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Prologue 

This prologue acts as a preliminary discourse in this thesis. The purpose is 
to arouse the curiosity of the reader towards the versatile properties of the 
quantum-mechanical black holes, rather than introduce the specific frame­
work of the research. Let us therefore discuss some general aspects of the 
main subjects involved in this thesis. 

The era of modern science began in 1687 when Sir Isaac Newton pub­
lished his treatise entitled Philosophiae Naturalis Principia Mathematica. 
Newton was the first to explain gravitation - the phenomenon where mas­
sive bodies fall down when they are released near the surface of the Earth. 
Newton's theory of gravitation is accurate enough to provide the paths of 
missiles and rockets, and its region of validity can be tested with the orbits 
of the planets in our solar system. In 1915 Albert Einstein introduced his 
revolutionary theory of gravitation (1], the general theory of relativity. It 
changed many of the old Newtonian concepts of gravitation and, moreover, 
it extended the region of validity of the theory of gravitation. However, Ein­
stein's theory has some limitations of its own. To this day our knowledge of 
gravitation has been based on general relativity. Because of the limitations 
of general relativity our understanding about gravitation is not complete. 

One of the most important problems of modern physics is to find a 
complete description of gravitation. After all, gravitation is one of the fun­

damental interactions of Nature. One possible route to the complete theory 
of gravitation is hopefully afforded by certain physical objects where the 
effects of gravitation become very strong - so strong that even light cannot 
escape from those objects. These objects are called black holes. Since black 
holes are predicted by general theory of relativity, we use this theory as our 
starting point. To really understand what exactly are the main problems 
with the present understanding about gravitation, and why and how black 
holes are employed when searching for a complete theory of gravitation let 
us make a brief journey through the world of physics. 

Physics attempts to explain Nature. According to our present under­
standing, all phenomena in Nature can be explained by four fundamental 

interactions. These fundamental interactions are known as the electromag­
netic, weak, strong and gravitational interaction. The first three fundamen­
tal interactions, for instance, keep protons and neutrons together inside the 
atomic nucleus, give matter its properties a.no cause the eled.rir. phenom­
ena we observe around us. They also cause the chemical reactions, and are 
responsible for the radioactive phenomena. The last interaction, gravity, 
governs every large-scale phenomena such as the mutual motion of celestial 
bodies, like the Earth and the Sun - but it also affects the smallest par­
ticles in the universe. Moreover, we are taught that there are only three 
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underlying theories of physics which govern all phenomena and every entity 
in Nature. These theories are quantum mechanics, thermodynamics, and 
general relativity. Quantum mechanics describes the behaviour of particles 
when they interact, thermodynamics tells us how a large collection of parti­
cles behaves when the constituents of the collection interact with each other, 
whereas general relativity is a theory of gravitation telling us how space and 
time behave and how and why particles fall. In future, when we have a 
complete understanding of gravitation, we might have only two underlying 
theories left in physics: some sort of generalized quantum mechanics and 
thermodynamics. There are also indications that all underlying theories of 
physics should be able to unite into a theory of everything. 

Einstein's general theory of relativity is his second theory of space and 
time. The first theory is known as the special theory of relativity, and it 
states that not three-dimensional space and one-dimensional time but four­
dimensional spacetime remains the same for all inertial observers [2]. This 
means that space and time are relative, but spacetime is absolute. Spacetime 
is the arena where all phenomena of Nature take place, and it consists of time 
and of three-dimensional space such that time and space are not separate 
entities but they form a sort of a union. This very important conclusion 
was drawn when Einstein required the velocity of light to be the same for 
all inertial observers. Since the special theory of relativity does not include 
gravity at all, Einstein had to develop the general theory of relativity. 

The general theory of relativity generalizes the special theory of relativ­
ity in the sense that in general relativity spacetime is curved whereas in the 
special theory it is flat. The fundamental idea of the general theory is that 
matter makes spacetime curved, and the gravitational interaction between 
massive bodies is described by the geometry of curved spacetime. More pre­
cisely, gravitation is a manifestation of c·u·1"ual-ure of spacetirne in the sense 
that bodies in free fall tend to follow the shortest possible routes, called 
geodesics, in curved spacetime. This property of general relativity explains 
why all bodies have the same acceleration in the same gravitational field [3]: 
spacetime geodesics are the same for all bodies. For this reason an observer 
in free fall does not notice any gravitational field in his immediate vicinity, 
but every test particle that the observer releases, remains, relative to the 
observer, in rest or in uniform motion. This means that the observer's co­
ordinate system is locally flat, i.e., locally inertial. Considerations of freely 
falling observer made Einstein to formulate the general principle of equiva­

lence. One version of it states that all physical laws in freely falling coordi­
nate systems are locally the same. This principle has been confirmed several 
times, and the first known experiments were performed by Galileo Galilei. 

The crucial moment in the discovery of the general relativity was in 1907, 
when Einstein realized the importance of the general principle of equivalence. 
From that moment it took about eight years for Einstein to find the correct 
mathematical equations of motion, the so-called Einstein's field equations. 

Einstein's field equations tell us that matter interacts with spacetime making 
it curved, and on the other hand, they tell us how the spacetime curvature 
determines the routes of bodies. Einstein's field equations consist of ten 
coupled second-order nonlinear partial differential equations where the field 
variable is given by the so-called metric tensor g

µv • The metric tensor carries 
all information about the geometry of spacetime which is modelled by a four-
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dimensional (pseudo-) Riemannian manifold. A four-dimensional manifold 
is a space whose points can be identified by four real numbers. These real 
numbers give the coordinates of each point. 

The essence of general relativity is stated in the general coordinate in­
variance which says that Einstein's field equations must be independent of 
a choice of spacetime coordinates. In other words, the interaction between 
spacetime and matter must not depend on the coordinate system one assigns 
to the four-dimensional spacetime manifold. This property of the theory is 
manifested in the field equations: they are tensor equations. Tensors are, 
by definition, objects that remain invariant under general coordinate trans­
formations. 

Black-hole spacetimes are solutions to Einstein's field equations. A black 
hole is, in a certain sense, like any ordinary object which is characterized 
by the object's mass M, angular momentum J and electric charge Q. The 
properties of the black hole are uniquely determined by the values of these 
quantities. However, the black hole is a spacetime region which is invisible 
to an observer outside the hole. For this reason black holes are called black. 

The first black hole solution was found by Karl Schwarzschild in 1916 [4]. 
It is called the Schwarzschild black hole solution, and it is parametrized 
by just one parameter, the black hole mass M. The Schwarzschild black 
hole solution is a spherically symmetric and static black hole. The present 
number of different types of black holes is four. These are known as the 
Schwarzschild, the Reissner-Nordstri:im [5, 6], the Kerr [7] and the Kerr-
Newman [8] black holes. 

A black hole may emerge in Nature in many ways, but usually one con­
siders astrophysical, or effective, black holes and their birth. It has been 
shown that when a massive star has exhausted all its nuclear fuel it begins 
to collapse under its own weight. If the mass of the star is large enough, the 
collapse cannot be halted and it continues until the star has been compressed 
into a single "point" of a three-dimensional space. This "point" is called a 
singularity 1. The final state of a spherically collapsing star is called the
Schwarzschild black hole. Another important gravitational collapse where 
black holes could have arisen has perhaps taken place when the universe 
was very dense. These black holes are very small and they are called pri­
mordial black holes. Whatever caused the birth of a black hole, the hole 
is always uniquely determined by M, J and Q, and their properties to an 
outside observer seem to be identical if their parameters are identical. 

According to general relativity gravitation bends light rays since massive 
objects make spacetime curved and light rays also follow the shortest routes 
in spacetime. When a star has collapsed and the mass bending light rays 
is situated in the singularity, the spacetime curvature at the singularity is 
infinite. We know, that in the Schwarzschild spacetime, the spacetime curva­
ture depends only on the distance from the singularity. When one measures 
the curvature of Schwarzschild spacetime very far from the singularity, it 
turns out to be approximately zero and the spacetime geometry is nearly 
flat far from the point of the infinite curvature. Furthermore, one observes 

1 Einstein's general theory ofrelativity is not valid in singularity. Therefore already the 
theory itself predicts its own problems. 
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that there is a certain distance, called the Schwarzschild radius 

R _ 2MG 
s-�'

where G :::::: 6.67 x 10-11 m3kg- 1s-2 is Newton's gravitational constant,
c:::::: 3, 00 x 108 m/s is the speed of light and M is the mass of the collapsed 
star, which determines a boundary of a very peculiar spacetime region. This 
boundary is a two-dimensional spherical surface in spacetime, and it is called 
the event horizon. In other words, at the distance of the Schwarzschild radius 
from the singularity every Schwarzschild black hole has an event horizon. 
An event horizon forms an invisible limit of no-escape. The curvature of the 
spacetime is so large that even light rays that are emitted at the horizon 
cannot be seen by an observer outside the Schwarzschild radius . Moreover, 

if we only barely cross the event horizon and are inside the horizon, the cur­
vature of the spacetime prevents us from turning back and returning to the 

other side of the horizon. The pull of the gravitational field of the collapsed 

star inside the horizon would suck us towards the singularity. Eventually, 
we would end our journey in the singularity. Therefore it is not possible 

to interact with the black hole (except with the gravitational field created 
by the hole) before one has passed the event horizon, and it is not possible 
to return from the hole. In other words, black holes shut themselves out 
of their surroundings. Because of these reasons the spacetime region where 
the distance from the singularity is less than or equal to the Schwarzschild 
radius is called a black hole, and such regions can be considered as holes in 
space Lime. 

Thermodynamics is a branch of physics that investigates thermodynamic 
properties such as the temperature and the entropy of a system consisting 
of large collection of particles. The essence of thermodynamics is contained 
in the four laws of thermodynamics. The zeroth law of thermodynamics 
states that the temperature of a system in thermal equilibrium is constant. 
Thermal equilibrium, in turn, means that the macroscopic properties of the 
system remain constant. The first law of thermodynamics states that the 
energy is conserved in macroscopic systems. The second law of thermody­
namics states that the entropy of a system cannot decrease in any process. 

The entropy of a system is a very important quantity. In broad terms, en­
tropy is a measure of disorder in the system: the entropy of the system 
increases when the particles of the system become disordered. We may say 
that the entropy in our house increases when our children are free to play 
and tangle their toys all over the house. Moreover, the entropy of the sys­
tem is a macroscopic concept, like temperature, but it has a connection with 

the microscopic properties of the particles that constitute the system. The 
microscopic properties of the particles, in turn, determine the macroscopic 
properties of the system. The third law of thermodynamics states that tem­
perature the T = 0 K cannot be reached. At this temperature even the 
remnant oscillations and rotations of the system would die out. 

Quantum mechanics was, like general relativity, developed in the begin­
ning of the last century. It is a realization of a large number of experimental 
tests and theoretical investigations - in particular, of an intense study of 
atoms - performed at the turn of the 19th and 20th centuries. Another im­
portant input was given by the so-called black body radiation. A black body 
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is an ideal surface that emits and absorbs perfectly all electromagnetic radi­
ation. When the black body is heated it is seen to radiate with a continuous 
distribution of all wavelengths of light. Such a radiation is called black body 
radiation. The shape of the radiation distribution depends only on the tem­
perature of the surface of the black body. Therefore we can determine the 
temperature of the radiator from the shape of the distribution. However, 
experimental distributions did not agree with the theoretical predictions. 
To solve this inconsistency Max Planck made in 1900 the famous invention, 
called quantum hypothesis, which states that for a given wavelength of the 
radiation energy could have only certain discrete values. Because of the 
quantum hypothesis the radiation could be emitted from the black body 
only with certain values of energy, and the theoretical radiation distribution 
which took into account the quantum hypothesis, coincided with the exper­
imental results. Five years later Einstein was able to find a confirmation to 
this hypothesis. Today no one cannot elude the fact that in Nature certain 
quantities are discretized, or, quantized. 

The solution to the black body radiation problem presented also evidence 
that sometimes electromagnetic waves behave like particles. In 1924 Louis de 
Broglie proposed that Nature loves symmetry and therefore matter behaves 
in some situations like waves and in others like particles. This is called 
the wave-particle dualism. If we think of a surface wave on water, it is 
not possible to localize precisely the wave on the water. Analogously, it 
is impossible to localize with great precision the particle represented by a 
wave. If one attempts to determine particle's position x then the information 
about the momentum p of the particle is lost. Of course this contradicts with 
classical physics, but it has been proved by numerous experiments, and its 
core is given by Heisenberg 's uncertainty principle

(2) 

where h � 6.63 x 10-34 Js is the Planck constant. Heisenberg's uncertainty 
principle is one of the characteristics of Nature and it cannot be avoided. 
This very profound and unconventional principle is contained in quantum 
mechanics. Since in quantum physics particles have no precise position 
nor momentum (velocity), which tell the state of the motion of particles in 
classical physics, the classical description of a state of motion is replaced 
by a concept of quantum state Ill which is usually called the wave function

of the system. Mathematically these states are modelled by the so-called 
state vectors 1'11) which live in a vector space called the Hilbert space of the 
system. 

Due to Heisenberg's uncertainty principle the real numbers that corre­
spond to classical measurable quantities, like position x and momentum p, 
must be replaced by operators, like x and p, when going over from classical 
to quantum physics. Operators operate in the Hilbert space of the system, 
and their job is to transform the state vectors to each other. Operators <lo 
not follow the ordinary calculational rules of real numbers. For instance, 
the so-called commutator

(3) 

of the operators A and B is not necessarily equal to the null operator. 
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A special class of equations in quantum mechanics is represented by the 
eigenvalue equation 

A.jw) = Ajw) , (4) 

where A is the eigenvalue and l'11) is the eigenvector of the operator A. A 
very important postulate of quantum mechanics states that every eigenvalue 
of an operator representing physical quantity (observable) is a possible result 
of a measurement of a physical quantity. Now we know how to represent 
mathematically the states, physical quantities and the possible results of 
measurements of the system in quantum theory. 

