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This research introduces a novel framework for creating metrics intended for security operations centers (SOCs). 
The framework is developed using the design science research methodology and has been validated by generating 
four novel metrics to assess the technical performance of a SOC. Additionally, the study examines the existing 
landscape of metrics for SOCs and concludes that a majority of the metrics discussed in the literature primarily 
focus on operational aspects rather than technical performance. The absence of adequate technical performance 
metrics makes it challenging to accurately evaluate the tangible impact of a SOC on overall cyber defense 
capabilities. The research also highlights the insufficiency of current methods in constructing metrics and 
frameworks tailored for measuring SOCs’ technical performance. The resulting framework offers SOCs means to 
create high-quality metrics for performance evaluation. Furthermore, the metrics the framework was validated 
with offer SOCs an opportunity to enhance their ability to quantify their threat detection capabilities.
1. Introduction

Cyber threats have evolved dramatically over the last few years. 
They have become more sophisticated and complex, and as a result, 
they have a greater impact on operational activities. The use of general-

purpose malware has declined recently and more advanced threats, 
such as supply chain compromises, extortion activities, misinformation 
campaigns, and business e-mail compromises, are continuously increas-

ing (European Union Agency for Cybersecurity, 2021). The increased 
sophistication and the associated risks require organizations to improve 
their defensive capabilities for combatting the evolving threat landscape 
because traditional malware and network defenses are not enough to 
protect the organization from modern-day cyber threats.

A strategy for organizations to increase their cyber defense capa-

bilities is to acquire security operations center (SOC) capabilities. On 
a general level, the SOC operations can be produced in-house, out-

sourced to a managed service provider, or operated in a hybrid model in 
which the internal SOC is complemented by an external SOC provider. 
According to Nathans (2014), a SOC is typically responsible for detect-

ing security incidents and initiating related incident response activities. 
Nathans also determined that depending on the size and the needs of 
the organization, the SOC can consist of a single person or a larger 
team working in 24/7 shifts that together form a coherent collection 
of different competencies to prevent, detect, and resolve cyber threats. 
Furthermore, Vielberth et al. (2020) mentioned there are several ways 
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to operate and design SOCs, and that the outcome is influenced by var-

ious factors, such as regulations, company strategy, and expertise.

To quantify the operational efficiency and capabilities of a SOC, 
performance should be measured using a set of commonly agreed met-

rics. A literature survey performed by Vielberth et al. (2020) concluded 
that the currently established metrics are insufficient for measuring the 
performance of the SOC. This viewpoint is supported by Kokulu et al. 
(2019), Agyepong et al. (2020) and Sundaramurthy et al. (2015).

Multiple publications on SOCs focus primarily on quantitative vol-

ume and time-based operational and vulnerability-related metrics to 
measure the performance of SOCs (Nathans, 2014; Ahlm, 2021; Kokulu 
et al., 2019). The operational metrics can help managers measure and 
optimize human resource utilization in analysis. Other quantitative met-

rics, such as vulnerability-related data, can provide an overview of the 
overall exposure to known threats (Nathans, 2014). In practice, they 
are inefficient in measuring the capabilities of SOCs, because they can-

not measure the effectiveness of the detection capabilities and other 
protective controls. Measuring the false-positive rate of the monitor-

ing rules is a common solution to combat this issue (Nathans, 2014; 
Ahlm, 2021). However, considering the false-positive rate alone can be 
misleading. The outcome of such metrics can be manipulated either sub-

consciously or consciously by the people responsible for the creation 
of the detection capabilities. Several studies have been performed on 
general security metrics (Böhme, 2010; Pendleton et al., 2016; Salmi, 
2018), and there are also commonly referenced industry standards, such 
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as ISO/IEC 27004:2016 (2016) and NIST SP 800-55 (Chew et al., 2008), 
that organizations can use to measure the effectiveness of their infor-

mation security.

An argument could be made that an industry standard framework 
for measuring SOCs does not exist at the moment. The lack of com-

monly accepted methods to measure the technical performance of a 
SOC is particularly prominent when the SOC is being outsourced to a 
third-party vendor. This often leads to a situation where the tender-

ing process produces a suboptimal result, either by selecting the vendor 
with the lowest total service cost or the most convincing sales mate-

rial. In Finland, a trend has been observed, where vendors are chosen 
on a proof of concept phase, in which an attack simulation is performed 
in an environment temporarily monitored by the vendor and afterward 
their threat detection capabilities are evaluated. The trend is essentially 
a manifestation of the difficulty in evaluating the technical capabilities 
of different vendors. Although it can provide useful insights when com-

paring vendors, the results are not truly comparable between vendors 
because the number of resources allocated to the proof of concept can 
significantly impact the final results and thus skew the vendor selection.

The objective of this study was to determine the metrics and other per-

formance indicators relevant for measuring the technical performance of a 
SOC. Without properly constructed metrics, it is difficult to evaluate 
how substantial impact the SOC has on the overall cyber defense capa-

bilities. A technical performance metric within this paper is defined as 
a qualitative or quantitative indicator derived from one or more measure-

ments resulting from the activities performed by the SOC, which describes 
how well the SOC can utilize technologies to prevent, identify, detect, and 
respond to cyber threats affecting the organization. Compared to an opera-

tional performance metric, a technical performance metric attempts to 
quantify the defensive capabilities, rather than assessing the effective-

ness of processes and people associated with the SOC. Understanding 
both the operational and technical efficiency of the SOC is required to 
successfully protect an organization from cyber threats and measure the 
effectiveness of the SOC.

The objective leads to the following research questions: (1) What 
frameworks are available to measure the performance of a SOC? (2) What 
are the commonly mentioned key metrics used to measure a SOC? (3) Can 
the common metrics be used to measure the technical performance? (4) How 
can the metrics be improved to enhance the reporting capabilities of technical 
performance? The expected outcome of the research is a novel frame-

work that could contribute to an industry-standard way to measure the 
technical performance of a SOC and apply to most SOCs.

2. Research methodology

Design science research methodology is used as the primary research 
methodology in this research. The research follows the principles de-

fined by Peffers et al. (2007), in which a design science artifact is 
generated as an outcome of an iterative process with the following ac-

tivities: (1) Identify the problem and motivation, (2) Define the objectives of 
a solution, (3) Design and development, (4) Demonstration, (5) Evaluation

and (6) Communication.

The first activity is covered in sections 1, 3 and 4 of this research, 
the second in section 5, the third in section 6, the fourth in section 7 and 
the fifth in sections 8 and 9. This research as a whole covers the sixth 
activity. The second activity is supported by a brief literature review of 
both academic publications and commercial sources to establish suffi-

cient theoretical background on the subject, and to answer the research 
questions (1) and (2). A keyword search is used as the search method 
for the discovery of literature related to SOCs and metrics. The search 
query for SOC-related literature is ‘(security OR cyber security) (oper-

ations OR operation) (center OR centre)’ and the metric-related search 
query is ‘(metric OR measurement OR “performance indicator”)’. The lit-
2

erature review was performed between May and September in the year 
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2022 and updated in August 2023. JYKDOK,1 IEEE Xplore2 and Google 
Scholar3 were used as the search engines.

