perceptual validity of a fixed number of 
granularity levels. In fact, the number of perceptual granularities, as the 
phenomenon at large, in all probability is highly dependent on context. 

Another challenge that research has faced is the different ways in which 
motion segments may be concatenated. One possibility is that there might be a 
moment between the end of one meaningful segment and the beginning of the 
next, in which motion does not correspond to either segment. This has been 
deemed to be a transition. For example, the segmentation method described by 
Krüger et al. (2017) excludes segments that are transitions between semantically 
meaningful segments. Another possibility is that segments are coarticulated 
(Meier et al., 2011). In the context of that study, the term coarticulation refers to 
the overlap of a distinct motion with the previous or the next. This meaning of 
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the word coarticulation is different from the one used in the previous 
subsection, which refers to the perception of gestures by integrating different 
sensory modalities.  

A transition or overlap may be short enough to be perceived as 
instantaneous. Most studies mentioned here dealing with automated systems 
for segmentation of human motion have aimed to find segmentation 
boundaries that are instantaneous, even if in fact there were transitions or 
overlaps. This treatment may result in transitions detected as proper segments. 
For the case of overlaps, a segmentation boundary might be placed in the 
middle of the overlapping section, or the overlapping section may be identified 
as a segment, or even both overlapping segments may be merged.  

Automatic segmentation has been considered a machine learning task, and 
as such, methods for segmentation can be classified as supervised or 
unsupervised. Supervised methods require examples of motion patterns to 
compare with the data intended to segment (Lan & Sun, 2015; Lv & Nevatia, 
2006; Müller et al., 2005; Patrona et al. 2018; Salamah et al., 2015; Santos et al., 
2015). Unsupervised methods detect motion units that are not known in 
advance (Barbič et al., 2004; Krüger et al., 2017; Zhou et al., 2013). These 
methods can be further classified as offline or online. Offline methods find 
segments taking into account the characteristics of the whole data. Online 
methods perform linear search on data, segmenting according to the similarity 
of observations (e.g., data samples) within a neighbourhood range. Also, online 
systems may be suitable for real-time applications, intuitively as long as 
computation of results is faster or as fast as the sample-rate of real-time data. 
Several online and offline temporal segmentation algorithms have been tested 
with data from accelerometers, as these sensors are suitable for a wide range of 
practical applications.  

An example of unsupervised temporal segmentation was proposed by 
Gharghabi et al. (2019). The method evaluates the similarity in shape—but not 
in statistical properties—between all fixed-length windows within a bigger 
window whose length has to be given by the user. A segmentation boundary is 
recorded where the similarity is minimal. This method assumes that each 
segment will be composed of at least two instances of a periodic motion.  
Another approach is to pose the task as a multivariate change-point detection 
problem (Endres et al., 2011; Gong et al., 2014; Krüger et al., 2017; Zhou et al., 
2013). Essentially, a change-point indicates a difference in statistical properties 
of the data within a sliding window (Aminikhanghahi & Cook, 2017; Fathy et 
al., 2019; Liu et al., 2013; Patterson et al., 2017). The size of the sliding window is 
a free parameter that adjusts granularity (i.e., timescale). Depending on the 
method other free parameters may be required to be adjusted. Zameni et al. 
(2020) described a method that efficiently finds segmentation boundaries in 
signals that may be highly dimensional. This method has initialisation 
parameters but no parameters to explicitly adjust granularity (i.e., timescale) or 
relevance (i.e., discarding boundaries that may be product of noise). The cited 
systems that were tested with data from triaxial accelerometers, segmented 
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activities that take at least a few seconds to complete. However, segments of 
dancing motion may range from less than a second to more than a few seconds. 

To measure the effectiveness of segmentation algorithms, most published 
studies have relied at least to some extent on the classic measures precision, recall 
and accuracy, by comparing boundaries annotated by one or more people with 
computed boundaries. These measures work well for classification problems in 
which the options are either “match” or “not a match” between a computed 
boundary and an annotated boundary. Dreher et al. (2017) note that a 
computed segmentation boundary being only slightly different to the ground 
truth (i.e., an annotated boundary) should be counted as a match. This has been 
often solved by establishing a window around each annotated boundary, to 
allow for tolerance. A computed point is deemed to be a true positive if it lies 
within that window. This approach was used in the study by Zameni et al. 
(2020), for example. Dreher et al. proposed a method that involves a window 
weighted with a normal distribution. However, the problem with this approach 
is that the window’s width is fixed while there is no certainty that any given 
width will correspond to the true probability distribution for the occurrence of a 
boundary, for all boundaries. Following the observations made by the 
perceptual studies cited in the previous subsection, it is not possible to 
generalise the temporal length of the transition from one motion pattern to 
another. In contrast, the evaluation method used by Gharghabi et al. (2019) 
consists of a score that measures the temporal distance between each computed 
boundary and the closest annotated boundary. All the distances are added and 
then divided by the total time. However, this score does not penalise extra or 
missing computed boundaries, which is problematic as there is no certainty that 
the number of annotated and computed boundaries will always be the same. 
Lin et al. (2016) describe another approach for evaluation of results, in which all 
frames in the sequence of annotated segments are labelled and the number of 
frames in the computed segments corresponding to the annotated segments’ 
labels constitute the measure of similarity. This last method might be 
appropriate for classification of segments, but it might be too restrictive for 
evaluating only the boundaries. This is because boundaries of short false-
positive computed segments (e.g., transitions between motion patterns) will 
break the continuity of parallel labelling resulting in a very high dissimilarity 
score. Notwithstanding, in a previous work (Mendoza, 2014), I described a 
similarity score that measures the distance between annotated and computed 
boundaries as in the method by Gharghabi et al., but also penalise missing or 
extra computed boundaries. 

The challenges for the implementation of automatic temporal 
segmentation are as many as the opportunities for real-world applications. As 
such, there is vast unexplored territory that may provide fertile ground for the 
research on and utilisation of, automatic segmentation of bodily motion in 
human-machine musical interaction. 
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2.3 Music and emotion 

2.3.1 Musical emotions 

Musical gestures, whether they are realised as sound or as bodily motion, may 
carry emotional signification. This statement, summarising beliefs held 
throughout the history of humankind, is supported by empirical research 
conducted since more or less the second half of the twentieth century. Such 
research has found that musical emotions can be expressed, induced, and 
perceived (Gabrielsson, 2002; Juslin & Laukka, 2004). To clarify the definitions, 
“expressed musical emotions” refers to the emotions a musical performer (e.g., 
musician, singer) portrays in their performance. “Induced musical emotions” 
refers to a change or enhancement of mood as an effect of listening to music. 
“Perceived musical emotions” refers to the emotions that an observer (e.g., a 
listener) understands as being portrayed by the music. These three aspects of 
musical emotions are independent. For example, a musician might perform a 
musical piece to convey happiness, while such performance doesn’t make a 
listener to feel happy or to recognise happiness in the performance. The listener 
might recognise or feel a different emotion. Or they might feel nothing. 

Several paradigms have been adopted to measure musical emotions in the 
three aspects mentioned above. The devices to measure induced emotions can 
be questionnaires (Zentner et al., 2008) or physiological measures (Coutinho & 
Cangelosi, 2011; Hodges, 2010; Koelsch et al., 2010; Västfjäll, 2010). Expressed 
and perceived emotions may not be measured by physiological measures, but 
only by self-report (Zentner & Eerola, 2010). For example, by declaring the 
emotion perceived after listening to a piece of music, or by using some device 
that allows to indicate the presence of an emotion continuously while listening 
to the music (Schubert, 2010). Likewise, the intended emotional expression of a 
musical performance may be assessed by asking the musician. Also, this may be 
accomplished by instructing the musician to play with a certain expression, 
usually indicated in musical scores using Italian words such as “allegro” 
(happy), “lamentoso” (mournful), and many others.  

Regardless of the aspect of musical emotions and the device to measure it, 
the measurement scales that have been used most often because of their 
demonstrated reliability may be classified in two models (Eerola & Vuoskoski, 
2011). The first is the discrete model and consists in assessing basic and possibly 
universal emotions such as fear, anger, tenderness, sadness, and happiness. The 
second model, sometimes referred to as “dimensional model of affect”, consists 
in assessing emotions in terms of dimensions, often two: valence and arousal. 
Valence is a continuum that extends from very negative to very positive, while 
arousal extends from “not excited” to “very excited”. These dimensions may be 
measured with discrete numerical scales, for example a “Likert scale” from -2 to 
2 for valence (including zero) and from 0 to 5 for arousal. Of course, more fine-
grained scaling may be used. 
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2.3.2 Auditory and visual perception 

Several studies have measured the expressed and perceived emotional content 
in music. These studies have looked at musical features, in other words, 
information contained in the musical performances. This information can be 
extracted from the auditory and the visual component of the performance. The 
visual component is essentially the body of the musician playing an instrument.  
Diverse approaches have been employed to qualitatively and quantitatively 
assess the contribution of auditory and visual features, to the perception of 
emotions in musical performances. The quantitative approaches can be divided 
in two groups, the first being experiments in which musical stimuli is 
manipulated and then collected ratings of perceived emotions are examined by 
analysis of variance. The second approach is to select a candidate set of features 
of the stimuli and examine how well they fit to the rated perceived emotions 
either individually or in combination, using statistical modelling. The latter has 
been used in music information retrieval to predict perceived emotions, seeing 
great advancement in the last couple of decades. However, quantifying the 
relation between the movement of musicians and the perceived emotion in the 
music they play, has not received as much research attention.  

The relations between perception of emotions and auditory musical 
features in different kinds of music have been measured and studied from a 
variety of perspectives. For instance, the perception of happiness in music is 
associated with a fast tempo and major mode (Dalla Bella et al., 2001; Juslin, 
2000; Peretz et al., 1998), as well as high pitch and increased sound level (Lange 
& Frieler, 2018), and soft timbre (Juslin & Lindström, 2010). The same studies 
found that sadness, in general, has an inverse association to the features 
associated with happiness. Anger has been identified as being associated with 
fast tempo, increased sound level, high-frequency content (Juslin, 2000), sharp 
timbre and minor mode (Juslin & Lindström, 2010; Lange & Frieler, 2018). Fear 
has been found to be related to reduced sound level, staccato articulation, large 
articulation variability, soft timbre (Juslin, 2000), and minor mode (Juslin & 
Lindström, 2010; Lange & Frieler, 2018). Tenderness has been found to be 
related to slow tempo and reduced sound level (Lange & Frieler, 2018), as well 
as low pitch, major mode, soft timbre (Juslin & Lindström, 2010), and reduced 
changes in dynamics (Eerola et al., 2009). In an experimental study Eerola et al. 
(2013) found that the most important feature was mode, and that the relations 
between ratings of perceived emotions and musical features is mostly linear. 
Additionally, Gabrielsson and Juslin (1996) found that different performers and 
instruments yield distinct ratings of perceived emotions. Battcock and Schutz 
(2019) observed that mode predicted the most variance for perceived valence.  

The relations between the movement of a musician and the emotions 
perceived by an observer have been studied to see if there is an effect of the 
visual component and to see which parts of the body have significant effects. 
Dahl and Friberg (2004, 2007) did experiments in which musicians performed 
marimba, bassoon, and soprano saxophone, in such a way that they expressed 
happiness, sadness, anger and fear. These performances were presented to 
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participants as video with audio, only audio and only video. The participants 
rated the perceived emotions in each performance. The video image was 
filtered to preserve the contours of the body and remove facial expressions. This 
is a paradigm that has been used to study communication and expression 
through movements of the body without the influence of facial expressions. 
One of the variants of this paradigm is the use of point-light displays, which is a 
visualisation of optical motion-capture markers often joined by lines forming a 
figure that resembles an anthropomorphic skeleton (Burger, Thompson, et al., 
2013; Eaves et al., 2020; Vuoskoski et al., 2014; Wöllner & Deconick, 2012).  

The analysis of responses in the experiment by Dahl and Friberg (2007) 
indicated that all emotions expressed by the musicians were recognised, except 
fear, and that the ratings for strength of expressed emotions were similar when 
performances were presented with or without audio. This suggests a strong 
effect of the visual component. For the performances of marimba, the head was 
found to play an important role in the communication of emotion. Also, 
participants gave subjective ratings of movement features such as amount of 
movement, speed, fluency, and regularity. The reported significant relations 
between emotions and movement features are as follows: happiness was 
associated with slow speed (bassoon), and large amount of movement 
(marimba and saxophone); sadness with little amount of movement (marimba), 
slow speed (all), and smooth fluency (marimba); anger with large amount of 
movement (marimba), fast speed (marimba), and fluency (all); fear with little 
amount of movement (marimba and saxophone). 

It is worth to notice that the cited studies have analysed averaged data 
from participants’ self-responses. In other words, participants normally would 
respond to a questionnaire asking the emotions they perceived while listening 
to music, then those responses would be averaged to get a rating of perceived 
emotions representative of the group. However, the variance within and among 
groups of responders has been a concern, albeit more pronounced for the 
measurement of felt emotions than for perceived emotions (Gabrielsson, 2002; 
Juslin, 2008; Peretz et al., 1998). Indeed, Vuoskoski et al. (2014) and Vuoskoski, 
Thompson, et al. (2016), found evidence for this by observing that the effect size 
of felt emotions was greater than that of perceived emotions. Lange and Frieler 
(2018) remarked that “means are only a crude approximation of the full 
distributions for the rating variables” after observing low to moderate 
agreement amongst participants rating perceived emotions in a range of 
musical stimuli. These and other studies (e.g., Hodges, 2010; Abeles & Chung, 
1996) have suggested that this variability may be attributed to individual 
factors such as age, gender, musical training, music preference, current mood, 
race, social status, and personality. 

Conversely, some studies have reported high agreement among 
participants rating perceived emotions. For example, Eerola et al. (2009) used 
film music to minimise inter-rater variability, assuming that this genre is 
intended to express clear emotional content to a large audience. Furthermore, 
they devised a selection protocol in which a panel of experts selected 360 
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excerpts of soundtracks representative of distinct discrete emotions and 
quadrants of dimensional affect.  Then the 110 excerpts with highest ratings 
were selected to be used in a perceptual experiment with non-experts, 
achieving high inter-rater consistency measured by Cronbach’s alpha (over 
0.99). The same stimuli were used by Eerola and Vuoskoski (2011), resulting in 
Cronbach’s alpha over 0.88 for the rating of perceived emotions. In another 
study measuring perceived emotions, Eerola et al., (2013) used composed 
stimuli, yielding Cronbach’s alpha over 0.92.  

Lange and Frieler (2018) also observed that the measurement of inter-rater 
agreement may be confusing. For example, Schedl et al. (2016) used classical 
music as stimuli for responses on perceived emotions, and deemed the 
agreement was low as Krippendorff’s alpha (another popular measure for inter-
rater agreement) was less than 0.4. Friberg et al. (2014) measured perceived 
energy and valence in ringtones, obtaining Cronbach’s alpha over 0.9 but a 
mean correlation ranging from 0.42 to 0.57. Cronbach’s alpha, Krippendorff’s 
alpha and the mean inter-rater correlation measure different aspects of the 
broader concept “inter-rater agreement” or “consistency”. The interpretation of 
them is not trivial and to date there is no systematic study on the details of 
these measures when applied to measure the variability of perceived emotions. 

Beyond the context of music perception, the measurement of 
correspondences between movement and perceived emotions has been widely 
studied for the purpose of automatic emotion recognition (Ahmed et al., 2019; 
Kleinsmith & Bianchi-Berthouze, 2012; Noroozi et al., 2018; Saganowski et al., 
2020; Sapiński et al., 2019). Among these studies there is also wide discrepancy, 
and the description of movement features that correspond to perceived 
emotions tend to be imprecise. It has been found and discussed that main 
factors for variability may be culture and gender (Noroozi et al., 2018). The 
cited studies reviewed research that found correspondences between 
movement descriptors in non-musical contexts and the emotions investigated 
by Dahl and Friberg (2007). These are summarised as follows: Happiness has 
been associated with arms open and moving, legs open or in parallel; sadness 
with low energy, head forward or trunk forward; anger with high energy and 
limbs spread; fear with head straight or bent back, and breath held. Although 
these findings may be useful in general contexts, most of these features are not 
relevant in the context of performing musical instruments due to constraints 
imposed by the playing techniques. In general, a musician uses the hands and 
arms mostly to perform the movements required to produce music and 
secondarily for those not required to produce sound (often referred to as 
“ancillary gestures”). Therefore, the arms may be not used for expressive 
intention if that prevents proper execution of the instrument. The expressive 
movement from which an observer may perceive emotional content should be 
from other parts of the body or somehow coincident with the movements used 
to play the instrument. For example, a pianist or a violinist cannot extend the 
arms to express anger, as the hands are required to be near the keyboard in the 
case of the pianist and holding the violin and moving the bow in the case of the 
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violinist. Nonetheless, it may be argued, for example, that lifting the elbows to 
enhance body width can be a surrogate for expressing anger. Other movements 
of the whole body, torso, head, and hands may convey emotional information 
visually. A pianist that plays sitting in front of the piano has considerable 
freedom for moving the torso and head. For example, arching the back and 
leaning close to the keyboard may convey a sense of intimacy. A violinist that 
plays in standing position has considerable freedom for using legs and torso. 
For example, in a simultaneous movement to the beat, the legs can be bent, and 
the torso can be swayed to express joy. 

2.3.3 Relation with personality and bodily motion 

The studies that have investigated perception in and induction of musical 
emotions, both auditorily and visually, have examined responses summarised 
as averages and it has been acknowledged that this approach is a rough 
representation of a sampled population. Several causes have been suggested for 
inter-subject variability when measuring expressed, perceived, and felt 
emotions (Abeles & Chung, 1996; Gabrielsson, 2002; Hodges, 2010; Juslin, 2008; 
Vuoskoski, Thompson, et al., 2016; Vuoskoski, Gatti, et al., 2016). Among these 
causes are individual characteristics of performers (e.g., musicians, dancers) 
and raters (i.e., those who report perceived or felt emotions). 

The relationships between people’s individual characteristics and musical 
emotions have been studied in various ways. Individual characteristics may be  
examined in terms of personality traits and measured with a questionnaire. 
Musical emotions have been observed in terms of perceived emotions in music 
and felt emotions when listening to music (also referred to as emotions induced 
by music). These can be evaluated with a questionnaire (i.e., self-report) or by 
measurement of physiological activity. For example, Gerra et al. (1998), 
described an experiment in which participants were presented with classical 
and electronic dance music, while several physiological and psychological 
measurements were recorded. Results showed that after listening to both kinds 
of music there was a change in emotional state. However, only after listening to 
electronic dance music, changes towards a negative mood and release of stress 
hormones had a positive correlation with “harm-avoidance” and a negative 
correlation with “novelty-seeking” temperaments of Cloninger’s personality 
scales (Cloninger, 1987). Another study, conducted by Park et al. (2013), looked 
at how “Big Five” personality traits (Extraversion, Agreeableness, 
Conscientiousness, Neuroticism and Openness) modulate neural correlates of 
musical emotion processing. In that study, participants completed the NEO-FFI 
questionnaire of Big Five personality traits (McCrae & Costa, 2004) and, while 
being scanned by a Magnetic Resonance Imaging device, listened to music 
expressing different emotions. The results showed significant correlations 
between brain activity and both Neuroticism and Extraversion as a response to 
music expressing happiness and fear, respectively.  

Other studies have evaluated musical emotions, perceived, or felt, solely 
by means of self-report. Vuoskoski and Eerola (2011a) conducted an experiment 
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in which participants completed the Big Five Inventory (BFI) personality 
questionnaire (John & Srivastava, 1999), the POMS-A questionnaire to evaluate 
mood (Terry et al., 2003), and rated music in terms of perceived discrete 
emotions (happiness, sadness, anger, fear, and tenderness). Ratings of perceived 
sadness correlated positively with Neuroticism and negatively with all other 
traits except Conscientiousness. Also, mood was associated with mood-
congruent biases in perceived emotions, moderated by Extraversion. In another 
experimental study, Vuoskoski and Eerola (2011b) asked participants to 
complete the BFI and to rate emotions felt when listening to music. Ratings in 
terms of three-dimensional affect—valence, energy, and tension—yielded more 
consistent and differentiated responses than discrete emotions. However, the 
relation between personality and music-induced emotions was stronger for 
discrete emotions. In addition, Extraversion was significantly correlated with 
experienced happiness, sadness, and tenderness. In a similar vein, Liljeström et 
al. (2012) asked participants to listen to music and indicate if it was familiar, 
how much they liked it, which emotions they felt and how intensely. 
Participants also completed the NEO-PI-R questionnaire for Big Five traits 
(Costa & McCrae, 1992). A positive correlation was observed between 
Neuroticism and the experience of negative emotions, while for all other traits 
that correlation was negative. This is consistent with the results of Vuoskoski 
and Eerola (2011a).  Furthermore, the correlation between personality traits and 
ratings of emotion intensity was moderately positive for Agreeableness, 
Extraversion and Openness, negligible for Conscientiousness, and weakly 
negative for Neuroticism. 

The studies mentioned in the previous paragraphs reveal distinct 
relationships between personality traits and the perception and feeling of 
emotions in music. Trait Openness is a special case as it has been suggested to 
be related to transient emotional responses (colloquially referred to as “chills”) 
to music and other expressions facilitating aesthetic experiences (McCrae, 2007). 
Nusbaum and Silvia (2011) tested this hypothesis in an experiment and found 
that Openness was the only Big Five trait that significantly predicted such 
responses as an effect of music listening. Furthermore, Silvia et al. (2015), found 
a significant and moderate correlation between Openness and the feeling of a 
profound experience (also referred to as “awe”) when listening to music, while the 
correlation with the other traits was much lower.  

While perception and experience of musical emotions may be observed by 
means of physiological measures and self-report questionnaires, it may also be 
observed by measuring characteristics of spontaneous movement to music, 
namely the embodiment of emotions. Burger, Saarikallio, et al. (2013) did an 
experiment in which participants were asked to spontaneously move to music 
(i.e., dance) while they were recorded with a motion-capture system. Bodily 
features were extracted from the motion-capture data, for example the torso’s 
tilt and rotation, floor area used, and acceleration of different body parts. 
Another group of participants rated the perceived emotional content of the 
same music in terms of both dimensional affect—arousal and valence—and 
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discrete emotions happiness, anger, sadness, and tenderness. A correlational 
analysis between bodily features and emotion ratings revealed significant 
relations between them, even though the two datasets were collected 
independently of each other and from different groups of participants. Using 
the same data, Burger, Polet, et al. (2013) found a mediation effect of emotion 
ratings on the relation between bodily features and features of the music, such 
as energy and activity in the low and high frequency ranges, attack time, and 
note density. That study also used Big Five personality scores of the dancing 
participants and found a moderation effect of Extraversion on the relation 
between head acceleration and the activity of low frequency audio. 
Furthermore, Conscientiousness was found to be a significant moderator of the 
relation between note density (i.e., notes played per unit of time) and 
movement fluidity. 

Using the same motion-capture and personality data as Burger, Polet, et al. 
(2013), Luck et al. (2010) found that Extraversion was directly related to the 
level of overall acceleration. This was later confirmed in a study with different 
data by Carlson et al. (2016), which also found that responsiveness to changes in 
tempo correlated positively with Conscientiousness and negatively with 
Extraversion. This suggests that conscientious people were compelled to follow 
tempo accurately while extraverts preferred to divert and follow their own beat. 
Bamford and Davidson (2019) measured the time to entrainment (i.e., the 
alignment of the periodicity of the movement of the body to the beat of the 
music) of participants that had completed the BFAS Big Five questionnaire 
(DeYoung et al., 2007) and the Empathy Quotient questionnaire (Wakabayashi 
et al., 2006). Results showed that Empathy and Agreeableness correlated 
negatively with time to entrainment. In other words, the more empathic or 
agreeable a person is, the faster (and arguably more easily) they will align their 
dancing motion with the beat of the music.  

While these studies have identified significant relations between dancing 
motion and personality, the predictive power of the produced models and 
correlations is at best modest. However, a later study by Agrawal et al. (2020) 
traded the interpretability of bodily features for greater prediction power. 
Instead of using bodily features extracted by manual selection (e.g., speed or 
acceleration of body parts, or the distance or angle between them) or by 
dimensionality reduction (e.g., vertical or lateral speed), they used the 
covariance among the speed of body parts. As a result, predictions for all Big 
Five personality traits were remarkably close to their scores as measured by a 
questionnaire. In summary, the cited studies provide evidence that embodied 
responses to music are related to personality traits and to musical emotions. 
However, none of these studies have examined the relation between personality 
traits and the extent that musical emotions may be embodied. 



 
  
 

34 
 

2.4 Technology for making music with broad bodily motion 

2.4.1 Responsiveness of musical instruments 

 
Musical instruments are usually designed to be controlled with fine movements 
of hands and fingers, as they afford precision and speed. These qualities are 
often described as the foundations of responsiveness, believed to be 
indispensable for musical expression. The instrument thus becomes an 
extension of the human body. Following these ideas, the capability of musical 
interaction is thought as uniquely human, despite the advancements in 
technology for automatic music composition, machine learning and in general 
of artificial intelligence. Such beliefs may be challenged, considering that newer 
technologies may provide a broad range of opportunities for musical 
interaction that cannot be achieved with non-electronic musical instruments. 
Can we engage in musical activity with broad movements of our body, without 
the need for precision or speed? Could a machine learn and understand these 
movements as gestures, in such a way that it can interact musically? Could this 
learning be a continuous process such that the machine learns the gestures by 
itself? 

Two and a half decades ago, Moore (1998) used the term “Control 
Intimacy”, referring to the cohesion between a musical instrument’s output and 
the ability of the musician using it. He argued that this cohesion depends on the 
time of the interaction between instrument and musician, which facilitates the 
translation of subtle gestures of the musician into sound that is emotionally 
expressive. This argumentation was based on the observation that such 
properties are present in the human voice acting as an instrument, and in most 
common musical instruments. Overall, this concept was used to support the 
desirability of electronic musical instruments that have a low time of response.  

Following the principles outlined by Moore, a response time approaching 
zero has been adopted as a goal by many designers and builders of electronic 
musical instruments (e.g., Bosi & Jordà, 2012; Jordà, 2002; Moro & McPherson, 
2020; Trolland et al., 2022). In the same vein, Wessel and Wright (2002) observed 
that many of these systems had a response time of up to 7ms, which lead to 
propose 10ms as the maximum acceptable. Over the years this number has been 
held as the standard (Jack et al., 2018; McPherson et al., 2016). However, a case 
may be made against this by considering non-electronic instruments that have 
slow response time. This happens with bass instruments that necessitate time to 
resonate, such as large wind instruments, or instruments that have mechanisms 
that impose time between the action and the sound, such as the piano. 
Musicians that play these instruments learn to play ahead of time.  

Dahl and Bresin (2001) did an experiment in which the response time of 
custom-made digital musical instruments was manipulated. Musicians were 
asked to play these instruments along with a metronome and the difference of 
the metronome and played onsets was measured. The results showed that 
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musicians can adapt to play ahead up to 55ms. This is close to the findings of 
Rasch (1981), who observed that the standard deviation of the time difference of 
notes that are to be played simultaneously by musicians in a small ensemble 
can be up to 50ms. An extreme case of measured response time corresponds to 
the grand piano, which can be up to about 200ms when played very softly 
(Goebl et al., 2005). In between there is a variety of response times that have 
been found to be adequate, depending on the musical context (Lago & Kon, 
2004). Nonetheless, the lowest acceptable response times are found for 
percussive motion, such as when tapping to a steady beat, at around 4ms 
(Rubine & McAvinney, 1990).  

Similar aspirations have been present when designing electronic musical 
instruments, posing a challenge for the case of digital musical instruments (DMI) 
that are made to recognise gestures “in the air” using machine learning 
techniques. For example, a musician wears, holds, or stands in front of, a device 
that may sense position or motion. The musician makes a gesture in free space, 
for example describes a circle with the head, or wiggles a hand, or stands in a 
particular pose. This is called “training”. The DMI would learn these gestures 
and recognise them when they are performed. The recognition of a gesture can 
be mapped to a musical action, such as triggering a sound, activating an effect, 
etc. (e.g., Gillian, 2011). There are several challenges with this paradigm, the 
most salient being timing. To recognise a gesture, usually a machine learning 
system must firstly observe the whole motion, then process the information and 
then output the result (i.e., which gesture is recognised, out of those that had 
been learned). Only then an action can be triggered.  

Several advancements have been made to reduce the processing time of 
DMI, often referred to as “latency” (McPherson et al., 2016; Wang, 2021). 
However, it is more challenging to work around the fact that a gesture must be 
observed in its entirety to be reliably recognised. This might not be a substantial 
problem when the goal is to recognise static gestures, for example a bodily 
posture or a hand sign. The challenge becomes evident when the goal is to 
recognise and use musically, gestures that take some time to perform, such as 
the aforementioned circle or wiggle. These are often called “continuous gestures” 
(Gillian, 2011). 

2.4.2 Machine learning of continuous gestures 

The matter of timing in the recognition of continuous gestures by machine 
learning systems for musical applications has not been comprehensively 
studied, except towards the making of DMI that use percussive gestures such as 
tapping (Gillian & Paradiso, 2012) and “air drumsticks” (Dahl, 2015; Trolland et 
al., 2022). Nonetheless, machine learning of continuous gestures has been used 
in numerous musical applications (NIME Proceedings Archive, n.d.). Chiefly 
two algorithms and variations of them have been extensively used to recognise 
continuous gestures, regardless of the sensing technology: Dynamic Time 
Warping (DTW) (Gillian et al., 2011) and Hidden Markov Models (HMM) 
(Bevilacqua et al., 2010). Both can estimate the likelihood that a gesture being 
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performed corresponds to a gesture that has been learned in the training. 
Nonetheless, these algorithms need to be trained with individual gestures. To 
accomplish this, the beginning and ending of a gesture need to be explicit. This 
task, called segmentation (as described in the previous subsection), may be 
executed by an external mechanism dictating the change-point within a stream 
of data, for example the user pressing a button (e.g., Merril & Paradiso, 2005) or 
with pauses between gestures (e.g., Bernier et al., 2013; Murad et al., 2017). 
Segmentation can also be performed in non-real-time (i.e., offline), for example 
by manually editing the boundaries with a graphical user interface. 

Alternatively, a probabilistic model may predict the occurrence of a 
change-point and the following gesture, provided that these gestures have been 
previously learned (e.g., Martin et al., 2020). However, to date there is no 
known method to reliably predict the occurrence of a change-point given any 
previous history of performed change-points, or without any prior knowledge 
at all. While these constraints have not prevented the use of these algorithms in 
new interfaces for musical expression (e.g., using only static gestures), the 
ability of a machine to recognise and learn static and continuous gestures 
without explicit training, but rather as a discovery process, would allow a more 
fluid musical interaction between human and machine. Thus, unsupervised 
segmentation has been identified as one of the most important challenges in 
gesture recognition (Escalera et al., 2016). This, combined with the 
acknowledged importance of computational modelling of gestures as the 
vehicles of emotional content (Camurri et al., 2001), has provided motivation 
for much of the research described in this dissertation. 

2.4.3 Sonification of bodily motion for sports and healthcare 

Miniature sensors, wearable devices and mobile technologies can track daily 
activity of people, both in extent (i.e., amount of movement) and type (e.g., 
walking, sitting). This capability has been utilised as a behavioural change 
technique (Michie et al., 2013) in interventions to promote a healthier lifestyle, 
increase physical activity (i.e., net amount of movement) and reduce sedentary 
behaviour (i.e., time of inactivity) (O’Keeffe et al., 2020). These technologies 
may be effective aids in interventions to increase physical activity and reduce 
sedentary behaviour (Larsen et al., 2022), but only in the short-term. Long-term 
adherence is still a major challenge (Brickwood et al., 2019; Buckingham et al., 
2019; Cajita et al., 2020; Creaser et al., 2021; Liu et al., 2020). Recent reviews 
suggest that more engaging methods are needed to effectively produce a 
change in behaviour (Wang et al., 2022). Sonification is a potential strategy to 
increase long term engagement and adherence, especially since it has been 
shown that the temporal dynamics of human motion and activity are similar to 
that of music (Chastin & Granat, 2010; Levitin et al., 2012). 

Sonification is the representation of data with sounds. A system that 
produces sonification of data from motion sensors attached to the body may be 
seen as a special case of a gesturally controlled DMI. Several studies have 
explored the use of real-time sonification of movement to aid sports 
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performance and rehabilitation (Schaffert et al., 2019). Ley-Flores et al. (2021) 
conducted a small-scale study to explore how sonification of exercise with 
metaphorical sounds affects body perception. They found that some sounds do 
affect body perception such as feeling strong, further increasing the amount of 
physical activity of the participants. Other studies investigated presenting 
activity patterns as musical sound to raise people’s awareness about their 
behaviour. For example, Krasnoskulov (2019) developed a system to present 
data as musical sound. In that study, data measured by an accelerometer and an 
optical heart-rate sensor were used in their raw form such as the number of 
steps per minute, heart-beat pulse, and after classification into events such as 
walking, running, and sleeping. These were mapped to musical parameters 
such as pitch, timbre, tempo, space, and loudness. This form of musical 
sonification is rather direct and may not result in a clear representation of 
discrete events such as those of normal daily life. Towards that end, some 
studies have considered segmentation of data so that the temporal relations of 
events in data are clearly reflected in the sonification.  

Last and Usyskin (2015) developed a sonification paradigm that segments 
data into a user-defined number of segments. They tested the ability of the 
produced sonifications to convey the desired information and found that most 
users are able to decode the intended information. Along the same line, Vickers 
and Höldrich (2019) defined segments representing domain-relevant 
characteristics using zero-crossings of a one-dimensional data stream, which 
then were mapped to sound. These studies show that sonification is effective in 
conveying activity data, and that temporal segmentation may be a relevant part 
of the process, as it allows for mappings between data and sound that produce 
clear representations of data aligned with the temporal structure of motion 
behaviour. However, the temporal segmentation methods used by the 
mentioned studies have important limitations, as they are based on threshold, 
zero-crossings, or clustering. All these methods require careful calibration of 
input parameters and may not generalise well when patterns in data are 
multidimensional. Addressing these limitations would greatly benefit the 
design and implementation of systems for sonification of human movement, in 
essence, gesturally controlled DMI. 

2.5 Opportunities for research 

The preceding background has offered an overview of the topics covered in this 
dissertation, hinting at possible courses of action to expand the existing 
knowledge. These are recapitulated as follows: 

Music is evidently a phenomenon that involves the human body 
immersed in an environment. Music, then, while having sound as its main 
component, is made up of multiple interactions among people by means of 
different sensory modalities (i.e., auditory, visual). The information exchanged 
in these interactions is organised in a hierarchical temporal structure of gestures 
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embedded in gestures. All these elements may be further scrutinised to 
formulate a model of musical interaction. 

The temporal structure of visually perceived human motion is 
hierarchically organised such that short units of motion are cognised by 
perception of their kinematic properties. These are further grouped into larger 
entities. This fundamental quality can be utilised to model human temporal 
segmentation and emulate it by automatic systems. This may be accomplished 
by having a motion sensor to measure kinematic characteristics of bodily 
motion and applying some process that finds temporal regularities. These 
temporal regularities, in turn, may be subsequently grouped into larger chunks. 
However, the emulation of human perception presents many challenges, one of 
which is the variability depending on context. One seemingly promising 
avenue for research is the incorporation of automatic temporal segmentation of 
bodily motion in systems that make musical sound based on broad bodily 
movement, as this paradigm has not been extensively explored before. Such 
systems may see application in gesturally controlled digital musical 
instruments in the broad sense, including systems for sonification of bodily 
motion that may be useful in healthcare and sports. 

The modelling of perception of musical emotions is also nontrivial and 
indispensable for a better understanding of musical interaction. In the first 
place, different sensory modalities (e.g., auditory, visual) may have different 
contributions. The detailed measurement and identification of which 
characteristics of auditory and visual perception contribute to the perception of 
emotions, is a possible direction for future research. Second, it is of interest to 
investigate the sources of variability in the perception of emotions portrayed by 
music. In that regard, personality traits are a measurable aspect of individuality 
that has been shown to be related to the perception and expression of emotions. 
In particular, the relations between personality and the extent that emotions are 
reflected in dancing motion, has not been measured before. 

The following section describes how these opportunities for research have 
been addressed in this dissertation. 
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3 AIMS OF THE RESEARCH 

The overall aims of the research reported in the articles included in this 
dissertation, were to advance the understanding of the relationships between 
the structure of music and the movement (including posture) of the human 
body, and to use this new understanding to devise novel technologies for 
making music. Towards that end, several studies were conducted, each 
focusing on a specific problem. The studies and their corresponding articles are 
grouped into three broad areas: theory, measurement, and application. The last 
two areas may be further regrouped into broad topics (FIGURE 1). 
 
 

 

FIGURE 1: Overview of the articles included in this dissertation. 
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Theory: 
 
The motivation for Article I was to establish a framework to investigate the 
correspondences between bodily movement and musical structure. However, 
since much work had already been done towards that purpose, it became 
necessary to focus into a less explored facet of the problem. Accordingly, it was 
decided to look at the broadest hierarchical level of musical structure, proposed 
to be musical interaction constituted by musical gestures. In addition, it was 
decided to incorporate human and machines as being the agents of the 
interaction. These decisions would make the resulting framework useful to 
approach the quantitative study of the phenomena (i.e., measurement), which 
would in turn inform the development of technology for music (i.e., 
application). 
 
Measurement:  
 
This part of the research is further divided in two parts. The first part of 
measurement was concerned with modelling the parsing of musical gestures, 
which are structural constituents of the musical interaction framework 
proposed in Article I. The goal of the study reported in Articles II and III was to 
develop a method for automatic segmentation of data from motion sensors. The 
method to be used was required to infer gestures from motion and posture, 
without the need to explicitly tell the system when the execution of those 
gestures begin and end. A further goal was to formulate the method to perform 
in real time (i.e., online). This capability would make it suitable for musical 
interaction systems such as digital musical instruments controlled by bodily 
gesture. A long-term vision for these capabilities was the design of systems for 
musical interaction that operate without supervision, enhancing their 
capabilities of gestural agency as proposed in Article I. 

The second part of measurement is concerned with musical emotions. In 
light of the framework proposed in Article I, musical emotions are dimensions 
of the gestural information that is exchanged among agents of musical 
interaction. The study reported in Article IV was aimed to measure and model 
the relationships between the movement of musicians playing musical 
instruments, and the perceived emotions when observing them in three 
conditions: auditory, visual, and audiovisual. This facilitates the assessment of 
the contribution of the different perceptual modalities and parts of the body to 
the perception of emotions in musical performance. Article V corresponds to a 
study that aimed to measure and model the relations between personality traits 
and the extent to which people embody musical emotions when spontaneously 
dancing to music. This contributes to assess the effect of the individual 
characteristics of agents participating in musical interaction. 
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Application: 
 
The studies reported in Articles VI and VII were aimed to develop applications 
within the conceptual framework outlined in Article I, and of the segmentation 
method described in Articles II and III. Concretely, the studies corresponding to 
Articles VI and VII focused on producing proof of concepts to demonstrate the 
feasibility of the applications. The study corresponding to Article VI aimed to 
develop a system to take data from a hand-held motion sensing device, segment 
the motion in real time, and use the segmentation data to control musical sound. 
This paradigm was thought of as a first approach to systems capable of fully 
unsupervised learning of musical gestures. These systems may be embedded 
into advanced musical instruments, or rather musical agents. The study 
reported in Article VII aimed to apply a multigranular version of the 
segmentation method, into a system that automatically produces musical 
sonifications (i.e., short pieces of music) representing daily activity recorded 
with sensors attached to the body. The motivation for the development of this 
system was its potential use as an aid in public health interventions towards a 
healthier lifestyle, by raising awareness of people’s daily activity in an engaging 
way. 
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4 METHODS AND RESULTS 

4.1 Theory 

4.1.1 Article I 

This article discusses the interaction between humans and machines with the 
purpose of making music. It first presents a generalised model of a musical 
instrument, simply referred to as a machine. Then an analogy is made between 
the model of the musical machine and a model of the human with whom it 
interacts. These models are composed by modules that represent processes, 
which communicate through signals. The models are also represented as 
greater modules that communicate with each other in a network of human–
machine musical interaction (FIGURE 2). 

 

 

FIGURE 2: Human-machine musical interaction. 



 
  
 

43 
 

The discussion is formulated in light of scholarly literature mostly related to the 
development of electronic musical instruments, as they have seen great 
development and are a logical step after non-electronic musical instruments. 
Take, for instance, the guitar followed by the electric guitar and then the electric 
guitar as a controller of software. The design of electronic musical instruments 
has progressively diverted from the design of non-electronic musical 
instruments, and the interaction of human beings with these musical machines 
has changed in turn, however still retaining some of its fundamental 
characteristics.  

Musical machines comprise non-electronic and electronic musical 
instruments. The generalised model of musical machines is composed by three 
modules. The first module is called “Input”, and it receives signals into the 
machine. This module executes signal acquisition by means of one or more 
input devices, for example controllers such as a keyboard, knobs, and buttons. 
The second module, “Mapping”, processes the input signals and its resulting 
signals flow to the last module, “Output”, which produces the outgoing signals. 
The signals going into the input, emanating from the output, and 
communicating the modules, may be representative of different sensory 
modalities: auditory, visual, or haptic. An advanced electronic musical 
instrument may have a microphone at the Input, enabling the acquisition of 
auditory signals. Such an instrument may have a Mapping module equipped 
with a machine learning process whose output is connected to a synthesiser and 
a visual display at the Output. The human user (e.g., a musician) is connected to 
the first module by means of the controller. Using this interface, the human 
transmits an action, also called gesture, to the instrument. This action is a signal, 
which flows toward the final module being affected by the various processes. 
This conceptualisation works also for non-electronic musical instruments. For 
example, the Input for the violin is the action upon bow and strings; while 
Mapping is the action executed by the musician upon strings, fretboard, bridge, 
and body; Output is the result of these actions. In this scenario, not all signals 
flow from the Input to the Output. In a musical instrument, most possibly an 
electronic one, there might be internal feedback signals going from the Output 
module back to the Input module or into the Mapping module without leaving 
the Output module, enabling the musical machine to monitor its own internal 
behaviour. 

