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Abstract: Discrete exterior calculus (DEC) is a discretization method for differential equa-

tions which preserves important geometric properties of physical models and produces com-

putationally efficient algorithms. We investigate ways to improve the performance of DEC

in the context of time-periodic solutions to acoustic wave scattering problems by using op-

erators purpose-built for harmonic problems and an optimization approach based on exact

controllability. The harmonic operators are found to improve accuracy significantly, while

the controllability method is found to be a good choice only in problems with highly non-

convex geometry. Computation mesh quality is identified as a key issue in the accuracy and

stability of these methods.

Keywords: discrete exterior calculus, exact controllability, time-harmonic, acoustics, sim-

ulation

Suomenkielinen tiivistelmä: Diskreetti ulkoinen laskenta (engl, discrete exterior calcu-

lus, DEC) on differentiaaliyhtälöiden ratkaisemiseen soveltuva diskretointimenetelmä, jo-

ka säilyttää tiettyjä fysikaalisten mallien geometrisia ominaisuuksia ja tuottaa laskennal-

lisesti tehokkaita algoritmeja. Tutkielmassa tarkastellaan keinoja tehostaa DEC:n suori-

tuskykyä aikaharmonisten ratkaisujen selvittämisessä akustisten aaltojen sirontaa kuvaaville
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tehtäville. Tähän käytetään harmonisille malleille suunniteltuja operaattoreita ja eksaktiin

kontrolloitavuuteen perustuvaa optimointimenetelmää. Toteutetuissa kokeiluissa harmoniset

operaattorit lisäävät menetelmän tarkkuutta huomattavasti, kun taas kontrollimenetelmä o-

soittautuu hyväksi valinnaksi vain tehtävissä, joiden geometria on huomattavan epäkonvek-

sia. Laskentaverkon laadulla on suuri merkitys tutkittujen menetelmien tarkkuudessa ja

stabiilisuudessa.

Avainsanat: diskreetti ulkoinen laskenta, kontrollimenetelmä, aikaharmoninen, akustiikka,

simulointi

ii



List of Figures
Figure 1. Exterior products of 1-forms visualized as volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Boundary of a triangle with inconsistently oriented faces. . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3. Discrete exterior derivative visualized on an oriented simplicial complex. . . . . . . . 17
Figure 4. A mesh and its dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. 2D divergence as the exterior derivative of a rotated form. . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6. The domain Ω and boundaries Γext and Γsca of a scattering model.. . . . . . . . . . . . . . . 28
Figure 7. Internal and external radii of a regular and irregular triangle. . . . . . . . . . . . . . . . . . . . . . 35
Figure 8. A plane wave propagating upwards in a square domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 9. Maximum and average error of the simulated plane wave in relation to max-

imum edge length of the mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 10. Effect of angular velocity on the exact timestep coefficient. . . . . . . . . . . . . . . . . . . . . . 49
Figure 11. Mesh used to examine the CFL condition, overlaid with its refinements. . . . . . . . 50
Figure 12. Maximum stable value of ∆t plotted against the shortest edge length. . . . . . . . . . . 51
Figure 13. Scatterer, case 1: square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 14. Scatterer, case 2: eight-pointed star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 15. Scatterer, case 3: twelve-pointed star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 16. Scatterer, case 4: diamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

List of Tables
Table 1. Basis forms in R3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2. Basis forms in R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

iii



Contents
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 DISCRETE EXTERIOR CALCULUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Differential forms and the continuous exterior calculus . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Proxy vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Basis forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Exterior product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.5 Higher-dimensional basis forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 Hodge star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.7 Exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.8 Advantages of exterior calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Computation mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Simplicial complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Orientation of a simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Chains and cochains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Discrete differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Definition of discrete forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Discrete exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Dual mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Discrete Hodge star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Interpolating discrete forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Vector equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Exterior calculus equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Harmonic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Exact timestepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.2 Harmonic Hodge star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 EXACT CONTROLLABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Computing the gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 State equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Gradient of control energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Adjoint state method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Conjugate gradient algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



5 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Plane wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 CFL condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Scatterer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



1 Introduction

Discrete exterior calculus (DEC), developed by Desbrun et al. (2005) with roots leading up

to the finite-difference time domain (FDTD) method of Yee (1966) and the work of Bossavit

(1998, 1999, 2000; 2001; 2005), is a discretization method for differential equations based on

the exterior calculus of differential forms. It is a mimetic discretization method, meaning it

preserves certain physically important geometric properties of the continuous model exactly

(Bochev and Hyman 2006). It also provides an efficient explicit timestepping procedure

requiring no solution of linear systems.

DEC has been previously applied to simulations of e.g. electromagnetics (Räbinä, Mönkölä,

and Rossi 2015; Mönkölä and Räty 2022), Darcy flow (Hirani, Nakshatrala, and Chaudhry

2015), quantum mechanics (Räbinä, Kuopanportti, et al. 2018; Kivioja et al. 2023) and fluid

dynamics (Nitschke, Reuther, and Voigt 2017). Recently, it has been used to develop a theory

of general classes of wave propagation problems in Räbinä, Kettunen, et al. (2018) and Rossi

et al. (2021).

We apply DEC to the propagation and scattering of acoustic waves. In addition to the base-

line DEC, we implement the optimized operators for harmonic simulations introduced by

Räbinä (2014) in the context of electromagnetics. We also investigate ways to use DEC to

obtain time-periodic solutions to scattering problems. A simple asymptotic iteration pro-

cedure is compared with an optimization approach based on the idea of exact controllabil-

ity developed by Lions (1988) and applied to the computation of time-periodic solutions

by Bristeau, Glowinski, and Périaux (1998). This method has been previously applied to

e.g. electromagnetics (Räbinä 2014), elastodynamics (Mönkölä et al. 2008), and acoustics

(Kähkönen et al. 2011). The method can be used with any forward-in-time solver, such as

finite element or finite difference solvers. Räbinä (2014) is an example of usage specifically

with DEC.

We implement a solver and a series of numerical experiments in the Python programming

language, using the low-level DEC operations provided by the PyDEC software library (Bell

and Hirani 2012) and the finite element mesh generator Gmsh (Geuzaine and Remacle 2009).
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Further technical details are given in Section 5.1.

This thesis begins by explaining the mathematical theory of the methods used. An effort is

made to prioritize intuitions useful in engineering applications over rigorous mathematical

definitions, intended as a suitable starting point for students unfamiliar with the topic but

with some experience in mathematics. Chapters 2 and 4 cover the theory of discrete exterior

calculus and the exact controllability method, respectively. The simulation model used in our

numerical experiments is defined in Chapter 3, and the experiments themselves are discussed

in Chapter 5.
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2 Discrete exterior calculus

The mathematical theory underlying discrete exterior calculus is the exterior calculus of dif-

ferential forms, which provides a way to express differential equations in a way that lends

itself to a straightforward and systematic method of discretization where continuous opera-

tors have direct discrete analogues. This chapter gives a brief introduction to exterior calculus

followed by a description of the mesh- and cochain-based discretization of DEC. The reader

is assumed to be familiar with linear algebra and vector calculus.

2.1 Differential forms and the continuous exterior calculus

This section introduces differential forms and their operations with a focus on visual intu-

itions and practical applications. More detail is provided in a similar presentation style by

Blair Perot and Zusi (2014) and Crane et al. (2013). For a more formal and comprehen-

sive approach to the topic, see a textbook on differential geometry such as Lee (2012) or

Abraham, Marsden, and Ratiu (2012).

2.1.1 Differential forms

Notationally, a differential form looks like an integrand, e.g. the dx in
∫

dx or the 5dxdy in∫∫
5dxdy. Indeed, the things we integrate are all technically differential forms. However,

this seems rather abstract. Are these objects meaningful outside of integration, and if so,

what do they do? This section looks at differential forms as functions, taking inspiration

from Crane et al. (2013).

Differential forms are in many ways analogous to vectors. To illustrate the similarities and

differences, consider the dot product operation for two vectors in linear algebra. Expressed

in matrix form, the dot product between vectors a = (a1, . . . ,an)
T and b = (b1, . . . ,bn)

T is

3



a ·b = aT b =
[
a1 . . . an

]
b1
...

bn

 .
The dot product measures the length of b in the direction of a, and to do this, a is transposed

into a row vector. This row vector can be thought of as a function that takes a vector and

measures it along a,

α(b) = aT b.

A linear function that takes a vector and produces a scalar like this is called a covector.

We can also measure higher-dimensional quantities. A 2-covector is a function that takes two

vectors, which define a parallelogram, and computes the area of this parallelogram when pro-

jected onto a plane. Similarly, 3-covectors measure the volumes of parallelepipeds defined

by three vectors, and so on for higher dimensions. Additionally, we can define 0-covectors

as objects that take zero vectors as input and return a measurement, making them equivalent

to scalars.

For covectors of dimension 2 and above, we also need to consider the notion of signed

areas and volumes. Much like how the vector cross product flips its direction depending on

whether its arguments come in clockwise or counterclockwise order, a covectors’s output

will change its sign if any two of its arguments are exchanged. The sign is a measurement of

the given volume’s orientation: clockwise or counterclockwise for 2D areas, right-handed

or left-handed basis for 3D volumes, etc. This is why covectors are formally defined as

antisymmetric tensors – they’re multilinear functions on vectors (i.e. tensors) which change

sign when arguments are exchanged (i.e. they are antisymmetric).

A differential k-form is a field of k-covectors, i.e. a function that associates a k-covector with

every point in space. Somewhat confusingly, the term k-form is also commonly used to refer

to individual k-covectors; a terminology we will adopt from here on. k-form in this thesis

will refer to either a k-covector or a field of them depending on context.
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2.1.2 Proxy vectors

There is a natural one-to-one correspondence between row and column vectors, expressed

in the transpose operator. An analogous one-to-one correspondence also exists between 1-

forms and vectors. The operators realizing this correspondence are called sharp ] and flat [.

Sharp turns a 1-form into the corresponding vector, and flat does the reverse. In other words,

given a 1-form α , v = α] is a vector and v[ = α .

We call v a vector proxy of α . When performing exterior calculus computations, the inputs

and results are typically interpreted and visualized as their vector proxies.

2.1.3 Basis forms

Like vectors, differential forms also form a vector space, meaning they can be expressed as

linear combinations of basis vectors. In R3, with axes labeled x, y, and z, the corresponding

basis 1-forms are called dx, dy, and dz.