The problem now is how to find the correct expressions for the opera­
tors corresponding to classical quantities. There is a standard procedure, 
called canonical quantization, to go over from classical to quantum physics. 
To quantize a classical theory canonically, the classical theory must first be 
cast into a Hamiltonian form, then replace the so-called phase space vari­

ables [9] by their operator counterparts, and finally write down the so-called 
canonical commutation relations between the operators. In particular, when 
one attempts to quantize general relativity canonically, one applies the rules 
of canonical quantization to the general theory of relativity. Because of that, 
one has to find Einstein's field equations in the Hamiltonian formulation of 
general relativity. In 1962 Arnowitt, Deser and Misner discovered the so­
called ADM formulation which is one of the Hamiltonian formulations of 
general relativity. The very heart of the ADM formalism lies in the general 
coordinate invariance of general relativity. When one requires the ADM 
formulation to satisfy the principle of general coordinate invariance, four 

constraint equations per spacetime point appear. These constraint equa­
tions are known as the Hamiltonian constraint 

11. = 0 (5) 

and the diffeomorphism constraints 

11,a 
= 0 , a= 1, 2, 3 (6) 

The Hamiltonian constraint is a manifestation of the invariance of the for­
mulation under time reparametrizations, and the three diffeomorphism con­
straints imply that the ADM formulation is invariant under three-dimensional 
spatial coordinate transformations. The constraint equations are functions 
of the phase space variables of general relativity. 

The constraints are very important also in the quantum theory of gen­
eral relativity since the dynamics of general relativity is already contained in 
the four constraint equations. However, most of the conceptual and mathe­
matical problems of canonical quantum gravity are caused by the very same 
constraints . The mathematical problems are technical of nature, but the 
conceptual problems are more profound. The role played by time, for in­
stance, is not clear even at the time of writing of this thesis [10, 11, 12]. In 
spite of the problems there are two possible ways to continue the quantiza­
tion of general relativity. One may either replace the classical constraints 
by their operator counterparts by just replacing the phase space variables 
by their operator counterparts in a standard manner, or one may attempt 
to solve the constraints at the classical level, identify the physical degrees 
of freedom, and then quantize the theory in the resulting physical phase 
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space. The former of these approaches is known as the Dirac constraint 

quantization, and the latter is called the reduced phase space quantization. 

The Dirac constraint quantization leads to a very important equation called 
the Wheeler-De Witt equation 

(7) 

The Wheeler-De Witt equation is an operator counterpart of the Hamiltonian 
constraint, and its solutions has led to an approach called the loop quantum 

gravity [13]. At the moment loop quantum gravity is one of the leading 
candidates for the quantum theory of gravitation. However, the major part 
of the work done by the author has been involved with the reduced phase 
space quantization [14, 15, 16]. 

What makes the reduced phase space quantization so interesting is that 
it is perhaps the most straightforward approach available and it gives in­
teresting results and insights into the viable quantum theory of gravity. It 
offers an application of quantum gravity where only the physical degrees 

of freedom of the gravitational field itself are quantized. In some cases the 
reduced phase space quantization provides a finite-dimensional quantum the­

ory of gravitation. For instance, black hole spacetimes have classically at 
most six independent physical phase space coordinates. In other words, the 
reduced phase space quantization applies extremely well when one wishes 
to investigate the quantum-mechanical properties of black holes. Of course 
this kind of a reasoning compels one to ask: "Why to study quantum black 
holes, as black holes are spacetime regions that shut themselves out of their 
surroundings?" Let us answer this question. 

Gravitational field itself is extremely difficult to quantize, and when mat­
ter fields are present quantization becomes almost impossible. Even the 
quantization of matter fields in fixed background spacetime leads to incon­
sistencies if spacetime is curved. However, the rules of quantum mechanics 
have been successfully applied to matter fields in black hole spacetimes. In 
1974 Stephen Hawking quantized a certain matter field (such as an electro­
magnetic field) in the Schwarzschild black hole spacetime [17], and he was 
able to show that black holes emit black body radiation called the Hawking 

radiation with a characteristic temperature known as the Hawking temper­

ature. This was surprising at that time: Black holes were by definition 
black. This might sound very peculiar, but it is not. Hawking thought 
that the radiation emitted from the black hole is not coming from inside 
the hole but from the immediate vicinity of the event horizon of the hole. 
He suggested that the strong gravitational field of the hole would cause a 
quantum-mechanical effet called pair creation 2. In pair creation a particle 
and its antiparticle can be created, and after they have been created the 
antiparticle (or particle) goes into the hole and the particle (or antiparti­
cle) seems to come out of the hole. In normal situations a particle and an 
antiparticle would annihilate each other very soon after they were created. 

Hawking's celebrated calculation ensured that black holes are thermody­

namical as well as quantum objects having certain well-defined temperature 
and entropy. The importance of this calculation is realized when we think 

2Pair creation is allowed by Heisenberg's uncertainty principle: energy may decrease 
or increase for a short period of time without breaking any laws of Nature. We know that 

Eo = mc2
, in turn, allows energy to be converted into mass of particles. 
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that it reveals a deep interconnection between quantum mechanics, ther­
modynamics and gravitation. In that sense we may say that black holes 
may play a key role when searching for an understanding of the structure 
of spacetime. In fact, black holes and atoms are very closely related in 
their importance to the development of physics. A hundred years ago atoms 
were investigated very intensively and the understanding of the structure of 
atoms led to quantum mechanics. Now, the intensive study of black holes 
may lead us to quantum gravity. 

Before Hawking's famous result, Jacob Bekenstein (being then a young 
post-graduate student) was working open-mindedly with certain laws of 

black hole physics. Because of the parallelisms between these laws and 
the laws of thermodynamics Bekenstein believed that a black hole has an 
entropy[l8, 19]. However, assigning an entropy to a black hole requires that 
the hole must radiate with a certain temperature. The discovery of the 
Hawking radiation ensured Bekenstein's anticipations of black holes having 
an entropy. Therefore the entropy of a black hole is called the Bekenstein­

Hawking entropy. 

Of course there are many unresolved problems in the field of quantum 
black holes. One of the major problems is that what are the microstates 
of a black hole constituting the macrostate that corresponds to the Hawk­
ing temperature and the Bekenstein-Hawking entropy. It is believed that 
once we know the correct solution to this problem, also the correct quan­
tum theory of gravity is near. As a black hole is a quantum object, we 
may study its measurable properties by quantizing the gravitational field 
created by the hole. Since there are, at least classically, three measurable 
quantities of a black hole, namely the mass, the angular momentum and 
the electric charge, the reduced phase space quantization approach provides 
very efficient quantum-mechanical models of black holes. A closely related 
problem is to find the correct quantization rule for the area of the event 
horizon, or area spectrum. The area spectrum can be determined once we 
know the quantization rules for the mass, the angular momentum and the 
electric charge of the hole. The area spectrum, among other things, deter­
mines the radiation distribution, i.e, the temperature and the entropy of the 
hole. These are the main subjects of this thesis. 

The object of this dissertation is to offer a self-contained introductory 
review to black hole physics and give a detailed survey of the reduced phase 
space quantization of the gravitational fields created by black holes. The 
dissertation consist of two parts. Part I deals with classical and Part II with 
quantum black holes. Chapter 1 deals with the ADM and the Hamiltonian 
formulation of general relativity. Chapter 2 provides an elementary intro­
duction to classical black holes and Chapter 3 deals with the reduction of 
phase space variables corresponding to black hole spacetimes. Chapter 4 
presents the results of the Hawking radiation and the black hole entropy. In 
Chapter 5 we quantize the black hole spacetimes and obtain a certain quan­
tum mechanical equation for black holes. Chapter 6 deals with the question 
of the exisistence of microscopic black-hole pairs within a very restricted 
model. In the end we have gathered five appendices. Appendix A involves 
the so-called WKB approximation and the rest of the appendices contain 
most of the calculations which yield the results obtained by the author. 

In Chapter 3 we consider the classical Hamiltonian formulation of Reissner-
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Nordstrom and Kerr-Newman black hole spacetimes. Basically, our study is 
based on the results obtained by Jorma Louka and Stephen Winters-Hilt in 
Ref. [20], and on an important theorem proved by Tullio Regge and Claudio 
Teitelboim [21]. We have managed to reduce the phase space of Reissner­
Nordstrom spacetime in detail [14], but the reduction of the phase space of 
Kerr-Newman spacetime could not be performed in this dissertation. How­
ever, there are good reasons to believe that such a reduction exists yielding 
a certain classical Hamiltonian of Kerr-Newman black holes [16). 

In Chapter 5 we proceed to the quantization of the classical Hamiltonian 
dynamics of Reissner-Nordstrom and Kerr-Newman black holes. Quantiza­
tion envolves a straightforward replacement of the classical Hamiltonian by 
the corresponding Hamiltonian operator which yields a sort of "Schrodinger 

equation" of black holes [16]. That equation is the main result of this dis­
sertation. Our equation has many interesting consequences. For instance, it 
predicts that the mass, the electric charge, and the angular momentum spec­
tra of black holes are discrete. In particular, the spectrum of the quantity 
M2 -Q2 

- (J/M)2 is strictly positive. In the context of Hawking radiation, 
this is a very interesting result, and it is in agreement with the third law of 
black hole physics. Therefore it is a strong argument in favor of the physical 
validity of our model. Also, when we study the eigenvalues of the horizon 
area of black holes we get a result which is closely related, although not 
quite identical to the famous proposal made by Jacob Bekenstein [22). 

Chapter 6 deviates slightly from the main subject in this dissertation, 
and it involves microscopic black-hole pairs. The main question is whether 
microscopic black-hole pairs form bound systems in which black holes revolve 
around each other and what kind of transitions can they then perform. 
The main result of Chapter 6 is an expression for the transition rates for 
spontaneous emission of gravitons when the system makes a transitions from 
one quantum state to another. By using this result we obtain selection 
rules for possible transitions in system formed by a black-hole pair, and 
transition rates for allowed transitions. The main observation is that, within 
the approximations made, the lifetimes of the stationary state of the system 
are large enough for the energy spectrum of the black-hole pair to be discrete. 
The energies released in transitions between energy eigenstates are of the 
order of 1022 eV = 106 J, which is about the same as the energy needed 
when an automobile is accelerated from rest to a speed of 150 km/h. (23] 
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Classical Theory 
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Chapter 1 

ADM Formulation of 

General Relativity 

1.1 Introduction to Geometrodynamics 

In this chapter we formulate Einstein's general relativity in the Hamiltonian 
framework. There are many different Hamiltonian formulations of general 
relativity at our disposal depending on the generalized coordinates used 
in Hamilton's principle of the gravitational action. One possible Hamilto­
nian formulation known as the Ashtekar formulation uses as the variables of 
the configuration space of the system the components of a complex-valued 
SU(2) connection A� [24].1 In this chapter, however, we concentrate solely 
on the so-called ADM formulation of general relativity, which was found by 
R. Arnowitt, S. Deser and C. W. Misner in 1962 [25). In the ADM for­
mulation the configuration coordinates of the system are taken to be the
components of the metric tensor qab induced on the spacelike hypersurfaces
I:t of constant time t of the spacetime manifold M [26). The ADM formula­
tion provides the most straightforward approach to the study of Hamiltonian
dynamics of black holes.

To understand the essential ideas in the Hamiltonian formulation of gen­
eral relativity, it is very useful to keep in mind certain well-known concepts 
of the Hamiltonian formulation of classical mechanics. That is because 
the physical ideas and the mathematical language of these concepts can 
be straightforwardly utilized in our approach to general relativity. In clas­
sical mechanics the system consists of all the particles moving in a three­
dimensional Euclidean space, and by the concept of history of the system 
during some time interval we mean the complete knowledge about the po­
sitions of the particles at each instant during that time interval. In the 
Hamiltonian approach to general relativity, in turn, the notion of time is 
given by any appropriate function t = t(xa) (a = 1, 2, 3) corresponding to 
exactly one spacelike hypersurface I:t of constant tin the manifold M, and 
the history of the system during the time interval [ti, tr] corresponds to the 
four-geometry of the subset of the manifold which is bounded by the two 
hypersurfaces I:t

i 
and I:tr· A two-dimensional analogue of this is given in 

1 An ambitious program called quantum geometry, or loop quantum gravity, [13] which 
is a very intense area of research at the moment, rests on the Ashtekar formulation of the 
Hamiltonian framework. 
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Figure 1.1: Spacelike hypersurfaces t = constant begin their life at the past 

t = t; hypersurface, then go through the tube, and finally end their life at 

the future t = tr hypersurface. 

Fig. 1.1. 

The number of degrees of freedom of systems considered in classical me­

chanics is usually small, whereas in general relativity the number of degrees 

of freedom of any system is infinite. Even when matter fields are not present, 

and the system consists of spacetime itself only, the number of degrees of 

freedom of the system is uncountable. For instance, in the covariant for­

mulation of general relativity the components of the metric tensor 9
µ
v(xµ) 

on the four-dimensional (pseudo-)Riemannian manifold in every spacetime 

point xµ can be chosen to be the coorJimi.te� uf the configuration space of 

the system. The number of spacetime points on the manifold is infinite, and 

hence the number of degrees of freedom of the system is 10 • oo. 

Keeping the basic concepts of classical mechanics in mind, we now enter 

the discussion about the properties of the spacetime manifold. Because of 

the time evolution of three-geometries in general relativity one often calls 

it as geometrodynamics. In geometrodynamics we investigate the rate of 

change of the three-geometry of space at one instant of time and obtain 

knowledge about the four-geometry of spacetime at that time from the 

knowledge about the time evolution of the three-geometry. 

1.1.1 3+1 Decomposition of Spacetime 

To employ the components of the three-metric qab induced on the spacelike 

hypersurface of constant t as the variables of the configuration space of our 

system, the ADM formulation, as any Hamiltonian formulation of general 

relativity, demands a decomposition of the spacetime manifold M into space 

and time. However, spacetime itself is dynamic, and therefore no preferred 

background time coordinate exists. Moreover, the chosen time coordinate 

t which labels the spacelike hypersurfaces cannot be related to a physical 

notion of time before the spacetime metric is known. Unfortunately, the 

metric is the unknown variable of the formulation, but, in general, we may 

choose the time coordinate in almost any way we like. Any such spacetime 
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splitting into space and time defines an appropriate notion of time coordi­
nate, since we move forward in time by moving from one slice of spacetime 
to the next. 

