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A B S T R A C T   

This study investigates the chemical structure of proanthocyanidin-rich crude extracts from willow bark and 
these materials were tested initially as adsorbents for artificial (waste)water treatment. The crude extracts were 
obtained through mild water extraction and the colorant fractions were further chromatographically fractionated 
to understand the chemical structure of the willow bark proanthocyanidins. The chemistry of crude extracts and 
purified fractions were investigated using nuclear magnetic resonance (NMR) and ultraperformance liquid 
chromatography-tandem mass spectrometry (UPLC-MS/MS). Both NMR (liquid and solid-state) and UPLC-MS/ 
MS suggest that the crude extracts constitute of interflavan linked flavan-3-ols, i.e. proanthocyanidins with 
both procyanidin (PC)-type and prodelphinidin (PD)-type subunits, with the PC/PD ratio of approximately 
2.3–2.5. PD-type proanthocyanidins were detected from the purified colorant fractions only with UPLC-MS/MS. 
Both the UPLC-MS/MS and size exclusion chromatography suggest that the crude extracts have an average 
oligomerization degree of roughly 5–6 flavan-3-ol units. Adsorption experiments showed that the activated 
foams made of crude extracts were effective in removing both zinc and Bisphenol A (BPA) with removal effi-
ciencies of roughly 80–90% and thus these willow bark-derived proanthocyanidins are promising in water 
treatment. The significance of this study suggests the upgrading use of crude extracts for water treatment could 
significantly improve the value of willow bark.   

1. Introduction 

The first step in using roundwood trees to produce pulp and timber is 
to remove the bark, which has been a long tradition in the forest industry 
for decades. Extensive research has focused on the valorizations of the 
wood components such as cellulose and lignin, but almost exclusively in 
those of the matrix of wood. [1] However, wood bark with estimated 
annual turnover of 359 million m3 world-wide [2] accounts for about 
10–15 % of the volume of a typical wood log material turnover. Often 
the bark is only used for energy production for the pulp mill or sawmill 
and thus remains by far the largest underutilized biomass resource on 
the earth. Unlike the main polymeric components in matrix wood, i.e. 
cellulose, hemicellulose, and lignin, wood bark mainly consists of 
tannin-rich extractives, pectin, suberin, and starch. This makes 

valorization of the wood bark challenging as the bark has also a rather 
heterogeneous composition morphologically. Because of this 
complexity, attention is currently paid on solvent-extractable fractions 
of the bark [3,4]. Furthermore, the extractable fractions do not represent 
the main bulk mass of the bark and thus do not significantly influence 
the overall energy value of the bark and can be removed without too 
negatively affecting the energy balance of the mill. 

Tannins are complex polyphenolic biomolecules constituted of three 
major groups: hydrolysable tannins (HTs), proanthocyanidins (PAs) and 
phlorotannins. [5,6] Of these, phlorotannins are mainly found in marine 
organisms such as brown algae, while HTs and PAs are widely present in 
trees and their bark as well. These two tannin groups have significant 
differences in both their structures and evolutionary history. Gymno-
sperms can only produce PAs, but no HTs, while many angiosperms can 
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produce both. HTs are esters of a polyol and gallic acid residues with 
considerable modifications taking place via oxidative and oligomeriza-
tion processes, reaching all the way to even 8624 Da sizes. PAs are 
oligomers and polymers of flavan-3-ol units, with as shown e.g. in pro-
cyanidins (PCs) and prodelphinidins (PDs) (Fig. 1c). In many cases, 
plant PAs are a combination of PC and PD units in same molecules, with 
hundreds of different oligomers and polymers typically present in the 
same plant species. [5,6] Particularly the tannin fractions from bark of 
softwood trees, e.g., spruce [7] and pine [8], have been studied. They 
are reported as adsorbents (or biocoagulant) for removal of metal ions 
from industrial wastewater due to their non-toxic natural polyphenolic 
nature with abundant number of adjacent hydroxyl groups. [9,10] There 
are also applications of utilizing bark tannin as a substitute to phenols 
for adhesive applications. [11] 