The research is expected to result in a design science artifact, a 
framework that can be utilized to create metrics to measure the tech-

nical performance of SOCs. The design science artifact is validated 
following the guidelines defined by Hevner et al. (2004), by follow-

ing the experimental evaluation method, which consists of controlled 
experiments and simulations. The artifact is evaluated by utilizing it to 
create metrics to measure the technical performance of a SOC. The re-

sulting metrics are evaluated with simulated data to ensure they behave 
as expected and produce meaningful insights for SOCs. The metrics are 
further evaluated in a controlled environment to ensure the measure-

ments required for the metrics can be collected in a fully operational 
SOC.

3. Security operations center

To tackle the first phase of the design science research, problem iden-

tification, we first introduce, how technical performance metrics target 
environments, i.e., SOCs, are described in the literature. One method to 
describe a SOC is through a People, Processes, and Technologies (PPT) 
framework (Knerler et al., 2022; Vielberth et al., 2020). Vielberth et al. 
(2020) summarized that the people block describes the people associ-

ated with the SOC and their required competencies, the process block 
describes how the people interact and how security incidents are han-

dled, and the technology block describes the tools used to do the work. 
They also argued that the PPT framework could be expanded to in-

clude governance and compliance, enabling organizations to utilize the 
SOC as a function to ensure compliance with various standards, such as 
ISO/IEC 27001, GDPR, or PCI-DSS.

Vielberth et al. (2020) stated, that the work performed at a SOC 
is heavily driven by processes, as the work is structured around the 
prevention, detection, and response of security incidents. The Com-

puter Security Incident Handling Guide (NIST SP 800-61, Cichonski et 
al. (2012)) describes the security incident management process, which 
consists of four phases “preparation,” “detection and analysis,” “con-

tainment, eradication, and recovery,” and “post-incident activity,” as 
depicted in Fig. 1. The purpose of the preparation phase is to ensure the 
SOC has the necessary visibility and potential to detect and respond to 
security incidents. The preparation stage also includes activities aiming 
to prevent security incidents altogether, such as malware prevention or 
user awareness training. The detection and analysis phase consists of 
responding to security incidents by analyzing, documenting, and pri-

oritizing them and finally notifying the necessary people. The third 
phase is about containing the security incident by limiting the poten-

tial damage the incident may cause, followed by evidence gathering 
and identifying the attackers’ host. Once the impact of the incident has 
been limited and the source of the attack has been identified, the threat 
can be eradicated, and recovery actions can be started (Cichonski et al., 
2012). The final stage, post-incident activity, does not contain activities 
for which the SOC would typically be responsible. Other processes in 
the SOC can, for example, include data collection and creation, valida-

tion, and tuning monitoring rules (Knerler et al., 2022).

A SOC can be further split into multiple collections of tightly inter-

linked functional areas, which according to Knerler et al. (2022), are 
the following:

1. Incident triage, analysis, and response

2. Cyber threat intelligence, hunting, and analytics

3. Expanded SOC operations

4. Vulnerability management

1 https://jyu .finna .fi/.
2 https://ieeexplore .ieee .org/.

3 https://scholar .google .com/.

https://jyu.finna.fi/
https://ieeexplore.ieee.org/
https://scholar.google.com/
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Fig. 1. Incident response life-cycle as depicted by Cichonski et al. (2012, p. 21).

Metric A

Reaction SLA violations

Measurement A

Reaction time for detections

Source 1

SIEM

Source 2

EDR

Source 3

IDS

Measurement B

Reaction time for tickets

Source 4

Internal

Source 5

External

Fig. 2. Structure of a metric.
5. SOC tools, architecture, and engineering

6. Situational awareness, communications, and training

7. Leadership and management

Larger SOCs may have elements from all of the functional areas above. 
However, a single operations center does not necessarily need to cover 
all of the areas to be a functional part of the overall cyber defense 
capabilities (Knerler et al., 2022).

4. Metrics and measurements

The primary purpose of a metric is to measure how well a business 
process, product, or resource performs so that a business decision can 
be made Savola (2007). Typically, a metric consists of one or more dis-

crete point-in-time measurements, from which metrics are then derived. 
Savola (2013) continues that to produce quality metrics for security, the 
metrics must conform to four fundamental quality criteria: correctness, 
measurability, meaningfulness, and usability.

4.1. Constructing metrics

Metrics can be structured in multiple ways. A metric can simply 
be a direct relation to a measurement, such as the number of security 
incidents, or it can be a composite metric constructed by multiple mea-

surements collected from multiple sources. An example of a composite 
metric is depicted in Fig. 2, in which the metric is constructed from mul-

tiple measurements. Measurement A collects the detections generated 
by security tooling, such as Security Information Event Management 
(SIEM), Endpoint Detection and Response (EDR), or Intrusion Detection 
System (IDS). The detections generated by the tools are analyzed by se-

curity analysts. Measurement B consists of reports from end-users and 
other third parties about possible security incidents, such as suspected 
phishing or security policy violations. Similar to measurement A, the 
tickets in measurement B are investigated by the analysts. The metric 
configuration selects the measurements, for which the reaction time by 
the analysts exceeds the pre-determined value. The reaction time could 
for example be defined in a Service Level Agreement (SLA) between a 
SOC and other stakeholders.

There are several ways to construct or select metrics that measure 
the outcome of an activity. A study by Doran (1981) describes a method 
that utilizes the S.M.A.R.T. method, which is an acronym for specific, 
3

measurable, assignable, realistic, and time-related, to select a suitable 
metric. Brotby and Hinson (2013) introduces the PRAGMATIC method 
that consists of nine meta metrics (predictive, relevant, actionable, gen-

uine, meaningful, accurate, timely, independent, and cheap), which are 
essentially scoring criteria for the metric itself.

The S.M.A.R.T. and PRAGMATIC methods are more about select-

ing metrics and which principles should be embraced when a metric 
is constructed. There are also other methods to construct metrics. For 
example, the Annex A of the ISO/IEC 27004:2016 (2016) standard sum-

marizes a measurement information model contained in the ISO/IEC 
15939 standard and describes how specific attributes related to an en-

tity can be converted into an information product that can be used for 
conducting business decisions.

4.2. Problems and pitfalls of metrics

Metrics can provide valuable insights into the performance of an or-

ganization. However, when incorrectly constructed, they can become 
counterproductive. The metric can be incorrect due to a problem with 
the raw measurements, a programming error in the algorithm used to 
derive the metric, or someone is either maliciously or non-maliciously 
misinterpreting the metric (Brotby and Hinson, 2013). Hauser and Katz 
(1998) argues that it might also be possible that certain metrics, which 
are hard to influence by the activities of team members, might lead to 
a situation where short-term decisions are favored over long-term deci-

sions. A metric may also be precisely wrong, meaning that something 
is measured with high accuracy, but the metric does not improve the 
business process it is supposed to improve (Hauser and Katz, 1998).

