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TO THE EDITOR:
Accumulating evidence suggests shared susceptibility factors
between colorectal and hematological malignancies, in line with
observations of cross-cancer associations of multiple cancer
predisposing genes [1]. Familial colorectal cancer type X (FCCTX)
refers to colorectal cancer families that fulfill the diagnostic
(Amsterdam) criteria for Lynch syndrome but lack DNA mismatch
repair (MMR) defects. The underlying genes are mostly unknown.
We recently linked inactivation of RPS20 (ribosomal protein S20) to
FCCTX predisposition [2]. The phenotypic spectrum of RPS20 was
later expanded to include Diamond Blackfan anemia [3] thus
connecting colorectal and hematological carcinogenesis. Observa-
tions of inherited variants in DDX41, a DEAD box RNA helicase
gene, causing susceptibility to myelodysplastic syndrome and
myeloid leukemias, offer additional proof of the important
regulatory roles of ribosome biosynthesis and RNA processing in
cancer [4]. DDX41 variants are currently known to represent the
most common germline alterations in adult myelodysplastic
syndromes, accounting for 0.5–4% of all acute myeloid leukemia
or myelodysplastic syndrome cases in adults [5].
We conducted exome sequencing (ES) on 28 unexplained

FCCTX families to identify their predisposing genes (Supplemen-
tary Materials and Methods, Supplementary Table 1). The
investigations described in this paper were approved by the
Institutional Review Boards of the Helsinki University Hospital,
Helsinki, Finland (approval nos. 466-46-2001, 206/13/03/03/2016
and 303/13/03/01/2011). Family F32 with myelodysplastic syn-
drome/acute leukemia coexisting with colorectal cancer caught

our attention (Fig. 1A). All variants fulfilling our selection criteria
(high quality, minor allele frequency <0.001, nonsynonymous, and
predicted pathogenic with at least 5/6 in silico programs if
missense) are listed for the index individual III.1 in Supplementary
Table 2. His granddaughter V.1 presented with an unusual form of
hematologic disorder at the age of 18 years. Initially, the
investigations started due to pancytopenia which was treated
with allo-hematopoietic stem cell transplantation (HSCT). The
disease relapsed 2 years later with blood counts: hemoglobin 9.5,
platelets 50, neutrophils 0.7. At that time, morphological
examination of the bone marrow showed dysplasia in megakar-
yopoiesis and excess of blasts, and was subsequently diagnosed
as myelodysplastic syndrome (MDS)/refractory anemia with excess
blasts, type 2 (RAEB2) [6]. When variant sharing in the key affected
members III.1, IV.3, and V.1 was set as a requirement, the only
variant that remained was a heterozygous truncating variant
affecting the DEAH-box RNA helicase gene DHX40
(NM_024612.4:c.710_713delTCAG, p.Val237GlufsX7) (Fig. 1A). The
variant is predicted to lead to the deletion of the helicase domain
and all downstream C-terminal portion of DHX40. Seven of eight
cancer-affected members had this variant (the only one without
was individual III.3 with adenocarcinoma of unknown origin).
To functionally characterize the DHX40 variant, we evaluated its

expressional consequences on RNA and protein level, undertook
tumor studies to analyze somatic variants, changes in gene
methylation and DHX40 protein expression, and conducted siRNA
analyses of cell lines (see Supplementary Materials and Methods).
By a primer extension assay, the dosage ratios of mutant to wild-
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type alleles were reduced up to fivefold (Supplementary Fig 1A),
likely reflecting nonsense-mediated RNA decay. In agreement,
Western blot analysis with N-terminal DHX40 antibody showed no
visible truncated protein (Supplementary Fig. 2A). However, a
truncated product of expected size could be clearly visualized by
transfecting HEK293 cells with eGFP-tagged DHX40 expression

constructs (Supplementary Fig. 2B). To evaluate if Knudson’s two-
hit mechanism applied to DHX40, available neoplastic tissues from
individuals heterozygous for the DHX40 c.710_713delTCAG variant
were examined for somatic variants, loss of the wild-type allele,
and promoter methylation of DHX40. There was no unequivocal
evidence of “second hits” (Supplementary Fig. 1B, Supplementary
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Table 3, Supplementary Table 4), supporting the idea that loss of
function of the constitutionally mutant allele alone was sufficient
for tumorigenesis, without a second hit (haploinsufficiency).
As no suitable RNA samples from the patients were available for