Higher-dimensional forms also have this vector space structure, but defining a basis for them

is not quite as straightforward. The issue is that n-forms measure n-dimensional geometric

objects which require n different vectors to define. Thus, to define an n-form we need a

formal way to combine measurements in n different directions. The operator which does this

is called the exterior product.

2.1.4 Exterior product

You may recall from linear algebra that the signed area of a parallelogram defined by two

vectors u,v in R3 is computed by the cross product u× v. Similarly, the volume of a paral-

lelepiped defined by three vectors u,v,w is computed by the triple product (u× v) ·w, and in

general the volume spanned by n vectors v1, . . . ,vn is the determinant

det
[
v1, . . . ,vn

]
.

The analogous operation for differential forms is called the exterior product or wedge product

∧, which takes a k-form α and a j-form β and produces a (k + j)-form which measures

5



volumes spanned by α and β combined. For instance, if α and β are both 1-forms, α ∧β is

a 2-form which measures parallelograms in the plane spanned by α and β .

Depending on the dimension of forms being multiplied, the wedge product’s sign may

change when the order of its arguments is flipped. Specifically,

α ∧β = (−1)k j
β ∧α. (2.1)

Additionally, the wedge product is associative, meaning

(α ∧β )∧ γ = α ∧ (β ∧ γ). (2.2)

These three properties (addition of dimensions, antisymmetry, and associativity) are enough

to define the wedge product abstractly in all dimensions. In practice, what this operation

looks like depends on the dimension of its operands in a way that mirrors the vector oper-

ations measuring volumes. The wedge product of two 1-forms in 3D space is equivalent to

the cross product on the vector proxies of the forms, and the wedge product of three 1-forms

(really a 2-form and a 1-form) is equivalent to the triple product on the vector proxies. Ad-

ditionally, since a 0-form is just a scalar, the wedge product of a 0-form with anything is a

scalar multiplication.

To give a specific example, consider two 1-forms α,β in R3. The wedge product α ∧β is

equivalent to ?(α]×β ])[ (where the star symbol, not important yet but included for accu-

racy’s sake, is the Hodge star operator covered later in Section 2.1.6). The resulting 2-form

is applied to two vectors u,v as

α ∧β (u,v) = α(u)β (v)−α(v)β (u),

and the resulting value is the area of the parallelogram defined by the projections of u and v

onto a plane whose basis vectors are α] and β ].

The 1-form wedge product can be visualized as combining two vectors into a single oriented

parallelogram, or in a sense, two basis elements of a line into a basis element of a plane.

Similarly, further wedge products add on more basis elements, producing higher-dimensional

oriented volumes. This is illustrated in Figure 1.
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α

β

γ

α ∧β

γ

α ∧β ∧ γ

Figure 1. Exterior products of 1-forms visualized as volumes.

Thinking about an n-form as an oriented piece of an n-dimensional subspace like this is an

intuition which will be useful in understanding the operations of exterior calculus.

Naturally, the dimension of a form cannot exceed that of the space it’s embedded in. Thus,

the wedge product in n-dimensional space is only defined for operands whose dimensions

sum to n or less.

A consequence of the wedge product being defined to measure volumes (algebraically, a

consequence of the antisymmetry equation (2.1)) is that the wedge product of a k-form with

itself is zero when k is odd;

α ∧β =−β ∧α =⇒ α ∧α = 0.

This is because, intuitively, two parallel vectors form a parallelogram with zero area, and in

general a linearly dependent set of vectors forms a degenerate volume.

On the other hand, when k is even (including zero), antisymmetry does not apply. For 0-

forms, whose wedge product is scalar multiplication, this means α ∧α = α2. For higher-

dimensional forms this only begins to apply in four dimensions (where 2-forms can be mul-

tiplied) and is therefore not relevant to our use cases.

Equipped with the exterior product, we can define a basis for higher-dimensional forms.
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2.1.5 Higher-dimensional basis forms

Basis forms of dimension 2 and above are defined in terms of basis 1-forms and the exterior

product.

In three dimensions, there are obviously three basis 1-forms. The basis of 2-forms also has

three elements, or in other words, there are three linearly independent basis planes. This

number can be deduced algebraically by taking the wedge product of all possible pairs of

basis 1-forms and eliminating ones that are either zero or a multiple of another. A more

intuitive geometric reasoning is that a plane in three dimensions is uniquely identified by its

normal vector; therefore the space of all planes has the same dimension as the space of all

vectors.

There is only one three-dimensional subspace of three-dimensional space, and thus only one

basis 3-form. This is true for any n: there is only one basis n-form in n-dimensional space.

This form is called the volume form of the space, and it behaves like a scalar in computations.

Table 1 lists the basis forms in R3.

n basis n-forms

0 1

1 dx, dy, dz

2 dx∧dy, dy∧dz, dz∧dx

3 dx∧dy∧dz

Table 1. Basis forms in R3.

In two dimensions things are somewhat simpler, as there is only one plane, and the 2-form

is the volume form. Table 2 lists the basis forms in R2.

n basis n-forms

0 1

1 dx, dy

2 dx∧dy

Table 2. Basis forms in R2.
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2.1.6 Hodge star

Consider the idea mentioned in Section 2.1.5 that a plane in three dimensions is uniquely

identified by its normal vector. This is one manifestation of the general fact that a linear

subspace is uniquely identified by its orthogonal complement. In the context of differential

forms, an analogous statement is that there is an equal number of basis k-forms and (n− k)-

forms in n-dimensional space and the map from a k-form to its orthogonal (n−k)-form is an

isomorphism.

The isomorphism taking a k-form to the orthogonal (n− k)-form with the same magnitude

is an important operator called the Hodge star ?. It is a linear operator whose effect on the

R3 basis forms is as follows:

?1 = dx∧dy∧dz

?dx = dy∧dz

?dy = dz∧dx

?dz = dx∧dy

?(dx∧dy) = dz

?(dy∧dz) = dx

?(dz∧dx) = dy

?(dx∧dy∧dz) = 1

Applying the star twice amounts to doing nothing at all, ??α = α .

In R2 this is complicated slightly by the fact that the orthogonal complement of a line is

also a line, and the Hodge star on 1-forms amounts to a 90 degree rotation. Hence, for 1-

forms in R2, a star twice is a 180 degree rotation, ? ?α = −α . In general, for k-forms in

n-dimensional space,

??α = (−1)k(n−k)
α.
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The effect of the Hodge star on the R2 basis forms is

?1 = dx∧dy

?dx = dy

?dy =−dx

?(dx∧dy) = 1

2.1.7 Exterior derivative

The final operations we need to define the calculus part of exterior calculus are differentia-

tion and integration. Integration is exactly the procedure familiar from multivariate calculus

(differential forms are integrands, after all). 1-forms can be integrated over curves, 2-forms

over surfaces, 3-forms over volumes, and so on. Differentiation is performed by the exte-

rior derivative d, which, like the exterior product, is equivalent to several different vector

operators depending on the dimension of its operand.

A common property of the exterior derivative regardless of dimension is that it increases the

dimension of its operand by one. In other words, the exterior derivative of a k-form α is a

(k+1)-form. This, along with the product rule

d(α ∧β ) = dα ∧β +(−1)k
β ∧dα,

the property d◦d = 0, and the definition of d for 0-forms, can be used to recursively define

the exterior derivative for all dimensions, but as with the wedge product, the formal definition

is very abstract. An intuitive explanation of why d is defined this way is outside the scope

of this thesis, but a reasoning based on the differential of a manifold is given in Crane et

al. 2013. For our purposes it will suffice to cover the equivalent vector proxy operations for

each dimension of d.

A 0-form f is a scalar function. Its exterior derivative is the gradient, also known as the

differential,

d f = ∇ f = d f .
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Omitting conversions with ], [ and ? for clarity, the exterior derivative of a 1-form α corre-

sponds to the curl of the vector proxy,

dα h ∇×α.

The exterior derivative of the volume form is not defined (as it would produce a form of

higher dimension than the space), so in two dimensions this is the final d. In three dimen-

sions, the exterior derivative of a 2-form β is the divergence of the (perpendicular) vector

proxy,

dβ h ∇ ·β .

These relationships give rise to Stokes’ theorem, which states that for a k-dimensional domain

Ω with boundary ∂Ω and a (k−1)-form α ,

∫
Ω

dα =
∫

∂Ω

α. (2.3)

This theorem encapsulates several vector calculus identities such as Green’s theorem and the

divergence theorem. It is crucial in defining the discrete exterior calculus and will be covered

in more detail in Section 2.3.2.

2.1.8 Advantages of exterior calculus

At this point it would be reasonable to ask what the point of using differential forms instead of

vectors is. If every operation on differential forms has a vector equivalent, why the additional

abstraction?

Indeed, in two- or three-dimensional Euclidean space, the differential form and vector repre-

sentations of problems are largely equivalent and interchangeable. One of the main purposes

of exterior calculus is the generalization of these concepts to higher-dimensional and curved

spaces. Exterior calculus is readily defined for any dimension and enables the expression of

problems on any manifold (generalization of 2D surfaces, 3D volumes etc.), incorporating

the metric (measurement of distances between points) in a systematic way.

In this thesis, we restrict ourselves to Euclidean 2D space and thus don’t make use of these
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advantages, but exterior calculus still has something to offer. Namely, the DEC provides a

straightforward way to discretize any equation expressed in exterior calculus.

2.2 Computation mesh

The discrete spatial structure at the root of the DEC is the simplicial complex: essentially a

mesh (in the computer graphics sense) consisting of triangles in two dimensions, tetrahedra

in three dimensions, or k-simplices in k dimensions. We will focus on the two-dimensional

case here for illustration. For more details on the topic, see Desbrun, Kanso, and Tong

(2006).

2.2.1 Simplices

A k-simplex is the simplest type of k-dimensional element in a polyhedral mesh, defined

as the convex hull of k + 1 geometrically distinct points. In concrete terms, a 0-simplex

is a single point, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a

tetrahedron, and so on. In the context of a mesh, a 0-simplex is often called a vertex, a

1-simplex an edge, a 2-simplex a face, and a k-simplex where k > 2 a volume or k-volume.

Every simplex with dimension k > 0 has a boundary consisting of (k− 1)-simplices. For

instance, every triangle (2-simplex) is bounded by three line segments (1-simplices), and

every line segment is bounded by two vertices. Each (k− 1)-simplex on the boundary of a

k-simplex σk is called a (k−1)-face of σk.

We denote simplices by listing their vertices, e.g. a triangle σ2 = {v0,v1,v2}.