We can also approach the problems with metrics from the quality 
perspective. An attribute closely related to correctness is unbiasedness 
and objectivity, meaning the interpretation of the metric should not be 
influenced by personal beliefs or biases (Savola, 2007). Similarly, repro-

ducibility is closely related to measurability. If a result from a metric 
cannot be reliably reproduced, the metric may produce an incorrect 
value.

There may also be a problem with the quantity of the metrics. If 
the metrics are incomplete, it is impossible to understand the overall 
situation. However, having too many metrics can also be a source of 
incorrect decisions (Brotby and Hinson, 2013).

4.3. Security operations center metrics

Vielberth et al. (2020) concluded that the general level of gov-
ernance and compliance-related aspects of SOC-related research are 
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immature. There is significant research on security metrics, but the met-

rics are mostly operational and non-technical. However, they identified 
some technical metrics, such as false-positive rate, mean time to de-

tect, threat actor attribution, and defensive efficiency. Nonetheless, they 
failed to show meaningful metrics in several areas, such as automation 
& orchestration, threat hunting, and detection engineering & validation.

Nathans (2014) discussed SOC-related qualitative and quantitative 
metrics utilized in managing a SOC. He also discussed the importance 
of vulnerability-related information in detecting potential security inci-

dents by SOCs. The metrics related to the vulnerabilities are categorized 
as management-related metrics. He presented qualitative metrics, such 
as the top 10 vulnerable endpoints, and quantitative metrics, including 
the number of vulnerable endpoints, the number of vulnerabilities per 
severity, the number of unknown assets, and the time it took to apply a 
patch that fixed the vulnerability. However, the proposed metrics were 
not sufficient to be used to demonstrate the technical capabilities of the 
SOC.

Agyepong et al. (2020) presented a framework in which a SOC was 
split into multiple functions. Each function was measured separately to 
determine the actual performance of it. These functions included mon-

itoring and detection, analysis, response and reporting, intelligence, 
baseline and vulnerability, and policies and signature management. The 
framework proposed that each function should monitor its performance 
in quantitative and qualitative metrics. The framework did not provide 
concrete measurement mechanisms upon which organizations can im-

plement the metrics defined in the framework.

Keltanen (2019) used results from a customer survey to measure the 
performance of an outsourced SOC. He ranked the metrics based on the 
PRAGMATIC method. The resulting score will help evaluate different 
metrics between one another, making it possible to determine which 
metric is considered to be the most important (Keltanen, 2019). The 
study did not present concrete metrics that SOCs could use to measure 
their performance, instead focused on how the metrics could be con-

structed.

Kokulu et al. (2019) presented a qualitative study on the issues 
observed by SOC practitioners. The study was based on interviewing 
eighteen persons working in a SOC. The interviewed analysts men-

tioned that the metrics selected for measuring the performance were 
used to measure completely irrelevant things and to demonstrate a false 
improvement to the upper management rather than the actual perfor-

mance of the SOC.

Onwubiko (2015) presented a framework consisting of metrics used 
to evaluate SOCs’ performance and determine the return on investment. 
The framework does not contain a concrete set of metrics, but instead, 
it provides the top five examples that should be considered, which are 
the number of incidents, the performance of the cyber operations, the 
top ten cyber attacks, a summary of policy violations and a summary of 
privileged user misuse detections.

Alahmadi et al. (2022) present a comprehensive qualitative study 
of SOC analysts’ perspectives on security alarms. The authors state 
that security alarm validation is a tedious task that can cause alarm 
burnout and eventually desensitization. They continue that vendors 
and researchers must be able to make distinctions between types of 
false-positive alarms. They also argue that researchers have used false-

positive as a metric for evaluating system performance when proposing 
security tools, seeking few false-positives for optimal performance.

In addition to scientific literature, there is a plethora of commer-

cial material that discusses the metrics to measure SOCs. Zimmerman 
and Crowley (2019) presented seven high-level groups for the metrics. 
The groups are the health of the data feed, coverage of the monitoring, 
vulnerability-related metrics, monitoring rules, analysts’ performance, 
incident handling, risk priorities, and general hygiene.

Gartner published a guide (Ahlm, 2021) discussing the industry’s 
best practices for building and operating a modern SOC, among which 
a set of fundamental metrics were defined. The metrics mainly focused 
4

on quantitative metrics and were grouped into four categories: incident 
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volume, incident detection, incident response, and incident impact. The 
metrics in these categories, for most parts, are not relevant to the tech-

nical performance of the SOC.

SANS Institute (Crowley and Pescatore, 2019) surveyed 355 or-

ganizations about common and best practices for SOCs. There were 
questions about which metrics are used in the SOC or measure its per-

formance. The results of the survey conclude that quantitative metrics 
such as the number of incidents handled and time from detection to 
containment to eradication are the most common. The three least com-

monly deployed metrics were “Losses accrued vs. losses prevented,” 
“Monetary cost per incident,” and “Avoidability of the incident,” all 
of which are relatively difficult to implement. Out of the metrics men-

tioned, there were a few metrics that are relevant for measuring the 
technical performance of the SOC, which are “Threat actor attribution,” 
“Thoroughness of eradication,” and “Thoroughness and accuracy of en-

terprise sweeping.”

Logsign (2020) groups recommended metrics into two categories, 
metrics for security operations and metrics related to business require-

ments. The number of security incidents was raised as the most impor-

tant metric for security operations. It also depicted metrics, such as the 
number of alerts per analyst, the number of alerts closed by automa-

tion, the number of false-positive alerts, and the average time to detect 
a security incident.

A blog post by Simos and Dellinger (2019) presented some of the key 
metrics used at the Microsoft SOC. These include time to acknowledge, 
time to remediate, escalation between tiers, and the number of inci-

dents remediated grouped per response type (manual or automated). 
The metrics are mostly about measuring the response capabilities of the 
SOC and are highly relevant to the technical performance of the SOC.

In addition to SOC-specific frameworks and methodologies, several 
publications describe ways of measuring information security on a gen-

eral level. The Performance Measurement Guide for Information Secu-

rity (NIST SP 800-55) describes how the organization can create, select 
and implement metrics for monitoring the state of the security pro-

gram on an overall level (Chew et al., 2008). The ISO/IEC 27004:2016 
standard describes guidelines that can be utilized for measuring the ef-

fectiveness of the information security management system (ISO/IEC 
27004:2016, 2016).

Salmi (2018) surveyed information security metrics implemented in 
large Finnish corporations. He identified 28 security metrics categorized 
into either management, operational, or technical metrics. The study 
contained no metrics that directly relate to the technical performance 
of a SOC. However, several metrics are closely related to the typical 
activities of the SOC, such as the business impact of security incidents, 
characteristics of security incidents, and system vulnerabilities.