investigations of the consequences of DHX40 inactivation on
global transcriptomes, we undertook siRNA experiments on cell
lines representing normal (CCD841) or cancer tissues (HEK293 and
K562) of different cellular origins (Fig. 1B, Supplementary Materials
and Methods), followed by RNA-sequencing. We observed 71
differentially expressed transcripts (q-value < 0.01) unique to
DHX40-siRNA-treated cells and shared by all three cell lines
(Fig. 1B, Supplementary Fig. 3). Genes functioning in RNA
metabolism (RNA helicase, RNA binding, or transcription-related
function) were enriched, comprising 31% of the unique tran-
scripts. ASGAL (Alternative Splicing Graph ALigner) directly aligns
RNA-seq data to a splicing graph, which results in a list of novel
splice events in respect to gene annotation. By ASGAL analysis,
DHX40-siRNA-treated cells exhibited a 13% increase in novel splice
events, compared to GAPDH-siRNA-treated or non-target siRNA-
treated cells (Fig. 1B). DHX40-siRNA treatment associated with
elevation of all types of splice events, especially exon skipping.
No germline variants suspected pathogenic were detectable in

DHX40 or other DEAD/H box genes (from here on, referred to as
DDX/DHX genes) in the remaining 27 FCCTX families. However,
one family displayed a heterozygous truncating variant in a
related RNA helicase gene, TDRD9 (NM_153046.2:c.2261delC,
p.Thr754IlefsX11) that co-segregated with colorectal cancer in
two siblings. This finding further strengthens the importance of
impaired RNA metabolism behind hereditary cancer susceptibility.
Next, we ascertained close to 400 patients with acute leukemia,

myelodysplastic syndrome, or myeloma with germline and/or
somatic exomic data available from a hospital-based repository
and analyzed their samples for possibly pathogenic variants in
DDX/DHX genes. Sixty-six skin fibroblast samples out of 367 (18%)
revealed a possibly pathogenic germline variant in at least one
DDX/DHX gene (Fig. 2A). Most variants were of the missense type
(Fig. 2B). According to the FinnGen database (finngen.fi), of single
nucleotide variants included in their genome-wide association
study and located nearby our most frequently affected genes,
DDX58, DDX54, DHX38, and DDX10 showed significant (p < 10−4)
association to several hematological malignancies. Additionally,
DDX10 showed significant (p < 10−4) association to colon adeno-
carcinomas, and DDX54 to benign colon tumors. While DHX40 was
not affected with any such germline alterations that would fulfill
our stringent selection criteria, the common p.M1I pathogenic loss
of-function variant of DDX41 [5] was detected twice. One hundred
and twenty-two neoplastic bone marrow samples out of 432
(28%) revealed at least one possibly pathogenic somatic DHX/DDX
single-nucleotide variant or small indel variant (mostly of the

missense type), including DHX40 variants in four (two with AML
and two with myeloma) (Fig. 2C, D). The nonsense variant
NM_024612.4:c.361G > T, p.E121* was particularly noteworthy
being present in two consecutive specimens of CD138+ cells
taken with a 15-month interval from a patient with multiple
myeloma, and having a high variant allele frequency (37%) in both
samples. This variant (together with p.S210* identified in an AML
patient) affects the DEAD/H box helicase domain and is predicted
to give rise to a severely truncated protein (Fig. 2E).
In summary, we describe a rare truncating germline variant of

DHX40 in a multi-generation family with hematological and solid
malignancies. Loss-of-function nature of the variant, co-
segregation with neoplasia phenotypes, and functional evidence
suggest a role in cancer predisposition. Our findings add DHX40 as
a new candidate to the growing list of RNA metabolism-related
genes that may underlie predisposition to FCCTX [2, 7] and
myeloid disorders [4]. Moreover, our findings from a large
hospital-based patient series suggest the involvement of the
broader DDX/DHX gene family in hematological malignancies.
Our DHX40 findings resemble those earlier described for DDX41

