JYVASKYLAN YLIOPISTO
H UNIVERSITY OF JYVASKYLA

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s): KIeme'tti, Antti; Raatikainen, Mikko; Myllyaho, Lalli; Mikkonen, Tommi;
Nurminen, Jukka K.

Title: Systematic Literature Review on Cost-efficient Deep Learning

Year: 2023

Version: pyblished version

Copyright: © Authors, 2023

Rights: ccya.0
Rights url: https://creativecommons.org/licenses/by/4.0/

Please cite the original version:

Klemetti, A., Raatikainen, M., Myllyaho, L., Mikkonen, T., & Nurminen, J. K. (2023). Systematic
Literature Review on Cost-efficient Deep Learning. IEEE Access, 11, 90158-90180.
https://doi.org/10.1109/access.2023.3275431

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 3 March 2023, accepted 2 May 2023, date of publication 11 May 2023, date of current version 28 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3275431

==l ToPicAL REVIEW

Systematic Literature Review on Cost-Efficient
Deep Learning

ANTTI KLEMETTI®?, MIKKO RAATIKAINEN™', LALLI MYLLYAHO ™, TOMMI MIKKONEN2,
AND JUKKA K. NURMINEN®, (Member, IEEE)

lDepartment of Computer Science, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
2Faculty of Information Technology, University of Jyviskyli, 40014 Jyviskyl, Finland

Corresponding author: Antti Klemetti (antti.klemetti @helsinki.fi)

This work was supported by the Industrial Machine Learning for Enterprises (IML4E) Project of ITEA4 funded by Business Finland.

ABSTRACT Cloud computing and deep learning, the recent trends in the software industry, have enabled
small companies to scale their business up rapidly. However, this growth is not without a cost — deep learning
models are related to the heaviest workloads in cloud data centers. When the business grows, the monetary
cost of deep learning in the cloud also grows fast. Deep learning practitioners should be prepared and
equipped to limit the growing cost. We emphasize monetary cost instead of computational cost although often
the same methods decrease both types of cost. We performed a systematic literature review on the methods
to control the cost of deep learning. Our library search resulted in 16,066 papers from three article databases,
IEEE Xplore, ACM Digital Library, and Scopus. We narrowed them down to 112 papers that we categorized
and summarized. We found that: 1) Optimizing inference has raised more interest than optimizing training.
Widely used deep learning libraries already support inference optimization methods, such as quantization,
pruning, and teacher-student. 2) The research has been centered around image inputs, and there seems to be
a research gap for other types of inputs. 3) The research has been hardware-oriented, and the most typical
approach to control the cost of deep learning is based on algorithm-hardware co-design. 4) Offloading some
of the processing to client devices is gaining interest and can potentially reduce the monetary cost of deep
learning.

INDEX TERMS Cloud computing, cost-efficiency, cost reduction, deep learning, deep neural network, edge
offloading, machine learning, systematic literature review.

I. INTRODUCTION

Machine learning (ML) has matured into accurate and popu-
lar technology that is widely applied in the software industry.
Deep Learning (DL) is a popular approach to ML that has
seen significant advances during the past decade. At the same
time, cloud computing, often offered by technology giants
such as Amazon, Google, and Microsoft [1], has become a
commonly applied architectural and deployment paradigm
for digital systems. Cloud vendors offer computing resources
from their data centers to other companies. Client software
typically runs on client-side platforms, in general-purpose
web browsers, or selected mobile platforms, such as Android
and iOS in the case of mobile phones, which enable a broad

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

90158

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

reach of users with a manageable number of client application
versions. With the advent of the cloud, edge computing has
also emerged to offload computations from the cloud closer
to the client devices [2]. Broadly, edge refers to anything
deployed outside the cloud that is typically interpreted as
client devices, such as mobile phones, micro-controllers, and
any IoT devices. Alternatively, the edge is seen as a separate
processing layer between the client devices and the cloud,
also known as fog [3], such as a particular edge data cen-
ter or a telecommunication operator-hosted setup in mobile
network base stations as MEC (Mobile Edge Computing or
Multi-access Edge Computing).

The combination of client-side platforms, cloud com-
puting, and DL has introduced new business opportunities
enabling companies with only a handful of software devel-
opers to grow their businesses from zero to a global scale.

VOLUME 11, 2023

https://orcid.org/0000-0001-6578-6284
https://orcid.org/0000-0002-2410-0722
https://orcid.org/0000-0002-0953-9825
https://orcid.org/0000-0002-8540-9918
https://orcid.org/0000-0001-5083-1927

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

Creating native optimizations per device type is often not
feasible in practice, because the hardware in client devices
is heterogeneous [4]. Instead, cloud and web-based server
or mobile platform-based client architectures fit most use
cases. Moreover, they scale well enough to empower growing
businesses without needing to develop or own hardware or
hire hardware specialists.

As a downside, industrial DL models require at least one
order of magnitude more cloud resources than linear ML
models [5]. DL models can have millions of trainable param-
eters [6], and model execution involves multidimensional
matrix operations that are intensive in terms of memory
access and computations. With advances in DL and the com-
plexity of problems, the matrix sizes of DL models have
grown beyond the on-chip memory of general-purpose pro-
cessors — even those provisioned from the cloud. Off-chip
memory access consumes orders of magnitude more energy
than on-chip memory access [7] and dominates the execution
time when hitting the memory wall of the currently applied,
Von Neumann computer architecture [8]. In fact, the heaviest
computing in cloud datacenters is related to DL [9]. The
growing size of DL models leads to hitting the memory wall,
which leads to slower model execution. This in turn leads
to the need to provision more virtual machines (VM) in the
cloud, which increases the cost.

The meaning of costs differs among stakeholders. For a
computer scientist, the cost usually refers to computational
cost, that is, the amount of computing resources and duration
of using those resources. For people working in finance,
costs refer to the operational or monetary cost, that is, the
money spent. For example, offloading computations from
the cloud to client devices may increase the computational
cost owing to the increased network traffic, but the monetary
cost decreases when processing is performed by the end-user
devices instead of the cloud. In the scope of our work, cost
means the monetary cost, not the computational cost, unless
otherwise mentioned.

Using DL to fuel business growth makes sense only if the
profit gained is greater than the cost of DL. The cost of DL
in the cloud can increase rapidly as business grows for the
following reasons:

« Inference frequency increases. Prediction systems for
large online companies, such as Facebook, handle tens
of trillions of inference requests per day [5], and infer-
ence must be performed in near real-time.

« More data is available for training. It makes sense to
use this data as there is empirical evidence that DL
model accuracy improves as a power-law function of the
training set size [10]. A longer retention of historical
data and longer training cycles lead to increased cloud
costs.

e Models must be frequently retrained to maintain their
accuracy under concept drift [11].

DL practitioners should be prepared and equipped for the
developments listed above. Although cloud computing can

VOLUME 11, 2023

scale, scaling implies additional costs. For example, increas-
ingly frequent training combined with a growing training
set size can be addressed by distributing the training to
a cluster of machines [12]. However, distributed training
is less cost-efficient than training using a single machine.
Distributed training involves parameter synchronization over-
head and can lead to under-utilized cloud VMs waiting
for parameter updates [13]. Likewise, the combination of
increased inference frequency and near real-time require-
ments can be resolved by provisioning more cloud VMs.
However, inference requests are not always evenly distributed
over time but can come in bursts, resulting in idle resources,
communication overheads, and continuous scaling. There-
fore, scaling computing is only one of the solutions. In this
paper, we review methods that DL practitioners can use
to control and limit the monetary cost of DL. For DL
researchers, we identify research gaps in cost-efficient DL.

Our research problem addresses the monetary cost-
efficiency of a software development organization that
adheres to the state of the practice development approach for
DL, that is, a cloud is used if a server is needed and clients
are based on either web technology or applications for up to a
few major platforms. Thus, we excluded dedicated hardware-
based cost-efficiency solution proposals. We conducted a
systematic literature review [14] that analyzed 112 scientific
papers to understand the methods that exist to reduce and
control the costs of DL. Our main findings are:

« Optimizing inference has attracted more interest than
optimizing training. Widely used deep learning libraries
already support some inference optimization methods,
such as quantization, pruning, and teacher-student.

« Research has been heavily centered on image inputs
leaving a gap for other types of inputs.

e The research has been hardware-oriented, and the most
typical approach to control the cost of DL is a proposal
based on algorithm-hardware co-design.

« The offloading of DL processing to client devices is
gaining interest and can reduce the monetary cost of
deep learning.

The remainder of this paper is organized as follows.
Section II introduces the structure of the commonly used
DL models and walks through surveys related to our work.
Section III describes our research method and research ques-
tions. Section IV gives an overview of the results. Section V
contains a detailed description of all the methods used to
reduce and control the cost of DL found via a literature
search. Section VI answers the research questions and dis-
cusses the findings. Section VII presents the potential threats
to the validity of our research. Finally, section VIII presents
the conclusions.

Il. BACKGROUND AND RELATED WORK

The background of this work consists of introducing Deep
Neural Networks (DNN), which are the type of models used
in DL. Additionally, we provide insights into related studies.

90159

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

A. DEEP NEURAL NETWORKS

DNNs have existed for decades, but the most significant
leaps have occurred over the past ten years. Deep learning
research was sparked in 2012 by a DNN named AlexNet,
which won the ImageNet challenge with a two-digit margin
[6]. The most popular neural network types that differ by
their network structure are Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN), and Recurrent Neural
Network (RNN) [9].

MLPs are general-purpose DNNs with only fully con-
nected layers. A neuron performs a multiply-accumulate
(MAC) operation with its inputs using the trained weights
for the neuron that outputs a single numeric value. The con-
nection between two neurons describes how the output of a
neuron, the numeric value, acts as one of the inputs for a
neuron in the next layer. The first layer in a DNN is called
the input layer, and the last layer is called the output layer.
The layers between them are called the hidden layers. Hidden
layers make DL models deeper than linear models with only
input and output layers.

A simple MLP with one input layer, one hidden layer,
and one output layer is shown in Fig.l1. Realistic MLPs
have numerous hidden layers and wider input layers. A neu-
ron from the hidden layer is refined on the right side
of the figure. Neurons in the hidden and output lay-
ers are followed by an activation function that performs
a non-linear mapping on the result of the MAC opera-
tion from the neuron. Commonly used activation functions
include, Sigmoid for binary classifier output, Softmax for
multi-class classifier output, and Rectified Linear Unit
(ReLU) for the hidden layers. For simplicity, the bias
term added to the result of the MAC operation has been
omitted.

CNNs have been invented for image processing [15]. For
example, AlexNet is a CNN with 60 million 32-bit floating
point parameters. CNNs consist of three types of layers:
convolutional, pooling, and fully connected layers. Convolu-
tional layers have filters that are — typically small — matrices
used to extract patterns, such as edges in images, from the
input. The filters are stacked as channels. When the inputs
are images, the first convolution layer has three channels —
red, green, and blue — for the respective color channels in
the image. The subsequent convolutional layers can have any
number of channels. Pooling layers are used to reduce the
dimensions of the CNNs. A pooling layer splits the input
matrix into tiles, and the values in each tile are reduced
to one value, for example, the average value within the
tile or the maximum value within the tile. Owing to their
well-defined structure, convolutional and pooling layers are
obvious targets for on-chip memory reuse and computation
optimizations.

RNNs are MLPs that have cyclic connections between
layers and can maintain a state between subsequent
inputs. Using the saved state renders RNNs suitable for
machine translation, speech recognition, and time series data
processing.

90160

Hidden Output

Neuron
layer layer

Input layer

Weights for MAC
operations perfomed
with input values from
incoming connections

Weight 1 | Weight 2 | Weight 3

Three incoming
connections -
three weights

FIGURE 1. A simple MLP and a neuron from the hidden layer.

DNNs can be used as regressors and classifiers. The regres-
sors output a single numeric prediction, and the classifiers
output the predicted class. The predicted class has the highest
probability, that is, the highest confidence score. The confi-
dence scores are used by several cost-efficient DL methods
in this study.

Generative Adversarial Networks (GAN) are DNNs with
inverted input and output sizes [16]. For a GAN that gen-
erates images, the input could be the classification value,
such as the string “cat”, and the output would be a picture
of the requested entity, such as a cat figure. For a GAN
that generates text, the input can be a short question and
the output can be a more verbose answer. Training GANs
can be computationally heavier than training other types of
DNNSs as two competing models are trained: a generator and a
discriminator. When inferencing in GANs, only the generator
is used, but the data flow is still different from that of other
types of DNNs, typically from a smaller input to a larger
output.

An emerging DNN type is the Graph Neural Network
(GNN), which typically takes subgraphs and their properties
as input and predicts further properties of the subgraph as
output. GNNs can be computationally heavier than MLPs
owing to the graph dimensions of the input. Graph Convolu-
tional Networks (GCN) are an implementation of GNNs [17].
In GCNs, graph connections are modeled with an adjacency
matrix. GCNs multiply the activations and weights with the
adjacency matrix in forward propagation. When the modeled
graph becomes large, the adjacency matrix becomes large
and typically sparse leading to memory bandwidth and com-
putational challenges similar to those of large weight and
activation matrices.

B. RELATED STUDIES

The focus of DL research has shifted from optimizing the pre-
diction accuracy toward green artificial intelligence [18] and
understanding the energy consumption of ML models [19].
Some surveys partially overlap with our work, but differ in
their research methods and focus. First, this study is a system-
atic review, unlike the overlapping surveys. However, none
of the surveys focused on reducing the monetary cost of DL
using software. The hardware acceleration offered in 2018 in
public clouds is reviewed in [20]. The Field-Programmable

VOLUME 11, 2023

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

Gate Array (FPGA) design landscape and usage for DL are
summarized in [21]. Most other surveys are about hardware
and software co-design [22], [23], [24], [25], [26], [27], [28].
Concerning specific techniques, pruning and quantization
are reviewed extensively in [29], and quantization by itself
in [30]. The combination of ML and edge computing, called
edge intelligence or edge Al, is discussed in [24], [31],
and [32].

lll. RESEARCH METHOD
The research method of this study follows the Systematic
Literature Review approach [14].