2.2.2 Simplicial complex

A simplicial complex K is a set of simplices satisfying the rules

• every face of every simplex in K is also in K

• any two simplices in K either do not intersect at all or share an entire face.

In the case of a 2D triangle mesh, this means that every edge and vertex of every triangle is

12



also part of the complex, and there are no overlapping triangles or edges/vertices that aren’t

part of a triangle’s boundary.

A similar complex could be defined without requiring all its elements to be simplicial. For

instance, a rectilinear grid is a common such structure. A complex like this is called a cell

complex and its k-dimensional elements k-cells. A simplex is a special case of a cell, and the

concepts of boundary and face apply to all cells. We will use a simplicial complex in this

thesis, however, non-simplicial cells become relevant in the dual mesh (Section 2.3.3).

2.2.3 Orientation of a simplex

Much like how differential forms of dimension 2 and higher have a notion of two distinct

orientations, which manifest themselves in the sign of measured volumes, simplices with 2

or more vertices also have two possible orientations depending on the order of the vertices.

For a line segment there are two possible ways to order its two vertices, for a triangle there

are three clockwise and three counterclockwise orderings, and so on.

As part of the definition of our simplicial complex, each simplex receives an orientation.

For reasons that will become clear when we define the discrete exterior derivative in Section

2.3.2, every simplex also needs its boundary to match its orientation. For a counterclockwise

oriented triangle, for instance, this means the boundary line segments must form a counter-

clockwise circulation around the triangle. Since a line segment is often part of two triangles

with conflicting orientations, the defined orientations cannot be consistent with every bound-

ary.

To resolve inconsistent face orientations, the boundary operator ∂ , which takes a simplex

and returns its faces, must flip every face that doesn’t match the desired orientation. This is

denoted as a multiplication by -1. For example, the boundary of a counterclockwise oriented

triangle {v0,v1,v2} with edges {v0,v1}, {v1,v2}, {v0,v2} is

∂{v0,v1,v2}= {v0,v1}+{v1,v2}−{v0,v2}.
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v0 v1

v2

∂

v0 v1

v2

Figure 2. Boundary of a triangle with inconsistently oriented faces.

2.2.4 Chains and cochains

A k-chain on a simplicial complex K is a set of real values associated with every k-simplex

in K. Denoting the set of all k-simplices in K by Kk and its cardinality by |Kk|, a natural

represenation for a chain is a |Kk|-dimensional vector. The space of all k-chains Ck is a vector

space, and the set of all k-simplices can be thought of as its basis.

Whereas a chain is analogous to a vector, a cochain is analogous to a differential form: a

linear function that takes a chain and ”measures” it, producing a real number. Formally,

cochains exist in the dual space C∗k of Ck. A k-cochain α̂ ∈ C∗k has one linear operation for

each k-simplex in K, matching the dimension of the corresponding k-chain c ∈ Ck, and the

evaluation α̂(c) behaves like a dot product between vectors. Thus, a natural way to represent

a cochain is a |Kk|-dimensional row vector.

This analogy with differential forms will be useful when we define discrete forms in the next

section.

2.3 Discrete differential forms

Equipped with an oriented simplicial complex, we can begin to map differential forms and

their operations onto it. The concepts of this section are covered in more detail by Desbrun,

Kanso, and Tong (2006), Crane et al. (2013), and Blair Perot and Zusi (2014).
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2.3.1 Definition of discrete forms

Recalling that differential forms can be integrated over manifolds of matching dimension,

a natural way to map a continuous form to a discrete value on a simplex is to integrate the

form over that simplex. In other words, given a differential k-form α and k-simplex σk, we

can get a scalar value α̂ associated with σk by computing the integral

α̂ =
∫

σk

α.

This is a line integral over a line segment for 1-forms, surface integral over a triangle for

2-forms, volume integral over a tetrahedron for 3-forms, and so on. Additionally, a 0-form

(i.e. a scalar field) integrated over a 0-simplex (i.e. a single point) is the value of the form at

that point.

Computing this integral for every k-simplex in a simplicial complex K produces a set of

values associated with the k-simplices, which can be interpreted as a chain or cochain. Due

to the analogous nature of differential forms and cochains covered in Section 2.2.4, the most

fitting choice of interpretation here is a cochain. This leads us to the following definition:

A discrete differential k-form on an oriented simplicial complex K is a k-cochain obtained

by integrating a continuous k-form over every k-simplex in K.

The discrete equivalent of a differential form being a cochain, the discrete versions of the

operations of exterior calculus are operations on cochains.

2.3.2 Discrete exterior derivative

Section 2.1.7 briefly introduced Stokes’ theorem (Eq. (2.3)). In the domain of a k-simplex

σ , it states that ∫
σ

dα =
∫

∂σ

α, (2.4)

where α is a (k−1)-form.

Writing this in terms of the exterior derivative’s vector analogues covered in Section 2.1.7

(∇, ∇×, and ∇·) yields several well-known vector calculus identities.
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When k = 1, Eq. (2.4) is the fundamental theorem of calculus∫
σ

∇α = α(v2)−α(v1) (2.5)

where v1,v2 are the endpoints of the line segment σ .

When k = 2, we get the curl theorem∫∫
σ

(∇×α) ·dA =
∫

∂σ

α ·ds, (2.6)

which is equivalent to Green’s theorem in two-dimensional space.

Finally, when k = 3, we get the divergence theorem∫∫∫
σ

(∇ ·α)dV =
∫∫

∂σ

α dA. (2.7)

Stokes’ theorem expresses and generalizes the common property between these identities,

that an integral over a k-dimensional volume can be turned into an integral over the volume’s

(k− 1)-dimensional boundary and vice versa. It is a powerful theorem with many applica-

tions. For the use case of discrete exterior calculus, it can be used as the definition of the

discrete exterior derivative. More specifically, we can define the discrete exterior derivative

as the unique operator d satisfying Eq. (2.4).

To make this concrete, first note that the integrals here are exactly how cochain elements

were defined in Section 2.3.1.
∫

σ
dα is an element of a k-cochain, and

∫
∂σ

α is the sum of all

(k−1)-cochain elements constituting the boundary of σ . In a sense, d does the opposite of

the boundary operator ∂ defined in Section 2.3.1: whereas ∂ takes a simplex and produces

the sum of its faces, d takes the sum of a simplex’s faces and produces the simplex itself. In

more precise terms, d is the adjoint of ∂ , also known as the coboundary operator.

Given a simplicial complex K, d is a linear map from Kk−1 to Kk. Hence, it can be repre-

sented as a |Kk|× |Kk−1| matrix. Each row of this matrix corresponds to one k-simplex and

represents a signed sum of its faces taking into account relative orientation. Each column

corresponding to a boundary simplex has a coefficient of 1 or -1 depending on orientation,

and the rest of the coefficients are zeroes. Graph theorists call this type of matrix an adja-

cency matrix.
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Figure 3 illustrates the discrete exterior derivative on a small simplicial complex. The sub-

script on d denotes the dimension of the input cochain, and the numbers in the diagrams

represent the index of the mesh element in the cochain. The triangle faces are all oriented

counterclockwise.

1 2 3

4 5 d0

1 2

3 4 5 6

7

d1
1

2
3

Figure 3. Discrete exterior derivative visualized on an oriented simplicial complex.

The matrix representations of d0 and d1 in Figure 3 are

d0 =



−1 1
−1 1

−1 1
−1 1
−1 1

−1 1
−1 1


, d1 =

1 −1 1
−1 1 −1

1 −1 1

 .

A remarkable property of a discrete exterior derivative defined this way is that it is exact.

The value obtained by integrating a form over boundary simplices and taking the discrete

exterior derivative is exactly the value one would obtain by first taking the continuous exte-

rior derivative of the same form and integrating it over the bounded volume. As a result, use

of the discrete exterior derivative in a numerical method introduces no additional error. This

simplifies the analysis of a method’s accuracy by eliminating one source of error.

2.3.3 Dual mesh

The continuous Hodge star is an isomorphism that maps a k-form to an orthogonal (n− k)-

form. To capture these notions of isomorphism and orthogonality in the discrete setting, a

simplicial complex alone is insufficient. Some additional geometric structure is needed.

Given a simplicial complex K, a secondary complex constructed for the purpose of the dis-
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crete Hodge star is called a dual mesh, denoted K∗. When the dual relationship is relevant,

K is in turn called the primal mesh.

The most important property of the dual mesh is that every k-simplex in K has a correspond-

ing (n−k)-cell inK∗. In two dimensions this means every primal vertex maps to a dual face,

every primal edge maps to a dual edge, and every primal face maps to a dual vertex. This is

illustrated in Figure 4, with the purple dotted lines representing the dual mesh.

Figure 4. A mesh and its dual.

Due to this correspondence between elements of the primal and dual meshes, there is also

a correspondence between their boundaries. Each primal face becomes a dual vertex that

is on the boundary of every dual edge corresponding to the primal face’s boundary edges,

and so on. The way this manifests in the adjacency matrix representation of d is that the

k-dimensional exterior derivative on the dual mesh is the transpose of the (n− k− 1)-

dimensional exterior derivative on the primal mesh,

d∗k = dT
n−k−1.

In a sense, this is the (n− k)-dimensional primal coboundary backwards. This way we only

need to compute the exterior derivative matrices for the primal mesh, and their transposes

can be used on the dual.

Notably, a dual mesh is generally not a simplicial one. For instance, a regular triangular grid

in 2D, such as the one in Figure 4, will have hexagonal dual faces. However, the bound-

ary operator and discrete exterior derivative are defined in a way that can handle arbitrary

polytopes. The number of faces on a cell merely affects the sparsity pattern of the matrix d.
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A somewhat more challenging property of the dual mesh are its incomplete faces on the

boundary. For instance, the dual mesh of Figure 4 has two hexagonal faces and eight edges

pointing outside the primal mesh, connected to nothing at the outer end. Care must be taken

to account for this when defining boundary conditions. An example of appropriately defined

boundary conditions will be given in Section 3.4.

There are many possible ways to place the dual elements relative to the primal ones. In this

thesis, circumcentric dual cells as implemented by the PyDEC software library (Bell and

Hirani 2012) are used, meaning the dual vertex of a primal n-simplex is placed at the center

of the smallest n-ball containing the simplex, or in other words, at the point that is equidistant

from all vertices of the simplex. An important property of a dual mesh defined this way is

that primal and dual elements are orthogonal to one another.