The human being that interacts with a musical machine may be 
represented using the same logic as for the machine. The Input, Mapping, and 
Output modules that constitute a musical machine become Perception, 
Connections, and Action.  This representation resembles the Cartesian model of 
the human mind composed by Perception, Cognition, and Action (Armstrong, 
2006; Hurley, 2002). However, the proposed models follow a logic akin to the 
viewpoint of Embodied Cognition (Anderson, 2003) and in particular to the 
viewpoint of Embodied Music Cognition (Leman, 2008). Generally, the 
embodied cognition views consider cognition as an enactive process involving 
the body and its environment. For the case of the proposed models, body may 
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be understood as the triad of modules and the environment may be understood 
as the network of humans and machines connected by signals flowing among 
them. Furthermore, the intermediate modules in both models are actively 
modifying the signals flowing in an enactive direction: toward Action in the 
human and toward Output in the machine. Additionally, as in the model for the 
musical machine, the model for the human has internal feedback signals 
connecting the modules. These signals represent, for example, the modification 
of a perception organ’s behaviour triggered by an action, with or without the 
mediation of the brain.  

The generalised model of musical machines and the model of the musical 
human are highly resemblant of each other. When human and machine interact, 
the Action module of the human is connected to the Input module of the 
machine, and the Output module of the machine is connected to the Perception 
module of the human. In the resulting loop, the signals are continuously 
updated by the human and the machine. Thus, human and machine have the 
potential to become agents exerting influence upon each other to produce 
music. These agents’ behaviour is affected by the conditions imposed, 
demanded, or proposed by other agents (Bown et al., 2009; Gurevich & Treviño, 
2007). 

The musical interaction process may start with exploration and discovery 
of the intentions of the other agents, gradually turning into an objective-based 
task as a musical aesthetic emerges (Caramiaux et al., 2014). In this way, the 
machine resembles an entity—more a musician than a musical instrument (Van 
Nort, 2011). The evolution of these agents requires some internal adaptation. In 
the model of the human, the Connections module is dynamically affected by 
reasoning and experience, to satisfy demands from the musical environment or 
to accomplish individual musical goals. The machine can also go through such 
a process, as the mapping module can be affected by generative algorithms and 
machine learning.  

The influence that an agent exerts over other agents within a musical 
ecosystem, by means of the musical gestures carried by the multimodal signals, 
may be called gestural agency. The extent of this influence is a means of power 
that an agent has on shaping its musical environment, including the behaviour 
of other agents. A conservative view on this has the human in possession of 
most of the power (i.e., a musician uses a musical instrument as a tool), but we 
can see that in the system proposed here, the human is more a participant than 
a user (Kaipainen et al., 2011). In this way the whole musical ecosystem is 
enactive as the production of signals is linked to a function, a role of each agent 
in relation to the other agents (Matyja & Schiavio, 2013).  

In sum, this article presents a generalised model for a musical machine 
that resembles a model for human embodied cognition. Both models depict 
enactive agents interacting in a musical ecosystem. These agents are connected 
by signals that carry gesture. Gesture is the means that an agent has to exert 
influence over other agents to produce a musical result. This understanding of 
musical interaction between humans and machines fits well to traditional and 
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newer technologies for making music. In practice this serves as a framework to 
analyse musical interactions that integrate humans, traditional musical 
instruments, and newer electronic musical instruments. 

4.2 Measurement 

4.2.1 Articles II and III 

These articles describe the modelling of perceived segmentation of bodily 
movement induced by music. The modelling was based on the detection of 
change-points in bodily motion captured by sensing technology. The detection 
of change-points in motion data can be seen as equivalent to novelty detection, 
which is the identification of abrupt changes in data by a system, without 
training of the system (Markou & Singh, 2003). Foote (2000) described an 
algorithm suitable for finding segmentation boundaries in musical audio 
signals. This algorithm was chosen to be tested for the segmentation of motion 
data. The choice was based firstly because it is possible to implement the 
algorithm to be used in real time. This capability would be useful in the design 
of systems for control of sound or music, for example a gesturally controlled 
digital musical instrument. The second key capability of the algorithm is that it 
can be adjusted to detect segments at different timescales (granularities). This 
capability would allow to fine-tune the system to match the timescale of 
perceived segments. 

The segmentation algorithm exploits the characteristic checkerboard 
patterns that can be observed in a self-similarity distance matrix (FIGURE 3b) of 
a motion signal (FIGURE 3a). Elementwise multiplication of this matrix with a 
checkerboard matrix of the same size, results in a novelty score that indicates 
the rate of change in the data (FIGURE 3c). The peaks of the novelty score 
(encircled data-point in FIGURE 3c) indicate change-points, equivalent to 
segment boundaries (segmented vertical grey line in FIGURE 3a). The 
granularity of the novelty score is adjusted with the width of the distance 
matrix and relevant peaks can be selected over a threshold (θ in FIGURE 3c).  
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FIGURE 3: Online temporal segmentation algorithm. 

The algorithm was originally formulated to work offline, meaning that it 
requires the full extension of recorded data (Foote, 2000). However, it has been 
shown that the algorithm may be implemented to work online (Schätti, 2007), 
meaning that computation is carried out as data enters the system and only a 
small portion of the data is needed. This portion of data is the one needed to 
produce the distance matrix as shown in FIGURE 3. The result of the 
algorithm—a segmentation boundary—will be produced at least after the 
change-point in the signal (i.e., the online data) reaches half the size of the 
distance matrix. This will produce a delay between the occurrence of the 
change-point and the novelty peak. Further delay may be caused by a 
smoothing filter to the novelty score, to eliminate noise, and the test for a peak. 
This delay time is further referred to as lag and should be considered in the 
practical application of the algorithm. 

To investigate the suitability of the algorithm for the segmentation of 
perceptually relevant segments of bodily motion, multimodal data were 
collected at the motion capture laboratory of the Music, Art and Culture Studies 
department of the University of Jyväskylä. Adult participants (n = 12) were 
invited to the laboratory for an experiment about moving to music. These 
participants are further referred to as dancers, although it was not required from 
them to have any previous training or skill in dance. The music used for the 
experiment was the following: 

“Bouzouki Hiphop - Rempetila” (Tetarto Hood, 2014) from the beginning 
to 45.7 s. with no fade-in or fade-out. This is Rembetiko instrumental music 
mixed with Hip-hop bass and drums. Tempo is 90 BPM and meter is 4/4. All 
participants declared to not know this piece. 

“Minuet” in G Major (Petzold, ca. 1725). MIDI rendition with piano sound, 
from beginning to end (104 bars, duration 92.5 s.). Tempo is ca. 128 BPM and 
metre is ¾. All participants declared to know this piece. 
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“Ciguri” (Otondo, 2008) from 56 to 183.7 s. (duration 122.7 s.) with fade-
out the last 5 s. This is an electroacoustic piece that has no perceivable beat and 
therefore no metre. All participants declared to not know this piece. 

“Stayin’ Alive” (Gibb et al., 1977) from the beginning to 108.5 s. with fade-
out the last 2.3 s. Tempo is 104 BPM and metre is 4/4. All participants declared 
to know this piece.  

Data recording was done with one dancer at a time. Each dancer was 
asked to wear a motion capture suit to collect position data with an optical 
motion capture system. They were asked to move spontaneously to the music 
when it started sounding through the loudspeakers. Optical motion capture 
data, accelerometry, and video were recorded. The recordings started and 
ended at the same time as the music excerpt. 

Each music excerpt was presented twice. On the first presentation dancers 
were asked to move to the music without any constraint other than an area of 
approximately 4m2. The second time they were asked to hold a wiimote (a 
device containing a triaxial accelerometer) with one hand and “dance” only 
with that arm. In this condition the dancers were asked to remain at the centre 
of the area facing to a corner of the room in order to get in the video recording 
the most complete visualisation of the arm’s movement. This procedure was 
repeated for each music excerpt.  

After the multimodal data were collected, only videos of the dancing with 
one-arm holding the wiimote were used for the collection of perceived 
segmentation data, or annotation. This choice was made as it seemed more 
appropriate to evaluate the segmentation algorithm with portable sensing 
technology (accelerometry) instead of laboratory equipment (optical motion 
capture). This considered a possible subsequent use of the segmentation 
procedure in the design of a portable practical application such as a digital 
musical instrument. 

The annotations were later to be used as ground truth to test the 
segmentation algorithm. Article II described a pilot experience with two 
participants providing annotations: one female, the other being the author of 
this dissertation. In the pilot experience only the video corresponding to single-
arm movement to the “Stayin’ Alive” excerpt was annotated. Article III 
described the experience with six participants (3 male, 3 female) in which they 
annotated only two performances of dancers (one of a male, the other female), 
for each music excerpt of “Minuet”, “Ciguri” and “Stayin’ Alive”. This 
reduction was made to prevent the task being too long and to cause fatigue, 
while still retaining musical variety. The participants performing this task are 
referred to as annotators, to differentiate them from the dancers. The annotation 
was done in two conditions using a computer for presentation. The first 
condition was real-time annotation, in which videos with their corresponding 
audio are segmented as they are watched. The second condition was non-real-
time annotation, in which videos without audio were segmented as they were 
watched, with the option of scrolling the video back and forth to refine the 
annotation. Only the latter was used as ground truth, as the participants 
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declared in a post-task interview, that it was not always possible to accurately 
identify segment boundaries in real time. 

After the ground truth data collection was completed, it was used to test 
the effectiveness of the segmentation algorithm applied to the accelerometry 
data captured by the wiimote at the laboratory. In the first attempt, reported in 
Article II, annotations of the participants were summarised into a single 
compound sequence of segmentation boundaries for each video, using peaks of 
Kernel Density Estimation. This method had been used elsewhere for manual 
segmentation of audio (e.g., Hartmann et al., 2017). These boundaries were 
compared with the output of a segmentation procedure. This procedure 
combined several features extracted from the accelerometry, such as kurtosis, 
skewness, mean, root mean square, standard deviation, mean absolute 
deviation, interquartile range, and centred zero-crossings count. Then, these 
features were fed into the segmentation algorithm explained above.  

A grid search was performed to obtain the highest similarity between 
perceived and computed boundaries. The search involved the manipulation of 
several free parameters of the procedure, such as whether the triaxial data or its 
magnitude was used, the size of the window over which a feature was 
computed or the void use of a feature, the size of a gaussian to smooth the 
feature, the size of the distance matrix, and the peak threshold. Since the 
dimensionality of parameters is high, also a genetic algorithm was used to 
perform the search and to optimise for the highest similarity between annotated 
and computed boundaries. The similarity measure used in the pilot (Article II) 
was improved, therefore only the improved version described in Article III is 
explained further down this text.  

Visual inspection of the computed boundaries having the highest 
similarity with annotated boundaries reveals that while some boundaries are 
remarkably close, there are some computed boundaries that do not have any 
matching annotated boundary or are too far to be considered as matching. In 
general, it was possible to observe remarkable closeness between annotated and 
computed boundaries, but only within isolated regions.  

The methods described in Article II for assessing the segmentation 
algorithm were deemed worthy of improvement. Firstly, only by visual 
inspection of the annotations of more than two participants it was evident that 
annotations were too dissimilar to summarise them in a single response. This is 
consistent with previous research observing that perceived annotations of 
dancing subjects are highly dissimilar amongst observers (e.g., Kahol et al., 
2004). Second, the segmentation procedure had too many free parameters and 
optimising them lead only to find local optima and overfitting (i.e., works well 
only with a very specific combination of parameters). Third, the high number of 
parameters also contributed to make the process computationally expensive 
and thus unsuitable for real-time implementation. Following these observations, 
the methods were improved and reported along with results in Article III. The 
first improvement was to tailor the computed segmentation to the responses of 
each annotator separately. In a practical application, this would mimic the 
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adjustment that might be achieved manually by a user or automatically by a 
machine-learning procedure. The second improvement was to eschew features 
extracted from the raw acceleration data. Instead, the raw acceleration data was 
used as an input to the segmentation algorithm.  

Additionally, the similarity measure was refined, and it works as follows: 
𝑎𝑎  and 𝑏𝑏  are the time indexes of annotated and computed segmentation 
boundaries, respectively. Each element in 𝑎𝑎 is paired to the closest element in 𝑏𝑏. 
Then, the time differences between each paired element are added. The 
resulting sum is divided by the total time of the corresponding music excerpt 
and the resulting value is subtracted from one. The result of this calculation 
represents closeness of the paired values. To penalise the difference in the 
number of boundaries, the rate of paired elements is computed by dividing the 
number of paired values (the number of pairs multiplied by two) by the sum of 
the unpaired values in 𝑎𝑎 and 𝑏𝑏. Finally, the measure of similarity is closeness 
multiplied by the rate of paired elements. This measure will range from 0 to 1, 
where the maximum value indicates that 𝑎𝑎 and 𝑏𝑏 are equivalent and vice versa. 
A Monte Carlo simulation revealed that similarity equal to, or more than 0.66, 
will have a p-value of 0.05 or less. 

A grid search was performed to maximise similarity between annotated 
and computed segmentation boundaries, by modification only of the size of the 
similarity matrix and the novelty peak threshold. The greatest mean values of 
similarity between computed and annotated segments ranged from 0.73 to 0.91 
and were found for the musical excerpts of “Minuet” and “Stayin’ Alive”. These 
music excerpts have a clear beat and were familiar to the dancers. Conversely, 
similarity was lower for “Ciguri”, which is a piece that has no clear beat and 
was not familiar to the dancers. This suggests that the effectiveness of the 
method may be directly related to the presence of a clear beat and the 
familiarity of dancers with the music. 

The computed boundaries having the greatest similarity with annotated 
boundaries were then assessed by the same annotators. This means that the 
assessment is for the ‘best case scenario’. The annotators were presented with 
the same videos used for the annotation. The videos had an embedded scrolling 
timeline with consecutive numbers for boundaries and were presented in three 
versions: computed boundaries, annotated boundaries, and random boundaries. 
The videos were presented in random order and the annotators were asked to 
confirm or reject each boundary. FIGURE 4 shows the result of the assessment. 
Full lines indicate confirmed and dotted lines indicate rejected. The music 
excerpts for annotations 1, 3, 5 and 6 is “Staying’ Alive”; for annotations 2 and 4 
is “Minuet”. This assessment resulted in maximum Precision1 values ranging 
from 0.71 to 0.89, and Recall2 ranging from 0.82 to 1, for computed boundaries. 

 
1 Number of confirmed computed boundaries divided by number of computed boundaries. 
2 Number of confirmed computed boundaries divided by the sum of confirmed computed 
boundaries and the difference between the number of confirmed annotated boundaries and 
the number of paired annotated and computed boundaries. 
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Additionally, Precision of annotated boundaries3 ranged from 0.67 to 1. The 
latter may be seen as measure for the reliability of annotations. The lag time 
corresponding to the evaluated sequences of computed boundaries was 
maximum 0.5 s., while the median was 0.35s. 

 

 

FIGURE 4: Perceptual assessment of segmentation effectiveness. 

4.2.2 Article IV 

The study reported in this article explored the relative contributions of auditory 
and visual information, as well as composed and performed emotional 
expression, to the perception of emotions in musical performances. The study 
builds on previous research and contributes with novel elements. Firstly, in this 
study musical performances of piano and violin were used, as these 
instruments had not been extensively used in previous similar research. Second, 
this study focuses on perception of emotions in the musical performances, 
complementing similar previous research that had focused on felt (i.e., induced) 
emotions (Camurri et al., 2004; Castellano et al., 2008; Vuoskoski et al., 2014; 
Vuoskoski, Thompson, et al., 2016). Third, the musical performances had 
emotional intentions independent from the composed musical emotions, 
yielding congruence and incongruence. This was expected to generate a richer 
variety of emotional content for the investigation. Fourth, to assess the 
contribution of auditory and visual sensory modalities, the perceived emotions 
were measured in the musical performances presented only auditorily, only 

 
3 Number of confirmed annotated boundaries divided by the number of annotated bound-
aries. 
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visually, and audiovisually. Fifth, an analysis was carried out to quantify the 
relationships between perceived emotions in the musical performances and 
features from the performances. These features were auditory and kinematic, 
and allowed for detailed identification of parameters associated to perceived 
emotions. The data collection, analyses and results are explained in what 
follows. 

A violinist and a pianist recorded solo performances of four short musical 
pieces. These musical pieces were taken from a previous study by Vieillard et al. 
(2008) and were composed to convey three discrete emotions: happiness, threat, 
and sadness. They were originally composed for the piano, having chords and 
bass in the left-hand part, and melody in the right-hand part. The melody of 
each piece was extracted and was performed by the violin. Additionally, a piece 
intended to convey peacefulness was generated by changing the modality of the 
piece conveying sadness, from minor to major. The musicians were asked to 
perform four versions of each piece, having different emotional expressions: 
Happy, Angry, Sad, and deadpan (i.e., no emotional expression). They also 
were instructed to avoid extreme variation of tempo between performances. 

The musicians’ performances were recorded at the motion capture 
laboratory of the Music, Art and Culture Studies department of the University 
of Jyväskylä. The posture and motion of the musicians was recorded with an 
optical marker-based motion capture system. Eighteen reflective markers were 
placed on the pianist’s head, arms, wrists, hands, torso, and hips, with an 
additional two markers placed at each end of the keyboard. Twenty-six markers 
were attached to the violinist’s head, shoulders, torso, arms, wrists, fingers, hips, 
knees, ankles, and feet. Additional markers were attached to the violin: one on 
the curl, two on the body, and one on each extreme of the bow. This resulted in 
16 musical performances of each instrument.  

Each performance was recorded as audio and as motion-capture data. 
Using the latter, a video file was generated for each performance, showing a 
skeleton produced by a procedure that reduces markers and draws lines 
between markers (Burger, Thompson, et al., 2013), plus the markers on the 
instruments. This was done to remove facial expression and retain only the 
bodily posture and motion. 

The performances were then rated for their perceived emotional content 
by 90 participants which were university students. Three groups were made, 
each of which was presented with the musical performances in different 
conditions: Participants in group 1 (n = 31) rated only audio and only video 
presentations of the piano performances, while participants in group 2 (n = 34) 
rated only audio and only video presentations of the violin performances. 
Finally, participants in group 3 (n = 25) rated audiovisual presentations of both 
the piano and violin performances. The participants were asked to rate on a 
continuous scale, the extent of perceived Happiness, Anger, Sadness and 
Tenderness, in each presentation. The performances were presented in random 
order, on a computer screen, and the participants listened using headphones. 
The presentation was executed by a software that also showed horizontal 
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sliders on the screen that could be manipulated with a mouse, for the rating of 
perceived emotions. 

The data of perceived emotions was scrutinised for inter-rater agreement. 
Each rated emotion for each presentation condition was assessed by means of 
Krippendorff’s alpha (Kα)(Krippendorff, 2011) and two-way random Intra-Class 
Correlation (ICC) (Shrout & Fleiss, 1979). Kα was low to moderate (0.33 to 0.63), 
indicating high variance in the responses. However, ICC was high (0.86 to 0.98), 
indicating consistency for variation across responses even though their means 
may substantially differ. Regardless of the measure, inter-rater agreement was 
much lower for the ratings of only video. 

A series of two-way repeated-measure analyses of variance (ANOVA) 
were computed to explore the relative contributions of Composition (i.e., 
composed emotions) and Expression (i.e., performers’ expressive emotional 
intentions) on the ratings of mean perceived emotions, and how this might vary 
across the presentation conditions (only audio, only video, audiovisual). The 
two within-subjects factors were Expression (Happy, Angry, Sad, and deadpan) 
and Composition (happiness, threat, sadness and peacefulness). The analyses 
were carried out separately for each presentation condition, emotion, and 
instrument. FIGURE 5 shows the mean main effects for all emotions. 

For the only audio condition, the main effect of Composition was larger 
than the main effect of Expression, suggesting that composed emotion 
accounted for more variance in participants’ ratings of perceived emotion. Post-
hoc tests revealed that the participants were, with some exceptions, successful 
in decoding the expressive emotional intentions of the musicians based on 
auditory cues alone.  In the only video rating condition, the main effect of 
Expression was substantially larger than the main effect of Composition. In 
other words, in the absence of auditory information, the type of expressive 
intention accounted for substantially more of the variance in participants’ 
ratings. Post-hoc tests of these responses revealed that the participants were, 
with some exceptions, successful in decoding the expressive emotional 
intentions of the musicians based on auditory cues alone and visual kinematic 
cues alone. In both cases, the Sad expression was rated as the most tender 
although Tenderness was not an emotion expressed by the musicians. In the 
audiovisual condition, the differences between the mean effect sizes of 
Expression and Composition were reduced, suggesting that, compared to the 
only audio condition, visual information enhanced the perceptual salience of 
expressive intentions in relation to the composed emotional intention. 
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FIGURE 5: Effect sizes for perceived emotions.  

Additional analyses looked at the relationships between perceived emotions 
and features of the performances. Several features were computed from the 
motion-capture data describing kinematic aspects of movement (Dahl & Friberg, 
2007). Also, auditory features were annotated and computed from the audio 
recordings. The correlations amongst features are mostly obvious, for example 
the average time between notes onset was negatively correlated to all kinematic 
features. However, kinematic features were highly intercorrelated for the violin 
but not so for the piano. Interestingly, mode (major or minor) was the least 
correlated feature with other performance features, auditory or kinematic. 

Linear correlations and simple regression models between each feature 
and mean ratings for each emotion showed that, for both instruments, time-
derivatives of motion (i.e., speed and acceleration) have greater correlations 
with perceived emotions when audio was not present. Also, the time-
derivatives, for both instruments, are negatively correlated with the ratings of 
Sadness and Tenderness. This effect is greater in the violin ratings, showing 
clear positive correlation between motion time-derivatives and the ratings of 
Happiness and Anger. The correlations between time-derivatives and ratings 
for violin performances are stronger than for piano performances when the 
presentation of performances was audiovisual. However, in the only audio 
condition, all features have very low or no correlation with the perceived 
emotions in violin performances. Conversely, for piano performances, the 
relations between emotion ratings and all features are remarkably similar in 
both conditions where audio is presented. Auditory features that are highly 
correlated with the motion derivatives also have high correlations with emotion 
ratings. This may be attributed to the obvious relation between the physical 
energy used to produce a sound and the energy of the resultant sound. Other 
auditory features such as mode and lower spectrum content are most correlated 
with perceived emotions when audio is included in the presentation. 

Further analysis comprised multiple regression models for the mean 
perceived emotion ratings, having standardised audio and kinematic features 
as regressors (i.e., independent variables, predictors). Subsets of features with 
low collinearity were compiled having only auditory features, only kinematic 
features, and both. Models having all the possible permutations of features 
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within each subset were computed, including two to five features. None of the 
multiple regression models for subsets of only kinematic features had better fit 
than their simple regression counterparts. All the multiple regression models 
having subsets of only auditory features and having higher fit than their simple 
regression counterparts appeared in the models selected from the ones 
computed with the subset of audio and kinematic features, except one. The 
model for Sadness ratings of only audio piano performances made of only 
auditory features is slightly improved by adding the kinematic feature 
describing total amount of motion of the right hand and replacing variability of 
the lower part of the spectrum for variability of the higher part of the spectrum. 
This indicates a contribution of the coupling between movement of the right 
hand and the melody it is playing. 

Notably, all the multiple regression models with highest fit corresponding 
to the presentation conditions with audio, have mode included. For positive 
valence (Happiness and Tenderness) mode is positive and vice versa. For the 
ratings of Sadness in audiovisual condition, the models are the same: lower 
spectrum and minor mode. A similar effect is observed for the ratings of Anger: 
high variability of lower spectrum and minor mode.  

The combination of features in the models reveal some differences 
between the instruments. For example, in the case of the piano, models for 
Happiness and Anger in both conditions with audio are similar, meaning the 
same features with very close coefficient values. For ratings of Sadness there is 
an inverse relation with variation of lower spectrum, while for Anger the 
relation is positive. This might be because the pianist played chords with less 
dynamics in the pieces rating high in Sadness, while in the cases for higher 
perceived Anger, the pianist may have played the chords with more energy.  

A few models were improved over the simple regression, by including 
either or both average bodily speed and amount of movement, which are 
closely related measurements. Some models corresponding to ratings for 
performances presented without video have relevant contributions of kinematic 
features. Also, for ratings of piano performances, the average speed of the right 
hand has the greatest contribution for ratings of Happiness and Sadness, and 
the average speed and amount of motion of the left hand for ratings of Anger. 
Presumably this is because the right hand played the melody noticeably fast. 
Likewise, the left hand played the chords and, as mentioned previously, they 
might have been played more energetically in the pieces with higher ratings for 
Anger. In the case of the violin, the model for Anger was improved with the 
inclusion of total amount of motion and variability of high spectrum, to the 
existing model including only mode and having very poor fit. This leaves 
without a significant model, only the ratings of Happiness for violin 
performances presented in only audio condition. 

4.2.3 Article V 

This article reports on a study that explored the hypothesis that musical 
emotions are embodied differentially by people according to their personality. 
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To accomplish that, a set of musical excerpts was rated for perceived emotions. 
A separate group of people was asked to spontaneously move to each musical 
excerpt. The correspondence of bodily movement to the emotions portrayed by 
the music is referred to as “embodied musical emotions”. The extent of 
embodied musical emotions was measured against the personality traits of each 
individual. The experimental procedure, analysis and results are explained in 
the following paragraphs. 

The music used were 30 audio excerpts of different popular music genres, 
chosen to have a variety of rhythmic complexity and tempo. All excerpts were 
28 seconds long, solely instrumental, and had a binary metre. They were further 
trimmed to 15 seconds by removing the first and last 6.5 seconds. A group of 34 
participants, all musicology students at the University of Jyväskylä, familiar 
with research on music and emotions, and of Finnish nationality, rated 
perceived emotions in the trimmed excerpts. These shorter excerpts were used 
to abbreviate the duration of the rating task, thus reducing the risk of fatigue. 
They were asked to rate perceived emotions in the music, on seven-point scales 
for dimensional affect in terms of Arousal and Valence, and for discrete 
emotions Happiness, Anger, Sadness, and Tenderness. The music excerpts were 
presented in random order.  

Another group of participants was asked to move to the untrimmed music 
excerpts. These were 60 participants selected from a pool of 952 individuals that 
had completed the Big Five personality inventory. The selection was made such 
that the responses evenly covered low, middle, and high scores for each 
personality trait. Each participant was recorded in a separate session in which 
they were asked to move to the music in a way that feels natural. A recording 
was made for each music excerpt, with an optical motion capture system 
tracking position of 28 reflective markers attached to the body. As in the rating 
for perceived emotions, in this task the music excerpts were also presented in 
random order. 

Kinematic and non-kinematic bodily features were computed using the 
motion-capture data. They represented a variety of aspects of bodily motion 
and posture. Those features representing movement of individual bodily parts 
use subsets of markers locked to a local coordinate system defined by a 
reference plane. This reduces collinearity among features, which is desirable to  
use them as regressors in linear models (see below). Kinematic features were 
time-derivatives (speed, acceleration, and jerk) and the square of speed (speed2) 
of markers, amounting to 32 features. The square of speed was included as a 
supplemental measure for kinetic energy which is half the mass multiplied by 
the squared velocity. The mass can be omitted from the equation because it is 
constant. The Euclidean norm was computed for each kinematic feature, 
resulting in a single value corresponding to each motion-capture recording. The 
non-kinematic features were rotation of the torso, distance between hands, 
distance between elbows, distance between feet, and area. For these features, 
the median was used as a single value for each recording. An exception is the 
feature “rotation of the torso”, for which the standard deviation was used. The 
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feature “area” is defined as the smallest rectangular area of the centremost 
marker projected to the horizontal plane in a moving window of 4 seconds. The 
result was 38 bodily-feature values for each motion-capture recording.  

The rank correlation between each feature and each of the six ratings of 
perceived emotions was computed, resulting in 228 values of embodied 
emotions for each participant. Then, two analyses were performed to assess the 
relations between embodied emotions and personality traits. Analysis 1 
comprised the rank correlation between personality traits and embodied 
emotions. Additionally, the rank correlation was computed between 
personality traits and six aggregated embodied emotions.  “Aggregated 
embodied emotions” is the sum of absolute values, of embodied emotions 
corresponding to the same perceived emotion. 

The results of Analysis 1 reveal moderately weak correlations (< ± 0.25) 
between each Big-Five personality trait and the embodiment of each rated 
emotion by each bodily feature. However, the number of bodily features and 
perceived emotions with correlations having p-value over 0.05, are distinct for 
each personality traits. This number is higher for Extraversion, followed by 
Openness and Agreeableness, then Conscientiousness, and Neuroticism only 
showing negative correlation between hands distance and Valence. Correlations 
between personality traits and aggregated embodied emotions were weak (< ± 
0.2) and their p-values were high, casting doubt of their significance. However, 
it is at least possible to observe negative correlations between trait Neuroticism 
and perceived Happiness and Valence, while the opposite was observed for the 
other traits. This suggests correctness of the measure as Neuroticism is by 
definition a negative trait compared to the other traits. 

Analysis 2 consisted in linear regression models for each personality trait. 
The regressors (i.e., independent variables, predictors) of the models were 
embodied emotions, but only one bodily feature was allowed in each model, to 
examine the effect of each bodily part separately. All 63 possible combinations 
of perceived emotions for 38 embodied emotions (one for each bodily feature) 
resulted in 2394 models for each personality trait. Instead of selecting models by 
their statistical significance, relevance was assessed empirically by comparing 
the cross-validated error of a data model (RMSECV) and the error of a null 
model (RMSEnull). The relevance measure is ΔRMSE = RMSEnull – RMSECV, 
where a positive value indicates that the model is relevant, as it performs better 
than the null model and vice versa. The regression models produced by 
Analysis 2 amounted to 11970. 

FIGURE 6a shows the relevance measure ΔRMSE clustered by personality 
trait, for all models performing better than the null model. A quick visual 
inspection reveals that the highest values are for Openness, followed by 
Agreeableness and then Extraversion. The greater number of relevant models 
are for Agreeableness, followed by Openness and Extraversion. 
Conscientiousness and Neuroticism have both the weakest values and smallest 
number of models. FIGURE 6b shows only models whose regressors are 
correlations between a bodily feature and any combination of ratings for only 



 
  
 

57 
 

dimensional affect. Notably, none of these models for Openness perform better 
than the null model, and most models for Agreeableness perform better than 
models for the other traits. FIGURE 6c shows only models whose regressors are 
correlations between a bodily feature and any combination of ratings for only 
discrete emotions. In this case the pattern is similar to that when all types are 
allowed, but the best performing models for Agreeableness are not as strong as 
for models having only dimensional affect or for all models. This is consistent 
with Vuoskoski and Eerola’s (2011b) finding that, regarding music-induced 
emotions, discrete emotions have stronger relationships to individual 
differences than dimensional affect. When any combination of regressors for 
discrete emotions and dimensional affect is allowed, then the maximum 
ΔRMSE for Extraversion is significantly higher than when either only 
dimensional affect or discrete emotions are considered. 

 

 

FIGURE 6: Relevant models of personality traits. 

The best fitting models are shown in TABLE 1. When looking at the regressors 
in more detail, it is worthwhile to note that the embodiments of Valence and 
Tenderness by the bodily feature representing vertical acceleration of the centre 
of the body, are regressors for a model that is the most relevant for Extraversion 
and one of the most relevant for Openness. A closer inspection of this model 
reveals that the coefficients for the regression fit are very similar for both 
personality traits. However, the fit—and prediction power—of this model, is 
greater for Extraversion.  
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TABLE 1 : Best fitting models for each personality trait. 

Personality Trait Bodily Feature Perceived Emotions R2 p* ΔRMSE 
Extraversion Body center vertical 

acceleration 
Valence and  
Tenderness 

.173 .004 .254 

Agreeableness Body center speed2 Arousal, Happiness 
and Tenderness 

.281 <.001 .425 

Conscientiousness Head speed Arousal and Anger .122 .025 .096 
Neuroticism Hands distance Valence .089 .021 .127 
Openness Area Arousal, Valence, 

Happiness and  
Sadness 

.308 <.001 .587 

* p-values are not adjusted. See Rothman (1990) and Althouse (2016). 
 
Looking at both analyses, no single bodily feature embodying a musical 
emotion was a high rank correlate of all personality traits. Likewise, no single 
combination of bodily features embodying any combination of perceived 
emotions predicted all personality traits. 

The model selection method leading to the results presented above is 
focused on the prediction performance of models, allowing the best 
combinations of regressors for each model, with the sole constraint of having 
regressors for only one bodily feature for each model. However, this means that 
regressors are removed from a model only to improve its prediction power. 
Even when the models have been cross-validated, it is possible that regressors 
remain in the model because of their noise instead of their true explanatory 
power. Therefore, it is convenient to also examine only models that have all 
regressors for each type of emotional rating and also the models that have all 
emotional ratings. TABLE 2 shows all relevant models that have regressors 
considering all emotional ratings, all dimensional affect ratings, or all discrete 
emotions ratings. In these conditions, no relevant models are found for 
Extraversion or Neuroticism. Additionally, all except the following bodily 
features appear in regressors for at least one relevant model: Speed of all body 
parts, jerk of all body parts, shoulders’ acceleration, and squared speed of the 
head. Hence, these features may be irrelevant. 

TABLE 2 : Relevant models with all regressors of each subset. 

Personality Trait Bodily Feature Perceived Emotions R2 p* ΔRMSE 
Agreeableness Hands distance dimensional affect .191 .002 .257 
Agreeableness Body center speed2 all .307 .003 .169 
Conscientiousness head speed dimensional affect .118 .028 .091 
Openness Area discrete .245 .003 .310 
Openness Area all .316 .002 .315 
* p-values are not adjusted.  
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4.3 Application 

4.3.1 Article VI 

This article describes a system that was devised as a proof of concept for the 
feasibility of unsupervised learning of patterns in a continuous input signal, for 
gestural control in a musical application that doesn’t require quick 
responsiveness. The system is conceptually a musical instrument in a broad 
sense, for it essentially allows a user to control sound. One key quality of this 
instrument and the innovation presented in the article, is that it segments 
gestures without the need of explicitly indicating their starting and ending 
points. These gestures can be used to trigger actions that control sound. 
However, the detection of gestures needs some time to occur. It might be just a 
fraction of a second, but it is enough to be perceived as not instantaneous. This 
would normally be considered a disadvantage, but in this context it is not. 

A polystyrene ball having 12 cm. of diameter was cut in half and the 
interior was carved to fit a Myo armband controller (FIGURE 7). The Myo was 
originally designed by Thalmic Labs to be worn on the forearm. It has several 
sensors, but the system described here only utilised the triaxial accelerometer. 
The two halves of the ball are put together restoring the spherical shape, but it 
can be easily disassembled to recharge the battery of the Myo. The data from 
the sensors is broadcast in real time using the Bluetooth Low-Energy (BLE) 
specification. The BLE signal is captured by a personal computer nearby, and a 
piece of software (Visi, 2017) outputs the data in real time using the Open 
Sound Control (OSC) format. This data is sent to a User Datagram Protocol 
(UDP) port, where it can be accessed by other software as described below. The 
Myo was used for its convenience, as it was available to the researcher along 
with the software to access the data in real time. 

 

FIGURE 7: Proof of concept for musical gesture segmentation. 

The online temporal segmentation method described in Article III can detect 
boundaries between gestures performed with the hand-held controller 
continuously, without the need to indicate their start or end. Segmentation 
occurs in real time, and the result (a gesture boundary) is obtained with a delay 
time comprising the lag of the procedure as described in Article III, plus 
computation time. Given these properties, the segmentation procedure was 
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deemed to be useful as a preprocessing stage to map data from the gestural 
controller to sound, instead of directly mapping raw sensor data. However, 
because of the delay in the result, any action connected to the detection of a 
boundary cannot be performed immediately. Also, a further meta-parameter 
was incorporated to prevent segments having less than a given duration. This 
parameter was incorporated because the transitions between gestures may be 
detected by the system as short segments. The segmentation procedure, the 
musical system and its graphical user interface were implemented in the Pure 
Data programming environment, which receives the accelerometry data using 
OSC as described above. 

The detected segments are stored in memory and fed to a machine-
learning process, so that later they can be recognised when performed 
continuously. The DTW algorithm was used for gesture learning and 
recognition. This algorithm was chosen as it is available in the easy-to-use 
software Wekinator (Fiebrink et al., 2009), which communicates with Pure Data 
using OSC over a UDP port. However, another online learning and recognition 
algorithm could be used (e.g., HMM). As with segmentation, the result of the 
recognition has a lag due to buffering and computation. 

The segmentation and machine-learning processes are incorporated into a 
system that allows a user to reorder sections of an audio file. The sections are 
indicated by the segments detected in the hand-held controller’s signal. The use 
of the system comprises two main stages: Cut and Perform (FIGURE 7). In the 
Cut stage the full audio file is played while the user performs distinct gestures. 
The boundaries between these gestures are detected in real time by the 
segmentation process and their time location is stored and labelled with a 
sequential index (i.e., 1, 2, 3…). As this happens, the segments of the triaxial 
accelerometry signal are fed as individual examples to the gesture learning 
process (i.e., “one-shot” learning) and stored for later recognition. Also, a green 
vertical line is placed in the graphical user interface over a plot of the signal, to 
indicate that the gesture has been successfully segmented.  

After the Cut stage is executed, in the Perform stage the gesture 
recognition process is continuously comparing the incoming triaxial 
accelerometry signal, to all the segments that were stored in the Cut stage. The 
segment that is closest to a stored segment will be deemed a match and its 
corresponding audio section will be played in a loop. The learning process will 
keep assessing similarity between the incoming signal and the stored segments. 
If a gesture corresponding to a different section than the current one is 
recognised, then the corresponding audio section will be played once the 
current section reaches its end.  

During the development of the proof-of-concept, the system’s components 
were tested separately and progressively combined. This was done to inform 
the system’s design and implementation. One outcome of testing that is 
particular to the interaction paradigm presented here, is the discovery of 
gestures that work well with the system. This means static and continuous 
gestures (see BACKGROUND) and combinations of gestures that can be 
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segmented, learned, and recognised by the system. This involved the 
adjustment and fine-tuning of the system’s meta-parameters: timescale (i.e., 
granularity, given by the size of the algorithm’s checkerboard kernel), 
minimum duration of segments, novelty smoothing, and threshold for novelty 
peaks. Also, parameters of the DTW process had to be adjusted but those are 
not discussed as the DTW algorithm is well known and documented (Gillian et 
al., 2011). Testing was done in three phases: the researcher alone; other 
researchers and students of music; the general public at an outreach event of the 
University of Jyväskylä. In the first testing phase a sequence of seven gestures 
(static and continuous) was formulated to work well with a given setting of 
meta-parameters. The combination of gestures required rotating the ball. To aid 
in this, a printed letter was placed at each of the six orthogonal orientations, 
with an arrow indicating the direction of the next gesture in the sequence (see 
FIGURE 7). This sequence was used in the two following testing phases, in 
which participants were also allowed to freely experiment and discover other 
gestures that might work well. Several pieces of music were used, but to 
standardise the test, observations were focused on the usage with an electronic 
dance music piece. The findings of the testing were as follows: 

Static gestures: Any set of orientations that are different enough among 
them will work, but it was observed that the six orthogonal orientations along 
the three axes work flawlessly. 

Continuous gestures: Any combination and variation of repeated 
movements along the three orthogonal axes works well. These axes need not to 
be aligned with the horizon (i.e., they may be diagonal).  Movements that are 
sudden and energetic work best, as these have high acceleration and therefore 
are better measured by an accelerometer. Also, circular and semi-circular 
motion in different orientations, and “8 figure” trajectories could be segmented 
well as long as as the speed, and therefore radial acceleration in the case of 
circular motion, was powerful enough to produce a novelty score above the set 
threshold. Conversely, smooth movement will yield little or no acceleration, 
and might not be detected by the system. 

Transitions: Some transitions between gestures may be longer than the set 
minimum duration. In the Perform stage the system may get stuck looping such 
short segments, resulting in what one participant called “a DJ effect”. Another 
participant experienced the same result and both expressed that they liked it. 

Form factor: One participant of the second testing phase tried to use the 
device with closed eyes to explore the possibility of not having to look at the 
ball when manipulating it. This happened after the participant realised that it 
was necessary to look at the ball when changing its orientation and to look at 
the computer screen to check if the gesture was successfully segmented. A 
discussion ensued, which led to conclude that, since the ball is fully symmetric, 
it is not possible to be aware of its orientation without looking at it. 

User experience: The task proved to be challenging to different extents. 
Some participants expressed that they wanted to try again to improve the 
number of correctly segmented gestures. All participants showed engagement 
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and enjoyment. However, it is important to consider that participation was 
voluntary. It is to expect that researchers and students have interest as the 
experience is related to their profession and studies. Likewise, it may be safely 
assumed that visitors at the outreach event attended because they had curiosity 
about what they may be presented with. 

4.3.2 Article VII 

This article reports on the development of a system to produce musical 
sonification of daily activity data recorded by wearable devices equipped with 
accelerometers. The method employs a novel approach to multigranular 
temporal segmentation, that results in a clear correspondence between daily 
events and sound. Additionally, the system does not require the final user to do 
any fine-tuning of parameters. This system could be used in healthcare by 
helping people to be aware of their own daily physical activity in a novel and 
engaging way. 