A. RESEARCH PROBLEM AND QUESTIONS

Our research problem addresses the cost-efficiency of an
organization that adheres to the state of the practice devel-
opment approach for DL, that is, a cloud is used if a
server is needed and clients are based on either web tech-
nology or applications for up to a few major platforms.
Alternatively, an organization develops embedded systems,
but even then, general-purpose hardware is often used, and
software development is not significantly different. Con-
sequently, novel DL-specific hardware-based solutions for
cost-efficiency are mainly out of our scope because we can-
not expect the solutions to be applicable in practice. That
is, DL-specific hardware development, manufacturing, and
support require different expertise and resources than soft-
ware development and introduce different costs that may not
be desirable. However, we included those hardware-based
solutions that are currently available or are promising based
on the popularity that might soon be realized in commer-
cial offerings. For example, tensor processing units (TPU)
as DL-specific hardware became surprisingly rapidly avail-
able for business. Consequently, our research problem is as
follows:

How can a software development organization
reduce its DL costs?

We refine the research problem to the following more

precise research questions:

« RQI1: What methods exist to reduce and control the cost
of DL?

e RQ2: Which of these methods are available without
developing, buying, distributing, or supporting any hard-
ware?

« RQ3: What are the pros and cons of these methods?

The goal of RQ1 is to broadly analyze and categorize exist-

ing methods for cost-efficient DL. RQ2 scopes the review of
methods available to organizations that cannot or do not want
to deal with DL-specific hardware. RQ3 further analyses the
methods that pass the criteria set in RQ2.

B. SEARCH STRATEGY

We conducted the search in three databases (IEEE Xplore,
ACM Digital Library, and Scopus). We scoped the search
timeline to years from 2010 to 2021 based on the observation

VOLUME 11, 2023

that DNN research has re-activated during the 2010s. Fig. 2
summarizes the search and selection process.

First step, we prototyped search terms. Based on a pre-
liminary search for papers, we found that only a handful of
papers concentrate specifically on the cost-efficiency of DL.
We had to consider what other goals might lead to the same
result: saving cost. Saving energy, a popular topic in the past
few years, involves methods for decreasing the amount of
computing or its resources, which could also save cost in the
context of DL. We found that including energy efficiency
in the search criteria discovered many potentially relevant
papers but also increased the manual work of going through a
more extensive set of search results, for example, the number
of papers matching the criteria from IEEE Xplore tripled.
Consequently, we combined terms related to costs and energy
with terms related to Artificial intelligence (AI) in our search
terms as described for each scientific database as follows.

IEEE Xbplore offers an API for programmatic queries [33].
We applied the search string to all metadata and limited the
search to journals, magazines, and conference papers. We set
the period between 2010 and 2021. The following query
resulted in 9374 papers.

(artificial-intelligence OR AI OR
deep-learning OR DNN OR
machine—-learning OR ML OR
neural-networkx)
AND
(cost—aware OR
cost—-eff*x OR
cost—-reduction OR
energy—aware OR
energy-effx)

We used the same search string and time range as Scopus
but limited the search to the title, abstract, and keywords. This
query resulted in 4692 papers.

ACM Digital Library search strings do not support wild-
cards in phrases. Consequently, we used the following search
string for the ACM Digital Library:

("artificial intelligence OR "AI" OR
"deep learning” OR "DNN" OR
"machine learning"™ OR "ML" OR
"neural network")

AND

("cost aware" OR

"cost efficient" OR

"cost reduction" OR

"energy aware" OR

"energy efficient")

We limited the search to research articles published between
2010 and 2021. The query resulted in 4372 papers, however,
unfortunately, the ACM Digital Library limited the viewing
of the search results to the first 2000. We sorted the results in
descending order by citation count and took the top 2000 most
cited papers.

90161

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE

Xplore
9374 papers

Stage 1:
Search Selection based on
title and abstract

2000 papers

ACM
Digital
Library

FIGURE 2. Search and selection process.

C. PAPER SELECTION

The combined set from the three databases included
16066 papers for which the inclusion and exclusion criteria
were applied in two stages (cf. Fig. 2).

1) INCLUSION AND EXCLUSION CRITERIA
The papers had to fulfill both of the following criteria to be
included:

IC1 The paper is about ML.
IC2 The paper is about optimizing some aspects of ML.

DL is a field of ML and DNNs are specific ML models.
Because some optimization methods can be applied to ML in
general and not only DNNS, the inclusion criteria cover ML.

The exclusion criteria were the following:

EC1 ML is used to optimize the energy consumption of
some other domain, not ML itself.

EC2 ML is used to predict energy consumption in some
other domains.

EC3 ML is used to optimize the cost of other domains,
not ML itself.

EC4 ML is used to predict the cost in some other
domains.

EC5 AI and ML abbreviations mean something other
than Artificial Intelligence and Machine Learning.

EC6 Optimization applies only to other types of ML
models than DNNSs.

EC7 The paper is about a hardware accelerator without
commercial implementations or significant academic
interest (less than 100 citations).

EC8 There is no experimental evidence.

ECI-ECS5 were necessary as expressing these criteria in
the search string was difficult. We wanted to avoid enforcing
EC6 with the search string as there are methods to improve
the cost-efficiency of ML, which are generic to many types
of models, including DNNSs, such as data pre-processing by
feature selection. Our research problem implies EC7 because

90162

Stage 2:
Selection based on [—112 papers Analysis
full text

most hardware methods are unavailable for software-only
development organizations. EC8 excludes pure conceptual
or solution proposal papers without evidence of how the
proposed method works in practice.

2) STAGE 1: SELECTION BASED ON TITLE AND ABSTRACT
We manually analyzed the search results from all databases
based on the titles of the papers and, when necessary,
on abstracts. Duplicates found in more than one database
were excluded at this stage.

3) STAGE 2: SELECTION BASED ON FULL TEXT

We analyzed the full papers, starting from the introduction
and conclusions and drilling down to the rest of the text when
necessary. The inclusion and exclusion criteria were the same
as those for stage 1. We also outlined the initial categorization
of papers for the analysis.

D. ANALYSIS

In the analysis stage, 112 papers were read thoroughly, and
the final categorization for RQ1 was decided. The data extrac-
tion form is presented in Table 1. The categories emerged
from the analysis. We decided to make the values for the
categories mutually exclusive to make it easier for readers
to follow. We discuss all the primary studies in Section V in
dedicated subsections per category.

The quality of the included papers was assessed by assign-
ing evidence levels to each paper. We decided to use the
evidence levels [34] that we interpreted in our context as
follows, from weakest to strongest.

L1 No evidence.

L2 Evidence obtained from academic experiments, but
the datasets used are not mentioned (feasibility study) or
provided a toy example.

L3 Evidence obtained from academic experiments using
simple public datasets or datasets not mentioned, but the
experimental setup otherwise described in detail.

VOLUME 11, 2023

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

TABLE 1. The data extraction form.

Extracted data Values

Title The title of the paper

Authors The names of the authors

DOI Document Object Identifier

Year The publishing year of the paper

Category Inference, Edge offloading, Hardware
acceleration, Training, Hyper-parameter,
Human effort (reduction), Feature selec-
tion

Subcategory Pruning, Quantization, BNN, Early exit,

Teacher-Student, Compact CNNs, (In-
ference) Usage patterns, Algorithm co-
design, New numeric formats, Acceler-
ator, Inference, Training, Both, (Hyper-
parameter) Tuning, (Human effort) Re-
duction, Feature selection

Evidence level of the paper

The optimization goal of the paper: Com-
pute to reduce the computational cost,
Energy for energy efficiency, and Labor
to reduce the human effort related to de-
veloping ML systems

CNN yes, if the optimizations suggested in the
paper are CNN-specific, otherwise no
The names of the public datasets used

Evidence level
Optimize

Public datasets used

N N N N
=) o o a

Number of papers

o

0

2014 2015 2016 2017 2018 2019 2020 2021

FIGURE 3. The number of papers by year of publication.

L4 Evidence obtained from academic experiments using
complex public datasets and the experimental setup
described in detail.

LS Evidence obtained from industrial proof-of-concept
L6 Evidence obtained from industrial practice

Papers without evidence (L1) were excluded during the
paper selection, as all included papers had experimental evi-
dence (ECS8). We interpreted L3 differently than [34]: L3 and
L4 apply the complexity of the datasets used as indicators of
stronger evidence.

CNNs play a significant role in research on making DL
more efficient. Therefore, we separately mark the papers in
which the optimizations suggested are based on CNN spe-
cific structures, for example, convolution or pooling layers.
We also gathered the names of the public datasets used in the
papers.

IV. OVERVIEW OF THE INCLUDED PAPERS

The references and tabulated data extraction results for the
included primary studies are listed in Appendix A. The
included studies are ordered alphabetically and referenced
hereafter using the letter “S” as the prefix, as in [S1] for
the first paper. The distribution of the papers by year of
publication is shown in Fig. 3.

VOLUME 11, 2023

o
S

I
o

IN]
=]

Number of papers
w
o

o

ImageNet CIFAR10 MNIST SVHN Other

FIGURE 4. Public datasets used in papers.

All included papers present experimental validation for
the method that is being suggested. A total of 100 out of
112 papers applied publicly available datasets for the exper-
iments. The remaining 12 papers without public datasets
mentioned have the following evidence levels:

o Six papers [S1], [S2], [S3], [S4], [S5], and [S6] have
L2, which means that the experimental setup is not
thoroughly described.

« Five papers [S7], [S8], [S9], [S10], and [S11] have L3,
which means that the experimental setup is otherwise
well described, but the dataset is not mentioned.

o One paper [S12] has L6, which means the results have
been obtained via credible industrial practice.

Fig. 4 shows the distribution of public datasets used in these
papers. The most commonly used datasets, that is, ImageNet,
CIFAR10, MNIST, and SVHN, contain only images. All
other public datasets were spread evenly with one or two uses.
Most ‘Other’ datasets also are image datasets, and the rest are
related to natural language processing, such as LibriSpeech.

Among the most commonly used datasets, ImageNet has
the most samples and images with the highest resolution.
It contains 1,281,167 training images, 50,000 validation
images, and 100,000 test images. The images have 1,000
object classes, and the average resolution of images is 469 x
387 pixels. CIFARI10 consists of 60,000 32 x 32 resolu-
tion images that belong to ten classes. Street View House
Numbers (SVHN) dataset has more than 600,000 32 x 32 res-
olution images that belong to ten classes. The MNIST dataset
contains 70,000 28 x 28 resolution images that belong to ten
classes. Appendix A presents the datasets used in each paper.

The bubble chart in Fig. 5 summarizes the distribution of
papers by evidence levels in each subcategory, as described
in Section V. The sizes of the bubbles indicate the number of
papers. Both the median and mode of evidence levels are L4
indicating that most papers include experiments with public
datasets that can help with repeatability.

Because we included energy as a keyword in our search,
we collected the optimization goal for each paper (Optimize
column in Table 1). Energy efficiency dominates the opti-
mization goals appearing in 61% of the papers; reducing the
computational cost is the goal in 36% of the papers, and 3%
aims to reduce the human effort of developing ML systems.

V. COST-EFFICIENT DEEP LEARNING METHODS
We categorize the cost-efficient methods for DL into seven
categories and 13 subcategories, as shown in Fig. 6. For

90163

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

Evidence level

Algorithm- BNN Compact Early Edge Edge Edge
hardware CNNs exit both

co-

design

FIGURE 5. Papers by evidence level and category.

Pruning (14)|

Inference (41) Quantization (12) |

Early exit (S)I
BNN (3)[]
Teacher-Student (3) |

Compact CNNs (2)8
Inference usage patterns (2)1

Inference (17)

Edge offloading (28)

Training (10)

Both (1)=

Hardware accelerator (13)

Hardware acceleration (27)
Algorithm co-design (8)|

New numeric formats (6)|

ITraining (6) I
IHyper—parameter tuning (4) I
[lHuman effort reduction (3)]
[Feature selection (3)]

FIGURE 6. Included papers by categories.

each of these categories, we introduce the methods found
through the literature search in the following sections. Our
categorization represents two different approaches to meth-
ods. The first approach considers the optimization areas of
ML model development: human effort reduction, feature
selection, training, hyper-parameter tuning, and inference.
The second approach examines the execution environment for
ML.: edge and cloud. Edge computing has different resource
constraints than cloud computing, such as network bandwidth
and processing power. The methods from the first perspective
apply to both edge and cloud computing.

A. INFERENCE

37% of the papers are about making inference more efficient
by reducing the model size and computational complexity.
We divide inference optimizations into pruning, quantization,

90164

Feature Hardware Human Hyper- Inference New
inference training selection accelerator effort parameter usage numeric

Pruning Quantization Teacher- Training

reduction tuning patterns formats

teacher-student method, early exit methods, binary neural
networks, compact CNNs, and inference usage patterns.

1) PRUNING

Pruning means making DNNs smaller by removing connec-
tions or neurons that contribute the least to the accuracy of the
model. DNNs are typically over-parameterized, and pruning
has proven to be an effective way to reduce their size. The
most straightforward approach is to prune those connections
with weights close to zero, as the MAC operations of the
neurons are least impacted by the weights close to zero.
If all weights for all incoming connections in a neuron are
close to zero, the entire neuron can be pruned. Often 80-90
percent of the parameters can be omitted without decreasing
the accuracy [S13].

What should be pruned: Connections, neurons, layers,
filters, or channels? Connection pruning is an unstructured
pruning method that produces sparse matrices that require
customized software compared to standard matrix opera-
tions. Rather than operating on contiguous memory areas, the
indices of the connections remaining after pruning are used.
Sparse matrices are often presented using the Compressed
Sparse Row (CSR) format [35], which stores the indices
of non-pruned weights. According to [S14], unstructured
pruning should be discouraged because of the overhead of
irregular memory access. Pruning neurons or layers produces
dense matrices that can be computed using standard matrix
operations with regular memory access. Unfortunately, neu-
ron pruning can reduce the model size to a lesser extent
than connection pruning [S15]. In the case of CNN:s, filters
or channels can be pruned, resulting in dense matrices and
significant cost savings [36].

What are the pruning criteria? Instead of pruning weights
close to zero, neurons producing similar outputs regardless
of the inputs can be pruned [S16], [S17]. Principal Compo-
nent Analysis (PCA) can be performed per DNN layer to
find and prune the redundant neurons for each layer [S18].
Instead of layer by layer, pruning can be performed for the
entire network using the average of absolute weights per
neuron divided by the average of the layer [S17]. The energy

VOLUME 11, 2023

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

efficiency can also guide pruning. Pruning DNN parts that
require the most frequent memory access and the heaviest
computations is suggested in [S19]. For example, convolu-
tional filters are accessed and applied multiple times during
inference, making them more attractive targets for pruning
than neurons in fully connected layers. Coarse-grained prun-
ing looks at the blocks of a model and removes all related
connections when a block meets the pruning criteria [S20].
The resulting matrices are sparse in a regular manner, which
makes the hardware-accelerated inference efficient.