2.3.4 Discrete Hodge star

The discrete Hodge star is a mapping between k-cochains on the primal mesh and (n− k)-

cochains on the dual mesh. By construction of the dual mesh, this mapping in matrix form

is a square (|Kk|× |Kk|)-matrix. For efficient computation, it is desirable for this matrix to

be diagonal, as diagonal matrices are fast to multiply and trivial to invert.

The Hodge star is diagonal when each element of the resulting dual cochain only depends on

its corresponding primal element. The value of the diagonal elements is based on the idea

that the Hodge star produces a form of equal magnitude. As we don’t generally know the

exact form the star will be applied to, this necessarily involves approximation.

Given a continuous k-form α , primal k-simplex σ , and its dual (n− k)-cell σ∗, a simple

approximation for the discrete Hodge star is obtained by assuming α is constant over σ and

σ∗. Combined with the fact that α and ?α have equal magnitude, this approximation leads

to the idea that the cochains α̂ =
∫

σ
α and ?α̂ =

∫
σ∗ ?α should have equal magnitude per

unit of volume,
1
|σ |

α̂ =
1
|σ∗|

? α̂ ⇐⇒ ?α̂ =
|σ∗|
|σ |

α̂.

A discrete Hodge star defined using this approximation is a square diagonal matrix whose
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elements are

?ii =
|σ∗i |
|σi|

, i = 1, . . . , |Kk|. (2.8)

A matrix ?k defined this way takes k-cochains from the primal mesh to (n− k)-cochains on

the dual mesh. The ?∗n−k taking (n− k)-cochains from the dual mesh back to the primal

mesh is the inverse of this, ?∗n−k = ?−1
k . Knowing this, we only need to compute the Hodge

star matrices in the direction from the primal mesh to the dual, and their inverses (which are

trivial to compute thanks to diagonality) can be used for the opposite direction.

This approximation, which we call Yee’s Hodge star due to its early appearance in Yee

(1966), is one of two Hodge star operators used in this thesis. A different approximation is

obtained by assuming spatially harmonic forms instead of locally constant ones. The details

of this will be covered in Section 3.5.

Because the discrete exterior derivative is exact, the Hodge star is the only source of ap-

proximation error in methods based on these two operators. As such, variants of the discrete

Hodge star directly lead to DEC variants with different accuracy and efficiency characteris-

tics. Examples of this are the harmonic Hodge star used in this thesis and the higher order

approximations studied by Lohi (2023).

2.3.5 Interpolating discrete forms

All values in DEC computations are cochains and thus exist only on elements of a mesh.

However, it is sometimes useful to get the value of a form at a single point. In this thesis, for

instance, we would like to visualize the 1-form velocity as arrows pointing in the direction

of velocity, but a 1-cochain has no notion of direction. It only has magnitudes over entire

mesh edges. Thus, direction must be reconstructed by interpolating between multiple nearby

edges. This is accomplished using Whitney forms, first introduced by Whitney (1957). This

section gives a short summary of their definition; see e.g. Lohi and Kettunen (2021) for a

thorough treatment of the topic.

Whitney forms are defined individually for every simplex in terms of barycentric coordi-

nates: for a k-simplex with vertices v0, . . . ,vk, any point within the simplex can be expressed
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as
k

∑
i=0

λivi

where the coefficients λi are called barycentric coordinates. If ∑
k
i=0 λi = 1, these coordinates

are called normalized. Equivalently to normalized barycentric coordinates, the barycentric

function λi for a vertex vi is a piecewise linear function whose value is 1 on vi and zero on

all other vertices.

The Whitney formW(vi) associated with a 0-simplex vi is its barycentric function,

W(vi) = λi.

For a 1-simplex σ = [v0,v1], it is

W(σ) = λ0dλ1−λ1dλ0

or equivalently in vector calculus notation,

W(σ) = λ0∇λ1−λ1∇λ0,

and generally for a k-simplex σ = [v0, . . . ,vk],

W(σ) = k!
k

∑
i=0

(−1)i
λidλ1∧·· ·∧ d̂λi∧ . . .dλk (2.9)

wherê denotes that the term is omitted.

TheW in the above expressions is called the Whitney map, which is a map from a simplicial

complex K to a Whitney form. Given a k-cochain α̂ on K whose element ai is associated

with the k-simplex σi, the Whitney map can be evaluated on α̂ as

W(α̂) =W( ∑
σi∈Kk

aiσi) = ∑
σi∈Kk

aiW(σi). (2.10)

The output of this map is a Whitney form, which can then be evaluated at any point x in space.

To do this, one would first find the n-simplex x lies in (since all the barycentric functions and

hence the Whitney forms for all simplices outside of it are zero), where n is the dimension

of the working space, find all the k-simplices that are faces of this n-simplex, and sum their
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respective Whitney forms at x. The use case in this thesis is interpolation of 1-forms in R2, in

which case one would find the triangle x lies in with sides σ0,σ1,σ2 and associated cochain

elements a0,a1,a2, and take the sum

a0(W(σ0))(x)+a1(W(σ1))(x)+a2(W(σ2))(x).
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3 Model

The physical phenomenon we apply the DEC to is the propagation and scattering of acoustic

waves in a two-dimensional domain. This chapter will cover the mathematical models used;

the details of numerical experiments performed and their results are described in Chapter 5.

3.1 Vector equations

We consider waves described by the differential equation

∂ 2φ

∂ t2 − c2
∇

2
φ = 0 (3.1)

where φ is a velocity potential, t is time and c is the speed of wave propagation. This equation

is equivalent to the first-order system


∂ p
∂ t − c2∇ ·v = 0

∂v
∂ t −∇p = 0

(3.2)

where p = ∂φ

∂ t is the scalar-valued acoustic pressure and v = ∇φ is the vector-valued velocity

of particles perturbed by the wave.

The system (3.2) applies within the spatial domain Ω and the time domain [0,T ].

3.2 Exterior calculus equations

The first step to translating the vector system (3.2) to exterior calculus notation is the selec-

tion of appropriate differential forms to represent the variables p and v. Because a scalar can

be represented either by a 0-form or a volume form, and a vector by a 1-form or (n−1)-form,

there are two possible choices for each variable, both of which can be made equivalent to the

vector equations by the application of Hodge stars when necessary. The physical properties

of a variable can hint at the most appropriate choice, but one can also begin with 0- and

23



1-forms and pick the most convenient representation for the end result.

We begin by representing pressure with the 0-form p and velocity with the 1-form v = v[.

The exterior derivative of a 1-form corresponds to the curl ∇×, but we need the divergence

of v in the first equation of (3.2). In three dimensions, divergence is the exterior derivative

of a 2-form, meaning computing the divergence of a 1-form involves first converting it to a

2-form with a Hodge star, ∇ ·v h d? v. The equivalent turns out to be true in 2D as well.

To illustrate why, Figure 5 invokes Stokes’ theorem. Divergence integrated over an area is

equal to the boundary curve integral in the outward-pointing normal direction. Curl, on the

other hand, is the boundary curve integral in the tangent direction. Thus, we can compute

divergence by first rotating such that the boundary normal points in the tangent direction,

which is exactly the effect of the 1-form Hodge star, and then taking the curl, i.e. the exterior

derivative.

v

?

?v

d

∇× (?v) = ∇ · v

Figure 5. 2D divergence as the exterior derivative of a rotated form.

Note that divergence expressed this way is a 2-form, and we’ve chosen to represent p as a

0-form. To match the dimension of p, an additional Hodge star needs to be applied to the

divergence. The first equation in 3.2 thus becomes

∂ p
∂ t
− c2 ?d? v = 0. (3.3)

The second equation is more straightforward, as the exterior derivative of a 0-form directly

corresponds to the gradient. In exterior calculs notation, it becomes

∂v
∂ t
−dp = 0. (3.4)

One more modification is needed to make these equations useful to us. The implementation

of boundary conditions, which will be covered in Section 3.4, requires information about the
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flux of velocity across edges. The flux is the component of velocity normal to the boundary,

v · n. If we represent v as a 1-cochain, integrating v over boundary edges in the tangent

direction, information about the normal direction is lost. Thus, to have access to flux in the

discretized equations, the equations must be expressed in terms of flux instead of velocity.

In exterior calculus notation the flux is ?v. The reason for this is the same as the reason why

divergence can be computed as the curl of ?v. In a sense, the star turns a line integrated in the

tangent direction into a line integrated in the normal direction, analogously to the 3D case

where a 1-form (line) turns into a 2-form (surface) integrated in the normal direction.

The final choices for the unknowns in our equations are the 0-form pressure p and the 1-

form flux q = ?v. Substituting these variables into Eq. (3.3) and (3.4) and applying one more

Hodge star to Eq. (3.4) yields the system
∂ p
∂ t − c2 ?dq = 0

∂q
∂ t −?dp = 0

(3.5)

3.3 Discretization

Discretization of the model into a computer-solvable form is performed separately for space

and time. The procedures defined by DEC are used for the spatial part, and time discretiza-

tion is performed using a staggered finite difference scheme known as the leapfrog method.

3.3.1 Space

Spatial discretization in DEC is straightforward: given a continuous model in exterior cal-

culus notation, a simplicial complex K approximating the domain Ω and its dual, replace

k-forms in the model with k-cochains, d with the coboundary operator, and ? with the dis-

crete Hodge star, and you’re most of the way done. Denoting the 0-cochain equivalent of p

by P and the 1-cochain equivalent of q by Q, this yields the semi-discrete equations
∂P
∂ t − c2 ?dQ = 0

∂Q
∂ t −?dP = 0

(3.6)

(only semi-discrete at this point because they are still continuous in time).
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The only remaining question is whether the cochains should be placed on the primal mesh or

the dual. In our case, the implementation of boundary conditions demands Q be available on

the boundary edges, which means Q must be on primal edges (as dual edges are orthogonal to

the boundary instead). From there, P should be placed such that the terms in Eq. (3.6) are in

the same cochain space. In the first equation, ?dQ takes Q from primal edges to primal faces

and from there to dual vertices, suggesting that P should be a dual 0-cochain. Checking that

?dP in the second equation is a primal 1-cochain confirms this as the correct choice.

With these choices, we can pin down which forms of ? and d are used in the system (3.6).

Recall that given the matrices ?k and dk defined in terms of the primal mesh, the correspond-

ing operators on the dual mesh are ?−1
k and dn−k−1. In terms of these operators, the system

(3.6) becomes 
∂P
∂ t − c2 ?1 d1Q = 0

∂Q
∂ t −?−1

1 dT
1 P = 0.