Short-rotation willow has been studied mainly as an energy resource 
in the last decades globally. Cultivated willow is a short-rotation woody 
crop that can germinate and develop effectively for example in dis-
carded peatlands and other low-nutrient soils. Its growth requires only 
moist soil, and it is insensitive to soil quality (sandy or clay) and pH. 
[12] Willow trees are harvested in a cycle of two to four years, seeding 
cuttings are usually planted as 20 cm long cuttings at a density of 10,000 
cuts/ha. In southern Sweden, productivity of willow has been reported 
up to > 30 ton/ha and the willow plantations were reported to be 
approximately 17,000 ha [13] in the whole of Sweden between 1991 
and 1996. This means roughly 0.1 million tons of willow bark available 
each year. As the willow bark contains high value metabolites (e.g. for 
pharmaceutical or medical uses) [14,15] and functional fiber bundles (e. 
g. as antibacterial materials) [16], the value from the bark can be 
theoretically multi-fold in comparison with the value of wood if the 
wood and bark be utilized separately [17]. Debarking of willow can also 
substantially enhance the efficiency of acetone–butanol–ethanol (ABE) 
fermentation from willow. [18] The long-underappreciated willow bark 
residue may be upgraded from an energy source into high-value fiber 
and proanthocyanidins-enriched biochemicals. 

Increasing industrial activities and technological developments have 
led to the release of larger number of metals into the environment. 
Because of the toxic effects of the presence of heavy metals and their 
accumulation through the food chain, contamination of water environ-
ments is a worldwide environmental problem. Although small quantities 
of heavy metals are essential for the growth of living organisms, 
excessive levels may lead to damage and their accumulation over time 
may subsequently pose health threats also for humans. For example, 
acute toxicity of zinc may lead to throat dryness and cough weakness 
and may ultimately leads to human epidemics. [19] Many plastics and 
resin materials contain Bisphenol A (BPA) and it has also been detected 
in municipal wastewater. BPA enter the environment in a concentration 

that may pose a risk to human health [20,21]. Traditionally, heavy 
metals and BPA can be reduced by chemical precipitation, ion exchange, 
or ultrafiltration ect. However, these methods are often either expensive 
or their manufacturing process is not sustainable. [22] Therefore, the 
search of more bio-based adsorbents for water treatment have drawn 
attention. 

Preparative chromatography has been demonstrated effective for 
purifying both high molecular weight colorant fractions and small mo-
lecular weight fractions (e.g. picein and triandrin) from willow bark 
water extracts. [23] As the colorants elute separately from other small 
Mw aromatic compounds (Fig. S1, Table S1-S2) from the column, we 
were inspired to elucidate the chemical profile behind the purified 
colorant fraction. Separation of the conjugated tannin chromophores 
from aqueous extracts of willow bark could also reveal their full po-
tential as a bioadsorbent for wastewater treatment. A lot of studies have 
been conducted on the crude extracts of willow bark, especially the 
small Mw components, [14,24,25] but there is not much scientific data 
on the chemistry of high Mw proanthocyanidins from willow bark. In 
this paper we utilize a combination of UPLC-MS/MS, NMR spectroscopy 
and size exclusion chromatography (SEC) to elucidate the chemical 
structure of the crude extracts and its purified fractions of polyphenol 
colorants, and to explore further this fraction of proanthocyanidins as a 
source for water treatment. The efficiency of water treatment was 
initially studied through adsorption experiments towards zinc and BPA. 

2. Materials and methods 

2.1. Materials and chemicals 

Two-year-old willow hybrid Klara was harvested from the plantation 
of Carbons Finland Oy (Kouvola, Finland) on 5 May 2019. Four-year-old 
willow hybrid Karin was sampled from a trial field belonging to VTT 
Technical Research Centre of Finland Ltd (Kyyjärvi, Finland) on October 
17, 2014. Willow hybrids “Karin” and “Klara” have been selected for this 
study because of its most characteristic features of abundant extractives 
and the relatively long and thick-walled fibers. [14,16,17,18,23] Willow 
bark was manually peeled from willow biomass. The oven-dried (50 ◦C) 
willow bark was further Wiley-milled (<1mm mesh size) and stored at 
− 20 ◦C freezer before further use. Acetone, acetonitrile, arabinose, 
acetone‑d6, (+)-catechin, D2O, (− )-epicatechin, (− )-epigallocatechin, 
fructose, galactose, (− )-gallocatechin, glucose, procyanidin B1, rham-
nose, and xylose were all analytical grade and supplied from Sigma- 
Aldrich, Finland. Furfural alcohol (98%) and Tween 85 were acquired 
from Acros Organics, Finland. p-toluenesulfonic acid monohydrate 
(PTSA, 99%) and n-pentane (99.4%) were supplied from Merck KGaA. 