To develop the system, two accelerometry recordings from 75-year-old 
adults were used. These were chosen from the AGNES database (Portegijs et al., 
2019; Rantanen et al., 2018) so that one corresponds to a low-activity sedentary 
subject while the other corresponds to a high-activity non-sedentary subject. 
The data was recorded by two tri-axial accelerometers, one chest-worn and the 
other thigh-worn. These data were pre-processed to obtain the Mean Absolute 
Deviation (MAD) of the square norm (Vähä Ypyä, 2015), from the thigh-worn 
accelerometer (FIGURE 8a). Also, activities were identified from the orientation 
of the accelerometers: lying, sitting, upright posture and walking (Rantalainen 
et al., 2022) (FIGURE 8b). Then, MAD and activities were integrated, resulting 
in continuous and smooth curves. For MAD the integration was logarithmically 
scaled to preserve distribution, as the relation between time of inactivity and 
activity follows a power-law distribution (Chastin & Granat, 2010).  

The integrated data was segmented using the algorithm described in 
Articles II and III. However, in this study several segmentation boundary 
sequences were obtained by correlating checkerboard kernels of different sizes 
upon the diagonal of the distance matrix for the whole data (FIGURE 8c). The 
resulting sequences at different granularities represent different timescales. The 
boundaries at different granularities are not perfectly aligned in time (FIGURE 
8d) because, as the kernel gets larger, it incorporates more information causing 
the novelty peaks to move slightly in either direction. Since the sizes of kernels 
were set to be minimally different, it is safe to assume that they correspond to 
the same segment. Thus, every coarser granularity boundary has an origin in a 
finer granularity boundary, except at the borders. The structure is hierarchical, 
where segments are embedded in larger segments. This reflects the structure of 
human daily activity. For example, a large portion of the day such as the 
morning, may contain activities like waking-up and getting ready, breakfast, 
commuting, and so forth. This hierarchical structure is also analogous to 
musical structure. For example, a song has sections like introduction, verse, and 
chorus, each of which have sub-sections, such as melodic lines. However, in 
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music the boundaries of each section exactly match in time, unlike the structure 
resulting from the procedure described above. If that multigranular structure 
was used for musical sonification, it would result in a seemingly unnatural 
performance. For example, each granularity level may be assigned to a different 
musical instrument. If so, then the instruments would begin and change 
sections of the song at different times. 

 

FIGURE 8: Multigranular segmentation of daily activity accelerometry. 

Therefore, the segmentation boundaries were aligned to the finest-granularity 
boundary. Also, the boundaries at the borders were removed. This resulted in 
sequences at different granularities being identical or slightly different. Thus, 
the finest and coarsest granularity sequences were kept, as well as the 
sequences that provide greatest variety in number of boundaries. For the 
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examples given here, the reduction resulted in sequences at three levels of 
granularity: fine, medium, and coarse (FIGURE 8e). Finally, the median activity 
(integrated MAD) was computed for each segment at each granularity level 
(FIGURE 8f). The result of the process is further referred to as “Segmented 
Activity” and consists of the length and the amount of activity for each segment, 
at each granularity level. 

The Segmented Activity was read as a musical score by a sonification 
system programmed in the Pure Data environment, such that each segment is a 
note. Notes are generated by pseudo-random generators, such that they are part 
of a user-defined scale (e.g., a pentatonic) if over a defined threshold, or 
chromatic (i.e., any note) if below the threshold. This results in dissonant 
melodies when activity is low and vice versa. Each granularity level of 
Segmented Activity is mapped to a different octave of synthesisers producing 
bell-like sounds, with notes corresponding to finer granularities being of higher 
pitch and vice versa. Also, a drum machine plays a user-defined rhythmical 
pattern that can comprise bass drum, snare, and cymbals. The drum machine 
will play only bass drum if the activity is low and will incorporate first the 
cymbals and then the snare drum as the activity increases. 

The user specifies how long the performance will last and the program 
computes the duration of each segment accordingly. The sum of activity for all 
segments is used as the seed for all pseudo-random generators, to obtain a 
deterministic performance. This means that the sonification of a given 
Segmented Activity will always be the same. The mean of activity for all 
segments sets the tempo. The mean between the values of both subjects was 
mapped to 120 BPM (beats per minute) for crotchet notes (60 BPM for minim 
notes), as the typical healthy average heartbeat at rest is just over 60 BPM 
(Nanchen et al., 2013) and both preferred musical tempo and average walking 
steps have a period of about 120 BPM (Burger et al., 2014). Hence, the 
sonification for the high-activity subject will have a slightly higher tempo than 
the sonification for the low-activity subject. Also, the mean activity is computed 
for segments of different granularities occurring at the same time. This is 
mapped to a low pass-filter whose cut-off frequency is increased as activity 
increases. For example (see FIGURE 8f), the full drum set and only notes within 
the defined scale play between about 12:30 and 15:00 for the low-activity subject 
and from about 9:00 to 10:00 for the high-activity subject. As these sections are 
of high activity, the sound is also spectrally rich and bright. Conversely, the 
sections with lower activity sound mellow as high frequencies are reduced. 

Two audio files were produced with the method described above, using 
excerpts from 6:00 to 23:00 of the data. These audio files were used as stimuli 
for a perceptual assessment. Data for this assessment were collected during 31 
days by means of a short survey on internet social media, targeting users in 
Finland and major English-speaking countries. In the survey, participants were 
asked to listen to each audio file, whose order of presentation was random, and 
to indicate which of them represented the more active person. A total of 1847 
responses were collected by the survey, of which 66.3% correctly identified the 
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sonification corresponding to high activity. A one-proportion z-test was 
performed to evaluate the statistical significance of the results, yielding z = 
14.03, with a p-value < 1 × 10-5. This may be sufficient to reject the null 
hypothesis, suggesting that the proportion of correct responses was significant. 
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5 DISCUSSION 

This section discusses the main outcomes of the research corresponding to this 
dissertation. While the presentation of background, research aims and articles 
was organised according to the initially aimed research areas Theory, 
Measurement and Application, this section is organised according to the 
resulting logical linkages among the topics investigated. The discussion starts 
with a succinct account of the theoretical framework proposed in Article I and 
how it relates to the following studies. Then, the studies concerned with 
temporal segmentation (Articles II, III, VI and VII) are discussed. The discussion 
follows on the studies concerning embodied musical emotions (Articles IV and 
V). Finally, the theoretical framework presented in Article I is discussed in light 
of the findings presented in Articles II to VII, and of recent literature. 

5.1 Gestures and agency in musical interaction 

Article I is an essay that describes the formulation of a theoretical model of 
embodied musical interaction proposing that both a musical machine (e.g., a 
musical instrument) and its user (i.e., the musician) can be considered as 
cognitive agents that communicate by means of musical gestures. In this context, 
musical gestures are defined as multimodal information that happens in time. 
The information that gestures carry shape the musical interaction, a concept 
referred to as “Gestural Agency”. The model is suitable to analyse musical 
interaction involving any type of musical instrument, ranging from traditional 
instruments like the violin or the piano, to state-of-the art digital musical 
instruments that incorporate artificial intelligence. 

Because of its broadness, the model is proposed as a general framework to 
analyse musical interactions integrating humans, traditional musical 
instruments, and newer electronic musical instruments. Thus, this framework 
was used as a starting point towards the application of the concept “Gestural 
Agency” in the design of novel musical instruments that may take advantages 



 
  
 

67 
 

of novel technologies and techniques such as gestural control by means of 
motion sensors and machine learning. To that end, two specific yet dissimilar 
aspects of the model were investigated with experimental and quantitative 
methods. The first one was the parsing of the gestures involved in musical 
interaction, namely segmentation. The second one was the emotional 
information carried by such gestures. 

5.2 Temporal segmentation of bodily motion 

5.2.1 Online temporal segmentation 

The method for online temporal segmentation tested in the study 
corresponding to Articles II and III, yields optimised sequences of computed 
boundaries that are substantially similar to the human-annotated sequences. 
However, given that median computation lag is 0.35s. and maximum tested lag 
was 0.5s., the system is not suitable for any practical application that requires 
immediate perceptual real-time response (i.e., up to about 10 to 50 milliseconds, 
according to the responsiveness standards outlined in the INTRODUCTION, 
subsection 2.4.1). However, this lag time is suitable for applications in which the 
occurrence of a segmentation boundary is not to be acted upon immediately. 
For example, the delayed response may be mapped to a procedure that changes 
the music to which a person is dancing, in such a way that it prompts the 
person to change the dance, thus creating a feedback loop. Another possible use 
of this delayed response might be to record the segments, then compute 
statistics (e.g., mean, standard deviation), and use those for a larger timescale 
control of music, lights, or other actionable medium. Furthermore, the 
segmentation result may be used to produce a near-real-time visual or sonic 
display that may be useful in clinical applications and research in biomechanics, 
for example. 

The sequences of assessed annotated and computed boundaries are 
visualised in FIGURE 4. While a substantial number of boundaries were 
confirmed, it is prudent to inspect the results sceptically. For instance, the fifth 
and sixth boundaries of Annotation 2 seem to be too far for any of them to 
correspond to the fifth computed boundary. However, this boundary was 
confirmed in the perceptual assessment. It is not possible to conclude whether 
this boundary corresponds to any of the annotated boundaries, or if it is a new 
boundary that was unseen at the annotation task (i.e., serendipity effect) or if it 
was a mistake made by the annotator in the assessment task. 

Another problem is that most annotators rejected boundaries that they 
had previously annotated. While the values of Precision for annotated 
boundaries are fairly high, some assessment responses look counter-intuitive. 
For example, the third boundary of Annotation 4 is evidently close enough to 
its computed counterpart to be considered an exact match. However, the 
computed boundary was rejected as shown by the dotted line. Another example 
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that may cast doubt on the perceptual task is the second and fourth boundaries 
of Annotation 3. These were rejected but their computed counterparts, even 
being noticeably very near, were confirmed. These odd assessment responses 
are not the norm, but they raise questions about the reliability of the perceptual 
tasks. Additionally, it is worthwhile to bear in mind that the annotation and 
assessment tasks were done at different times. This might explain the odd 
responses mentioned above. 

The aforementioned problems may be solved by integrating annotation, 
automatic segmentation, optimisation, and assessment, into one procedure. The 
assessment questionnaire may be improved by including a task that shows both 
annotated and computed boundaries in the same timeline, thus making evident 
to the annotator the difference between them. In addition, the task would 
require the annotator to explicitly indicate the corresponding annotated 
boundary for each computed boundary and vice-versa, if such correspondence 
exists. Despite the drawbacks of the segmentation and assessment methods, the 
best-case scenario reveals very high Precision and Recall values. This is relevant 
as the best-case scenario is akin to the best possible re-tuning of parameters that 
a user could make in a practical application scenario.  

This study contributes to the understanding of the behaviour of the 
segmentation algorithm when specifically applied to perceptually relevant 
segmentation of music-induced motion data from a hand-held accelerometry 
device. The knowledge produced by this study was significant for the design 
and implementation of practical applications of the segmentation method, as 
discussed in the two following subsections. 

5.2.2 Delayed gestural control of musical sound 

The online segmentation procedure discussed above was implemented to run in 
real time to detect pattern changes in a triaxial accelerometer signal. The 
segmentation process ineluctably produces a lagged response. In other words, 
noticeable time passes between the occurrence of the change from one pattern 
to the next, and the reporting that it had occurred. Nonetheless, the musical 
application presented in Article VI conforms to this constraint. The application 
allows a user to rearrange the playback of an audio file in real-time, by 
performing distinct continuous gestures with a hand-held device.  

The testing of the system used audio files of recorded music and the meta-
parameters of the system were adjusted for the experience with the chosen 
music. However, any audio recording may be used, and the parameters may be 
tweaked for further exploration that may lead to unexpected yet interesting 
results. The testing also revealed that while the system is not able to segment all 
possible gestures, it can still segment a substantial variety of possible gestures, 
comprising static orientations and variations of dynamic gestures such as 
straight and curved trajectories in different orientations. This result was ob- 
tained using a single setting of meta-parameters, showing a substantial degree 
of generalisation. This was unexpected, as the perceptual evaluation reported in 
Article III suggests that fine-tuning might have been needed for each different 
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user. Furthermore, participants of the assessment tended to take the task as a 
challenge, which in combination with the discovery of new meaningful gestures, 
and the sense-making of the constraints, turned the experience into a ludic one. 

While the system appeared to be promising, it also prompted reflection on 
opportunities for improvement. One immediate improvement that could be 
made is the form factor. The hand-held device would improve by having a form 
that allows the user to manipulate it without needing to look at it. Further 
variations of the system may include several sensors and the detection of 
patterns using features extracted from the raw triaxial acceleration. For example, 
a second hand-held device may be incorporated, or sensors that are not hand-
held but wearable. Other sensing technologies may be used as well, such as 
optical motion capture, video tracking, skeleton recognition from video, or 
clothing that measures posture changes. In addition, the use of several sensors 
by more than one person at the same time would allow shared control, turning 
the experience into a group activity (e.g., Staudt et al., 2022; Tahiroglu et al., 
2013). Yet a further idea for future research is the implementation of real-time 
multigranular segmentation, meaning the detection of gestural boundaries at 
different timescales. This implies running parallel instances of the segmentation 
algorithm, each with a checkerboard kernel of different size. Notwithstanding, 
an offline implementation of multigranular segmentation was devised for the 
system described by Article VII, discussed in the following subsection. 

Current limitations to add more sensors, features, and the capability of 
real-time multigranular segmentation, are algorithmic complexity, processing 
power and software efficiency. The two latter are due to the high-level 
programming and interconnected software used in the proof of concept. The 
solution beyond using faster hardware is to implement the system using low-
level programming. Possibly the best solution would involve the use of 
embedded software and hardware capable of parallel computing of features 
and granularities. Moreover, it is important to consider that while the setting of 
meta-parameters generalised well given the specific configuration being tested 
in this study, a different setting might be needed when using other 
configurations of hardware and software, when using different music, when the 
user is different, or when the user intention changes (for example, to explore 
different outcomes as suggested above). Thus, future research should consider 
scrutiny on the effects of the meta-parameters in the segmentation process and 
the user experience.  

The system described in Article VI has potential beyond the musical 
application described as proof of concept. Consider that in the system described 
here, the online segmentation procedure only contributes to display on the 
screen an indication when a gesture has been segmented in the Cut stage.  The 
display of a successfully detected gesture change-point occurs shortly after the 
actual change. This allows the user, for example, to stop the Cut and restart if a 
gesture change was not detected. Arguably this is an advantage to the 
performer, but presumably much more can be done to exploit the online 
segmentation capability. This capability in conjunction with the notion of 
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delayed control, deserve more research to explore further possibilities for near-
real-time interaction. For example, a system may learn gestures as they occur. 
This may be incorporated to interactive musical systems where both the user 
and the system discover and learn gestures at the same time, leading to a 
process of gestural agency as proposed in Article I. 

5.2.3 Musical sonification of daily activity 

The contributions of the study described in Article VII are firstly the extension 
of the segmentation algorithm used in the studies discussed above to produce 
hierarchical, multigranular, rectified, and reduced segmentation, and its 
application to the segmentation of daily activity recorded by accelerometry. A 
second contribution is the application of the resulting segmented daily activity 
to a deterministic musical sonification paradigm.  

Specifically, this study has shown how the occurrence of hierarchical daily 
events, as well as the amount of average energy recorded within those 
segments, may be mapped to musical sound. Furthermore, a perceptual 
assessment of sonifications produced with the described system, resulted in 
correct identification by a significant majority of the surveyed population. It is 
worthwhile to note that there are potentially infinite ways of mapping data to 
sound and their appropriateness may be highly contextual. Hence, the 
procedure described in Article VII should be taken as a proof of concept and 
not as the only solution to sonification of daily activity.  

The described musical sonification system may be useful in public health 
interventions towards increasing healthy physical activity or reducing 
sedentary behaviour, by making a person using the system aware of their 
intraday activity. The system is proposed as an alternative to visual display of 
information. Producing music with daily bodily movement might be appealing 
and thus more engaging than presenting the information by other means. 
Future research following this study should produce a working prototype to be 
tested with an ecologically valid population such as people diagnosed with 
sedentary behaviour. 

In practice, the musical sonification system would be part of a portable 
system comprising hardware and software. Such a system would record daily 
activity, produce the musical sonification and possibly recommend actions to 
the user. The hardware may be composed of already existing technologies such 
as miniature accelerometers and mobile computing devices like a smartphone 
or smartwatch. Preliminary testing shall be carried out to explore the extent to 
which the musical sonification may work as an engagement strategy, and to 
identify the conditions in which it may be effective. These conditions may 
include personal characteristics of target clients such as age, personality, or 
income, as well as environmental factors.  

Along with producing working prototypes for preliminary testing, it 
might be convenient to do more basic research. In the first place, it would be 
useful to explore implementing the sonification in different musical genres. This 
might contribute to engagement if the musical genre can be tailored to the 
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user’s preferences. Also, the possibility of having different musical genres 
would provide the user with the option to explore different music genres over 
time. For example, during the first weeks a user might want to produce musical 
sonifications of their daily activity in their own preferred musical genres. After 
a few weeks they might be interested in exploring other genres previously not 
of their interest. In principle the implementation of different musical genres is 
feasible as it implies the translation of musical composition techniques into 
algorithms. Nonetheless, the specific implementation of a system that generates 
music after providing it with the temporal hierarchical structure and the genre 
is a challenge that deserves further research.  

The incorporation of self-similarity into automatic music composition 
would be another interesting avenue for future research and may be necessary 
to improve the musical sonification of daily activity. Self-similarity is a 
fundamental property of most music and can be measured with the distance 
matrix of the segmentation algorithm. Self-similarity may be implemented, for 
example, as sequences of pitches (i.e., melodies) that repeat identically or with 
variations. The same principle may be applied to chords, rhythm, timbre and 
spatialisation (i.e., location of sound in the stereo or otherwise multichannel 
auditory image). Concretely, the self-similarity matrix and the multigranular 
segmentation boundaries may be used to assess the similarity of each segment 
with the others, within each granularity level. Those relations may be used to 
identify segments similar enough to be mapped to similar musical content (e.g., 
a melody, chord, or rhythmic pattern), and to produce musical variation (e.g., 
one random note of the melody or chord changes or one subdivision of a note 
in the rhythmic pattern is generated).  

While Article VII describes a method for multigranular segmentation and 
musical sonification of intraday activity of one subject, it is trivial to expand the 
method to work with different data. First, instead of using classified data for the 
segmentation, the activity itself may be used. The raw accelerometry signal 
might be enough, as demonstrated in the studies reported by Articles II, III and 
VI. Also, instead of using activity corresponding to one day, the average of 
several days may be used, resulting in a representation of a typical day. 
Likewise, sonifications may be produced for periods longer than one day, for 
example a month, or several months. Furthermore, instead of using data for a 
single subject, a group of subjects may be used. A population may be pre-
clustered in groups with homogeneous characteristics, such as age, gender, 
personality traits and so on. The resulting multigranular temporal segmentation 
may be useful to examine the typical intraday behaviour of the group. Its 
musical sonification will represent the group and this may open new and 
interesting doors for community music-making. For example, daily data of 
users may be uploaded to a server, in which their data is combined with data of 
other subjects in their social circle. This sort of collaborative music making may 
be a relevant avenue for exploration in further research, as it has been observed 
that social support through collaboration was the primary motivator for adults 
to maintain the use of wearable activity trackers (Kononova et al. 2019). 



 
  
 

72 
 

Finally, the described system for musical sonification may be inscribed 
into the framework proposed in Article I. The system is a musical machine that 
communicates through multimodal signals. Of these signals the most salient are 
the input (accelerometry) and output (musical sound). The system may act as 
an agent as its output (musical sonification) may prompt the user to change its 
daily behaviour to a healthier one. This will be reflected in the input signal to 
the system, generating a feedback loop of musical interaction. 

5.3 Embodied musical emotions 

5.3.1 Contribution of sensory modality 

In line with the ideas outlined in Article I pertaining to multimodality in 
musical interaction, the sensory modality of the communication of emotions 
might affect the contribution to agency. This surmise arises from the 
observation that emotions shape meaning and purpose. Although emotional 
content was not discussed in Article I and therefore it is not explicit in the 
theoretical framework, it has often been considered to be strongly conveyed by 
musical gestures (see BACKGROUND, subsection 2.1). Therefore, emotional 
content may be considered to be an important element of musical interaction. In 
this regard, the results of the study reported in Article IV on the contribution of 
sensory modality to the perception of musical emotions, might foster the 
expansion of said framework. 

The results reported in Article IV show that perceived emotion ratings 
were more consistent among responders when audio was present (audiovisual 
and only audio conditions). This suggests that music provided cues that most 
responders interpreted in more unified ways, as opposed to a possibly wider 
variety of interpretations that may have been made when rating only video.  

The post-hoc tests of the analyses of variance (ANOVA) revealed that 
participants were mostly successfully able to decode the performers’ expressive 
intentions based on both visual information alone, and auditory information 
alone. In the rating conditions where audio was present, composed emotion 
had a stronger effect on participant ratings than performers’ expressive 
emotional intentions. The greater effect of composition compared with the 
effect of performance expression is also verified in the analyses of performance 
features (auditory and kinematic), where musical mode (whether the piece was 
major and minor) was at the same time the least correlated feature with other 
performance features and the dominating predictor of perceived emotions. Also, 
all multiple regression models for ratings where audio was present had better 
fit after including mode in the model. These observations reveal the prevalence 
of mode as a predictor of perceived emotions in music. 

The direct relationships observed—except for violin performances when 
only audio is present—between mode and emotional valence, and between 
audio energy and Anger, are consistent with previous studies (see 



 
  
 

73 
 

BACKGROUND, subsection 2.3). Other relations found in this study have 
partial agreement with previous research, such as the relation between amount 
of movement and ratings for Happiness being direct, and inverse for Sadness, 
as observed by Dahl and Friberg (2007). In this study, that relation was strongly 
verified for all the motion-capture marker groups on the violinist when video 
was presented and weak or inverse when only audio was presented. For ratings 
of piano performances, that relation was only verified for the movement of the 
right hand when audio was present. 

The cause of the inconsistency of relations between performance features 
and perceived emotions for violin performances presented as only audio, 
compared to the other presentation conditions, remains unclear. A case can be 
made that this effect corresponds to the melodic nature of the violin 
performances, which lacks the additional information provided by chords in 
the piano performances. Also, it should be noted that the most correlated 
motion features for ratings of violin performances when video is presented, are 
performance speed, variability of performance speed, and energy. These are 
moderately to strongly correlated to motion time-derivatives. This suggests that 
responders made their assessment of violin performances with more emphasis 
on movement, and the assessments of piano performances with more emphasis 
on sound, the presence of chords in piano performances likely being a 
substantial factor in this difference. In addition, the amount of movement of the 
right hand of the piano had an important contribution to the perception of 
valence. These observations reveal important differences in the way that the 
different musical instruments and possibly also the musicians, conveyed 
musical emotions. 

While this study led to interesting observations, its limitations should be 
addressed in future research. First, it was observed that there were substantial 
differences among the musical instruments. Since each instrument was played 
by only one musician, the observed differences might also be attributed to the 
playing of each musician. Therefore, it would be convenient to repeat the 
experiment using more or other instruments than only a piano and a violin, and 
more than one musician playing each instrument. Following this pathway 
might reveal interesting opportunities for the exploration of the idiosyncrasies 
of musical instruments. 

A second limitation of this study is that its findings might not be 
transferrable to music cultures outside the culture following the line of 
European classical music. This postulation is based on the participants of the 
experiment, the music used, and the strong effect of mode on perceived 
emotions. Regarding the participants, it was taken for granted that they had 
been raised in circumstances that would have exposed them to European 
classical music. This assumption was made solely on the fact that all 
participants were of Finnish nationality. Regarding the music used in the 
experiment—in the style of European classical music—it is strongly reliant on 
the tonal system. In such system major and minor mode have strong 
significations of positive and negative valence, respectively. These significations 
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might not be found in other musical cultures (Smit et al., 2022). Being that as it 
may, this limitation can be taken as motivation to repeat the experiment using 
different kinds of music and participants. 

A third limitation of this study is the use of mean responses of perceived 
emotions. While this is justified by the variation across responses being 
consistent, the high variability still may cast doubt on the reliability of the 
results. This limitation may also serve as motivation to redesign the experiment 
towards obtaining responses with less variability. Moreover, it may serve as a 
rationale for the inquiry on the causes of variability. Such rationale warranted 
the study reported in Article V, whose results are discussed in the next 
subsection. 

5.3.2 Effect of personality 

Here the results of the study reported in Article V are discussed, following the 
line of thought originated by the framework proposed in Article I. The 
formulation of the model at the core of the framework started by looking at 
musical instruments and how their common aspects may be summarised. Such 
model highly resembles human embodied cognition, leading to an 
encompassing model in which humans and machines are agents of musical 
interaction. It is necessary to bear in mind that models—any model—might not 
account for all the individual characteristics of the exemplars being modelled. 
The narrative of Article I illustrates differences between musical instruments 
but takes advantage of what is common in them to accommodate them for the 
formulation of a model of machines as musical agents. Likewise, Article IV 
observes variability in responses but finds enough cohesion to use their means 
to model the communication of musical emotions. The study reported in Article 
V provides information to understand one source of variability—personality 
traits—in the model where humans are musical agents. 

The study explored relationships between the Big Five personality traits 
and embodied emotions in spontaneous movement to music. “Embodied 
emotions” is the name given to the correlation between emotions and bodily 
features representing kinematic and non-kinematic characteristics of motion 
and posture. In the analyses conducted, distinct bodily features were found to 
embody musical emotions, which then were found to distinctly relate to 
personality traits. These relationships may be summarised in two clusters of 
personality traits. The first cluster is composed by Openness, Agreeableness 
and Extraversion, while the second cluster consists of Conscientiousness and 
Neuroticism. Embodied emotions are moderately related to traits in the first 
cluster and weakly related to traits in the second cluster. Special cases are 
Openness and Neuroticism, having the strongest and weakest relations to 
embodied emotions, respectively. 

The two-cluster pattern with the special case for Neuroticism is 
remarkably consistent with the results obtained by the meta-analysis conducted 
by Barańczuk (2018). That study observed the relationship between suppression 
of expression of emotions to be non-significant and weak for Neuroticism and 
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Conscientiousness, respectively, while inverse for all other traits. This suggests 
that the embodiment of musical emotions is related to the suppression of 
expression of emotions. 

The special cases for Openness and Neuroticism in the two-cluster pattern, 
are consistent with previous studies that investigated personality traits and 
music preference (Brown, 2012; Delsing et al., 2008; Dobrota & Reić Ercegovac, 
2015; Dunn et al., 2011; Fricke & Herzberg, 2017; Nave et al., 2018; Reić 
Ercegovac et al., 2015; Rentfrow & Gosling, 2003; Schäfer & Mehlhorn, 2017; 
Upadhyay, Shukla, & Chakraborty, 2017; Vuoskoski & Eerola, 2011a; 
Zweigenhaft, 2008). These studies found Openness to have the strongest 
correlations with music preference, followed by Agreeableness and 
Extraversion. Conscientiousness and Neuroticism had the weakest correlations. 
Carlson et al. (2017) reported similar results, albeit correlation between music 
preference and Extraversion was much lower. Other studies have found distinct 
stronger correlations for Openness, while weaker for all other traits (Cleridou & 
Furnham, 2014; Langmeyer et al., 2012; Upadhyay, Shukla, Tripathi, & Agrawal, 
2017).  Additionally, these observations are consistent with research that has 
found that the preference for music is related to the emotional content of music 
(Hunter et al., 2011; Ladinig & Schellenberg, 2012; Naser & Saha, 2021; Schäfer 
& Sedlmeier, 2011) or that has hypothesised it based on the relation between 
preference and bodily features of spontaneous dance (Luck et al., 2014). 
Likewise, Openness, Agreeableness, and Extraversion, have been found to be 
associated with positive correlations between music preference and the strength 
of emotional response to music, Openness having the strongest association 
(Liljeström et al., 2012; Nusbaum & Silvia, 2011).  

The highest association between music preference and musical emotions, 
being for trait Openness, is consistent with a variety of related phenomena. 
Openness has been found to correlate positively with chills when listening to 
music (McCrae, 2007), awe for music (Silvia et al., 2015), and with the direct 
relation between liking for sad music and emotions elicited by sad music 
(Vuoskoski et al., 2012).  In addition, Openness has consistently been thought of 
as being related to the experience of complex and strong emotions as a result of 
sensitivity to aesthetic experiences (Reisenzein & Weber, 2009; Terracciano et al., 
2003). These observations may explain the results presented in the study here 
discussed. Other similar patterns may be found in previous studies on the 
relations between Big Five personality traits and trait Empathy. The special case 
of trait Neuroticism may be related to Empathy as Melchers et al. (2016) and 
Bamford and Davidson (2019) have observed direct correspondence between 
the Empathy Quotient and all Big Five traits, except Neuroticism. Those studies 
and the work by DeYoung et al. (2010) have found Empathy to be strongly and 
directly related with Agreeableness, suggesting that Empathy is a substantial 
contributor to the embodiment of emotions. Also, the weak relation between 
Conscientiousness and embodied emotions, may be explained by this trait 
being the only Big Five trait not related to emotional dispositions (Reisenzein & 
Weber, 2009). 
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One limitation of this study is the sample size and composition. Although 
it is not easy or cheap to run a study as the one described, the results discussed 
here should encourage the repetition of the experiment with a different 
demographic. Another limitation is ratings of perceived emotions made by a 
group of participants different than the ones that moved to music. Future 
research could instead use ratings of felt emotions by the same people that 
moved to the music, and the use of self-chosen music. These recommendations 
are made because it has been observed that induced emotions affect dancing 
characteristics more than portrayed emotions (VanDyck et al., 2013), and self-
chosen stimuli elicits more intense emotional responses to music (Liljeström et 
al., 2012). In summary, this study found evidence supporting that musical 
emotions are embodied differently according to personality traits. The 
comparison with previous studies suggests that the causes for the embodiment 
of musical emotions are preference for the music, empathy, and emotional 
disposition. 

5.3.3 Prospect of practical application 

Following the overall vision of this dissertation, it is convenient to draft 
possible practical implications of the findings reported in Articles IV and V, 
especially those concerned with the development of technologies for making 
music. The results of Article IV demonstrate different perceptual outcomes for 
different sensory modalities and for musical instruments, even though there 
might be commonalities. Correspondingly, the results of Article V demonstrate 
different relationships between personality traits and embodiment of musical 
emotions.  These observations imply opportunities to challenge existing ways of 
understanding and exercising musical interaction, taking advantage of the 
duality of commonalities and individualities of information signals (i.e., sensory 
modalities) and agents (i.e., people, instruments, machines).  

Regarding the similarities and differences of sensory modalities, the 
effects of juxtapositions have been exploited since the beginning of times. The 
continuum ranging from coherence to contrast has been the very essence of the 
musical arts and dance. Thus, awareness of the possibilities of each sensory 
modality may have a substantial effect in the outcomes of the design of new 
technologies for making music. For example, the results of Article IV indicate 
that there is less agreement among people in perceived emotions when only the 
visual component is present, compared to the condition when the auditory 
component is present. This knowledge may be used as a guideline in the design 
of digital musical instruments that expand the concepts presented in Articles VI 
and VII, from individual use to group music-making. 

The relationships between personality traits and embodiment of musical 
emotions also offer opportunities for innovation. Musical instruments are often 
not designed considering individual traits, except for those designed for people 
with disabilities. A similar case is “Accessible Digital Musical Instruments” 
(Frid, 2019), a concept focusing on inclusion beyond overcoming limitations. 
The notion of inclusion not only involves people with disabilities. It is 
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intimately related to easiness of use, of which there are copious and trivial 
examples. For instance, musical instruments having buttons (e.g., keys) solve 
the problem of tuning a note with fingers (e.g., the clarinet, then the saxophone 
having simplified keywork) and may also solve the problem of starting and 
ending the sound (e.g., the piano, the organ, the multi-purpose digital controller 
with assignable buttons). Following and extrapolating from this line of thought, 
the results of Article V show that individual differences might be an important 
factor in the emotional experience of novel digital musical instruments using 
broad bodily motion. In light of this, future research on novel musical 
instruments may consider measurement of personality traits when assessing the 
users’ experience. That might explain the variation of responses indicating 
emotional engagement. Furthermore, the conjecture posed in Article V, that 
embodiment of musical emotions might be related to preference for the music, 
can be linked to the digital instrument described in Article VI. The instrument 
allows the user to use any recorded audio. Therefore, following said conjecture, 
it may be hypothesised that the engagement of users is directly related to the 
preference for the audio recording being used (e.g., favourite song).  

The possibilities of digital musical instruments extend beyond the 
mechanics of control, allowing designers to propose new and sometimes 
revolutionary musical interaction paradigms. Beyond the question of how 
much challenge is desirable for a rewarding musical experience, it is possible to 
see that the design of musical instruments may—and sometimes should—take 
into account the individual differences of users. The concomitant research 
questions appear as obvious. 

How the engagement with musical devices is affected by personality traits? 
Why not design musical devices considering the individuality of their users? 
Can we make musical devices capable of learning characteristics of people? 
Could musical devices understand us? 

5.4 A holistic model of mimetic musical interaction 

The essay of Article I built upon theoretical constructs and empirical research in 
the literature at the time it was written, concerning musical interaction, musical 
instruments, embodied cognition, musical gestures, and agency. That essay 
formulated a model of embodied musical interaction, which served as a 
framework for the research carried out in the subsequent studies described in 
Articles II to VII. That research focused on specific and previously unexplored 
facets of the model and devised novel practical applications following the 
proposed framework. The new knowledge produced by the research, added to 
related literature published after the publication of Article I, prompts to revisit 
the model of embodied musical interaction. The following paragraphs outline 
how the model is thus substantiated and how it could be extended. 

Articles II and III describe a method that can be used as a model for 
human segmentation of bodily motion. The method exploits self-similarity 
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patterns in time-series signals. While it had been previously used for 
segmentation of audio, in the study corresponding to Articles II and III it was 
applied for the segmentation of bodily motion. The fact that the same 
mechanism can be used for segmentation of signals carrying information 
corresponding to different perceptual modalities, supports the idea that 
gestures are multimodal chunks of information that flow within and amongst 
participants (humans and machines) of musical interaction. This inference is 
further supported with the observations made in the testing of the system 
described in Article VI, in which participants successfully engaged in the 
interaction paradigm involving unsupervised segmentation. The notion that 
human perception involves division of big chunks of information and 
clustering of small chunks of information is not new. However, the study 
corresponding to Article VII, shows a fresh example. This is observed in the 
leveraging of the hierarchical structuring of human cognition and the power-
law dynamics of music and bodily motion, which facilitated the application of 
the segmentation method based on self-similarity, to the transformation of daily 
activity into music. 

The apparent ubiquity of hierarchical structuring of information based in 
self-similarity reinforces the notion of mimesis, in the sense of imitation. It is 
also related to the idea of mimesis as expression of emotions through bodily 
gesture (see BACKGROUND, subsection 2.1). The latter may be seen as a subset 
of the former, broader emergent postulation that gestures, in whichever form 
they are realised (e.g., bodily motion or posture, sound, shape, abstract), follow 
a hierarchical organisation that permeates all human cognition. These gestures, 
in turn, may communicate emotions, among other things (discussed below). 
These conceptualisations also let musical instruments (in the broadest sense, as 
discussed throughout this dissertation) be extensions of the human body in 
such a way that the human body itself is embodied in the larger network of 
interactions with other humans and other musical instruments, or more 
generally, musical machines. 

The discussed model of embodied musical interaction does not explicitly 
incorporate emotions. However, it seems convenient to include musical 
emotions in the understanding of the model because of their fundamental role 
in the purposes of music, chiefly related to communication and engagement. As 
mentioned above, gestures may carry meaning through different modalities 
(e.g., sound, vision, touch) but the model of embodied musical interaction is 
broader as it considers that gestures are embedded in signals. As such, signals 
may carry information corresponding to sensory modalities, but the signals 
may be electrical or mechanical (including acoustical). For example, electrical 
signals might be brain signals or electronic circuitry, while mechanical signals 
might be movement of the human body or musical instruments. It is important 
to distinguish meaning from the gestures and from the signals. The hierarchical 
order in which these are organised is signals, that carry gestures, that carry 
meaning. Then, meaning can be composed by direct signification and by 
emotional signification (see BACKGROUND, subsections 2.1 and 2.3).  
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The studies reported in Articles IV and V contribute to the understanding 
of musical emotions, which are part of meaning and therefore agency, in the 
context of the model for embodied musical interaction. The results reported by 
Article IV provide evidence that the distinct information carried by different 
sensory modalities has an effect in the perception of musical emotions. This 
complements the model of embodied musical interaction by remarking that 
gestural agency may be affected by the sensory modality of the interaction. We 
may simplistically think that along the pathways of the musical interaction 
network the information is only transformed. However, the experimental 
evidence shows that some information may be preserved or lost, sensory 
modality being a major factor. This shall be regarded as a fundamental property 
of the model. 

The results reported by Article V provide evidence that personality traits 
are related to the embodiment of musical emotions. Possible causes for the 
embodiment of musical emotions are musical preference, empathy, and 
emotional disposition. These possible causes evince that musical emotions are 
not only shown (voluntarily or not) through bodily movement, but that they are 
related to significant and immanent characteristics of people. In turn, these 
individual characteristics are arguably essential in musical communication. 
Preference for music is intimately related to the memories that preferred music 
evokes. It relates to identity and of belonging when those preferences are 
shared with others. Empathy and emotional disposition facilitate 
understanding and therefore connection. 

The mimetic aspect of this phenomenon is evident: musical emotions are 
exhibited in bodily motion. In other words, the emotion content of one medium 
(sound) is observable in other medium (the body). The evidence might not be 
always available to the naked eye, but the described research shows that it is 
possible to measure it. The evidence for differential embodiment of emotion 
adds to the body of knowledge on the effect of personality traits on the feeling 
of musical emotions. In simple terms, it remarks the differences among people. 
This is a trivial observation, but it is worthwhile to note that in the context of 
the embodied musical interaction model, people are agents as much as musical 
instruments. The variety in the composition of these agents might play an 
essential role in the occurrence of musical interaction and music in general. 
Thus, this can be deemed as another fundamental property of the model. If for a 
moment we allow ourselves to indulge in reveries, we may find an analogy 
with the second law of thermodynamics (see Schrödinger, 1944). The analogy is 
observed in that the inequality of agents of musical interaction may be a 
prerequisite for the exchange of information, in the same way heat is 
transferred from a warm object to a connected cold object. Further into the 
musing, we may also realise that a system, in its process of attaining maximum 
entropy, may arrive at local equilibria. Examples of this are objects displaying 
patterns such as fractals, crystals, solar systems, galaxies, life in its various 
embodiments, music, and so on. This principle may be the fundamental cause 
of what has been called enactive behaviour, and thus the driving force of 
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musical interaction as much as it may be the driving force of life and the 
universe at large. 

Returning to more concrete considerations, Article I was published as a 
chapter of a book on “embodied music interaction” (Lesaffre et al., 2017), where 
interaction is noted to be a crucial component of the Embodied Music Cognition 
theoretical corpus. In fact, in the first chapter of that book (p. 13), Leman 
proposes a model of interaction with music in which assessments of music 
occur in real time in order to predict actions or states that could have caused 
such sounds in the way they are presented, or the “expressive character of the 
music”. It is argued that this assessment contributes to the formation of 
meaning and that the body plays an essential role in this process. A further 
article attempted to define “embodied music cognition” (Leman et al., 2018), 
again having the notion of interaction at its core, based on the idea that the role 
of cognition is to build predictive models and apply such models in interactions. 
The building of the models is said to be dependent on corporeal mediators and 
internal states, which is a similar proposition to the ones made in Article I. The 
difference is the treatment of the elements of the model. Leman describes them 
as states, whereas Article I discusses internal states as processes propelled by 
enactive and feedback multimodal signals. The ideas proposed by Leman and 
colleagues are connected, albeit somehow loosely, to the properties of 
multimodal musical communication as discussed above. For example, some 
information about the human body (including emotions) might be transferred 
to the listener through musical sound. 

The model of embodied musical interaction proposed in Article I puts an 
emphasis in human-machine musical interaction. Two years after the article 
was published, Tanaka (2019) used the term “Embodied Musical Interaction” as 
a derivative of the concept “embodied interaction”. This term was used for a 
discussion on how musical human-computer interaction may benefit from three 
generally accepted paradigms of Human-Computer Interaction (Fallman, 2003). 
These paradigms are approaches to design: conservative, pragmatic, and 
romantic. The proposition is that these paradigms characterise designer, 
problem, product, process, knowledge, and role model involved in the design. 
For example, in a conservative approach a problem is ill-defined (to be defined) 
and a product is the result of the process. In a pragmatic approach the problem 
is unique to the situation and the product is integrated in the world. In a 
romantic approach the problem is subordinate to the final product and the 
product is artwork. The ideas expounded by Tanaka are pertinent to the 
application of the model for gestural agency in human-machine musical 
interaction. For example, it could be said that the study corresponding to 
Article VI is mostly conservative, while that of Article VII is mostly pragmatic. 

As it has been proposed throughout this dissertation, a long-term vision of 
the described research is the design and implementation of musical systems as 
agents. This postulation resonates with the concept “Emergent Interaction” 
(Murray-Browne & Tigas, 2021). This concept is an approach to the design of 
digital musical instruments, which seems to follow the romantic paradigm as 
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described above. The concept is rooted in the notion that “unsupervised 
machine learning allows representations to emerge directly from the situation 
in which interaction happens”. Those “emergent representations allow us to 
create expressive gestural interactions without explicitly declaring input or 
output”. The cited article further describes a system for the sonification of dance. 
That system applies the proposed concept although the machine learning of the 
system is not fully unsupervised. Nonetheless, the independence of the user 
from the assumptions of the system’s designer is stressed as a motivation for 
further research. Further connections of the embodied musical interaction 
model with recent literature may be seen in works that had cited Article I at the 
time of writing of this dissertation. These works have taken the concept of 
agency amongst humans and machines, as a theoretical background for the 
exploration and design of digital musical systems involving control by bodily 
movement (Christoffersson, 2018; Erdem et al., 2020; Morand, 2019; Staudt et al., 
2022; Oriolo, 2019).  