(3.7)

To produce the cochain elements Pi and Qi on the dual vertices v∗i and primal edges Ei from

the continuous variables p and v, we get the formulas

Pi = p(v∗i ) (3.8)

Qi =
∫
Ei

(v ·n)ds. (3.9)

Note the term v · n, where n is the unit-length normal of the edge, computing the flux of

velocity in Eq. (3.9).

3.3.2 Time

For time discretization we use the leapfrog method, which is a second-order finite difference

scheme commonly used in ”Yee-like schemes” (as termed by Bossavit and Kettunen (1999))

such as DEC, including Yee (1966) itself. It is simple and efficient method, requiring only

one value of each variable to be computed per timestep. See the lecture notes of Young

(2014) for an explanation of some of its desirable properties.

In the leapfrog method, time advances in steps of ∆t seconds, and values of P and Q are

computed at separate time instances offset from each other by ∆t
2 . Let tk = k∆t denote the
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value of time after k timesteps and Pk the value of P at this time. The next value of Q is

computed at the time tk + ∆t
2 , which we denote Qk+ 1

2 . The time derivatives of P and Q are

then approximated with

∂P
∂ t

(tk+ 1
2 ) =

Pk+1−Pk

∆t
(3.10)

∂Q
∂ t

(tk) =
Qk+ 1

2 −Qk− 1
2

∆t
(3.11)

Substituting Eq. (3.10) and (3.11) into Eq. (3.7) yields

Pn+1−Pn

∆t
− c2 ?1 d1Qn+ 1

2 = 0

Qn+ 3
2 −Qn+ 1

2

∆t
−?−1

1 dT
1 Pn+1 = 0

Multiplying by ∆t and moving terms to the right-hand side produces the timestep formulas

Pn+1 = Pn +∆tc2 ?1 d1Qn+ 1
2 (3.12)

Qn+ 3
2 = Qn+ 1

2 +∆t ?−1
1 dT

1 Pn+1 (3.13)

This is an explicit method: the timestep formulas can be applied as matrix multiplications to

the values of P and Q at the beginning of a timestep, without being required to solve any lin-

ear systems. This makes the method computationally efficent and highly parallelizable, but

only conditionally stable. There is an upper limit to the timestep ∆t, known as the Courant-

Friedrichs-Lewy condition or CFL condition (Courant, Friedrichs, and Lewy 1967), above

which the system will begin to gain energy and ”blow up” towards infinity. Determining the

exact value of this condition analytically is a challenging problem. For our purposes it is

sufficient to find an approximate value via numerical experiments.

3.4 Boundary conditions

Our main test case models the scattering of acoustic waves on impact with a sound-soft

obstacle. For this purpose we define two boundaries, Γsca for the scattering obstacle and Γext

for the outer boundary of the computational domain, illustrated in Figure 6.
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Γext

Γsca

Ω

Figure 6. The domain Ω and boundaries Γext and Γsca of a scattering model.

Given an incident wave with velocity potential φinc, the scattering obstacle is modelled by

setting φinc on Γsca as a Dirichlet boundary condition

v = ∇φinc in Γsca× [0,T ] (3.14)

where [0,T ] is the simulated time period. The boundary condition is only applied to v and

not p because p is placed on the dual mesh, which does not have elements at the boundary.

The domain should be as small as possible to minimize the amount of computation required,

but we wish to simulate the scattering object sitting in empty space. Placing the outer bound-

ary Γext close to the scatterer requires the modelling of waves passing through the boundary

uninterrupted, without any reflections occurring. This is accomplished using a first-order

absorbing Engqvist-Majda boundary condition (Engquist and Majda 1977)

1
c

∂φ

∂ t
+n ·∇φ = 0 in Γext× [0,T ].

Substituting the variables p = ∂φ

∂ t and v = ∇φ yields

1
c

p+n ·v = 0,

which translates to the differential form expression

1
c

p+?v = 0.
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Finally, we can substitute in our model variable q = ?v, producing the boundary conditions

q = ?(∇φinc)
[ in Γext× [0,T ] (3.15)

1
c

p+q = 0 in Γsca× [0,T ] (3.16)

An issue with the absorbing boundary condition (Eq. (3.16)) is that p and q exist on different

mesh elements in our DEC model. An approximation is needed to turn one of p or q into a

form compatible with the other. We use the same approximation used to define the discrete

(Yee’s) Hodge star, the assumption of locally constant forms.

Specifically, we assume p is constant over the primal face corresponding to each dual ver-

tex P is stored on, and therefore constant over the nearest boundary edge when the primal

face is adjacent to the boundary. Denoting a boundary edge by Ei, the corresponding flux

cochain element by Qi and the pressure of the adjacent face’s dual vertex by PEi , Eq. (3.16)

is approximated with

Qi +
1
c

∫
Ei

PEids = 0,

leading to the flux update formula for boundary edges

Qi =−
1
c
|Ei|PEi, (3.17)

where |Ei| is the length of the edge.

3.5 Harmonic operators

The time discretization of Section 3.3.2 and the discrete Hodge star of Section 2.3.4 are based

on linear and locally constant approximations. However, in our case we know we’re simulat-

ing harmonic waves, which is a fact that can be used to derive more accurate approximations

of the time derivative and Hodge star.

A similar approximation for the time derivative has been used in the context of electromag-

netics by Ma and Chen (2005), Räbinä (2014), and Peng and Appelö (2022). The harmonic

Hodge star was derived for the three-dimensional edge-to-face case by Räbinä (2014). In

this section we use the same ideas to derive two-dimensional edge-to-edge and face-to-vertex

Hodge star operators.
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3.5.1 Exact timestepping

The state of a time-harmonic wave at timestep k and time t can be expressed in terms of

complex exponentiation as

P(t) = Re(P̂0 exp(−iωt)) (3.18)

Q(t +
∆t
2
) = Re(Q̂0 exp(−iω(t +

∆t
2
)) (3.19)

where P̂0 and Q̂0 are complex initial values for P and Q, ω is the angular velocity of the

wave, and i is the imaginary unit.

Substituting Eq. (3.18) into the numerator of Eq. (3.10) where tk = t + ∆t
2 , we get

P(tk +
∆t
2
)−P(tk− ∆t

2
)

= Re
[
P̂0 exp(−iω(tk +

∆t
2
))
]
−Re

[
P̂0 exp(−iω(tk− ∆t

2
)
]

= Re
[
P̂0(exp(−iω(tk +

∆t
2
))− exp(−iω(tk− ∆t

2
))
]

= Re
[
P̂0 exp(−iωtk)

(
exp(−iω

∆t
2
)− exp(iω

∆t
2
)
)]

= Re
[
− iωP̂0 exp(−iωtk)

(exp(−iω ∆t
2 )− exp(iω ∆t

2 )

−iω

)]
= Re

[
∂P
∂ t

(tk)
(exp(−iω ∆t

2 )− exp(iω ∆t
2 )

−iω

)]
=− 1

ω

∂P
∂ t

(tk) · Im
[

exp(−iω
∆t
2
)− exp(iω

∆t
2
)
]

=
∂P
∂ t

(tk)
( 2

ω
sin(

ω∆t
2

)
)
.

The same consideration for the flux (Eq. (3.19)) produces the same coefficient.

With this, the time derivative approximations (Eq. (3.10) and (3.11)) become

∂P
∂ t

=
Pn+1−Pn

2
ω

sin ω∆t
2

(3.20)

∂Q
∂ t

=
Qn+ 3

2 −Qn+ 1
2

2
ω

sin ω∆t
2

(3.21)
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and the timestep equations (3.12) and (3.13)

Pn+1 = Pn +
2
ω

sin
ω∆t

2
(c2 ?2 d1Qn+ 1

2 ) (3.22)

Qn+ 3
2 = Qn+ 1

2 +
2
ω

sin
ω∆t

2
(?−1

1 dT
1 Pn+1). (3.23)

3.5.2 Harmonic Hodge star

The harmonic properties of acoustic waves also apply to space. In a small neighborhood

around any given point, it can be assumed that the solution behaves like a complex plane

wave

û(x) = û0 exp(i~κ ·x) (3.24)

where û0 is a complex initial value, and ~κ is the wave vector κd, where in turn d is the

unit-length direction of wave propagation and κ is the wavenumber. The wavenumber is the

number of wave periods per unit of distance, related to the wavelength λ by κ = 2π

λ
and the

angular velocity ω and propagation speed c by κ = ω

c .

Edge to edge

In the case of ?1 taking a 1-cochain from a flux on the primal edge E to a veloctity on the

dual edge E∗, we would like to minimize the error

||
∫
E

û ·nds−?−1
1

∫
E∗

û · tds ||2 (3.25)

where n is the unit normal vector to E and t is the unit tangent vector to E∗. Denoting

ûE =
∫
E û ·nds and ûE∗ =

∫
E∗ û · tds, this gives the quadratic equation

û2
E −2?−1

1 ûE ûE∗+(?−1
1 )2û2

E∗,

the derivative of which with respect to ?1 is

2?−1
1 û2

E∗−2ûE ûE∗,

which is zero and thus the error is minimized when

?−1
1 =

ûE ûE∗
û2
E∗
⇐⇒ ?1 =

û2
E∗

ûE ûE∗
.
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However, this only applies when the propagating direction d is a known constant, which

is generally not true. For practical cases, we need to minimize this error over all possible

propagating directions. This is accomplished by integrating d over the unit circle in polar

coordinates, where d = (cosθ ,sinθ), resulting in the formula

?1 =

∫ 2π

0 û2
E∗ dθ∫ 2π

0 ûE ûE∗ dθ
. (3.26)

For the following computation, we assume E and E∗ are orthogonal and centered at the

origin. Due to the symmetry of the unit circle, orientation of the edges has no effect and thus

we can also assume E is oriented along the x-axis and E∗ along the y-axis. Using the Taylor

series exp(ax) = ∑
∞
n=0

anxn

n! and the auxiliary variable α = iκ cosθ , we get

ûE =
∫
E

û ·nds

= (û0)y

∫ l
2

− l
2

exp(iκxcosθ)dx

= (û0)y

∫ l
2

− l
2

∞

∑
n=0

αnxn

n!
dx

= (û0)y

[ ∞

∑
n=0

1
n

αnxn+1

n!

]x= l
2

x=− l
2

= (û0)y

∞

∑
n=0

αn
(
( l

2)
n+1− (− l

2)
n+1
)

(n+1)!

(terms where n is odd are eliminated)

= (û0)y

∞

∑
n=0

α2n2( l
2)

2n+1

(2n+1)!

= (û0)y

∞

∑
n=0

α2nl2n+1

22n(2n+1)!