Fig. 1. Generic repeating unit of proanthocyanidin (PA) tannin and other small molecular weight (Mw) aromatic compounds from crude extracts of bark from willow 
hybrid Karin. a (+)-Catechin (CAS 154–23-4). b Procyanidin B1 (20315–25-7). c Flavan-3-ol subunits (R = H, catechin or epicatechin are in procyanidins (PC) form; 
R = OH, gallocatechin or epigallocatechin are in prodelphinidins (PD) form). [5,6] d Small Mw aromatics (picein, salicin, and triandrin). 
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2.2. Experimental flow 

2.2.1. Chromatographic purification of the colored fractions 
Peeled willow bark was first extracted with water at temperature of 

80 ◦C within 20 mins according to the optimized condition published 
previously. [14] Then the non-soluble residues were filtered using the 
qualitative filter paper (12–15 µm, VWR) by vacuum filtration. The 
crude extracts were then finally freeze dried and stored in the amber 
glass bottles for further chemical characterization and adsorption ex-
periments. Analysis of the colored fractions of the willow bark crude 
extracts are essential to provide knowledge for understanding the 
chemistry of proanthocyanidins. The main recovery steps (Fig. 2) were 
implemented with preparative-scale chromatography, [23] which sep-
arates the targeted compounds depending on their molecular size and 
hydrophobicity. PF0 (7 w/w, %) and PF1 were separated from crude 
extracts (100 w/w, %) by CA 10GC, PF 1–1 (3 w/w, %) and PF 1–2 (4 w/ 
w, %) were further purified from fraction PF1 by Sephadex G-10 as the 
stationary phase. The estimated mass balance of the purified fraction 
and fractionation cut points are shown in Fig. 1 and fully summarized in 
Fig. S1 and Table S1–S2. 

2.2.2. Foam and activated carbon preparation 
For the adsorption studies the samples were formulated to foams. 

Briefly, crude extracts were mixed with deionized water, furfural 
alcohol, and surfactant Tween 85 in a glass beaker, then the mixture was 
blended mechanically for 5–10 min. Pentane (the blowing agent) and 
PTSA (65% solution, acid catalyst) were then introduced to the ho-
mogenized mixture and blended for another 10 s. Foam formed imme-
diately once the beaker was placed in an oven at 100 ◦C and hardened 
when kept at 100 ◦C for a further 24 h. Finally, the hardened foam was 
crushed and placed inside a section of stainless-steel pipe and then 
steam-activated in a tubular fixed-bed reactor. The temperature was 
increased from 20 ◦C to 800 ◦C using a 5 ◦C/min ramp. At the target 
temperature, steam activation was carried out by injecting water at 
velocity of 0.5 mL/min for 3 h to the reactor. Nitrogen was flushed into 
the reactor at velocity of 10 mL/min during the whole activation to 
avoid sample’s oxidation. The morphological structure of the produced 
foam and activated foam were imaged using a Zeiss ULTRA plus field 
emission scanning electron microscopy. The yields after the activations 
for Klara hybrid was 38.7% and for Karin hybrid it was 36.7% compared 
to starting mass of crude foam. Detailed amounts of the components to 
obtain the crude foam were outlined in Table S3. 

2.2.3. Specific surface area, pore volume, and pore size distribution 
Nitrogen adsorption–desorption isotherms were obtained to char-

acterize the specific surface area and pore size distribution using 
Micromeritics ASAP 2020 instrument (Micromeritics Instrument, Nor-
cross, USA). Roughly 150 mg sample was degassed under low pressure 
(2 mmHg) at 140 ◦C for two hours. Adsorption isotherms were obtained 
by submerging the sample tubes under liquid nitrogen to achieve 
isothermal state followed by purging with gaseous nitrogen. BET (Bru-
nauer–Emmett–Teller) method [26] was used to calculate the specific 
surface areas. Assuming the pore size is slit-formed, the calculation of 
pore size distribution (PSD) of pore volumes (vol %) followed the indi-
vidual pore size (micro-, meso-, and macro-) volumes with NLDFT model 
[27,28]. Micro-pores as small as 1.5 nm in diameter could be identified. 
The specific surface area can be measured with a precision of 5 % based 
on a previous study. [29] 

2.2.4. Batch adsorption experiments 
The adsorption capacity towards BPA and zinc was studied by batch 

adsorption. Raw materials (Karin and Klara willow bark), foam samples 
(Ka-F and Kl-F) and activated foams (Ka-A-F and Kl-A-F) were investi-
gated. Samples were sieved to under 150 µm particle size. Experiments 
were made at pH 6 using initial adsorbate concentration of 50 mg/L, 24 
h adsorption time and adsorbent dosage of 5 g/L. Volume of the batch 
was 25 mL. Laboratory shaker with 300 rpm was implemented to mix 
adsorbent and adsorbate. All adsorption experiments were conducted in 
duplicate. Samples were filtered through 0.45 µm filter paper (Sartorium 
Stedim Biotech) after 24-hour adsorption. 