The slicing of spacetime into space and time requires certain global prop­
erties from the spacetime manifold M. We shall always assume that the 
spacetime manifold is globally hyperbolic. Global hyperbolicity of spacetime 
means, loosely speaking, that it behaves causally well i.e. one cannot alter 
its past. More precisely, the spacetime manifold M can be foliated by a 
one-parameter family of Cauchy surfaces p:;t}, where every hypersurface Et 

may be considered as an instant of "time", and hence a global time func­
tion t = t(xµ) can be chosen such that each hypersurface Et of constant t 
is a Cauchy surface. A Cauchy surface, in turn is, by definition, a space­
like hypersurface which every non-spacelike curve intersects exactly once. 
Furthermore, it can then be shown that the spacetime manifold must be 
topologically equivalent to E x lR, where E is a three-dimensional subman­
ifold diffeomorphic to Et for all t. For a detailed discussion of the global 
structure of spacetime the reader is encouraged to peruse Ref. [27]. 

A well-known way to illustrate the 3+1 decomposition of spacetime is 
to think of the two-dimensional surface of a bread which is cut in very thin 
slices. Then a certain one-geometry is induced into the crust of the bread. 
This one-geometry, in turn, depends on the surface of the bread, but it also 
depends on how the slicing of the bread has been performed. If we know the 
order of the slices of the bread we can reconstruct the original bread from 
the slices. In the case of spacetime the chosen time coordinate tells us how 
to slice the manifold, and if we know how the manifold is sliced, we know 
how the four-geometry of spacetime can be reconstructed from the three­
geometries of the hypersurfaces. In other words, the ADM formulation of 
general relativity rests basically on the idea that once we know the time 
evolution of qab at every point xa on the spacelike hypersurface, we have 
the knowledge about the spacetime geometry. Hence, by the history of our 
system we mean the complete knowledge about the values of the metric qab 

at every space point xa on every spacelike hypersurface Et-

1.1.2 Superspace 

In the sixties J. A. Wheeler introduced the concept of super-space to mean an 
infinite-dimensional space of three-geometries, where each point represents a 
3-geometry. More precisely, the superspace which is the configuration space
of general relativity, is the space of equivalence classes of metric tensors qab 

at every hypersurface point on every Et. The two metrics qab and q:
b 

are
defined to be equivalent if they can be obtained from each other by a diffeo-­
morphism. In other words, the two metrics are considered to be equivalent
if they can be transformed into each other by a three-dimensional coordi­
nate transformation on a spacelike hypersurface. The superspace has an
interesting interpretation in the ADM formulation of general relativity: Hy­
persurfaces {Et} "move" in the superspace in the same way as the particles
in classical mechanics move in a three-dimensional space.
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1.2 Lagrangian Formulation of General Relativity 

There has been a lengthy period of interest in the study of the dynamics 
in general relativity under general boundary conditions of spacetimes [28]. 
However, we shall concentrate only on asymptotically fiat spacetimes, which 
contribute the well-known boundary terms [21, 29]: the ADM energy, the 
ADM momentum and the ADM angular momentum of spacetime. These 
boundary terms play a very significant role in the ADM formulation, and 
also throughout our work. Since we are aiming to investigate the physical 
properties of isolated primordial black holes (see Ch. 2), asymptotically flat 
spacetimes are precisely those that offer us ideal isolated black-hole systems 
in general relativity. Despite the boundary contribution, we first formu­
late the Lagrangian formulation of general relativity without the boundary 
terms, and we shall not introduce them until in Sec. 1.5. 

1.2.1 Einstein-Hilbert Action 

We start with the spacetime covariant form of the Lagrangian formulation of 
general relativity, where the action can be taken to be the Einstein-Hilbert

action 

SEH[gµ11] = 16�G
/ d4xJ="g R , 

M 

(1.1) 

where g denotes the determinant of the metric tensor 9µ11 and R is the 
Riemann curvature scalar of the four-dimensional spacetime manifold M.

It is well known that Einstein's field equations in vacuum can be obtained 
by varying the action (1.1) with respect to the components of the metric 9µ11 · 
When we require that the first-order variation oSEH vanishes for arbitrary 
variations 09µ11, as 09µ11 and its derivatives 09µ11 ,a vanish at the boundaries 
of the spacetime manifold M, the correct field equations emerge. We define 
the variation 09µ11 of the metric tensor to mean an "infinitesimal" change 
of the metric tensor at every spacetime point xµ. It is not necessary and, 
in fact, in the case of asymptotically flat spacetimes it is utterly wrong, to 
assume that the variations of the spacetime geometry vanish at the bound­
aries. However, as mentioned, we first develop the Lagrangian formulation 
of general relativity without having any concern about the spacetime bound­
aries, and thus we shall maintain requiring that the variations of the metric 
and its derivatives vanish at the boundaries. We may also think that our 
spacetime is a compact manifold M. Either way, the Lagrangian density of 
pure gravity can be taken to be 

(1.2) 

1.2.2 Gaussian Normal Coordinates 

Let us now write the Riemann curvature scalar density AR in terms of 
the Christoffel symbols as 

16 



and further, in the more convenient form 

FgR = -gµv Fg (r�0rip - rivr�/1) + [gµv Fg (b�r�/1 - r�v)] 
,o 

(1.4) 
When these two terms on the right hand side of (1.4) are substituted into 
the action (1.1), one can convert the volume integral of the second term 
on the right hand side of the Riemann curvature scalar density (1.4) into 
a boundary term. The boundary term arises when the Gauss' theorem 
is applied to curved spacetime in four dimensions. As the variations of 
the components of the metric tensor and the variations of their derivatives 
are assumed to vanish at the boundaries of spacetime, we may omit the 
boundary term. In the effective Lagrangian formulation of pure gravity, 
without any boundary terms present, we may consider the first term on the 
right hand side of (1.4), only. 

At this point we slice spacetime into space and time, but there is not 
any preferred time that tells us how to slice the four-geometry into three­
geometries. However, there is a gauge freedom which allows us to choose 
any appropriate gauge we wish to work in. When we choose a specific gauge 
or, equivalently, a specific coordinate system that makes our dynamical sys­
tem simple, then, unfortunately, we loose some very important information 
about the corresponding formulation of the theory. Remarkably, the loss 
of information can be recovered afterwards, and thus we should not be too 
much concerned about it at the moment. 

Consider the first term in (1.4). We may use the so called Gaussian

normal coordinates (see, for instance, [30]), where a of freely falling observer 
is at rest with respect to the spatial coordinates, and the time coordinate 
gives the proper time of the observer. The line element of spacetime in 
Gaussian normal coordinates can be written as 

(1.5) 

where a, b = 1, 2, 3, and q00 > 0 for all a. We note that there has not been 
made any restrictions on the spacetime geometry itself, since it is possible to 
show that this kind of a choice can be done for every spacelike hypersurface. 
It is easy to see that we now have Yoo = -1 and Yoa = Yao = 0 for every a, 
and therefore the Christoffel symbol 

r" - 1 o/j ( )µv - 2Y Y/1µ,v + Yv/1,µ - Yµv,o (1.6) 

always disappears if two of its three indices become zero. Hence, we may 
divide the first term in (1.4) into a spatial part and into a part which includes 
the terms related to our preferred time t = x0

:

-yµv ( r�ori/j - r�vr!
/j) = qmnrg.r?,m - 2qmnr�nr�o + r�oro. 

+qmn (r�.r�n - r�nr�.) , (1.7) 

where the last term in the parenthesis is exacUy the i;ame tenn as the term 
we began with, except that it lives on the spacelike hypersurfaces of constant 
t only. Therefore, we may use the convenient form of (1.4), and write the 
last term on the spacelike hypersurfaces as 

y'qqmn (r�.r�n - f�nr�.) = [ qmn y'q ( o�f�b - f�n)] ,a+ vqR - (1.8)
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where v'q denotes the determinant of the metric qab induced on the space­
like hypersurfaces, and R is the Riemann curvature scalar on the spacelike 
hypersurface E t of constant t.

With the help of the hypersurface metric qab and its time derivative qab, 
we can express the first part of (1.7) in the form 

q
mnrs ro _ 2qmnrO ra + rs ra = ! (q

ab
q

cd _ 
q

ac
q

bd
) q

· 
q
· 0s mn an mO aO 0s 4 ab cd · (1.9) 

When the non-boundary term in (1.4) is written in terms of the three­
dimensional Riemann curvature scalar, the hypersurface metric Qab, and its 
time derivatives qab in Gaussian normal coordinates, and then substituted 
into the action (1.1), we get the Einstein-Hilbert action in a form that is no 
longer spacetime covariant: 

SEH = 16�G 
I dt I d3x.jq [i ( qacld - q

ab
q

cd

) iJ.abqcd + n] 
Et 

- 16�G 
I dt I d3x [ Jqq

mn ( r�m - 8�r�b)] ,a
Et 

(1.10) 

The last term in (1.10) can be converted into a vanishing spatial boundary 
term with the help of the Gauss' theorem. Hence, the effective Lagrangian 
density of pure gravity in Gaussian normal coordinates is 

(1.11) 

The fundamental idea in the ADM formulation is to consider the spatial 
metric qab as the dynamical object of general relativity. Now, the effective 
Lagrangian density ( 1.11) in Gaussian normal coordinates is composed of the 
spatial metric and its first-order time derivatives only. Therefore we might 
anticipate that these concepts constitute appropriate information about the 
system when the initial hypersurface Et is given. The hypersurface metric 
describes the intrinsic geometry of the hypersurfaces and the time derivative 
of the spatial metric tells us how they evolve when they are moved forward 
in time t. In fact, the time derivative of the three-metric on the hypersurface 
written in the Gaussian normal coordinates can be shown to reveal how the 
hypersurface of constant t "bends" in spacetime. In other words, the time 
derivative of the spatial metric tells us how the hypersurface is embedded 
in spacetime. In general, the information about the extrinsic properties of 
the hypersurface is contained in the extrinsic curvature tensor. Let us next 
consider the concept of the extrinsic curvature tensor in detail. 

1.2.3 Extrinsic Curvature Tensor 

Until further notice, we will forget that the effective Lagrangian (1.11) is 
written in a specific gauge as we study the exterior properties of a spacelike 
hypersurface Et. The intrinsic properties of the hypersurface are contained 
in the spatial metric Qab but, in general, we have no knowledge about the rate 
of change of the metric as it moves from one instant of time to another. The 
"bending" or rate of change of the spatial metric of the hypersurface E t in 
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n· 

Figure 1.2: A spacetime diagram showing the idea of the extrinsic curvature 
of a spacelike hypersurface I:t. The difference of the unit normal vector 
6ri between the shifted vector n' and the parallel transported vector n" 
corresponds to the bending of the embedded hypersurface in the spacetime. 

spacetime can be found by comparing the unit normal n of the hypersurface 
when this hyperspace is shifted an infinitesimal amount from xa to xa + c5xa, 
to the parallelly transported (31] unit normal n at the point xa 

+ 8xa . A 
schematic picture of the procedure is given in Figure 1.2. The coordinate­
independent change of the unit vector normal to the hypersurface is given 
by the difference vector ;f.;;,, whereas this difference can be obtained from the 
components of extrinsic curvature tensor Ka b of the spacelike hypersurface. 
We define the exterior curvature to be positive when the bases of the two 
unit nunuals, ii and fi", are closer than their tips. The sign convention of 
this definition is in agreement with Israel (32] and Wald [30], but disagrees 
with Arnowitt, Deser and Misner [25], and Misner, Thorne and Wheeler (29]. 
The general definition of the components of the extrinsic curvature tensor 
K't, (a,b= 1,2,3) is 

(1.12) 

where b(a) are the components of the tangent vector of the coordinate curve
associated with xa, and the operator 

6
�a must be understood as the covariant 

differentation of the components nµ of the unit normal n with respect to xa. 
The spatial metric qab is given by the inner product between the tangent 

vectors, 

and if we define 
Kab = qasK8b 

we can write the definition (1.12) in the viable form 

8nµ 

Kab = 6xb b(a)gµv •

(1.13) 

(1.14) 

(1.15) 

After considering the components of the shifted unit normal n'µ and the 
components of the parallelly transported unit normal n"1' with respect to 
the components of the original unit normal nµ, one can easily show that the 
covariant differential 8nµ can be written in terms of the covariant derivative 
of n and the covariant differential 8xb: 

(1.16) 
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Therefore, at the hypersurface Et of constant t, (1.15) becomes 

(1.17) 

which is a very useful expression for the extrinsic curvature tensor. 
Now, let us return to our specific gauge and find an expression for the 

extrinsic curvature tensor in Gaussian normal coordinates. In order to dis­
cover the extrinsic curvature tensor in our gauge, we have to choose the 
covariant components of the unit normal nµ. on the spacelike hypersurface 
t = constant. One possible choice of components in our coordinate system 
is 

_ I oo1-1;2s: _ s: nµ. - - g uµ. o - -uµ.o , (1.18) 

since such a unit normal ft of the spacelike hypersurface satisfies the orthog­
onality condition and it also is a timelike vector: 

9µ.vnµ. b(a) = nvb(a) = -1l0 1-1128vobca) = -1l0 1-112b�a) = 0 ,(1.19)

9µ.v 900 
gµ.v

nµ.nv = lg001
8µ.o8vo = lgOOI =

-1 . (1.20) 

The last equality in (1.19) follows from the relation b�a) 
= 0 on the hyper­

surface I:t. Hence, the extrinsic curvature tensor can written in the form 

K = 19oo1-112ro 
ab ab , (1.21) 

which is symmetric in ab. From the previous equation (1.21) one can easily 
see that in Gaussian normal coordinates the extrinsic curvature tensor has 
a simple expression 

K 1 . ab = 2Qab (1.22) 

Indeed, the time derivative of the spatial metric tells us how the spacelike 
hypersurfaces of constant t are embedded in spacetime, and because of that 
we may write the effective Lagrangian density (1.11) in expressed Gaussian 
normal coordinates in terms of the spatial metric and the extrinsic curvature 
tensor: 

(1.23) 

where K is the trace of Kab· The action corresponding to (1.23) can be 
written as 

Seff = 16�G / dt I d3x,jq ( KabKab - K2 
+ R)

Et 

(1.24) 

which may be taken as the starting point of the ADM formulation of general 
relativity. 