To summarise, the resulting updated model of embodied musical 
interaction is holistic, integrating multimodal signals as well as human and 
non-human agents. One key property of the model is that signals are organised 
in a hierarchical temporal structure. Another key property is that agents and 
signals are diverse in kind and in time (e.g., signals might acquire or lose 
information, agents might change), and this diversity affects the functioning of 
interaction. Arguably these properties lead to the richness in form and 
substance that we may experience when engaging in musical activity.  

5.5 Concluding remarks 

The research project of this dissertation started with the goal of investigating 
the mimetic relationships between music and the movement of the human body. 
The resulting research produced firstly a holistic theoretical model of embodied 
musical interaction. This model was used as a framework for the subsequent 
research, aimed to measure aspects of the theoretical framework. The first 
aspect of measurement was the temporal segmentation of bodily motion, for 
which an automatic method was formulated and tested. The second aspect of 
measurement was embodiment of musical emotions, for which the contribution 
of visual and auditory sensory modalities, as well as personality traits, were 
quantified and modelled. Finally, the method for automatic temporal 
segmentation was applied to a gesturally controlled digital musical instrument, 
and to a system for musical sonification of daily activity. 

Directions for future research can be summarised in two broad and 
possibly overlapping tracks. The first track comprises the understanding of 
music as a phenomenon. As it was discussed, it is convenient to look at music 
as an interaction process. Thus, a holistic model of musical interaction should 
consider the underlying nature of interactions, for which I suggested that the 
second law of thermodynamics might be, if not a precise explanation, a source 



 
  
 

82 
 

of inspiration. Beyond the theoretical work, as a matter of course, repetition of 
the experiments and exploration of different methodologies is necessary. The 
most urgent practical aspect for the advancement of the experimental research, 
is the collection of more and more diverse data. Specifically, optical and 
accelerometry motion-capture, audio, video, annotation of segmentation and 
daily activity, perceived and felt emotions, personality traits and other personal 
information, of experts and non-experts, playing instruments, dancing, and 
living their daily lives. 

The second track for future research is the application of knowledge of 
musical phenomena, especially the newest knowledge, to solve real-world 
problems. Given that the context is music, this encompasses the exploration of 
novel ways of making music, including musical instruments. In this regard, the 
multigranular online temporal segmentation method described in this 
dissertation is a key piece for the implementation of fully unsupervised gesture-
learning systems. This would ultimately result in intelligent automatic musical 
agents, perhaps the next evolutionary stage of musical instruments.  

To conclude, I shall add that this dissertation reflects in an orderly manner 
the main lessons learned along a journey that started with a desire to learn 
more about the relations between music and the human body. The journey was 
not always orderly, sometimes diverting to further explore questions that arose 
along the way. This led to shape the dissertation in its final form, resulting in, 
on one hand, the considerably broad holistic theory for musical interaction. On 
the other hand, it resulted in the examination of the narrow and disparate 
problems of unsupervised temporal segmentation and the measurement of 
different facets of embodied musical emotions. In the course of such exploration 
other topics were investigated as well, but much of the work done failed to 
produce anything worthy of being reported. Likewise, I have failed to fully 
answer the big question “How and why does music move us?”. Even so, I have 
offered some ideas that might be useful to understand how music brings people 
to move together in rejoice at a concert or in grief at a funeral, or why some 
people at a dance show might move to the music as if they were part of the 
performance while some others might prefer to stay still, or why a baby stops 
crying when mommy sings and sways. These ideas may kindle dreaming of 
and coming up with new technologies to help athletes to lift heavier, non-
athletes to move more, rockstars to arouse utter rapture and non-rockstars to 
explore different ways of experiencing the joy of making music. 
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YHTEENVETO (SUMMARY IN FINNISH) 

Mimeettisten kehon liikkeiden ja musiikillisten rakenteiden suhteet:  
teoria, mittaus ja soveltaminen 
 
 
Tämä väitöstutkimus lähti liikkeelle tavoitteesta tutkia ihmiskehon liikkeen ja 
musiikillisen rakenteen välisiä suhteita. Tutkimus aloitettiin teoreettisen viite-
kehyksen kehittämisellä, jonka jälkeen suoritettiin kvantitatiivisia mittauksia 
tämän viitekehyksen eri näkökulmista. Lopulta luotiin teorian ja mittausten 
sovelluksia. Seuraavissa kappaleissa esitetään yhteenveto tuloksista ja ehdote-
taan suuntaa tulevalle tutkimukselle. 

Teoreettisena kontribuutiona on malli keholliselle musiikilliselle vuoro-
vaikutukselle, jonka keskiössä on ihmisten ja koneiden (eli soittimien) välinen 
toimijuus. Tässä mallissa toimijat kommunikoivat multimodaalisiin (esim. audi-
tiivisiin ja visuaalisiin) signaaleihin upotettuilla eleillä. Tälläisten eleiden ajalli-
nen rakenne on hierarkkinen, jossa lyhyemmät eleet on upotettu pidempi kes-
toisiin eleisiin. Tutkimuksen mittaus- ja sovellusosien tulosten perusteella voi-
tiin ehdottaa malliin parannuksia, jotka koskivat signaalien ja toimijoiden mo-
ninaisuutta vuorovaikutuksen keskeisinä ominaisuuksina. On selvää, että tule-
vissa tutkimuksissa mallia olisi testattava eri tavoin, jotta nähdään voidaanko se 
kumota. 

Mittaukseen liittyviä kontribuutioita on kaksi. Ensimmäinen käsittelee ke-
hon liikkeiden segmentointia ja toinen kehollisia musiikillisia tunteita. Ensim-
mäinen kontribuutio liittyy antureilla mitatun kehon liikkeen automaattista 
ajallista segmentointia koskevan menetelmän kehittämiseen. Menetelmän tär-
keitä ominaisuuksia ovatsen kyky havaita muutos yhdestä eleestä toiseen, malli 
on ohjaamaton eikä tarvitse aiempaa tietoa eleistä, sen tulokset voivat vastata 
hyvin ihmisen havaitsemaa segmentointia ja se voidaan toteuttaa toimimaan 
reaaliajassa. Tulevassa tutkimuksessa olisi hyvä harkita havaintoarvioinnin pro-
tokollan parantamista: segmentointirajojen merkitseminen, laskeminen ja las-
kettujen tulosten arviointi olisi tehtävä yhdellä kertaa. Parannettu protokolla 
on hyödyllinen myös minkä tahansa ajallisen segmentointimenetelmän arvi-
oinnissa. 

Tutkimuksella oli kaksi tunteiden mittaamiseen liittyvää kontribuutiota. 
Ensimmäinen on sen kvantifiointi miten musiikkiesityksen visuaaliset ja audi-
tiiviset komponentit vaikuttavat tunteiden havaitsemiseen. Suoritettiin koe, 
jonka tuloksena osallistujien havainnot tunteistaan olivat samansuuntaisia, kun 
kuulokomponentti oli läsnä (verrattuna vain visuaaliseen komponenttiin), ja 
tonaliteetti (eli duuri tai molli) oli merkittävin tekijä. Vastaavasti kun esitettiin 
vain visuaalista informaatiota, osallistujien vastausten välinen samanlaisuus oli 
heikko, vaikkakin jotkin visuaaliset ominaisuudet olivat edelleen merkittävästi 
yhteydessä havaittuihin tunteisiin. Tutkimuksen tärkeimpiä rajoituksia ovat 
osallistujien vähäinen määrä ja erityinen kulttuuritausta, vain kahden soittimen 
ja esittäjän (piano ja viulu) käyttö sekä testattavien elementtien kompleksisuus 
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(sävelletyt, ilmaistut ja havaitut tunteet). Tulevassa tutkimuksessa olisi pyrittä-
vä toteuttamaan kokeen muunnelmia, joissa nämä rajoitukset otetaan huomi-
oon. Toinen musiikillisten tunteiden mittaamiseen liittyvä kontribuutio kvanti-
fioi persoonallisuuspiirteiden vaikutusta siihen, missä määrin musiikissa koetut 
tunteet heijastuvat spontaaniin tanssiin. Tulokset osoittavat, että tämä yhteys 
pätee pääasiassa avoimuuden piirteeseen ja hyvin heikosti tunnollisuuden ja 
neuroottisuuden piirteisiin, kun taas yhteys sovinnollisuuden ja ekstroversion 
piirteisiin on kohtalainen. Aiemmat tutkimukset huomioon ottaen nämä tulok-
set viittaavat siihen, että musiikillisten tunteiden kehollistumisen syitä ovat 
mieltymys musiikkiin, empatia sekä emotionaalinen taipumus. Tämän tutki-
muksen merkittävä rajoitus on osallistujien vähäinen määrä. Tulevassa tutki-
muksessa koe tulisi toistaa eri kohortilla, jotta tulosten tilastollinen voima para-
nisi.  

Soveltamiseen liittyvät kontribuutiot sisältävät kaksi järjestelmää, jotka 
osoittavat ajallisen segmentointimenetelmän toteutettavuuden sen käyttämisek-
si musiikin tekemisessä. Konkreettisina tuloksina on kaksi ohjelmistoa ja järjes-
telmien alustavaa testausta. Ensimmäisessä järjestelmässä hyödynnetään mene-
telmän kykyä toimia reaaliajassa. Järjestelmää kehitettäessä oli otettava huomi-
oon segmentointimenetelmän väistämätön viivästynyt vaste. Tämä johti kokei-
luun hyödyntää ihmiskehon laajoja liikkeitä ja musiikkiäänen viivästynyttä oh-
jausta. Lisäksi järjestelmän havaittiin tukevan osallistavaa käyttäjäkokemusta. 
Tulevaisuuden tutkimuskohteet voidaan jakaa neljään polkuun, jotka voivat 
olla risteäviä. Ensimmäinen on tekninen kehitys, ja siihen kuuluvat laskennalli-
sen tehokkuuden parantaminen, monikranulaarisen segmentoinnin toteuttami-
nen ja erilaisten muototekijöiden kokeileminen. Toinen on ohjaamattoman 
segmentointiparadigman sisällyttäminen koneoppimisjärjestelmään, joka oppii 
sujuvasti ilman opetusaineistoa. Vaikka toteutukseen liittyy useita haasteita, 
idea on pohjimmiltaan yksinkertainen, sillä siinä käytetään ohjaamatonta seg-
mentointimenetelmää minkä tahansa sopivan koneoppimisjärjestelmän (esim. 
neuroverkon) esikäsittelyvaiheena. Kolmas suunta tulevaisuuden tutkimukselle 
on suoraviivaisempi ja se voidaan helposti toteuttaa tuotetusta ohjelmistosta 
muuttamalla sen käytettävissä olevia parametreja (esim. käyttämällä erilaisia 
äänitiedostoja, säätämällä segmentointiparametreja), muokkaamalla itse ohjel-
mistoa (esim. korvaamalla äänentoisto synteesillä) tai käyttämällä erilaisia oh-
jauslaitteita (esim. käyttämällä jotakin muuta anturia kuin kiihtyvyysanturia). 
Neljäs tulevaisuuden tutkimussuunta on musiikillisen vuorovaikutuksen järjes-
telmällinen tutkiminen kehon laajojen liikkeiden ja viivästetyn ohjauksen avulla. 

Toisessa sovelluksessa hyödynnetään segmentointimenetelmän kykyä 
toimia eri aikaskaaloilla. Tätä kykyä hyödynnettiin päivittäisen toiminnan seg-
menttien tunnistamiseen kehoon kiinnitetyistä liikeantureista saatujen tietojen 
avulla. Nämä segmentit edustavat päivittäisen toiminnan tapahtumia (esim. 
nukkuminen, aamurutiinit, kävely ruokakauppaan jne.), ja niitä käytettiin tuot-
tamaan automaattisesti musifikaatioita (lyhyitä musiikkikappaleita), jotka edus-
tavat kyseisiä tapahtumia ja niitä vastaavaa toiminnan määrää. Laajamittainen 
tutkimus osoitti, että musiikkikappaleet voivat tehokkaasti edustaa sitä, kuinka 
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aktiivinen henkilö on. Näin ollen järjestelmää ehdotetaan apuvälineeksi tervey-
denhuoltoon vähentämään sedentarismia. Jatkotutkimus voitaisiin toteuttaa 
suunnilleen kolmessa peräkkäisessä vaiheessa. Ensimmäisessä vaiheessa tuote-
taan toimiva prototyyppi, joka koostuu helposti saatavilla olevasta puettavasta 
teknologiasta ja mobiililaitteesta sekä ohjelmistosta, joka voi tuottaa musifikaa-
tioita ja ladata segmentointitietoja palvelimelle. Toisessa vaiheessa järjestelmää 
testataan todellisella väestöllä, kuten potilailla, joilla on diagnosoitu sedenta-
rismi. Tässä vaiheessa olisi myös kerättävä tietoja. Anturitietojen lisäksi järjes-
telmän pitäisi antaa käyttäjille mahdollisuus kirjata päivittäiset tapahtumansa. 
Kolmannessa vaiheessa analysoidaan tietoja käyttäjäkokemuksesta, kliinisiä 
tuloksia (jos niitä käytetään kliinisen intervention apuvälineenä) ja sitä, millä 
asteella segmentoidut anturitiedot ja kirjatut päivittäiset tapahtumat vastaavat 
toisiaan. 

Yhteenvetona voidaan todeta, että tämä tutkimushanke on tuottanut uutta 
tietoa musiikin ja ihmiskehon välisistä suhteista. Tutkimuksen jatkaminen voi 
tapahtua jommalla kummalla kahdesta mahdollisesti päällekkäisestä suunnasta. 
Ensimmäinen suunta käsittää tutkimusta, jonka tavoitteena on ymmärtää pa-
remmin kehon roolia musiikillisessa aktiivisuudessa. Toinen suunta käsittää 
tiedon soveltamisen musiikin tekemiseen liittyvien uusien teknologioiden ke-
hittämiseen, jotka voivat olla esimerkiksi terveydenhuollon apuvälineitä tai 
älykkäitä soittimia ja jotka voivat auttaa ratkaisemaan reaalimaailman ongelmia. 
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ABSTRACT 
This article presents an ongoing investigation whose goal is to 

model perceived segmentation of music-induced bodily gestures. The 
investigation consists of three stages. The first stage is a database of 
multimodal recordings of people moving to music. The data of these 
recordings are video and motion-capture (acceleration and position at 
several points of the body). In the second stage the videos produced 
in the first stage are manually segmented. This is regarded as ground 
truth for the evaluation of the performance of an automatic gesture 
segmentation system developed in the third stage of the study. This 
system extracts kinetic features from motion-captured data. Then a 
novelty score is computed from the kinetic features. The peaks of the 
novelty score indicate segmentation boundaries. So far the kinetic 
features that have been evaluated are composed of only one 
windowed statistical function. None of them yields a reasonable 
similarity between computed and perceived boundaries. However, 
different functions of the kinetic features yield considerably similar 
results between perceived and computed boundaries at isolated 
regions of the data. This suggests that each of these functions 
performs best on a specific kind of gesture. Further work will 
consider evaluating kinetic features composed of combinations of 
functions. 

I. INTRODUCTION 
A. Background 

In line with the Embodied Music Cognition train of 
thought (Leman, 2008), it has been argued that a person’s 
spontaneous movement when listening to music can reflect 
the person’s perception of the music. Qualitative investigation 
has observed, for example, that music teachers explain 
musical sound with bodily movements, especially with their 
hands (Clayton & Leante, 2011). Quantitative investigation 
has shown that bodily movement induced by music relates to 
features of the music, such as periodicity and kinetic energy  
(Toiviainen, Luck & Thompson, 2010) or tonality 
(MacRitchie, Buck & Bailey, 2013). The correspondence 
between music and bodily movement has been studied under 
the term musical gesture (Schneider, 2010). It has been noted  
that human beings have a remarkable ability to perceive and 
understand musical gestures by visual observation  (Camurri 
& Moeslund, 2010). The first stage in perception of a gesture 
is the identification of when and where it starts and ends, a 
process called segmentation (Kahol, Tripathi & Panchanathan, 
2004). Further phenomenological inquiry has observed that 
musical gestures are perceived in different time scales and that 
the grouping of shorter-scale gestures into larger entities 
depends on musical structure, a phenomenon called co-
articulation (Godøy et al., 2016).  

Several studies have observed the relation between bodily 
movement of people making music and moving to music (e.g., 
dancing) using qualitative analysis of video recordings 
(Wanderley et al., 2005; King & Ginsborg, 2011; Luck, 2011; 
Clayton & Leante, 2011; Trevarthen, Delafield-Butt & 
Schögler, 2011). Because the careful observation of video is a 

time-consuming task, these studies have focused in a few 
examples. Therefore their results, while being important for 
advancing knowledge, are not appropriate for generalization. 
In contrast, a large-scale experimental investigation that could 
yield statistically relevant results, would take the effort of 
people watching many videos. These videos should show a 
range of individuals moving to different kinds of music. The 
observation of videos should include precise annotations of 
where gestures occur and a description of them. Such an 
endeavor appears to be prohibitive in terms of human 
resources.  Thus, it seems reasonable to automate the process, 
which requires first to model human perceived segmentation 
of gestures. 

B. Aim 
The purpose of this study is to model perceived 

segmentation of music-induced bodily movement. 

II. METHODS 
This section presents the three-stage methodology used in 

this investigation project. Data is periodically added and 
methods are refined as the investigation advances. What 
follows corresponds to the state of the project as of April, 
2017. 

A. Multimodal Database 

1) Aim. This stage of the investigation consists in 
collecting multimodal data, which allows to observe people’s 
spontaneous movement to music. The data modalities are: 

• Tri-axial position 
• Tri-axial acceleration 
• Video 

2) Participants. N = 12, of which 7 (58.3%) are female 
and 6 (41.7%) are male. Their range of ages is 23 to 53, 
median 33. All of them are either degree students, researchers 
or other staff at the University of Jyväskylä. None of them is 
associated with the Music, Art and Culture Studies department 
or with research in musicology. All participants sign a 
document giving consent to the use of recorded data for 
research and communication thereof, including audio and 
video recordings. 

3) Apparatus. Data is collected at the motion capture 
laboratory of the Music, Art and Culture Studies department 
of the University of Jyväskylä. The apparatus is composed by 
the following measurement processes: 

• Optical Motion Capture: An array of 8 Qualisys 
Oqus cameras track the position of reflective markers 
attached to a tight suit that the participant wears. 
Markers are placed on every articulation and ending 
point of limbs, as well as on the head. Optical motion 
capture data is recorded using the Qualisys Track 
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Manager software running in a personal computer. 
This system is syncronised to an SMPTE signal 
emitted by a second computer. Also the Qualisys 
system sends back a syncronisation audio signal to 
the second computer. 

• Tri-axial accelerometers: The participant wears a 
Thalmic Myo armband on one forearm beneath the 
motion capture suit. Also the participant holds a 
Nintendo Wii-remote (“wiimote”) controller with the 
hand of the arm that wears the Myo armband. Data 
from these devices are simultaneously recorded at a 
rate of 100 Hz in the second computer, using 
software made with the Pure Data programming 
environment (Puckette, 1997). This software also 
simultaneously records audio.  

• Audio: Stimuli is presented to the participant using 
two Genelec 8030-A studio loudspeakers with their 
base at 110 cm. from the floor. A microphone 
hanging from the ceiling is connected to the audio 
system of the second computer, which 
simultaneously records this audio stream (i.e., room 
audio) in one audio channel and the audio 
synchronization signal from the optical motion 
capture system in a second channel. The starting and 
ending of the audio recording is set to be at the same 
time of the accelerometer devices’ data recording. 
The audio signal is used later to set a common 
starting time for accelerometer, optical motion 
capture and room audio. 

• Video: Two small digital cameras (Vivitar DVR-786 
and Sony DSC-W610) on flexible portable tripods 
record video and room audio. They are placed 
together, pointing perpendicular to the wall. The 
room shape is a rectangle. The image shows the 
participant’s full-body against a white wall. 
Redundancy of video recordings serves as a backup 
strategy. Later the video stream is synchronized to 
the accelerometer and optical motion capture using 
the room audio. This method allows flexibility when 
positioning the cameras, opposed to having cameras 
fixed to the wall or mounted on cumbersome rigging. 

4) Stimuli. The list below shows the excerpts of music that 
have been used and a brief description that explains the 
choice. 

• “Bouzouki Hiphop” (Tetarto Hood, 2014) from the 
beginning to 45.7 s. with no fade-in or fade-out. This 
is Rembetiko instrumental music mixed with Hip-
hop bass and drums, published on the Internet by an 
independent artist. Tempo is 90 BPM and meter is 
4/4. All participants declared to not know this piece. 

• “Minuet in G Major” (Petzold, ca. 1725). MIDI 
rendition with piano sound, from beginning to end 
(104 bars, 93 s.) with no fade-in or fade-out. Tempo 
is ca. 128 BPM and meter is 3/4. All participants 
declared to know this piece. 

• “Ciguri” (Otondo, 2008) from 56 to 180 s. with fade-
out the last 5 s. This is an electroacoustic piece that 
has no perceivable beat that indicates tempo and that 
has “an insistent and virtually isochronic rapid 
percussion attack, together with one or more streams 
of sustained electroacoustic sound with somewhat 
clear pitch structure” (Olsen, Dean & Leung, 2016). 
All participants declared to not  know this piece. 

• “Stayin’ Alive” (Bee Gees, 1977) from the beginning 
to 108 s. with fade-out the last 2.3 s. Tempo is 104 
BPM and meter is 4/4. All participants declared to 
know this piece.  

5) Procedure. Data recording is done with one participant 
at a time. Participants are asked to move spontaneously to the 
stimulus when it starts sounding through the loudspeakers. 
They are not asked to dance as it was observed in pilot 
experiments that if they are asked to dance they feel inhibited 
because they are afraid to fail. This fear derives from the 
association of the word “dance” with movements that have to 
be done correctly, as inferred from participants’ accounts. 
However, if participants are asked to move to music this 
inhibition disappears. In fact, participants usually ask “Do I 
have to dance?”. When they do ask this question, they are 
explained that they can dance if they want, otherwise they can 
move freely. 

Each stimulus is presented twice. Participants are asked on 
the first presentation to move to the music without any 
constraint other than an area of approximately 9m2, which 
corresponds to the bounds of the Optical Motion Capture and 
Video Capture systems. The second time participants are 
asked to hold the Wii-mote with one hand and dance only 
with that arm (this arm is also wearing the Myo armband). In 
this condition participants are asked to remain at the center of 
the area facing to a corner of the room. This is done to get in 
the video recording the most complete visualization of the 
arm’s movement. In this condition participants are allowed to 
move the rest of the body naturally as long as the previous 
constraints are not violated. This procedure (called “trial”) is 
repeated for each stimulus.  

Stimuli are presented in the order of the list above (4. 
Stimuli). However, participants were told that the first 
stimulus (Bouzouki...) was just for practice. Indeed that trial 
was intended to be a practice so that the participant could get 
familiarity with the procedure. Still, data for this stimulus is 
recorded and kept. Participants are allowed to rest as much as 
needed between trials.  

B. Ground Truth 

1) Aims. In this stage the videos from the Multimodal 
Database are manually segmented in two conditions. In each 
condition the time location of segmentation boundaries is 
recorded. This task is called annotation. 

• Real-time annotation: Videos with their 
corresponding audio are segmented as they are 
watched.  



Proceedings of the 25th Anniversary Conference of the European Society for the Cognitive Sciences of Music, 31 July-4 August 2017, Ghent, Belgium 
Van Dyck, E. (Editor) 

 

 130

• Non-real-time annotation: Videos without audio are 
segmented as they are watched, with the option of 
scrolling back and forth to refine the annotation. 

2) Participants and Stimuli. Participants of this experiment 
are called annotators, to differentiate them from the 
participants in data collection for the Multimodal Database. 
So far two annotators have performed only the Non-real-time 
task upon the video corresponding to single-arm movement to 
the “Stayin’ Alive” stimulus. These annotators are doctoral 
students of musicology, one of them the first author of this 
article. This data has been regarded as preliminary. 

3) Apparatus.  

• Real-time annotation: A personal computer running a 
custom-made piece of software made with the Pure 
Data programming environment, which 
automatically presents the video and records the 
elapsed time when depressing a key of the 
computer’s keyboard. These times are recorded in a 
comma-separated-values text file. 

• Non-real-time annotation: A personal computer 
running the Reaper digital audio editing software 
(Cockos Reaper, 2010). This system allows video 
playback at different speeds, scrolling through the 
video and accurately placing markers, which can be 
assigned different colors. These markers are exported 
as a comma-separated-values text file. 

4) Procedure. 

• Real-time annotation: The participant is presented 
with a video of the Multimodal Database and asked 
to depress a key when noticing “a change of 
movement”. This wording is meant to indicate a 
change in bodily gesture without giving an extensive 
explanation of the concept. 

• Non-real-time annotation: The participant is asked to 
place markers where there is a change of movement. 
Additionally, the participant is asked to group the 
annotated markers into larger structures, without 
further explanation of what this means.  To indicate 
the boundaries of these bigger structures a new set of 
markers is placed on top of the existing ones, with a 
different colour. 

5) Data Analysis. Responses by all participants are 
summarized into a single compound response for each 
condition. This is done using Kernel Density Estimation, 
which produces a curve of density. The peaks of this curve, 
over a threshold, indicate the segmentation boundaries of the 
annotators as a group. Additionally, the digital audio file of 
the corresponding stimulus is segmented using Music 
Information Retrieval techniques (Lartillot, Toiviainen & 
Eerola, 2008). 

C. Automation 

1) Aim. In this stage an automated system is developed 
with the goal of predicting human perceived boundaries. The 
system takes as input the accelerometer or optical motion-

capture data from the Multimodal Database. Performance of 
the system is assessed by comparing its output with the 
corresponding annotations obtained in the Ground Truth 
stage. The main challenge is to find an appropriate 
combination of kinetic features and their parameters that are 
consistent and distinct for each gesture.  

2) Procedure. For now only accelerometer data from the 
Wii-mote is being considered. This means that data consists of 
tri-axial acceleration of a single moving point. This is a 
starting point and it is thought that the same method could be 
applied for data of any of the optical-motion-capture markers 
individually or in combination.  The core of the system was 
developed by Foote and Cooper (2003) for media 
segmentation. This method has been adapted and expanded to 
be used in this investigation for the segmentation of kinetic 
data. The procedure involves the choice of multiple free 
variables, which determine the system’s performance. In its 
current state of development, the procedure is as follows: 

• Downsample raw acceleration data from 100 Hz to 
10 Hz. This sampling rate is enough to achieve 
satisfactory results at a lower computational cost than 
using full resolution.  

• Compute magnitude (Euclidean norm). This is a free 
variable, here called “Input Data Type”, as either the 
tri-axial acceleration signal or its magnitude may be 
used as input for the next step. 

• Compute windowed functions. A set of statistical 
functions is computed individually over a sliding 
window with hop of a single sample. The functions 
currently used are a subset of functions evaluated by 
previous investigation on medical surveying of 
physical activity using accelerometers (Lara, & 
Labrador, 2013; Machado et al., 2015). To minimize 
distortion at the borders, the signals are extended at 
the beginning with the value of the first sample and 
at the ending with the value of the last sample. The 
length of each of these extensions is half of the 
sliding window. The width of the window is a free 
variable. Also the choice of functions is a free 
variable.  

The functions currently used are the following: 

○ kurtosis 
○ skewness 
○ mean 
○ root mean square 
○ standard deviation 
○ mean absolute deviation 
○ interquartile range 
○ centered zero-crossings count 

• Convolve the output of the previous step with a 
Gaussian kernel and rescale to a range between 0 and 
1. The same extension procedure of the previous step 
is applied to the input of this step before convolution. 
The window of the kernel is a free variable. If the 
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window length is set to zero, then convolution is not 
done but only rescaling. 

• Compute a distance matrix of a single function or 
combined functions. Here the outputs of one or more 
functions are dimensions of a matrix. Euclidean 
distance between each point with all the other points 
is computed to obtain the distance matrix. 
Additionally, for each function output there is a 
scaling factor 𝐶 0 𝐶 1 , which determines the 
contribution (i.e., “weight”) of a function to the 
computed distances. 

• Compute a Novelty Score by convolving a Gaussian-
smoothed Checkerboard Kernel with volume V=1, 
along the diagonal of the distance matrix. Before 
performing the convolution, the matrix is extended to 
half the length of the kernel. The extension section at 
the beginning is set to the mean value of the section 
of the kernel that is in the non-extended distance 
matrix. The same procedure is done at the ending. 
These extensions with mean values help to reduce 
the distortion at the beginning and ending.  Here the 
free variable is the length of the kernel. 

• Extract peaks from the novelty score over a 
threshold. Here the free variable is the factor of the 
threshold 𝑇 0 𝑇 1 . These peaks indicate the 
computed segmentation boundaries. 

 
Computed segmentation boundaries are then compared 

with perceived segmentation boundaries (i.e., ground truth) of 
the corresponding videos, by means of a similarity measure. 
An earlier version of this measure was used to assess 
similarity of computed and perceived segmentation 
boundaries of electroacoustic music (Mendoza, 2014). In this 
study an updated version is used, which is computed as 
follows:  

• a and b are vectors containing indexes (i.e., time 
location) of segmentation boundaries, at the 
downsampled rate. One of them contains perceived 
boundaries (ground truth) and the other contains 
computed boundaries (novelty peaks). 

• L is the length of the downsampled data. La=Lb  

• N is the amount of indexes. Na Nb  

• Compute a distance matrix Mjk of vectors a and b: 
𝑀𝑗𝑘 𝑎𝑗 𝑏𝑘  

• Find the minima (m) of rows (r) and columns (c): 

 𝑚𝑟 𝑗 argmin𝑀𝑗𝑘  𝑘 1 𝑛  
𝑚𝑐 𝑘 argmin𝑀𝑗𝑘  𝑗 1 𝑛  

The values of a and b at the intersection minima 
become vectors a’ and b’, the closest paired 
elements from a and b. 

• Find the mean distance 𝑑 from the intersection of 
minima: 

 𝑑 𝑎 𝑏 mean 𝑚𝑟 𝑚𝑐  

• Compute average closeness (c) of paired elements: 
 𝑐 𝑑

𝐿
 

• Compute fraction of paired elements: 
 𝑎 𝑏 𝑁  

N* is the least amount of unique elements and is 
the largest amount of unique elements, in either 
vector a’ or b’. 

• Compute similarity (S): 
𝑆 𝑎 𝑏 𝑐 𝑓 

 
This measure is used because it gives a single value that 

encompasses the hit and misses given by the fraction of paired 
elements and closeness of those elements. In the context of 
this study these elements are the time locations of 
segmentation boundaries. In this way it is not necessary to 
specify a vicinity of annotated boundaries in which a 
computed boundary has to be to be considered a match, as is 
the case of the method used by the MIREX structural 
segmentation evaluation (MIREX Structural Segmentation, 
2016; Turnbull et al., 2007; Levy & Sandler, 2008). The 
MIREX 2016 structural segmentation evaluation considered a 
vicinity of 0.5 s. This is problematic as the transition from one 
gesture to another might take different times at different time-
scales. Therefore the vicinity should be adjusted to those 
transition times. It is not clear how this can be done, so the 
similarity measure described above avoids the problem. 
However, it has the disadvantage that a visual comparison of 
very high values of S (e.g., over 0.8) might not appear to be 
reasonably similar and a very small difference in S might be 
visually perceived as a considerably different. This drawback 
is only a perceptual scaling problem that does not affect the 
computational effectiveness of the similarity measure. The 
selection of features (i.e., combinations of free variables) that 
yield results most similar to the ground truth is an 
optimization problem in a highly dimensional space. The 
amount of possible combinations is astronomical and an 
extensive search (i.e., by brute force) for the highest S value is 
therefore impractical. To overcome this difficulty, the solution 
space is explored by brute-force with constraints that reduce 
the fee-variable space. Then the computed boundaries that 

have highest similarity with ground truth are manually 
inspected to find constraints that would facilitate the search by 
a genetic algorithm. A mixed-integer constrained genetic 
algorithm has previously been used for a similar problem by 
an investigation oriented to find the audio features that yield a 
novelty score that has highest correlation with Kernel Density 
Estimation of perceived audio segmentation (Hartmann, 
Lartillot & Toiviainen, 2016). 

III. RESULTS 
Data collected so far for the ground truth has been deemed 

not enough to make the analysis that compares real-time 
perceived segmentation, non-real-time perceived 
segmentation and computed audio segmentation. Nonetheless, 
the available non-real-time grouped annotated boundaries of 
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single-arm gestures have been used as ground truth in the 
development of the automated segmentation procedure. A 
brute-force search was done for the highest similarity values 
between annotated boundaries given by each annotator 
(ground truth) and computed   boundaries, for isolated time 
regions of the stimulus.   This   search   consisted   of   4900 
sequences of computed boundaries, produced with single 
(non-combined) functions and permutations of free variables 
having the constraints shown in Table 1. 

 
 
 

Table 1. Free variables used in the constrained brute-force 
search. 

FREE VARIABLES VALUES 

Input Data Type {Tri-axial Acceleration,  
Acceleration Magnitude} 

Function Window Size 
(samples) {10,20,..,60} 

Gaussian Filter Window 
Size (samples)  {5,10,15,..,60} 

Gaussian Checkerboard 
Kernel Size (samples) {200,300,...,600} 

Peak Threshold Factor {0.1,0.2,...,1} 

 
CONSTRAINED BRUTE FORCE SEARCH 

HIGHEST SIMILARITY (S) BETWEEN GROUND TRUTH AND COMPUTED SEGMENTATION BOUNDARIES 
PARTICIPANT 1 - STAYIN’ ALIVE - SINGLE-ARM 

 
Figure 1. The top panel shows perceived segmentation boundaries (ground truth). The panels below it show the computed 
segmentation boundaries and novelty scores that have highest similarity with ground truth, at the non-shaded regions. 
Visual inspection of the computed boundaries that have 

highest similarity with the perceived boundaries reveals that 
while some boundaries are remarkably close, there are some 
computed boundaries that do not have any matching annotated 
boundary or are too far to be considered as matching. 
However, considering only isolated regions it is possible to 
observe remarkable closeness between perceived and 
computed boundaries, only within those regions. Figure 1 
shows the highest similarity values within regions, compared 
to the annotation of perceived boundaries provided by one 
annotator (i.e., ground  truth). 

IV. CONCLUSIONS 
This article has presented an ongoing investigation project 

towards the modeling of perceived segmentation boundaries 
of bodily gestures induced by music. Preliminary results have 
been obtained to predict perceived segmentation of the 
movement of a person’s arm moving to a stimulus (a section 
of the song Stayin’Alive). Windowed statistical functions 

were applied to tri-axial accelerometer data from a sensor held 
by the hand of the moving arm. The functions kurtosis, 
skewness, interquartile range and root mean square returned 
very close segmentation boundaries compared to perceived 
boundaries, considering specific regions of the stimulus. 
However, no function returned a sequence of boundaries 
reasonably close to the perceived boundaries considering the 
full length of the stimulus. 

Further work in this project will focus in finding an 
appropriate combination functions and their parameters that 
yield computed boundaries reasonably similar to perceived 
boundaries. Also the collection of more multimodal and 
perceptual data will contribute to improve the automated 
system’s performance.  

The resulting model shall predict bodily gesture 
boundaries with data from a single point of the body. 
Nevertheless, the procedure could be used to process multiple 
points. This system can be combined with an unsupervised 
machine-learning technique that clusters the segments, 
completing an automatic unsupervised system for automatic 
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gesture recognition. Such a system will be useful for studying 
relationships between musical sound and bodily movement 
Furthermore, a real-time implementation of this system could 
be integrated into the design of electronic musical 
instruments, as a high-level feature for mapping movement to 
sound. Overall, this automated system provides a cost-
effective solution as it can take advantage of cheap 
accelerometer sensors and computing technology. 
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SEGMENTATION BOUNDARIES IN ACCELEROMETER DATA 
OF ARM MOTION INDUCED BY MUSIC: 

ONLINE COMPUTATION AND PERCEPTUAL ASSESSMENT

Abstract: Segmentation is a cognitive process that serves to the understanding of 
information perceived through the senses. Likewise, the automatic segmentation of data 
captured by sensors may be used for the identification of patterns. This study is 
concerned with the segmentation of dancing motion captured by accelerometry and its 
possible applications such as pattern learning and recognition, or gestural control of 
devices. To that effect, an automatic segmentation system was formulated and tested. 
Two participants were asked to ‘dance with one arm’ while their motion was measured 
by an accelerometer. The performances were recorded in video, and later manually 
segmented by six annotators. The annotations were used to optimize the automatic 
segmentation system, maximizing a novel similarity score between computed and 
annotated segmentations. The computed segmentations with highest similarity to each 
annotation were then manually assessed by the annotators, resulting in Precision 
between 0.71 and 0.89, and Recall between 0.82 to 1.
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INTRODUCTION 
 
The advancement in miniaturization of accelerometers, gyroscopes and magnetometers, has 
made it possible to develop portable and wearable systems that sense the movement of the 
human body. This has opened doors for many applications in a vast range of domains. Many 
such applications require identifying segmentation boundaries within movement; that is, 
where data changes from one regime to another. Following this, the detected segments can be 
classified or clustered. Some methods detect segmentation boundaries in the same process 
that performs classification or clustering. Examples of applications that use these processes 
include systems for detecting, recognizing and monitoring activities for clinical diagnosis or 
assisting in sports training (Cornacchia, Ozcan, Zheng, &Velipasalar, 2017).  
 The focus of the current study was to identify segmentation boundaries within the 
movements of a dancing person. In a practical application, the detected segmentation 
boundaries may be used to control playback of sound, music or lighting, for example. The 
movement of the dancer may be sensed in a number of different ways, but this study focuses 
on the use of a single triaxial accelerometer. The dancer would hold with one hand a device 
that has a built-in accelerometer, or would have the device attached to one of their limbs. 
Data from the accelerometer would be streamed to a machine that computes segmentation 
boundaries in real time. The output would be the time when a segmentation boundary has 
occurred, with respect to real time. Then, this information may be used for the control of a 
separate process (e.g., triggering events) or for machine-learning processes such as clustering 
or classification of the found segments.  
 It is desirable that the result of the segmentation system is produced fast enough for near-
real-time interaction. Also, it is necessary that the motion segments are meaningful to an 
observer. In other words, motion segments produced by the system should match the 
segments perceived by an observer. The meaningfulness of motion segments would 
additionally facilitate the learning of motion patterns and mappings to audio or visual effects.  
To that extent, it must be acknowledged firstly, that human perception of bodily movement is 
highly subjective (Bläsing, 2015; Kahol, Tripathi, & Panchanathan, 2004; Zacks, Kumar, 
Abrams, & Mehta, 2009) and is hierarchically structured such that short patterns are grouped 
into larger ones (Bernard, Dobermann, Vögele, Krüger, Kohlhammer, & Fellner, 2017; 
Dreher, Kulp, Mandery, Wächter, & Asfour, 2017; Krüger, Kragic, Ude, & Geib, 2007; Lin, 
Karg, & Kulić, 2016). Also, it must be taken into consideration that dance patterns may or 
may be not repetitive. Thus, the system must be capable of detecting repetitive and non-
repetitive patterns, and must allow the user to make adjustments to obtain perceptually 
meaningful results.  
 The algorithm described by Foote (2000) for segmentation of digital audio was found to 
be an appropriate candidate for segmentation of dance movement. This algorithm has 
subsequently been used for segmentation of video (Foote & Cooper, 2003), and of dance 
motion based on speed extracted from video (Tardieu et al., 2009). It has also been used to 
identify boundaries between activities such as walking, jogging and sitting, in single-axis 
accelerometer data (Rodrigues, Probst, & Gamboa, 2021). While most published 
implementations are online (i.e., data is processed serially as it is input to the algorithm), 
Schätti (2007) described an online implementation for segmentation of an audio signal. Also 
these implementations have been tested on data whose segments span several seconds or 
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minutes (e.g., sections of a song, walking).  Therefore, the current study has focused on the 
adaptation of an online version of the algorithm to work with a triaxial accelerometer signal, 
and the assessment of its capability to meet the requirements of the intended application. The 
contributions of the present study are, first, the application and testing of the segmentation 
algorithm at a smaller time-scale (i.e., short dancing patterns spanning a few seconds), and a 
more robust perceptual assessment than those used in previous work. The second contribution 
is a novel measure to evaluate the similarity between computed and perceived segmentation 
boundaries.  
 This report is structured as follows: The remainder of the introduction presents a succinct 
review of the state-of-the-art methods that most closely meet the requirements stated above, 
including unsupervised near-real-time detection of segmentation boundaries, boundaries of 
self-similarity checkerboard patterns, and assessments of effectiveness. In favor of a timely 
report, a comprehensive comparison of different techniques is out of the scope of this study. 
Following this, the Methods utilized and the Results so obtained are reported. Finally, the 
Conclusion provides a summary of the study, including directions for future work.  
 