= (û0)yl
∞

∑
n=0

(αl)2n

22n(2n+1)!

where l is the length of E and (û0)y is the y component of û0.

Similarly, the exponential term for ûE∗ and the same integration produces

ûE∗ = (û0)yl∗
∞

∑
n=0

(β l∗)2n

22n(2n+1)!
.
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where l∗ is the length of E∗.

The first few terms of this series are

ûE = (û0)yl
(

1+
(αl)2

24
+

(αl)4

1920
+ . . .

)
and the y component of û0 is (u0)y = u0 sinθ , where u0 = |û0| is the magnitude of û0.

With these series expressions we can build the products in the optimized Hodge star as series

whose first few terms are

û2
E∗ = u2

0(sin2
θ)(l∗)2

(
1+

(β l∗)2

12
+

(β l∗)4

360
+ . . .

)
ûE ûE∗ = u2

0(sin2
θ)ll∗

(
1+

(αl)2

24
+

(β l∗)2

24
+

(αlβ l∗)2

576
+ . . .

)
.

Now we need to integrate these expressions around the unit circle. First, we can get rid of

the imaginary terms in α and β by evaluating the even powers. Switching notation to denote

the edge lengths by |E| and |E∗|, we get

(αl)2 =−κ
2|E|2 cos2

θ

(β l∗)2 =−κ
2|E∗|2 sin2

θ .

Substituting these values we get the integrals∫ 2π

0
û2
E∗ dθ = u2

0|E∗|2
∫ 2π

0

(
sin2

θ − κ2|E∗|2 sin4
θ

12
+

κ4|E∗|4 sin6
θ

360
+ . . .

)
dθ

= u2
0|E∗|2π

(
1− κ2|E∗|2

16
)
)
+O(κ4|E∗|4)

∫ 2π

0
ûE ûE∗ dθ = u2

0|E||E∗|
∫ 2π

0

(
sin2

θ − κ2|E|2 sin2 cos2 θ

24
− κ2|E∗|2 sin4

θ

24

+
κ4|E|2|E∗|2 sin4 cos2 θ

576
+ . . .

)
dθ

= u2
0|E||E∗|π

(
1− κ2|E|2

96
− κ2|E∗|2

32

)
+O(κ4|E|2|E∗|2)

Dividing these according to Eq. (3.26) yields

?1 ≈
|E∗|
|E|

( 1− κ2|E∗|2
16

1− κ2|E |2
96 −

κ2|E∗|2
32

)
. (3.27)
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Face to vertex

The same consideration for ?2 taking a 2-cochain on a primal face F to a 0-cochain on a dual

vertex v∗ yields

?2 =

∫ 2π

0 û(v∗)2 dθ∫ 2π

0 ûF û(v∗)dθ
(3.28)

where ûF is the wave equation (3.24) integrated over the face and û(v∗) is the wave evaluated

at the vertex. We can assume for now that the vertex is at the origin and the face is a circle

with radius r and area πr2. A generalization for polygon faces will be performed later.

The vertex being at the origin implies û(v∗) = û(0) = exp(0) = 1.

The integral of û over the circular face F is symmetric for all angles θ , so we may assume

θ = π

2 , i.e. that the wave is propagating along the y-axis. We then have

ûF =
∫
F

û

=
∫ r

−r

∫ √r2−x2

−
√

r2−x2
exp(iκy)dydx

=
∫ r

−r

∫ √r2−x2

−
√

r2−x2

∞

∑
n=0

(iκ)nyn

n!
dydx

=
∫ r

−r

∞

∑
n=0

(iκ)n
(
(
√

r2− x2)n+1− (−
√

r2− x2)n+1
)

(n+1)!
dx

(terms where n is odd are eliminated)

=
∫ r

−r

∞

∑
n=0

2(iκ)2n(
√

r2− x2)2n+1

(2n+1)!
dx.

Here we change the variable to t such that x = r sin t, for which dx = r cos tdt and
√

r2− x2 =

r cos t, and continue to integrate the first few terms of the series:

ûF =
∫ π

2

− π

2

∞

∑
n=0

2(iκ)2n(r cos t)2n+1

(2n+1)!
r cos t dt

=
∞

∑
n=0

2(iκ)2nr2n+2

(2n+1)!

∫ π

2

− π

2

(cos t)2n+2 dt

= πr2
(

1+
(iκr)2

8
+

(iκr)4

192
+ . . .

)
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Integrating ûF û(v∗) over the unit circle, evaluating the i2 terms, and substituting |F| = πr2

gives ∫ 2π

0
ûF û(v∗)dθ ≈ |F|

∫ 2π

0

(
1− (κr)2

8
+

(κr)4

192
+ . . .

)
dθ

= 2π|F|
(

1− (κr)2

8

)
+O((κr)4

192
).

Because û(v∗)2 is the constant 1, its integral over the unit circle is 2π . It then follows from

Eq. (3.28) that

?2 ≈
1
|F|

( 1

1− (κr)2

8

)
. (3.29)

Polygon faces

The preceding derivation was based on circular faces, but the faces in practical applications

are polygons. We can make use of results obtained from the circle case by approximating

polygons with circles.

Given a regular polygon with maximum internal sphere radius r and minimum external

sphere radius R, performing the integrations of Eq. (3.28) over a triangle or square using

the approximation r2
F = 1

3(2r2 +R2) matches the first three terms of the Taylor polynomial

obtained from the circle case.

With irregular convex polygons, each edge defines a different value for r and each vertex

a different value for R, as illustrated in Figure 7. rk is the perpendicular distance from the

origin to the edge k and Rk is the distance to the vertex k.

R

r r1

R1 r2

R2

r3

R3

Figure 7. Internal and external radii of a regular and irregular triangle.

The approximation we use for irregular polygons with n edges is the average of the regular
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polygon approximations corresponding to each edge

r2
F ≈

1
3n

n

∑
k=1

(2r2
k +R2

k). (3.30)

Substituting this expression for r2 in Eq. (3.29) produces the ?2 operator we use in our

experiments.
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4 Exact controllability

We use a solver based on discrete exterior calculus to simulate a wave system forward in time.

In addition to this, we’re interested in finding a state that is time-periodic in the entire domain

Ω, meaning that the state of the simulation repeats at intervals of T seconds. Under the right

circumstances, this can be achieved with our time-dependent solver by simply running it

for a long enough time period. This is called the asymptotic iteration method because the

time-periodic state is approached over time as t→ ∞.

A solution becomes time-periodic when all waves produced by a source have reached an

absorbing material or boundary. This can only happen if all wave sources are time-periodic

with period T and all waves propagating from the sources are able to be absorbed by some-

thing. Even when these conditions are fulfilled, convergence of the asymptotic iteration can

be slow or unreliable in cases where waves spend a long time reflecting off surfaces before

being absorbed, as we find in the experiments of Chapter 5.

To accelerate convergence towards a time-periodic state, we employ the concept of exact con-

trollability developed by Lions (1988) and first applied to the computation of time-periodic

solutions by Bristeau, Glowinski, and Périaux (1998). Our controllability method formulates

the difference between the initial state at t = 0 and the state at t = T as a least-squares opti-

mization problem with the initial state as the variable to be optimized, which is solved using

the conjugate gradient (CG) algorithm. The gradients needed for this algorithm are obtained

using the adjoint state method.

4.1 Optimization problem

Let Un = (Pn,Qn+1)T be the state of the simulation at timestep n, e = U0 the initial state,

and N the number of timesteps required to simulate the time period T . We want to find a

state where UN− e = 0, which is equivalent to minimizing the quadratic function

J(e) =
1
2
(UN− e)T (UN− e). (4.1)

We call J(e) the control energy. To solve this problem, we first need the gradient of J.
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4.2 Computing the gradient

To compute the gradient ∇J(e), we first need an expression for UN . This is accomplished

by expressing the timestepping procedure as a matrix multiplication and repeatedly applying

it until the end of the time window T . This expression is used to expand the product in Eq.

(4.1) into a standard quadratic equation and find its gradient by inspection.

4.2.1 State equation

Inside of the domain Ω, a single timestep using the formulas of Eq. (3.12) and (3.13) can be

expressed as the block matrix equation

I ∆tc2 ?2 d1 −I

I ∆t ?−1
1 dT

1 −I




Pn

Qn+ 1
2

Pn+1

Qn+ 3
2

= 0.

This can be extended to the entire time window [0,T ] by applying it repeatedly for N

timesteps, producing the equation

S(e) =



I

C D

C D
. . . . . .

C D

C D





U0

U1

...

UN−1

UN


−



e

0
...

0

0


+



0

F0

...

FN−2

FN−1


= 0 (4.2)

where

C =

I ∆tc2 ?2 d1

0 I

 , D =

 −I 0

∆t ?−1
1 dT

1 −I

 ,
and the vectors Fn contain source terms, which in our case only include the values of the

Dirichlet boundary condition (Eq. (3.15)) on the boundary Γsca. Equation (4.2) is called the

state equation.

The domain boundaries need some special attention here, as the equation as stated above

does not apply to them. The details are left out of Eq. (4.2) for clarity, but it should be un-
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derstood that rows of this equation corresponding to mesh edges on the scattering obstacle’s

boundary Γsca are replaced with rows that only have (−1) on the diagonal. Similarly, rows

corresponding to edges on the absorbing boundary Γext are replaced with the matrix form of

Eq. (3.16).

Denoting Q =−D−1C, a single timestep in this matrix notation consists of the formula

Uk+1 =−D−1(CUk +Fk). (4.3)

Applying this N times to the initial conditions e gives the expression for UN

UN = QNe−
N−1

∑
i=0

QiD−1F (N−1)−i (4.4)

where Qn denotes the nth power of the square matrix Q.

4.2.2 Gradient of control energy

Equation (4.4) allows us to formulate a matrix expression for the gradient ∇J(e). Let g =

∑
N−1
i=0 QiD−1F (N−1)−i, which is a vector of the same dimension as e. An expanded form of

the control energy is then

J(e) =
1
2
(UN− e)T (UN− e)

=
1
2
((QN− I)e−g)T ((QN− I)e−g)

=
1
2

eT (QN− I)T (QN− I)e

− 1
2
(eT (QN− I)T g−gT (QN− I)e)

+
1
2

gT g

=
1
2

eT (QN− I)T (QN− I)e−gT (QN− I)e+
1
2

gT g

=:
1
2

eT Ae−bT e+ c,

which gives us the gradient

∇J(e) = Ae−b (4.5)

where

A = (QN− I)T (QN− I), b = gT (QN− I).
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4.2.3 Adjoint state method

The obvious way to compute ∇J(e) would be either by explicitly computing the matrix A

in Eq. (4.5) or by approximating it with finite differences. However, these are both highly

expensive procedures, requiring N large matrix multiplications in the first case and dim(e)

simulations up to time T in the second. The adjoint state method provides an efficient alter-

native, requiring only one forward simulation to time T and one backward simulation back

from time T to time zero. It states that

dJ
de

=
∂J
∂e
− zT ∂S

∂e
(4.6)

where S is the state equation (4.2) and z is the solution to the adjoint equation(
∂S
∂u

)T
z =

(
∂J
∂u

)T
. (4.7)

z = (Z0, . . . ,ZN)T is called the adjoint state variable and has the same dimension as the state

variable u = (U0, . . . ,UN)T in the state equation.