1.3 Hamiltonian Formulation of General Relativ-

ity 

1.3.1 Canonical Momenta 

As it has been mentioned several times before, the basic idea in the ADM 
formalism is to use the components Qab of the spatial metric as the gen­
eralized coordinates of our system. Therefore, when we proceed from the 
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Lagrangian formalism to the Hamiltonian formalism of general relativity, we 
follow the standard method which is closely analogous to the corresponding
procedure in classical mechanics, and we define the canonical momentum
1rab conjugate to qab as 

ab 8.Ceff
7r = 8iJab '

(1.25)

where Leff is given by Eq. (1.11). Using Eqs. (1.11) and (1.22) we find
that 1rab can be written in terms of the extrinsic curvature tensor and the
canonical momentum conjugate to qab is

(1.26)

which can be inverted,

(1.27)

where 1r inside the parenthesis denotes the trace of the canonical momentum
1rab, and the indices of the momenta are pushed up and down by the spatial
metric qab • When we use (1.22) once more, we notice that

(1.28)

where
G abcd = ..fo 

( qabqcd - qac qbd - qad qbc) (1.29)

is the so-called the Wheeler-De Witt metric.

1.3.2 Hamiltonian 

Let us define the Hamiltonian H[qab, 1rab] on every I:t . The Hamiltonian H
is of the form

(1.30)

where H. = H.(qab, qab ,c, qab ,c,d, 1rab) is called the Hamiltonian density:

(1.31)

By using Eq. (1.28) and the definition of the extrinsic curvature tensor we 
find that the Hamiltonian density can be written as

H.= ../q (K Kab - K2 - n) = � (I61rG) G 1rab1rcd - ../q 1? 
l61rG ab 2 abcd l61rG ,

(1.32)
where the latter expression is, to some extent, analogous to the Hamiltonian
of classical mechanics: the first term can be considered as the analog of the
kinetic energy and the second term can be viewed as the analog of the
potential energy. If one goes in the analogy even deeper than this, one finds
that the concept of the particle in classical mechanics moving in space is in
geometrodynamics replaced by the concept of the hypersurface I:t "moving"
in space of the three-geometries.
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1.3.3 Hamiltonian Equations of Motion 

Now we are ready to write down the dynamical equations of our system in 
Gaussian normal coordinates. These equations are analogous to the Hamil­
tonian equations of motion for classical particles, and they can be obtained 
by varying the effective action 

Setr = I dt I d3x ( 'lrab(Jab - � (l61rG) Gabcd'lrab1rcd 
+ 1t!G n) 

� 

(1.33) 

with respect to the variables qab and 1rab . The dynamical equations, m 
principle, are [30) 

(Jab (1.34) 

(1.35) 

for every a, b = 1, 2, 3 and for every point on the spacelike hypersurface I;t of 
constant t. The equations (1.34) and (1.35) are equivalent to the equations 
which may be obtained by varying the Einstein-Hilbert action (1.1) with 
respect to the spacelike components qab of the metric tensor 9

µ,
v (33]. Hence, 

the problem is that our dynamical equations are equivalent to Einstein's field 
equations Gah = 0 only, and the equations Goo = 0 and G00 = 0 were lost 
as we made a choice to work in a specific gauge. The missing equations are 
recovered in a very natural manner, however. 

1.4 Constraints in Pure Gravity 

So far, we have constructed the Lagrangian and the Hamiltonian formu­
lations of general relativity in a specific gauge, and because of this choice 
we have encountered a serious problem: Four of Einstein's field equations 
have disappeared. For the same reason we now have to face another major 
problem which is that the foundation of Einstein's theory of gravitation, the 
diffeomorphism invariance of general relativity, is destroyed. The power of 
the ADM formulation of general relativity lies in the fact that it manages 
to solve both of these problems at the same time. As the diffeomorphism 
invariance is recovered, the puzzle of the missing equations is solved. Hence, 
the two problems are reduced to one problem of recovering the diffeomor­
phism invariance. Our next task is to improve the Hamiltonian formulation 
to include the diffeomorphism invariance. When the spacetime covariant 
formulation is modified into a formulation where time is separated from 
the spatial coordinates, the diffeomorphism invariance means that the ac­
tion (1.33) remains invariant under reparametrizations of time t and under 
spacelike coordinate transformations on the spacelike hypersurface I;t of 
constant t. 
1.4.1 The Spirit of the ADM Formulation 

To relax the choice of the gauge, and to get an expression for the space­
time line element in a generic form, we have to perform in (1.5) a time 
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(x'-N'dt, x'-N'dt, x'-N'dt) 
------

(x'+dx', x'+dx', x'+dx') 

I O '� 
(x' x' x) 

(dx'+N'dt, dx'+N'dl, dx'+N'dl) 

Figure 1.3: When the spatial point xa on the hypersurface Ei is transformed 
to the spatial point xa +dxa on Et+dt by means of the lapse function and the 
shift vector, then the dotted line joining the points xa on Et and xa - Nadt 
on Et+dt is perpendicular to the hypersurface t = constant. 

reparametrization and a spatial coordinate transformation: 

dt � dt' = N dt , 

dxa � dx'a 
= dxa 

+ Nadt ,

(1.36) 

(1.37) 

where N = N(xa, t), known as the lapse function, is any smooth function of 
time t and hypersurface coordinates xa , and Na 

= Na (xa , t), whose compo­
nents are also smooth functions of time and space coordinates, is called the 
shift vector. The physical interpretation of the lapse function N is that it 
gives the lapse of proper time between two consecutive spacelike hypersur­
faces Et and Et+dt· The shift vector, in turn, di-:tates the three-dimensional 
spatial coordinate transformation on the hypersurface. 

One of the most elegant properties of the ADM formulation is that one 
is able to perform spatial coordinate transformations by means of the shift 
vector and to connect consecutive spacelike hypersurfaces E by means of 
the lapse function. Geometrically, the lapse function N makes the vector 
tµ joining the two points (x1 , x2 , x3) and (x1 

+ dx1 , x2 
+ dx2 , x3 

+ dx3 ) on
the hypersurfaces Et and Et+dt, respectively, to be perpendicular to the 
hypersurface Et- On the other hand, the shift vector and the lapse function 
together shift the point (x1 

+ dx1 , x2 
+ dx2 , x3 

+ dx3 ) on the hypersurface 
Et+dt relative to the point (x1 , x2 , x3) on the hypersurface Et such that the 
vector tµ ceases to be orthogonal to the hypersurface t = constant. This 
corresponds to the situation where the point (x1 , x2 , x3) on the hypersurface 
Et is first liable to transformation (dx1 

+ N1dt, dx2 
+ N2dt, dx3 

+ N3dt) in 
accordance with (1.37), and then the transformed point is transported into 
the point ( x1 

+ dx1 , x2 
+ dx2 , x3 

+ dx3) on the hypersurface Et+dt by using
the lapse function. This is illustrated in Fig. 1.3. In that case we can write 
the spacetime line element in the form 

(1.38) 

or, equivalently, 

(1.39) 

where Na = qabNb. The metric (1.39) is known as the ADM metric. 
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As we noticed, the geometrical interpretation of the lapse function and
the shift vector are intuitively very clear but, besides of that, the physical
ideas behind the lapse function and the shift vector give a striking insight
into the Hamiltonian formulation of general relativity. First of all, the ADM
metric now consists of the lapse function and the shift vector, and therefore
the configuration space of the Hamiltonian formulation is increased by four
new variables. On the other hand, the corresponding gravitational action
must remain invariant under time reparametrizations and spatial coordinate
transformations in order to be diffeomorphically invariant. In other words,
the action must be independent of N and Na, and it is independent if
and only if its variations with respect to N and Na vanish. Before we
can find out the consequences of introducing diffeomorphism invariance into
the formulation, we first have to find an expression for the gravitational
action (1.33) in the so-called ADM form, which is written in terms of N and
Na . 

From the time reparametrization (1.36) it follows that the effective ac­
tion (1.33) becomes

Self = I dt I d3x ( 1rab</ab - N [½ (l61rG) Gabcd1rab1rcd - liG n])Et 
= J dt J d3x ( 7rab<lab - NH,)

Et
(1.40)

where we have replaced 'lab -+ J;t<lab and H, remains invariant since the
Hamiltonian density H does not include any notion of dt. 

The action (1.40) is also subject to the spatial coordinate transforma­
tion (1.37) determined by the shift vector Na . Now the change of the ac­
tion is a bit more subtle than in the time reparametrization. To begin to
treat with the action (1.40), we recall an important result from elemen­
tary Riemannian geometry: Under infinitesimal coordinate transformations
x

µ ---+ xµ + �µ. the spacetime metric 9
µ.

v transforms as
(1.41)

On the spacelike hypersurfaces the corresponding metric is qab, and the
infinitesimal displacement vector�µ. is replaced by the vector Nadt. Because
of that, we find that under spatial coordinate transformations, i.e., under
gauge transformations, qab transforms as

(1.42)
at each point on the spacelike hypersurface .  The symbol Na lb denotes co­
variant differentation of the shift vector with respect to the coordinate x

b 

on the hypersurface. Furthermore, the time derivative of the spatial metric
'lab transforms as

(1.43)
Hence, we finally find that under time reparametrizations and under spatial
coordinate transformations Self transforms (when the boundary terms are
neglected) to

Self = J dt J d3x ( 7rabCJab - NH + 2Na1-la) ,
E
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where 

1.4.2 Constraints 

7--{a ·= -2=ab . 
" lb . 

(1.45) 

Since the time reparametrizations and spatial coordinate transformations 
are represented by the lapse function N and the shift vector Na, the inde­
pendence of the action (1.44) of N and Na or, equivalently, the vanishing 
of the variations of Serr with respect to N and Na, implies that 

7--{ 
7--{a 

0 ' 
0 .

(1.46) 
(1.47) 

The equation 1-1. = 0 is known as the Hamiltonian constraint and the three 
equations 7--la 

= 0 are known as the diffeomorphism constraints of general 
relativity. The use of the terminology "constraint" is justified by the fact 
that the variables N and Na should not be viewed as dynamical variables of 
the formulation, since the action (1.44) does not include any time derivatives 
or canonically conjugate momenta of the variables, and therefore they have 
a role similar to the one played by Lagrange 's undetermined multipliers in 
classical mechanics. 

The interpretation of Eq. (1.46) is that the Hamiltonian formulation re­
mains invariant under time reparametrizations and Eq. (1.47) tells us that 
the Hamiltonian formulation remains invariant in spacelike coordinate trans­
formations, i.e., in spatial diffeomorphisms. The four constraints together 
imply that the Hamiltonian formulation does not depend on the 3+ 1 de­
composition of spacetime. Hence we have managed to recover the full dif­
feomorphism invariance of general relativity. Moreover, the variation of the 
action ( 1.44) with respect to the lapse N is equivalent to the variation of the 
Einstein-Hilbert action (1.1) with respect to goo , since in the ADM metric, 
goo = -N2 

+ Na Na, and hence the Hamiltonian constraint 1-1. = 0 is equiva­
lent to Einstein's field equation Goo = 0. Furthermore, the variation of the
action (1.44) with respect to the shift Na is equivalent to the variation of 
the Einstein-Hilbert action (1.1) with respect to Yao, since in the ADM met­
ric, 9ao = Na . Because of that the diffeomorphism constraints 7--la = 0 are 
equivalent to Einstein's field equations Gao = 0. Hence, by recovering the 
diffeomorphism invariance of the formulation, we have recovered the missing 
field equations. The constraints also imply that the real number of degrees 
of freedom per spacetime point is not 6, the number of the independent 
components of the spatial metric qab, but 6 - 4 = 2. 

In a general coordinate system, when the lapse N and the shift Na are 
employed, we can write the Hamiltonian of pure gravity as 

H = f d3x (N'H. + Na'H.a) , (1.48) 
Et 

and the dynamical equations of the system are still given by (1.34) and (1.35). 
When matter fields are present in spacetime, the Hamiltonian (1.48) 

has to be supplemented by two new terms 1-l.matter and 1-1.�atter> which are, 
respectively, known as the Hamiltonian and the momentum density for mat­
ter. By taking into account the Hamiltonian and the momentum density for 
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matter, we get the Hamiltonian of our system in the presence of matter 
fields 

H = J d3x [N (1-l + 1imatter) + Na (1-la 
+ 1-l�atterl]

E, 
(1.49) 

Now, the variations with respect to the lapse N and the shift Na yield the 
Hamiltonian and the diffeomorphism constraints in the presence of matter 
fields: 

1-l + 1-lmatter = 0 , 
1-la 

+ 1-l�atter O , 
(1.50) 
(1.51) 

These constraint ensure that the Hamiltonian formulation of general relativ­
ity remains unchanged under time reparametrizations and spatial coordinate 
transformations even in the presence of matter fields. 

1.4.3 ADM Action 

When the lapse N and the shift Na differ from unity, the expressions for the 
extrinsic curvature tensor (1.22) and for the effective action (1.24), written 
in a general coordinate system in terms of the extrinsic curvature tensor, 
change considerably. It can be shown, by using {1.21), that the components 
of the extrinsic curvature tensor can be extracted, when the ADM metric is 
used, from 

(1.52) 

Since Kab and Rare tensors on a spacelike hypersurface, the action (1.24) 
is invariant under spacelike coordinate transformations defined by the shift 
Na, and therefore is independent of the shift Na, whereas the action integral
changes when time reparametrization, defined by the lapse N, is performed. 
Hence the action (1.24) can be written as 

SAoM = 16�G 
I dt I d3x ,jqN ( KabKab - K2 

+ 'R,)
Et 

(1.53) 

which is called the ADM action of pure gravity. The ADM action (1.53), 
when the boundary terms are ignored, is the most generic starting point 
for the Hamiltonian formulation of general relativity. In this thesis we have 
adopted, in my opinion, a more pedagogical approach to the Hamiltonian 
formulation as we introduced the diffeomorphism invariance of the formula­
tion by hand, instead of studying the properties of the Hamiltonian formu­
lation by taking the ADM action, written in terms of the ADM metric, as 
our starting point.  