Unsupervised Near-Real-Time Detection of Segmentation Boundaries  
 
Several algorithms that detect segmentation boundaries and give results in near-real-time 
have been tested with data from accelerometers. For example, Gharghabi et al. (2019) 
described a method that evaluates the similarity in shape –but not in statistical properties– 
between all fixed-length windows within a bigger window, the length of which is specified 
by the user. A segmentation boundary is recorded where the similarity is minimal. This 
method assumes that each segment will be composed of at least two instances of a periodic 
motion. 
 Another approach is to pose the task as a multivariate change-point detection problem 
(Endres, Christensen, Omlor, & Giese, 2011; Gong, Medioni, & Zhao, 2014; Krüger et al., 
2017; Zhou, De la Torre, & Hodgins, 2012). Essentially, a change-point indicates a difference 
in statistical properties of the data within a sliding window (Aminikhanghahi & Cook, 2017; 
Fathy, Barnaghi, & Tafazolli, 2018; Liu, Yamada,  Collier, & Sugiyama, 2013; Patterson et 
al., 2016). The sliding window is a free parameter that adjusts time-scale (i.e., granularity). 
Depending on the method, other free parameters may need to be adjusted. Zameni et al. 
(2020) described a method that efficiently identifies segmentation boundaries in signals that 
can be highly dimensional. This method has initialization parameters, but no parameters that 
can be used to explicitly adjust time-scale or relevance. The cited systems were tested with 
various types of data. When the test data had been recorded by triaxial accelerometers, the 
tests aimed to segment activities that take at least a few seconds to complete. However, 
segments of dancing motion may range from less than a second to more than a few seconds.  
 
Boundaries of Self-Similarity Checkerboard Patterns 
 
The detection of change-points in motion data can be seen as equivalent to novelty detection, 
which is the identification of abrupt changes in data by a system, without training of the 
system (Markou & Singh, 2003). Foote (2000) described a method suitable for finding 
segmentation boundaries in musical audio signals. This method exploits the characteristic 
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checkerboard patterns that can be observed in a self-similarity distance matrix of audio 
features through time, by correlating a checkerboard kernel along the diagonal of the matrix. 
This results in a novelty score that indicates the rate of change in the data. The peaks of the 
novelty score indicate change-points that correspond to perceived changes in the music. The 
granularity of the novelty score is adjusted with the width of the kernel and relevant peaks 
can be selected over a threshold. 
 
Assessment of Effectiveness 
 
To measure the effectiveness of segmentation algorithms, most published studies have relied 
at least to some extent on classic measures of precision, recall and accuracy, by comparing 
human-annotated ground truth boundaries annotated by one or more people with computed 
boundaries. These measures work well for classification problems in which the options are 
either “match” or “not a match” between a computed boundary and a ground truth boundary. 
Dreher et al. note that a computed segmentation boundary being only slightly different to the 
ground truth should be counted as a match. This is usually solved by establishing a window 
around each ground truth boundary. A computed point is deemed to be a true positive if it lies 
within that window. This approach was used in the study by Zameni et al., for example. 
Dreher et al. proposed a method that involves a window weighted with a normal distribution. 
However, the problem with this approach is that the window’s width is fixed while there is no 
certainty that any given width will correspond to the true probability distribution for the 
occurrence of a boundary, for all boundaries. It is not possible to generalize the temporal 
length of the transition from one motion to another. In contrast, the evaluation method used 
by Gharghabi et al. consists of a score that measures the temporal distance between each 
computed boundary and the closest boundary in the ground truth. All the distances are added 
and then divided by the total time. However, this score does not penalize extra or missing 
computed boundaries, which is problematic as there is no certainty that the number of 
annotated and computed boundaries will always be the same. Lin et al. (2013) describe 
another approach for evaluation of results, in which all frames in the ground truth segments 
are labelled and the number of frames in the computed segments corresponding to the ground 
truth-labels constitute the measure of similarity. This last method might be appropriate for 
classification of segments but it might be too restrictive for evaluating only the boundaries. 
This is because boundaries of short false-positive computed segments (e.g., transitions 
between motions) will break the continuity of parallel labelling resulting in a very high 
dissimilarity score. Mendoza (2014), and also Mendoza and Thompson (2017), proposed 
similarity scores that measure the distance between ground truth and computed boundaries as 
in the method by Gharghabi et al., but also penalize missing or extra computed boundaries.  
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The Present Study 
 
The following section describes the implementation of Foote’s algorithm for the 
segmentation of accelerometer data. Then, an experimental assessment is described in which 
ground truth is used to tune the algorithm’s free parameters using a revised version of the 
similarity measure by Mendoza and Thompson. In contrast to previous studies, the computed 
results are not assessed by means of a similarity measure but manually by the same 
annotators who provided the ground truth.  
 

 
METHODS 

Detection of Segmentation Boundaries  
 
This subsection describes the method for finding temporal segmentation boundaries, focusing 
on its online implementation and its adaptations to work with accelerometer data. A succinct 
description of the original offline version is provided. For details of the algorithm in general 
and the offline version, the reader is directed to the original source (Foote, 2000).  
 The offline version of the algorithm has as input data stored in memory, which has been 
sampled at regular intervals. This data is represented by the matrix , so that 

. Each frame  at time-index  contains data for each sample. A 
distance matrix  is computed for all data in .  is a self-similarity matrix. A 
two-dimension checkerboard kernel is produced by the Kronecker product of checkerboard 
matrix  and only-ones matrix  of width  as follows: 
 

          (1) 
 

K = C  J         (2) 
   

  is then tapered by multiplying it element-wise with a two-dimensional Gaussian (i.e., a 
normal distribution). Next,  is correlated along the diagonal of . The result of this 
correlation is novelty score , the peaks of which indicate the locations of segmentation 
boundaries. The peaks can be selected by a threshold , discarding peaks of lower values that 
might be irrelevant. Hence,  and  are free parameters for granularity and peak relevance, 
respectively. 
 The online version of the algorithm consists in  being a stream of data frames 

, sampled at regular intervals, containing the three axes of the accelerometer. 
A window of  frames is stored in a buffer  (Figure 1a). For each incoming frame, the 
last frame in the buffer is removed while the current frame is stacked in the first position, and 
distance matrix   is computed for  (Figure 1b). In this study, Euclidean 
distance was used. Then, the inner product between Gaussian-tapered checkerboard kernel  
and  is computed, resulting in a new point in novelty score  (Figure 1c).  
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Figure 1. Online detection of temporal segmentation boundaries. Horizontal axes represent time. (a) is triaxial 
accelerometer data. (b) is self-similarity matrix  of data in the buffer , where lighter shades represent 

more distance. (c) is novelty score , where the vertical dotted line indicates the current result. (d) is the 
smoothed novelty score , where  is a threshold and the point in a circle is the selected peak indicating a 

segmentation boundary. Note that this visualization shows  and  aligned in time, but in practice there will be 
a lag due to the low-pass Gaussian filter and the test for a peak. 

 
 When tested, contained many irrelevant peaks. Therefore a low-pass filter was applied. 
The filter used in this study was a one-dimension Gaussian kernel with minima zero and unit 
area to prevent artefacts at borders and to preserve scale, respectively. This filter is computed 
upon a second buffer  having the size of the one-dimensional Gaussian , resulting in 
a smooth novelty score . Finally, if the current novelty score value is a peak over threshold 

, it is considered a segmentation boundary (Figure 1d). Identification of peaks requires 
another buffer of only three samples to test a local maximum. Hence, the identification of a 
novelty peak has lag 
 

         (3) 
 

with respect to the current incoming frame.  
 Since self-similarity matrix  is symmetric, it is necessary to compute only half of it, 
either the upper or lower triangle, without the diagonal. Also there is no need to compute the 
whole triangle for each new frame. It is only needed to initialize matrix  with allocation 
values (e.g., zeros), then compute the distance between the current frame and all the other 
frames in the buffer. Then, compute the inner product of the upper or lower triangle of  and 
the corresponding triangle of . This will output the current novelty value. Then the values 
within  are shifted, discarding the distances between the oldest frame and the newer ones. 
This operation reallocates memory indexes, which takes much less computation time than 
redundant computation of distance.  
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 The time-scale of the segments may be adjusted dynamically with parameters  and . 
This may be accomplished by fixing the ratio between parameters  and , so that 
parameter  modifies the size of buffers  and  at the same time. When changing , 
a new checkerboard kernel may be computed, or a kernel may be selected from many that 
might have been previously computed and stored in memory. Because of the operations on  
and , the asymptotical computational complexity is . However, in practice  may not 
grow too much to present a concern, as its size would be limited to the intended granularity 
and may be reduced by reducing the sampling rate. 
 
Accelerometer Data Collection 
 
Two participants, one female and one male, provided motion data to test the segmentation 
method. This data was collected at the motion-capture laboratory of the department of Music, 
Art and Culture Studies at the University of Jyväskylä. These participants are referred to as 
dancers to differentiate them from the participants that provided data for the ground truth and 
perceptual assessment (see subsection “Ground truth annotation”).  
 In individual sessions, the dancers were asked to “dance with one arm” while holding 
with the corresponding hand a Nintendo Wii-remote controller. They were asked to move to 
the music, without displacement of the body, and always facing one corner of the room. 
While these conditions may not generalize to all dancing scenarios, they provided a clear 
view of the moving arm to a video camera. Video recordings were later used for manual 
annotation. The elimination of the random variable of orientation facilitated the annotation 
task. Also it simplified the analysis, thus making it possible to focus on first solving the 
segmentation problem in a simple condition before embarking on a more complex scenario.  
The dancers were told that other than these constraints, they could move as they wanted.  
 Three musical stimuli were presented through loudspeakers: 

1. “Minuet” (Petzold, ca. 1725) MIDI rendition with piano sound, from beginning to end 
(104 bars, duration 92.5 s.) with no fade-in or fade-out. It has a ternary metre (3/4, or 
three beats per bar). Both participants declared to know this piece. 

2. “Ciguri” (Otondo, 2008) from 56 to 183.7 s. (duration 122.7 s.) with fade-out the last 
5 s. This is an electroacoustic piece that has no perceivable beat and therefore no 
metre. Both participants declared to not know this piece. 

3. “Stayin’ Alive” (Gibb, Gibb, & Gibb, 1977) from the beginning to 108.5 s. with fade-
out the last 2.3 s. It has a binary metre (4/4, or four beats per bar). Both participants 
declared to know this piece. 

 The number of performances amounted to six. This was deemed enough for this study as 
they provided variety: musical genre, metre, familiarity and the gender of the participants. 
These characteristics would permit to observe to some extent their effect on the test. 
Furthermore, later these performances were used for the task described in the next section 
(“Ground truth annotation”). More performances would have extended the annotation task 
implying the risk of abandonment or fatigue, the latter reducing the reliability of results.  
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 Stimuli were presented in the order listed above and each stimulus was presented twice. 
During the first presentation, participants were asked to move freely within an area of about 
4m2, to familiarize themselves with the stimulus. For the second presentation, participants 
were asked to dance with one arm as described above. Data of the performances were 
recorded as follows: 

• Accelerometer: The Nintendo Wii-remote has a triaxial accelerometer, which 
transmits data in real-time via Bluetooth. This stream was received and recorded by a 
computer at a rate of 100 Hz, using custom-made software. 

• Video: A digital video camera recorded video showing the participant’s whole body 
against a white wall. Both participants used their right arm, and were recorded so the 
image clearly showed the moving arm. 

• Audio: Digital audio was captured by the microphone of the video camera and by a 
microphone hanging from the ceiling. The latter was recorded to a digital audio 
workstation synchronized with the recording of accelerometer data. These signals 
were subsequently used to synchronize video and accelerometer data. 

Ground Truth Annotation 
 
Six participants (3 male, 3 female) were recruited to identify segmentation boundaries in the 
one-arm-dancing videos. None of them had participated in the data collection described in the 
previous section. Their ages ranged from 26 to 34 years, with a median age of 27. All were 
non-Finnish international students at the University of Jyväskylä. All had completed at least 
an introductory course in music psychology, covering an introduction to perception and 
segmentation. These participants are referred to as annotators, to differentiate them from the 
dancers who performed the one-arm dance (see subsection “Accelerometer data collection”). 
 Each annotator, in an individual session, was asked to watch the videos and identify 
segmentation boundaries in two conditions. In the first condition, the videos with audio were 
presented by a computer running custom-made software. The annotators were instructed to 
press a key when a boundary was identified, in real time. The time of the key relative to the 
video was recorded by the computer. They had only one chance to perform the task. It was 
thought that the music in the video may influence the responses as auditory cues, such as 
pitch or rhythm, and could be used to judge the existence of a boundary. For the second 
condition, the videos without audio were presented by the computer running a digital audio 
editor software. In this condition, participants could freely play the video, pause, scroll 
forward and backwards, place markers and adjust the location of the markers until they were 
satisfied. In this condition, the annotators did not have a limit of time for the task and the 
annotation was based solely on visual information.  
 The following were the instructions to the annotators, common for both conditions: 
 “You will be presented with six videos, each lasting around two minutes. Each video 
shows a person 'dancing' with an arm. When doing this, the person does distinct patterns 
with the arm. A pattern is composed by one distinct movement or several repetitions of the 
same movement. When the video is playing press the space bar to indicate a change in 
pattern. Focus in the movement of the arm holding the white device (it is a sensor).” 
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 The two annotation conditions represented different approaches for perceived 
segmentation. To assess their suitability, the annotators were interviewed after completing the 
tasks. They were asked to verbally express what they considered to be difficult or easy about 
the tasks. All participants mentioned that, in the real-time annotation task, their responses 
might have been influenced by the music and they were less precise than in the non-real-time 
condition. The reasons mentioned for this included that in the real-time condition the 
responses might have been anticipated as an effect of the music. Also, it was mentioned that, 
in the real-time task, it was more difficult to press the button exactly at the intended time, 
thus preventing a response to be recorded accurately or in some cases at all. All participants 
expressed that the non-real time condition allowed for more precise responses, as they could 
take time to revise them. Because of this, the data relating to real-time audiovisual annotation 
was deemed inappropriate for use as a ground truth. Thus, non-real-time visual annotation 
was chosen as ground truth for perceived segmentation boundaries. 
 
Optimization using similarity based on distance and rate of paired elements 
 
A grid search was performed to maximize the similarity between annotated (ground truth) 
and computed segmentation boundaries, by modification of parameters n and θ. This search 
was performed independently for each accelerometer recording and their corresponding 
annotations, mimicking the adjustment that might be achieved manually by an end-user or 
automatically by a machine-learning procedure. Similarity was evaluated by distance and 
penalization of extra or missing boundaries, improving previous work (Mendoza, 2014; 
Mendoza & Thompson, 2017).  
 Consider vectors  and  containing the time indexes of annotated and computed 
segmentation boundaries, respectively.  is the length, in samples, of the corresponding 
recorded data, from the start to the end of the musical stimulus.  and  are the number of 
boundaries, or length, of  and  respectively. In any case   or vice-versa. Each 
element in  is paired to the closest element in , so that  and  are vectors containing only 
the paired elements and have equal lengths  (equivalent to the shortest between  and ). 
Then, the following measures are computed: 
 
 
Closeness: 

         (4) 
 

Rate of paired elements: 
            (5) 

 
Similarity: 

          (6) 
 

 The distance between paired boundaries is the absolute time difference, as shown in 
equation 4. Note that two boundaries of either sequence (a or b) may be paired with a single 
boundary in the other sequence if their distances are equal. Also, if  and  are not equal 
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and there are no equidistant boundaries to compensate for that inequality, then some 
boundaries will be not paired and this will be penalized by the rate of paired elements 
(equation 5).  A Monte Carlo simulation was computed with pseudo-random  and , for 

, with  and in the range , and  iterations. The distribution for 
the resulting  values has an upper -value of 0.05 at . 
 
Perceptual Assessment 
 
The perceptual assessment was made by the same annotators that provided the ground truths. 
For each annotator, the annotated and computed boundaries with highest similarity were 
selected. This means that the assessment is for the 'best case scenario'. For each of these 
sequences of boundaries a video was produced embedding a scrolling timeline with 
consecutive numbers for boundaries into the corresponding video that was annotated (Figure 
2). 
 Three videos were produced for each annotator. One had markers for their original 
annotation, to measure the extent of agreement they would have with the annotation they had 
previously made. A second video had markers for the computed boundaries. A third video 
had a confounding sequence of boundaries produced by placing a marker in the middle of the 
segments bounded by the average point for each pair of paired annotated and computed 
boundaries. The videos with confounding boundaries were intended to reduce the chance of 
annotators realizing that one of the sequences was their own annotation, and the responses to 
those videos were not analyzed. 
 

 
Figure 2. Example frame of a video shown to an annotator for perceptual assessment.  

The same video without the numbered markers had been used for annotation. 
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 The videos contained no audio, as the annotations used in the computation of boundaries 
corresponded to video without audio. Each video was embedded in a webpage and had on-
screen controls that could be activated with a pointing device (e.g., mouse, trackpad) to play, 
stop, scroll forward and backwards. The pages were presented in random order by an 
automatic system that also recorded responses. Each page consisted of instructions, the video 
and a list of numbered items, one for each marker. Each item in the list had two buttons that 
could be selected by clicking on them. One button was to answer “yes, there is a change in 
pattern” and was recorded as a confirmed boundary. The other button was to answer “no, 
there is no change in pattern” and was recorded as a rejected boundary. This assessment is 
used in replacement of the paradigm used in previous studies that considered a computed 
boundary to be correct if it is within a window around a ground truth boundary. It has the 
advantage of not needing to specify a fixed window. 
 The definition of the task was identical to the one given for the annotation task. One 
distinct questionnaire was produced for each annotator with the corresponding videos. This 
questionnaire did not reveal how the segmentation sequences were produced. After 
completing each page all responses were recorded and options were shown to immediately 
continue to the next page or to continue later. The annotators were asked to complete the 
questionnaire in their own space and time, using their own computers and to take as much 
time as they needed.  
 The decision to assess the best-case-scenario boundaries was made after testing the 
questionnaire. This test was done with different participants who would take up to 50 minutes 
to complete a questionnaire with three videos. It was decided that the questionnaire should 
not exceed three videos, to prevent fatigue and abandonment. 
 The data obtained from the questionnaires was processed to obtain the following 
relevance measures: 
 

         (7) 
 

        (8) 

 
         (9) 

 

where  is the number of confirmed computed boundaries (true positives),  is the number 
of computed boundaries (true and false positives),  is the number of confirmed annotated 
boundaries,  is paired annotated and computed (  is false negatives), and  is the 
number of annotated boundaries (true and false positives).  may be 
considered as an indication of the assessment’s reliability. It is not possible to obtain 

 as false negatives would require the possibility of adding new 
boundaries, which was not part of the assessment task. 
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RESULTS AND DISCUSSION 
 
Computation of the grid search was performed with the recorded accelerometer data 
downsampled to 25 Hz. The standard deviation σ for the two-dimensional Gaussian that 
tapers K and the one-dimensional Gaussian smoothing filter for  were set to . The 
length of the one-dimensional Gaussian was set to n; that is, to the width of  and . The 
standard deviation of both Gaussians was searched within  seconds. Since 
recorded accelerometer data was used, computation was performed in non-real-time. 
Therefore, the filtered novelty score was rescaled to  and the threshold for peak 
selection was searched within . For real-time computation, these values 
would yield a lag time of l = {0.22, 0.24, ..., 0.52} seconds. Note that lag time does not 
consider computation time, which depends on the specific computing device used. 
 The highest lag time among the results is 0.5s, for the segmentation corresponding to 
Annotator 2, of Dancer 1, to "Minuet". The median lag time was 0.35s. Considering this time 
scale, this system is not suitable for any practical application that requires immediate 
perceptual real-time response (i.e., up to about 10 to 50 milliseconds). However, this lag time 
is suitable for applications in which the occurrence of a segmentation boundary is not to be 
acted upon immediately. For example, this delayed response may be mapped to a procedure 
that changes the stimulus music in such a way that it prompts the dancer to change the motion 
pattern, thus creating a feedback loop. Another use of this delayed response is to record the 
segments’ times, then compute statistics (e.g., mean, standard deviation) and use those for a 
larger time-scale control of music, lights or other actionable medium. Furthermore, the 
segmentation result may be used to produce a near-real-time visual or sonic display that may 
be useful in clinical applications and research in biomechanics, for example.  
 Tables 1 and 2, respectively, show values for maximum distance  and similarity ( ) 
obtained in the grid search, where . The distance is expressed in seconds. The 
minimum similarity value ( ) has a -value of , while the minimum mean 
similarity value ( ) has a -value of . These minimum values represent the worst 
performance of the automatic segmentation. The greatest mean  values were found for the 
musical stimuli “Minuet” and “Stayin' Alive”, which both have a clear beat and were familiar 
to the dancers. Conversely, similarity is lower for “Ciguri”, which is a piece that has no clear 
beat and was not familiar to the dancers. This suggests that the effectiveness of the method 
may be directly related to both or either of these conditions: the presence of a clear beat, and 
the familiarity the dancers might have with the musical stimulus. Also the table shows that 
most maxima  seem too large to indicate corresponding paired boundaries. Although this 
may be considered a limitation of the method, it is still possible that the highly distant 
computed boundaries are confirmed in the perceptual assessment. 
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Table 1. Maximum Distance ( ) in seconds, between Annotated and Computed Boundaries. 

  Dancer 1  Dancer 2 
Annotator  Minuet Ciguri Stayin’ Alive  Minuet Ciguri Stayin’ Alive 

1 3.80 2.52 2.62 2.33 6.07 2.11 
2 4.11 3.59 1.69 5.67 6.74 2.22 
3 4.53 7.87 1.96 3.60 5.31 2.84 
4 4.44 3.10 3.74 1.15 5.78 3.29 
5 3.82 6.31 2.79 2.13 2.27 0.73 
6 1.59 2.86 2.72 2.47 1.90 1.56 

mean 3.71 4.38 2.52 2.89 4.68 2.13 
 
 

Table 2. Similarity ( ) between Annotated and Computed Boundaries. 

  Dancer 1  Dancer 2 
Annotator  Minuet Ciguri Stayin’ Alive  Minuet Ciguri Stayin’ Alive 

1 0.64 0.66* 0.74* 0.71* 0.75* 0.83* 
2 0.76* 0.63 0.68* 0.82* 0.63 0.80* 
3 0.71* 0.60 0.68* 0.71* 0.68* 0.91* 
4 0.61 0.57 0.74* 0.82* 0.67* 0.74* 
5 0.66* 0.68* 0.73* 0.64 0.63 0.71* 
6 0.56 0.60 0.70* 0.64 0.61 0.74* 

mean 0.66* 0.62 0.71* 0.72* 0.66* 0.79* 
 
*  (not adjusted for multiple comparisons) 
 
 Table 3 contains relevance values for the case of maximum similarity for each annotator. 
The corresponding sequences of annotated and computed boundaries are visualized in Figure 
3. The fifth and sixth boundaries of Annotation 2 seem to be too far for any of them to 
correspond to the fifth computed boundary. However, this boundary was confirmed in the 
perceptual assessment. It is not possible to conclude whether this boundary corresponds to 
any of the annotated boundaries, or if it is a new boundary that was unseen at the annotation 
task (i.e., serendipity effect) or if it was a mistake made by the annotator in the assessment 
task. 
 

Table 3. Perceptual Assessment of Annotated and Computed Segmentation  
with Highest Similarity ( ) for each Annotator. 

Annotator Stimulus Dancer    
1 Stayin’ Alive 2 0.83 0.82 1 
2 Minuet 2 0.82 0.86 0.86 0.75 
3 Stayin’ Alive 2 0.91 0.89 1 0.67 
4 Minuet 2 0.82 0.71 1 0.71 
5 Stayin’ Alive 1 0.73 0.71 0.88 0.95 
6 Stayin’ Alive 2 0.74 0.80 0.92 0.86 

mean   0.81 0.79 0.91 0.82 
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Figure 3. Annotated and closest computed segmentation boundaries for each annotator,  

corresponding to Table 3. Full lines indicate confirmed and dotted lines indicate rejected. 
 

 Another problem is that most annotators rejected boundaries that they had previously 
annotated, as shown by measure . While these values are fairly high, 
some assessment responses look counter-intuitive. For instance, the third boundary of 
Annotation 4 is evidently close enough to its computed counterpart to be considered an exact 
match. However, the computed boundary was rejected as shown by the dotted line. Another 
example that may cast doubt on the perceptual task is the second and fourth boundaries of 
Annotation 3. These were rejected but their computed counterparts, even being noticeably 
very near, were confirmed. These odd assessment responses are not the norm, but they raise 
questions about the reliability of the perceptual tasks.  
 The two aforementioned assessment problems may be solved by a revised questionnaire 
including a task that shows both annotated and computed boundaries in the same time line, 
thus making evident to the annotator the distance between them. In addition, the task would 
require the annotator to explicitly indicate the corresponding annotated boundary for each 
computed boundary and vice-versa, if such correspondence exists. Despite the drawbacks of 
the segmentation and assessment methods, the best-case scenario reveals very high Precision 
and Recall values. This is relevant as the best-case scenario is akin to the best possible re-
tuning that a user could make in a practical application scenario.  
 A further limitation of this study is that the annotation and assessment tasks were done at 
different times. This might explain the odd responses mentioned above. A possible solution 
would be to integrate annotation, automatic segmentation,  optimization, and assessment, into 
one procedure. 
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CONCLUSIONS 

This article has presented an adaptation, testing and perceptual assessment of a method to 
compute segmentation boundaries in accelerometer data. The method is based on an 
algorithm widely used for segmentation of digital audio (Foote, 2000). Experimental testing 
of the adapted and extended algorithm used accelerometer data of subjects moving their arm 
to music, as a simplistic form of dance, from which segmentation boundaries were computed. 
The fine tuning of the algorithm’s parameters was based on annotators’ responses, using a 
novel measure of distance of paired elements between computed and annotated boundaries, 
combined with penalization for missing or extra boundaries. Perceptual assessment, 
consisting of rejection or confirmation of computed boundaries, resulted in fairly high values 
for measures of relevance Precision and Recall. The segmentation procedure requires a 
context-dependent minimum time to produce a response, which in this study was maximum 
about half a second. This is suitable for systems that do not require an immediate response.  
 Future work on the perceptual assessment of segmentation boundaries should include a 
task to pair computed and annotated boundaries, in combination with the task to reject or 
confirm boundaries. It would also be useful to evaluate more and different input data 
modalities for computing segmentation, as well as manually or automatically learned features 
that might improve effectiveness. Furthermore, after the segmentation and assessment 
methods presented in this article are improved as mentioned, they should be incrementally 
tested on more complex motion and more realistic conditions. Possible next steps might be to 
attempt segmentation of dancing motion using both arms, legs, the full body, allow free 
displacement, different musical stimuli and so forth.  
 
 

IMPLICATIONS FOR RESEARCH AND APPLICATION 
 

This study has developed and tested a system to produce near-real-time segmentation 
sequences of accelerometer data. This system may be useful for proposing segmentation to a 
final user, making the process faster than manually. For example, the system could produce 
several sequences at different granularity levels, out of which the user selects the most 
appropriate. Likewise, a matrix of multigranular segmentation sequences may be used 
without any further screening by the user. As such, the system may see a number of practical 
applications, for example the inspection of data (e.g., identification of daily activity events in 
data recorded by a wearable accelerometer) or mapping the segmentation results to actionable 
processes (e.g., gestural control of music, lights, etc.). An important contribution of this study 
is the formulation of a novel non-parametric similarity measure based on distance and rate of 
paired elements. Although the measure was developed to assess similarity of segmentation 
sequences, it may be used to assess the similarity between any pair of sequences of ordered 
numbers. 
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Relationships Between Audio and
Movement Features, and Perceived
Emotions in Musical Performance

Marc R. Thompson1,2 , Juan Ignacio Mendoza2, Geoff Luck1,2

and Jonna K. Vuoskoski3

Abstract
A core aspect of musical performance is communicating emotional and expressive intentions to the audience. Recognition of

the musician’s intentions is constructed from a combination of visual and auditory performance cues, as well as compositional

features. The current study attempted to quantify these contributions by measuring relationships between ratings of per-

ceived emotion, and motion and auditory performance features. A pianist and violinist with advanced degrees in music per-

formance individually performed four short western tonal pieces. The musicians were tasked with performing the pieces

while invoking different expressive intentions: sad, happy, angry, and as a control, deadpan. To examine how different expres-

sive intentions influenced performance behavior, the musicians’ body movements were tracked using optical motion capture

and rendered into point-light animations. Participants rated perceived emotions (happiness, sadness, tenderness, anger) in

audio-only, video-only, and audiovisual rating conditions. We first explored how compositional aspects of the music and per-

formers’ expressive intentions contributed to ratings across the three viewing conditions. Through a series of analyses of

variance, we found that participants successfully decoded the performers’ expressive intentions based on visual information

alone and auditory information alone. In the rating conditions in which audio was present, compositional aspects had a stron-

ger effect on participant ratings than performers’ expressive intentions. Next, we quantified relationships between the ratings

and both motion and auditory performance features. Of the features investigated, musical mode had the greatest impact on

ratings. Additionally, perceived emotion ratings were more consistent among responders in conditions with audio than with-

out. These results suggest that, in music performance, auditory information is conceptualized by most responders in a similar

way, while visual information might be open to a variety of interpretations.
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A core aspect of musical performance is communicating
emotional and expressive intentions to the audience.
Performance research of the last quarter-century has
stressed that musicians not only communicate intentions
aurally but also visually (Behne & Wöllner, 2011;
Davidson, 1993; Dahl & Friberg, 2007). The visual
channel presents the audience with bodily gestures, which
observers use to identify how expressive a performance
is, or which emotions the musician intends to express.
Previous work has found that kinematic cues from motion
captured performances play a significant role in communi-
cating different levels of musical expressivity (Vuoskoski
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et al., 2014; Vuoskoski et al., 2016). In the current study,
we extended this work by asking participants to rate per-
ceived discrete emotions (e.g., happiness, sadness, anger,
and tenderness) in piano and violin performances, and
further explored the relative contributions of compositional
aspects and performers’ expressive intentions across differ-
ent presentation conditions. Additionally, we used regres-
sion to quantify the relationships between participants’
ratings of emotions, and movement and audio cues
derived from the performances.

Musical expression has been defined by nuances in timing,
intensity, timbre, and pitch that give a musical performance its
unique character and distinguish it from other renditions of
the same piece (Palmer, 1997). From an audience’s perspec-
tive, these creative alterations might act as acoustic cues to
identify musicians’ intentions and the emotional qualities of
music. In western classical music, musicians rarely alter
notated pitch and duration. Rather, expressivity is borne
from emphasizing ambiguous aspects of the compositional
structure such as micro-timing and dynamics (Clarke,
2005). These creative choices enable musicians to communi-
cate ideas and intentions to audiences, who, in turn, make aes-
thetic judgements as to whether those choices are stylistically
appropriate or successful (Akkermans et al., 2019;
Gabrielsson & Juslin, 1996).

The study of musical expression has extended to encom-
pass psychological and biological movement aspects
(Juslin, 2003). Early work by Davidson (1993) introduced a
paradigm in which musicians perform various renditions of
the same piece of music while employing different levels of
musical expressivity, and observers evaluate the visual
impact using ratings of perceived expression. This study
influenced a broad area of music and movement research,
including the study of ancillary movements uninvolved in
the production of sound (Wanderley, 2002) and, more gener-
ally, musical gestures. Musical gestures are generally defined
as bodily movements or gestures that have meaning. Various
theoretical frameworks have been used to explain how ges-
tures evoke musical ideas. Applying Peirce’s Theory of
Signs, gestures may be indices illustrating a causal relation-
ship between movement and expression (Clarke, 1995).
From an ecological perspective, it is argued that musical ges-
tures contain affordances that can be perceived by individuals
with specific histories related to the context of music perfor-
mance. In Gibsonian understanding, affordances contain calls
to action (e.g., a chair affords sitting, and music affords
dancing; Gibson, 1979). The question of what physical
action is being called for in a music-listening situation
might be viewed as a limitation of the notion of affordance.
However, the enactive and embodied views of perception
hold that perception is an active process. From this perspec-
tive, the call to action might be related to sensorimotor pro-
cessing of perceptual input, such as the memory of past
experiences with musical expressions evoked through listen-
ing to music (see also Shapiro, 2014; Wilson, 2002)

For an enculturated listener, the music’s auditory stream
is embedded with rich signifiers the listener uses to draw

meaning from performances. Musicians perform expressive
gestures regardless of whether the audience sees them.
Windsor (2011) has evocatively described this as the per-
former leaving ‘traces’ in the environment, to be picked
up by listeners. A person listening to music might
imagine physical gestures used to perform the music
based on the cues contained within the auditory stream.
Whether a feature of movement, such as its kinematics
(e.g., speed and acceleration), has a clear relation to the per-
ception of emotional intention in a listening situation,
remains an empirical question.

The relationship between the perception of emotions and
musical auditory content has been studied using quantitative
methods such as regression. Various studies have found
that happy emotional content is associated with fast tempo,
major mode (Dalla Bella et al., 2001; Juslin, 2000; Peretz
et al., 1998), high pitch, increased sound level (Lange &
Frieler, 2018), and soft timbre (Juslin & Lindström, 2010),
while sadness is generally linked to features inversely associ-
ated to happiness. Anger is associated with fast tempo,
increased sound level, high-frequency content (Juslin,
2000), and sharp timbre and minor modes (Juslin &
Lindström, 2010; Lange & Frieler, 2018). Fear has been
found to be related to reduced sound level, staccato articula-
tion, large articulation variability, soft timbre (Juslin, 2000),
and minor mode (Juslin & Lindström, 2010; Lange &
Frieler, 2018). Tenderness is related to slow tempo, reduced
sound level (Lange & Frieler, 2018), low pitch, major
mode, soft timbre (Juslin & Lindström, 2010), and reduced
changes in dynamics (Eerola et al., 2009). The most signifi-
cant feature may be mode (i.e., major or minor) (Eerola
et al., 2013). Battcock and Schutz (2019) observed that
mode predicted the most variance for perceived valence,
which is the degree of perceived positiveness or negativeness
(e.g., sadness, anger, and fear have negative valence, while
happiness and tenderness have positive valence).

Relationships between the perception of emotions and
musicians’ movements have also been studied. Dahl and
Friberg (2007) presented marimba, bassoon, and soprano
saxophone performances to participants, who rated them
for perceived emotional intentions happiness, sadness,
anger, and fear under three conditions (audiovisual, video-
only, audio-only). All intended emotions were recognized
except fear regardless of condition. Participants also rated
movement content, and significant relations were found
between emotions and movement features: happiness was
associated with slow speed (bassoon), and large amounts
of movement (marimba and saxophone); sadness with
small amount of movement (marimba), slow speed (all),
and smooth fluency of movement (marimba); anger with
large amount of movement (marimba), fast speed
(marimba), and jerky fluency of movement (all); and fear
with small amount of movement (marimba and saxophone).
Crucially, facial expression was not presented to the partic-
ipants. A variant of this paradigm is to use point-light skel-
eton animations produced with motion-capture data of
music performances, which allow observers to view broad
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movement patterns without the influence of facial expres-
sions (Burger et al., 2013; Eaves et al., 2020; Vuoskoski
et al., 2014).

Previous work by Vuoskoski et al. (2014) and Vuoskoski
et al. (2016) has influenced the aims and set-up of the current
study. Vuoskoski et al. (2014) reported that visual kinematic
performance cues were more important than auditory perfor-
mance cues when making ratings of perceived expressivity in
audiovisual excerpts of piano playing. A novel and balanced
manipulation of stimuli, in which motion-capture videos of
piano performances were time-warped to fit to non-
corresponding audio, enabled the authors to quantify the
respective contributions of visual and auditory cues in self-
report ratings of perceived musical expressivity. In contrast,
Vuoskoski et al. (2016) explored the contributions of visual
and auditory cues in self-reports of felt emotions in reaction
to musical performances. Again, results highlighted the
important role of visual cues for observers’ experience of
musical performances.

The current study differs from previous similar work in
three important ways. First, we added violin performances
to contrast previous findings. Our aim was not to produce
results generalizable to all instrument groups and situations,
but rather to bring attention to differences in the way emo-
tional communication is expressed between two important
western instruments. Second, while other studies have
looked at emotional engagement or induction of emotions
when viewing or listening to musicians’ instrumental per-
formances (Camurri et al., 2004; Castellano et al., 2008;
Vuoskoski et al., 2014; Vuoskoski et al., 2016), these are
different questions than emotion perception or emotion rec-
ognition. Instead of focusing on the notion of musical
expressivity, participants rated the performances with
respect to perceived discrete emotions: tenderness,
sadness, happiness, and anger (see Eerola & Vuoskoski,
2011). The music performed on both piano and violin con-
sisted of short pieces that had been validated to express spe-
cific emotions (details in the Methods section). Musicians
performed each piece while expressing emotional inten-
tions either congruent or incongruent with the validated
emotion (e.g., a happy piece performed in a happy, sad,
tender, angry, or manner, etc.). Third, the analysis examines
relationships between participant ratings and features com-
puted from the motion-capture data, as well as acoustic and
musical features extracted from the audio signal and the
musical score. Performances were presented to participants
in three modes: audiovisual, video-only, and audio-only.

We expected to find cross-modal relationships between
auditory and visual features when perceiving musical expres-
sivity. As suggested by Windsor (2011), music presented in
one modality can give the perceiver cues as to information
from another modality. For instance, in a listening condition,
louder sounds might evoke images of faster gestures.
Evidence for this proposition was measured by correlating
all presentation conditions with both audio and motion fea-
tures, as well as using a mixture of audio and motion features
as predictors in multiple regression models. Finally, regarding

the contribution of composition to ratings of perceived
emotion, we hypothesized that musical mode would have a
significant effect on perceived emotion, even when the
pieces were performed incongruently (e.g., a happy piece in
major mode performed angrily).

Methods

Piano and Violin Performances
A violinist and a pianist were recruited to record solo per-
formances of four short musical pieces, each with four dif-
ferent kinds of emotional expressions. Both musicians were
advanced conservatory students with more than 15 years of
formal training on their respective instruments. The deci-
sion to record only two musicians was made to limit the
number of performances presented to the participants.

The musicians performed short pieces taken directly or
inspired from a database of musical compositions used by
Vieillard et al. (2008). Their aim had been to validate
musical excerpts that conveyed four intended musical emo-
tions (happiness, sadness, scare, and peacefulness) that
could be distinguished on the dimensions of valence and
arousal (Russell, 1980), and were composed to match film
music clichés (e.g., happiness denoted by major mode
and fast tempo; scare denoted by minor mode with disso-
nances, etc.). These musical pieces were composed for key-
board instruments, but our study required music suitable for
piano and violin. In the case of happiness, sadness, and
scare, we selected three pieces whose melodic part could
be adapted for violin. The corresponding pieces from the
database are G03 (happy, in d-major), T01 (sad, in d-
minor), and P02 (scary, in d-minor). Because the pieces
in the database labeled as peaceful could not be easily trans-
ferred to violin (because of being composed by mostly
arpeggiated figures and intricate interplay between the
treble and bass parts), we created a piece, entitled
Tenderness, by transposing T01 to D-major (see
Supplementary Material Figure S1). The label Tenderness
was used for consistency with emotion labels used in a
wider selection of literature (see Juslin & Laukka, 2003).

The musicians performed each piece with four different
types of expression: happy, angry, sad, and (as a control)
deadpan, resulting in 16 performances with congruent and
incongruent composition and expression pairings.
Regarding the use of the term “angry” over “scary”, the
term “scary” pertains to the response of a listener rather
than being an expression on its own, and our aim was to
emphasize the emotions conveyed by musicians (where
“angry” would be a more suitable choice in this regard).
The musicians were instructed to convey each of the
target emotions (happiness, anger, and sadness) as best as
they could through their performance, although they were
asked to avoid extreme variations in tempo between the dif-
ferent performances. For the deadpan performance, the par-
ticipants were instructed to play without any expression.
The reason for not including a tender expression was that
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a tender performance was expected to look and sound
highly like a sad performance, leading to very limited var-
iability between the conditions. Crucially, the musicians
were not given any instruction regarding how they should
move while performing, and movement was not discussed
during the recording sessions. The posture and movement
of the musicians was recorded with a marker-based
motion-capture system, the details of which are given in
the Results section.

Stimulus Generation
Audio: The pianist played a digital piano and the perfor-
mances were recorded in MIDI format. For a more realistic
piano sound, the MIDI data was imported into GarageBand
(Apple, Inc., Cupertino, CA), running on Mac OS X. The
“Grand Piano” software instrument with 50% reverb was
used to generate high-quality renditions of the perfor-
mances. The violin was recorded with a microphone and
the performances were presented without modification or
extra audio editing.

Video: The videos shown to participants were created by
rendering the motion-capture data into stick-skeleton anima-
tions using MATLAB and the Motion Capture Toolbox
(Burger & Toiviainen, 2013). To make the point-light anima-
tions clearer to interpret, the number of markers was reduced
through a procedure that included both eliminating some of
the markers and creating new synthetic markers located at
the midpoint between two original markers. This marker
reduction process approximates a similar method employed
by Burger et al. (2013). The marker configurations viewed
for both piano and violin performers can be seen in
Supplementary Material Figures S2 & S3.

Participants
A total of 92 Finnish university students aged 18–65 (M=
25.66, SD= 7.95; 63 female) participated in this study.
Forty-five of the participants (49%) reported having
received at least some musical training on an instrument
(ranging from 1 to 50 years; M= 10.58, SD= 8.21).
Participants were placed into one of three rating condition
groups (see Procedure section below). There were no signif-
icant differences between the three groups in terms of age;
F(2,89)= 1.09, p= .342, years of musical training; F(2,89)
= 0.166, p= .847, or gender; X2(2)= 0.146, p= .929. Due
to technical issues, the data of two of the participants was
not saved, resulting in a final sample of 90 participants.
The participants received a free cinema ticket (value
€9.75) as a reward for taking part in the study.

Procedure
Participants were randomly placed into one of three rating
groups that differed only in terms of the type of stimuli pre-
sented. There were three rating conditions: audiovisual
(AV), video-only (V), and audio-only (A). Participants in

Group 1 (n= 31) rated the A and V of the piano performances
(note that one participant’s audio-only ratings were not saved
due to a technical issue). Participants in Group 2 (n= 34)
rated the A and V versions of the violin performances.
Participants in Group 3 (n= 25) rated the AV versions of
both the piano and violin performances. In all groups, the dif-
ferent types of stimuli (A, V, AV) were presented in respec-
tive blocks, and the stimuli within each block were presented
in a different random order to each participant. Furthermore,
the order of the blocks was balanced across participants.