2.3. Characterization 

2.3.1. SEC of proanthocyanidin 
SEC experiments for both the crude extracts and the purified colorant 

fractions were carried out with an Agilent 1260 Infinity II Multi-Detector 
GPC/SEC System including a UV detector. Three Waters 7.8 mm × 300 
mm Ultrahydrogel columns (500 Å, 250 Å, and 120 Å) with a 6 mm × 40 
mm Ultrahydrogel guard column were implemented with the flow rate 
of 0.5 mL/min using 0.1 M NaNO3 as the eluent. The injection volume 
was 100 µl. For molar mass determination, the columns were calibrated 
using narrow-polystyrene sulfonate (PSS) standards under the 280 nm 
UV absorbance. 

2.3.2. Liquid-state (13C and HSQC) NMR of proanthocyanidin 
Liquid-state NMR spectroscopy was applied for analyses of the 

Fig. 2. Experimental flow of chromatographic purification, chemical characterization, and adsorption for the crude extracts (100 w/w, %) of willow bark. a 
Chemical elucidation of the produced colorant fractions PF0 (7 w/w, %), PF 1–1 (3 w/w, %), and PF 1–2 (4 w/w, %). [23] b Raw powdered crude extracts were 
foamed, carbonized, and activated, and the adsorption capacities towards zinc and BPA were studied. 
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chemical structures of crude extracts and purified fractions. Measure-
ments were performed using a 400 MHz Bruker Avance III spectrometer. 
Acetone‑d6: D2O (v:v; 1:1) (δC/δH, 29.92/2.05 ppm) was used not only 
as the internal reference for the chemical shift calibration but also as the 
deuterated solvent to dissolve the sample. [30] 13C spectra were 
measured at room temperature with a relaxation delay of 2 s with 18 K 
scans and 2D HSQC was performed to correlate the proton and carbon 
shifts. 

2.3.3. Solid-state NMR of proanthocyanidin 
Solid-state 13C CPMAS NMR spectra were acquired by employing a 

double resonance CPMAS probehead. The ground samples were packed 
into 4 mm outer diameter ZrO2 rotors, sealed with KEL-F endcaps and 
spun at spinning frequency of 8 kHz. 13C CPMAS spectra were obtained 
at room temperature with at least 3000 scans using a 5 s relaxation delay 
and 1 ms contact time for cross polarization. The spectra were externally 
referenced to adamantane [31]. 

2.3.4. UPLC-MS/MS of proanthocyanidin 
Dried samples were dissolved in 10% aq. acetonitrile (final concen-

tration 2 mg/mL), filtered with 0.20 µm polytetrafluoroethylene (PTFE) 
filters, and analysed with UHPLC-MS/MS as outlined previously 
[32,33]. Procyanidin (PC) and prodelphinidin (PD) subunits (both ter-
minal and extension units) of oligomeric and polymeric proanthocya-
nidins (PA) were detected by the PC- and PD-specific group-specific MS/ 
MS tools to allow the calculation of total PA content of the analysed 
sample in mg/g dry weight, the PC and PD share, and the mean degree of 
polymerization (mDP) of PAs present in samples analysed based on two 
or three independent measurements. Previously purified and well 
characterized PC-rich and PD-rich PA-fractions [32] were used as 
external standards for both PC and PD quantitation and for the cali-
bration of the mDP. 

2.3.5. HPLC/UV–vis of foam and activated carbon 
Zinc concentration was determined using atomic absorption spec-

troscopy (PerkinElmer A Analyst 200, Waltham, MA, USA). BPA con-
centration was quantified using high-pressure liquid chromatography 
(HPLC) at 226 nm wavelength with ultraviolet–visible (UV–vis) de-
tectors (Shimadzu SPD-10 A). 

2.3.6. FESEM of foam and activated carbon 
The microstructure shown in FESEM images were obtained using a 

Zeiss Sigma field emission scanning electron microscope (FESEM, Carl 
Zeiss Microscopy GmbH, Jena, Germany) at an accelerating voltage of 5 
kV. 

2.4. Calculation 

The adsorption capacity, q: 

q =
(C0 − Ce) × V

m
(1) 

where C0 refers to the initial concentration of adsorbate (mg/L), Ce 
refers to the equilibrium concentration of adsorbate (mg/L), V is the 
volume of solution (L) and m is the adsorbent mass (g). 