1.5 Boundary Terms in Asymptotically Flat Space­

times 

We are ready to investigate the appropriate boundary terms that must be 
included in the ADM action (1.53) when our spacetime is assumed to be 
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asymptotically fiat. It has been noticed over 30 years ago that the Hamil­
tonian formulation of general relativity depends substantially on whether 
spatial hypersurfaces E are open or closed (34]. If the spacetime manifold 
composed of the spacelike hypersurfaces is closed, there are no boundary 
terms to be included in the ADM action at all, and the Hamiltonian (1.49) 
of the system vanishes when Einstein's field equations are satisfied. This 
suggests that the total energy of a closed universe is zero . However, when 
the spatial hypersurfaces are open such that the boundary of a spacelike hy­
persurface Et of constant t is a two-dimensional surface S such that Et U S
is a compact submanifold with a boundary, then one must supplement the 
ADM action by additional boundary terms evaluated from certain surface 
integrals over the surface S transformed to spatial infinity in order to attain 
correct dynamical equations of motion . 

When matter fields are present, the gravitational part of the Hamiltonian 
constraint does not bring any difficulties at all as one varies the matter part 
of the Hamiltonian. Moreover, matter fields vanish at spatial infinity faster 
than the spatial metric, and because of that the surface integrals at infinity 
containing the matter fields vanish nicely. These reasons cause us to consider 
in this section pure gravity only2

• 

In this section we shall first discuss, in few words, asymptotically flat 
spacetimes, since the concept of 'infinitely far' definitely demands some clar­
ification. After that, we shall seek for the boundary terms of asymptotically 
flat spacetimes. 

1.5.1 Asymptotically Flat Spacetimes 

Roughly speaking, by an asymptotically flat spacetime we mean a certain 
class of spacetimes which deviate from the flat Minkowski spacetime geom­
etry the less the farther off one moves from the matter source that causes 
the spacetime to curve. Although the intuitive idea of asymptotic flatness is 
relatively clear, we must anyway define the asymptotic flatness of spacetime 
in a more precise manner. A proper definition of asymptotically flat spaces 
was put forward by R. Penrose [35], and since then it has been investigated 
and elucidated by many authors (see the treatment in Refs. [27, 30]). Since 
the studies concerning this particular property of spacetime are in itself a 
vast subject, we are satisfied here with a rudimentary treatment. We define 
spacetime to be asymptotically flat if there exists a system of coordinates 
x0

, x1 , x2 , x3 such that the metric components in these coordinates, at large
distances, behave along the spatial directions as follows: 

(1.54) 

where T/µv is the metric tensor of flat spacetime, and r := J(x1 )2 + (x2)2 + (x3)2.
In other words, we assume that the spatial coordinates become Cartesian 
in the asymptotic spacelike infinity. In these coordinates we may write the 
spacetime metric as 

gµv = T/µv + hµv , (1.55) 

which is familiar from the linear field approximation of Einstein's field equa­
tions, and therefore we may ignore the higher-order terms in hµ

v in all the 
2The diffeomorphism constraints of matter do not include the spatial metric nor its 

conjugate momenta. 
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derived quantities. Definition (1.54) perhaps raises more questions than it 
answers, but it is adequate to us, since ultimately we will be interested in 
black-hole spacetimes only. Fortunately, in stationary 3 black-hole space­
times it is possible to find such a coordinate system that satisfies the condi­
tion (1.54). 

When we study the properties of spacetime infinitely far away from the 
mass distribution, we may use a special method developed by R. Penrose 
known as the conformal compactification of spacetime [35]. The basic idea 
in the process of compactifying the whole spacetime geometry is that we 
bring the spacetime points from inifinity to a finite distance, and thereby 
we may study the causal structure of infinity. In this process we use coordi­
nate transformations which map the infinite interval ( -oo, oo) onto the finite 
interval (-1r, 1r); thus we obtain a new manifold M which possesses a space­
time boundary representing the infinity of spacetime. As an enlightening 
example, let us consider the flat Minkowski spacetime. We perform con­
formal transformation of coordinates from the usual spherical coordinates 
(t, r, 0, </>) of flat spacetime to new spherical coordinates ('ljJ, �, 0, </>) such that

t+r = 

t-r = 

0 = 

</> = 

tan 
a 

('ljJ + o] 
tan[� ('ljJ - e)] 
0, 

</>, 

(1.56) 

(1.57) 

(1.58) 
(1.59) 

where -1r < 'ljJ - ( < 'ljJ + ( < 1r. Now, the points at infinity in Minkowski 
spacetime correspond to the points when 'ljJ+( and 'ljJ-( take the values ±1r.

Thus the inifinite spacetime has been shrunk into a diagram which is finite 
in spatial and temporal directions. A two-dimensional figure illustrating 
the boudaries of Minkowski spacetime give rise to the conformal diagram 
known as the Carter-Penrose diagram of Minkowski spacetime. In Fig. 1.4 
the coordinates 0 and </> have been suppressed. 

It can be shown that all timelike curves begin at the point i- called 
the past timelike infinity and end at the point i+ called the future timelike 
infinity, and the point i0 is known as the spatial infinity, where r --+ oo for 
finite t.4 All lightlike curves begin at the boundary J- and end at J+. The 
boundaries J- and J+ are called the past null infinity and t.he fitture null 
infinity, respectively. The spacetime region J+ (J-) consists of events which 
can be causally affected by events in J- and is called the causal future of J-. 
Respectively, the causal past of J+ is denoted by J-(J+). In the example 
of Minkowski spacetime, asymptotically flat region of spacetime is bounded 
by the boundaries j+ (J-) and j-(J+) and it consists of events in J-(J+). 

In fact, almost for any spacetime it is possible to draw the Carter-Penrose 
diagram. In particular, analogous conformal coordinate transformations can 
be performed in ulack-hole spacetimes (see for example [27]), and because
of that it is possible to draw their Carter-Penrose diagrams as well. We will 
return to the conformal diagrams of black holes in Chapter 2. 

3For the definition of a stationary black hole, see Sec. 2.5. 
4 Actually, the points i-, i+ and all the other points inside the diagram represents a 

two-sphere S2
• 
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·O 
I 

Figure 1.4: Carter-Penrose diagram of Minkowski spacetime when both of 
the two timelike infinities are included. The figure shows spacelike ( conti­
nous line), timelike (dashed line) and null (dotted line) geodesics. 

Let us consider a region of an asymptotically flat spacetime manifold M 
bounded by two spacelike hypersurfaces Et and Et1. It is no longer natural 
to assume that the variations of the dynamical variables and their canonical 
momenta vanish or are held fixed at the spatial boundaries. The most 
natural spatial boundary condition is that the variations preserve asymptotic 
flatness. By satisfying this condition the boundary terms are required to be 
added to the gravitational action (1.44). On the road to the Hamiltonian 
formulation we have ignored all the boundary terms that we have confronted. 
Therefore we shall calculate the boundary terms arising from the variations 
of the action (1.44), and, in order to have well-defined equations of motion, 
we shall add these terms into the action to cancel out the undesired boundary 
terms. 

The role of the surface integrals in the Hamiltonian formulation of gen­
eral relativity has been extensively investigated and elucidated by T. Regge 
and C. Teitelboim in Ref. [21]. In fact, Regge and Teitelboim showed in [21] 
that the boundary terms are closely related to the invariance of the gravita­
tional action under time and spatial coordinate translations and rotations at 
asymptotic infinity. These translations and rotations are very well known to 
be associated with the conserved quantities of total energy, linear momen­
tum and angular momentum of an isolated system in classical mechanics. 
Even in general relativity it is possible to find the corresponding quantities. 

1.5.2 ADM Energy 

First, we consider the case where the vector tµ joining two consecutive space­
like hypersurfaces Et and Et+dt represents asymptotically a time translation, 
that is, we choose the lapse N to become some function N+ (t) and the shift 
Na is chosen to vanish as the radial coordinate r approaches the spatial 
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infinity. In that case only the term 

-jq NR
16-rrG 

in the action (1.44) produces a non-zero boundary term when the action 
is varied with respect to the dynamical variables and their conjugate mo­
menta. The boundary term corresponding to this term has been obtained, 
for example, in [30] by varying the Hamiltonian (1.48) with respect to the 
dynamical variables, and it is shown, in asymptotic Cartesian coordinates, 
to yield a surface integral 

EADM := lim 16
1 

G f dSn (qmn m - qmm n)
r-+oo 7r 

' ' 

s 

(1.60) 

where the notation 'limr-Hx,' must be understood as a process where the 
two-dimensional spatial boundary S of the hypersurface t = constant is 
carried forward to spatial infinity. This surface integral is known as the 
ADM energy of spacetime and it is nonvanishing, and for this reason it must 
be accounted in the gravitational action (1.44). However, it is possible to 
show that exactly the same surface integral (1.60) is attainable when we 
consider the linear field approximation of the first term on the right hand 
side of (1.8) multiplied by the lapse N. In fact, we omitted this term in the 
very beginning of our investigation. We may approximate the Christoffel 
symbol r�n as 

and therefore 

r�n = 
�811

·• (ham,n + hna ,m - hmn,a) + O(h2) , 

16!,G f dt f d3xN [qmn-jq (o�r�b - r�n) La E 
= 16;G J dt J d3x (hmm,n - hmn,m),

n 
+ O(h2) 

E 
= 16;G f dt f dSn (hmm ,n - hmn,m) + O(h2) 

(1.61) 

(1.62) 

The only difference between the surface integrals (1.60) and (1.62) is that the 
latter is written in terms of the small perturbation hab at spatial infinity. 
When the condition (1.54) is taken into acount and Eq. (1.55) is used in 
the former integral, the two surface integrals become identical. Hence, if 
we require spacetime to be asymptotically flat then the variation of the 
action (1.44) with respect to its dynamical varibles qab brings along the 
ADM energy (1.62) which must be cancelled out. Because of that, the 
gravitational action must be supplemented by the so-called ADM boundary

term 

(1.63) 

where the lapse N becomes some function N+(t) as r approaches to infinity. 
Hence, the gravitational action (1.44) with the ADM boundary term related 
to the time translations is 

S = / dt J d3x ( 'lrab<Jab - N1{ - Na Ha) - / dtN+ (t)EADM (1.64) 
E 
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The appearance of EADM is very intriguing and we will study this later 
in this chapter .  Here we shall only point out that when Einstein's field
equations are satisfied, the Hamiltonian of the system simply becomes 

(1.65) 

If our universe is compact, there will be no boundary contributions and 
thus 

(1.66) 

This suggests very interestingly that the total energy of our universe should 
be zero. 

1.5.3 Linear Momentum 

In addition to the ADM energy, which is related to time evolution at asymp­
totic infinity, we have, for the non-vanishing shift Na at spatial infinity, 
boundary terms associated with asymptotic spatial coordinate translations. 
Because of that, we want the vector tµ to become a pure spatial coordinate 
translation, that is, we choose the lapse N vanish and the shift N+ becomes 
some function N'+(t) as r goes to infinity. In that case only the variation of 
the action (1.44) with respect to the momenta conjugate to qab brings along
a term 

2 / dt I d3x (Na01f b) = -2 lim / dtNa (t) f 1r bdSb 
=: strans , (1.67) 

" lb r➔oo + a 8E 

E S 

which must be cancelled at infinity. The surface integral 

pADM ·= -2 Jim f 1f bdS a · r➔oo a b, 

s 

(1.68) 

is known as the ADM momentum of spacetime. Now the gravitational ac­
tion (1.64) must be supplemented by this boundary term also: 

S = / dt / d3x (1rab<iab -N1-l -Na1-la)
E 

-I dtN+(t)EADM

+I dtN�(t) Pt'DM 

1.5.4 Angular Momentum 

(1.69) 

So far we have considered time translation and spatial coordinate transla­
tions at asymptotic infinity. There is one flat-space symmetry still to be 
investigated, namely the rotational symmetry at spatial infinity. At this 
time, we choose again not to have time evolution at the asymptotic infinity, 
i.e., the lapse N vanishes as r approaches infinity, but since we want to have
an infinitesimal asymptotic rotation of coordinates around the asymptotic 
Cartesian coordinate system determined by an infinitesimal angle ocp

b as r
approaches to infinity, we choose

(1. 70) 
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In that case the variation of the action (1.44) with respect to the momenta 
conjugate to Qab brings along the same term as in spatial coordinate transla­
tions, but the corresponding surface integral differs from (1.68) considerably: 

2 J dt J d3x (Na 61rab)
lb 

= -2t:abcr��1 dtwb(t) f x"1randSn =: Sa°i,
E S 

(1.71) 
where wb := dcp

b /dt is the angular velocity of the rotating coordinate system 
around the Cartesian coordinate system at asymptotic infinity. The surface 
integral 

LtDM := -2t:abc lim f dSnX c7ran , (1.72) 
r--+oo 

s 

is known as the ADM angular momentum of spacetime. Finally, when even 
the l0,3t boundary term is to.ken into acount, the gravitational action with 
the appropriate boundary terms in pure gravity can be written as 

S = J dt J d3x ( 1rabQab -Ntl -Natla) 

or equivalently, 

E 

-jdtN+(t) lim 
16

1
G

fdSb(Qaba -Qaa b) 
r➔oo 7r 

' ' 

s 

+jdtN+(t)2 lim f 1r/dSb 
r--+oo 

s 

+jdtwb(t)2t:abc lim f dSnXc7ran ,
r--+oo 

s 

S = J dt J d3x ( 1rabQab -Ntl -Natla) 
E 

-J dt (N+(t) EADM + N+(t) p:DM + wb LtDM)

(1. 73)

(1. 74) 

From the ADM energy (1.60) and from the components of the ADM 
momentum (1.68) it is possible to form a conserved Lorentz-invariant four­
vector known as the ADM energy-momentum of spacetime at spatial infinity: 

(1.75) 

The conservation of the ADM energy and the Lorentz invariance of the ADM 
four-momentum was investigated by Regge and Teitelboim in (21]. 