The data collection sessions were conducted in a labora-
tory setting using a computer interface (see Supplementary
Material Figures S2 and S3). The Max/MSP (version 5.1.9;
Cycling 74, Walnut, CA) graphical programming environ-
ment (running on Mac OS X) was used to present the
stimuli and collect the data. The point-light animations were
presented with a resolution of 800× 600 pixels and a frame
rate of 30 fps. The audio was presented in WAV format
through high-quality headphones (AKG K141 Studio). The
participants were told they would hear and see short
musical performances expressing different emotions, and
their task would be to evaluate the degree to which the perfor-
mances convey certain emotions. In the A and AV rating con-
ditions, the participants were instructed to base their ratings of
perceived emotion on what they heard. They were asked to
“evaluate how tender, sad, happy, or angry the performances
SOUND”. Similarly, in the V rating condition (without any
sound), the participants were asked to “IMAGINE how
tender, sad, happy, or angry the performances would
sound”. The evaluations were made using four horizontal
scales labeled tenderness, sadness, happiness, and anger,
ranging from Not at all to Very much. The participants
could use as many of the scales as they found applicable to
any given performance (i.e., there was no forced choice).
The outputs of the scales, coded using MIDI note numbers,
provided data in the range 0–127.

The data collection sessions started with two practice
trials using audiovisual excerpts that were like—but not
part of—the actual stimulus set to which participants were
instructed to respond. These responses were not included
in the data. After completing the task, participants com-
pleted a short demographic questionnaire (including ques-
tions about their musical training) and were fully debriefed.

Results

Inter-Rater Agreement
The first step in the analysis was to investigate inter-rater
agreement among the responses to musical performances.
To this end, two analyses were performed on each subset
of rated emotions: Interclass Correlation (two-way
random, average measures, absolute agreement; abbrevi-
ated ICC; see Shrout & Fleiss, 1979) and Krippendorff’s
alpha (Krippendorff, 2011). Table 1 lists the discrepancies
between these methods. For Krippendorff’s alpha, the
ranges varied from low to moderate, indicating a high
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variance in the responses. Conversely, ICC values were
high, indicating consistency in variation across responses,
even though their means may substantially differ. Despite
this, both measures show a general pattern indicating that
agreement was lower among responders in the video-only
rating condition for performances of both instruments.
Owing to the role of individual differences in emotional
experiences, studies on music and emotion generally yield
ratings with low agreement among responders (Vuoskoski
et al., 2022; Zentner et al., 2008). Nonetheless, the averages
of the ratings can be considered a suitable metric as they
cancel out the differences while emphasizing the character-
istics that multiple participants agree upon.

Comparing Differences Between Presentation
Conditions
To explore the relative contribution of compositional
aspects and performers’ expressive intentions to partici-
pants’ ratings of perceived emotion, and how this might
vary across the three presentation conditions (A, V, &
AV), a series of two-way repeated-measures ANOVAs
were carried out. The two within-subjects factors were
Type of Expression (deadpan, sad, happy, or angry) and
Type of Composition (Tenderness, Sadness, Happiness,
and Scare). The main aim of these analyses was to
compare the magnitude of effect sizes (generalized eta
squared; Bakeman, 2005) across presentation conditions
and instruments. In addition, we explored the degree to
which participants were able to accurately decode perform-
ers’ expressive intentions in the A and V presentation con-
ditions. Analyses were carried out separately for each
presentation condition, emotion scale (perceived tender-
ness, sadness, happiness, and anger) and instrument
(piano and violin). The results are summarized in Table 2,
and the mean ratings are visualized in Supplementary
Material Figures S4–S6.

For the audio-only condition, the main effect of Type of
Composition was larger than the main effect of Type of
Expression, suggesting that compositional aspects
accounted for more variance in participants’ ratings of per-
ceived emotion. The mean effect size (generalized eta
squared; Bakeman, 2005) of Type of Composition was
η2G = .47 for the piano, and η2G = .33 for the violin perfor-
mances, while the mean effect size of Type of Expression
was η2G = .21 for the piano, and η2G = .14 for the violin (com-
bined mean effects: Type of Expression η2G = .17; Type of
Composition η2G = .40; see also Figure 1 for an illustration
of the effect sizes across the three presentation conditions).

Post-hoc tests (paired t-tests with Holm–Bonferroni cor-
rection for multiple comparisons) revealed that in the piano
performances, the target emotional expressions received the
highest ratings on the corresponding rating scales but did
not always differ significantly from all other expressive
intentions: For perceived sadness, the sad expression was
rated as the saddest, but was not significantly different
from the deadpan expression. With respect to perceived ten-
derness (which did not correspond to any specific expres-
sive intention), the sad expression was rated as the most
tender, followed by deadpan, happy, and angry expressions.
For the violin performances, the target emotional expres-
sions also received the highest ratings on the corresponding
rating scales, although happiness ratings did not differ sig-
nificantly between the happy and angry expressions. These
findings demonstrate that the participants were quite suc-
cessful in decoding the expressive emotional intentions of
the musicians based on auditory cues alone.

In the Video-only rating condition, Type of Expression
played a more central role: The main effect of Type of
Expression was substantially larger than the main effect of
Type of Composition. The mean effect size of Type of
Expression was η2G = .22 for the piano, and η2G = .15 for the
violin performances, while the mean effect size of Type of
Composition was η2G = .02 for the piano, and η2G = .05

Table 1. Inter-rater agreement for perceived emotion.

Rating Condition Rated Emotion

Piano Violin

Krippendorff’s alpha ICC(2,k)a Krippendorff’s alpha ICC(2,k)a

Audiovisual Tenderness 0.38 0.94 0.33 0.93

Sadness 0.45 0.96 0.46 0.96

Happiness 0.49 0.96 0.61 0.98

Anger 0.6 0.98 0.35 0.94

Video-only Tenderness 0.26 0.92 0.2 0.91

Sadness 0.24 0.91 0.26 0.93

Happiness 0.2 0.89 0.16 0.87

Anger 0.22 0.9 0.15 0.86

Audio-only Tenderness 0.47 0.97 0.29 0.94

Sadness 0.41 0.96 0.39 0.96

Happiness 0.61 0.98 0.57 0.98

Anger 0.63 0.98 0.4 0.96

aShrout & Fleiss (1979).
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for the violin (combined mean effects: Type of Expression
η2G = .19; Type of Composition η2G = .03). In other words,
in the absence of auditory information, the type of expressive
intention accounted for substantially more of the variance in
participants’ ratings.

Post-hoc tests (paired t-tests with Holm–Bonferroni
correction for multiple comparisons) revealed that in the
piano performances, the target emotional expression
was always rated as significantly higher than any other
emotion. Similarly to the audio-only condition, the sad
expression was rated as the most tender, followed by
deadpan, happy, and angry expressions. For the violin

performances, the target emotional expressions received
the highest ratings on the corresponding rating scales
but did not always differ significantly from all other
expressive intentions: For perceived sadness, the sad
expression was rated as the saddest, but was not signifi-
cantly different from the deadpan expression. For per-
ceived happiness, the happy expression was rated as the
happiest, but did not differ significantly from the angry
expression. These findings show that participants were
able to decode the expressive emotional intentions of
the musicians based on visual kinematic cues alone,
albeit with substantial imprecision.

Table 2. Summary results of the two-way repeated-measures ANOVAs exploring the relative effects of performers’ expressive
intention and composition on participants’ ratings of perceived emotion.

Rating Condition Rated Emotion Instr. Main effect of Type of Expression Main effect of Type of Composition Interaction

Audiovisual Tenderness Piano F(3,72)= 47.9***, η2G = .27 F(3,72)= 23.2***, η2G = .18 ***
Violin F(3,72)= 70.9***, η2G = .26 F(3,72)= 9.5***, η2G = .09 ***

Sadness Piano F(3,72)= 33.2***, η2G = .13 F(3,72)= 49.9***, η2G = .41 ***

Violin F(3,72)= 42.1***, η2G = .24 F(3,72)= 50.5***, η2G = .35 ***

Happiness Piano F(3,72)= 28.4***, η2G = .09 F(3,72)= 69.8***, η2G = .48 ***
Violin F(3,72)= 46.7***, η2G = .24 F(3,72)= 127.5***, η2G = .54 ***

Anger Piano F(3,72)= 30.1***, η2G = .17 F(3,72)= 132.1***, η2G = .58 ***
Violin F(3,72)= 36.6***, η2G = .19 F(3,72)= 34.1***, η2G = .23 ***

Audio-only Tenderness Piano F(3,87)= 88.1***, η2G = .37 F(3,87)= 44.2***, η2G = .21 ***
Violin F(3,99)= 49.7***, η2G = .23 F(3,99)= 18.4***, η2G = .07 ***

Sadness Piano F(3,87)= 28.2***, η2G = .13 F(3,87)= 69.2***, η2G = .40 ns
Violin F(3,99)= 33.9***, η2G = .11 F(3,99)= 67.4***, η2G = .34 ***

Happiness Piano F(3,87)= 23.9***, η2G = .13 F(3,87)= 166.3***, η2G = .62 ***
Violin F(3,99)= 30.3***, η2G = .10 F(3,99)= 124.9***, η2G = .54 ***

Anger Piano F(3,87)= 47.0***, η2G = .20 F(3,87)= 169.1***, η2G = .63 ***
Violin F(3,99)= 33.2***, η2G = .10 F(3,99)= 57.5***, η2G = .35 ***

Video-only Tenderness Piano F(3,90)= 42.3***, η2G = .27 ns, η2G = .01 ns
Violin F(3,99)= 36.6***, η2G = .17 F(3,99)= 10.3***, η2G = .03 ***

Sadness Piano F(3,90)= 30.5***, η2G = .22 F(3,90)= 6.2***, η2G = .03 **
Violin F(3,99)= 56.6***, η2G = .22 F(3,99)= 15.0***, η2G = .06 ***

Happiness Piano F(3,90)= 28.5***, η2G = .20 F(3,90)= 3.75*, η2G = .02 ns
Violin F(3,99)= 26.0***, η2G = .09 F(3,99)= 19.4***, η2G = .08 ns

Anger Piano F(3,90)= 35.7***, η2G = .20 F(3,90)= 4.73**, η2G = .03 *
Violin F(3,99)= 26.9***, η2G = .12 ns, η2G = .01 ***

*p < .05, **p < .01, ***p < .001.

Figure 1. The mean effect sizes (generalized eta squared; Bakeman, 2005)± standard deviations of Type of Composition and Type of

Expression on ratings of perceived emotion across the three presentation conditions and two instruments.
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In the Audiovisual condition, the differences between the
mean effect sizes of Type of Expression and Type of
Composition were slightly reduced: The mean effect
size of Type of Expression was η2G = .17 for the piano, and
η2G = .23 for the violin performances, while the mean effect
size of Type of Composition was η2G = .41 for the piano,
and η2G = .30 for the violin (combined mean effects:
Type of Expression η2G = .20; Type of Composition η2G = .36).
These findings suggest that, compared to the audio-only
condition, visual kinematic information enhanced the
perceptual salience of expressive intentions in relation to
the compositional features.

Relationships Between Rated Emotions and
Computed Features
Motion Features. For each rated performance, motion fea-
tures (mo) were computed from the motion-capture data.
To permit comparing piano and violin performances, we
computed features related to the kinematic aspects of move-
ment (see Dahl & Friberg, 2007). These measures corre-
spond to the magnitudes of the numerical approximations
of the time-derivatives velocity (avbspeed), acceleration
(avaccmag), jerk (avjrkmag), and City-Block Total
Distance (cbtotdist) as a measure of total amount of move-
ment (Camurri et al., 2004; Thompson & Luck, 2012).
These were computed for five marker groups for each musi-
cian. The marker groups for the pianist were the upper body
(ub), torso (t), head (h), left finger (lf), and right finger (rf).
The marker groups for the violinist were full body with
violin and bow ( f ), torso (t), head (h), left finger (lf), and
right finger (rf) (see Tables 3 and 4). The marker groups
differ between pianist and violinist. For the pianist, the
‘upper body’ comprises markers on the torso, head,
elbows, wrist, and middle fingers (no markers placed on
the lower body). The violinist performed in a standing posi-
tion, and markers were placed on the whole body, bow, and
violin because they were included in the rated videos.
Additionally, the functions of the right- and left-hand

fingers differ between instruments. In the case of the
pianist, the right hand typically plays the melody,
whereas the left-hand plays harmony. In the case of a
violin, the right hand moves the bow, whereas the left-hand
fingers depress the strings on the fingerboard. Each result-
ing motion feature is composed of 16 data points,
meaning one for each performance.

Audio Features. As with motion features, the criterion for
selecting audio features was that they should permit a
comparison between instruments. Six audio features
(au) were computed from each performance. Two features
were derived from the manual annotations of the note
onsets: average performance speed (avpspeed) and stan-
dard deviation (varpspeed). Next, the mode (mode) of
each piece was annotated from the score (positive unit
for the major mode and vice versa). The last three fea-
tures, related to signal energy, were computed using
MIRToolbox v. 1.6.3 (Lartillot et al., 2008). These were
root-mean-square energy (rms), and sub-band flux of
bands 3 (avfluxsb3) and 7 (avfluxsb7) (Alluri &
Toiviainen, 2010). These bands account for variabilty of
energy in the lower and higher portions of the frequency
spectrum, respectively (see Table 3 for an overview). As
with motion features, each resulting audio feature is com-
posed of 16 data points.

Correlation Between Features. To assess the distinctiveness
of each feature, Figure 2 displays the level of correlation
between all motion and audio features. A lower correlation
(indicated by white or lightly shaded cells) with other fea-
tures indicates high distinctiveness. For motion features
(mo), total distance (cbtotdist) is notably distinct, for all
marker groupings and both instruments. The time-
derivative features (avbspeed, avaccmag, and avjrkmag)
are highly intercorrelated for all the marker groups of the
violinist but not for the marker groups of the pianist. For
audio features, mode is the most distinct. However, it
must be acknowledged that this feature is identical for
both instruments and a dichotomous feature treated as con-
tinuous, as opposed to the true continuous nature of the

Table 4. Summary of marker groups for violinist and pianist.

From each marker group, four movement features were

computed (see Table 3).

Marker Group Abbreviation

Pianist upper body ub

torso t

head h

left finger lf

right finger rg

Violinist full body w/ violin and bow f

torso t

head h

left finger lf

right finger rf

Table 3. Summary of motion and audio features calculated from

piano and violin performances. Motion features were calculated

for each marker group.

Full Name Abbreviation

Motion Features

(mo)

Average Speed avbspeed

Average Acceleration

Magnitude

avaccmag

Average Jerk Magnitude avjrkmag

City-Block Total Distance cbtotdist

Audio Features

(au)

Average Performance Speed avpspeed

Variability of Performance

Speed

varpspeed

RMS Energy rms

Average Flux of Sub-Band 3 avfluxsb3

Average Flux of Sub-Band 7 avfluxsb7

Mode (major, minor) mode
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Figure 2. Pearson’s correlation coefficients between features. The upper triangle shows correlation for piano performances and the

lower triangle for violin performances. The diagonal shows correlation of features between piano and violin. A dot indicates negative

coefficient.

Figure 3. Features with low collinearity when among all features (motion and audio), only motion features, and only audio features.
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other features. Energy and spectral flux are generally highly
intercorrelated, but in the case of the violin, the lower spec-
tral flux sub-band (avfluxsb3) differs from the higher spec-
tral flux sub-band spectral flux (avfluxsb7). This may be due
to this instrument only playing melody within a middle to
high register, reaching the lower spectral band only occa-
sionally, therefore having greater variability in this band.
On the contrary, piano performances involve playing
chords with the left hand, and thus the lower spectrum
content is more homogeneous.

The inclusion of motion and audio features within the
same figure highlights potential cross-modal relationships.
For the violinist, average performance speed (au avpseed)
was moderately to highly positively correlated with time-
derivatives (avbspeed, avaccmag, and avjrkmag) and total
distance (cbtotdist) of each marker group while variation
in speed (varpspeed) was inversely correlated. Similar rela-
tionships appear in the piano performances, except that total
distance (cbtotdist) was inversely correlated to variation in
speed and positively correlated to average speed.

Feature Selection Based on Low Collinearity. Figure 2 pro-
vides a snapshot of collinearity within the feature set. To
make the multiple regression models as reliable as possible,
subsets of motion and audio features with low collinearity
were compiled so that their Variance Inflation Factor
would not exceed two. These subsets included either
motion features, audio features, or a combination of both.
Subsets with motion features contained only features for
one marker group. Motion measures were found to be
highly collinear, but at least one motion feature was
retained in each feature subset. It was desirable to have at
least one motion feature in the subsets with audio and
motion features combined, so that they would ‘compete’
for inclusion in a model, being those most statistically sig-
nificant (lower p-value) the ones included. Figure 3 shows
the features retained, revealing distinct patterns for each
instrument. For instance, among the motion features in
the case of the piano, both hands (lf and rf) have different
characteristics than the torso (t) and head (h), while in the
case of the violin the bow hand (rf) is distinct.

Correlations Between Features and Ratings. Linear correla-
tions were computed between each feature and mean
ratings for each emotion. Figures 4 and 5 show these
values for piano and violin performances, respectively.
The most striking result is that, for both instruments, the
time-derivatives of motion have greater correlations with
perceived emotions when audio is absent in the stimulus.
Also, the time-derivatives, for both instruments, are
inversely correlated with the ratings of sadness and tender-
ness. This effect is greater in the violin ratings, showing
clear positive correlation between motion time-derivatives
and the ratings of happiness and anger. The correlations
between time-derivatives and ratings for violin perfor-
mances are stronger than for piano performances when
the stimuli are audiovisual. However, in the audio-only

condition, all features have very low or no correlation
with the ratings obtained for the violin performances.
Conversely, for piano performances, the relations between
emotion ratings and all features are remarkably similar in
both conditions where audio is presented. Audio features
that are highly correlated with the motion derivatives also
have high correlations with emotion ratings. There is of
course a clear relation between the physical energy used
to produce a sound and the energy of the resultant sound,
reflected, for example, in the features performance speed
(avpspeed) and RMS energy (rms).

Calculation and Selection of Regression Models. A Simple
Ordinary Least Squares (OLS) Linear Regression Model
(LRM) was computed for each feature as an independent
variable and the mean value of each rating subset as the
dependent variable. Additionally, a Multiple OLS-LRM
was computed for all the possible permutations of features
within each subset of features previously screened. For
example, the subset of audio features and torso motion fea-
tures of piano performances has five low-collinearity fea-
tures. Models including all permutations of two to five
features were computed. All features were standardized so
that the coefficients of a model can be used as an indicator
of the contribution of their corresponding feature to the
model. A regression model is expressed as an equation in
the form.

Y = C + β1X1 + β1X2 + . . .+ βnXn + ε

where Y is the mean responses (perceived emotions) vector,
C is a constant vector, β is a weight coefficient vector for
each vector X of features {1, n} included in the model
and ε is the error vector. Of this equation, only the weight
(β) coefficients and their corresponding t-test p-value are
considered for analysis, as they provide information about
the contribution of each feature in the model. The constant
term does not provide any useful information for the
purpose of this study. Also, since the number of data
points is low (n= 16), assessment of the error term is irrel-
evant. The adjusted coefficient of determination (Adjusted
R2 or R2

adj) was used to assess a model’s goodness-of-fit
adjusting for the number of features included. All multiple
regression models that had at least one weight coefficient
having a t- test p-value equal or greater than 0.05 were dis-
carded, but all the simple regression models were retained
for further examination. Tables 5 and 6 summarize the
retained models, with a single simple regression model
(Table 5) and single multiple regression (Table 6) selected
for each mean rating of perceived emotions. Additionally,
the tabulated models had the lowest Corrected Akaike
Information Criterion, which increases with a model’s fit
but penalizes the addition of features, also adjusting for
the small number of data points (Hurvich & Tsai, 1989).

Simple Linear Regression Models. Table 5 shows the selected
simple linear regression models for motion audio features.
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Figure 4. Pearson’s correlation between mean ratings of perceived emotions and computed features of piano performances. A dot

indicates negative coefficient.

Figure 5. Pearson’s correlation between mean ratings of perceived emotions and computed features of violin performances. A dot

indicates negative coefficient.
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Table 5. Simple linear regression results for motion (mo) and audio (au) features.

Simple linear regression models for Motion Simple linear regression models for Audio

Rating
Condition Instrument

Rated
Emotion

Adjusted
R2 Motion Feature β sign p

Adjusted
R2 Audio Feature β sign p

Audiovisual piano Tenderness 0.3 mo t avaccmag – 0.02 0.64 au rms – <0.01
Sadness 0.3 mo rf avbspeed – 0.02 0.57 au mode – <0.01
Happiness 0.34 mo rf avbspeed + 0.01 0.74 au mode + <0.01
Anger 0.35 mo t cbtotdist + <0.01 0.76 au avfluxsb3 + <0.01

violin Tenderness 0.43 mo f avjrkmag – <0.01 0.5 au avpspeed – <0.01
Sadness 0.65 mo rf avjrkmag – <0.01 0.65 au avpspeed – <0.01
Happiness 0.56 mo rf avjrkmag + <0.01 0.72 au varpspeed – <0.01
Anger 0.24 mo f avbspeed + 0.03 0.58 au rms + <0.01

Video-only piano Tenderness 0.85 mo h avaccmag – <0.01 0.66 au rms – <0.01
Sadness 0.71 mo h avjrkmag – <0.01 0.55 au avpspeed – <0.01
Happiness 0.5 mo h avjrkmag + <0.01 0.34 au avpspeed + <0.01
Anger 0.64 mo t avaccmag + <0.01 0.68 au rms + 0.01

violin Tenderness 0.84 mo f avjrkmag – <0.01 0.62 au avpspeed – <0.01
Sadness 0.81 mo h avjrkmag – <0.01 0.8 au avpspeed – <0.01
Happiness 0.48 mo h cbtotdist + <0.01 0.61 au avpspeed + <0.01
Anger 0.76 mo rf avbspeed + <0.01 0.69 au avfluxsb7 + <0.01

Audio-only piano Tenderness 0.33 mo t avaccmag – 0.01 0.67 au rms – <0.01
Sadness 0.36 mo rf avbspeed – <0.01 0.62 au mode – <0.01
Happiness 0.35 mo rf avbspeed + <0.01 0.76 au mode + <0.01
Anger 0.32 mo t cbtodist + 0.01 0.75 au avfluxsb3 + <0.01

violin Tenderness 0.01 mo rf cbtotdist – 0.3 0.36 au mode – <0.01
Sadness 0.08 mo f avjrkmag + 0.14 0.3 au mode – 0.02
Happiness 0.17 mo lf avbspeed – 0.06 0.04 au avpspeed – 0.22
Anger 0.12 mo t cbtotdist + 0.1 0.16 au mode + 0.07

Note. avbspeed = average speed; avaccmag = average acceleration magnitude; avjrkmag = average jerk magnitude; cbtodist = city-block total distance; avpspeed = average performance speed; varpspeed = performance speed standard deviation;
rms= root mean square; mode=mode (major or minor); avfluxsb3 = sub-band flux band 3; avfluxsb7 = sub-band flux band 7; t = torso; f= full body; h = head; lf = left finger; rf = right finger.
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These models indicate the degree of linear relation between
features and ratings, measured by R2

adj. In practice, it is a
correlation analysis. However, the use of R2

adj allows com-
parison with the models that have more than one feature.
The table only displays the models’ beta coefficient (β)
sign, as the magnitude is irrelevant for models with a
single feature. The sign indicates whether the relation is
positive or negative. The inclusion of motion and audio fea-
tures within the same table allows direct comparison
between each rated emotion’s selected features. Models dis-
played in bold characters have the higher fit for each rated
emotion. Models with p-value ≥ 0.05 are deemed to be stat-
istically insignificant but still worth of noting value is not
much greater than 0.05. Models that have higher R2

adj than
their multiple regression counterparts (see Table 6) are
shown with gray background. The same overall observa-
tions made for the correlation analysis apply to Table 5.
However, these models are intended to observe the stron-
gest relationships between ratings and features.

In the movement feature models, for happiness and
anger, the relation of movement features is positive,
meaning that higher movement feature values (or more
activity) produce higher ratings for these emotions, except
the case for perceived happiness in violin performances.
Meanwhile, sadness and tenderness ratings had a negative
relation with the movement features. This was the case
for all piano-rating conditions (audiovisual, video-only,

audio-only) and for most violin-rating conditions (audiovi-
sual, video-only). For piano ratings, the relations were
strongest in the video-only condition, and the strongest rela-
tion (R2

adj= 0.85) was between tenderness ratings and head
acceleration (mo h avaccmag). The audio-only condition
resulted in non-significant models for the violin perfor-
mances. Interestingly, in the case of the piano, the audio-
only models are similar to those for the audiovisual condi-
tion with R2

adj values varying between 0.3 and 0.36.
Turning to the audio feature models, the relation

between mode is negative for sadness and positive for hap-
piness ratings, meaning that minor mode corresponds to
perceptions of sadness and major mode corresponds to per-
ceptions of happiness. The ratings of anger have a positive
relation with the variation of lower spectral content
(avfluxsb3). This can be observed in the ratings obtained
in both audiovisual and audio-only conditions, which corre-
spond to different responders. For ratings of violin perfor-
mances presented in the audiovisual condition, the
average performance speed computed from audio annota-
tion (avpspeed) is negatively related to tenderness and
sadness, while its standard deviation (varpspeed) is nega-
tively related to happiness. Also in the case of the violin,
audio energy (rms) is positively related to anger when pre-
sentation is audiovisual, but not when it is audio-only.
Audio energy is positively related to anger, as is the case
for the piano. Finally, it is worthwhile to remark that for

Table 6. Multiple linear regression results for motion and audio features.

Rating

Condition Instr.

Rated

Emotion

Adjusted

R2
F-test
p-value

Marker

group

Motion

avbspeed

Motion

cbtotdist

Motion

varspeed

Audio

avfluxsb3

Audio

avfluxsb7

Audio

mode

Audiovisual piano Sadness 0.9 < 0.01 – β – – – −17.1 – −27.7
p – – – <0.01 – <0.01

Happiness 0.83 < 0.01 rf β 10.5 – – – – 23.8

p 0.01 – – – – <0.01

Anger 0.93 < 0.01 – β – – 8.3 23.4 – −7.6
p – – <0.01 <0.01 – <0.01

violin Tenderness 0.52 < 0.01 – β – – 11.3 – −8.5 13.3

p – – 0.02 – 0.04 <0.01

Sadness 0.72 < 0.01 – β – – – −19.1 – −18.8
p – – – <0.01 – <0.01

Happiness 0.87 < 0.01 – β – – −23.4 – – 15.8

p – – <0.01 – – <0.01

Anger 0.82 < 0.01 – β – – – 9.7 6.4 −9.4
p – – – <0.01 0.01 <0.01

Video-only piano Anger 0.88 < 0.01 lf β 6.5 6.7 – – 9.1 4.2

p <0.01 <0.01 – – <0.01 0.02

violin Happiness 0.76 < 0.01 – β – – −8.8 11.1 – –
p – – <0.01 <0.01 – –

Audio-only piano Sadness 0.89 < 0.01 rf β – −8.2 – – −10 −23.5
p – <0.01 – – <0.01 <0.01

Happiness 0.85 < 0.01 rf β 11.4 – – – – 25.8

p <0.01 – – – – <0.01

Anger 0.91 < 0.01 – β – – 7.9 23.3 – −8
p – – 0.01 <0.01 – 0.01

violin Anger 0.44 < 0.01 lf β – 11 – – −9.9 11.8

p – 0.03 – – 0.05 0.02
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performances of both instruments, audio features dominate
when the stimuli include audio.

Multiple Regression Models. None of the multiple regression
models computed and selected with the described proce-
dures for subsets of motion-only candidate features
yielded higher R2

adj than their simple regression counter-
parts. All the multiple regression models computed for
subsets of audio-only candidate features and having
higher R2

adj than their simple regression counterparts
appeared in the models selected from the ones computed
with the subset of audio and motion candidate features,
except one. The model for sadness ratings of audio-only
piano performances composed only by audio features is
slightly improved by adding total distance of the right
finger and replacing variability of the lower part of the spec-
trum for variability of the higher part of the spectrum.

Hence, Table 6 contains the multiple regression models
with highest R2

adj of all the multiple regression candidate
features subsets, and with higher R2

adj than their simple
regression counterparts. All models in Table 6 for ratings
that included audio, have mode included. For positive
valence mode is positive and vice versa for negative
valence, as in the simple regression models. An exception
is the model for anger when only video was presented,
which seems to be spurious and suggesting an effect of ser-
endipity, as at least theoretically and intuitively, mode does
not contribute to visual perception. For the ratings of
sadness in audiovisual condition, the models are the same
in terms of features and the sign of their coefficients:
lower spectrum and minor mode. A similar effect is
observed for anger ratings: high variability of lower spec-
trum and minor mode. However, the model for piano per-
formances includes variability of performance speed
(avpspeed) and the model for violin performances also
includes variability of higher spectrum (avfluxsb7).
Models for tenderness and happiness ratings had more dis-
tinct characteristics for each instrument, variability of per-
formance speed (avpspeed) and lower spectrum
(avfluxsb3) had different signs for either instrument.

In the case of the piano, as it can be seen with simple
regression, models for happiness and anger ratings in
both conditions with audio are similar, meaning the same
features with very close coefficient values. For sadness
ratings there is an inverse relation with variation of lower
spectrum, while for anger the relation is positive. This
may be because the pianist played chords with less dynam-
ics in the sadly intended pieces, while for the anger-
intended emotion, the pianist may have hit the chords
more forcefully.

A few models were improved over the simple regression,
by including either or both average bodily speed and total
distance. Notably, some models that correspond to ratings
for performances presented without video have relevant
contributions of motion features. Also, for ratings of
piano performances, the marker of the right finger has the
greatest contribution for happiness (average speed) and

sadness, while the left hand for anger (average speed and
total distance). Presumably this is because the right hand
plays the melody noticeably fast. Likewise, the left hand
plays the chords and, as it has been said, they might have
been hit more energetically in the pieces with higher
ratings for anger. In the case of the violin, the model for
anger ratings was improved with the inclusion of total dis-
tance and variability of high spectrum, to the existing mode
that alone has very low correlation. Finally, neither simple
nor multiple regression yielded a strong model for happi-
ness ratings of violin performances presented as audio-only.

Discussion
Advancing previous work by Vuoskoski et al., (2014) and
Vuoskoski et al. (2016), this study investigated cross-modal
contributions of sight and sound in the perception of
expressed emotion in musical performance. Participants
rated piano and violin performances in which the musicians
played four short pieces attempting to convey four emo-
tional intentions. We also examined the effect of presenta-
tion modality (AV, A or V) on participant ratings of
perceived emotion, and the relationships between ratings
and motion and audio features derived from performance
data (motion-capture and audio recordings). Linear rela-
tionships between the features and ratings were measured
using Pearson’s correlation and ordinary least-squares
regression. Below, we outline the study’s main results,
reflect on its limitations, and suggest avenues for future
research.

A general finding was that emotion ratings were more
consistent among responders when audio was present
(audiovisual and audio-only conditions). This suggests
that music provided cues that most responders interpreted
in more unified ways as opposed to a wider variety of inter-
pretations within the video-only condition. However, the
post-hoc tests of the ANOVA analyses revealed that partic-
ipants were marginally able to decode performers’ expres-
sive intentions based on both visual and auditory
information alone (Akkermans et al., 2019, and
Gabrielsson & Juslin, 1996). In rating conditions where
audio was present, compositional aspects had a stronger
effect on participant ratings than performers’ expressive
intentions. The same pattern of results was observed in
both the ANOVAs and the analysis of musical and acoustic
features, where the musical mode (whether the piece was
major or minor) was the dominant variable in predicting
the ratings of perceived emotions. Thus, the compositional
aspects of the performances were generally stronger than
the expressive aspects when it came to evaluating perfor-
mances for perceived emotion.

Relations Between Audio and Motion Features
A correlation analysis shows relationships between audio
and motion features (see Figure 2). For violin performance,
the average speed at which pieces were played was
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positively correlated with the violinist’s motion accelera-
tion and jerkiness (i.e., faster performances were played
with greater acceleration through all parts of the body).
The relationship between speed, acceleration, and jerk
appeared in piano performance, but to a lesser extent. Of
all the features and for both violin and piano performances,
the least correlated feature was mode. This indicates that
mode (major or minor), being a compositional aspect, did
not affect performance aspects (e.g., performance speed
as indicated by speed or dynamics as indicated by RMS).

Relations Between Performance Features and
Perceived Emotion Ratings
Correlations between performance features and perceived
emotions were different for each instrument but exhibited
some commonalities (details in Figures 4 and 5, and
Tables 5 and 6). The correlation between ratings for per-
ceived emotions in piano performances and computed fea-
tures were very similar when audio was presented, the audio
features being much stronger than motion features. The cor-
relations between ratings for perceived emotions in violin
performances ranged from nil to low when the performance
was presented only as audio. For both instruments’ perfor-
mances, the correlations between perceived emotions and
motion features were generally stronger when audio was
not present, and mostly higher than audio features.

For both instruments, performances presented as video
with audio or only video, the time-derivatives of motion
correlated directly with high activity emotions (happiness
and anger), and inversely with low activity emotions (ten-
derness and sadness). This effect was also observed for
the piano performances presented without video and was
much stronger for violin performances than for piano per-
formances. In general, acceleration and jerk had the
highest correlations among motion features with rated emo-
tions. Multiple regression models made of low-collinearity
features fit better to perceived emotions for most emotions
and presentation conditions (details in Table 6). Crucially,
all multiple regression models for ratings where audio
was presented had better fit after including mode in the
model. Also, when audio was presented, mode was
always directly related to positive valence emotions (ten-
derness and happiness), and inversely related to negative
valence emotions (sadness and anger). However, excep-
tions are the anger and tenderness ratings in the violin’s
performances, relating to major and minor mode, respec-
tively. This suggests that while there are plenty of common-
alities in piano and violin performances, each instrument
had qualities that affected perceived emotion differently.

The relationships between performance features and per-
ceived emotion ratings were generally consistent with pre-
vious research. For audio features, we found relationships
between mode and emotional valence (whether a piece
was happy or sad), which aligned with work cited in the
introduction (e.g., Dalla Bella et al., 2001; Juslin, 2000;
Peretz et al., 1998). Regarding the relationship between

amount of movement and happiness ratings being direct,
and the relationship between amount of movement and
sadness ratings being inverse, we found partial agreement
with Dahl and Friberg (2007). Our analysis verified this
for all the marker groups on the violinist when the video
was presented and weak or inverse when only audio was
presented. For piano performance ratings, this relationship
only appeared in the movement of the right hand (rf)
when audio was present. The relationships between
ratings in the audio-only condition of violin performances,
and all performance features (motion and audio) ranged
from irrelevant to weak. Conversely, this relationship was
observed to be substantially stronger for video-only and
audiovisual conditions. While unclear why this occurred,
it could be due to the melodic nature of the violin perfor-
mances, which lacks the additional information provided
by the harmonic accompaniment by the left hand in piano
performances. Also, the most-correlated motion features
for ratings of violin performances when video was pre-
sented, are performance speed and variability of perfor-
mance speed (avpspeed and varpspeed, respectively), and
energy (rms). These are moderately to strongly correlated
with motion time-derivatives, suggesting that responders
made their assessment of violin performances with more
emphasis on movement, while assessing piano perfor-
mances with more emphasis on sound, likely due to the
presence of chords reinforcing the mode (major or
minor). It should be noted that our analysis is meant to
model and predict the dataset at hand, and not be read as
being generalizable to other similar data. However, the
models point towards some tentative conclusions, poten-
tially useful for future research—the main one being that
mode had a consistent and robust effect on ratings when
audio was present.

Limitations of the Study. This study has some limitations that
could be considered when designing follow-up work. First,
participants viewed performances by only two musicians.
This resulted from our choice to have one musician per
instrument to limit the number of stimuli presented to the
participants. Related to the choice of musical instrument,
the performance features used for correlation and regression
analysis were limited to features that would apply equally
to pianos and violins. Using piano and violin performances
of the same pieces, our results may not generalize to all
musical instruments. Rather, the results evince differences
in the types of expressive gestures made by different
instrumentalists.

Another potential limitation is the inter-rater agreement.
To ensure that the perceptual data would be suitable for
regression analysis, we tested the agreement among the
ratings using Intraclass Correlation (ICC) and
Krippendorff’s alpha. Although both tests showed a
similar pattern between rating conditions (e.g., agreement
was generally lower for the video-only condition), the
overall results of Krippendorff’s alpha were remarkably
lower than the ICC. The artifacts resulting in high ICC

14 Music & Science



may be due to tau-inequivalence and non-normality, which
are impractical to measure in a small sample size (N= 31 or
34 in this study). Conversely, Krippendorff’s alpha is inde-
pendent of n (it can be two raters or one million). The liter-
ature on music and emotion research has primarily focused
on ICC measures. While precedence is not the best justifi-
cation for using ICC, it must be acknowledged that the
level of agreement in our participants is typical for music
and emotion experiments, and that individual differences
are a central part of emotional experiences. Our regression
models explained quite a bit of the variance in the mean
ratings by the motion and acoustic features. This demon-
strates that the mean ratings reflect something salient
about participants’ emotion perception. Our goal was not
to account for all the variance, but to identify which of
the motion and acoustic features played a greater role in
the participants’ evaluations. We hope that the discrepan-
cies between Krippendorff’s alpha and ICC discussed
here will be useful for future research in this area.

A more general limitation of the current study is that its
findings are not scalable to music cultures outside the
western classical tradition. The current study took for
granted that the participants had been raised in circum-
stances that would have exposed them to western classical
tonal music. This assumption was made solely since all par-
ticipants were of Finnish nationality. Thus, it is inappropri-
ate to claim that the findings of this study are valid for other
musical cultures. Interestingly, the strongest signifier of
perceived intention was the musical mode, with ratings
strongly correlating with the traditional view that music in
major keys is positively valenced and music in minor
keys is negatively valenced. A recent study by Smit et al.
(2022) found that the major/minor valence dichotomy is,
by and large, something that is learned through culture as
opposed to being universal across musical cultures.
Therefore, our results should be kept within the scope of
western enculturated music listeners.

Finally, let us consider the various theories mentioned in
the introduction. Embodied and enactive approaches
explaining the perception and cognition of music propose
that gestures performed by musicians play a significant
role in communicating musical expressivity. This may
stem from linguistic communication, in which gestures
convey clear messages and can substitute speech
(McNeill, 2007). Generally, there is a sense that when musi-
cians produce performance gestures with their body,
observers are able to interpret expressive or emotional
intentions. However, music performance gestures (outside
of conducting gestures) lack the clear meaning analogous
to linguistic gestures. In other words, they remain ambigu-
ous, particularly when presented without the performance’s
auditory component. This appears to be what our data is
pointing at, as compositional factors such as musical
mode (major/minor) acted as clear predictors as to
whether a piece was rated sad or happy, despite the musi-
cians’ performance intentions. While there is a strong semi-
otic component to music, it remains more salient in auditory

and compositional cues than movement cues. This does not
mean that the ecological approach is not applicable to music
performance, but our findings indicate that auditory affor-
dances are more useful in communicating discrete
musical emotions than movement cues. Regarding cross-
modal recognition, although motion and audio features
were correlated (e.g., louder music correlated with faster
movements), our paradigm could have more strongly
emphasized cross-modal recognition in the experimental
design. For instance, to properly test Windsor’s idea that
the audio channel contains affordances that a listener
would use to create images of the musician’s movements,
a future study could ask participants to specifically describe
the gestures being performed while listening to music.

Conclusion
This study builds on previous research on how musical per-
formance serves as a means of expressive and emotional
communication. We found that performances rated high
in happiness and anger were characterized by greater vari-
ation in musical dynamics, speed, and activity, whereas per-
formances rated high in sadness and tenderness had more
subtle dynamics and movements. Interestingly, when the
presentation condition of the performance was audiovisual
or audio-only, ratings of perceived emotions were mainly
influenced by compositional elements, such as musical
mode, rather than by musicians’ emotional intentions.
This suggests that compositional structure within the
context of western classical music has a stronger impact
on an audience’s emotional response than the performer’s
gestures (see Laukka & Gabrielsson, 2000). However,
when the presentation condition was video-only, partici-
pants were able to decode emotional intentions to a much
lesser extent. Additionally, inter-rater agreement was
lowest when the presentation condition was video-only, sig-
nifying the ambiguity of expressive gestures without the
full context of the performance, which is a valuable starting
point for future work on this subject. To expand this
research, future studies could explore different musical
instruments and non-western musical cultures while imple-
menting the methodological suggestions made in this study.
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Abstract
We explored the hypothesis that musical emotions are embodied differentially by people according to 
their personality. Nine hundred and fifty two individuals completed the Big Five personality inventory. 
A subset of 60 participants were asked to spontaneously move to 30 short musical stimuli while being 
recorded with a motion-capture system. The musical stimuli were separately rated for perceived 
emotions. Embodied musical emotions were evaluated as the correlation between features derived 
from the motion-capture data and the mean ratings of perceived emotions. Correlations between 
embodied musical emotions and personality traits provided tentative support for our hypothesis. A 
series of linear regression analyses revealed that scores on Openness and Agreeableness were most 
strongly, and Neuroticism and Conscientiousness most weakly, predicted by embodied musical 
emotions. Overall, our results offer tentative support for the existence of differential relationships 
between embodied musical emotions and personality, and describe statistical models that might be 
empirically tested in future studies.
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When someone spontaneously dances to music, their movement and posture may reflect character-
istics of  the music. In other words, dance may embody musical properties, beat, and rhythm usually 
being the most evident (Burger et al., 2014, 2018; Burger, Thompson, et al., 2013; Toiviainen et al., 
2010). Likewise, more complex and abstract characteristics of  music may be embodied in dance, 
such as emotional content (Van Dyck et al., 2017). However, it is likely that not everyone will embody 
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musical emotions in the same way and to the same extent. One might ask, therefore, whether people 
have individual characteristics that affect how and how much they will embody musical emotions. 
Alternatively, might these individual characteristics be predicted by the way people embody musical 
emotions? These two questions are facets of  the same relationship. Beyond scientific curiosity, 
acknowledging the effect of  individual differences on bodily expression of  musical emotions may be 
relevant to activities that involve music and dance with a variety of  people, such as teaching music 
and dance, and the use of  dance and music in therapeutic settings.