When should pruning occur: during or after the training?
Pruning can be performed during training for each epoch
[S21]. The insignificant weights in the early training epochs
often remain insignificant until the end of training [S22].
Pruning while training implies keeping a shadow copy of
the already pruned weights for recovery when facing more
significant than acceptable accuracy loss. Reference [S23]
proposes an incremental training and pruning approach. Con-
nections are not only removed but are also restored dur-
ing training. Pruning can occur after training, and usually
involves an additional step of retraining the pruned model
to restore some of the lost accuracy [S16], [S24]. Pruning
can also occur just before inference. A CNN classifier pruned
dynamically in the client device based on the relevant classes
for that client is proposed in [S25].

How to measure pruning success? Pruning is often consid-
ered successful when the model accuracy does not decrease
significantly, but according to [S26], pruning can impact the
classification confidence scores more than pruning decreases
the accuracy. This can lead to increased overall computations
when confidence scores are extensively used in the further
processing [S26].

2) QUANTIZATION

The DNN weights are typically represented as 32-bit floating-
point numbers. Quantization means converting weights and
sometimes activations to lower-precision integers. The con-
version places continuous floating-point values into discrete
integer buckets. In bucketing, the floating point values are
divided by a scaling factor and rounded off to integers. The
value of the scaling factor depends on the range of floating
point values to be bucketed. The number of buckets depends
on the bit-width of the integer type used. When using smaller
bit-width for weights, the models become smaller, reducing
off-chip memory access. Integers are also lighter to multiply
and accumulate than floating point numbers, further reducing
costs.

Quantization may decrease model accuracy by introducing
rounding errors. As a solution, stochastic rounding during
training has been proven to be effective [S27]. Stochastic
rounding means that a decimal value is not always rounded
up to the closest integer but rounded probabilistically, which
leads to an unbiased result on average [S27]. The rounding
errors are also balanced by their regularization effect, that
is, rounding errors reduce over-fitting to the training set.

VOLUME 11, 2023

This explains why quantized models sometimes have higher
accuracy against unseen inputs than the original floating point
models [37].

When to quantize during or after training? Quantization
can occur after training, or training can be quantization-
aware. Training without knowing that the model will be
quantized for inference can dramatically decrease the model
accuracy. Quantization-aware training can recover accuracy
but may require changes in the model architecture [S28].
Quantization-aware training maintains two copies of weights:
the full precision version and quantized version. Sometimes
quantized weights are used in forward propagation, and
floating point numbers are used in backward propagation
[S29]. Training using 8-bit and 16-bit floating point numbers
is possible without significant accuracy degradation when
using stochastic rounding and chunk-based accumulation
[S30]. Chunk-based accumulation prevents the overflow of
8-bit variables that store MAC operation results. The use of
integers to approximate all numeric values during training,
including inputs, weights, activations, gradients, and errors,
is described in [S31].

Which bit-precision to use for quantization? 8-bit integers
are a common choice for precision [S32], [S33], [S34]. 8-bit
integers benefit from not requiring custom inference hard-
ware but having a wide enough range to maintain model
accuracy. Moderate accuracy loss has been achieved with 6-
bit precision [S35], 4-bit precision [S36], and ternary values
[S37]. Quantization further reduces the model accuracy for
simpler models [38]. The more complex the model and the
more neurons the model has, the less quantization decreases
the accuracy. When using low precision — binary or ternary —
more complex models compensate for the accuracy loss.

What is a good granularity level for bucketing ? Bucketing
can be performed for the entire model, by layer [S32] or by
a CNN filter [S38]. Bucketing at the layer level can lead
to fewer buckets, which requires smaller integer bit-width,
which reduces the model size without significant accuracy
loss [S32].

What to quantize: weights or activations? When quan-
tizing the weights, the inference load is lowered. On the
one hand, quantizing activations, including inputs, leads to
inference-time bucketing, which adds computations. On the
other hand, quantizing activations during inference can still
be lighter than using floating point numbers for activations
[S34].

3) BINARY NEURAL NETWORKS

Binary neural networks (BNN) take the compression of
weights and activations further by representing them with
just one bit [S39]. Compared to 32-bit floating point DNNSs,
BNNs mean 32 times smaller models and radically reduced
off-chip memory access during inference. Computations
become light-weight as multiplications can be replaced by
bit-wise operations, such as XNOR [39]. BNNs are promising
for low latency and low energy inference, although optimal

90165

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

BNN execution benefits from custom hardware. Another sig-
nificant drawback of BNNs is the reduced model accuracy.
One suggested approach to increasing the BNN model accu-
racy is to combine ensemble methods with BNNs [S40].

4) TEACHER-STUDENT

One way to lower the inference resource usage is to use sim-
pler models trained using deeper and more complex models.
The concept of complex teacher models and simpler student
models is introduced in [40]. The student model is trained
with numeric predictions made by the teacher model instead
of using the labels. In other words, instead of using the results
from the teacher’s softmax function, the student is trained
using the logits that are the inputs for the softmax function
typically used in classifiers. Both logits and labels are used
in [41], where the method is named knowledge distillation.
The teacher and student can have a completely different
DNN architecture. However, imitating not only the logits
and labels but also the architecture of the teacher with fewer
layers appears to achieve high accuracy [S41]. The teacher
and student can even have the same architecture, and the
result can be a lighter student model if the student is trained
using quantization or ternarization [S42]. In the case of a
distributed inference, multiple student models can be trained
from a teacher model, and each student concentrates on a set
of distinct CNN filters of the teacher [S43].

5) EARLY EXIT METHODS

Not all model inputs are equally difficult and, therefore,
costly to classify. However, the same, possibly complex
model is typically used for all inputs. To reduce the cost of
handling simple inputs, a chain of classifiers with increas-
ing complexity can be trained [S44]. Each classifier in the
chain outputs a confidence score for its prediction, which
determines whether a more complex classifier needs to be
evaluated. When a simple model produces a prediction with
sufficiently high confidence, the more complex models in the
chain do not need to be evaluated and hence, the inference
exists early. In addition, the consensus between classifiers
that have already been evaluated can be verified [S44].
If there is no consensus despite a high confidence score,
a more complex classifier must be applied. Choosing the
threshold values for early exits is a balance between computa-
tion cost and prediction accuracy. This problem is formalized
in [S45].

The first layers in CNNs are convolutional, and act as
feature extractors. These first CNN layers can be the same
for all classifiers with different complexities [S46]. To reduce
the computational cost, more complex models can reuse the
inference computations from the layers shared with simpler
models [S47]. BNNs can also be used as the first light-weight
step in early exit inference [S48].

Instead of training each model separately, the training
epochs of the models can be synchronized, and the loss from
all the exit points can be used jointly in backward propagation

90166

[S49]. In other words, the training samples are passed through
all exit points in forward propagation, and the errors from all
exit points are fed to a joined loss function from which the
resulting loss is used in backward propagation for all models.
This increases the accuracy of the less complex models.

6) COMPACT CNNs

Since the introduction of AlexNet [6] in 2012, CNN research
has focused on balancing energy efficiency, inference latency,
and accuracy. The trend has been to create CNN architectures
with fewer parameters and minimal accuracy loss: MobileNet
is a compact CNN architecture based on depth-wise sepa-
rable convolutions [42]. SqueezeNext is a CNN that uses
bottleneck layers to decrease the number of parameters [S50].
SqueezeDet is a CNN for object detection with autonomous
driving in mind [S51]. SqueezeDet has only convolutional
layers and no fully connected layers, which results in a small
model size and heavy memory reuse.

7) INFERENCE USAGE PATTERNS

Not all inference inputs and workloads are similar, and infer-
ence usage patterns can be used to reduce inference costs.
Consecutive inputs are often very similar when processing
streams of images or audio. By saving the intermediate results
of the previous inference, the results can be reused in the fol-
lowing inference when the input is sufficiently similar [S52].
Another approach builds on the fact that calls to inference
services can be bursty, and allocating a fixed number of cloud
instances or even using auto-scaling of cloud instances is not
cost-efficient. Instead, serverless computing, such as AWS
Lambda, and light-weight cloud instances for batching and
buffering can be more cost-efficient for bursty workloads
[S53].

B. FEATURE SELECTION
Selecting the most predictive input features reduces model
complexity, computational resources required, and cost. Fea-
ture selection can be integrated into the model development
process in three different ways [43]: First, filter methods, such
as K-means clustering, hierarchical clustering, and principal
component analysis (PCA), use unlabeled data to reduce the
number of features before model training based on feature
correlations. Second, wrapper methods, such as linear dis-
criminant analysis (LDA), train several models with different
combinations of features and select the best model with
a given goal, such as accuracy or cost. Third, embedded
methods integrate feature selection into the model training.
Embedded methods attempt different sets of input features
during training, estimate their impact on the loss function,
and select the features with the most significant impact.
Wrapper and embedded methods can be too costly, and
filtering methods can significantly reduce model accuracy
[S54]. Semi-supervised feature selection can be used as a
solution [S54]. In semi-supervised feature selection, a small
fraction of the data is labeled, which leads to a higher model

VOLUME 11, 2023

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

accuracy with fewer input features than using only unlabelled
data for the selection.

The cost of data collection is not the same for all input
features; however, the selected features can be a compromise
between the cost of data collection and model accuracy [S55],
[S56]. For instance, different medical tests for collecting
input data have different costs, such as blood tests cost less
than magnetic resonance imaging.

C. TRAINING

The methods described in Section V-A aim for more efficient
inference execution in resource-constrained devices. More
efficient inference often comes at the cost of extra process-
ing during training. This, combined with the ever-increasing
amount of training data, makes training a target for
optimization.

Graphics Processing Units (GPU) are optimized for the
parallel execution of high-dimensional matrix operations
involved in DNNs. GPUs are commonly used to accelerate
DNN training, but DNN models have grown so large that
it is impossible to train them using GPU’s own memory.
In training, both weights and activations must be kept in
memory between forward and backward propagation. Instead
of keeping all the data all the time in GPU memory, studies
[S571, [S58] offload the layers not actively used to CPU
memory which introduces a moderate performance penalty.

Distributed training can shorten the training time; however,
it is typically more costly than using one machine beacuse of
data synchronization over the network. Distributed training
can be the only option when the size of the input data and
the trained model is sufficiently large. The cost of distributed
training can be reduced using transient or volatile cloud
instances [S59].

Regardless of the approach (training using one or more
machines), there are ways to reduce the training cost by
less or lighter computations. Random dropout of neurons in
each training epoch is a commonly used technique to reduce
over-fitting [S60]. Instead of random dropout, an adaptive
dropout can be applied based on the values of activations
where only the top k neurons are executed and updated on
each epoch [S60]. The gradient calculation is one of the
heaviest computations required for training. For CNNs, gra-
dients can be approximated instead of calculating all of them
[S61]. Convolution filters dominate the computations for both
the CNN inference and CNN training. Computationally less
heavy Gabor filters can replace convolutional kernels [S62].

D. HYPER-PARAMETER TUNING

Determining the optimal hyper-parameters is a multi-
objective optimization problem that requires engineering
effort and computational power. Several hyper-parameters,
such as the DNN architecture, regularization method, and
learning rate, can be optimized. There are also multiple objec-
tives for optimization, such as model accuracy, training time,
training cost, inference cost, inference latency, and energy

VOLUME 11, 2023

consumption. The energy consumption of different DNN
structures, for example, convolutions, can be estimated based
on their ability to reuse the on-chip memory [S9]. Based on
these estimates, the DNN architecture can be tuned toward an
energy-efficient inference.

A simple grid search over hyper-parameter values can
be costly. A more efficient algorithm for DNN architecture
search is proposed in [S63]. The algorithm takes the initial
DNN architecture, description of the target hardware, infer-
ence latency threshold, and inference energy consumption
limit as the input and outputs an optimized DNN architecture.
Reinforcement learning is used for the same purpose as that
in [S64].

Hyper-parameter tuning requires computational resources
in addition to training and inference. Transient or
volatile cloud instances, such as AWS spot instances or
Google Cloud’s preemptible instances, can be used for
hyper-parameter tuning [S65]. These cloud instances are
significantly cheaper than on-demand instances but require
a persistence strategy and orchestration when training is
interrupted by instance revocation.

E. EDGE OFFLOADING

The cost of cloud computing can be reduced by offloading
computations to the network edge. Of the included primary
studies, 26% are on edge offloading.

1) TRAINING AT THE EDGE/FEDERATED LEARNING
Distributed training at the edge, also known as federated
learning, means that there is no single centralized training
dataset but many participants improve a global model from
local datasets and share the updated model. Training using
client devices can reduce cloud costs, although cloud network
ingress and egress also contribute to the cost. To make dis-
tributed training in client devices cost-efficient, the increased
network traffic cost cannot exceed the saved cloud processing
cost. Despite its potential for cost saving, the most frequently
mentioned motivation for federated learning is data privacy
[S1], [S4], [S66], [S67], [S68]. The model inputs, which may
contain user privacy-related fields, do not need to be stored
in the cloud, only the resulting models.

Battery consumption may become an issue when train-
ing occurs on mobile devices. For example, GPU usage
in a mobile device can rapidly drain the battery. Synchro-
nizing model parameters and training data over a network
also consumes battery. Generally, training must not hog
the limited resources in a mobile device; otherwise, the
device can become unusable for running end-user-facing
applications. Distributed training in mobile devices is a bal-
ance between the local processing needed, network transfer
needed, required model accuracy, and the number of itera-
tions for the model to converge.

There are two primary ways to split the work in dis-
tributed training: first, data parallelism, in which all weights
are shared between all participants, and each participant

90167

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

processes a separate set of samples. The second is model
parallelism, in which the weights are partitioned between
participants, and each participant uses only selected fields
from all the training samples. Data parallelism is typically
preferred in federated learning However, in the case of CNNgs,
a hybrid version of data and model parallelism seems opti-
mal [S69]. The convolutional layers have significantly fewer
weights than the fully connected layers. Thus, data paral-
lelism is a better choice for convolution layers, whereas
model parallelism is more efficient for fully connected layers.

Federated learning involves finding a balance between
“working” (local processing) and ““talking” (network trans-
mission) [S4], [S70]. The network bandwidth can be saved
by sparse weight updates where only the updated weights
are communicated to other participants [S70], [S71]. The fre-
quency of sharing the updated weights between the training
iterations is a tunable hyper-parameter [S70], [S71], [S72].
If the weight updates are frequent, the shared model may
converge faster; however, the network latency and related
energy consumption may increase. Model accuracy can also
be sacrificed if faster and more efficient training is preferred
[S4]. The updated weights can be communicated directly
between client devices or via shared parameter servers. MEC
edge servers can be used as aggregators and distributors for
models [S67], [S68].