As a summary of SOC metrics, Table 1 describes the top thirty most 
commonly mentioned metrics in the literature, i.e., the number aster-

isks depict how many articles the metric was mentioned in. A full list of 
the metrics observed has been published in Mendeley Data (Forsberg, 
2023). In Table 1, one of the metrics was combined into a general-

ized term instead of having two separate rows for “time to resolution” 
and “time to incident closure.” Another general level observation was 
that the terminology does not appear to be consistent in the literature. 
For example, the metric “mean time to detect” is used to describe at 
least two different behaviors, the time it takes to react and perform the 
analysis of the alert (Ahlm, 2021; Agyepong et al., 2020; Crowley and 
Pescatore, 2019) and time it takes for a SOC to become aware of the in-

cident (Logsign, 2020; Vielberth et al., 2020). Some of the publications 
did not provide enough information to clearly distinguish between the 
two (Kokulu et al., 2019; Zimmerman and Crowley, 2019). However, 
Vielberth et al. (2020) provided a separate metric for the average analy-

sis time and detection time. Thus a conclusion could be reached that the 
correct definition of time to detect metric would be the time between 
the initial activity of the adversary and the first detection caused by the 
activities. This viewpoint is also supported by the Computer Security 

Incident Handling Guide (NIST SP 800-61, Cichonski et al. (2012)).
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Table 1

Top 30 metrics in the literature.
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Number of security incidents * * * * * * * * * * *

Mean time to reaction * * * * * * *

Number of vulnerabilities * * * * * * *

False-positive rate * * * * * * *

Mean time to detect * * * * * *

Mean time to resolution * * * * * *

Cost of security incidents * * * * *

Detections per category * * * *

Mean time to vulnerability remedy * * * *

Number of vulnerable devices * * * *

Percentage of employees trained * * *

Percentage of standard systems * * *

Analyst productivity * * *

Coverage of vulnerability scanning * * *

Downtime due to security incidents * * *

Incident avoidability * * *

Incidents with business-impact * * *

Mean time to containment * * *

Mean time to triage * * *

Number of incidents per shift * * *

Number of monitored assets * * *

Number of patched vulnerabilities * * *

Number of risk per severity * * *

Resolution SLA breaches * * *

Severity of security incidents * * *

Threat actor attribution * * *

Number of automated incidents * *

Mean time to escalation * *

Quality of eradication * *

Reaction SLA breaches * *
The most common metric was the total number of security incidents, 
which was mentioned in eleven of the fifteen publications included in 
Table 1. This is not a surprise, given the number of incidents is men-

tioned as a specific metric in both NIST SP 800-53 and ISO/IEC 27004. 
It is a metric that can easily be collected and used outside of the scope 
of SOC. Vulnerability-related metrics are also relatively common, with 
the count of vulnerabilities being mentioned in seven publications. The 
mean time to vulnerability remediation and the count of vulnerable de-

vices were mentioned in four publications. Operative metrics, such as 
mean time to reaction, detection, resolution, containment, triage, and 
escalation, were also commonly mentioned. The publications also con-

tained a few technical performance metrics. They were false-positive 
rate, threat actor attribution, the number of security incidents closed 
with automation, and the quality of eradication.

The literature review emphasizes the need for a common framework 
that could be used for the performance evaluation of SOCs globally. The 
metrics presented in Table 1 are scattered broadly, and there appears 
to be no common group of key metrics used to measure the tech-

nical performance of a SOC. The published literature mostly focuses 
on operational SOC or general security metrics. Although commercial 
whitepapers provide slightly better technical performance metrics, they 
fall short in several ways. For example, the lack of proper justifica-

tion is seen throughout them. Despite the limited scientific research on 
the subject, several studies have reached a similar conclusion (Agye-

pong et al., 2020; Keltanen, 2019; Kokulu et al., 2019; Vielberth et al., 
2020). The lack of standard technical performance metrics could be at-

tributed to the lack of a sufficiently mature governance model for SOCs, 
5

as pointed out by Vielberth et al. (2020).
4.4. Other work on measuring SOCs

In addition to the literature mentioned earlier, there are several 
publications on the ways to measure SOCs. For example, Jacobs et al. 
(2013), Van Os (2016) and Schlette et al. (2021) are proposing to mea-

sure SOCs based on a capability maturity model, Schinagl et al. (2015)

approaches the assessment through a set of questions to understand the 
perceived level of effectiveness and Rosso et al. (2022) introduces a way 
to measure SOCs performance by injecting simulated attacks into an op-

erational SOC and utilize pre-existing metrics to determine the level of 
effectiveness.

All of these methods suffer from the same fundamental problem: 
they do not provide concrete metrics a SOC can be measured with. The 
method proposed by Rosso et al. (2022) succeeds in measuring the tech-

nical performance of SOCs, but relies on existing metrics to do so. Some 
studies discuss methodologies and provide concrete metrics to measure 
the SOC performance, such as the papers by Shah et al. (2018) and 
Agyepong et al. (2023), but as they focus on the operational aspects 
of the SOC, they do not provide ways to measure the technical perfor-

mance of SOCs.

5. Solution objectives

The objective of the solution is the documentation of an approach 
for creating SOC-related metrics. Additionally, the solution should be 
used to create three to seven metrics that can either augment exist-

ing technical performance metrics or introduce completely new metrics 

and provide capabilities to measure the technical performance in an 
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Fig. 3. The metric construction stages.
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Fig. 4. The metric creation framework.
area where previous metrics are incomplete or missing. Based on the 
literature review, the requirements for the solution are the following:

1. A selection criteria for the creation of metrics should be well-

defined.

2. A separate quality criteria for the metrics should be defined and 
the metrics created with the framework should conform with it.

3. The metrics should be directly associated with a specific SOC func-

tion.

4. The metrics should be universal and not tied to a specific technol-

ogy or an organizational structure.

5. The metrics should be justified either by scientific research, indus-

try standards, or through other means that considerably decrease 
the subjectivity of the metrics.

The justification for the objective 1 is that there does not appear to 
be an industry-standard framework for creating metrics for SOCs. There 
are selection criteria such as S.M.A.R.T. (Doran, 1981) and PRAGMATIC 
(Brotby and Hinson, 2013), but the criteria remain subjective at best. 
Creating a comprehensive framework for measuring the performance of 
a SOC is out of the scope of this research, and the focus is placed on 
enabling the creation of selection criteria that can be used as a part of 
a comprehensive framework.

The justification for the objective 2 is that low quality metrics 
can produce unwanted results, as discussed in section 4.2. Further-

more, based on the authors’ first-hand experience, many of the metrics 
used for measuring SOC are of low quality, particularly regarding bias 
and objectivity. This viewpoint is partially supported by Kokulu et al. 
(2019). However, the quality aspect of the metrics was not discussed in 
detail in the SOC-related literature to form a valid conclusion about the 
insufficient quality. To ensure the resulting metrics are of high quality, 
quality criteria for SOC metrics should be defined.

The justification for the objectives 3 and 4 is the same, which is the 
universal applicability of the resulting metrics. In practice, this means 
the metrics should be usable by most SOCs out there, provided that they 
include the function to which the metric is tied. Finally, the justification 
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for the objective 5 is that the metrics in some situations do not appear to 
be backed up by scientific research, particularly regarding commercial 
sources, which means the metrics are purely based on the authority of 
the author.

6. The metric creation framework

This section presents the creation of the design science artifact, i.e., 
a metric creation framework. It can be used to construct metrics used to 
measure the performance of a SOC. The artifact is evaluated by utilizing 
it to create metrics to measure the technical performance of the SOC.