The relationships between people’s individual characteristics and musical emotions have been 
studied in various ways. Usually, such individual characteristics are examined in terms of  person-
ality traits and measured with a questionnaire, even though other characteristics may be consid-
ered, such as gender or cultural background. Musical emotions have been observed in terms of  
perceived emotions in music and felt emotions when listening to music or emotions induced by 
music. These can be evaluated with a questionnaire or by measurement of  physiological activity. 
Gerra et al. (1998), for example, reported an experiment in which participants were presented 
with classical and electronic dance music, while several physiological and psychological measure-
ments were recorded. Results showed that after listening to both kinds of  music there was a change 
in emotional state. However, only after listening to electronic dance music was it observed that 
changes toward a negative mood and release of  stress hormones had a positive correlation with 
“harm-avoidance” and a negative correlation with “novelty-seeking” temperaments of  Cloninger’s 
personality scales (Cloninger, 1987). Another study, conducted by Park et al. (2013), looked at 
how “Big Five” personality traits (Extraversion, Agreeableness, Conscientiousness, Neuroticism, 
and Openness) modulate neural correlates of  musical emotion processing. Participants completed 
the NEO-FFI questionnaire of  Big Five personality traits (McCrae & Costa, 2004) and, while being 
scanned by a Magnetic Resonance Imaging device, listened to music expressing different emotions. 
The results showed significant correlations between brain activity and both Neuroticism and 
Extraversion as a response to music expressing happiness and fear, respectively.

Other studies on the relationships between musical emotions and personality have evalu-
ated musical emotions, perceived or felt, solely by means of  self-report. Vuoskoski and Eerola 
(2011b) conducted an experiment in which participants completed the Big Five Inventory (BFI) 
personality questionnaire (John & Srivastava, 1999), the POMS-A questionnaire to evaluate 
mood (Terry et al., 2003), and rated music in terms of  perceived discrete emotions (happiness, 
sadness, anger, fear, and tenderness). Ratings of  perceived sadness correlated positively with 
Neuroticism and negatively with all other traits except Conscientiousness. Also, mood was 
associated with mood-congruent biases in perceived emotions, moderated by Extraversion. In 
another experimental study, Vuoskoski and Eerola (2011a) asked participants to complete the 
BFI and to rate emotions felt when listening to music. Ratings in terms of  three-dimensional 
affect—Valence (i.e., positive vs. negative), Energy, and Tension—yielded more consistent and 
differentiated responses compared with discrete emotions. However, the relation between per-
sonality and music-induced emotions was stronger for discrete emotions. In addition, 
Extraversion was significantly correlated with experienced happiness, sadness, and tenderness. 
In a similar vein, Liljeström et al. (2012) asked participants to listen to music and indicate if  it 
was familiar, how much they liked it, which emotions they felt and how intensely. Participants 
also completed the NEO-PI-R questionnaire for Big Five traits (Costa & McCrae, 1992). A posi-
tive correlation was observed between Neuroticism and experience of  negative emotions, while 
for all other traits the correlation was negative. This is consistent with the results of  Vuoskoski 
and Eerola (2011b). Furthermore, the correlation between personality traits and ratings of  
emotion intensity was moderately positive for Agreeableness, Extraversion, and Openness, neg-
ligible for Conscientiousness, and weakly negative for Neuroticism.
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The studies mentioned in the previous paragraphs reveal distinct relationships between per-
sonality traits and the perception and feeling of  emotions in music. Trait Openness is a special 
case as it has been suggested to be related to transient emotional responses (colloquially referred 
to as “chills”) to music and other expressions facilitating aesthetic experiences (McCrae, 2007). 
Nusbaum and Silvia (2011) tested this hypothesis in an experiment, and found that Openness 
was the only Big Five trait that significantly predicted such responses as an effect of  music lis-
tening. Furthermore, Silvia et al. (2015), found a significant and moderate correlation between 
Openness and the feeling of  a profound experience (also referred to as “awe”) when listening to 
music, while the correlation with the other traits was much lower.

Although perception and experience of  musical emotions may be observed by means of  physio-
logical measures and self-report questionnaires, still other possibilities exist. For example, one might 
examine characteristics of  spontaneous movement to music, such as how such movements embody 
the music’s emotional content. Burger, Saarikallio, et al. (2013) asked participants to spontaneously 
move to music (i.e., dance) while they were recorded with a motion-capture system. Bodily features 
were computed, for example, the torso’s tilt and rotation, floor area used and acceleration of  differ-
ent body parts. Another group of  participants rated the perceived emotional content of  the same 
music in terms of  both dimensional affect—Arousal (i.e., emotional activation) and Valence—and 
discrete emotions Happiness, Anger, Sadness, and Tenderness. A correlational analysis between 
bodily features and emotion ratings revealed significant relations between them, even though the 
two datasets were collected independently of  each other and from different groups of  participants. 
Using the same data, Burger, Polet, et al. (2013) found a mediation effect of  emotion ratings on the 
relation between bodily features and features of  the music, such as energy and activity in the low- 
and high-frequency ranges, attack time, and note density. That study also used Big Five personality 
scores of  the dancing participants and found a moderation effect of  Extraversion on the relation 
between head acceleration and the activity of  low-frequency audio (i.e., low-frequency spectral 
flux). Furthermore, Conscientiousness was found to be a significant moderator of  the relation 
between note density and movement fluidity.

Using the same motion-capture and personality data as Burger, Polet, et al. (2013), Luck et al. 
(2010) found that Extraversion was directly related to the level of  overall acceleration. This was 
later confirmed in a study with different data by Carlson et al. (2016). The latter study also found 
that responsiveness to changes in tempo correlated positively with Conscientiousness and nega-
tively with Extraversion. This suggests that conscientious people were compelled to follow tempo 
accurately while extraverts preferred to divert and follow their own beat. Bamford and Davidson 
(2019) measured the time to entrainment (i.e., the alignment of  the periodicity of  the movement 
of  the body to the beat of  the music) of  participants that had completed the BFAS Big Five ques-
tionnaire (DeYoung et al., 2007) and the Empathy Quotient questionnaire (Wakabayashi et al., 
2006). Results showed that Empathy and Agreeableness correlated negatively with time to 
entrainment. In other words, the more Empathic or Agreeable a person is, the faster (and argua-
bly more easily) they will align their dancing motion with the beat of  the music.

While these studies have identified significant relations between dancing motion and per-
sonality, the predictive power of  the produced models and correlations is at best modest. 
However, a more recent study by Agrawal et  al. (2020) traded the interpretability of  bodily 
features for greater prediction power. Instead of  using bodily features extracted by manual 
selection (e.g., speed or acceleration of  body parts, or the distance or angle between them) or by 
dimensionality reduction (e.g., vertical or lateral speed), they used the covariance among the 
speed of  body parts. As a result, predictions for all Big Five personality traits were remarkably 
close to their scores as measured by a questionnaire.

To summarize, there exists ample evidence that embodied responses to music are related to per-
sonality traits and to musical emotions. What is less clear, however, is how embodied musical 
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emotions (i.e., the extent to which emotions are reflected in dancing) are related to personality. 
Consequently, we explored the hypothesis that musical emotions are embodied differentially by 
people according to their personality. We conducted a detailed and systematic analysis of  relation-
ships between personality traits and embodied musical emotions utilizing the following three dif-
ferent kinds of  data: (1) Personality scores (measured by responses to the BFI) of  individuals who 
moved spontaneously to music, (2) motion-capture data recorded from the same individuals, and 
(3) perceptual data concerning emotions perceived in the music they danced to. These data had 
been previously used in other studies as follows: Motion-capture data, personality data and ratings 
of  perceived emotions had been used by Burger, Polet, et al. (2013), and Burger and Toiviainen 
(2020b); motion-capture and personality data had been used by Luck et al. (2010, 2014); motion-
capture data and ratings of  perceived emotions had been used by Burger, Saarikallio, et al. (2013); 
only motion-capture data had been used by Burger et al. (2014), Burger, Thompson, et al. (2013), 
Burger and Toiviainen (2020a), and Saarikallio et al. (2013).

Method

Participants

For the spontaneous dancing task, 60 participants took part (43 females, 17 males, ages from 
19 to 32, M = 24, SD = 3.3). These individuals were selected from a total of  952 persons who 
had previously completed the BFI questionnaire. The scores of  the selected participants were 
evenly distributed along the scales (i.e., a continuum covering low, middle, and high scores for 
each personality trait). All of  them were students from different faculties of  the University of  
Jyväskylä and all except two were of  Finnish nationality. Six participants had received formal 
music education and four had received formal dance education. For the rating of  perceived 
emotions, a different group of  34 participants took part (17 females, 17 males, ages from 21 to 
47, M = 25.7, SD = 5.9), all musicology students of  the University of  Jyväskylä, familiar with 
research of  music and emotions, and of  Finnish nationality. The inter-rater agreement of  per-
ceived emotions was high and the ratings correlated significantly with movement features of  
the participants that danced spontaneously (see Burger, Saarikallio, et al., 2013). The univer-
sity granted approval for non-invasive and non-inductive experiments involving human par-
ticipants. All participants gave verbal consent to the procedures after they were explained to 
them. No records were kept linking participants’ identity and experimental data.

Stimuli

The stimuli used for the spontaneous dancing task were 30 audio excerpts of  different popular 
music genres, chosen to have a variety of  rhythmic complexity and tempo. All excerpts were 28-s 
long, solely instrumental, and had a binary meter. Further information can be found in the 
Appendix. At the beginning of  each stimulus, one extra second of  audio was added, composed by a 
sine tone at 300 Hz lasting 0.5 s followed by silence. The same excerpts were used for the rating of  
perceived emotions, although they were trimmed to 15 s by removing the first and last 6.5 s. This 
was done to shorten the duration of  the data collection session thus reducing risk of  fatigue in the 
participants.

Apparatus

For the task involving spontaneous dancing, bodily posture was recorded with a Qualisys Pro 
Reflex optical motion-capture system composed of  eight infrared video cameras. This system 
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tracked at 120 frames per second the three-dimensional position of  28 reflective markers 
attached to the body. The ratings of  perceived emotions were written on paper. For these two 
tasks, stimuli were played on studio monitor loudspeakers and presented in random order.

Procedure

For the spontaneous dancing task, each participant was recorded in a separate session in which 
they were asked to move to the music “in a way that feels natural.” In the session, a motion-
capture recording was made for each stimulus. For the rating of  perceived emotions, data col-
lection took place in two sessions, each comprising half  of  the participants. They were asked to 
rate perceived emotions in music on seven-point scales for dimensional affect in terms of  
Arousal and Valence, and for discrete emotions Happiness, Anger, Sadness, and Tenderness (see 
Eerola & Vuoskoski, 2011). The random order of  stimuli was different for each session.

Preprocessing of motion-capture data

Reflective markers were visualized as skeletons (Figure 1(a)) and rendered as video for visual 
inspection. Missing or corrupted data did not exceed 3 s, and were reconstructed with an auto-
matic procedure (Tits et al., 2018) whose parameters were adjusted manually using video of  the 

Figure 1. (a) Original Markers and (b) Retained Original Markers (Numbered) and Virtual Markers 
(Letters).
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reconstructed skeletons. A new set of  markers was derived by retaining some of  the originals and 
producing additional virtual markers by averaging some combinations of  the original (Figure 
1(b)). The new configuration of  markers was designed so that there would be enough points for a 
reference plane to translate and rotate body parts to their own local coordinate system, as appro-
priate to each bodily feature (explained below). Furthermore, markers at the heels were removed 
as they did not provide further information than the markers at the ankles and tip of  the feet. All 
motion-capture recordings were trimmed to the duration of  the musical excerpts.

Kinematic and non-kinematic bodily features were computed using the motion-capture data. 
They were crafted to represent a variety of  aspects of  bodily motion and posture (see Table 1). 
Features that represent movement of  individual bodily parts use subsets of  markers locked to a 
local coordinate system defined by a reference plane. This reduces collinearity among features, 
which is desirable when they are used as regressors in linear models (see below). Collinearity 
arises because parts of  the body will move when another part moves. For example, an arm will 
move as the torso moves, and the torso will move along with the whole body. By locking the arm 
to a local coordinate system, the only motion remaining is that of  the arm alone. To wit, features 
representing bodily parts locked to a local coordinate system are more intuitively interpreted, as 
they are related more to muscle activation than to mere displacement. Kinematic features were 
speed, acceleration (acc.), jerk (jrk.), and the square of  speed (speed2) of  markers as detailed in 
Table 1, resulting in 32 features. The square of  speed was included as a supplemental measure 
for kinetic energy. Kinetic energy is half  the mass multiplied by the squared velocity. As the mass 
is constant, it can be omitted from the equation. The Euclidean norm was computed for each 
feature, resulting in a single value for data corresponding to each motion-capture recording. For 
the six non-kinematic features, the median was computed to obtain a single value for each 
recording. The median was used as a magnitude measure as it is less sensitive to outliers com-
pared with other average measures such as mean or mode. An exception is the feature “Torso 
rotation,” for which the standard deviation was computed. The feature “Area” is defined as the 
smallest rectangular area of  a marker projected to the horizontal plane in a moving window of  

Table 1. Kinematic (K) and Non-Kinematic (NK) Bodily Features.

Type Description Feature markers Reference markers

K All markers All markers –
K Head 8, 3, 4, F 8, 7, R
K Shoulders 8, 5, 6 8, 7, R
K Arms Right: 5, 13, O

Left: 6, 14, V
Right: 5, 7, 8
Left: 6, 7, 8

K Hands Right: O, 15, 19, 16
Left: V, 17, 20, 18

Right: O, 13, 5
Left: V, 14, 6

K Legs Right: D, 21, 23, 27
Left: G, 22, 24, 28

Right: D, 10, 12
Left: G, 9, 11

K Root horizontal plane R –
K Root vertical axis R –
NK Torso tilt R, 8, G R, G
NK Torso rotation R, G R, 7, 8
NK Hands distance O, V –
NK Elbows distance 13, 14 –
NK Feet distance 23, 24 –
NK Area R –

Note. K: kinematic; NK: non-kinematic.
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4 s with a hop of  one frame. The result was 38 bodily-feature values for each motion-capture 
recording.

Analyses

The bodily-feature data for each participant were composed of  38 features, each having 30 
values (one for each motion-capture recording and musical stimulus). Each feature was corre-
lated with each of  the six ratings of  perceived emotions, resulting in 228 values of  embodied 
emotions for each participant. Rank correlation was used because an inspection of  the corre-
lated data revealed that they were not consistently normally distributed or linear. Kendall’s 
tau-b rank correlation was preferred as its interpretation is straightforward. Then, two analyses 
were performed to assess the relations between embodied emotions and personality traits.

Analysis 1 comprised the rank correlation between personality traits and embodied emotions. 
This was achieved by computing Kendall’s tau-b between scores of  each personality trait and each 
of  the 228 embodied emotions for all participants. Additionally, personality traits were correlated 
with six aggregated embodied emotions, one for each perceived emotion. These were computed as 
the sum of  absolute values of  embodied emotions corresponding to the same perceived emotion.

Analysis 2 consisted in ordinary least-squares linear regression models that predict each 
personality trait. Each model had regressors consisting of  a combination of  embodied emo-
tions, but corresponding to only one bodily feature. This way, it was possible to examine the 
effect of  each bodily part separately, though at the cost of  reduced prediction power compared 
with using combinations of  bodily features. The following equation describes a regression 
model for one personality trait:

P R R R R Rvalence arousal happiness sadness ange= + + + + +β β β β β β0 1 2 3 4 5 rr tendernessR E+ +β6

where P is scores of  a personality trait,  are regression coefficients with 0 being constant, R 
are embodied emotions (i.e., regressors), and E is error. In contrast to the aggregation measure 
of  the first analysis, this is a weighted linear combination. All 63 possible combinations of  per-
ceived emotions for 38 embodied emotions (one for each bodily feature) resulted in 2,394 mod-
els for each personality trait.

Instead of  selecting models by their statistical significance, relevance was assessed empirically 
by comparing the cross-validated error of  a data model and the error of  a null model. This has 
the advantage that there is no need to arbitrarily set a significance threshold (typically p-value 
less than .05). For each model, three-fold cross-validated Root Mean Squared Error (RMSECV) 
with 105 Monte Carlo realizations, and relevance measure

ΔRMSE RMSE RMSE  null CV= −

were computed, where RMSEnull is the error of  a null model for each personality trait. A positive 
value for RMSE indicates that the model is relevant, as it performs better than the null model 
and vice versa.

Results

The results of  the first analysis reveal potential though weak relationships between each Big Five 
personality trait and the embodiment of  each rated emotion by each bodily feature. Table 2 con-
tains the rank correlations for all relationships with a p-value below .05, out of  the 1,140 pro-
duced values. This threshold is used only to tabulate a subset of  the results. The p-values were 
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not adjusted to control for multiple comparisons as, due to the large number of  values, any 
adjustment procedure would reduce statistical power to the extent that no results would remain 
significant. The interested reader may find further information about the appropriateness of  
adjustments for multiple comparisons in the work of  Rothman (1990) and Althouse (2016). 
The p-values of  rank correlations between personality traits and aggregated embodied emotions 
are shown in Table 3. These values are relatively high even though they were not adjusted. 
Figure 2 shows the corresponding correlation scores, which show tendencies that are weak and, 
as seen in Table 3, have poor statistical significance.

The second analysis produced 11,970 linear regression models. Figure 3(a) shows the relevance 
measure RMSE clustered by personality trait, for all models performing better than the null 
model. A quick visual inspection reveals that the highest values are for Openness, followed by 
Agreeableness and then Extraversion. The greater number of  relevant models are for Agreeableness, 
followed by Openness and Extraversion. Conscientiousness and Neuroticism have both the weakest 
values and smallest number of  models. Figure 3(b) shows only models whose regressors are cor-
relations between a bodily feature and any combination of  ratings for only dimensional affect. 
Notably, none of  these models for Openness perform better than the null model, and most models 
for Agreeableness perform better than models for the other traits. Figure 3(c) shows only models 
whose regressors are correlations between a bodily feature and any combination of  ratings for only 
discrete emotions. In this case, the pattern is similar to when all regressors are allowed, but the best 
performing models for Agreeableness are not as strong as for regressors considering only dimen-
sional affect or for all models. This is consistent with Vuoskoski and Eerola’s (2011a) finding that, 
regarding music-induced emotions, discrete emotions have stronger relationships to individual dif-
ferences than dimensional affect. When any combination of  regressors for discrete emotions and 
dimensional affect is allowed, then the maximum RMSE for Extraversion is significantly higher 
than when either only dimensional affect or discrete emotions are considered.

Tables 4 to 8 contain information about the models with positive and highest RMSE for 
each bodily feature. The R2 metric shows the performance of  models fitted to the full data and 
the F-test p-value indicates the statistical significance of  the fit. It is important to bear in mind 
firstly that the R2 metric is not used here as a measure of  prediction power. Instead, it is used as 
an intuitive way of  understanding the closeness of  the fit to the observed values, as the metric 
has a unit maximum and is zero when it matches a null model. In fact, in the tables, it is possible 
to see that there is no perfect rank correspondence between R2 and RMSECV. This difference is 
due to the high variability of  the errors from the cross-validation folds. Therefore, models for 
which that difference is higher may be less representative of  the underlying phenomenon. Note 
that because models have been sorted by RMSE (and therefore also by RMSECV), the rank cor-
respondence between R2 and adjusted R2 is exact, therefore the latter was not tabulated. As for 
the first analysis, p-values were not adjusted for multiple comparisons.

Extraversion Agreeableness Conscientiousness Neuroticism Openness
-0.2

-0.1

0

0.1

0.2

B

Arousal
Valence
Happiness
Anger
Sadness
Tenderness

Figure 2. Kendall’s Rank Correlation ( B) Between Personality Traits and Aggregated Embodied 
Emotions.
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Table 2. Kendall’s Rank Correlation ( B) Between Personality Traits and Embodiment of Emotions.

Personality trait Bodily feature Emotion rating B p

Extraversion Feet distance Sad. .239 .009*
Hands, speed2 Sad. .215 .019
Area Val. .208 .023
Hands, speed Sad. .204 .025
Arms, acc. Aro. .200 .028
Legs, acc. Aro. .194 .034
Arms, jrk. Ten. –.192 .035
Head, jrk. Ten. –.191 .036
Legs, jrk. Ten. –.191 .037
Head, acc. Ten. –.190 .037
Root horiz., speed Ang. –.188 .039
Root horiz., speed2 Val. .189 .039
Area Ten. .188 .039
Legs, jrk. Ang. .187 .040
Root horiz., jrk. Ten. –.186 .042
Root horiz., speed Val. .185 .043
Root vertic., jrk. Ten. –.185 .043
Shoulders, jrk. Ten. –.185 .043
Arms, acc. Ten. –.184 .044
Root horiz., speed Ten. .181 .048

Agreeableness All mk., speed2 Ten. .246 .007*
Hands distance Hap. .240 .009*
Torso rotation Ten. .218 .017
Hands distance Val. .219 .017
All mk., speed2 Val. .194 .034
Torso rotation Ang. –.192 .035
Torso rotation Val. .192 .036
Hands distance Ang. –.191 .037
Root horiz., speed2 Val. .184 .044
Root horiz., speed2 Ten. .184 .044

Conscientiousness Elbows distance Ang. –.192 .034
Hands distance Hap. .190 .037
Root horiz., speed Ten. .184 .042
All mk., speed2 Sad. .182 .045
Legs, jrk. Aro. .182 .045
Root horiz., jrk. Aro. .179 .048

Neuroticism Hands distance Val. –.203 .026
Openness Root vertic., jrk. Sad. –.237 .009*

Root vertic., acc. Sad. –.207 .022
Root vertic., jrk. Hap. .196 .032
Shoulders, speed2 Val. .187 .040
Root vertic., speed Sad. –.186 .041
Head, jrk. Sad. –.185 .042
Shoulders, speed Val. .184 .043
Area Sad. –.182 .045
Area Val. .182 .046
Head, acc. Sad. –.180 .047
Torso rotation Sad. –.181 .047

Note. Only correlations with non-adjusted p < .05 are tabulated.
*p < .01.
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It is worthwhile to note that the embodiments of  Valence and Tenderness by bodily feature 
“Root vertical, acceleration” are regressors for a model that is the most relevant for Extraversion 
and also one of  the most relevance for Openness. A closer inspection of  this model reveals that 
the coefficients for the regression fit are very similar for both personality traits. The coefficients 
for Extraversion are 21.857, 41.409, –48.245 and the coefficients for Openness are 34.011, 
48.321,–47.252, where the first values are the constant and the remaining are the regressors’ 
coefficients. However, both the fit and the prediction power of  this model are greater for 
Extraversion, as revealed by its R2 and RMSE values.

The model selection method presented earlier is focused on the prediction performance of  
models, allowing the best combinations of  regressors for each model, with the sole constraint of  
having regressors for only one bodily feature for each model. However, this means that regres-
sors are removed from a model only to improve its prediction power. Even when the models have 
been cross-validated, it is possible that regressors remain in the model because of  their noise 
instead of  their true explanatory power. Therefore, it is convenient to also examine only those 
models that have all regressors for each type of  emotional rating and also those models that have 
all emotional ratings. Table 9 shows all relevant models that have regressors considering all 
emotional ratings, all dimensional affect ratings or all discrete emotions ratings. In these condi-
tions, no relevant models are found for Extraversion or Neuroticism. Additionally, all except the 
following bodily features appear in regressors for at least one relevant model: All markers’ speed, 
All markers’ jerk, Shoulders’ acceleration, and Head’s squared speed. These bodily features do 
not appear in Table 2. Hence, these features may be irrelevant.

Discussion

We explored relationships between the Big Five personality traits and musical emotions embodied 
in spontaneous movement to music. Embodied emotions were evaluated as the rank correlation 
between characteristics of  spontaneous movement to music and perceived musical emotions in the 
music moved to. Two analyses were carried out. Analysis 1 consisted of  rank-correlating personal-
ity and embodied emotions. Analysis 2 involved creating multiple linear models that predicted per-
sonality traits with the weighted scores of  embodied emotions. The purpose of  these analyses was 
to evaluate and highlight relationships that might be empirically tested in future studies.

Analysis 1 revealed moderately weak monotonic relations between bodily features and per-
ceived emotions for all personality traits. Conscientiousness and Neuroticism had the weakest of  
such relations when considering the rank-correlation values and the number of  bodily features 
involved. The relations between emotions embodied by aggregated bodily features and personality 
traits were rather weak (see Figure 2), and statistical analysis provided limited evidence that such 

Table 3. Non-Adjusted p-Values for the Rank Correlation Between Personality Traits and Aggregated 
Embodied Emotions.

Emotion rating Extraversion Agreeableness Conscientiousness Neuroticism Openness

Arousal .083 .903 .428 .574 .565
Valence .039* .072 .160 .188 .720
Happiness .236 .374 .818 .294 .163
Anger .068 .177 .344 .428 .749
Sadness .764 .668 .769 .878 .220
Tenderness .198 .622 .769 .778 .788

*p < .05.
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relationships exist (see Table 3). The p-values shown in Table 3 may be useful in future research, 
for example, to re-test the highest correlation obtained or to discard the aggregation method.

The results of  Analysis 2, however, revealed that predictions using linear regression models that 
are better than the null model are possible for all personality traits, albeit they range from weak to 
moderate. Regarding the performance of  all regression models, the strongest predictions were found 
for Openness, followed by Agreeableness and Extraversion. The predictions for Conscientiousness 
and Neuroticism were the weakest and, as in Analysis 1, this general assessment considers the good-
ness-of-fit of  models and the number of  models involved. Regarding models that have regressors for 
either discrete emotions, dimensional affect or both (Table 9), the strongest predictions were still 
found for Openness, followed by Agreeableness and Conscientiousness. In this case, no relevant 
models were produced for traits Extraversion or Neuroticism.

In both analyses, distinct bodily features were found to embody musical emotions correlat-
ing with or predicting personality traits. No single bodily feature embodying a musical emotion 
was a high rank correlate of  all personality traits. Likewise, no single combination of  bodily 
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Figure 3. Relevant Models Sorted by Relevance, With Any Combination of Regressors Considering 
Correlation With All Emotion Ratings (a), Only Dimensional Affect (b), and Only Discrete Emotions (c).
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features embodying any combination of  perceived emotions predicted all personality traits. 
However, some bodily features embodying an emotion did highly correlate with, or combine 
linearly to predict, more than one personality trait. For both analyses, the most relevant bodily 

Table 4. Best Relevant Models for Each Bodily Feature, Predicting Extraversion.

Model R2 p RMSECV RMSE

Bodily feature Emotion ratings

Root vertic., acc. Val. Ten. .173 .004 6.030 0.254
Root horiz., jrk. Val. Sad. Ten. .171 .014 6.119 0.164
Root vertic., jrk. Val. Ten. .144 .012 6.151 0.133
Arms, acc. Ang. Ten. .125 .022 6.197 0.087
Feet distance Sad. .092 .019 6.209 0.074
Hands, speed2 Sad. .087 .022 6.215 0.068
Head, acc. Ang. Ten. .114 .031 6.222 0.061
Hands, speed Sad. .082 .027 6.227 0.057
Arms, speed2 Aro. Ang. Sad. Ten. .195 .016 6.227 0.056
Arms, speed Aro. Hap. Ang. Ten. .194 .017 6.235 0.048
All mk., speed2 Aro. Ang. Sad. .186 .009 6.237 0.046
Legs, jrk. Ang. .071 .039 6.242 0.041
Hands distance Aro. Val. Sad. .156 .022 6.245 0.039
Legs, acc. Aro. .075 .034 6.253 0.031
Head, jrk. Ang. Ten. .106 .041 6.258 0.025

Note. RMSECV: cross-validated root mean squared error; RMSE: root mean squared error.

Table 5. Best Relevant Models for Each Bodily Feature, Predicting Agreeableness.

Model R2 p RMSECV RMSE

Bodily feature Emotion ratings

Root horiz., speed2 Aro. Hap. Ten. .281 <.001 4.431 0.425
Hands distance Aro. Ten. .212 .001 4.564 0.292
All mk., speed2 Aro. Sad. Ten. .242 .001 4.594 0.262
Root horiz., speed Aro. Hap. Ten. .233 .002 4.595 0.261
Area Aro. Val. Sad. .222 .003 4.678 0.178
Root horiz., jrk. Aro. Val. Sad. .198 .006 4.706 0.150
Legs, jrk. Aro. Val. Sad. .182 .010 4.731 0.125
Legs, speed2 Aro. Val. Sad. .169 .015 4.741 0.115
Hands, acc. Val. Hap. .119 .027 4.770 0.086
Hands, jrk. Val. Hap. .121 .026 4.770 0.086
Feet distance Hap. Sad. .122 .025 4.790 0.066
Root horiz., acc. Val. Ang. .131 .018 4.800 0.056
Shoulders, jrk. Val. Sad. Ten. .149 .028 4.823 0.033
Torso tilt Val. Ang. .118 .028 4.836 0.02
Root vertic., speed2 Aro. Val. Sad. .142 .034 4.852 0.003
Torso rotation Ten. .090 .020 4.853 0.003
All mk., acc. Val. Sad. .118 .028 4.854 0.002

Note. RMSECV: cross-validated root mean squared error; RMSE: root mean squared error.
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features involved in the tested relationships were identified. These results may serve as hypoth-
eses in further investigation.

The tabulated rank correlations (Table 2) and models with all regressors allowed (Tables 4 to 8) 
exhibit an overall distribution considering the number of  tabulated bodily features and the strength 

Table 6. Best Relevant Models for Each Bodily Feature, Predicting Conscientiousness.

Model R2 p RMSECV RMSE

Bodily feature Emotion ratings

Head, speed Aro. Ang. .122 .025 6.292 0.096
Area Aro. Val. Hap. .167 .016 6.311 0.078
Elbows distance Ang. Sad. Ten. .158 .021 6.333 0.056
Root horiz., jrk. Aro. .064 .050 6.370 0.019
Legs, jrk. Aro. .062 .054 6.379 0.01
Root horiz., speed Ten. .056 .070 6.387 0.001

Note. RMSECV: cross-validated root mean squared error; RMSE: root mean squared error.

Table 7. Best Relevant Models for Each Bodily Feature, Predicting Neuroticism.

Model R2 p RMSECV RMSE

Bodily feature Emotion ratings

Hands distance Val. .089 .021 5.983 0.127
Elbows distance Hap. .095 .017 6.062 0.048

Note. RMSECV: cross-validated root mean squared error; RMSE: root mean squared error.

Table 8. Best Relevant Models for Each Bodily Feature, Predicting Openness.

Model R2 p RMSECV RMSE

Bodily feature Emotion ratings

Area Aro. Val. Hap. Sad. .308 <.001 5.942 0.587
Shoulders, speed Val. Ten. .176 .004 6.277 0.252
Head, jrk. Val. Ten. .166 .006 6.334 0.194
Root horiz., speed2 Aro. Val. Hap. Sad. .216 .009 6.349 0.179
Root vertic., acc. Val. Ten. .157 .008 6.357 0.171
Legs, speed Val. Ang. .145 .012 6.360 0.169
Arms, jrk. Val. Ten. .156 .008 6.384 0.145
Shoulders, speed2 Val. Ten. .149 .010 6.387 0.141
Root vertic., jrk. Sad. .095 .017 6.426 0.102
Root vertic., speed2 Val. Ten. .134 .017 6.434 0.094
Shoulders, jrk. Val. Ten. .138 .014 6.444 0.084
Legs, acc. Aro. Val. Hap. Sad. .177 .028 6.461 0.068
Root horiz., speed Val. Ang. .108 .039 6.486 0.043
Torso rotation Sad. .076 .033 6.501 0.027
Root vertic., speed Val. Ten. .109 .037 6.526 0.002

Note. RMSECV: cross-validated root mean squared error; RMSE: root mean squared error.
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of  tested relationships. This distribution may be summarized in two clusters of  personality traits. 
The first cluster is composed by Openness, Agreeableness, and Extraversion, whereas the second 
cluster consists of  Conscientiousness and Neuroticism. However, this two-cluster pattern does not 
hold for rank correlation between personality traits and aggregated embodied emotions (Table 3). 
It also does not hold when regressors are forcibly embodiments of  either dimensional affect, dis-
crete emotions, or both (Table 9), and when the number of  correct predictions is evaluated using 
the threshold method (Table 9). A special case is trait Openness, for which all assessments of  pre-
diction by regression models are the strongest (Tables 4 to 9). Also, trait Neuroticism is a special 
case, as it is related to the lowest number of  bodily features (Tables 2 and 4 to 9).

The two-cluster pattern with the special case for Neuroticism is remarkably consistent with the 
results obtained by the meta-analysis conducted by Bara czuk (2019). That study found that lower 
levels of  Neuroticism and higher levels of  all other traits were associated with greater typically 
adaptive emotion regulation strategies (reappraisal, problem solving, and mindfulness) and lower 
typically maladaptive emotion regulation strategies (avoidance and suppression). In particular, the 
relationship between suppression of  expression of  emotions was found to be non-significant for 
Neuroticism and inverse for all other traits, Conscientiousness and Neuroticism being the weakest, 
and Extraversion being the strongest. While Extraversion does not appear in this study as a special 
case of  strong direct relationships with embodied emotions, the relations observed for all other 
traits suggest that the embodiment of  emotions may be related to the suppression of  emotion. The 
relationships for Extraversion might have been affected by unobserved factors.

When the special case for Openness and the special case for Neuroticism are integrated to the 
two-cluster pattern, it is possible to observe that similar results were obtained by previous stud-
ies that have investigated the strength of  correlation between personality traits and music pref-
erence or liking, across a variety of  music genres and cultural backgrounds (Brown, 2012; 
Delsing et al., 2008; Dobrota & Rei  Ercegovac, 2015; Dunn et al., 2011; Ercegovac et al., 2015; 
Fricke & Herzberg, 2017; Nave et al., 2018; Rentfrow & Gosling, 2003; Schäfer & Mehlhorn, 
2017; Upadhyay et al., 2017; Vuoskoski & Eerola, 2011b; Zweigenhaft, 2008). These studies 
have found Openness to have the strongest correlations with music liking, followed by 
Agreeableness and Extraversion. Conscientiousness and Neuroticism were found to have the 
weakest correlations with music liking. Carlson et al. (2017) reported similar results, with the 
difference that correlation strength for trait Extraversion was much lower, closer to Neuroticism 
and Conscientiousness. Other studies measuring correlation between Big Five personality traits 
and preference for music have found distinct stronger correlations for Openness, and the other 
traits having weaker correlations (Cleridou & Furnham, 2014; Langmeyer et  al., 2012; 
Upadhyay et al., 2017). Additionally, these observations are consistent with previous research 
that has found evidence that the preference for music is related to the emotional content of  

Table 9. Relevant Models That Have Regressors Considering All Emotional Ratings (AVHAST), All 
Dimensional Affect Ratings (AV), or All Discrete Emotions Ratings (HAST).

Personality trait Bodily feature Emotion 
ratings

R2 p RMSECV RMSE

Agreeableness Hands distance AV .191 .002 4.599 0.257
Agreeableness Root horiz., speed2 AVHAST .307 .003 4.687 0.169
Conscientiousness Head, speed AV .118 .028 6.298 0.091
Openness Area HAST .245 .003 6.218 0.310
Openness Area AVHAST .316 .002 6.213 0.315

Note. RMSECV: cross-validated Root Mean Squared Error; RMSE: root mean squared error; AVHAST: Arousal, Valence, 
Happiness, Anger, Sadness, and Tenderness; AV: Arousal,Valence; HAST: Happiness, Anger, Sadness, Tenderness.
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music (Hunter et  al., 2011; Ladinig & Schellenberg, 2012; Naser & Saha, 2021; Schäfer & 
Sedlmeier, 2011) or that has hypothesized it based on the relation between preference and bod-
ily features of  spontaneous dance (Luck et al., 2014). Likewise, Openness, Agreeableness, and 
Extraversion have been found to be associated with positive correlations between music prefer-
ence and the strength of  emotional response to music, Openness having the strongest associa-
tion (Liljeström et al., 2012; Nusbaum & Silvia, 2011).

The highest association between liking for music and perceived emotions, being for trait 
Openness, is consistent with results obtained by previous studies that have investigated a variety of  
related phenomena. Openness has been found to correlate positively with chills as an effect of  listen-
ing to music (McCrae, 2007), awe for music (Silvia et al., 2015), and also with the direct relation 
between liking for sad music and emotions elicited by sad music (Vuoskoski et  al., 2012). Trait 
Openness has consistently been thought to be related to the experience of  complex and strong emo-
tions as a result of  sensitivity to aesthetic experiences (Reisenzein & Weber, 2009; Terracciano et al., 
2003). These observations about Openness may explain the results of  this study showing stronger 
relations to embodied emotions compared with other traits when a number of  embodied emotions 
are combined as regressors in a linear model, in contrast to embodied emotions as correlators.

Other patterns similar to the ones found in this study may be found in previous studies on the 
relations between Big Five personality traits and trait Empathy. The special case of  trait 
Neuroticism may be related to trait Empathy as Melchers et  al. (2016) and Bamford and 
Davidson (2019) have observed direct correspondence between Empathy Quotient and all Big 
Five traits, except Neuroticism that had inversely weak and insignificant correspondence, 
respectively. Those studies and the work by DeYoung et al. (2010) have found Agreeableness to 
be strongly and directly related with trait Empathy, which might contribute to explain the high-
rank correlations and linear fits found for Agreeableness in this study. Also Conscientiousness 
exhibiting weak relations with embodied emotions may be explained by this trait being the only 
Big Five trait not related to emotional dispositions (Reisenzein & Weber, 2009).

The comparison made of  results of  this study with previous studies, show that for each Big 
Five personality trait there may be underlying, moderating, or mediating factors of  the embodi-
ment of  emotions. It may be worthwhile to test each of  these as separate hypotheses in future 
research. While the regression models in this study predict personality traits separately, the 
relationship also holds, at least theoretically, in the opposite direction. This means linear models 
with personality traits as regressors, predicting embodied emotions.

Regarding limitations of  this study, the first and most evident is the sample size and composi-
tion. The statistical power of  this study is substantially limited by the amount of  collected data 
and the generalizability is limited by demographics. A straightforward solution to increase statisti-
cal power is to replicate the experiment using the same stimuli and ratings of  perceived emotions. 
However, such replication will require that participants have different characteristics than this 
study, like nationality and distribution of  gender. This may not be an easy study to conduct, as 
data collection is costly. Apart from expensive laboratory equipment, substantial time is spent in 
motion-capture recordings and responding questionnaires. It is also challenging to find a homo-
geneous sample of  Big Five traits and then having respondents to participate in motion-capture 
sessions. Therefore, each replication may not have by itself  considerable statistical power and it 
may take several replications, by different laboratories, to achieve robust conclusions. The second 
limitation of  this study is that ratings of  perceived emotions were done by a separate group of  
participants. There is an advantage of  this, however, as these ratings are a controlled variable, 
meaning that the same measure is used for all participants and could be used in replications of  the 
experiment as a standard. Nonetheless, it may be worthwhile to explore the possibility of  improv-
ing predictions of  personality by using ratings made by the dancing participants. Also ratings of  
felt emotions may give further insights to the relation between personality and embodied 
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emotions, as it has been observed that induced emotions affect dancing characteristics even if  the 
music to which is being danced is emotionally neutral (Van Dyck et al., 2013). A further modifica-
tion could be the use of  self-chosen stimuli as this has been observed eliciting more intense emo-
tional responses to music (Liljeström et al., 2012). The third limitation of  this study is that the 
usability of  linear regression models with few regressors is limited to observation or explanation 
of  phenomena as they yield predictions with limited power. The predictive power of  the best mod-
els found in this study may be not suitable, for example, to make clinical diagnosis or other kind of  
prediction that requires a very high degree of  accuracy.

To conclude, this exploratory study provides empirical and quantitative evidence tentatively 
supporting the hypothesis that the emotional content of  music expressed by spontaneous dance 
has distinct relationships with the Big Five personality traits. If  one assumes that the observed 
characteristics of  spontaneous dance are a result of  the emotional content of  music, and in light 
of  previous research, it is possible to conjecture that the underlying causes of  the embodiment of  
emotions are emotional dispositions, including empathy, as well as liking of  the music being 
danced to. This study provides a foundation upon which future research could be built. 
Specifically, such work could empirically test the relationships and statistical models described 
herein, helping to further advance our understanding of  the complex interrelationships between 
personality, movement, and emotion.
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Appendix. Musical Audio Excerpts Used as Stimuli.