The participants in federated learning may have heteroge-
neous hardware, and the processing load between participants
at a given time may differ. This information can be used to
determine how to distribute the training tasks among partici-
pants [S1], [S66], [S73].

2) INFERENCE AT THE EDGE
Running inference in the cloud has drawbacks that inference
at the edge tries to avoid:

« User privacy, e.g., the input contains sensitive data that
are not sent to the cloud [S74], [S75], [S76], [S77],
[S78]. Not sending user privacy-related data to the cloud
and not processing the data in the cloud also reduces the
cost.

« Latency, e.g., the round trip to the cloud data center and
back is long [S6], [S8], [S10], [S74], [S78], [S79], [S80],
[S81].

o Communication cost, e.g., the energy consumption of
the data transfer from the client device [S3], [S8], [S74],
[S76], [ST7], [S81].

o The monetary cost of cloud computing, e.g., the cost of
running the models and the cloud network [S10], [S79].

« Dependence on network connections, e.g., client devices
require an always-on network connection [S75].

Despite its benefits, inference at the edge is problematic.
Client devices have heterogeneous hardware [4], and the
processing power is not comparable to the hardware available
in the cloud. Many client devices, such as mobile phones
operate on a batteries with limited lifetimes.

90168

Three primary streams of research have attempted to
enable client-side inference:

1) Develop smaller DNNs using the methods described
in V-A, for example, quantization or pruning.

2) Create tooling or adaptation for efficient inference
execution in resource-constrained devices. These tools
include DL libraries or frameworks [44], [45] and com-
pilers that map high-level DNN descriptions to efficient
low-level executables [S5], [S74], [S75], [S79], [S82].

3) Split the inference execution between the client device
and edge server layer or cloud [S2], [S3], [S6], [S8],
[S10], [S43], [S76], [S78], [S80], [S81], [S83], [S84].

The above approaches complement each other.

The splitting of inference execution deserves a closer
examination here. The split can occur by running some DNN
layers on the client device and the rest in the cloud or edge
server [S8], [S3], [S80], [S81]. If edge servers are available,
the layer partitioning can be driven by energy consumption
[S2], [S6], or cost [S10].

A typical CNN architecture hints at where to split the infer-
ence execution. The first CNN layers are typically convolu-
tional, and the last layers are fully connected. The number
of weights in the convolutional layers tends to be smaller
than that in the fully connected layers, but the processing
required per weight is much heavier in the convolutional
layers than in the fully connected layers. The pooling layers
typically follow convolutions to reduce the dimensions of the
inputs for the following layers. If the network connection
and memory available in the client device are limited, but
there is decent processing power, executing the convolution
and pooling layers in the client device and the fully con-
nected layers in the cloud make sense [S80]. This split also
supports the user privacy aspect of not sending raw inputs
outside the client device. However, if the inputs are small, for
example, typical of GANSs, the opposite execution plan makes
sense [S8].

Splitting the inference execution can also occur by train-
ing two or more separate DNNs: light-weight models for
the client device and heavier models for the edge or cloud
server. The heavier models are executed if there is not
enough confidence in the prediction produced by the light-
weight models [S76], [S81], [S83], [S84]. The early exit
approach is discussed in Section V-AS. The conditional
execution of heavier models can reduce the latency and
cost in the average case but cannot improve the worst
case.

A different way of looking at inference and client devices is
to consider them as a cluster of workers. The workers can be
IoT devices with non-overlapping inputs for inference, and
each performs a partial inference on the local data [S77].
Alternatively, client devices in the same wireless network
can share the same input and perform cooperative inference
[S78]. In cooperative inference, each client has its own stu-
dent model trained to handle a particular set of CNN filters
from a larger teacher model [S43].

VOLUME 11, 2023

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

3) TRAINING AND INFERENCE AT THE EDGE

One primary study covered both training and inference at the
edge as a whole, suggesting that DNN layers can be split
between clients and servers in training and inference [S85].

F. HARDWARE ACCELERATION

Most publications related to cost or energy-efficient DL con-
centrate on hardware acceleration. DNN execution involves
intensive memory access and parallelism, which are not
supported by general-purpose processors [46]. We excluded
976 papers related to ML-specific hardware from the IEEE
Xplore search results, 676 papers from Scopus search results,
and 178 papers from the ACM Digital Library search
results. We included papers only on hardware accelerators
that are already commercially available, for example, TPUs
and FPGAs, and highly cited papers, which might lay the
foundations for new commercially available accelerators.
We included papers on algorithms and new numeric formats
for more efficient DNN inference, which are interesting inno-
vations, although specialized hardware is needed.

1) ALGORITHMS FOR INFERENCE ACCELERATORS

DNN inference is a sequence of matrix operations, or in more
general terms, tensor operations. When the DNN-specific
properties of these operations are known, both the computa-
tions and memory access can be reduced. However, inference
is no longer a straightforward set of matrix operations. All
methods in this section work efficiently only with custom
algorithm-aware hardware.

ReLU is a commonly used activation function in DNNSs.
ReLU maps all negative inputs to zero. Multiplying zero
valued activations with weights is useless because the result
is also zero. The sign of an MAC operation can be predicted
using high-order bits of input activations and weights [S86].
If the sign of the MAC operation is predicted to be negative,
the result of ReLLU will be zero, and there is no need to
perform the MAC operation or ReLU.

Smaller matrices are more likely to fit into the on-chip
memory, which makes them faster to compute. Low-rank
matrix decomposition can express a large weight matrix as the
product of two smaller weight matrices [S87]. The weights
can be converted to block-circulant matrices that enable a Fast
Fourier Transform for efficient multiplication during infer-
ence [S88], [S89], [S90]. The Fast Fourier Transform reduces
the computational complexity from O(n?) to O(nlog n).

Neurons can be classified as either sensitive or resilient.
Resilient neurons can be discovered during training and
replaced with light-weight approximations during inference
[S91]. Bloom filters can store the frequently occurring acti-
vation patterns in cache for inference calculations [S92].
The size of the model can be reduced through weight shar-
ing. Weights are grouped using K-means clustering, and the
weight matrix is replaced by a lookup table [S93]. Similar
lookup tables are used for sparse matrices resulting from

VOLUME 11, 2023

unstructured pruning (see Section V-Al). Efficient lookup
tables can be implemented by using custom hardware.

2) NEW NUMERIC FORMATS

Quantization (see Section V-A2) may reduce the bit-width of
weights to something that is not well supported by general-
purpose hardware. Floating point numbers, according to the
IEEE 754 standard, are computationally heavy, and the 32-bit
format consumes much memory compared to its contribution
to model accuracy. Instead of approximating 32-bit floats
using integers, new numerical formats have been proposed
for representing real numbers.

The Posits numbering approach has been suggested to
replace floating point numbers with better accuracy but using
fewer bits to represent the numbers [S94]. According to
[S95], by using Posits instead of fixed-point numbers, the
same inference accuracy can be achieved with fewer bits.
Training DNNs with 8-bit Posits without accuracy loss com-
pared to using 32-bit floating-point numbers is presented in
[S96]. Using Posits efficiently requires dedicated hardware
support that is yet to be widely available.

Flexpoint [S97], another numerical format, was suggested
approximately the same time as Posits. Flexpoint allows the
sharing of the exponent part, and magnitude of numbers sep-
arately for tensors used as weights, activations, and updates.
Less memory is consumed, and the computations can be
mostly done using integers. To operate efficiently, Flexpoint
requires custom hardware. Perhaps because it is specific
to DNNs, Flexpoint has spawned less further research than
Posits.

“Binary floating-point” representation for model weights
has been suggested in [S98]. When using 4-bit and 6-bit
precision, there is no accuracy loss in the benchmarks. A new
number format that allows the storage of information about
quantization-related rounding errors, for example, the direc-
tion and magnitude, is proposed in [S99]. The direction
and magnitude fields enable the recovery of some of the
prediction accuracy lost in quantized inference, but custom
hardware is required.

3) HARDWARE ACCELERATORS

GPUs are widely used in accelerating DNN training, how-
ever, they consume a significant amount of energy. GPU-
enabled instances are available from all the major cloud
providers for both training and inference. The high energy
consumption of GPUs has led to a wide variety of studies
aimed at accelerating DNN inference with less energy-hungry
hardware. Alternatives to GPUs are Application-Specific
Integrated Circuits (ASIC) and FPGAs.

The most widely used ASIC implementation for DNNSs is
TPU [S12]. TPUs originated from Google, and it is no sur-
prise that Google Cloud Platform’s inference acceleration is
based on TPU-enabled instances. In addition to TPUs, many
conceptual ASIC designs that minimize off-chip memory
access and take advantage of weight and input sparsity have

90169

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

been proposed [S7], [S100], [S101], [S102], [S103], [S104].
These designs have gained broad interest in academia but
lack commercial implementations in the cloud and mobile
platforms.

Amazon and Microsoft have taken the path of offering
FPGA-enabled cloud instances for DNN inference [20].
FPGA implementations provide speedups against CPUs and
on-par performance with GPUs but outperform both CPUs
and GPUs in energy efficiency [S105], [S106], [S107]. The
convolution loops in CNNs enable parallelism, and on-chip
memory reuse [S11], [S108], [S109] for FPGAs. The opti-
mal mapping of DNNs to cloud FPGAs require extra effort
compared with simply using GPU- or TPU-enabled cloud
instances via a deep learning library, and the same people are
rarely experts in both DNNs and FPGAs. Automated tooling
that maps high-level DNN descriptions to optimal FPGA
implementations is required [S106].

Instead of attempting to map DNN execution to the current
hardware or developing hardware that matches the needs of
DNNS, attempts have been made to mimic how the human
brain works, referred to as neuromorphic hardware or neuro-
morphic computing. An overview of neuromorphic comput-
ing as an alternative to DNNs is given in [47]. All papers on
neuromorphic computing caught that met our search criteria
were excluded. Neuromorphic computing is not yet an option
for software organizations that rely on the existing platforms.

G. REDUCING THE HUMAN EFFORT RELATED TO ML

With large-scale production usage of ML, the majority of the
costs are often related to computations in the cloud. In some
cases, the cost of human effort may be higher than that of
cloud usage. This can be the case, especially for startup
companies in the early phases of their journey. The most
considerable human effort is related to model development
and training samples labeling.

Labeling data for supervised learning requires human
effort. Smart selection of the samples to be labeled is referred
to as active learning or active labeling. The following DNN
classifier metrics can be used for active labeling [S110].

o Least confidence. Label the samples with the lowest
confidence score.

« Margin sampling. Label the samples with the smallest
separation between the top two class predictions.

« Entropy. Label the samples with the highest class pre-
diction information entropy.

On one hand, samples with a low confidence score should be
labeled by humans. On the other hand, samples with a high
confidence score can be automatically ““‘pseudo-labeled” and
are used for training a more accurate model without knowing
the ground truth labels [S111].

Model development involves determining an optimal ML
model architecture and other hyper-parameters. In transfer
learning, part of the model, including the trained weights,
is taken from an existing model. A trained model is trans-
ferred to a new but somewhat similar domain, and the model

90170

o

o

Number of papers

N

0
2015 2016 2017 2018 2019 2020 2021

FIGURE 7. Edge offloading papers by year.

is retrained in that domain. The weights of the first layers
are frozen, and additional domain-specific layers are trained
using data from the new domain. This has proven to work
particularly well with CNNs, where the first layers act as
generic feature extractors, for example, detect vertical and
horizontal lines. Active learning can be combined with trans-
fer learning, and the sample selection can be based on the
following measures [S112]:

« Distinctiveness. The uniqueness of the sample is cal-
culated for the unlabeled samples with respect to the
original DNN. More distinctive samples tend to take a
unique path of activations during inference.

o Uncertainty. The confidence scores of the unlabeled
samples from the original DNN are used for transfer
learning.

VI. DISCUSSION
This section presents our answers to the research questions
and discusses our observations from primary studies.

A. ANSWER TO RQ1: METHODS FOR COST-EFFICIENT DL
The most popular methods are related to inference, edge
offloading, and hardware acceleration, whereas the others are
less popular. We assessed the quality of the papers based on
their evidence levels (see Section III-D). 91% of the papers
are on evidence level L3 or L4, meaning that most papers
have repeatable experiments with public datasets. However,
most methods have scarce industrial evidence, as only 4% of
the papers are on levels L5 and L6, which require industrial
adoption.

37% of the primary studies are about making inference
more efficient. We divided the methods into pruning, quan-
tization, teacher-student, early exit methods, BNNs, compact
CNNS, and optimizations based on inference usage patterns.
In industrial systems, the inference is typically executed more
frequently than training [5]. For rapidly changing data, a new
model can be trained daily. In comparison, for online pre-
diction systems, the inference can be executed thousands of
times per second with near real-time latency. These charac-
teristics of inference might explain and justify why such a
significant share of research is about inference optimizations.

25% of the primary studies focus on offloading inference,
training, or both to the network edge.

The number of edge offloading papers shows an increasing
trend from 2015 to 2021 (see Fig. 7). At the same time, the

VOLUME 11, 2023

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

IS o ®

Number of papers

N

0

2014 2015 2016 2017 2018 2019 2020 2021

FIGURE 8. Hardware acceleration papers by year.

number of other DL optimization papers has been decreasing:
Fig. 3 shows a downward trend in yearly published papers
after 2018. All inference optimization methods in Section V-
A were introduced before 2019. In 2017 Google presented
the TPU accelerator [9]. We assume that TPU is viewed by
many as a good enough commercially available solution for
accelerating DNNs. This has probably reduced the interest in
research on hardware accelerators (see Fig. 8).

24% of the primary studies focus on hardware acceleration.
However, the percentage does not represent the actual share of
research on hardware acceleration in terms of cost efficiency.
In fact, almost 1900 papers from the search results were about
efficient ML by hardware acceleration. Most were excluded
owing to RQ2 and EC7, which assume that the hardware is
commercially available.

5% of the primary studies focus on optimizing training.
This surprisingly small percentage could be explained by
the more frequent execution of inference, as stated above.
Another possible explanation is that our literature search used
energy efficiency as the criterion. Energy efficiency is less
critical for server-side processing than for processing in client
devices, particularly mobile devices. Training is typically
performed server-side, in cloud.