3. Results & discussion 

3.1. Mass balance and chromatographic purification 

Crude water extracts represent approximately 20 (w/w, %) of the 
bark from Salix (Klara and Karin) hybrids. [34] Table 1 displays the mass 
balance of the crude extracts from bark of both Klara and Karin willow 
hybrids. The main identified phenolic compounds are salicin, catechin, 
epicatechin, and triandrin. [34] The Stiasny number reaction was 
adopted to determine the tannin reactivity of the crude extracts towards 

formaldehyde. [35] The determined reactive tannin was 56 (w/w, %) in 
Karin bark. The identified phenol represents only 6.6 (w/w, %) and 15.5 
(w/w, %) from crude extracts of bark from Karin and Klara, respectively, 
indicating the rest of formaldehyde-reacting phenol could possibly 
originate from the unreacted proanthocyanidins (approximately 49.5 
(w/w, %), Table 1) that are present largely at the crude extracts of the 
willow hybrid Karin bark. 

To improve the understanding of the composition of the high Mw 
proanthocyanidin, the crude extract was fractionated by stationary 
phases of CA-10GC and Sephadex G10. The resulting multiple colorant 
tannin fractions were purified from the crude extracts using the column 
chromatography. [23] The Mw of each purified fraction was measured 
by SEC (Fig. S2 and Table S4). The average degree of oligomerization of 
the crude extracts was 5–6 flavan-3-ol units. It has been reported that 
70% ethanol extract of Salix purpurea L. bark contains up to 3-unit 
flavan-3-ol oligomers [36], including derivatives formed from re-
actions with other phenolic compounds. The flavan-3-ols obtained were 
catechin, epicatechin, gallocatechin, and catechin-3-O-(1-hydroxy-6- 
oxo-2-cyclohexene-1-carboxylic acid)-ester. 

3.2. NMR characterization 

Solid state 13C NMR is a valuable tool for in-situ characterization of 
proanthocyanidin tannins. The solid-state NMR spectra of the purified 
fractions (PF0, PF 1–1, and PF 1–2), crude extracts, and Karin bark are 
shown in Fig. 3. The overlap resonances especially between the willow 
bark (Fig. 3a) and crude extracts (Fig. 3b) indicate interferences from 
components like lignin, pectin and holocellulose. [37,38] Characteristic 
distinctive resonances at 155 ppm (non-protonated C5, C7, and C8a, 
Fig. 1), 145 ppm (non-protonated C3′, C4′, and C5′), and 132 ppm (non- 
protonated C1′) were observed in the spectra of crude extracts and its 
purified fractions (PF0, PF 1–1, and PF 1–2). [35,37,38] The distinctive 
features of procyanidins (PCs) and prodelphinidins (PDs) units can’t be 
distinguished from solid-state NMR. 

The liquid-state 13C NMR spectra are shown in Fig. 4. Inspection of 
the liquid state NMR spectra and comparison with the published data 
[30,39,40] show typical signals attributed to procyanidin (PC) and 
prodelphinidin (PD) units. The signal centered at 145.0 ppm and 145.1 
ppm (Fig. 4) can be identified to C3′ and C4′ in the B-ring of the flavan-3- 
ol units in PC form, respectively. Typical chemical characteristic signals 
for C3′ and C5′ (centered 145.9 ppm) of the PD units are also seen in 13C 
NMR, Fig. 4. The remaining specific aromatic resonances show the 
116.2 ppm and 119.8 ppm for the C2′ (or C5′) and C6′, respectively. The 
signals at 131.7 (C-1), 77.2 (C-2, cis form), 70.7 (C-3, extender part), and 
67.5 (C-3, terminal part) ppm can be assigned to the attached flavan-3-ol 
units (Fig. 1). The peaks that are shown between the region 90–110 ppm 

Table 1 
Mass balance of the water extracts (mg/g crude extracts) [34] from willow bark 
Karin and Klara. Overall determined phenolics refer to the sum of catechin, 
epicatechin, and triandrin. “a” denotes that the proanthocyanidins (w/w %) =
overall reactive tannin (w/w %) – overall determined phenolics (w/w %). All the 
measurements were performed two times and the standard deviation are 
included inside the parenthesis.  