See Bradley (2019) for a brief tutorial on the topic and proof of the preceding statements, or

Givoli (2021) for a more comprehensive introduction.

Because Un is the only state variable that exists in the control energy J,

(
∂J
∂u

)T
=



0

0
...

0

UN− e


.

Similarly, because e is only present in the first row of the state equation,

∂S
∂e

= (−I,0,0, . . . ,0)T

and thus

zT ∂S
∂e

=−Z0.

We also know that
∂J
∂e

=−(UN− e).
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It follows from substituting these values into Eq. (4.6) that the gradient we’re looking for is

dJ
de

=−(UN− e)+Z0. (4.8)

To compute this we need the value of Z0, which can be obtained using the adjoint equation

(4.7). The matrix form of this equation looks very similar to the state equation:

I CT

DT CT

DT CT

. . . . . .

DT CT

DT





Z0

Z1

...

ZN−1

ZN


=



0

0
...

0

UN− e


(4.9)

where C and D are the block matrices from the state equation (4.2).

This equation can be solved with a backward procedure starting with

ZN = (DT )−1(UN− e), (4.10)

followed by repeating

Zk =−(DT )−1CT Zk+1 (4.11)

for k = N−1, . . . ,1 and finally

Z0 =−CT Z1. (4.12)

Written out explicitly, a single timestep according to Eq. (4.11) looks like

Zk =−(DT )−1CT Zk+1

=−

−I (∆t ?−1
1 dT

1 )
T

0 −I

−1 I 0

(∆tc2 ?2 d1)
T I

zk+1
0

zk+1
1

 ,
which is equivalent to solving the equation−I (∆t ?−1

1 dT
1 )

T

0 −I

zk
0

zk
1

=−

 I 0

(∆tc2 ?2 d1)
T I

zk+1
0

zk+1
1

 ,
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producing the backward timestep formulas

zk
1 = zk+1

1 +(∆tc2 ?2 d1)
T zk+1

0 (4.13)

zk
0 = zk+1

0 +(∆t ?−1
1 dT

1 )
T zk

1. (4.14)

Because the state equation is solved forward in time and the adjoint state equation backward,

these equations are often called the forward problem and backward problem in the context

of the adjoint state method.

The above formulation again omits boundary conditions for clarity, so it is not obvious how

boundary conditions should be handled in the backward problem. For Dirichlet boundary

conditions (Eq. (3.15)), the lack of source terms in the adjoint equation means all Dirichlet

boundaries are set to zero instead of their value in the state equation. The absorbing boundary

(Eq. (3.16)), on the other hand, has a sign flipped,

1
c

p−q = 0. (4.15)

An intuitive reasoning for this is that the condition of Eq. (3.16) only allows waves propa-

gating outwards to ”pass through” it, whereas the backward problem is integrated backwards

in time, requiring the boundary to instead allow through waves travelling into the domain.

This is accounted for by flipping the sign (Givoli 2021).

4.3 Conjugate gradient algorithm

Equipped with the control energy (Eq. (4.1)) and an efficient procedure for computing its

gradient, we’re ready to solve the optimization problem minimizing the energy. This is done

using the conjugate gradient (CG) algorithm, an iterative method specialized for symmetric

positive definite systems, such as the ones which arise from quadratic optimization problems

like this one.

Let Ae= b be an n-dimensional symmetric positive definite linear system. The CG algorithm

is based on searching along an A-conjugate sequence of directions

{p0, . . . ,pn−1 : pT
i Ap j = 0 for all i 6= j} (4.16)
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and making the residuals ri = b−Aei mutually orthogonal. The significance of these prop-

erties comes from the properties of Krylov subspaces, covered in detail in Saad (2003). Here

we take them as granted and provide a derivation based on Saad (2003, p. 199-200).

The A-conjugate set of Eq. (4.16) is linearly independent and therefore a basis of n-dimensional

space. Thus, given this set and an initial guess e0, the exact solution e∗ can be expressed as

a linear combination

e∗ = e0 +
n−1

∑
i=0

αipi = e j +
n−1

∑
i= j

αipi.

where

e j = e0 +
j−1

∑
i=0

αipi = e j−1 +α j−1 p j−1 (4.17)

is the estimated solution at step j and αi is some real coefficient. It follows that the residuals

follow a similar recurrence

r j+1− r j = (b−Ae j+1)− (b−Ae j)

= A(e j− e j+1)

= A(−α jp j)

=⇒ r j+1 = r j−α jAp j. (4.18)

For the residuals to be orthogonal, we must impose

〈r j+1,r j〉= 〈r j−α jAp j,r j〉= 0,

where 〈·, ·〉 denotes the dot product. The solution of this equation is

α j =
〈r j,r j〉
〈Ap j,r j〉

. (4.19)

α j obtained from this equation can be applied to Eq. (4.17) and (4.18) to obtain the next

approximate solution e j+1 and residual r j+1. The residual can in turn be used to construct

the next search direction p j+1 as

p j+1 = r j+1 +β jp j, (4.20)

where β j is obtained by requiring p j+1 and p j to be A-conjugate,

〈p j+1,Ap j〉= 〈r j+1 +β jp j,Ap j〉= 0,
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implying

β j =−
〈r j+1,Ap j〉
〈p j,Ap j〉

. (4.21)

There are also the relations

〈Ap j,r j〉= 〈Ap j,p j−β j−1p j−1〉= 〈Ap j,p j〉

following from Eq. (4.20) and the orthogonality of Ap j and p j−1,

Ap j =−
1

α j
(r j+1− r j)

following from Eq. (4.18), and finally,

〈r j+1,Ap j〉= 〈r j+1,−
1

α j
(r j+1− r j)〉=−

1
α j
〈r j+1,r j+1〉

and

〈Ap j,p j〉= 〈−
1

α j
(r j+1− r j),r j〉=

1
α j
〈r j,r j〉

following from the preceding two relations and the orthogonality of r j+1 and r j. Applying

these to Eq. (4.19) and (4.21) produces the coefficients

α j =
〈r j,r j〉
〈Ap j,p j〉

(4.22)

β j =
〈r j+1,r j+1〉
〈r j,r j〉

. (4.23)

Note also that the residual r = b−Ae is the opposite of the gradient ∇J(e) = Ae−b.

Combining these facts into an iterative algorithm computing successive values of p j,r j,e j

produces the CG algorithm. Many equivalent variations are found in literature; the following

form is taken from Saad (2003). Given a linear system Ae = b and an initial guess e0,

1: r0← b−Ae0 . Initial residual

2: p0← r0 . Initial search direction

3: for j = 0,1, . . . until convergence do

4: α j←
〈r j,r j〉
〈Ap j,p j〉 . Coefficient to enforce orthogonality of residuals

5: e j+1← e j +α jp j . Next approximate solution

6: r j+1← r j−α jAp j . Next residual
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7: β j←
〈r j+1,r j+1〉
〈r j,r j〉 . Coefficient to enforce A-conjugacy of search directions

8: p j+1← r j+1 +β jp j . Next search direction

9: end for

Recall that the adjoint state method produces a value for ∇J(e) = Ae−b (Eq. (4.5)), where

b is a vector that depends on source terms and A a matrix that does not. This gives us a way

to compute the terms in the algorithm where multiplication by A occurs, namely r0 and Ap j.

First, r0 = b−Ae0 =−∇J(e0), which is given directly by the adjoint state method. Secondly,

Ap j is ∇J(p j) without the vector b. Because b depends on the source terms and A does not,

we can obtain this value by running the adjoint state method with source terms set to zero,

causing b to be multiplied by zero and leaving A unchanged.

These procedures allow us to perform the CG algorithm by computing one forward simula-

tion and one backward simulation per iteration.
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5 Experiments

A number of numerical experiments were performed to test the effectiveness of the tech-

niques covered in preceding chapters. The accuracy of DEC with and without harmonic

timestep operators was investigated using a simple plane wave with a known analytic solu-

tion, the CFL condition was estimated by progressively refining a mesh, and the convergence

rate of the controllability method was compared with the asymptotic iteration method in var-

ious geometries.

5.1 Implementation

The programming language of choice for the experiments’ implementation was Python due

to the availability of the PyDEC software library (Bell and Hirani 2012). This library han-

dles the generation of a dual mesh with circumcentric dual vertices as well as the exterior

derivative and Hodge operators, allowing us to focus on implementing our specific acoustics

model and the controllability method.

PyDEC can generate a dual mesh when given a primal mesh, but it does not provide a way

to generate the primal mesh. To this end, the finite element mesh generator Gmsh (Geuzaine

and Remacle 2009) was used via its programmatic Python interface.

The source code of the experiments is available in a public GitHub repository (Myyrä 2023).

Instructions for running the code and details of the code structure are provided in the repos-

itory, as well as animated versions of some of the figures in this chapter. Additional experi-

ments built for the purpose of learning to use DEC and verifying parts of the implementation

are also present.

5.2 Plane wave

In the first experiment, we simulate a plane wave

φinc =−cos(ωt−~κ ·x), (5.1)
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where ω is the angular velocity of the wave, t is time,~κ is the wave vector (see Section 3.5.2),

and x is the spatial position. This wave propagates unimpeded through a square domain Ω

represented as an unstructured triangle mesh. The scenario is illustrated in Figure 8, where

the color of a face represents pressure at the dual vertex, and the arrows represent velocity

interpolated from the primal edge fluxes using Whitney forms (see Section 2.3.5).
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Figure 8. A plane wave propagating upwards in a square domain.