The remaining papers were classified into three categories.
Feature selection appears to be overlooked in the literature as
a method for lowering the cost of DL, perhaps partly because
of the heavy focus on image inputs. Intuitively, using the
most predictive features and omitting the less predictive ones
should reduce the model size, and thus, the cost. The rest
of the primary studies focus on hyper-parameter tuning and
reducing the human effort related to ML.

B. ANSWER TO RQ2: WHICH OF THESE METHODS ARE
AVAILABLE WITHOUT DEVELOPING, BUYING,
DISTRIBUTING, AND SUPPORTING ANY HARDWARE?
GPUs are available on all major cloud platforms, and TPUs
are available on the Google Cloud Platform. The counterparts
for TPUs in AWS and Azure clouds are FPGAs that require
more configuration than TPUs for efficient DNN execution.
It should be noted that using GPUs for training or inference
does not necessarily lead to cost savings, but rather to faster
execution. Using TPUs or FPGAs can lead to faster execution
and reduced costs compared to CPUs. Both dominant mobile
platforms, iOS and Android, provide ML APIs [48], [49], but
in practice, mobile devices have heterogeneous hardware [4].

VOLUME 11, 2023

Some, but not all, mobile devices are equipped with hardware
accelerators.

BNNs and, more generally, all quantization approaches
that use bit widths of less than 8 bits require accelerator
hardware adjusted for the lower bit width. The same applies
to new numeric formats. All the other methods presented in
this study are applicable without specialized hardware.

C. ANSWER TO RQ3: WHAT ARE THE PROS AND CONS OF
THESE METHODS?

Pruning and quantization have been implemented in popular
DL libraries, for example, TensorFlow [50] and Pytorch [51].
TensorFlow also supports the Teacher-Student method. How-
ever, none of these methods guarantees a zero accuracy
drop. Notably, all related primary studies use accuracy as
the evaluation metric. When using these methods, other ML
model metrics should also be checked, such as precision,
recall, and confidence scores of classification. In multi-class
classification, it is worth checking if some classes suffer more
than others with the compacted model. Nevertheless, pruning,
quantization, and teacher-student are the first methods to
consider when trying to reduce the cost of DL inference if
a minor drop in accuracy is acceptable.

BNNs are very promising for lowering computational
costs. BNNs cause unavoidable accuracy degradation unless
the original model is highly complex [38]. The efficient
implementation of BNNSs also benefits from specialized hard-
ware.

Early exit methods can be implemented without hardware
acceleration and can lower the average case inference cost.
The downsides of early exit methods are the increased system
complexity, the new hyper-parameters for confidence score
thresholds to be tuned, and the inability to lower the cost of
the worst-case inference.

Interest in edge offloading has been increasing in
academia, but the evidence level of the research has yet to
reach the levels of other methods in this paper; there are no
industrial primary studies, and the median evidence level is
lower than for other primary studies (L3 for edge and L4 for
others). In practice, the edge server layer is realized slowly.
The reason could be the lack of a business or hosting model,
the slowness of standardization, or the lack of “killer’” appli-
cations that would benefit from the lower latency compared
to the cloud. In fact, it has been demonstrated that the latency
from client devices to the cloud in many parts of the world is
sufficient for most applications [52].

The edge server layer cannot provide elastic “‘unlimited”
scaling of the cloud. When an edge data center runs out of
resources, client devices must have a fallback plan. Fallback
processing can occur in cloud or resource-constrained client
devices. Computation in edge servers can also incur a higher
monetary cost than computation in the cloud [S10].

Although the future of the edge server layer seems
uncertain, we see potential cost savings by offloading DL

90171

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

processing to client devices. Even partial inference on client
devices can save cost compared to cloud-only inference.

Only one primary study has examined training and infer-
ence at the edge as a whole. We claim that training and
inference should always be viewed as a whole regardless of
where they are executed. One of the most frequently men-
tioned benefits of edge inference is user privacy, as limited
data must be sent to the cloud. By intuition, the same privacy
restrictions apply to the training data, which is ignored by
most edge inference papers that seem to assume the exis-
tence of training data without considering where it comes
from. In these studies, the models are trained from public
image datasets only once and then used as-is in the infer-
ence. In practice, concept drift often occurs [11], and new
input samples are constantly gathered and labeled from the
inference, after which the model must be retrained.

In primary studies on federated learning or training at
the edge, the input samples are mostly images [S66], [S67],
[S69], [S70], [S71], [S72]. Transferring images to the cloud
requires more network bandwidth than transferring numeric
readings from IoT device sensors. In both cases, the trained
models can be large. For other than image inputs, new input
features can be added over time, and the model architecture is
updated. How can these updates be handled gracefully in fed-
erated learning? If the input data remains in the client devices
in federated learning, how do the new input samples get the
labels? The orchestration and aggregation of models trained
using federated learning also seem non-trivial to implement.
Instead, using a ready-made federated learning framework for
the purpose makes sense.

D. FUTURE WORK

Image inputs dominate the public datasets used in the pri-
mary studies leaving research on other types of data thin on
the ground. 78% of all the papers use ImageNet, CIFAR10,
MNIST, or SVHN, which are image datasets. CNNs are
mainly used for image inputs. 34% of the papers base the
optimizations on CNN-specific structures, e.g., the convolu-
tional and pooling layers. However, in 2017 in Google’s data
centers, CNNs were related to just 5% of DNN workflows [9].
Although images as input are typically larger than structural
or tabular data and as such an interesting research area, we
claim that further research on other types of data than images
is needed to make DNNs other than CNNs more efficient.

A direction for our future work is to evaluate the methods
presented in this paper with input types other than images
using DNNGs that are not CNNs. Specifically, splitting infer-
ence execution between edge devices and the cloud has been
studied for image inputs [S80]. We see opportunities for
splitting the inference execution for inputs other than images.

The combinations of inference optimization methods have
been covered in some primary studies. First, the combined
impact of pruning and quantization is measured in [35]. Sec-
ond, quantization of the student model is proposed in [S42].
Third, the use of a BNN as the first model for an early exit

90172

approach is studied in [S48]. Other possible combinations of
inference methods should also be evaluated.

None of the primary studies covered the optimization
of GNNs, although modeling graph connections adds com-
putational complexity and increases the memory footprint
compared to MLPs. In the case of GANs, two models must
be trained instead of one, but the search did not yield any
studies on optimizing the execution of GANs. There seems to
be a research gap in the area of optimizing GNNs and GANSs,
although certain inference optimization methods developed
for MLPs also apply to them.

Although backward propagation and gradient descent are
more resource-consuming procedures than forward propa-
gation, our search found only one primary study related to
improving the efficiency of computing the gradients [S61].
Our search did not match any primary studies that compare
the cost impact of the gradient descent algorithms such as
Adam [53], [54], although efficient gradient descent algo-
rithms can significantly speed up the convergence [55] and
reduce the cost of training. The choice of activation function
impacts the cost of both inference and training; for example
ReLU is cheaper to compute than Tanh, but our search did
not find any primary studies on the topic. The cost impact of
different gradient descent algorithms and activation functions
should be evaluated in future studies.

The primary studies we reviewed concentrate on opti-
mizing DL models. Modern industrial systems consist of
a multitude of micro-services with extensive data transfer
between them. Intuitively, there is a significant cost involved
in data transfer. For example, in the case of structural or
tabular input data, some inputs can be strings that must be
converted to numeric values at the latest during model train-
ing and inference. The unified and compact input data types
used across the system may result in even more significant
cost savings than making the actual models more efficient to
process. We consider this as a potential future research topic.

VII. THREATS TO VALIDITY

A systematic literature review should address explicit inclu-
sion and exclusion criteria, cover a sufficient number of data
sources, assess the quality of primary studies, and describe
the data adequately [14]. We fulfill these criteria, except that
we performed the search using three databases. Adding more
databases or applying additional strategies, such as snow-
balling, would have provided better coverage, but the number
of original and included papers was already relatively large
(16066 and 112, respectively). Consequently, the analysis
might have missed some studies, but we assume that we have
reached a relatively valid sample.

The search strings try to find papers that are optimize
the cost or energy consumption of ML. However, this does
not rule out the possibility that we missed some other ML
optimization goals.

Another limitation of the search was that the ACM Digital
Library has a policy of limiting the number of search results
to 2000. We selected 2000 papers that had the most citations.

VOLUME 11, 2023

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

TABLE 2. Information extracted from papers. The summaries of information are represented as follows: The publication years in Fig.3, and the
publication years for edge offloading and hardware acceleration cateogries in Fig.7 and Fig.8, respectively; by category and subcategory in Fig.6; by
evidence level and category in Fig.5; and public datasets used in Fig.4. CNN appears in 34% of the papers (cf. Section VI-D) and energy, compute, and

labor values of the Optimize column represent 61%, 36%, and 3%, respectively (cf. Section IV).

Primary Year Category Subcategory Evidence Optimize CNN Public datasets used

study level
[S1] 2021 Edge offloading Training L2 Energy no
[S2] 2020 Edge offloading Inference L2 Energy no
[S3] 2018 Edge offloading Inference L2 Energy yes
[S4] 2019 Edge offloading Training L2 Energy no
[S5] 2020 Edge offloading Inference L2 Energy no
[S6] 2021 Edge offloading Inference L2 Energy no
[S7] 2015 Hardware acceleration Accelerator L3 Energy yes
[S8] 2018 Edge offloading Inference L3 Energy no
[S9] 2021 Hyper-parameter Tuning L3 Energy yes
[S10] 2020 Edge offloading Inference L3 Compute no Other
[S11] 2015 Hardware acceleration Accelerator L3 Energy yes
[S12] 2017 Hardware acceleration Accelerator L6 Energy no
[S13] 2018 Inference Pruning L3 Energy yes CIFARI10, MNIST
[S14] 2021 Inference Pruning L4 Compute no CIFAR10, ImageNet, MNIST
[S15] 2018 Inference Pruning L4 Energy no ImageNet
[S16] 2014 Inference Pruning L4 Compute no TIMIT
[S17] 2017 Inference Pruning L3 Compute yes CIFARI0
[S18] 2021 Inference Pruning L4 Compute no ImageNet, MNIST, WMT16
[S19] 2017 Inference Pruning L4 Energy yes ImageNet
[S20] 2018 Inference Pruning L4 Energy yes Other
[S21] 2020 Inference Pruning L3 Compute yes CIFARI10
[S22] 2019 Inference Pruning L4 Energy no CIFAR10, ImageNet, MNIST, TIMIT
[S23] 2020 Inference Pruning L4 Compute no ImageNet, MNIST
[S24] 2019 Inference Pruning L4 Compute yes CIFARI10, ImageNet, MNIST
[S25] 2017 Inference Pruning L3 Energy yes CIFARI10
[S26] 2018 Inference Pruning L4 Energy no LibriSpeech
[S27] 2015 Inference Quantization L5 Compute no CIFAR10, MNIST
[S28] 2018 Inference Quantization L4 Compute yes ImageNet
[S29] 2018 Inference Quantization L3 Energy no CIFAR10, MNIST
[S30] 2018 Inference Quantization L4 Energy no CIFARI0, ImageNet
[S31] 2018 Inference Quantization L4 Energy no CIFAR10, ImageNet, MNIST, SVHN
[S32] 2016 Inference Quantization L4 Energy yes CIFARI10, ImageNet, MNIST
[S33] 2020 Inference Quantization L4 Compute no ImageNet
[S34] 2020 Inference Quantization L4 Energy no ImageNet
[S35] 2019 Inference Quantization L4 Compute no CIFAR10, ImageNet
[S36] 2017 Inference Quantization L3 Energy no CIFAR10, MNIST, SVHN
[S37] 2019 Inference Quantization L4 Energy no CIFAR10, ImageNet, MNIST
[S38] 2019 Inference Quantization L4 Energy no ImageNet
[S39] 2019 Inference BNN L4 Energy no CIFARIO, ImageNet, SVHN
[S40] 2019 Inference BNN L4 Compute no BENN, CIFAR10, ImageNet
[S41] 2021 Inference Teacher-Student L4 Compute yes CIFARI10, ImageNet, MNIST
[S42] 2017 Inference Teacher-Student L3 Energy no CIFAR10, GTSRB, MNIST, SVHN
[S43] 2019 Inference Teacher-Student L4 Energy yes Caltech-UCSD-Birds, CIFAR10, ImageNet, Scene
[S44] 2015 Inference Early exit L3 Energy no MNIST
[S45] 2020 Inference Early exit L3 Energy no CIFARI1O0, CINICI0
[S46] 2016 Inference Early exit L3 Energy yes MNIST
[S47] 2020 Inference Early exit L4 Energy yes CIFARI10, ImageNet, MNIST, SVHN
[S48] 2020 Inference BNN L4 Energy no CIFAR10, ImageNet, MNIST
[S49] 2016 Inference Early exit L3 Compute no CIFAR10, MNIST
[S50] 2018 Inference Compact CNNs L4 Energy yes ImageNet
[S51] 2017 Inference Compact CNNs L4 Energy yes KITTI
[S52] 2018 Inference Usage patterns L4 Compute yes Librispeech, Other
[S53] 2020 Inference Usage patterns L4 Compute no ImageNet
[S54] 2017 Feature selection Feature selection L4 Compute no Other
[S55] 2021 Feature selection Feature selection L3 Compute no Other
[S56] 2021 Feature selection Feature selection L4 Compute no Other
[S57] 2016 Training Training L5 Energy yes ImageNet
[S58] 2018 Training Training L4 Compute no ImageNet
[S59] 2020 Training Training L3 Energy no CIFARIO
[S60] 2017 Training Training L3 Compute no CONVEX, MNIST, NORB, RECTANGLES
[S61] 2019 Training Training L3 Compute yes CIFARI10
[S62] 2017 Training Training L3 Energy yes CIFARI10, MNIST
[S63] 2019 Hyper-parameter Tuning L4 Energy no ImageNet
[S64] 2018 Hyper-parameter Tuning L4 Compute yes CIFARI10, Har, ImageNet, MNIST, UbiSound
[S65] 2020 Hyper-parameter Tuning L3 Compute no CIFAR10
[S66] 2019 Edge offloading Training L3 Energy no CIFARIO

VOLUME 11, 2023

90173

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

TABLE 2. (Continued.) Information extracted from papers. The summaries of information are represented as follows: The publication years in Fig.3, and
the publication years for edge offloading and hardware acceleration cateogries in Fig.7 and Fig.8, respectively; by category and subcategory in Fig.6; by
evidence level and category in Fig.5; and public datasets used in Fig.4. CNN appears in 34% of the papers (cf. Section VI-D) and energy, compute, and

labor values of the Optimize column represent 61%, 36%, and 3%, respectively (cf. Section IV).