in several respects. First, while DDX41 primarily associates with
hematological neoplasia, solid malignancies, especially prostate
cancer, colorectal cancer, and melanoma, have been reported in
individuals with pathogenic germline variants of DDX41 [8].
Second, our patient V.1 from F32 responded well to combination
therapy (clofarabin, plerixafor and lenalidomide) and had no need
for additional therapy regimens after a second allo-HSCT following
the combination therapy; the patient has remained in remission
for over 10 years. Interestingly, sensitivity of DDX41-mutated
patients to lenalidomide treatment has been described in the
literature [4]. Third, although the frameshift nature of the DHX40
germline variant implied loss of function, no apparent “second
hits” were detectable in neoplastic tissues from individuals from
F32 (Supplementary Table 3), a situation compatible with
dominant-negative mechanism or alternatively, haploinsuffi-
ciency. Experience from DDX41 suggests haploinsufficiency:
although individuals with pathogenic germline variants often
acquire somatic DDX41 variants as second hits, the latter occur
at low (0–20%) frequencies in bone marrow cells because
biallelic alterations are not compatible with proliferating
hematopoietic cells [9, 10]. It is likewise possible that biallelic
DHX40 defects are not tolerated. Interestingly, a duodenum
adenoma from F32 showed a mosaic loss of DHX40 protein by
immunohistochemical analysis (Supplementary Fig. 1C), suggest-
ing that biallelic defects could be present, but in only a small
proportion of tumor cells. Fourth, DDX41-deficient blast cells
were shown to exhibit aberrant exon skipping and retention [4]
resembling our findings from siRNA-mediated knockdown of
DHX40 in cell lines (Fig. 1B).

Fig. 1 Genetic and functional characterization of the DHX40 c.710_713delTCAG variant. A Pedigree of F32. Numbers below the symbols are
patient identifiers. Arrow denotes the index person. Tumor manifestations and age at diagnosis (years) are given below patient symbols. Non-
essential pedigree features have been excluded or modified to protect confidentiality. A plus sign (+) denotes the presence of the variant in a
heterozygous state and a minus sign (-) the absence of the variant. Sequence chromatogram on the right displays the normal (top) and altered
sequence (bottom), where arrowhead denotes the site of the germline change. Lollipop diagram (bottom) indicates location of the
predisposing variant against the main functional domains of the encoded protein. The functional domains of DHX40 are: DEAD, DEAD/H box
helicase domain; Helicase_C, Helicase conserved C-terminal domain; HA2, Helicase associated domain; OB_NTP bind, Oligonucleotide/
oligosaccharide-binding (OB)-fold. B Consequences of siRNA-mediated knockdown of DHX40. Workflow of siRNA experiments on CCD841CoN,
HEK293, and K562 cell lines is shown on the left. Results from analyses of RNA-sequencing data for differential transcript expression (DTE) and
novel splicing events (by the ASGAL tool) (see Supplementary Materials and Methods) are depicted on the right. The bar graph of DTE analysis
displays top 20 differentially expressed genes among 71 unique transcripts shared between the three cell lines. Genes whose products
participate in RNA metabolism are in bold (see Supplementary Fig. 3 for all 71 genes). The ASGAL analysis shows the number of novel splicing
events detected after treatment with DHX40-siRNA, GAPDH-siRNA, or non-target siRNA, vs. untreated cells, and stratified by the type of splicing
alteration (A3, alternative 3’ site; A5, alternative 5’ site; ES, exon skipping; IR, intron retention). Splicing events for all three cell lines (HEK293,
K562, and CCD841CoN) were combined. Asterisk denotes statistically significant differences (p < 0.0001 for ES and p < 0.05 for all other events,
by pairwise chi-square test with FDR correction) in the number of specific types of splice events after DHX40-siRNA treatment vs. GAPDH-siRNA
or non-target siRNA treatment.
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At least 59 established DDX/DHX helicases are known [11]. In
our hospital-based hematological series, DDX/DHX genes were
fairly frequently affected by missense variants and occasionally
(7–9%) by truncating variants (Fig. 2A–D) Although several DDX/
DHX genes pinpointed in this series showed significant association
to hematological and colorectal neoplasia according to public
databases, the true significance of the finding remains to be
determined by additional studies.
Apart from ATP-dependent RNA-duplex unwinding, DDX/DHX

proteins participate in the regulation of long and short non-
coding RNAs, pre-mRNA splicing, ribosome biogenesis, and many
other cellular functions [11–14]. Besides shedding light to the
basic biological mechanisms of neoplasia, our results are clinically
relevant since DDX/DHX variant status may guide therapy options
([4] and this study); moreover, participation in translational control
makes DDX/DHX helicases attractive targets for novel anti-cancer

therapies [15]. Our findings encourage additional investigations
on DHX40 as well as studies into other DHX/DDX genes as possible
predisposing factors for colorectal and hematological neoplasia.

DATA AVAILABILITY
Raw RNA-seq data and DTE analysis results from siRNA treated cell lines can be
obtained from GSE228991. Our IRB approvals do not allow sharing of raw sequencing
data from patients. All variants fulfilling our filtering criteria can be found in the
Supplementary Files. Requests to access additional datasets should be directed to the
corresponding authors.
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