The metric construction model is based on requirements defined in 
two separate stages, as depicted in Fig. 3. The first stage consists of the 
solution objectives, and the second stage is the metric creation frame-

work that consists of the requirements the metric should conform to 
and the characteristics that must be describable in the metric documen-

tation, see Fig. 4.

A valid metric must fulfill both the metric requirements and the 
characteristics. The metric requirements are:

1. The metric has a clear and well-defined goal.

2. The owner of the metric is clear.

3. The results are not dependent on third parties.

4. The metric can be justified.

5. The metric is tied to a success factor.

6. The metric is aligned with the quality criteria.

A well-defined goal means the metric must be meaningful as per the 
quality criteria by Savola (2013) and the PRAGMATIC methodology by 
Brotby and Hinson (2013). The quality criteria within the context of a 
SOC are shown in Table 2.

The metric should also be assignable directly to a function within a 
SOC. If a third party influences the metric, the metric does not measure 
only the performance of the SOC but rather the entire chain related to 
threat detection and incident response.

The metrics should also be justifiable by scientific research, industry 

standards, or through other means documented in the metric descrip-
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Table 2

The quality criteria for the SOC metrics.

Criteria Characteristic Description

Correctness Granularity The metric should provide the necessary granularity to tie the metric to a specific function or team within a SOC.

Completeness The metric should completely fulfill the goal defined in the metric documentation. If the metric cannot alone fill the goal, 
the metric should be coupled together with another metric.

Objective and unbiased The results should not be influenced by the activities performed by the person setting up the metric and the bias should be 
minimized to acceptable levels defined in the metric description.

Measurability Availability Measurements used to construct the metric must be automatically available in a reliable and consistent format.

Reproducibility The metric must be reproducible by different persons across multiple organizations given access to the same measurements.

Meaningfulness Impactful The metric must have an impact on the daily activities and it must be capable of showing the progression of development 
efforts.

Clarity The interpretation of the metric must be unambiguous and consistent across the entire lifecycle of the metric.

Comparability The result of the metric must aim to be comparable between multiple SOCs even between organizations.

Usability Portability The metric must be usable by multiple different SOCs and not be dependent on their size, structure, service model, or 
parent organization.

Controllability The team the metric is used to measure must be capable of keeping the metric value between the expected values.

Scalability The metric must be able to behave consistently with low and high volumes of measurements.

Presentable It must be possible to present the information the metric is expected to provide visually.
tion. If the metrics are justifiable, there is no need to rely on the 
authority of the source.

Establishing a connection between the indicator and the critical suc-

cess factors (CSFs) is a fundamental requirement for key performance 
indicators (KPIs) as described in the book by Parmenter (2019). On a 
practical level, establishing a connection between the CSFs and the KPIs 
forces organizations to identify critical contributors to organizational 
performance and thus qualify to be measured with the KPIs. Finally, 
the metric should conform to the quality criteria, Table 2.

If the metric has passed the requirements, it can be constructed. 
The metric can have different characteristics depending on variables, 
such as which SOC function it relates to or the stakeholders the metric 
targets. The fundamental characteristics that should always be defined 
are the following:

1. Target audience and intended use

2. Measures to reduce bias and subjectivity

3. Required additional contextual information

4. Required measurements

5. Format for the presentation of the metric

6. Interpretation instructions

The target audience of the metrics and the intended use must be well de-

fined because there is a mismatch between the evaluation metrics when 
it comes to SOC managers, SOC analysts, and other technical personnel 
(Kokulu et al., 2019).

If we can reduce bias to a minimum and ensure the metric is objec-

tive, we can fulfill the most important quality criterion, correctness.

There can also be situations where a counter-metric or other addi-

tional contextual information is needed. For example, a SOC may have a 
metric to measure the number of distinct monitoring rules, which could 
be used to measure the detection potential of the SOC. However, the 
high number of monitoring rules does not directly correlate with the 
performance of the SOC, since if a majority of the security incidents re-

sulting from the monitoring rules are false-positive, the SOC is unlikely 
to be able to handle them effectively (Alahmadi et al., 2022). There-

fore, the metric for the number of monitoring rules should be coupled 
with the false-positive rate to measure the effective detection potential.

As the metrics consist of measurements, the source for the measure-

ment data must be defined along with the format of measurement, the 
measurement interval, and any other information that affects the mea-

surements or metrics in any way. For example, a metric measuring the 
mean time to resolution would require each security incident to have 
two measurements, one to measure the time when the incident was 
opened and another one to measure the time when the incident has 
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been resolved.
Metrics must also be presented in such a way that they clearly and 
consistently depict the information the metric is supposed to deliver. 
For example, the metric can be presented numerically, by various charts 
or time series graphs, or in a text format within a table. The way the 
metric is presented should provide the person interpreting the metric 
with the necessary information to make decisions based on the data 
seen.

Interpreting the metrics is important in ensuring the metrics provide 
valuable insights for the stakeholders. Although the fundamental idea is 
that the metrics themselves should be self-explanatory, in the practical 
sense, some metrics can be hard to interpret. The metric documentation 
should include the expected way to interpret the results.

7. Metrics for security operations center

This section describes how the metrics meet the objectives defined 
in the metric creation framework. Measurements used to construct the 
metrics have been programmatically generated and presented using 
open-source tools and Python modules, most prominently Jupyter Note-

books4 and a Python graphing library Plotly.5 Additionally, scikit-learn, 
which is a Python module that can be used for data analysis and ma-

chine learning algorithm development (Pedregosa et al., 2011), was 
used to calculate the statistical fitting of a trend line in the form of 
linear regression. The parameters for creating the data points are ad-

justed every 100 steps to create variation in the results over time. The 
source code for the metrics is published in Mendeley Data (Forsberg, 
2023).

7.1. Distribution of detections among the UKC

Distribution of detections among the Unified Kill Chain (UKC) measures 
how effective the SOC is in detecting threats in the early stages of the 
UKC and thus decreases the impact of a security incident. The metric 
is tied to a function responsible for custom analytics and detection cre-

ation, as per the definition by Knerler et al. (2022). If the SOC does not 
have a team responsible for the function, the metric is not measuring 
the performance of a SOC but rather the tools the SOC is using. In that 
case, the metric depends on third parties and thus is not a valid metric 
for a SOC.

Fig. 5 depicts a visual representation of the metric with a detection 
strategy focused on the initial foothold stage. This means that a larger

4 https://jupyter .org /about.

5 https://github .com /plotly /plotly .py.

https://jupyter.org/about
https://github.com/plotly/plotly.py
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Fig. 5. Initial Foothold focused detection strategy. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Network Propagation focused detection strategy.
portion of the detections is within the initial foothold stage, compared 
to network propagation or the action on objectives stages. Fig. 6 depicts 
the metric with a detection distribution focused on network propaga-

tion. Both strategies statistically have a similar amount of detections 
in the final phase of the kill chain. Thus, both are equally effective in 
preventing adversaries from achieving their objectives. However, the 
strategy focusing on the initial foothold stage is better in terms of the 
metric, as it is more effective at preventing the incidents from traversing 
forward within the UKC.