Component mg/g Karin Klara 

Salicin 1 (0.2) 7 (0.02) 
Picein 51 (2) 0.1 (0.1) 
Catechin 19 (1) 21 (0.01) 
(-)-Epicatechin 0.2 (0.1) 0.1 (0.03) 
Triandrin 45 (1) 127 (0.3) 
Raffinose 1 (0.1) 31 (0.5) 
Monosaccharides (Glc + Fru) 144 (2) 149 (0.1) 
Sucrose 1 (1) 45 (0.6) 
Overall identified 262 380 
Overall phenol (low Mw) 66 155 
Overall reactive tannin 560 n.d. 
Proanthocyanidinsa 495 n.d.  
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was sensitive to the units (C2′, C6′, C6, C8, and C10) in both form of PC 
and PD. The HSQC spectrum at Fig. 5, confirms the structure charac-
teristics of PC and PD form based on literature [37,41,42] and model 
compounds catechin, gallocatechin, and procyanidin B1. The peaks at 

δC/δH 115.03/6.86 (B ring-2′), 115.53/6.68 (B ring-5′) and 119.08/ 
6.62 (B ring-6′) represent the correlations of the protonated PC form. 
Green triangle (Fig. 5) highlights the assignment of the characteristic 
peaks of the C/H-2′,6′ (δC/δH, 105–110/6.4–6.8 ppm) of the protonated 

Fig. 3. Solid state CPMAS NMR spectrum of the purified polyflavonoid tannin fractions in comparison with the original Karin bark and its crude extracts. a Karin 
bark. b Crude extracts. c PF0. d PF 1–1. e PF 1–2. 

Fig. 4. Room temperature 13C NMR spectrum of both the crude extracts and its purified fractions from willow Karin bark in solvent of acetone‑d6: D2O (v:v; 1:1) in 
comparison to the authentic compounds of catechin and procyanidin B1. a Crude extracts. b PF0. c PF 1–1. d PF 1–2. e Authentic (+)-catechin. f Authentic pro-
cyanidin B1. For labelling see Fig. 1. Estimated integral ratio of PC-unit (C3′ and C4′, 1)/ PD-unit (C3′ and C5′, 0.4344) of the crude extracts = 2.3. 
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prodelphinidin (PD) units and they were both identified from the crude 
extracts. 13C NMR spectrum of the fraction PF 1–2 contained several 
overlapped signals at chemical shifts of polymeric tannins from leaves of 
Leucaena leucocephala hybrid Rendang in D2O/acetone‑d6 (v:v; 1:1) 
(Fig. S3) [30]. Only procyanidin (PC) form was identified from its pu-
rified polyflavonoid tannins (i.e. PF0, PF 1–1, and PF 1–2). This is 
possibly because 13C measurement parameters (such as relaxation 
delay) were not optimized for the purified fractions so that prodelphi-
nidin (PD) units may be filtered out. 

3.3. UPLC-MS/MS characterization 

UPLC-MS/MS analyses were performed to further support compound 
identifications. The PCs and PDs can be detected and quantified using 
group-specific 2D fingerprint method. [33] This method relies on the 
fragmentation of oligomeric and polymeric PAs in the MS ion source by 
using a cone voltage much higher than used for the analysis of individual 
flavan-3-ols such as catechin and gallocatechin. The fragments thus 
represent the PC and PD units originally bound to the oligomeric and 
polymeric PAs and are detected by MS/MS methods specific to both 
terminal and extension units of the PCs and PDs. The use of a small cone 
voltage revealed sharp peaks presenting gallocatechin and epi-
gallocatechin (Fig. 6e) together with catechin and epicatechin (Fig. 6i) 
monomers. The PD-containing PA oligomers showed as peaks with 
higher cone voltages in Fig. 6 b->d and the PC-containing PA oligomers 

in Fig. 6 h->g. These same chromatograms also displayed the smaller 
polymeric PD- and PC-containing PAs as the chromatographic humps 
eluting after the oligomeric peaks. Finally, the largest PD-containing 
polymeric PAs showed with the highest cone voltage used in the chro-
matogram 6b, and the largest PD-containing polymeric PAs in the 
chromatogram 6f. The gradual detection of larger and larger PAs with 
increasing cone voltage was evident also from the chromatograms as the 
PC and PD hump shifted to the right as the method fragments and thus 
detects bigger and bigger PAs from Fig. 6 d->b and Fig. 6h->f. The 
detection of PD was very low at samples PF 1–1 and PF 1–2, i.e. close to 
the baseline noise, as the hump was barely visible even with this sen-
sitive detection method (Fig. 6b). 