The physical interpretation of the ADM energy-momentum is that the 
ADM energy gives the total energy of spacetime evaluated at the asymptotic 
infinity as mentioned before, and the ADM momentum yield the total linear 
momentum of spacetime evaluated at the asymptotic infinity. It is important 
to realize that these values do not depend on the properties of the internal 
structure of spacetime, but the total energy, the linear momentum, and even 
the angular momentum of spacetime can be read off from the spacetime 
boundaries. Since the ADM energy is constant under time translations on 
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every :E, the total energy associated with any spacelike hypersurface :E is 
given by the ADM energy EADM , and, for example, in the Schwarzschild 
spacetime, which is asymptotically flat, one can show that the ADM energy 
is given by EADM 

= M, where M can be understood as the total mass of 
the Schwarzschild spacetime. The physical properties of the ADM energy­
momentum of a isolated system in general relativity are analogous to the 
corresponding properties of a particle in special relativity: The total energy 
of a particle is given by the time component p0 

= E of the four-momentum 
pµ (xµ) of the particle, and the mass of the particle is given by m = ✓ -PµPµ · 
Now, if the particle is at rest with respect to the coordinate system defined 
by xµ , then E = m. Thus, the knowledge of the rest frame and the mass 
m determines the total energy and even the four-momentum of the particle. 
Despite the fact that local energy density is not a well-defined concept in 
general relativity, one can define the concept of total energy of spacetime in 
the case of an asymptotically flat universe. This is very important when we 
study the quantum mechanics of isolated black holes. 
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Chapter 2 

Black Holes 

2.1 Introduction 

A black hole is a spacetime region in which the gravitational field is so strong 
that even light cannot escape from it to infinity. In 1916 K. Schwarzschild 
published the first known exact solution to Einstein's field equations, and 
it soon turned out that it included a spacetime region which is called the 
black hole. Today no one who accepts general relativity as a whole cannot 
elude the theoretical prediction that black holes must exist in our universe . 
However, this has not always been the case: Before neutron stars were 
discovered by the end of the sixties [36], black holes were believed not to 
exist in reality. In spite of the misbelieves, S. Chandrasekhar showed in 
1931 that when an ordinary star has exhausted all its nuclear fuel and it 
has collapsed to a white dwarf, it must continue to collapse due to the 
gravitational attraction of its own mass to a neutron star if the mass of the 
white dwarf exceeds 1.2 solar masses [37] . This mass limit is known as the 
Chandrasekhar limit. The Chandrasekhar limit is caused by the outward 
pressure of the electron gas of the white dwarf. Since electrons are spin-1/2 
particles, the electron gas obeys Pauli's exclusion principle and therefore 
it necessarily produces a certain outward pressure that prevents the white 
dwarf from collapsing if its mass is smaller than the Chandrasekhar limit. 
Another major input was put forward by R. Oppenheimer and H. Snyder 
in 1939 [38], as they showed by using a simple relativistic model that a 
sufficiently massive star continues to collapse infinitely. If the mass of a 
white dwarf exceeds 1.44 solar masses the white dwarf collapses to a neutron 
star, and if the mass of the neutron star is more than 3.2 solar masses 
the pressure of the neutron gas cannot prevent it from collapsing infinitely. 
When a massive star collapses infinitely, its radius approaches, in a finite 
proper time, its gravitational, or Schwarzschild, radius 

(2.1) 

where C � 6.67 x 10-11 m3kg-1s-2 is Newton's gravitational constant,
c = 299792458 m/s is the speed of light, and M is the mass of the star. 
After the radius of the collapsing star has passed its Schwarzschild radius, 
even the light emitting from the collapsing matter cannot escape to infinity 
any longer, but the light rays are trapped inside the surface r = Rs. The 
surface r = Rs is called the trapped surface [39]. When the radius of the 
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collapsing star has become smaller than its Schwarzschild radius a far-away 
observer cannot see the collapsing star anymore. Therefore, if a collapsed 
matter distribution has a radius smaller than its Schwarzschild radius, we 
call it a black hole. According to Oppenheimer's and Snyder's model, even 
after the trapped surface has formed, matter still continues to collapse until 
it has become a single point in space. This point at all times is called the 
black hole singularity. (See Fig. 2.1.) 

r:l 
I!. 

Figure 2.1: This figure represents a spherically symmetric gravitational col­
lapse, when the azimuthal dimension is suppressed. The light cones "tip 
over" at the surfacer= Rs. They illustrate the fact that the future of any 
particle is at the singularity r = 0. Note that the singularity produced in 
spherically symmetric gravitational collapse is spacelike. 

There are at least three different known processes of the gravitational 
collapse. The first process is the gravitational collapse of a star which was 
just briefly discussed. The second process is the gravitational collapse of the 
center of a cluster of stars where the whole core of the cluster collapses into 
a very massive black hole (40). The third process is a controversial subject 
at the moment, but it is widely believed that the so-called primordial black 

holes could have been produced in the very dense early universe by a direct 
gravitational collapse of matter (41). By the direct gravitational collapse we 
mean a collapse that is caused by the dense inhomogeneous matter distribu­
tion. It has been speculated that although our universe is on the large scale 
very homogeneous, on the microscopic level the early universe might have 
been initially inhomogeneous, and therefore these inhomogeneous regions 
could have collapsed directly to black holes rather than expanded with the 
universe. The mass scale of the primordial black holes could be anything 
between the Planck-size black holes with mass ~ 1 µg and the black holes in 
the core of a large galaxy with ~ 1010 solar masses. The importance of the 
Planck-size primordial black holes to physics is highlighted in their quan­
tum effects. In fact, we concentrate on the quantum-mechanical models of a 
single primordial black hole or black-hole pairs in Chapter 5 and Chapter 6. 

All the black hole spacetimes that have been produced by the gravi­
tational collapse of matter are not time-symmetric because of the disap­
pearance of the mass distribution. Black holes that are time-symmetric are 
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called the eternal black holes. These black holes may be considered unphys­
ical, but usually it is convenient to investigate the properties of the eternal 
black holes. 

In this chapter we consider some generally important results originating 
from the 1970's and even from the era at the beginning of Einstein's general 
relativity. We define the concept of black hole and introduce the different 
types of black holes and their mechanical laws. Also the uniqueness theorems

of black holes are presented. 

2.1.1 Black Hole, Black Hole Singularity and Naked Singu-
larity 

Usually black holes are defined to be spacetime regions were the gravita­
tional attraction becomes so strong that even light cannot escape from it.1 

Therefore black holes appear us as black. However, black holes can be de­
fined without any notion to the terms 'gravitational' and 'light' [27]: In an 
asymptotically flat spacetime M a black hole is a closed set B C M such 
that 

(2.2) 

In other words, a black hole is a spacetime region, which does not belong to 
J-(J+ ). Consider, as an example, the flat Minkowski spacetime. There the 
whole spacetime manifold is included in J-(J+) (see Fig. 1.4), and because 
of that one may say that Minkowski spacetime does not contain black holes. 
This observation gives us a reason to state that spacetime contains a black 
hole if and only if M is not included in J-(J+ ). The usual definition 'of 
no escape' follows from the definition (2.2), since all lightlike curves are 
asymptotically parallel to the boundary H+ = j-(J+) n M of a black hole. 
This is illustrated in Fig. 2.6, where the boundary H+ is a two-dimensional 
lightlike surface called the black hole event horizon. Hence, in asymptotically 
flat spacetime, it is impossible, even for light rays to escape from B to the 
future null infinity J+ , and if light cannot come out of the black hole then 
all particles and even information are captured inside the hole. It is not 
possible to interact with the black hole before one has passed the surface 
of the hole, and it is not possible to return from the hole once the surface 
of the black hole has been crossed over. In other words, black holes shut 
themselves out of their surroundings. Therefore black holes are considered 
as holes in spacetime. We shall investigate the geodesics of freely falling 
matter in black hole spacetimes in Sec. 2.4.1, and the meaning of the event 
horizon is discussed further in Sec. 2.2. 

General relativity possesses spacetime singularities whenever the metric 
tensor is not defined. Some of these singularities can be removed by a coor­
dinate transformation, and because of that these coordinate singularities are 
unphysical. General relativity predicts the existence of true physical singu­
larities also. Such singularities cannot be removed by any coordinate trans­
formation. Physical singularities can be divided into cosmological, naked 
and black hole singularites. In this chapter we are interested in the singu­
larites inside the black hole only2

• The black hole singularities are further 
1The implication of the large gravitational potential was first noticed by J. Michell in

1784. 
2 According to the unproven Cosmic Censorship Conjecture, stated by R. Penrose [42], 
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characterized by an infinite curvature scalar R. In other words, the black 
hole singularity can be characterized by undefined metric and by infinitely 
large spacetime curvature. Another way of understanding the singularities 
comes out very naturally, when one investigates the incompleteness of time­
like or a null geodesics [27]: If there is an incomplete timelike or null geodesic 
in spacetime, it can be shown that - under certain assumptions - spacetime 
must have a singularity. By an incomplete geodesic we mean a geodesic that 
is inextendible in at least one direction and has a finite affine length [43]. 
Roughly speaking, an incomplete geodesic breaks at some spacetime point. 
In particular, an incomplete geodesic must begin or end at the spacetime 
singularity. 

In terms of geodesics it is possible to show that under some highly tech­
nical assumptions concerning matter and the global properties of spacetime, 
a closed trapped surface exists and spacetime must contain a singularity. 
There are several analytical and quite general statements about the ex­
sistence of the singularities. These statements are the so-called singular­

ity theorems and they were formulated by R. Penrose and S. W. Hawk­
ing [44, 45, 46, 27]. The singularity theorems show their power in proving 
that even non-spherically symmetric gravitational collapse produce a closed 
trapped surface. While the passage to the singularity theorems would be 
very interesting, it would also be a very lengthy journey. Therefore we shall 
not go into a detailed discussion. A brief intorduction to the singularity 
theorems is given in (29], and some of the details can be found, for example, 
in Ref. (30]. 

In general, the gravitational collapse of a star is very difficult to un­
derstand, and indeed, there is no generic model that would describe non­
spherically symmetric gravitational collapse. In fact, there is no known 
mechanism that would cause other than spherically symmetric black holes. 

2.2 Schwarzschild Black Hole 

The first black hole solution to Einstein's field equations was found by 
K. Schwarzschild in 1916 (4]. It is called the Schwarzschild solution, and
it represents a spherically symmetric vacuum solution. In the Schwarzschild
coordinates t, r, 0, </> the Schwarzschild line element has the form

( 
2GM

) ( 
2GM

)
-lds2 

= 1 - -r-
dt2 

- 1 - -r-
dr 2 

- r 2d02 
- r 2 sin2 0def,2

, {2.3) 

where the parameter M can be identified as the total mass of the gravi­
tational source. This line element has many interesting properties. First 
of all, as shown by Birkhoff [47], the spacetime geometry is determined 
by the total mass M, even when the mass distribution performs oscilla­
tions or vibrations such that they preserve spherical symmetry. In other 
words, the Schwarzschild solution remains the only spherically symmetric 
vacuum solution to Einstein's field equations whether the spherically sym­
metric gravitational source were static or not. Secondly, the Schwarzschild 

in any reasonable spacetime no singularity is ever observationally seen by a far-away 

observer. The so-called naked singularities are not clothed by the event horizon. This 

unproven conjecture is widely believed to be true, and it constitutes one of the cornerstones 

of general relativity. 
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line element (2.3) is time independent and depends only on r, and therefore 
the reference frame formed by the Schwarzschild coordinates is static. 

When r --t Rs, we notice from the Schwarzschild line element that 
goo --t O and gu --t ±oo. In other words, the point r = Rs is a singular­
ity. However, it turns out that this singularity is an unphysical coordinate 
singularity, causing no effects on any freely falling observers. For ordinary 
stars the region r < Rs is filled with matter, and as such it is not a relevant 
region of spacetime, whereas for black holes that region is admissible. More­
over, we already know that a gravitational collapse produces a black hole, 
and that a massive, spherically symmetric mass distribution collapses into a 
spherically symmetric black hole. The exterior region of spherically symmet­
ric black holes, in turn, are described by the Schwarzschild solution. There­
fore spherically symmetric non-charged black holes are called Schwarzschild 
black holes, and for this reason it is interesting to study the behaviour of 
the Schwarzschild line element also inside the region r < Rs - the black 
hole itself. When r approaches to zero, we find from the Schwarzschild line 
element that goo approaches to infinity and the curvature scalar R becomes 
infinite . Hence, the point r = 0 is the true black hole singularity. 

It is also important to note that the roles of the time coordinate t and 
the spatial coordinate r change at the point r = Rs: t becomes a spa­
tial coordinate and r records temporal coordinate. This follows from (2.3) 
where the coefficients of dr2 and dt2 reverse their signs when crossing the 
Schwarzschild radius. This, in turn, implies that every signal of information 
or particle is compelled to fall into the singularity after it has crossed the 
trapped surface r = Rs. Nothing can escape from the black hole region. 
Moreover, light cones 'tip over' at the Schwarzschild radius r = Rs, such 
that inside the black hole they always open toward the liner= 0, where the 
singularity lies. The trapped surfacer= Rs bounding the hole is called the 
event horizon H of the Schwarzschild black hole. The event horizon acts as 
a one-way membrane. Anything may go inside the black hole, but nothing 
can come out of it. 

The event horizon is a two-dimensional surface3 • This can be seen by 
showing that the three-volume of the surface is zero, whereas the area of the 
region where t = 0 and r = Rs is 

(2.4) 

When r --t oo the Schwarzschild line element (2.3) becomes the flat 
Minkowski spacetime line element in the spherical coordinates t, r, 0, <p. This 
implies that far away from the mass distribution M the Schwarzschild space­
time is asymptotically flat (according to our definition (1.54)). Later in this 
chapter we shall discuss the Carter-Penrose diagram of the Schwarzschild 
spacetime. 

2.2.1 Kruskal Diagram of Kruskal Spacetime 

The Schwarzschild coordinates are not well-defined at the event horizon. 
Therefore one can neither continuously describe the geodesics of the in­
falling matter in terms oft, r, 0 and </> nor analyze the coordinate singularity 

3Hawking has shown that the topology of an event horizon of any black hole is S2 [27]. 
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r = Rs, and even the light cones are ill-behaved on the event horizon in
the Schwarzschild coordinates. A static coordinate system that removes the 
coordinate singularity is the Kruskal coordinate system (48, 49]. To illus­
trate the Schwarzschild spacetime in Kruskal coordinates, let us develop the 
necessary coordinate transformation step by step. 

In terms of the so called "Regge-Wheeler tortoise coordinate" 

r.:=r+Rsln,�-
s 

-11 (2.5) 

we define the outgoing and ingoing Eddington-Finkelstein coordinates U, r
and V, r such that 

U=t-r., 

V=t+r •. 