It can be shown by substituting the incident wave equation (5.1) into the second-order acous-

tic wave equation (3.1) that it is a solution of the wave equation. This knowledge is applied

to test the accuracy of our simulation. We apply the incident wave equation (5.1) on the

boundary Γ as a Dirichlet boundary condition

q = ?(∇φinc)
[ in Γ× [0,T ] (5.2)

(as derived in Section 3.4), set the initial conditions to

p0 =
∂φinc

∂ t

∣∣∣
t=0

(5.3)

q0 = ?(∇φinc)
[
∣∣∣
t=0

, (5.4)

and simulate the propagation of the wave in the interior of the domain with DEC.

This simulation is performed several times with progressively reducing edge lengths on the

mesh to investigate the effect of mesh element size on the accuracy. Error is measured
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by comparing the simulated values P and Q to the exact cochains P∗ and Q∗ obtained by

integrating p = ∂φinc
∂ t and q = ?(∇φinc)

[ over the corresponding mesh elements. Because the

flux Q is integrated over mesh edges, the error in Q is divided by edge length to normalize

the effect of varying edge lengths on the result.

This experiment is repeated twice, swapping Yee’s Hodge star for the harmonic operators

(Eq. (3.27) and (3.29)) derived in Section 3.5.2 and the timestep equations (3.12) and (3.13)

for the exact equivalents (Eq. (3.22) and (3.23)) derived in Section 3.5.1. The maximum

elements of error in pressure and flux are plotted in Figure 9. The results presented are

obtained with the wave parameters ω = 2 and ~κ = (0,2).
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Figure 9. Maximum and average error of the simulated plane wave in relation to maximum

edge length of the mesh.

The results show a reduction in error of approximately 40% in pressure and varying between
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8% and 20% in velocity for the harmonic operators. The harmonic operators add no addi-

tional computational cost to the timestepping procedure, since the Hodge star is still diagonal

and the exact timestep coefficient is still a scalar. Their only cost is a small amount of ex-

tra computation beforehand, which can be performed offline alongside mesh generation if

desired. Thus, they are a highly advantageous addition to the method.

To examine the proportional effects of the harmonic Hodge star and the exact timestep, note

that Eq. (3.12) and (3.22) only differ by a scalar coefficient. The timestep ∆t in Eq. (3.12) is

replaced by τex =
2
ω

sin ω∆t
2 . Figure 10 plots this value as a function of the angular velocity

ω with a few selected values of ∆t. We find that the difference between ∆t and τex can be

significant at high values of ∆t and ω , but quickly becomes negligible as ∆t becomes smaller.
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Figure 10. Effect of angular velocity on the exact timestep coefficient.

In our experiments stability generally requires values of ∆t below 0.1, making the effect of

the exact timestep minimal. However, as it requires practically no extra computation, there is

no penalty to implementing it, and it is potentially beneficial in cases where stability permits

large timesteps.

The CFL condition limits the magnitude of the term ∆t
|E | , where |E| is the length of the shortest

edge in the computation mesh. This term can be kept constant by increasing the timestep

and minimum edge length in the same proportion. In other words, larger timesteps can

be used if a coarser mesh is also used. Thus, in scenarios without complex geometry or
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short wavelenghts demanding detailed meshes, exact timestepping may enable one to reduce

mesh detail and increase timestep size without a significant loss of accuracy, resulting in

more efficient simulations.

5.3 CFL condition

If the CFL condition is known, a stable value of ∆t can be selected automatically as a multiple

of the shortest edge length, ∆t = c|E|. To find an estimation for the coefficient c numerically,

a mesh was constructed and then refined several times by cutting each edge in half and

connecting the midpoints. Figure 11 illustrates the initial mesh in black and the refinements

in progressively lighter shades of blue.
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Figure 11. Mesh used to examine the CFL condition, overlaid with its refinements.

On each of these meshes, a plane wave was applied on the boundary in the same way as

in the previous experiment. A binary search was performed on the timestep ∆t to find the

highest value where the simulation remains stable (i.e. the maximum absolute values of the

simulation variables do not increase). The results are plotted in Figure 12, where h denotes

the shortest edge length.

The line ∆t = 0.3h fits safely below the upper limit for every refinement tested, which sug-

gests that we can use ∆t = 0.3h in our other experiments. However, in practice this coeffi-
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Figure 12. Maximum stable value of ∆t plotted against the shortest edge length.

cient was found to depend significantly on the mesh geometry, and a much lower value of

∆t = 0.1h was selected.

5.4 Scatterer

Our main experiment uses the entirety of the model defined in Chapter 3, as well as the

controllability method covered in Chapter 4. The computation mesh is constructed with two

boundaries as illustrated in Figure 6, with the inner boundary Γsca representing a scattering

obstacle and absorbing outer boundary Γext . The incident wave, which we set to the plane

wave equation (3.24), is applied on Γsca as a Dirichlet boundary condition.

The resulting simulation represents the scattered component φsca of the total wave φinc+φsca.

We can reconstruct the total wave by adding φinc to the result. By omitting the incident wave

from the simulation, we gain accuracy by eliminating numerical error from the component

of the wave whose exact solution is known.

It is difficult to come up with initial conditions that fulfill both boundary conditions. If we

set p0 = 0, q0 = 0, the incident wave is not matched on Γsca. If we set p0 = ∂φinc
∂ t

∣∣∣
t=0

,

q0 = ?(∇φinc)
[
∣∣∣
t=0

like in the previous experiment, the absorbing condition is not fulfilled

on Γext . This has the effect of a discontinuity on the first timestep of simulation, which may

cause stability issues in particularly unfortunate cases.
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To avoid this discontinuity, we use an easing procedure proposed by Mur (1993). Initial

conditions are set to p0 = 0, q0 = 0, and source terms (i.e. values on Γsca) are also initially

set to zero. Source terms are then eased in over a time period ttr by multiplying them by

ftr(t) = (2− sin(
π

2
t

ttr
))sin(

π

2
t

ttr
). (5.5)

This way we get a smooth solution in the entire space and time domain. To apply this to

the controllability method, we simulate forward in time until t = ttr and use the result as the

initial guess for the CG algorithm.

We investigate the convergence of the controllability method and the asymptotic forward-

in-time iteration method with different scatterer geometries by measuring the control energy

(Eq. (4.1)) over time. Simulating forward one time period T is considered equivalent to

a single step of the controllability method. We also compare the performance of the Yee’s

and harmonic operators in both iteration algorithms. The scatterer geometries and time-

periodic scattered waves obtained from the controllability method are visualized alongside

their respective convergence results in figures 13–16. The twelve-pointed star case (fig. 15)

has wavenumber κ = 2, while κ = 1 in the rest of the cases.
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Figure 13. Scatterer, case 1: square
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Figure 14. Scatterer, case 2: eight-pointed star
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Figure 15. Scatterer, case 3: twelve-pointed star
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Figure 16. Scatterer, case 4: diamonds

In the square case we find that the asymptotic iteration method outperforms the controlla-

bility method, and in the eight-pointed star case it has no strong advantage. The square is

entirely convex, so the scattered wave has no obstacles to slow it down and reaches the ab-

sorbing boundary quickly. The star is not fully convex, but still allows waves to exit with

little obstruction. In these cases, the optimization approach is not efficient enough to improve

on the rate of convergence.

On the other hand, in the twelve-pointed star and diamonds cases, where a higher degree

of nonconvexity is present and waves must navigate narrow passages to find the absorbing

boundary, the asymptotic iteration method’s performance degrades significantly. In the di-

amonds case it fails to reduce energy at all. The controllability method, on the other hand,

loses little efficiency in these scenarios.

The effects of the harmonic operators on convergence are inconclusive. They lead to slightly

faster convergence in some cases, but have no advantage in others. However, it should be

noted that the computation of the control energy (Eq. (4.1)) involves simulating forward in

time, which depends on the timestep operators used. This means that while both operators

tend to converge to the same level of energy, the solutions they converge to are different.

Based on the results of the plane wave experiment, it can be assumed the harmonic solution
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is more accurate.

We also note that in the eight-pointed star case, the controllability method’s solution fails to

converge to the desired level and the energy begins to increase. This seems to occur when the

computation mesh is of poor quality. In these cases the mesh produces a high amount of error

in the adjoint state solution when the gradient is close to zero, causing the CG algorithm’s

invariants of orthogonal residuals and A-conjugate search directions to be violated. Unless

the mesh quality is poor enough to cause instability, this does not occur in the asymptotic

iteration.

The quality of a mesh can be roughly estimated by investigating the diagonal values of the

Hodge star matrices. In particular, extremely low values of ?1 arising from short dual edges

generate large numerical errors. Values of ?1 can even become negative when a dual vertex

lies outside its corresponding primal face, and meshes where this happens were found to give

rise to unstable simulations.

5.5 Discussion

The purpose of these experiments was to investigate the effectiveness of the harmonic time-

step operators and the controllability method. The harmonic timestep operators, especially

the Hodge star, offer a notable advantage in accuracy over Yee’s equivalents at a small com-

putational cost, so their usage can be recommended in all harmonic problems.

The controllability method’s results are less clear-cut. It has a significant advantage in cases

with highly nonconvex geometry, but suffers compared to the asymptotic iteration method

when the geometry is mostly convex. It also seems to be more sensitive to poor mesh quality

than the asymptotic method. Its usage should therefore be considered on a case by case basis.

Mesh quality was found to be a major factor in the performance of DEC-based simulations,

and our results likely suffer from the use of a mesh generator not specifically designed for

DEC. The circumcentric dual mesh is particularly sensitive to narrow triangles with obtuse

angles, which cause the circumcenter to lie outside the triangle. This produces very small

or negative values in the Hodge star matrix, causing inaccuracy at best and instability at
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worst. In future work, the regular crystal meshes of Räbinä (2014) and Hodge-optimized

triangulations of Mullen et al. (2011) should be investigated.

While these experiments were performed in R2, one of the advantages of DEC is straightfor-

ward generalization to higher dimensions. The main challenges of generalization come from

generating the primal mesh and deriving the harmonic Hodge operators, which needs to be

done for every distinct pair of k- and (n− k)-cells. We expect these methods to have similar

characteristics and tradeoffs in higher dimensions.
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6 Conclusion

In this thesis, a numerical method based on discrete exterior calculus (DEC) and exact con-

trollability was developed for the purpose of finding time-periodic solutions to acoustic wave

scattering problems. Additionally, a timestepping procedure and Hodge operator optimized

for harmonic problems were investigated. The harmonic operators were found highly effec-

tive, while the controllability method was only more efficient than the simpler asymptotic

iteration method in cases with highly nonconvex geometry. To improve the performance and

reliability of the methods, future development should focus on the quality of the computation

mesh, as the generation methods employed here are prone to inaccuracies and instabilities.
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