According to the identification protocol [33], the total content of 
proanthocyanidins, PC and PD, and mDP were reported in Table 2. 
Unlike the NMR results, prodelphinidins (PD) – units were also detected 
from PF0 although their presence was almost negligible at fractions of 
PF 1–1 and PF 1–2 (Table 2). The instrumentation of UPLC-MS/MS is 
more sensitive to the qualitative determination of oligomers from both 
prodelphinidin (PD) and procyanidin (PC) type tannins. Overall pro-
delphinidin (PD) and procyanidin (PC) form of tannin were both iden-
tified for its presence at willow bark crude extracts by NMR and UPLC- 
MS/MS. The relative ratio of PC/PD was roughly 2.5 for crude extracts 
and PF0 at Table 2, and it was supported by the integral ratio (i.e. 2.3) 
between PC form and PD form from Fig. 4 and Fig. 5. The mDP was the 
highest from the crude extracts and dropped roughly 1.5 times to the 

Fig. 5. HSQC NMR spectrum of both the crude extracts and fractions from Karin bark in solvent of acetone‑d6: D2O (v:v; 1:1) in comparison to the authentic 
compounds of catechin, gallocatechin, and procyanidin B1. a Crude extracts. b PF0. c PF 1–1. d PF 1–2. e Authentic (+)-catechin (for labelling see Fig. 1). f Authentic 
procyanidin B1. HSQC NMR spectrum of epicatechin, gallocatechin, and epigallocatechin are shown in Fig. S4-S6. Estimated volume integral ratio of PC-unit (C2′

and C5′)/ PD-unit (C2′ and C6′) from crude extracts = 2.3. 
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purified fractions, indicating that the purified fraction was also highly 
representative of the proanthocyanidins. Both the UPLC-MS/MS 
(Table 2) and size exclusion chromatography (SEC) (Table S4) suggest 
that the crude extracts have an average oligomerization degree of 
roughly 5–6 flavan-3-ol units. 

3.4. Adsorption performance of activated foams (or foams) from crude 
extracts 

The structural foundation (or characterization) of crude extracts 
provides a more rational design to apply this activated foam made of 
willow bark-derived proanthocyanidins as promising bio-based adsor-
bents for possible water treatment. Considering the potential applica-
bility for the industrial wastewater treatment, crude extracts from two 
willow hybrids (Karin and Klara) were included for the water treatment 
experiments by using model solutions. Willow bark crude extracts 
(including hybrids Karin and Klara) were chemically foamed and further 
activated with steam treatment. They were then used as adsorbents in 
initial experiments for removing zinc (Zn2+) and Bisphenol A (BPA). The 
specific surface area and porous morphology of the activated foam was 
achieved using the nitrogen sorption, as shown at Fig. 7. Interestingly, 
the mesoporous structure appears after the activation (with the yield of 

roughly 38%, Table 3), as reflected by the surface characteristics like 
specific surface area and pore volumes (micropores, mesopores, and 
macropores). 

The surface acidity and porosity structure of the adsorbents are 
important aspects regarding the adsorption on the removal of zinc and 
BPA, respectively. As indicated in Table 3, the raw materials, Klara and 
Karin bark, did not remove BPA or zinc at all. The foams and especially 
the activated foams have a sponge-like structure with a large surface 
area. Foams (Ka-F and Kl-F) removed considerable amount of BPA but 
very low amount of zinc. Interestingly, activated foam samples (Ka-A-F 
and Kl-A-F) removed significantly both zinc and BPA for both willow 
hybrids. In specific, adsorption capacities of 9.19 mg/g (91 % removal 
efficiency) and 7.96 mg/g (79 % removal efficiency) were reported to-
wards zinc removal for Ka-A-F and Kl-A-F, respectively. Interestingly, 
100 % of initial BPA from the solution could be removed using activated 
foams (Ka-A-F and Kl-A-F) and can also be reported as having an 
adsorption capacity of 9.18 mg/g. In addition, the willow bark was 
carbonized previously as electrode materials. The adsorption capacities 
shown here from the crude extracts, representing 20 (w/w %) of Karin 
bark, maybe partly explain the hierarchically organized pore structure 
of the obtained electrode from willow bark as an energy storage system. 
[43] Overall there is clear established correlation between the surface 
area and the adsorption capacities in this study, as reported also previ-
ously. [44] Biomass-derived carbon materials have been used as an 
adsorbent earlier and results presented in literature showed huge variety 
towards the removal of BPA and zinc as seen in Table 4. Results obtained 
in this study was compared to the studies in which quite simple pro-
duction step was used in the context of lignocellulosic biomass-derived 
material. Even though the screening adsorption experiments are 
currently only conducted by screening rather than under optimal con-
ditions, the adsorption capacity has been proven to be in the same order 
of magnitude than the results presented in literature. Therefore, the 
willow bark crude extracts are of high importance comparing to the 

Fig. 6. UHPLC chromatograms of Karin bark crude extracts and its purified fractions (PF0; PF 1–1; and PF 1–2). a UHPLC-DAD chromatogram at 280 nm. b-d UHPLC- 
MS/MS chromatograms of prodelphinidin oligomers and polymers. e UHPLC-MS/MS chromatograms of gallocatechin and epigallocatechin monomers. f-h UHPLC- 
MS/MS chromatograms of procyanidin oligomers and polymers. i UHPLC-MS/MS chromatograms of catechin and epicatechin monomers. 