(2.6) 

(2.7) 

Hence we may implicitly express the Schwarzschild coordinate r as a function 
of U and V such that 

r • = r + 2G M In I 2; M - 1 I = � (V - U) (2. 8 )  

and therefore the Schwarzschild line element takes the form 

-2GMe-2;M v-u
ds2 

= -----e4GM dUdV -r2d02 
-r2 sin2 0dql . (2.9 ) r 

By further defining the Krnskal coordinates u and v such that 

u � ( eV/4GM + e-U/4GM)

V � ( eV/4GM _ e-U/4GM)

the Schwarzschild line element becomes 

(2.10) 

(2.11) 

(2.12) 

There is no touch of singularity at r = 2GM in the line element (2.12),
and thus the Schwarzschild solution can be extended to all values r > 0, 
whereas the true singularity r = 0 still exists. In the Kruskal coordinates 
the singularity r = 0 is represented by the surface u 2 

- v2 = -1, and at 
the event horizon u 2 - v2 = 0 holds. Moreover, u is a spacelike and v is a
timelike coordinate . 

The relationship between the Schwarzschild and the Kruskal coordinates 
is 

( 2GM 
- 1) er/2GM 

= u 2 - v2 ' 
t = 2tanh-1 (-

u
v

) 2GM 

(2.13) 

(2.14) 

With these well-known properties of the Kruskal coordinates it is possible 
to draw a picture representing the Schwarzschild spacetime in the Kruskal 
coordinates, when d0 = d<jJ = 0. The representation in Fig. 2.2 is called the 
K ruskal diagram (48] of the Schwarzschild spacetime. 
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Figure 2.2: This figure represents the Kruskal diagram of the Schwarzschild 
spacetime. Radial light rays are given by the straight lines u = ±v + 
constant, the event horizon r = Rs is given by the curves u = ±v. The 
(dotted) curves of constant r are hyperbolas and the curves t = constant 
are straight (dashed) lines through the origin where v/u = constant. At the 
event horizon t � ±oo. 

In the Kruskal diagram of the Schwarzschild spacetime the light rays 
are straight lines with the slopes equal to ±1. Because of that it easy to 
see that light cannot escape from the spacetime region II, whereas light 
can go from region I to region II. For this reason the region II represents 
a black hole and the region I represents its exterior region. The Kruskal 
diagram 2.2 shows clearly that the spacetime has a boundary at v = -u.

However, there is nothing that forces the spacetime to have this peculiar 
property. The boundary can be removed from the Schwarzschild spacetime 
by completing it into the so-called Kruskal spacetime [48] (see Fig. 2.3), 
known as the maximal Schwarzschild spacetime. The completed spacetime 
allows a spacetime region, where both u and v take negative values. By 
a maximal spacetime we mean a spacetime manifold where every geodesic 
either is of infinite length, i.e., iL ha:; ueither end nor beginning, or it begins 
or ends on a singularity. 

Let us now turn our attention to the Kruskal diagram of the Kruskal 
spacetime. There we find some striking things: (i) The Kruskal spacetime 
has two singularities which are the only spacetime boundaries. (ii) Light 
rays can go from the region III to the black hole region II but not vice versa. 
Therefore the region III is also an exterior region to the black hole II, and 
it is identical to the exterior region I. (iii) The regions I and III have no 
information about each other. (iv) Light rays from the regions I and III can 
never reach the region IV, whereas light can cross the horizon r = 2GM 
from the region IV to the regions I and II. Hence, the region IV is a time 
reversal of the region II, and thus it is called the white hole. The white hole 
singularity r = 0 is called the past singularity while the black hole singularity 
refers to the future singularity. 
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Figure 2.3: This figure represents the maximal Schwarzschild spacetime in 
the Kruskal coordinates. There are four spacetime regions in Kruskal space­
time. I and III are the asymptotically flat exterior regions. II and IV com­
prehend the black hole and the time reverse of the black hole i.e. a white 

hole. Only the regions I and II are relevant to the spherically symmetric 
gravitational collapse. 

2.2.2 Einstein-Rosen Bridge 

The Kruskal spacetime can be sliced into three-dimensional spacelike hyper­
surfaces. If the slicing is performed such that the hypersurfaces of constant 
time do not meet the singularities then the Schwarzschild radius r attains 
some positive minimum value. In other words, these hypersurfaces with a 
minimum positive radius coordinate are "tunnels" of the Kruskal spacetime. 
These tunnels are known as the Einstein-Rosen bridges [50] or the worm­

holes or the Schwarzschild throats. The three-geometry of the wormholes 
greatly differs from flatness, and they can be illustrated as in Fig. 2.4. 

z 

r=R s 

Figure 2.4: The Einstein-Rosen bridge in the case when t = 0 and 0 = 1r /2. 
The two-dimensional surface is embedded in lll3 

• 

As one can notice from the Kruskal diagram Fig. 2.3, the Einstein-Rosen 
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bridge connects the two asymptotically flat exterior regions I and IV, and the 
wormhole serves as a spacelike path from one point to another4

. However, 
no signal may exploit the Schwarzschild throat as a passage between two 
universes: Although the exterior region of the Schwarzschild black hole is 
static, the interior region is not. The time translation t � t + dt leaves 
the Schwarzschild geometry unchanged in regions I and III, but in regions II 
and IV such "time translations" are in fact spatial transformations. W hen 
one performs the correct time translations for the hypersurfaces of constant 
time, they move in the +v direction in the Kruskal diagram 2.3 and enter 
the region II. Hence, the geometry of the spacelike hypersurface changes 
and the four-geometry of the Kruskal spacetime changes inside regions II 
and III. Because of that the wormhole evolves in time. In the beginning 
of the evolution the wormhole throat is created, then the throat expands, 
recontracts and finally pinches off even before light signals pass across the 
bridge (Fig. 2.5). 

V > I 

X v;j 

)C i>••>O 

) (v:o 

)C O>v>-1 

X,.;.j
\' < -J 

Figure 2.5: This figure illustrates the time evolution of the throat of the 
Einstein-Rosen bridge. The wormhole throat is first created, then the throat 
expands, reaches its maximum value r = Rs and then it begins to contract 
finally pinching off. 

2.2.3 Carter-Penrose Diagram of Kruskal Spacetime 

We can construct the Carter-Penrose diagram of the Kruskal spacetime by 
performing a conformal coordinate transformation from the Kruskal coordi­
nates u, v to new coordinates '1/J, � such that 

1 
v + u = tan 2 ( '1/J + 

0
1

v-u tan
2('1jJ-�)

(2.15) 

(2.16) 

where --rr < 1r - � < 'ljJ + � < -rr. It is easy to see that in the new coordinates 

(2.17) 

4The points that are connected by the wormhole may lie in the same universe or in 

two separate universes. 
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and so the singularities v2 
- u2 

= 1 are given by the line 'If; = ±1r /2. More­
over, the points where � = ±1r correspond to the case where u approaches 
±oo, and the lines where v + u ---+ ±oo or v - u ---+ ±oo transform, re­
spectively, to lines 'If; = ±1r - � and 'If; = ±1r + �. Hence, the infinite exterior 
regions can be mapped to a finite distance. The Carter-Penrose diagram of 
the Kruskal spacetime is given in Fig. 2.6. 

111 

fun1rc horizon H ... 

-n/2

past singul:uity 

Figure 2.6: The Carter-Penrose diagram of the Kruskal spacetime, showing 
the infinities and the singularities. The coordinates 0 and rjJ have been 
suppressed. 

2.3 Reissner-Nordstrom Black Hole 

The sourceless Einstein-Maxwell equations are 

Gµv 2 (F
µ
.>.Fv .>. - �g

µvF
p
aFPIT) 

pµv;µ = 0. 

pµv is the electromagnetic field tensor defined as 

(2.18) 

(2.19) 

(2.20) 

where Aµ is the electromagnetic four-vector potential such that A0 is the 
electrostatic scalar potential <I> and the components Ai (i = 1, 2, 3) form the 
ordinary electromagnetic vector potential A. 

The Reissner-Nordstrom [5, 6] solution 

2 ( 2GM GQ) 2 
( 2GM GQ)-i 2 2 ( 2 . 2 2) ds = l - -- + - dt - 1 - -- + - dr -r d0 + sm 0drpr r2 r r2 

(2.21) 
is the only exact electrovacuum, static and asymptotically flat solution to 
Einstein's field equations (2.18)5

. It represents a charged and spherically 
symmetric black hole geometry. The Reissner-Nordstrom solution with 

5The uniqueness of the Reissner-Nordstrom solution is discussed in Sec. 2.5. 
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Q = 0 gives as a special case the vacuum solution (2.3) of Schwarzschild 
spacetime. Maxwell's equations (2.19), in turn, infer that the electrostatic 
potential in a spherically symmetric static case is 

Q Ao= -- ,

r 
(2.22) 

where the parameter Q is clearly the electric charge of the spherically sym­
metric charge distribution. Hence, the parameters M and Q can be inter­
preted as the mass and the charge of a spherically symmetric charged mass 
distribution. 

2.3.1 Singularities and Horizons 

Although the line element (2.21) usually is regarded as a description of the 
spacetime outside a charged spherically symmetric mass distribution, it is 
very interesting to study the metric for all r E [O, oo). When we perform this 
we find that the Reissner-Nordstrom spacetime has a curvature singularity 
only at the point r = 0 and the coordinate singularities lie at the points 
where 

!:i.:= r
2 - 2GMr + GQ2 

= 0. (2.23) 

This equation is satisfied when 

(2.24) 

By proceeding analogously to the Schwarzschild case (see Sec. 2.2.l and, for 
more details, see Ref. [27].), one can show that in the Reissner-Nordstrom 
spacetime the points where r = r ±, are coordinate singularities, and that 
the surfaces r = r ± are lightlike. Moreover, the roles of the time coordinate 
t and the radial coordinate r change at the surfaces r = r±. In other words, 
t is a spacelike and r is a timelike coordinate over the interval r _ < r < r +, 
and furthermore, the future light cones "tip over" at the lightlike surface 
r = r + and again at the lightlike surface r = r _. Because of that even 
light cannot escape to infinity (r ---t oo) from the region r < r + nor can it 
escape back to the region r > r-, once it has crossed the surface r = r -· 
Therefore the region r < r+ is 01.llerl the Re.issne.r-Nordstriim black hole, and 
the region r > r + is the exterior region of the Reissner-Nordstrom black hole. 
The surface r = r + is called the exterior horizon and the surface r = r _ is 
called the interior horizon. (See Fig. 2. 7.) The exterior horizon is the event 
horizon of the Reissner-Nordstrom black hole. 

The number of the coordinate singularities, or equivalently, the number 
of the horizons (2.24) depends on the numerical values of the parameters 
M and Q. Therefore we consider three cases: G M2 < Q2

, G M2 
= Q2 and 

GM2 > Q2 • The case GM2 < Q2 may he mnsi<lere<l unphysic;i.l, because 
there are no horizons, and the singularity r = 0 appears naked. (See the 
footnote at the bottom of the page 37.) 

When GM2 
> Q2 the metric (2.21) has two coordinate singularities, 

since !:i. vanishes at both points r = r + and r = r _. It is important to 
note that the spacetime is not static in the intermediate region r _ < r <

r +, but spacelike slices possess there some time evolution. This dynamics 
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turns out to be crucial for our quantum-mechanical model of the Reissner­
Nordstrom black hole. In Chapter 3 we shall discuss the dynamics of black 
hole spacetimes. 

When G M2 = Q2 there is only one horizon at the point r = r ± = GM.

This black hole solution is called the extreme Reissner-Nordstrom black hole 
and the line element (2.21) becomes: 

( 
GM)2 ( GM)-2 

ds2 = 1 --
r
- dt 2 

- 1 --
r
- dr2 

- r2 ( d0 2 + sin2 0dq}) . (2.25)

We find that spacetime is static inside as well as outside the horizon r = GM,

whereas in the case GM2 =/- Q2 the spacetime has a dynamical region. 
Moreover, the topology of an extreme Reissner-Nordstrom black hole in a 
Euclidean spacetime is 52 x � x 51 , whereas for a nonextreme black hole it 
is�2 x52 . 
2.3.2 Carter-Penrose Diagram ofReissner-Nordstrom Space-

time 

Causal properties of the Reissner-Nordstrom spacetime can be elucidated by 
the means of Carter-Penrose diagrams. The process to obtain the diagrams 
in the three different cases G M2 

< Q2 , G M2 = Q2 and G M2 
> Q2 is 

analogous to the Schwarzschild case and the details are shown, for example, 
in Ref. [27]. The crucial point in the process is that the conformal coordinate 
transformation alters in the three cases. Let us first define for all r: 

_ r+GMln(r-GM)2 - r-1M, GM2 =Q2 

{ 

r + r:�r_ lnlr-r+I -r;!r_ lnlr -r-1, GM2 > Q2 

r. -
r + GMln (r2 -2GMr + GQ2) + GQL2

a2M2 

x arctan ( GQ2-=_cg:J M2) , G M2 
< Q2 

(2.26) 

The Eddington-Finkelstein coordinates in Reissner-Nordstrom spacetime are 
U, r or V, r, where 

U=t-r. , 

V=t+r., 

and then the corresponding Kruskal coordinates are 

u = 

V = 

1 [ (r + - r _ ) ( 
2 

exp 
4rt V + exp 

1 [ (r + - r _ ) ( 
2 

exp 
4
rt V -exp 

Finally, we define the coordinates 'I/; and ( such that 

1 
V + U tan 2 ( 'Ip 

+ 01 
v -u = tan 

2( 'I/; 
-

0 

(2.27) 
(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

where -1r < 'If; -( < 'I/;+ ( < 1r. The Penrose diagram of the maximally 
extended Reissner-Nordstrom spacetime, for GM2 > Q2 , GM2 = Q2 and 
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Figure 2.7: The Carter-Penrose diagrams of the maximal Reissner­
Nordstrom spacetime (GM2 > Q2 

, GM2 = Q2 and GM2 < Q2),
showing the infinities and the singularities. The coordinates 0 and <p have
been suppressed. Regions I are asymptotically flat. The only boundaries
constitute the singularities r = 0, and they are in regions III. Note that the
singularities are now timelike in contrast to the Schwarzschild spacetime. 