Fig. 5 also shows that the value of the linear regression coefficient 
decreases over time, meaning the detection strategy shows signs of im-

provement. By contrast, the trend is increasing in Fig. 6, showing signs 
of deterioration. Both figures display a large variation at the beginning 
of the metric, which means the metric is not accurate until there is a 
sufficient quantity of true-positive detections, but otherwise, the metric 
8

conforms with the requirements defined by the framework.
7.2. Number of verifiable monitoring rules

The metric Number of verifiable monitoring rules measures the share 
of monitoring rules that can be automatically or manually verified by 
executing actions that trigger the rules. The goal of the metric is to im-

prove the verification rate of the monitoring rules, encourage detection 
engineers, who are responsible for the creation of the detection capabil-

ities, to better utilize threat intelligence as a part of their daily routines, 
and provide a means for a SOC to demonstrate what attacks they can 
detect. The metric is tied to a function responsible for custom analyt-

ics and detection creation, and it is valid only if the SOC has a team 
responsible for it.

The metric output is not affected by external conditions and meets 
the clarity and scalability characteristics of the quality criteria. The met-

ric is usable by multiple SOCs, although the interpretation can vary 

slightly between SOCs. The team responsible for threat detection can 



Computers & Security 135 (2023) 103529J. Forsberg and T. Frantti

Fig. 7. Number of verifiable monitoring rules.
control the outcome of the metric, and it can be presented in terms of 
the current stage and historical progress, as shown in Fig. 7.

Fig. 7 depicts two ways to present the metric, one as a combined 
bar and line chart and another as a line chart, depicting the evolution 
of the metric over time. The bar chart displays the number of distinct 
monitoring rules and the sum of verifiable monitoring rules per MITRE 
ATT&CK tactic. Next to the bars is a trend line displaying the percentage 
of verifiable monitoring rules. The value of the metric is the mean of the 
percentage of the monitoring rules covered per MITRE ATT&CK tactic 
at a given time. The intended way to interpret the metric is to follow 
the trend of the mean to determine whether the SOC is improving over 
time.

For the metric to provide meaningful information, it needs a 
counter-metric that displays the number of distinct monitoring rules, 
as shown in the blue bars in Fig. 7. If the SOC has a low number of 
monitoring rules, the metric value can be abnormally high, increas-

ing bias and decreasing the comparability of results between different 
SOCs. The number of monitoring rules can also be misleading, as there 
is a possibility of creating many low-fidelity monitoring rules.

As the metric measures only the number of verifiable monitoring 
rules resulting from the SOC development efforts, it fails to demonstrate 
the verification capabilities of native vendor detections. This makes the 
metric subjective, as some SOCs are likely to rely more on native capa-

bilities for threat detection than others, making the metric inefficient 
for comparing metric values from one SOC to one another, even if their 
operative models would be similar. A dimension that displays the num-

ber of vendor-native detections that can be tested could be added to 
the metric. However, doing so would increase the bias of the metric. 
A better solution would be to create a separate metric for measuring 
the number of verifiable vendor-native scenarios and construct another 
metric that considers both metrics. The metric is not considered to be 
valid in terms of the metric creation framework, as the metric is highly 
subjective and overly biased.

7.3. Distribution of detections by source

Distribution of detections by source metric determines to what extent 
the development efforts of a SOC can contribute to the detection of 
security incidents. On a practical level, if a large portion of detections 
originates from the native capabilities of the technologies in use, the 
detection engineering function may not be able to provide additional 
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value in the form of new monitoring rules. The metric can be tied to 
a specific function, which is responsible for creating custom analytics 
within the SOC. The metric results are somewhat dependent on third 
parties, as the technologies selected to protect the environment have an 
impact on the metric results. However, as the fundamental purpose is 
to compare the custom capabilities against the native capabilities, the 
metric is not dependent on third parties but rather influenced by them, 
making the metric pass the requirement.

Knerler et al. (2022) state that custom analytics and custom capa-

bility development are the functional areas of the SOC. Hence, it can 
be argued that the capability to augment the detection capabilities 
provided natively by the technologies is a success factor for the SOC. 
Overall, SOC-related literature does not succeed well in defining why 
custom analytics should be created in the first place. For example, Kn-

erler et al. (2022); Ahlm (2021); Van Os (2016); Vielberth et al. (2020)

mentioned the creation of monitoring rules as a fundamental part of 
SOC capabilities. However, none are discussing in detail whether the 
creation of monitoring rules is something the SOC should focus on or 
not. Moreover, as the literature appears to agree that the creation of 
monitoring rules is something SOCs should be doing, it acts as a justi-

fication for the metric. The metric can also be justified by displaying 
whether it makes sense to invest in the development of custom capabil-

ities or not.

With MITRE ATT&CK tactic as the primary dimension for the metric, 
see Fig. 8, the metric provides a method for the detection engineering 
function to align and focus their development efforts on specific tactics. 
Furthermore, SOC management can also benefit from the metric, as the 
value of the metric over time can be used to determine the direction and 
the impact of changes made within the detection engineering team and 
subsequently demonstrate the value the detection engineering function 
provides.

Certain limitations must be imposed on the metric to reduce subjec-

tivity and bias. Within the context of this metric, detections originating 
from native capabilities are something that some technology, for exam-

ple, SIEM, EDR, or an IDS, has provided the first indication of compro-

mise with out-of-the-box capabilities and without correlation to other 
data sources. This means that if the source of the detection is an alert 
from an IDS or anti-virus program, it constitutes a native detection. 
However, if the anti-virus alert correlates with other endpoint-related 
logs before generating a detection, it is a custom capability. All detec-

tions that have been contained automatically and do not require further 
actions from the SOC, such as an anti-virus program or an IDS prevent-
ing an infection or the delivery of a malicious payload, are out-of-scope 
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Fig. 8. Distribution of detections per source (TP = true-positive and TP-B = benign true-positive).
for this metric. Furthermore, all false-positive detections and detections 
not originating either from a technology or a monitoring rule, such as 
reports from end-users, are also removed from the measurements of the 
metric, as they are unnecessary for achieving the goal of the metric.

To construct the metric, the source for the detection, in addition to 
MITRE ATT&CK categorization, must be recorded for all true-positive 
and benign true-positive detections. One way to present the metric is 
seen in Fig. 8, which displays two charts. A bar chart displaying, for 
each MITRE ATT&CK tactic and an unclassified category, the current 
state of the metric in terms of the number of detections per category, 
and the ratio between native and custom detections. Additionally, the 
metric displays a line graph on a secondary y-axis depicting the score 
for each tactic and the overall value of the metric, which is the mean of 
the scores for each category. The line graph displays the evolution of the 
value of the metric over time, along with a linear regression depicting 
the trend of it.