Artist Song (album) Start time BPM*

1) Alice Deejay Better Off Alone (Who Needs Guitars Anyway?) 2:40a 137
2) Andre Visior Speed Up 1:15 140
3) Antibalas Who is this America Dem Speak of Today? (Who 

Is This America?)
1:00 121

4) Arturo Sandoval A Mis Abuelos (Danzon) 1:53 108
5) Baden Powell Deixa (Personalidade) 1:11 100
6) Brad Mehldau Wave/Mother Nature’s Son (Largo) 0:00 143
7) Clifford Brown & %Max 

Roach 
The Blues walk (Verve Jazz Masters, Vol. 44: 
Clifford Brown & Max Roach) 

2:01 133

8) Conjunto Imagen Medley-Esencia de Guaguanco/ Sonero (Ayer, 
Hoy y Manana)

2:18 87

9) Dave Hillyard & The 
Rocksteady 7 

Hillyard Street (Playtime) 0:15 135

10) Dave Weckl Mercy, Mercy, Mercy (Burning for Buddy) 0:10 105
11) Dave Weckl Tower of Inspiration (Master Plan) 0:00 125
12) DJ Shadow Napalm Brain/Scatter Brain (Endtroducing. . .) 3:29 73
13) Gangster Politics Gangster Politics (Guns & Chicks) 1:00 192
14) Gigi D’Agostino Blablabla (L’Amour Toujours) 0:00 133
15) Herbie Hancock Watermelon man (Cantaloupe Island) 0:00 132
16) Horace Silver The Natives Are Restless 0:00 139
17) In Flames Scream (Come Clarity) 0:00 100
18) Jean Roch Can You Feel it (Club Sounds Vol. 35) 0:33 126
19) Johanna Kurkela Hetki hiljaa (Hetki hiljaa) 3:22 122
20) Juana Molina Tres cosas (Tres Cosas) 0:00 110
21) Kings of Leon Closer (Only by the Night) 3:17 83
22) Lenny Kravitz Live (5) 3:02 84
23) Martha & The Vandellas Heat Wave (Heat Wave) 1:40 82
24) Maynard Ferguson Fireshaker (Live From San Francisco) 0:00 91
25) MIA 20 Dollar (Kala) 0:17 120
26) Nick Beat Techno Disco 2:26 138
27) Panjabi MC Mundian To Bach Ke (Legalized) 0:47b 98
28) Patrick Watson Beijing (Wooden Arms) 2:30 154
29) The Rippingtons Weekend in Monaco (Weekend in Monaco) 1:13 113
30) Yuri Buenaventura Salsa (Salsa Movie Soundtrack) 2:17 102

*Beats-per-minute
a14s. repeated.
b19s. repeated.
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ABSTRACT

The state-of-the-art recognition of continuous gestures for
control of musical sound by means of machine learning has
two notable constraints. The first is that the system needs
to be trained with individual example gestures, the starting
and ending points of which need to be well defined. The sec-
ond constraint is time required for the system to recognise
that a gesture has occurred, which may prevent the quick
action that musical performance typically requires. This
article describes how a method for unsupervised segmenta-
tion of gestures, may be used for delayed gestural control
of a musical system. The system allows a user to perform
without explicitly indicating the starting and ending of ges-
tures in order to train the machine learning algorithm. To
demonstrate the feasibility of the system, an apparatus for
control of musical sound was devised incorporating the time
required by the process into the interaction paradigm. The
unsupervised automatic segmentation method and the con-
cept of delayed control are further proposed to be exploited
in the design and implementation of systems that facili-
tate seamless human-machine musical interaction without
the need for quick response time, for example when using
broad motion of the human body.

Author Keywords

unsupervised, segmentation, music, gesture, controller

CCS Concepts

•Human→ centered computing; •Computing method-
ologies → Machine learning; •Information systems
→ Music retrieval; •Applied computing → Performing
arts;

1. INTRODUCTION

Musical instruments are usually designed to be controlled
with fine movements of hands and fingers, as they afford
precision and speed. These qualities are often described as
the foundations of responsiveness, believed to be indispens-
able for musical expression. The instrument thus becomes
an extension of the human body.
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These ideas have permeated into the design of digital
musical instruments (DMI) [15], and a response time ap-
proaching zero has become a standard goal [23, 9, 10]. The
challenge extends to the design of DMI that recognise ges-
tures “in the air”, using machine learning techniques. For
example, a musician wears, holds or stands in front of, a de-
vice that may sense position (i.e., static gestures) or motion
(i.e., continuous gestures). The musician makes a gesture in
free space: describes a circle with the head, wiggles a hand,
or stands in a particular pose. The DMI learns these ges-
tures in a process called “training”, and it recognises them
when they are performed. The recognition of a gesture can
be mapped to a musical action, such as triggering a sound,
activating an effect, etc. (e.g., [8]).
Two algorithms and variations of them have been exten-

sively used to recognise continuous gestures, regardless of
the sensing technology: Dynamic Time Warping (DTW) [7]
and Hidden Markov Models (HMM) [1]. Both estimate the
likelihood that a gesture being performed corresponds to a
gesture that has been learned in the training. However, this
likelihood may change while the gesture is executed, there-
fore recognition is only reliable after the gesture has been
completed. This adds time to the recognition, arguably re-
ducing responsiveness. In addition, training requires the
beginning and ending of gestures to be explicit.
Given a stream of data from a sensor, individual gestures

may be extracted by a process called “segmentation”, in
which the start and ending points of gestures are identified.
For example, when training the algorithm the user presses
a button (e.g., [14]) or makes pauses between gestures (e.g.,
[16]). While this constraint has not prevented the use of
the algorithms mentioned above in DMI, the ability of a
machine to recognise and learn gestures without explicit
training would open new avenues for human-machine mu-
sical interaction. Furthermore, the time required for the
recognition of continuous gestures might not be a disad-
vantage if when designing a DMI we don’t hold the same
standards of responsiveness as for the human voice or other
non-electronic instruments. Consider that digital technolo-
gies have greatly expanded our possibilities for control of
sound, far beyond what is possible with the human voice or
with non-electronic devices. Why should we hold ourselves
from exploring forms of gestural control that are not quick
and precise, but instead slow and imprecise (i.e., delayed de-
tection, perception, action, by the user and the automatic
system) such as broad motion of the human body?
This article describes a system that was devised as a proof

of concept towards exploring the feasibility of unsupervised
learning of patterns in a continuous input signal, in a mu-
sical application that doesn’t require quick responsiveness.
The system is conceptually a musical instrument in a broad
sense, for it essentially allows a user to control sound.



2. ONLINE UNSUPERVISED TEMPORAL

SEGMENTATION

A signal may be segmented using the algorithm described
by Foote [5], which has seen application in segmentation of
musical audio and video [6, 21], dancing motion captured
by an accelerometer [13], and daily activity recorded by
wearable accelerometers [12, 17]. Its meta-parameters can
be adjusted to detect boundaries of segments at different
timescales. The cited sources described the use of the algo-
rithm on recorded data. Conversely, Schätti [18] described
an online version of the algorithm, that detects boundaries
of audio data while the data is being produced. Later Men-
doza [11] reported a study in which the algorithm’s seg-
mentation of dancing motion captured by a hand-held ac-
celerometer, was compared to manual segmentation of video
recordings of the dancing. The meta-parameters were opti-
mised for each accelerometry recording. The music used for
dancing and the person doing the manual segmentation were
the main factors affecting the quality of computed segmen-
tation. These results suggest that the algorithm is suitable
for gestural control of a DMI, albeit its meta-parameters
might need contextual adjustment. Figure 1 succinctly il-
lustrates the online segmentation procedure. It uses the
same principle of buffering and computation of a local dis-
tance matrix, as described by Schätti [18] and Mendoza [11].

3. PROOF OF CONCEPT

3.1 Hardware

A polystyrene ball having 12 cm. of diameter was cut in half
and the interior was carved to fit a Myo armband controller
(Figure 2). The Myo was originally designed by Thalmic
Labs to be worn on the forearm. It has several sensors, of
which only its triaxial accelerometer was used in the system
described here. The two halves of the ball are put together
restoring the spherical shape, but it can be easily disassem-
bled to recharge the battery of the Myo. The data from the
sensors is broadcast in real time using the Bluetooth Low-
Energy (BLE) specification. The BLE signal is captured by
a computer nearby, and a piece of software written by Ro-
drigo Schramm1 outputs the data in Open Sound Control
(OSC) format to a User Datagram Protocol (UDP) port,
where it can be accessed by other software. This controller
was used for its convenience, as it was available to the re-
searcher along with the software to get the data in real time.

3.2 Software

The segmentation procedure described in section 2 can de-
tect in real-time boundaries between gestures performed
with the hand-held controller continuously, without indi-
cating their start or end. The effect of its meta-parameters
are as follows: n sets the timescale of gestures to detect,
nfilt sets the smoothness of the novelty score, θ is a factor
of the maximum novelty score and sets a threshold below
which novelty peaks are rejected (e.g., noise). A further
meta-parameter was incorporated to prevent detection of
segments of less than a given length nmin, such as tran-
sitions between gestures. The segmentation procedure, as

1See [22]. Software available: https://github.com/federicoVi
si/KineToolbox/blob/master/input%2BML/DaemonMYO
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Figure 1: Online temporal segmentation. Horizon-
tal axes represent time. (a) is accelerometer data
composed of triaxial frames. (b) is a distance ma-
trix of the data in the buffer having a length of
n frames. Lighter shades represent more distance.
(c) is a novelty score resulting from the correla-
tion of the distance matrix with a gaussian-tapered
checkerboard kernel. The vertical dotted line indi-
cates the current result. (d) is the novelty score
after smoothed by a gaussian filter of length nfilt,
where θ is a threshold and the point in a circle is the
selected peak indicating a boundary. Note that this
visualisation shows (c) and (d) aligned in time, but
in practice there will be a lag because of the filter.
The total lag of the process is (n + nfilt)/2 frames
plus 3 frames for peak detection.

Figure 2: Left – Carved open polystyrene ball with
the Myo armband in it. Right – Closed ball.

well as the musical application and its graphical user in-
terface, were implemented in the Pure Data programming
environment, which receives the accelerometry data using
OSC as described in the previous subsection. The software
is free and available (see Appendix).
The detected segments, each being a gesture, may be

fed to a machine-learning process for training (i.e., ges-
ture learning) and classification (i.e., gesture recognition).
The DTW algorithm was chosen for this purpose, as it is
available in the easy-to-use software Wekinator [4, 3], which
communicates with Pure Data using OSC over a UDP port.
However, another algorithm could be used (e.g., HMM). As
with segmentation, the result of the recognition has lag due
to buffering and latency due to logical processing.



Figure 3: Cut stage

Figure 4: Perform stage

The segmentation and machine-learning processes are in-
corporated into a system that allows the user to reorder
sections of an audio file. The use of the system has two
stages: Cut and Perform. In the Cut stage (Figure 3) the
audio file is played in its entirety while the user performs
distinct gestures. The boundaries between gestures are de-
tected in real time by the segmentation process and their
time location is stored and labelled with a sequential in-
dex. The segments are fed as individual training examples
to the gesture learning process. Also, in the graphical user
interface a green vertical line is placed over a plot of the
accelerometry signal, to indicate a successfully segmented
gesture (Figure 5).
In the Perform stage (Figure 4) the gesture recognition

process is continuously comparing the incoming accelerom-
etry signal, to all the segments previously stored in the Cut
stage. The segment that is closest to a stored one is deemed
a match and its corresponding audio section plays in a loop.
If a gesture different than the current is recognised, then the
corresponding audio section will be played once the current
audio section reaches its end.

3.3 Testing

During the implementation of the system, the author of
this article conducted iterative testing using an upbeat elec-
tronic dance music piece, as it has been observed that this
kind of music stimulates bodily motion [2]. Static gestures
achieved by only changing the ball’s orientation, and ges-
tures involving repetitive motion, were well segmented and
recognised. Figure 6 shows a sequence of gestures that
worked well with the following setting of meta-parameters,
which was kept throughout the testing: n = 80, nmin = 28,
and nfilt = 24, at a sampling rate of 20 frames per second
yielding lag = 55 frames (0.4 seconds, not including logical
processing latency), and θ = 0.03. Parameters of the DTW
process were also adjusted, but are not discussed as that
algorithm is well documented [7, 3]. Since the ball is fully
symmetrical, letters (A to F) were put on the orthogonal
points to aid visually in manipulation. Later a small ar-
row was put next to each letter pointing to the next one
(Figure 2, Right).
Additionally, extraction of features (e.g., amplitude, zero-

crossings) from the triaxial accelerometry signal and its
magnitude, was implemented. They did not improve seg-
mentation but, because of being windowed processes, they
did increase lag (i.e., frames needed for computation) and
computation cost (i.e., logical processing). Therefore, devel-

opment and testing continued using only raw acceleration,
to demonstrate what is possible without using extracted
features.
When a functional version was completed, researchers and

students of Musicology, Music Therapy and Music Educa-
tion at the University of Jyväskylä were invited to evaluate
the functionality of the system. With this group the follow-
ing protocol was developed:
1. The researcher demonstrates the task comprising Cut

and Perform stages, using the upbeat electronic dance mu-
sic piece and the tested gestures sequence. The enclosed
rectangle shown in Figure 6 is is displayed on a paper.
2. The participant is invited to do the task. If in the

Cut stage not all gestures were segmented successfully, the
participant is invited to repeat the Cut, as many times as
they want. Then, they are invited to try the Perform stage.
3. The participant is invited to freely improvise and/or

to use another piece of music.
4. The participant is invited and encouraged to express

their opinion on the experience. The researcher shall take
observational notes such as number of gestures correctly
segmented in a trial, comments and ideas expressed by and
discussed with the participant, and if a new gesture is dis-
covered.
The protocol described above was incorporated to a 7-

hour presentation in an outreach event at the University
of Jyväskylä. The following data was collected of 23 par-
ticipants: age, gender, number of gestures successfully seg-
mented consecutively from the first, and observations. Fur-
ther notes were taken of more more visitors. All partici-
pants used the upbeat electronic dance music, except one
discarded for homogeneity. 17 participants (10 female, 7
male) performed the task as intended. Only six tried a sec-
ond time, improving segmentation (see Figure 7). The me-
dians of correctly segmented gestures was 4 for first time,
6 for second time and 5 for maxima. No correlation be-
tween number of correct segments and age or gender was
observed. Most participants under 10 years old could not
correctly perform all gestures, albeit they could successfully
use the system by only changing the orientation of the ball.

3.4 Overall Assessment

Any set of orientations being different enough will work,
but the 6 orthogonal orientations work flawlessly. Also, any
combination and variation of repeated movements along the
3 orthogonal axes of the ball will work well. Sudden and
energetic movements work best, as they are better measured
by the accelerometer. Smooth movements are less likely
to be detected by the system. Participants discovered a
variety of gestures beyond those in the task. One of them
is the “baby rocking”, consisting in holding the ball with
two hands and moving it describing an upwards concave
curve. Other semi-circular and circular motions, and “8”
figures were successfully detected, inasmuch as the speed,
and therefore radial acceleration, was powerful enough to
produce a novelty score above the set threshold (θ).
If the transition from one gesture to the next is slow

enough to have a duration equal or greater than nmin (min-
imum duration for gestures to be detected), the transition
will be identified as a segment. In the Perform stage the
system might get stuck looping these very short segments,
due to the characteristics of the DTW algorithm (i.e., com-
putation time is proportional to the length of the segment,
parameter sensitivity). However, interestingly, two partic-
ipants mentioned that they liked the result. One of them
referred to it as “a DJ effect”. Another participant explored



Figure 5: Graphical user interface

Figure 6: Segmentation task

the possibility of not having to look at the ball when ma-
nipulating it. A discussion ensued leading to conclude that,
since the ball is fully symmetric, it is not possible to be
aware of its orientation without looking at it.
The task was challenging to different extents. Some par-

ticipants wanted to try again to improve the number of
correctly segmented gestures. All participants showed en-
gagement and enjoyment. However, it is to expect that
researchers and students have interest as the experience is
related to their profession and studies. Likewise, visitors
at the outreach event most probably attended because of
curiosity.

4. DISCUSSION AND FUTURE WORK

The system described in this article demonstrates the fea-
sibility of unsupervised learning of patterns in a continuous
input signal, for gestural control, within a musical appli-
cation. The process ineluctably produces a lagged response
and therefore it is not suitable for the execution of fast notes
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Figure 7: Data collected at the outreach event. Sec-
ond trials are shown in darker shade.

Figure 8: ”Boot” form with rotational asymmetry.
Left – lateral view. Right – zenithal view.

or rhythmic patterns. Nonetheless, the proposed musical
application conforms to this constraint, supporting the con-
cept of delayed control of musical sound. Participants of the
assessment tended to regard the task as a challenge, which
in combination with the discovery of new meaningful ges-
tures, and the sense-making of the constraints, turned the
experience into a ludic one. The system appears promising,
offering opportunities for further research:
I. The reported assessment used recorded music, but any

audio file may be used, and the meta-parameters may be
tweaked for further exploration that may lead to unexpected
yet interesting results.
II. The hand-held device will benefit from having rota-

tional asymmetry, such that there is no need of looking at
it for manipulation (Figure 8).
III. Using the raw accelerometry signal has established

a baseline. Future research could evaluate the impact of
features extracted from the raw signal. The computation of
such features will impact the overall latency (lag plus logical
processing), and the detection of novelty (and therefore the
setting of meta-parameters) because of the information that
the features carry.
IV. Incorporation of more sensors or sensing technologies

other than accelerometry. Besides, several sensors may be
used by more than one person simultaneously, as a group
activity (e.g., [19, 20]).



V. Implementation of online multigranular segmentation,
meaning the detection of gestural boundaries at different
timescales.
VI. Current limitations to achieve III, IV, and V, are

algorithmic complexity, processing power and software effi-
ciency. Solutions may include low-level programming (pos-
sibly embedded software) and faster hardware (possibly par-
allel computing of several features and timescales).
VII. The setting of meta-parameters generalised well,

which is unexpected as perceptual evaluations have sug-
gested the adjustment of meta-parameters for each user [11].
A different setting might be needed when using other con-
figurations of hardware, software, music, user, etc. Future
research may assess the effects of meta-parameters on seg-
mentation and user experience.
VIII. The methods described in this article have poten-

tial beyond the described application, in which the online
segmentation procedure only contributes to display on the
screen an indication when a gesture has been successfully
segmented in the Cut stage. This allows the user, for exam-
ple, to stop the Cut and restart if a gesture change was not
detected. While this might be an advantage to the user, the
online segmentation capability and its further possibilities
for near-real-time interaction could be exploited more. For
example, a musical system (e.g., a DMI, a sonic installa-
tion, a sonification) may learn gestures as they occur. This
may be incorporated to interactive systems where both the
user and the system discover and learn gestures at the same
time, leading to a seamless process of human-machine mu-
sical interaction.

5. ETHICAL STANDARDS

All participants gave verbal informed consent for the use
of their anonymous collected data, following the research
ethics guidelines by the University of Jyväskylä.
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ABSTRACT

Previous research has shown that the temporal dynamics
of human activity recorded by accelerometers share a sim-
ilar structure with music. This opens the possibility to use
musical sonification of accelerometry data to raise aware-
ness of daily physical activity. In this study a method was
developed for quantifying the daily structure of human ac-
tivity using multigranular temporal segmentation, and ap-
plying it to produce musical sonifications. Two accelerom-
etry recordings of physical activity were selected from a
dataset, such that one shows more physical activity than the
other. These data were segmented in different time-scales
so that segmentation boundaries at a given time-scale have
a corresponding boundary at a finer time-scale, occurring
at the same point in time. This produced a hierarchical
structure of daily events embedded in larger events, which
is akin to musical structure. The segmented daily data of
each subject was mapped to musical sounds, resulting in
two short musical pieces. A survey measured the extent
to which people would identify the piece corresponding
to the most active subject, resulting in a majority of cor-
rect answers. We propose that this method has potential
to be a valuable and innovative technique for behavioural
change towards reducing sedentary behaviour and increas-
ing physical activity.

Copyright: c© 2022 Juan Ignacio Mendoza et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

1. INTRODUCTION

Miniature sensors, wearable devices and mobile technolo-
gies can track daily activity of people, both in extent (i.e.,
amount of movement) and type (e.g., walking, sitting).
This capability has been utilised as a behavioural change
technique [1] in interventions to promote a healthier
lifestyle, increase physical activity and reduce sedentary
behaviour 1 [3, 4]. These technologies may be effective
aids in interventions to increase physical activity and
reduce sedentary behaviour [5], but only in the short-term.
Long-term adherence is still a major challenge [6–10].
Recent reviews suggest that more engaging methods are
needed to effectively produce a change in behaviour [11].

Sonification is a potential strategy to increase long term
engagement and adherence, especially since it has been
shown that the temporal dynamics of human motion
and activity share similarity with that of music [12, 13].
Several studies have explored the use of real-time soni-
fication of movement to aid sports performance and
rehabilitation [14]. For example, Ley-Flores et al. [15]
found that sonification of exercise with metaphorical
sounds affect body perception, causing people to feel
strong and thus increase their amount of physical activity.
Other studies investigated presenting activity patterns
as musical sound to raise awareness about behaviour.
For example, Krasnoskulov [16] developed a system in
which data measured by an accelerometer and optical
heart-rate sensor were mapped to musical parameters such
as pitch, timbre, tempo, space and loudness. This form
of musical sonification is rather direct and may not result
in a clear representation of events. Consequently, some

1 A short article by O’Keeffe, Scheid and West [2] explains the differ-
ences and similarities between physical activity and sedentary behaviour.
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studies have considered segmentation of data, so that the
resulting sonification is structured in blocks that preserve
the temporal relations of events. Last and Usyskin [17]
developed a sonification paradigm that segments data
into a user-defined number of segments, which was
successful to convey the desired information. Vickers and
Höldrich [18] progressed this to produce segments using
zero-crossing of a one-dimensional data-stream. Then the
segments were mapped to sound. These studies show that
sonification and musical sonification are feasible ways
to convey activity data. Temporal segmentation may be
a relevant part of the process, as it allows for mappings
between data and sound that have a clear correspondence.
However, the temporal segmentation methods used by the
mentioned studies have important limitations, as they are
based on threshold, zero-crossings or clustering. These
methods require careful calibration of input parameters
and do not generalise well when patterns in data are
multidimensional.

The present study has focused on the development of a
system to produce musical sonification (also referred to as
musification) of daily activity data recorded by wearable
devices. The method employs a novel approach to multi-
granular temporal segmentation, that results in a clear cor-
respondence between daily events and sound. Addition-
ally, the system does not require the final user to do any
fine-tuning of segmentation parameters. We propose this
system as an aid in behavioural change, by raising aware-
ness of people’s own daily physical activity in an engaging
way.

2. METHODS

2.1 Accelerometry Data

We used two multiple-day recordings of accelerometry
from 75-year-old adults. These were chosen from the
AGNES database [19, 20] so that one corresponds to a
low-activity sedentary subject while the other corresponds
to a high-activity non-sedentary subject. The data was
obtained by two tri-axial accelerometers, one chest-worn
and the other thigh-worn. These data were pre-processed
to obtain features for successive non-overlapping epochs
of 5 seconds. One feature is the Mean Absolute Deviation
(MAD) of the square norm [21], from the thigh-worn
accelerometer (Fig. 2a). The other features are the activi-
ties identified from the orientation of the accelerometers:
lying, sitting, upright posture and walking [22] (Fig. 2b).

2.2 Segmentation

The segmentation procedure is shown in Fig. 1. After
MAD is computed and activities are identified, numerosity
is reduced by integrating in windows of 120 data points of
5 seconds each (10 minutes) with an overlap of half the
length of the window. For MAD the integration is

Ai = logb

⎛
⎝1 +

n∑
j=1

wj

⎞
⎠ , i = {1. . .N},

Figure 1. Multigranular segmentation of daily activity.

where vector A of length N is the Activity Score, N is
the number of windows, the logarithmic base b is a free
parameter to rescale A, and w is one window of length
n. The logarithm preserves the data distribution, as the
relation between time of inactivity and activity follows a
power-law distribution [12]. For the examples reported in
this article the logarithm has a base b = 3. Each activity
is a binary vector, where an activity is represented by a
one, otherwise a zero (Fig. 2b). The integration of each
activity vector is the sum of the window, with the same
length and overlap as for MAD. Additionally, integration
acts as a low-pass filter removing unnecessary detail.

The next step is segmentation of the integrated data using
the algorithm described by Foote [23]. That algorithm has
been used for segmentation of musical audio and video. It
can detect boundaries of segments at different granulari-
ties (i.e., time-scales). It has also been tested for segmen-
tation of accelerometry data of dance [24] and daily activ-
ities [25].

The segmentation algorithm first computes a self-
similarity matrix of the integrated activities (Fig. 3a).
Then, a checkerboard kernel (i.e., a small matrix of
four sections where the diagonal is negative units and
the anti-diagonal is positive units) tapered by a normal
distribution, is correlated along the diagonal of the self-
similarity matrix. This was done several times, each with
a checkerboard kernel of minimally different size. The
size of the kernel corresponds to the granularity of the
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Figure 2. a) Mean Absolute Deviation every 5 seconds of accelerometer data; b) Classification of daily activities.

Figure 3. a) Self-similarity of activities; b) multigranular raw segmentation boundaries; c) rectified and reduced multigran-
ular segmentation boundaries; d) segmented Activity Score, darker shades show greater average activity for a segment and
vice versa.

segmentation. A smaller kernel detects finer granularity
segments and vice versa. The size of the kernels was
specified as the standard deviation σk of their normal
distribution tapering. For the examples shown here,
σk = {2, 4, . . . , 32} windows. This resulted in several
novelty scores, one for each granularity, each of which was
then smoothed with a normal-distribution (i.e., Gaussian)
low-pass filter to remove irrelevant peaks. The peaks of

each novelty score represent segmentation boundaries
(Fig. 3b). The size of each filtering vector was set to each
corresponding value in σk, while the standard deviation
was set to 0.4 for all of them.

The segmentation boundaries at different granularities
are not perfectly aligned in time (Fig. 3b) because, as
the checkerboard kernel gets larger, it incorporates more
information causing the novelty peak to move slightly in
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Table 1. Segmented Activity Score
fine medium coarse

duration mean
duration

mean
duration

mean
Activity Activity Activity

5 0.45 8 0.45 38 0.48
3 1.11 - - - -

30 0.48 30 0.48 - -
8 1.03 21 0.92 88 1.48

First 4 lines of “high activity” segmented (corresponding
to Fig. 3c and d). Duration is windows of integrated data.
The headers of this table are not part of the actual list.

either direction. However, because the granularities were
set with minimal difference (Δσk = 2 windows), it is
safe to assume that they correspond to the same segment.
Following this logic, every coarser granularity boundary
has an origin in a finer granularity boundary, except for
those at the borders. The temporal structure is hierarchical,
where segments are embedded in larger segments. This
reflects the structure of human daily activity. For example,
a large portion of the day such as the morning, may contain
activities like waking-up and getting ready, breakfast,
commuting, and so forth. This hierarchical structure is
also analogous to musical structure. For example, a song
has sections like introduction, verse and chorus, each of
which have sub-sections, such as melodic lines. However,
in music the boundaries of each section exactly match in
time, unlike the structure resulting from the procedure
described above. If that multigranular structure were to be
used as musical structure for sonification, it would result
in a seemingly unnatural performance. For example, each
granularity level may be assigned to a different musical
instrument. If so, then instruments would begin and
change sections of the song at different times.

Therefore, the segmentation boundaries were aligned to
the finest-granularity boundary. Also the boundaries at the
borders were removed. This resulted in sequences at differ-
ent granularities being identical or slightly different. Thus,
the finest and coarsest granularity sequences were kept, as
well as the sequences that provide greatest variety in num-
ber of boundaries. For the examples given here, the reduc-
tion resulted in sequences at 3 levels of granularity: fine,
medium and coarse (Fig. 3c). Finally, the median Activity
Score was computed for each segment at each granularity
level (Fig. 3d).

2.3 Musical Sonification

The result of the segmentation procedure is a list of paired
columns, where the paired values are segment duration, in
windows, and the mean Activity Score for the segment. If a
segment’s boundary doesn’t have a corresponding bound-
ary at a coarser granularity level, the values are omitted.
The first line assumes a boundary at all levels of granular-
ity. Table 1 shows an example.

The list was formatted as a CSV file and has a header
line composed by the number of windows, the sum and
grand mean of Activity Scores (from the matrix depicted

by Fig. 3d), and the number of granularities. This file
is the input to a separate sonification program consisting
mainly of a sequencer and two synthesis modules (Fig. 4.).
The sequencer loads the CSV file and immediately reads
the header. The user specifies how long the performance
will last and the program computes the duration of each
window in real time units (e.g., milliseconds), using the
first value in the header (number of windows). The sec-
ond value of the header (sum of Activity Score) is used
as the seed for all pseudo-random generators, to obtain a
deterministic performance (i.e, the sonification of a CSV
file will always be the same). This may help to perceive a
strong connection between sonic material and actual daily
activity information. The third value in the header (grand
mean Activity Score) sets the tempo. The mean between
the values of both subjects was mapped to 120 BPM (beats
per minute) for crotchet notes (60 BPM for minim notes),
as the typical healthy average heartbeat at rest is just over
60 BPM [26] and both preferred musical tempo and aver-
age walking steps have a period of about 120 BPM [27].
Hence, the sonification for the high-activity subject will
have a slightly higher tempo than the sonification for the
low-activity subject. The last element of the header (num-
ber of granularities) is used to compute the mean Activity
for each combined segment. For example, for the first row
in Table 1, all mean Activity values will be added and di-
vided by 3. For the second row, the only value is for the
finest granularity and will be divided by 3.

The user inputs a duration in seconds and clicks a button
to start the performance. Then, the first line in the CSV
file (i.e., the first row of Table 1) will be read and it will
wait the duration given by the leftmost value multiplied by
the duration of each window, then it will read the next line
and so on. When each line is read, the values are sent to
the synthesis modules as described below. This process
continues until the final line is reached or until the user
interrupts it by the click of a button.

Synthesis module 1 is composed by three synthesis-
ers that produce bell-like sounds, whose pitches are
pseudo-randomly produced according to a distribution
that smoothly transitions from chromatic (i.e., all 12
tones allowed) to a user-selected scale. For this study
a pentatonic scale was used. The transition is given by
the mean Activity of all segments at the start of a finest-
granularity segment. The higher this value is, the closer
the distribution will be to the selected scale. For example,
when the program begins playing the list in Table 1, it
will compute the mean of the “mean Activity” values of
the first row, which will determine the distribution of the
pseudo-randomly produced notes. Given this distribution,
each synthesiser produces a note at the start of each
segment and the duration of the note is the duration of
the segment. Each synthesiser has been set to play only
at a distinct octave, with the synthesiser allocated to the
coarsest granularity playing the lowest octave and vice
versa.

The resulting sounds are somehow dissonant when ac-
tivity is low and consonant within the user-defined scale,
when the activity is moderately energetic. This defines
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Figure 4. Sonification program.

high amount of activity as consonant and low amount of
activity as dissonant. Also each synthesiser has a “stereo
spread” capability that has been mapped so that the higher
the mean Activity, the wider the stereo allocation of the
notes, meaning the pseudo-random balance between their
output to the two main output audio channels.

Synthesis module 2 is a drum-machine with 16 steps
(quaver notes) and 5 voices produced by frequency
modulation: ride cymbal, open hi-hat cymbal, closed
hi-hat, snare drum and bass drum. The rhythmic pattern
can be programmed by the user. The tempo is given by the
grand mean Activity Score as explained previously and
each instrument is activated when a level of mean Activity
of the current segment exceeds a defined threshold. For
this study the bass drum was set to be permanently active,
while the ride cymbal was set to fade in when activity
changes from very low to moderately low. Also the ride
cymbal was set to permanently have a full stereo spread,
resulting in a subtle and surrounding rhythmical noise.
The open hi-hat was set to a medium threshold and the
closed hi-hat was not used for this study. The snare drum
was set to a moderately high threshold. The full drum set
is active when activity is energetic.

In the examples (see Fig. 2 and Fig. 3), the full drum
set and only notes within the defined scale play between

about 12:30 and 15:00 for the low-activity subject and from
about 9:00 to 10:00 for the high-activity subject. The out-
put from the bell synthesisers and drum-machine is mixed
and subtle reverberation is added to blend the sounds. Fi-
nally, a low-pass filter is applied to the final mix and its cut-
off frequency is controlled directly by the mean activity of
the current segment, so that the resulting sound is slightly
brighter as there is more energetic activity and vice versa.

2.4 Perceptual Assessment

Two audio files were produced with the method described
above, using excerpts from 6:00 to 23:00 of the data pre-
sented in the figures. These audio files were used as stimuli
for a perceptual assessment. Data for this assessment were
collected during 31 days by means of a short survey using
QuestionPro, a service to make and publish questionnaires
which can be answered with an internet browser, and
Twitter. Participants were recruited via Twitter and
Facebook using both free and paid adverts, the latter
targeting Finland and major English-speaking countries,
and via authors’ direct contact within their acquaintance
networks. In the survey, participants were asked to listen
to each audio file, and indicate which of them represented
the more active person. The order of presentation was
randomised. The survey included the researchers’ con-
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tact information, notified participants that no personal
information would be collected, and that data collection
complied with the General Data Protection Regulation of
the European Union. The stimuli can be listened on Twit-
ter: https://twitter.com/listeningsurvey
and Facebook: https://www.facebook.com/
ListeningsurveyJYU.

3. RESULTS AND DISCUSSION

The methods described in this report are firstly, a system
that processes accelerometry data of daily activity, result-
ing in multigranular hierarchical segmentation akin to mu-
sical structure. The second method is a program devised
as a proof of concept, to demonstrate a possible musical
sonification of the daily activity data utilising the segmen-
tation obtained. The resulting sonification has, by design,
one main property, which is that there is a clear association
between sonic events and daily activity. The perceptual as-
sessment of two example sonifications produced with the
system described measured the extent to which a person
would correctly identify the sonification for high activity
data, when presented along the sonification for low activ-
ity. A total of 1847 responses were collected by a sur-
vey on the internet, of which 1225 (66.3%) correctly iden-
tified the sonification corresponding to high activity. A
one-proportion z-test was performed to evaluate the statis-
tical significance of the results, yielding z = 14.03, with a
p-value < 1 × 10−5. This may be sufficient to reject the
null hypothesis, suggesting that the proportion of correct
responses is significant.

The described musical sonification system may be useful
in public health interventions towards increasing healthy
physical activity or reducing sedentary behaviour, by mak-
ing a person aware of their intraday activity in an engag-
ing manner. In practice, the musical sonification system
would be part of a portable system comprising hardware
and software. Such a system would record daily activity,
produce the musical sonification and possibly recommend
actions to the user. The hardware may be composed of al-
ready existing technologies such as miniature accelerom-
eters and mobile computing devices like a smartphone or
smartwatch. Future research shall be carried out to imple-
ment the system and test it in ecologically valid conditions.
Preliminary testing shall be carried out in order to explore
the extent to which the musical sonification may work as
an engagement strategy, and to identify the conditions in
which it may be effective. These conditions may include
personal characteristics of target users such as age, per-
sonality or income, as well as environmental conditions.
Also it would be useful to compare the multigranular seg-
mentation daily profiles of users with self-reports on their
activities, to assess the extent of their correspondence.

While this report describes a method for multigranular
segmentation and musical sonification of intraday activ-
ity of one subject, it is trivial to expand the method to
work with different data. First, instead of using classified
data for the segmentation, the Activity Score may be used
alone. Also instead of using a single time period, like a day,
an average of several days may be used, resulting in a rep-

resentation of a typical day. Furthermore, instead of using
data for a single subject, a group of subjects may be used.
A population may be pre-clustered in groups with homoge-
neous characteristics, such as age, gender, and so on. The
resulting multigranular temporal segmentation may be use-
ful to examine the typical intraday behaviour of the group.
Its musical sonification will represent the group and this
may open new and interesting doors for community music
making. For example, daily data of a person may be up-
loaded to a server, where it would be combined with data
of other people in their social circle. This would enable
them to produce music as a group, instead of individually.
This way of collaborative music-making may be a relevant
avenue for exploration in further research, as it has been
observed that social support through collaboration was the
primary motivator for adults to maintain activity tracker
use [28].

4. CONCLUSION

This study has developed a system to produce musical
sonification of daily activity data recorded by wearable
devices. The sonification may be used as a tool for raising
awareness and behaviour change by conveying daily
activity information to users in a clear and engaging way.
This capability may be used in interventions to increase
physical activity (i.e., total amount of bodily motion)
and reduce sedentary behaviour (i.e., proportion of time
sitting or lying down) in hard to reach populations such as
older adults, teenagers or people with visual or learning
difficulties. A key property of the musical sonification is
that it shows clearly not only the overall physical activity
over a period of time, but of the temporal structure within,
such as commuting to work, or taking a lunch break. This
property would allow someone to identify, by listening
to the sonification, the times of the day they were more
or less active and spent more or less time sitting. That
was achieved by devising a novel multigranular temporal
segmentation procedure that preserves the time relations
between events.

Acknowledgments

Petri Toiviainen suggested using probability to generate
musical notes.

This work was supported in part by the Finnish Cultural
Foundation (Suomen Kulttuurirahasto).

The AGNES study was financially supported by the Ad-
vanced Grant from the European Research Council (grant
310526) and the Academy of Finland (grant 693045), both
to Taina Rantanen. The funders had no role in the design
of the study and data collection, analysis, and interpreta-
tion of data, and in writing the manuscript. The content of
this article does not reflect the official opinion of the Euro-
pean Union. Responsibility for the information and views
expressed in the article lies entirely with the authors.

33

Proceedings of the 2nd Conference on the Sonification of Health and Environmental Data (SoniHED 2022) 
ISBN: 978-91-8040-358-0



5. REFERENCES

[1] S. Michie, M. Richardson, M. Johnston, C. Abraham,
J. Francis, W. Hardeman, M. P. Eccles, J. Cane, and
C. E. Wood, “The behavior change technique taxon-
omy (v1) of 93 hierarchically clustered techniques:
building an international consensus for the reporting of
behavior change interventions,” Annals of behavioral
medicine, vol. 46, no. 1, pp. 81–95, 2013.

[2] N. O’Keeffe, J. L. Scheid, and S. L. West, “Sedentary
behavior and the use of wearable technology: An ed-
itorial,” AInternational Journal of Environmental Re-
search and Public Health 17(12), p. 4181, 2020.

[3] R. Daryabeygi-Khotbehsara, S. M. Shariful Islam,
D. Dunstan, J. McVicar, M. Abdelrazek, and
R. Maddison, “Smartphone-based interventions to
reduce sedentary behavior and promote physical
activity using integrated dynamic models: Systematic
review,” J Med Internet Res, vol. 23, no. 9,
p. e26315, Sep 2021. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/34515637

[4] F. Monteiro-Guerra, O. Rivera-Romero, L. Fernandez-
Luque, and B. Caulfield, “Personalization in real-time
physical activity coaching using mobile applications:
A scoping review,” IEEE Journal of Biomedical and
Health Informatics, vol. 24, no. 6, pp. 1738–1751,
2020.

[5] R. T. Larsen, V. Wagner, C. B. Korfitsen, C. Keller,
C. B. Juhl, H. Langberg, and J. Christensen,
“Effectiveness of physical activity monitors in adults:
systematic review and meta-analysis,” BMJ, vol.
376, 2022. [Online]. Available: https://www.bmj.com/
content/376/bmj-2021-068047

[6] K.-J. Brickwood, G. Watson, J. O’Brien, and A. D.
Williams, “Consumer-based wearable activity trackers
increase physical activity participation: Systematic
review and meta-analysis,” JMIR Mhealth Uhealth,
vol. 7, no. 4, p. e11819, Apr 2019. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/30977740

[7] S. A. Buckingham, A. J. Williams, K. Morrissey,
L. Price, and J. Harrison, “Mobile health interventions
to promote physical activity and reduce sedentary
behaviour in the workplace: A systematic review,”
Digital health, vol. 5, 2019. [Online]. Available:
https://doi.org/10.1177/2055207619839883

[8] M. I. Cajita, C. E. Kline, L. E. Burke, E. G. Bigini,
and C. C. Imes, “Feasible but not yet efficacious:
a scoping review of wearable activity monitors in
interventions targeting physical activity, sedentary
behavior, and sleep,” Current Epidemiology Reports,
vol. 7, no. 1, pp. 25–38, 2020. [Online]. Available:
https://doi.org/10.1007/s40471-020-00229-2

[9] J. Y.-W. Liu, P. P.-K. Kor, C. P.-Y. Chan, R. Y.-
C. Kwan, and D. S.-K. Cheung, “The effective-
ness of a wearable activity tracker (wat)-based
intervention to improve physical activity levels in
sedentary older adults: A systematic review and
meta-analysis,” Archives of Gerontology and Geri-
atrics, vol. 91, p. 104211, 2020. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/
pii/S0167494320302053

[10] A. V. Creaser, S. A. Clemes, S. Costa, J. Hall, N. D.
Ridgers, S. E. Barber, and D. D. Bingham, “The
acceptability, feasibility, and effectiveness of wearable
activity trackers for increasing physical activity in
children and adolescents: A systematic review,”
International Journal of Environmental Research and
Public Health, vol. 18, no. 12, 2021. [Online].
Available: https://www.mdpi.com/1660-4601/18/12/
6211

[11] W. Wang, J. Cheng, W. Song, and Y. Shen, “The
effectiveness of wearable devices as physical activity
interventions for preventing and treating obesity in
children and adolescents: Systematic review and
meta-analysis,” JMIR Mhealth Uhealth, vol. 10,
no. 4, p. e32435, Apr 2022. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/35394447

[12] S. Chastin and M. Granat, “Methods for objec-
tive measure, quantification and analysis of seden-
tary behaviour and inactivity,” Gait & Posture,
vol. 31, no. 1, pp. 82–86, 2010. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/
pii/S096663620900602X

[13] D. J. Levitin, P. Chordia, and V. Menon, “Musical
rhythm spectra from bach to joplin obey a 1/f
power law,” Proceedings of the National Academy
of Sciences, vol. 109, no. 10, pp. 3716–3720, 2012.
[Online]. Available: https://www.pnas.org/doi/abs/10.
1073/pnas.1113828109

[14] N. Schaffert, T. B. Janzen, K. Mattes, and M. H.
Thaut, “A review on the relationship between sound
and movement in sports and rehabilitation,” Frontiers
in psychology, vol. 10, p. 244, 2019.

[15] J. Ley-Flores, L. T. Vidal, N. Berthouze, A. Singh,
F. Bevilacqua, and A. Tajadura-Jiménez, “Soniband:
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