Table 2 
UPLC-MS/MS analysis results of Karin bark crude extracts and its purified 
fractions (PF0; PF 1–1; and PF 1–2).   

Total proanthocyanidins mg/g   

PC PD Sum mDP 

Crude extracts 58.8 23  81.8  5.0 
PF0 49 19.8  68.8  2.9 
PF 1–1 10.6 1  11.6  3.2 
PF 1–2 9.7 0.7  10.4  1.9  
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other bio-based materials. 

4. Conclusion 

The chemical composition of the proanthocyanidins fractions from 
crude extracts of willow bark has been determined using a novel 
analytical approach combining the use of both liquid (13C and two- 
dimensional HSQC) and solid-state NMR spectroscopy. This NMR ap-
proaches offered information regarding the chemical structure of the 
elusive proanthocyanidins from crude extracts and its purified colorant 
fractions. To be specific, solid-state NMR provided generalized charac-
teristic resonances of the overlapped procyanidins (PCs) and prodel-
phinidins (PDs) units of proanthocyanidin (PA) fractions from purified 
colorants and crude extracts. The flavan-3-ol unit showed clear and well- 
resolved absorbance regions in both 13C and 2D HSQC NMR. Both the 
NMR and UPLC-MS/MS recognized both PCs and PDs units of proan-
thocyanidin from crude extracts and procyanidins units were identified 
as the main units present in the proanthocyanidins. The oligomeric 

nature of the crude extracts was also revealed by both the UPLC-MS/MS 
and SEC. Overall, the sensitivity of the applied technique towards the 
proanthocyanidin chemistry elucidation has been studied and this 
demonstrates the power of the concerted use of multiple techniques for 
the structural elucidation of bark-derived crude extracts. This study 
showed that the activated foam from willow bark crude extracts has the 
potential to be successfully applied to the industrial wastewater 
treatment. 

In this study, only initial adsorption studies were implemented to test 
is the developed material showing adsorption capacity towards organics 
(BPA as model) or metals (Zn as model). Adsorption-regeneration cycles 
were not implemented and therefore, the detailed plan to optimize 
various parameters of adsorption and carry out ‘‘long-term performance 
study’’ using the willow bark-derived crude extracts (or its purified 
fractions) as adsorbent is out of scope of this present work and this will 
be investigated more carefully at another study. 

Fig. 7. Morphology of the prepared foam and activated foam from Karin bark crude extracts by FESEM imaging analysis. a Karin bark crude extracts. b Foam of crude 
extracts (Ka-F). c Activated foam of crude extracts (Ka-A-F). For Klara bark, see Fig. S7. 

Table 3 
Surface characteristics and adsorption capacities towards zinc and Bisphenol A (BPA) for the studied adsorbents. “a” denotes that the adsorption capacities for crude 
extracts was zero. Standard deviations are included inside the parenthesis.    

Unit Ka-F Ka-A-F Kl-F Kl-A-F 

Specific surface area, pore volume, and pore size 
distribution 

SSA (specific surface area) m2/g 0.3 734 0.02 717 
Total pore volume cm3/ 

g 
* 0.3 * 0.3 

Micropores < 2.2 nm cm3/ 
g 

* 0.3 * 0.3 

Mesopores 2.2–50 nm cm3/ 
g 

* 0.04 * 0.02 

Macropores > 50 nm cm3/ 
g 

* 0.002 * 0.001 

Micropores < 2.2 nm % * 86 * 92 
Mesopores 2.2–50 nm % * 13 * 8 
Macropores > 50 nm % * 1 * 0.4 
Yield after activation based on crude 
foam 

% – 39 – 37 

Adsorption capacitiesa q (zinc) mg/g 0.99 (6*10− 2) 9.19 
(8*10− 4) 

0.88 (0.01) 7.96 
(0.11) 

q (BPA) mg/g 7.08 
(9.04*10− 6) 

9.18 (0) 6.33 
(7.1*10− 6) 

9.18 (0)  
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