7.4. Technical accuracy of the analysis

The quality of the analysis work is subjective, and it is unlikely to 
be possible to measure with a general-purpose metric. However, mea-

suring the accuracy of the analysis could provide some hints about the 
quality. One possible way to calculate the accuracy of the analysis is to 
adopt an approach similar to the calculation of the net-promoter score 
(NPS), which can be used to measure customer satisfaction (Reichheld, 
2004). In NPS, customers score a service on a range from 0 to 10, where 
scores 0-6 are detractors, 7-8 are passive, and 9-10 are promoters. The 
NPS is calculated by subtracting the percentage of detractors from the 
percentage of promoters, providing a score between -100 and 100. The 
formula is 𝑁𝑃𝑆 = ( 𝑃1−𝐷

𝑃1+𝑃2+𝐷
) ∗ 100 where 𝑃1 are number of promoters, 

𝑃2 are the number of passives and 𝐷 are the number of detractors. Al-

though in the academic sense, the NPS methodology has some issues for 
what it is being used for (Bendle et al., 2019), the model succeeds in 
producing a value of the relationship of discouraged (detractors), neu-

tral (passives), and encouraged (promoters) activities, and as such, it is 
a valid and relatively simple approach to take. Identifying proper meth-

ods to measure the quality of the security analysis would be a valuable 
topic for additional research.

Table 3 summarizes the activities. Promoters are activities that 
should be encouraged to be performed continuously and are signs of 
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a well-performing SOC, passives are expected from a SOC under normal 
Table 3

Grouping of activities per NPS category.

Category Activity

Promoters True-positive incident was escalated to third-party.

Escalated incident was not returned to SOC for further investigation.

Original priority was correct throughout the incident lifecycle.

No unknown entities before escalation.

Passives Benign true-positive incident was escalated.

Escalated incident was returned to SOC for further investigation.

Priority of the security incident was adjusted after the initial analysis.

Unknown entities before escalation.

The initial conclusion on the returned incident was correct.

Detractors False-positive incident was escalated.

False-negative detection.

The initial conclusion on a returned incident was incorrect.

operations and detractors are activities that the SOC should attempt to 
avoid, as they can harm the overall situation.

The metric can be justified by the idea that if the analysis is of low 
quality or the quality decreases over time, the SOC might not be able 
to combat the challenges produced by a modern-day adversary, or they 
might not have sufficient knowledge of the monitored environment. The 
same idea could be considered to be a success factor for the SOC. The 
metric is more intended for the management of the SOC as they are 
likely to be more interested in the overall situation rather than focus 
on specific metrics. The measurements required to construct the metric 
vary depending on the activities chosen for the metric.

The metric can be presented similarly to the other metrics; see Fig. 9. 
The bar chart depicts the count of activity occurrences for each category 
(promoters, passives, detractors) per MITRE ATT&CK tactic. If there are 
zero items, the tactic is omitted. The NPS is also displayed individually 
for each MITRE ATT&CK tactic to demonstrate the difference in the 
technical accuracy of the analysis between tactics. Due to the way the 
NPS is calculated, the actual value of the metric must be calculated from 
all occurrences of the activities, rather than taking the average of the 
individual NPS. The secondary graph in Fig. 9 depicts the evolution of 
the NPS over time and a linear regression that demonstrates the trend 
of the evolution of the metric. If the NPS is above 0, it means there are 
more promoters than detractors, and as such, the higher the score, the 

better the metric value is. The metric works as a standalone metric. It 
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Fig. 9. Detection accuracy NPS.
cannot be used alone to compare different SOCs as the value is affected 
by the selection of the activities.

8. Model validation

Metrics are evaluated within a SOC that provides managed SOC 
services to large and medium enterprises. The metrics are judged by 
evaluation criteria: “Can the measurements required to construct the met-

ric be collected within the SOC used as the test subject?”.

The demonstration of metrics with live data could also have been a 
valid evaluation metric for the metrics, but due to the metrics requiring 
historical data to provide information other than a snapshot of the cur-

rent state, the evaluation would require a longer period to be properly 
evaluated. In this research, the metrics have been tested with simulated 
data during the creation process and the expectation is that the metrics 
behave similarly when real-world measurements are used as a source 
for the metrics.

Before implementing the metrics, it is necessary to understand 
which measurements are required to construct the metrics and whether 
they can be collected or not. Out of the metrics generated, the metrics 
that were determined to be valid were distribution of detections among the 
unified kill chain, distribution of detections by source, and technical accu-

racy of the analysis. The metric number of verifiable monitoring rules was 
considered to be invalid by the criteria defined by the metric creation 
framework. The following section briefly discusses the measurements 
for the metrics that are considered to be valid.

The SOC is utilizing a Security Orchestration, Automation, and Re-

sponse (SOAR) platform to manage the security incident management 
workflows. In this particular SOC, the SOAR platform collects all detec-

tions into a single pane of glass in the form of cases, which unifies the 
analyst workflows across different environments and security products. 
The SOAR platform also produces a significant portion of the measure-

ments needed to construct metrics used to measure the performance of 
the SOC.

Detections have MITRE ATT&CK tactic classification, which means 
that the MITRE ATT&CK tactic can be successfully utilized in multiple 
metrics. Furthermore, as the UKC is closely associated with the MITRE 
ATT&CK framework, the UKC stage can be partially derived from the 
MITRE ATT&CK tactic. The detection source is also available in the 
platform but is currently not extracted. All detections and resulting se-

curity incidents are classified on a high level either as false-positive, 
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true-positive, or benign true-positive. All cases have a default prior-
ity, which depends on the priority of the associated detections, but the 
priority can change as the investigation process moves forward. The 
original and the final priority are also recorded in the SOAR platform.

A pivotal part of the daily SOC operations is the escalation of 
true-positive or benign true-positive detection as security incidents to 
various stakeholders, for example, a customer or a dedicated incident 
response team. The escalation status can be derived from the escalation 
target group, but it is not explicitly recorded in the SOAR platform.

As a part of the investigation workflows, the SOC is attempting to 
resolve unknown entities that are associated with the detection. For 
example, an IP address without a hostname associated is an unknown 
entity. Known entities are extracted to cases from the detections, but the 
unknown entities identified by the SOC are not recorded in any particu-

lar field other than free-text case notes. This causes the state of unknown 
entities to not be reliably available in the SOAR platform. It could be 
possible to construct a workflow that reminds analysts to record the un-

known entities on the case. However, as there is a human reliance on 
the activity, if the data cannot be reliably and automatically collected, 
it can violate the availability characteristic of the quality criteria and 
cause the metric to become biased.

Information about the accuracy of the initial conclusion and whether 
the SOC had to re-investigate the security incident can be produced 
as a part of the workflows used to manage the security incidents. If 
the incident has to be re-opened, it is an indication that the SOC had 
to re-investigate the incident. The accuracy of the initial conclusion 
is confirmed by the analyst when the case is closed. Neither of these 
measurements are currently recorded in the SOAR platform.

The metrics, their required measurements, and the outcome of the 
measurement validation are summarized in Table 4. The validation of 
the measurement is considered to be a success if the measurement is 
already recorded, a partial success if it is not recorded at the moment 
but can be made available, and a failure if the measurement cannot 
be collected without significant changes to the ways of working or the 
technical solutions in use.