[S67] 2020 Edge offloading Training L3
[S68] 2021 Edge offloading Training L3
[S69] 2019 Edge offloading Training L4
[S70] 2021 Edge offloading Training L3
[S71] 2019 Edge offloading Training L4
[S72] 2021 Edge offloading Training L3
[S73] 2020 Edge offloading Training L4
[S74] 2019 Edge offloading Inference L3
[S75] 2018 Edge offloading Inference L4
[S76] 2017 Edge offloading Inference L4
[S77] 2019 Edge offloading Inference L4
[S78] 2021 Edge offloading Inference L4
[S79] 2017 Edge offloading Inference L4
[S80] 2017 Edge offloading Inference L4
[S81] 2018 Edge offloading Inference L3
[S82] 2016 Edge offloading Inference L4
[S83] 2015 Edge offloading Inference L4
[S84] 2016 Edge offloading Inference L3
[S85] 2021 Edge offloading Both L4
[S86] 2018 Hardware acceleration Algorithm co-design L4
[S87] 2020 Hardware acceleration Algorithm co-design L4
[S88] 2017 Hardware acceleration Algorithm co-design L4
[S89] 2017 Hardware acceleration Algorithm co-design L3
[S90] 2018 Hardware acceleration Algorithm co-design L3
[S91] 2014 Hardware acceleration Algorithm co-design L3
[S92] 2018 Hardware acceleration Algorithm co-design L3
[S93] 2020 Hardware acceleration Algorithm co-design L3
[S94] 2017 Hardware acceleration New numeric formats L3
[S95] 2018 Hardware acceleration New numeric formats L4
[S96] 2021 Hardware acceleration New numeric formats L4
[S97] 2017 Hardware acceleration New numeric formats L5
[S98] 2019 Hardware acceleration New numeric formats L3
[S99] 2018 Hardware acceleration New numeric formats L4
[S100] 2014 Hardware acceleration Accelerator L3
[S101] 2017 Hardware acceleration Accelerator L4
[S102] 2019 Hardware acceleration Accelerator L4
[S103] 2016 Hardware acceleration Accelerator L4
[S104] 2018 Hardware acceleration Accelerator L4
[S105] 2017 Hardware acceleration Accelerator L4
[S106] 2016 Hardware acceleration Accelerator L4
[S107] 2018 Hardware acceleration Accelerator L4
[S108] 2017 Hardware acceleration Accelerator L4
[S109] 2017 Hardware acceleration Algorithm co-design L4
[S110] 2014 Human effort Reduction L3
[S111] 2017 Human effort Reduction L4
[S112] 2018 Human effort Reduction L4

Compute no MNIST

Energy no Other

Compute no CIFAR10, ImageNet, MNIST
Energy no CIFAR10, MNIST

Compute no CIFAR10, ImageNet, MNIST
Compute no MNIST

Compute no CIFARI10, ImageNet

Energy no CIFAR10, MNIST, Other
Energy no CIFAR10, ImageNet, VOC
Energy no Other

Energy no Other

Energy no ImageNet

Compute no ImageNet

Energy no ImageNet

Compute no CIFARI0

Energy yes Caltech101, CIFAR10, ImageNet, MNIST, STL10
Energy no ImageNet, MNIST

Energy yes CIFAR10, MNIST, SVHN
Compute no ImageNet

Compute no ImageNet

Energy no CIFAR10, ImageNet, MNIST
Compute yes CIFARI10, ImageNet, MNIST, SVHN
Energy no MNIST, SVHN

Compute no CIFAR10, MNIST

Energy no CIFAR10, MNIST, SVHN
Energy yes MNIST

Compute yes MNIST

Compute no

Compute yes CIFARI10, ImageNet, MNIST
Energy no CIFAR10, ImageNet, MNIST, PTB
Energy no CIFARI0, ImageNet, LSUN
Energy no CIFARI10, MNIST

Energy no CIFARI0, ImageNet

Energy yes MNIST

Energy yes ImageNet

Energy no ImageNet

Energy no ImageNet

Energy no ImageNet

Energy no ImageNet, PTB

Energy yes CIFARI10, ImageNet, MNIST
Compute yes ImageNet

Energy yes ImageNet

Compute yes ImageNet

Labor no MNIST

Labor yes CACD, Caltech256

Labor yes ImageNet, VOC

It is possible that we missed papers that currently have more
citations than at the time of the search. We had to draw the line
to an exact date to make the process repeatable. We decided
to include papers published until 2021.

We excluded papers on hardware acceleration that did
not have commercial implementations at the time of the
search. The excluded hardware acceleration approaches
may become commercially available in the future, although
interest in hardware acceleration has been decreasing
(see Fig. 8).

Our search resulted in a sample of published stud-
ies, but additional details may have been found with
different searches that remain relatively unexplored. For
instance, training DNNs with repeated forward and backward

90174

propagation steps is a far more memory- and computation-
intensive procedure than inference that involves only forward
propagation. Considering the cost involved, it is surprising
that only 14% of the primary studies are about training (in
the cloud or at the edge), and the majority of the primary
studies are about inference (in the cloud or at the edge or
accelerated by hardware). However, we also aimed to point
out these topics as relevant directions for future work to be
considered with respect to cost.

Our categorization of papers is mutually exclusive to make
it easier to follow, although some papers can be assigned
to multiple categories, such as pruning and edge inference.
This makes the exact number of papers in each category less
interesting. Even with some movements between categories,

VOLUME 11, 2023

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

the relative sizes of the categories remain approximately the
same.

Only four primary studies are from the industry (see evi-
dence levels 5 and 6 in Fig. 5). It is unclear how widely the
methods reviewed in this paper are used in practice, although
the availability of the methods in popular DL libraries pro-
vides a hint. Finally, paper selection was conducted primarily
by the first author, which probably introduced some bias in
the included and excluded papers.

VIil. CONCLUSION

We presented a systematic literature review on methods for
making deep learning more cost-efficient in monetary terms
for software development organizations. We selected and
analyzed 112 primary studies resulting in a two-level catego-
rization of the methods for cost-efficient DL. We found that
inference optimization is a more popular topic in the literature
than training optimization. Hardware acceleration is heavily
represented because the general-purpose Von Neumann pro-
cessor architecture, owing to its memory bottleneck, is far
from optimal for DNN execution. We discovered that image
inputs dominate the research on deep learning optimizations,
and we claim that there is a research gap related to input types
other than images for DNNs. Likewise, the research literature
is dominated by open datasets with only a few industrial
proof-of-concept or practical studies. Processing parts of
DNNs in client devices in the network edge is currently under
active research and has significant potential for cost savings
and deserves further research.

APPENDIX A
INFORMATION EXTRACTED FROM PAPERS
See Table 2.

PRIMARY STUDIES

[S1] H. Alfauri and F. Esposito, “A distributed consensus protocol
for sustainable federated learning,” in 2021/ IEEE 7th Interna-
tional Conference on Network Softwarization (NetSoft), Jun. 2021,
pp. 161-165.

[S2] G.GuoandJ.Zhang, “Energy-efficient incremental offloading of neural
network computations in mobile edge computing,” in GLOBECOM
2020 - 2020 IEEE Global Communications Conference, Dec. 2020, pp.
1-6.

[S3] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host
partitioning of deep neural networks with feature space encoding for
resource-constrained Internet-of-Things platforms,” in 2018 15th IEEE
International Conference on Advanced Video and Signal Based Surveil-
lance (AVSS), Nov. 2018, pp. 1-6.

[S4] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S.
Hong, “Federated learning over wireless networks: Optimization
model design and analysis,” in I[EEE INFOCOM 2019 -
IEEE Conference on Computer Communications, Apr. 2019,
pp. 1387-1395.

[S5] X.Wang, M. Magno, L. Cavigelli, and L. Benini, “FANN-on-MCU: An
open-source toolkit for energy-efficient neural network inference at the
edge of the Internet of Things,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4403-4417, May 2020.

[S6] Z.Xu,L.Zhao, W.Liang, O.F. Rana, P. Zhou, Q. Xia, W. Xu, and G. Wu,
“Energy-aware inference offloading for DNN-driven applications in
mobile edge clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 4, pp. 799-814, Apr. 2021.

VOLUME 11, 2023

[S7]

[S8]

[S9]

[S10]

[S11]

[S12]

[S13]

[S14]

[S15]

[S16]

[S17]

[S18]

[S19]

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,
Y. Chen, and O. Temam, “ShiDianNao: Shifting vision process-
ing closer to the sensor,” in 2015 ACM/IEEE 42nd Annual Inter-
national Symposium on Computer Architecture (ISCA), Jun. 2015,
pp. 92-104.

A. E. Eshratifar and M. Pedram, “Energy and performance efficient
computation offloading for deep neural networks in a mobile cloud
computing environment,” in Proceedings of the 2018 on Great Lakes
Symposium on VLSI, ser. GLSVLSI *18. New York, NY, USA:
Association for Computing Machinery, May 2018, pp. 111-116.

N. K. Jha and S. Mittal, “Modeling data reuse in deep neural networks
by taking data-types into cognizance,” IEEE Transactions on Comput-
ers, vol. 70, no. 9, pp. 1526-1538, Sep. 2021.

B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven off-
loading for DNN-based applications over cloud, edge, and end devices,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5456—
5466, Aug. 2020.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Opti-
mizing FPGA-based accelerator design for deep convolutional neural
networks,” in Proceedings of the 2015 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, ser. FPGA ’15. New
York, NY, USA: Association for Computing Machinery, Feb. 2015, pp.
161-170.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. L. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagara-
jan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-
ter, W. Wang, E. Wilcox, and D. H. Yoon, ‘“‘In-datacenter performance
analysis of a Tensor Processing Unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17.
New York, NY, USA: Association for Computing Machinery, Jun. 2017,
pp. 1-12.

S. S. Sarwar, G. Srinivasan, B. Han, P. Wijesinghe, A. Jaiswal, P. Panda,
A. Raghunathan, and K. Roy, “Energy efficient neural computing: A
study of cross-layer approximations,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 8, no. 4, pp. 796-809, Dec.
2018.

X. Ma, S. Lin, S. Ye, Z. He, L. Zhang, G. Yuan, S. Tan, Z. Li, D. Fan,
X. Qian, X. Lin, K. Ma, and Y. Wang, “Non-structured DNN weight
pruning—Is it beneficial in any platform?”” IEEE Transactions on Neu-
ral Networks and Learning Systems, vol. 33, no. 9, pp. 4930-4944, Sep.
2022.

Q. Qin, J. Ren, J. Yu, H. Wang, L. Gao, J. Zheng, Y. Feng, J. Fang,
and Z. Wang, “To compress, or not to compress: Characterizing
deep learning model compression for embedded inference,” in 2018
IEEE Intl Conf on Parallel Distributed Processing with Applications,
Ubiquitous Computing Communications, Big Data Cloud Computing,
Social Computing Networking, Sustainable Computing Communica-
tions (ISPA/IUCC/BDCloud/SocialCom/SustainCom), Dec. 2018, pp.
729-736.

T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu, “Reshaping deep neural net-
work for fast decoding by node-pruning,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May
2014, pp. 245-249.

Z. Wang, C. Zhu, Z. Xia, Q. Guo, and Y. Liu, “Towards thinner con-
volutional neural networks through gradually global pruning,” in 2017
IEEE International Conference on Image Processing (ICIP), Sep. 2017,
pp. 3939-3943.

M. Riera, J. Arnau, and A. Gonzez, “DNN pruning with principal
component analysis and connection importance estimation,” Journal of
Systems Architecture, vol. 122, 2022.

T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-
volutional neural networks using energy-aware pruning,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jul.
2017, pp. 6071-6079.

90175

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

[S20]

[S21]

[S22]

[S23]

[S24]

[S25]

[S26]

[S27]

[S28]

[S29]

[S30]

[S31]

[S32]

[S33]

[S34]

[S35]

[S36]

[S37]

[S38]

90176

X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,
T. Chen, and Y. Chen, “Cambricon-S: Addressing irregularity in sparse
neural networks through a cooperative software/hardware approach,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Oct. 2018, pp. 15-28.

X. Xu, Q. Chen, L. Xie, and H. Su, “Batch-normalization-based soft
filter pruning for deep convolutional neural networks,” in 2020 16th
International Conference on Control, Automation, Robotics and Vision
(ICARCV), Dec. 2020, pp. 951-956.

J. Zhang, X. Chen, M. Song, and T. Li, “Eager pruning: Algorithm
and architecture support for fast training of deep neural networks,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA), Jun. 2019, pp. 292-303.

X. Dai, H. Yin, and N. Jha, “Incremental learning using a grow-and-
prune paradigm with efficient neural networks,” IEEE Transactions on
Emerging Topics in Computing, vol. 10, no. 2, pp. 752-762, Apr. 2022.
B. O. Ayinde, T. Inanc, and J. M. Zurada, ‘‘Redundant feature pruning
for accelerated inference in deep neural networks,” Neural Networks,
vol. 118, pp. 148-158, Oct. 2019.

J. Guo and M. Potkonjak, “Pruning filters and classes: Towards on-
device customization of convolutional neural networks,” in Proceedings
of the 1st International Workshop on Deep Learning for Mobile Systems
and Applications, ser. EMDL 17. New York, NY, USA: Association
for Computing Machinery, Jun. 2017, pp. 13-17.

R. Yazdani, M. Riera, J. M. Arnau, and A. Gonzlez, “The dark side of
DNN pruning,” in 2018 ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA), Jun. 2018, pp. 790-801.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the
32nd International Conference on Machine Learning, vol. 3. PMLR,
Jun. 2015, pp. 1737-1746. [Online]. Available: https://proceedings.mlr.
press/v37/guptal5.html

T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. Shen, and M. Aleksic, “A
quantization-friendly separable convolution for MobileNets,” in 2018
1st Workshop on Energy Efficient Machine Learning and Cognitive
Computing for Embedded Applications (EMC2), Mar. 2018, pp. 14-18.
R. Ding, Z. Liu, R. D. S. Blanton, and D. Marculescu, “Quantized
deep neural networks for energy efficient hardware-based inference,” in
2018 23rd Asia and South Pacific Design Automation Conference (ASP-
DAC), Jan. 2018, pp. 1-8.

N. Wang, J. Choi, D. Brand, C. Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point numbers,”
vol. 31, 2018, pp. 7675-7684.

S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers
in deep neural networks,” in 6th International Conference on Learning
Representations, ICLR 2018 - Conference Track Proceedings, 2018.