9. Results and discussion

The metric creation framework, which is the design science artifact 
constructed in this research can be successfully used to construct met-

rics that can be used to measure the technical performance of a SOC, as 
was demonstrated by the metrics outlined in the section 7. Out of the 

four metrics evaluated, one was considered invalid, as bias remained 
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Table 4

Results of the measurement collection.

Metric Validity Measurements Outcome

Distribution of detections among the UKC Valid UKC stage Success (partial)

MITRE ATT&CK tactic Success

Distribution of detections by source Valid Original detection source Success (partial)

MITRE ATT&CK tactic Success

Detection classification Success

Technical accuracy of the analysis Valid Security incident classification Success

Security incident original priority Success

Security incident final priority Success

Escalation status Success (partial)

Escalation target Success

Unknown entities Failure

Initial conclusion accuracy Success (partial)

Re-investigation required Success (partial)

Number of verifiable monitoring rules Invalid (not evaluated) (not evaluated)
high, and as a result, the metric was not valid as per the requirements 
of the framework. On an overall level, the remaining metrics suffered 
from similar issues, as reducing bias and subjectivity was difficult to 
perform, and the entire definition of what is an acceptable level of bias 
or subjectivity remained relatively subjective as well.

The valid metrics created with the framework can help SOCs to 
push their detection capabilities more towards the earlier stages of the 
unified cyber kill chain to decrease the potential impact of the secu-

rity incidents (Distribution of detections among the UKC), quantify the 
value of their detection engineering function (Distribution of detections 
by source) and provide insights on the activities performed as a part 
of the analysis process (Technical accuracy of the analysis). While the 
metrics are by no means comprehensive, they can be used to measure 
the technical performance of a SOC within the respective areas, and as 
such, can be used to enhance the reporting capabilities related to the 
technical performance of the SOC, for as long as the required measure-

ments can be made available.

One of the limitations of this research is that the design science 
methodology is not followed rigorously, as the feedback loop between 
the “Evaluation” and the “Design and development” activities are not 
completely enforced as per the design science methodology outlined 
by Peffers et al. (2007). The decision to limit the number of iterations 
was made due to constraints related to the research schedule and the 
fact that to properly evaluate the metrics, they would require years of 
measurements to be collected.

Although the artifact was able to produce metrics that can be used 
to enhance the reporting capabilities of the technical performance of 
a SOC, the link between the technical performance and the metric 
creation framework could have been slightly more concrete. The frame-

work itself does not directly enforce the relationship between the met-

rics and technical performance. This does not necessarily make the 
criteria to be less useful, but it leaves the determination of whether 
the resulting metric measures technical performance or not up to the 
user of the artifact to decide. As an upside, the framework can also be 
used to create non-technical metrics.

The literature review did not establish a clear pattern when it comes 
to the availability of SOC-related metrics, and as such, a conclusion 
was reached that no such framework currently exists. Many of the more 
commonly used metrics as summarized in Table 1 are operative, such as 
number of security incidents, mean time to reaction and mean time to reso-

lution. As a result, they cannot be directly used to measure the technical 
performance of a SOC. Although it could be argued that the technical 
performance has a direct impact on the operational performance and 
as such, the operative metrics are also an indication of the technical 
performance. However, as the operational metrics are also influenced 
by the process and people aspects of SOC, the metrics provide incon-

clusive results when attempting to be used to measure the technical 
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performance.
Some of the metrics can be used to partially measure the technical 
performance, such as the false-positive rate or number of incidents handled 
automatically, but they are at best imperfect when evaluated with the 
metric creation framework, due to lack of additional context that causes 
the metric to become overly biased. For example, a high true-positive 
rate, and subsequently a low false-positive rate, can be an indication of a 
well-performing SOC but without understanding the detection strategy 
or level of automation, the metric alone can be misleading. The SOC 
could automatically close a majority of the false-positive and benign 
true-positive detections, and instead use them for threat hunting or to 
provide additional context in the form of potentially related low-fidelity 
detections when investigating high-severity detections. The framework 
can be used to enhance the reporting capabilities provided by these 
technical metrics, as it can be used to reduce both the bias and subjec-

tivity as well as take into account the additional contextual information 
required to properly interpret the metric. In-depth validation of the met-

rics in Table 1 against the framework could be a suitable topic for future 
research.

Additional research should be performed to validate the framework 
to reach a definitive conclusion about the applicability of the framework 
in real-world SOC deployments. Furthermore, the academic research re-

lated to modern SOC operations appears to also be limited and would 
require additional research, especially when it comes to the following 
questions: (1) What are the technical success factors for SOCs? (2) What 
makes an effective cyber defense program?, and (3) Should SOCs fo-

cus more on proactive and preventative capabilities, rather than being 
mostly reactive? Answers to these questions would help with the cre-

ation of better metrics for measuring the technical performance of a 
SOC. Both academia and practitioners are encouraged to share metrics 
and ways to describe them, with the security community to enhance the 
methods by which organizations can measure the effectiveness of their 
SOC deployment. In support of this initiative, the authors have pub-

lished the source code for the metrics used to validate the framework 
(Forsberg, 2023).

10. Conclusions

The outcome of this research further emphasizes the need for better 
capabilities to measure the technical performance of SOCs. The com-

monly used metrics focus on operational activities and are inadequate 
to measure the technical performance of a SOC. Furthermore, the met-

rics observed in the literature do not appear to be a result of a systematic 
development but rather be loosely based on generic security metrics or 
otherwise based on industry best practices without significant scientific 
justification.

This research resulted in a design science artifact. A novel metric 
creation framework that can be used to construct relevant metrics to 
measure both the technical and non-technical performance of a SOC. 

The literature review uncovered certain metrics that held the potential 
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for partially measuring the technical performance of a SOC. However, 
when examined in light of the developed metric creation framework, 
these metrics were found to benefit from additional context to be more 
effectively utilized.

As a part of the demonstration of the artifact, four unique metrics 
were created. Three of the four metrics were considered valid in terms 
of the metric creation framework. The metrics were validated by ver-

ifying that the measurements can be collected within a SOC service 
provider.

One of the key limitations of this study is the relatively narrow se-

lection of metrics that were used to demonstrate the framework. The 
metrics created with the framework are mostly related to the detection 
capabilities of the SOC, and other functions, such as threat hunting or 
cyber threat intelligence, have not been included in the metrics chosen 
for the demonstration. Therefore, whether the framework is suitable 
for creating technical metrics for functions other than those that work 
closely with the security incident management process remains un-

known. The wider demonstration was left to be researched in the future.

Despite the minor limitations of the research, the framework and 
the metrics used for demonstration can be adopted by SOCs to con-

struct metrics they can use to measure and demonstrate their techni-

cal capabilities. Due to the lack of industry-standard reporting schema 
for the technical performance of SOCs, the SOC industry as a whole 
is encouraged to enable industry-driven development of the measure-

ment capabilities, be open, and share the metrics they use to measure 
their technical capabilities with the wider community. In addition to 
industry-backed development of technical performance measurement, 
additional academic research is needed on the subject.
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