B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, “‘Energy-
efficient ConvNets through approximate computing,” in 2016 IEEE
Winter Conference on Applications of Computer Vision (WACV), Mar.
2016, pp. 1-8.

S. M. Nabavinejad, L. Mashayekhy, and S. Reda, “ApproxDNN:
Incentivizing DNN approximation in cloud,” in 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing
(CCGRID), May 2020, pp. 639-648.

Y. Yang, L. Deng, S. Wu, T. Yan, Y. Xie, and G. Li, “Training
high-performance and large-scale deep neural networks with full 8-bit
integers,” Neural Networks, vol. 125, pp. 70-82, May 2020.

P. Nayak, D. Zhang, and S. Chai, “Bit efficient quantization for deep
neural networks,” in 2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing - NeurIPS Edition (EMC2-NIPS),
Dec. 2019, pp. 52-56.

B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst,
“Minimum energy quantized neural networks,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers, Oct. 2017, pp. 1921—
1925.

T. Zhang, L. Zhu, Q. Zhao, and K. Shin, “Neural networks weights
quantization: Target none-retraining ternary (TNT),” in 2019 Fifth
Workshop on Energy Efficient Machine Learning and Cognitive Com-
puting - NeurIPS Edition (EMC2-NIPS), Dec. 2019, pp. 62-65.

S. Sasaki, A. Maki, D. Miyashita, and J. Deguchi, ‘‘Post training weight
compression with distribution-based filter-wise quantization step,” in
2019 IEEE Symposium in Low-Power and High-Speed Chips (COOL
CHIPS), Apr. 2019, pp. 1-3.

[S39]

[S40]

[S41]

[S42]

[S43]

[S44]

[S45]

[S46]

[S47]

[S48]

[S49]

[S50]

[S51]

[S52]

[S53]

[S54]

[S55]

[S56]

R. Ding, T. W. Chin, Z. Liu, and D. Marculescu, ‘““Regularizing acti-
vation distribution for training binarized deep networks,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2019, pp. 1140011 409.

S. Zhu, X. Dong, and H. Su, “Binary ensemble neural network: More
bits per network or more networks per bit?”” in 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), vol.
2019-June, Jun. 2019, pp. 4918-4927.

Z. Tao, Q. Xia, and Q. Li, ““Neuron manifold distillation for edge deep
learning,” in 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS), Jun. 2021, pp. 1-10.

H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Petrot, “Ternary neural
networks for resource-efficient Al applications,” in 2017 International
Joint Conference on Neural Networks (IJCNN), May 2017, pp. 2547—
2554.

K. Bhardwaj, C. Y. Lin, A. Sartor, and R. Marculescu, ‘““Memory- and
communication-aware model compression for distributed deep learning
inference on IoT,” ACM Transactions on Embedded Computing Sys-
tems, vol. 18, no. 5, pp. 82:1-82:22, Oct. 2019.

S. Venkataramani, A. Raghunathan, J. Liu, and M. Shoaib, “Scalable-
effort classifiers for energy-efficient machine learning,” in Proceedings
of the 52nd Annual Design Automation Conference, ser. DAC *15. New
York, NY, USA: Association for Computing Machinery, Jun. 2015, pp.
1-6.

S. Scardapane, D. Comminiello, M. Scarpiniti, E. Baccarelli, and
A. Uncini, “Differentiable branching in deep networks for fast infer-
ence,” in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2020, pp.
4167-4171.

P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Mar.
2016, pp. 475-480.

N. K. Jayakodi, S. Belakaria, A. D., and J. R. Doppa, “Design and opti-
mization of energy-accuracy tradeoff networks for mobile platforms via
pretrained deep models,” ACM Transactions on Embedded Computing
Systems, vol. 19, no. 1, pp. 4:1-4:24, Feb. 2020.

Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, S. Dustdar, and J. Chen, “A
lightweight collaborative deep neural network for the mobile web in
edge cloud,” IEEE Transactions on Mobile Computing, vol. 21, no. 7,
pp- 2289-2305, Jul. 2022.

S. Teerapittayanon, B. McDanel, and H. T. Kung, “BranchyNet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR), Dec. 2016,
pp. 2464-2469.

A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and
K. Keutzer, “SqueezeNext: Hardware-aware neural network design,”
in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), Jun. 2018, pp. 1719-171909.

B. Wu, A. Wan, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: Uni-
fied, small, low power, fully convolutional neural networks for real-time
object detection for autonomous driving,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), Jul.
2017, pp. 446-454.

M. Riera, J. M. Arnau, and A. Gonzalez, “‘Computation reuse in DNNs
by exploiting input similarity,” in 2018 ACM/IEEE 45th Annual Inter-
national Symposium on Computer Architecture (ISCA), Jun. 2018, pp.
57-68.

A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “BATCH: Machine learn-
ing inference serving on serverless platforms with adaptive batching,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov. 2020, pp. 1-15.

J. Xu, B. Tang, H. He, and H. Man, “Semisupervised feature selection
based on relevance and redundancy criteria,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 28, no. 9, pp. 1974-1984,
Sep. 2017.

Y. Chen, Y. Wang, L. Cao, and Q. Jin, “‘CCFS: A confidence-based cost-
effective feature selection scheme for healthcare data classification,”
IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics, vol. 18, no. 3, pp. 902-911, May 2021.

L. Jiang, G. Kong, and C. Li, “Wrapper framework for test-cost-
sensitive feature selection,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 51, no. 3, pp. 1747-1756, Mar. 2021.

VOLUME 11, 2023

https://proceedings.mlr.press/v37/gupta15.html
https://proceedings.mlr.press/v37/gupta15.html

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

[S57]

[S58]

[S59]

[S60]

[S61]

[S62]

[S63]

[S64]

[S65]

[S66]

[S67]

[S68]

[S69]

[S70]

[S71]

[S72]

M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W.
Keckler, “vDNN: Virtualized deep neural networks for scalable,
memory-efficient neural network design,” in The 49th Annual

IEEE/ACM International ~ Symposium on Microarchitecture,
ser. MICRO-49. Taipei, Taiwan: IEEE Press, Oct. 2016,
pp. 1-13.

L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,
“Superneurons: Dynamic GPU memory management for training deep
neural networks,” in Proceedings of the 23rd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, ser. PPoPP
’18. New York, NY, USA: Association for Computing Machinery, Feb.
2018, pp. 41-53.

X. Zhang, J. Wang, G. Joshi, and C. Joe-Wong, “Machine learning on
volatile instances,” in IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, Jul. 2020, pp. 139-148.

R. Spring and A. Shrivastava, ‘““Scalable and sustainable deep learning
via randomized hashing,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’17. New York, NY, USA: Association for Computing
Machinery, Aug. 2017, pp. 445-454.

Z.Wang, S. H. Nelaturu, and S. Amarasinghe, “Accelerated CNN train-
ing through gradient approximation,” in 2019 2nd Workshop on Energy
Efficient Machine Learning and Cognitive Computing for Embedded
Applications (EMC2), Feb. 2019, pp. 31-35.

S. S. Sarwar, P. Panda, and K. Roy, “Gabor filter assisted energy effi-
cient fast learning convolutional neural networks,” in 2017 IEEE/ACM
International Symposium on Low Power Electronics and Design
(ISLPED), Jul. 2017, pp. 1-6.

X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan, Y. Hu,
Y. Wu, Y. Jia, P. Vajda, M. Uyttendaele, and N. K. Jha, “ChamNet:
Towards efficient network design through platform-aware model adap-
tation,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2019, pp. 11390-11399.

S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in Proceedings of the 16th Annual International Confer-
ence on Mobile Systems, Applications, and Services, ser. MobiSys *18.
New York, NY, USA: Association for Computing Machinery, Jun. 2018,
pp. 389—400.

Y. Li, B. An, J. Ma, D. Cao, Y. Wang, and H. Mei, “SpotTune:
Leveraging transient resources for cost-efficient hyper-parameter tun-
ing in the public cloud,” in 2020 IEEE 40th International Con-
ference on Distributed Computing Systems (ICDCS), Nov. 2020,
pp. 45-55.

B. Gu, J. Kong, A. Munir, and Y. G. Kim, “A framework for distributed
deep neural network training with heterogeneous computing platforms,”
in 2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), Dec. 2019, pp. 430-437.

S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “HFEL: Joint edge
association and resource allocation for cost-efficient hierarchical feder-
ated edge learning,” IEEE Transactions on Wireless Communications,
vol. 19, no. 10, pp. 6535-6548, Oct. 2020.

Z.Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, ‘“Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp.
1935-1949, Mar. 2021.

L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, ““HyPar: Towards
hybrid parallelism for deep learning accelerator array,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb. 2019, pp. 56-68.

L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, ““To talk or to work:
Flexible communication compression for energy efficient federated
learning over heterogeneous mobile edge devices,” in IEEE INFOCOM
2021 - IEEE Conference on Computer Communications, May 2021, pp.
1-10.

F. Sattler, S. Wiedemann, K. R. Mller, and W. Samek, ‘““Sparse binary
compression: Towards distributed deep learning with minimal commu-
nication,” in 2019 International Joint Conference on Neural Networks
(IJCNN), Jul. 2019, pp. 1-8.

B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective fed-
erated learning design,” in JEEE INFOCOM 2021 - IEEE Conference
on Computer Communications, May 2021, pp. 1-10.

VOLUME 11, 2023

[S73]

[S74]

[S75]

[S76]

[S771

[S78]

[S79]

[S80]

[S81]

[S82]

[S83]

[S84]

[S85]

[S86]

[S87]

Q. Luo, J. He, Y. Zhuo, and X. Qian, “Prague: High-performance
heterogeneity-aware asynchronous decentralized training,” in Proceed-
ings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. New
York, NY, USA: Association for Computing Machinery, Mar. 2020, pp.
401-416.

S. Gopinath, N. Ghanathe, V. Seshadri, and R. Sharma, “Compiling
KB-sized machine learning models to tiny IoT devices,” in Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2019. New
York, NY, USA: Association for Computing Machinery, Jun. 2019,
pp. 79-95.

D. Kang, E. Kim, I. Bae, B. Egger, and S. Ha, “C-GOOD: C-code
generation framework for optimized on-device deep learning,” in Pro-
ceedings of the International Conference on Computer-Aided Design,
ser. ICCAD ’18. New York, NY, USA: Association for Computing
Machinery, Nov. 2018, pp. 1-8.

S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural
networks over the cloud, the edge and end devices,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
2017, pp. 328-339.

A. Thomas, Y. Guo, Y. Kim, B. Aksanli, A. Kumar, and T. S. Rosing,
“Hierarchical and distributed machine learning inference beyond the
edge,” in 2019 IEEE 16th International Conference on Networking,
Sensing and Control (ICNSC), May 2019, pp. 18-23.

L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Coopera-
tive DNN inference with adaptive workload partitioning over heteroge-
neous edge devices,” IEEE/ACM Transactions on Networking, vol. 29,
no. 2, pp. 595-608, Apr. 2021.

M. Alzantot, Y. Wang, Z. Ren, and M. B. Srivastava, “RSTensorFlow:
GPU enabled TensorFlow for deep learning on commodity Android
devices,” in Proceedings of the Ist International Workshop on Deep
Learning for Mobile Systems and Applications, ser. EMDL "17. New
York, NY, USA: Association for Computing Machinery, Jun. 2017, pp.
7-12.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 615-629,
2017.

E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proceed-
ings of the 2018 Workshop on Mobile Edge Communications, ser.
MECOMM’18. New York, NY, USA: Association for Computing
Machinery, Aug. 2018, pp. 31-36.

G. Hegde, Siddhartha, N. Ramasamy, and N. Kapre, “CaffePresso:
An optimized library for deep learning on embedded accelerator-
based platforms,” in 2016 International Conference on Compliers,
Architectures, and Sythesis of Embedded Systems (CASES), Oct. 2016,
pp. 1-10.

E. Park, D. Kim, S. Kim, Y. D. Kim, G. Kim, S. Yoon, and S. Yoo,
“Big/little deep neural network for ultra low power inference,” in 2015
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Oct. 2015, pp. 124-132.

S. Tann, H.and Hashemi, R. I. Bahar, and S. Reda, “Runtime config-
urable deep neural networks for energy-accuracy trade-oft,” in Pro-
ceedings of the Eleventh IEEE/ACM/IFIP International Conference on
Hardware/Software codesign and System Synthesis, ser. CODES ’16.
New York, NY, USA: Association for Computing Machinery, Oct. 2016,
pp. 1-10.

A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Transactions on Mobile Computing, vol. 20,
no. 2, pp. 565-576, Feb. 2021.

D. Lee, S. Kang, and K. Choi, “ComPEND: Computation pruning
through early negative detection for ReLU in a deep neural network
accelerator,” in Proceedings of the 2018 International Conference on
Supercomputing, ser. ICS *18. New York, NY, USA: Association for
Computing Machinery, Jun. 2018, pp. 139-148.

Y. Zhao, X. Chen, Y. Wang, C. Li, H. You, Y. Fu, Y. Xie, Z. Wang, and
Y. Lin, “SmartExchange: Trading higher-cost memory storage/access
for lower-cost computation,” in 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA), May 2020, pp.
954-967.

90177

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

[S88]

[S89]

[S90]

[S91]

[S92]

[S93]

[S94]

[S95]

[S96]

[S97]

[S98]

[S99]

[S100]

[S101]

[S102]

[S103]

90178

C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian,
Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, and B. Yuan,
“CIRCNN: Accelerating and compressing deep neural networks using
block-circulant weight matrices,” in Proceedings of the Annual Inter-
national Symposium on Microarchitecture, MICRO, vol. Part F131207,
2017, pp. 395-408.

S. Liao, Z. Li, X. Lin, Q. Qiu, Y. Wang, and B. Yuan, “Energy-
efficient, high-performance, highly-compressed deep neural network
design using block-circulant matrices,” in 2017 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), Nov. 2017, pp.
458-465.

S. Lin, N. Liu, M. Nazemi, H. Li, C. Ding, Y. Wang, and M. Pedram,
“FFT-based deep learning deployment in embedded systems,” in 2018
Design, Automation Test in Europe Conference exhibition (DATE), Mar.
2018, pp. 1045-1050.

S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “AxNN:
Energy-efficient neuromorphic systems using approximate computing,”
in 2014 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), Aug. 2014, pp. 27-32.

X. Jiao, V. Akhlaghi, Y. Jiang, and R. K. Gupta, “Energy-efficient neu-
ral networks using approximate computation reuse,” in 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), Mar. 2018,
pp. 1223-1228.

E. Dupuis, D. Novo, I. O’Connor, and A. Bosio, “On the automatic
exploration of weight sharing for deep neural network compression,”
in 2020 Design, Automation Test in Europe Conference Exhibition
(DATE), Mar. 2020, pp. 1319-1322.

J. L. Gustafson and I. Yonemoto, “Beating floating point at its own
game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71-86, 2017.

S. H. Fatemi Langroudi, T. Pandit, and D. Kudithipudi, ‘“Deep
learning inference on embedded devices: Fixed-point vs Posit,” in
2018 1st Workshop on Energy Efficient Machine Learning and Cog-
nitive Computing for Embedded Applications (EMC2), Mar. 2018,
pp. 19-23.

J. Lu, C. Fang, M. Xu, J. Lin, and Z. Wang, “Evaluations
on deep neural networks training using Posit number system,”
IEEE Transactions on Computers, vol. 70, no. 2, pp. 174-187,
Feb. 2021.

U. ster, T. J. Webb, X. Wang, M. Nassar, A. K. Bansal, W. H. Constable,
O. H. Elibol, S. Gray, S. Hall, L. Hornof, A. Khosrowshahi, C. Kloss,
R. J. Pai, and N. Rao, “Flexpoint: An adaptive numerical format
for efficient training of deep neural networks,” Dec. 2017. [Online].
Available: http://arxiv.org/abs/1711.02213

P. M. Tostado, B. U. Pedroni, and G. Cauwenberghs, ‘‘Performance
trade-offs in weight quantization for memory-efficient inference,” in
2019 IEEE International Conference on Artificial Intelligence Circuits
and Systems (AICAS), Mar. 2019, pp. 246-250.

S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang, and
L. Chang, “Compensated-DNN: Energy efficient low-precision deep
neural networks by compensating quantization errors,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), Jun. 2018,
pp. 1-6.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning,” in Proceedings of the 19th
international conference on Architectural support for programming
languages and operating systems, ser. ASPLOS ’14. New York,
NY, USA: Association for Computing Machinery, Feb. 2014,
pp. 269-284.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-
138, Jan. 2017.

Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
1EEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 9, no. 2, pp. 292-308, Jun. 2019.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), Jun. 2016, pp. 243-254.

[S104]

[S105]

[S106]

[S107]

[S108]

[S109]

[S110]

[S111]

[S112]

H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable intercon-
nects,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems. New York, NY, USA: Association for Computing Machinery,
Mar. 2018, pp. 461-475.

Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in 2017
1IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), Apr. 2017, pp. 152-159.

H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to FPGAs,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Oct. 2016, pp. 1-12.

X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W. M. Hwu, and D. Chen,
“DNNBuilder: An automated tool for building high-performance DNN
hardware accelerators for FPGAs,” in Proceedings of the International
Conference on Computer-Aided Design, ser. ICCAD 18, New York,
NY, USA, Nov. 2018, pp. 1-8.

Y. Ma, Y. Cao, S. Vrudhula, and J. S. Seo, “Optimizing loop opera-
tion and dataflow in FPGA acceleration of deep convolutional neural
networks,” in Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, ser. FPGA ’17. New
York, NY, USA: Association for Computing Machinery, Feb. 2017, pp.
45-54.

X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAS,” in Proceedings of the 54th
Annual Design Automation Conference 2017, ser. DAC *17. New York,
NY, USA: Association for Computing Machinery, Jun. 2017, pp. 1-6.
D. Wang and Y. Shang, “A new active labeling method for deep
learning,” in 2014 International Joint Conference on Neural Networks
(IJCNN), Jul. 2014, pp. 112-119.

K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin, “Cost-effective active
learning for deep image classification,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 27, no. 12, pp. 2591-2600, Dec.
2017.

S. J. Huang, J. W. Zhao, and Z. Y. Liu, “Cost-effective training of
deep CNNs with active model adaptation,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD *18. New York, NY, USA: Association for
Computing Machinery, Jul. 2018, pp. 1580-1588. [Online]. Available:
https://doi.org/10.1145/3219819.3220026

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14-23, Oct. 2009.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ““Fog computing and
its role in the Internet of Things,” in Proc. 1st Workshop Mobile Cloud
Comput., New York, NY, USA, Aug. 2012, pp. 13-16.

C. J. Wu et al., “Machine learning at Facebook: Understanding infer-
ence at the edge,” in Proc. IEEE Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2019, pp. 331-344.

K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning at
Facebook: A datacenter infrastructure perspective,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), Feb. 2018, pp. 620-629.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, vol. 25. Red Hook, NY, USA: Curran
Associates, 2012. [Online]. Available: https://proceedings.neurips.
cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html

M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2014, pp. 10-14.

VOLUME 11, 2023

http://arxiv.org/abs/1711.02213
https://doi.org/10.1145/3219819.3220026

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

IEEE Access

[8]

[91

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]
(18]

[19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20-24, Mar. 1995.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
and S. Bates, “In-datacenter performance analysis of a tensor process-
ing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2017, pp. 1-12.

J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad,
M. M. A. Patwary, Y. Yang, and Y. Zhou, “Deep learning scaling is
predictable, empirically,” 2017, arXiv:1712.00409.

J. Lu, A. Liu, FE. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 12,
pp. 2346-2363, Dec. 2019.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng, “Large scale
distributed deep networks,” in Advances in Neural Information Pro-
cessing Systems, vol. 25. Red Hook, NY, USA: Curran Associates,
2012.

H. Zheng, F. Xu, L. Chen, Z. Zhou, and F. Liu, ““Cynthia: Cost-efficient
cloud resource provisioning for predictable distributed deep neural net-
work training,” in Proc. 48th Int. Conf. Parallel Process., Aug. 2019,
pp. 1-11.

B. Kitchenham and S. Charters, ““Guidelines for performing systematic
literature reviews in software engineering,” Softw. Eng. Group, School
Comput. Sci. Math., Keele Univ., Dept. Comput. Sci., Univ. Durham,
EBSE Tech. Rep., Version 2, 2007.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ““Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, ‘“Generative
adversarial nets,” in Advances in Neural Information Processing
Systems, vol. 27. Red Hook, NY, USA: Curran Associates,
2014.

T. N. Kipf and M. Welling, ““Semi-supervised classification with graph
convolutional networks,” 2017, arXiv:1609.02907.

R. Schwartz, J. Dodge, N. Smith, and O. Etzioni, “Green Al,” Commun.
ACM, vol. 63, no. 12, pp. 54-63, Dec. 2020.

E. Garcia-Martin, C. F. Rodrigues, G. Riley, and H. Grahn, “Estima-
tion of energy consumption in machine learning,” J. Parallel Distrib.
Comput., vol. 134, pp. 75-88, Dec. 2019.

D. He, Z. Wang, and J. Liu, “A survey to predict the trend of Al-able
server evolution in the cloud,” IEEE Access, vol. 6, pp. 10591-10602,
2018.

A. Shawahna, S. M. Sait, and A. El-Maleh, “‘FPGA-based accelerators
of deep learning networks for learning and classification: A review,”
IEEE Access, vol. 7, pp. 7823-7859, 2019.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295-2329, Dec. 2017.

V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, ‘‘Hardware for
machine learning: Challenges and opportunities,” in Proc. IEEE Custom
Integr. Circuits Conf. (CICC), Apr. 2018, pp. 1-8.

M. Verhelst and B. Moons, “Embedded deep neural network pro-
cessing: Algorithmic and processor techniques bring deep learning to
10T and edge devices,” IEEE Solid StateCircuits Mag., vol. 9, no. 4,
pp. 55-65, Fall 2017.

M. Shafique, T. Theocharides, C.-S. Bouganis, M. A. Hanif, F. Khalid,
R. Hafiz, and S. Rehman, “‘An overview of next-generation architectures
for machine learning: Roadmap, opportunities and challenges in the IoT
era,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 827-832.

A. Tbrahim, M. Osta, M. Alameh, M. Saleh, H. Chible, and M. Valle,
“Approximate computing methods for embedded machine learning,” in
Proc. 25th IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Dec. 2018,
pp. 845-848.

M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and
M. Shafique, “Hardware and software optimizations for accelerating
deep neural networks: Survey of current trends, challenges, and the road
ahead,” IEEE Access, vol. 8, pp. 225134-225180, 2020.

L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proc. IEEE, vol. 108, no. 4, pp. 485-532, Apr. 2020.

VOLUME 11, 2023

[29]

[30]

(31]

(32]

(33]
(34]

(35]

(36]

(371

(38]

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]
[50]

[51]
[52]

T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, ‘“Pruning and
quantization for deep neural network acceleration: A survey,” Neuro-
computing, vol. 461, pp. 370-403, Oct. 2021.

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network
inference,” in Low-Power Computer Vision: Improving the Effi-
ciency of Artificial Intelligence, Jun. 2021. [Online]. Available:
https://arxiv.org/abs/2103.13630

A. Marchisio, M. A. Hanif, F. Khalid, G. Plastiras, C. Kyrkou,
T. Theocharides, and M. Shafique, “Deep learning for edge com-
puting: Current trends, cross-layer optimizations, and open research
challenges,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2019, pp. 553-559.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with
edge computing,” Proc. IEEE, vol. 107, no. 8, pp.1738-1762,
Aug. 2019.

(2022). IEEE Xplore. [Online]. Available: https://developer.ieee.org/
V. Alves, N. Niu, C. Alves, and G. Valenca, ‘‘Requirements engineering
for software product lines: A systematic literature review,” Inf. Softw.
Technol., vol. 52, no. 8, pp. 806-820, Aug. 2010.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘“Pruning
filters for efficient ConvNets,” 2016, arXiv:1608.08710.

M. Courbariaux, Y. Bengio, and J. P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems, vol. 28. Red
Hook, NY, USA: Curran Associates, 2015. [Online]. Available: https://
proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b06
69f2cd-Abstract.html

W. Sung, S. Shin, and K. Hwang, “Resiliency of deep neural networks
under quantization,” 2015, arXiv:1511.06488.

M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 1-12.

J. Ba and R. Caruana, “Do deep nets really need to be deep?” in
Advances in Neural Information Processing Systems, vol. 27. Red
Hook, NY, USA: Curran Associates, 2014. [Online]. Available: https:/
proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e
06eb187f10666d-Abstract.html

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in Proc. NIPS Deep Learn. Workshop, 2015. [Online].
Available: https://arxiv.org/abs/1503.02531

A.G.Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘“MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,” 2017, arXiv:1704.04861.
I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” J. Mach. Learn. Res., vol. 3, pp.1157-1182,
Jan. 2003.

TensorFlow Lite. (2022). ML for Mobile and Edge Devices. [Online].
Available: https://www.tensorflow.org/lite

R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, 1.
Nappier, M. Natraj, T. Wang, and P. Warden, “Tensorflow lite micro:
Embedded machine learning for TinyML systems,” Proc. Mach.
Learn. Syst., vol. 3, pp. 800-811, Mar. 2021. [Online]. Available:
https://proceedings.mlsys.org/paper/2021/hash/d2ddeal8f00665ce86
23e36bd4e3c7c5-Abstract.html

J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, pp. 48-60, Jan. 2019.

G. Burr, R. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Vir-
wani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, 1. Boybat,
M. Le Gallo, K. Moon, J. Woo, H. Hwang, and Y. Leblebici, “Neuro-
morphic computing using non-volatile memory,” Adv. Phys. X, vol. 2,
no. 1, pp. 89-124, 2017.

Apple. (2022). Apple Core ML. [Online]. Available: https://developer.
apple.com/machine-learning/core-ml/

Android. (2022). Android ML. [Online]. Available: https://developer.
android.com/ml

(2022). TensorFlow. [Online]. Available: https://www.tensorflow.org/
(2022). PyTorch. [Online]. Available: https://www.pytorch.org

L. Corneo, M. Eder, N. Mohan, A. Zavodovski, S. Bayhan, W. Wong,
P. Gunningberg, J. Kangasharju, and J. Ott, ““Surrounded by the clouds:
A comprehensive cloud reachability study,” in Proc. Web Conf. New
York, NY, USA, Apr. 2021, pp. 295-304.

90179

IEEE Access

A. Klemetti et al.: Systematic Literature Review on Cost-Efficient Deep Learning

[53] D.P KingmaandJ. Ba, “Adam: A method for stochastic optimization,”

2014, arXiv:1412.6980.

[54] 1. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”

2017, arXiv:1711.05101.

[55] S. Ruder, “An overview of gradient descent optimization algorithms,”

90180

2016, arXiv:1609.04747.

ANTTI KLEMETTI received the M.S. degree in
computer science from the University of Helsinki,
Finland, in 2001.

He is currently a Ph.D. Researcher in com-
puter science with the University of Helsinki.
He is a seasoned Software Practitioner with over
20 years of experience in international companies,
such as Nokia and Unity Technologies. He is also
working on his industry-inspired Ph.D. thesis on
cost-efficient machine learning.

MIKKO RAATIKAINEN received the D.Sc.
(Tech.) degree in computer science and engineer-
ing from Aalto University, in 2019. He is currently
a Researcher with the Empirical Software Engi-
neering Research Group, University of Helsinki.
His research interests include empirical research
in software engineering and business.

LALLI MYLLYAHO received the M.S. degree
in mathematics from the University of Helsinki,
Finland, in 2018.

He is currently a Ph.D. Researcher in computer
science with the University of Helsinki. He is also
a member of the Empirical Software Engineering
Group, University of Helsinki, with a background
in mathematics and teaching. His current research
interests include the reliability and operation of
machine learning systems.

TOMMI MIKKONEN received the M.S. and
Ph.D. degrees in computer science from the
Tampere University of Technology, Finland, in
1992 and 1999, respectively.

He is currently a Full Professor of software engi-
neering with the University of Jyviskyld, Finland.
His current research interests include the IoT, soft-
ware engineering, and multi-device programming.

JUKKA K. NURMINEN (Member, IEEE)
received the M.S. and Ph.D. degrees in applied
mathematics from the Helsinki University of
Technology (now Aalto University), Finland, in
1986 and 2003, respectively.

He has worked extensively on software research
in the telecom industry with the Nokia Research
Center, in academia with Aalto University, and
applied research with VTT. He is currently a
Professor of computer science with the University
of Helsinki, Finland. His key research contributions are energy-efficient
software, mobile peer-to-peer networking, and cloud solutions; however, his
experience ranges widely from applied optimization to Al, network planning
tools to mobile apps, and software project management to tens of patented
inventions. His main research interests include engineering machine learning
systems, fair and reliable operation of Al, and software development for
quantum computers.

VOLUME 11, 2023