GM2 < Q2 are shown in Fig. 2.7. Now that the singularities r = 0 are
timelike it is possible to avoid ending up in a singularity and to travel to
other universes through the "wormholes" in Reissner-Nordstrom spacetime.
However, it seems that one is not able to get back to our "old" universe.
Perhaps one should not be concerned about this, because there is no known
process in which Reissner-Nordstrom black holes could be produced. 

2.4 Kerr-Newman Black Hole 

The most realistic black ho!P. is, in thP. BoyP.r-Lindquist coordinates [51],
described by the Kerr solution [7] ( G = 1) 

ds
2 = ( 6. - a; sin

2 0) d
t2 + 2a sin2 0(r� + a2 - 6.) 

d
t

d<p

- (r2 + a2)2 - 6.a2 sin2 0 
sin2 0d,1..2 - E_dr

2 - "E,d02 

"E, '+' 6. , (2.33)
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where E = r2 + a2 cos2 0 and .6. = r2 + a2 - 2Mr. It describes an asymp­
totically flat , axially symmetric geometry for rotating black hole, and it has 
two parameters M and a := J / M which are, respectively, the mass and the 
angular momentum J per mass of the system. The Kerr solution is the spe­
cial case of an electrically charged Kerr solution known as the Kerr-Newman 
solution [8]. These charged and rotating black holes have three parameters 
M, a and Q such that the Kerr-Newman metric and the components of the 
electrostatic potential are 

ds2 
= 

Ao = 

( 
.6. - a; sin2 0

) dt2 + 2asin2 0 (r� + a2 
-

b.) 
dtdcp 

- (r2 + a2)2 - b.a2 sin2 0
sin2 0d,1,2 - E_dr2 - Ed02 

E ..,, b.
, (2.34) 

Qr 
A 

_ Qa sin2 0r 
(2.35) -I:' 3 - E ' 

where E = r2 + a2 cos2 0 and b.= r2 + a2 + Q2 
- 2Mr. The Kerr-Newman 

solutions are the only exact asymptotically flat stationary and axially sym­
metric vacuum solutions to Einstein's field equations. When Q = 0 in 
Eq. (2.34), we have the neutral Kerr metric (2.33), and when a = 0, we 
have the Reissner-Nordstrom solution (2.21). When a= Q = 0, we recover 
the Schwarzschild solution (2.3). Hence, stationary black hole spacetime 
solutions are included in the Kerr-Newman solution. 

2.4.1 Geodesic Equation in Kerr-Newman Spacetime 

So far we have considered worldlines of various freely falling observers only 
qualitatively. Now, we are able to investigate the physically relevant, i.e., 
lightlike and timelike geodesics in every black hole spacetime at one blow as 
we know that all stationary black holes are included in the Kerr-Newman 
solution. The geodesic equation for a free particle in any spacetime, when 
the coordinates xµ satisfy the constraint 

(2.36) 

where 8 = 1 corresponds to timelike and 8 = 0 corresponds to lightlike 
geodesics, and with the line element ds2 

= 9
µ
vdxµdxv, can be derived from 

the Lagrangian for the particle in spacetime: 

(2.37) 

where r is an affine parameter of the particle along the geodesics. Espe­
cially, for the Kerr-Newman spacetime at the equatorial plane 0 = 1r /2, the 
Lagrangian (2.37) has the form 

1 b. - a2 .
2 a(r2 + a2 - b.) . - 1 (r2 + a2)2 - ½b.a2 -

2 
1 r2 .2 LKN = ---t + -----tqi - -----�-qi - --r 2 r2 r2 2 r2 2 b. ' 

(2.38) 
where, for example, i = dt/dr. By defining the momenta canonically conju­
gate to the configuration coordinates in the usual manner, we find that the 
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corresponding momenta conjugate to t, r and if> are 

&L 6. - a2 . a(r 2 + a2 - 6.) .
Pt = -;7 = --

2 
-t + 

2 
if> , (2.39) ut r r 

&L r 2
. 

Pr 
or 

= -

6. r , (2.40) 

&L (r 2 + a2)2 - 6.a2 • a(r 2 + a2 - 6.) . 
P,p = -. = -

2 
if>+ 

2 
t. (2.41)

&if> r r 

It is easy to see that 

Pt =

P,p

&L = 0
at 

' 

&L 
&if> 

=0, (2.42) 

and therefore Pt and p,p are constants of motion. Thus, let us denote these 
constants as 

( 2M Q2 ) . 
(2aM Q2a) . R* 

Pt = l - - + - t + - - - if>=: ---;=== , (2.43)r r 2 r r 2 

J1 + 
R*2 

(2aM Q2a) . [ 2 2 2a2 M Q2a2 ] . 
-

r
- - --;:z t - (r + a ) + -r 

- - -
r
- if>=: P, {2.44)

where we have introduced new real-valued parameters R* and P,. We also 
have 

and therefore the Hamiltonian 

r2 

Pr = -
6.

r, 

H =pit+ Pri- + P,p� - L 

(2.45) 

(2.46) 

of the free particle in the Kerr-Newman spacetime at the equatorial plane 
can be shown to coincide with the Lagrangian L: 

H=L. (2.47) 

When the constraint (2.36) is satisfied, the Hamiltonian (2.46) is also a 
constant : 

1 H = 2 
or O. (2.48) 

When the parameters R* and P, are substituted into the Hamiltonian (2.46), 
we get 

R* z 
2H = --:===i - :_i-2 

+ f� 
J1 +R•2 6. 

and, moreover, when� and i are expressed in terms of R* and P, as 

i = 

if> 

!._ (r4 + 2r 2 a2 - a2 (6. - a2) R* 
6. r2 J1+R•2 

_ a(r 2 + a2 
- 6.) P,) r2 , 

!._ (
a(r 2 + a2 - 6.) R* _ 6. - a2 

P,) 6. r 2 J l + R*2 r 2 
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then (2.49) becomes 

2H=8 =

(2.52) 

When we set£= a �, Eq. (2.52) gives the radial equation for geodesics 
y l+R•2 

of particles in the Kerr-Newman spacetime that plays the same role as the ra-
dial geodesics in the Schwarzschild geometry and in the Reissner-Nordstrom 
spacetime: 

(2.53) 

If we further restrict ourselves to lightlike particles only, Eq. (2.53) and 
Eqs. (2.50) and (2.51) reduce to 

,;, 

i = 

4> 

R*± , 
Vl + R*2 

r2 + a2 R*
/J,. J1 + R•2· '

a R* 

/J.. J1 +R•2 

(2.54) 

(2.55) 

(2.56) 

The radial coordinate behaves nicely with respect to the affine parameter, 
but the time and the azimuthal coordinate do not cross the horizon contin­
uously. To see this, let us obtain the equations for these coordinates: 

dt r2 + a2 

±--
dr /J,. 
drp 

± /J,. . dr 

The solution to Eq. (2.57) is given by 

(2.57) 

(2.58) 

(2.59) 

where r ± = M ± J M2 - a2 - Q2 , and the solution for Eq. (2.58) is given 
by 

a a ±rp= ---lnjr-r+I----lnjr-r_j.
r+-r- r+-r-

(2.60) 

As one can see, these solutions clearly display the singular behaviour oft and

</;, as the particle approaches the points r + and r _. This character of the t­
coordinate was already qualitatively discussed in the Schwarzschild and the 
Reissner-Nordstrom spacetimes, where the points r + and r _ are defined to 
correspond to the horizons of the Schwarzschild and the Reissner-Nordstrom 
black holes (see Fig. 2.8), respectively. 
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Ingoing light 

.._ _____ .._ _____ ......, _____ ,. 

r
=

r r-r .. 

Figure 2.8: A path of a radial light ray is shown in the ill-behaved Boyer­
Lindquist coordinates, when the angular part is supressed. This figure es­
pecially demonstrates the behaviour of t-coordinate. A similar figure could 
be drawn for </>-coordinate also. 

2.4.2 Coordinate Singularities and Horizons 

The coordinate singularities of the Kerr-Newman spacetime in the Boyer­
Lindquist coordinates lie at the points r = r _ and r = r + (see Fig. 2.8), and 
they satisfy the equation !::,. = 0. Therefore, the Kerr-Newman spacetime 
has, like the Reissner-Nordstrom spacetime, two, one or zero unphysical 
coordinate singularities depending on whether the expression M2 

- a2 
- Q2 

is positive, zero or negative. These singularities can be removed by an 
appropriate coordinate transformation (27]. However, we shall not perform 
the transformation. The surfaces r = r _ and r = r + in the Kerr-Newman 
spacetime have a similar role the surfaces r ± = M2 ± J M2 

- Q2 have in 
the Reissner-Nordstrom spacetime. 

The Kerr-Newman black hole is situated inside the region r < r +, the 
surface r = r + being known as the exterior horizon or the event horizon 
of the Kerr-Newman black hole. The surface r = r _ is called the interior
horizon of the Kerr-Newman black hole. These conclusions can be achieved 
by the same reasoning we used in the Reissner-Nordstrom spacetime and by 
looking at Fig. 2.8. 

The true singularity is at the point where I: = 0. Hence, we find that 
the Kerr-Newman black hole singularity lies at the point where r = 0 and 
0 = -rr /2. In fact, it is possible to interpret the singularity r = 0 and 
0 = -rr /2 as a ring singularity, with the topology S1 x lit The interpretation 
of a ring singularity arises naturally form the Kerr-Newman metric (2.34) 
written in the Kerr-Schild coordinates (52]. However, we shall not pP.rform 
this transformation (the reader may look for the details in Ref. [29]). 

The area of the two-dimensional event horizon of the Kerr-Newman black 
hole is 

A= J ✓g22g33dx2dx3 
= 4-rr (r! + a2) = 16-rrM;� , (2.61)

r=r+ 
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where 
2 1 ( 2 2) M;r := 

4 
T+ + a (2.62) 

is the so-called irreducible mass of the black hole. The expression (2.61) for 
the area of the the event horizon of the Kerr-Newman black hole reduces to 
the area of the Schwarzschild black hole event horizon when Q = a = 0, and 
to the area of the Reissner-Nordstrom black hole event horizon when a= 0. 
The irreducible mass describes the minimum value of the black hole mass 
when the values of M, Q and a are changed in a process where Q and a are 
to be removed such that the surface area A is increased in the process until 
all charge and angular momentum have been removed. 

It is again important to note that the Kerr-Newman spacetime is not 
static in the intermediate region r _ < r < r + but spacelike slices have 
there certain time evolution. This dynamics is essential to our quantum­
mechanical model of the Kerr-Newman black hole, which will be discussed 
in Chapter 5. 

2.4.3 The Ergosphere 

The Kerr-Newman spacetime has a very interesting region - called the er-

9osphere - that the spherically symmetric spacetimes do not have. In spher­
ically symmetric spacetimes 900 = 0 and 9n ---+ ±oo at the event horizon, 
whereas in the Kerr-Newman spacetime 900 = 0 when 

D. - a2 sin2 0
goo = I: 

= 0 <=> r = rs = M + J M2 - Q2 - a2 cos2 0 , (2.63)

which is clearly different from r = T±- If O < 0 < 1r then rs > r + and 
when 0 = 0 or 0 = 1r then rs = T +· The region r + < r < rs is called the 
ergosphere. The ergosphere is a region exterior to a rotating black hole, and 
moreover, we note that goo > 0, and therefore t is a spacelike coordinate 
inside the ergosphere. Hence, every timelike observer unavoidably has an­
gular momentum inside the ergosphere. However, it is possible to construct 
frames of reference with zero angular momentum. Observers that move with 
these coordinates are called the zero angular momentum observers (ZAMO), 
and they can be constructed far from and inside the rotating black holes. 
One such a coordinate system has been constructed in Ref. [16]. 

In 1969 R. Penrose proposed that energy could be extracted from a 
rotating black hole [42]. The ergosphere has a crucial role in this process. It 
is possible to consider a purely classical wave analogue of Penrose's energy­
extraction process, and in that case the phenomenon is known as super-­

radiance [53]. The super-radiance phenomenon has its own analogue in the 
field of the black hole quantum mechanics. We shall discuss quantum black­
holes in Chapter 4. 

2.4.4 Carter-Penrose Diagram of Kerr-Newman Spacetime 

The global properties of the Reissner-Nordsrtrom black hole and the Kerr 
and the Kerr-Newman black holes are very similar to each other except that 
the ring singularity of the Kerr-Newman black hole brings along new al­
lowed regions when we consider the maximal extension of the Kerr-Newman 
spacetime. In fact, it is possible to allow for the radial coordinate r to 
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have negative values through the interior of the ring singularity. This has 
been done, for instance, in [27]. Figure 2.9 shows the conformal structure 
of the maximal Kerr-Newman geometry, with negative values of r. As one 
can see, the "other" side of the singularity is an asymptotically flat region. 
However, the maximal geometry of Kerr-Newman spacetime possesses one 
severe drawback: It allows closed timelike curves, which break the global 
hyperbolicity of spacetime. 

i.' 

Figure 2.9: The Carter-Penrose diagram of the maximal Kerr-Newman 
spacetime. The regions I represent the asymptotically flat regions where 
r > r +, and the regions III include the ring singularity (-oo < r < r _ ). 
The regions II (r _ < r < r +) possess dynamics. 

2.5 Stationary Black Holes and Black Hole Me­

chanics 

If the Cosmic Censorship Conjecture holds, then regardless of the exact pro­
cess of the complete gravitational collapse , a black hole in classical vacuum 
produced by the gravitational collapse is expected eventually to reach an 
equilibrium with its surroundings [54] and therefore the spacetime geometry 
around the black hole finally becomes stationary. Stationary black holes are 
either static with zero angular momentum, or they are axially symmetric, 
or they are both [27]. A stationary spacetime is, at least in some frame 
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of reference, time independent but it fails to be time symmetric. In other 
words, in a stationary spacetime the components of the metric tensor do 
not depend on the time coordinate and the line element is not symmetric 
under time reversal t --, -t. In contrast, a spacetime is said to be static 

if it is stationary and time symmetric. The axial symmetry of a black hole, 
loosely speaking, means that the black hole spacetime is invariant with re­
spect to the axis of rotation. For example, the Schwarzschild spacetime is 
static and the Kerr-Newman spacetime is stationary and axially symmet­
ric. In particular, for a stationary black hole axial symmetry is a necessary 
property. 

In the middle of the 1970's J. A. Wheeler conjectured that a stationary 
"black hole has no hair" [55]. This metaphorical conjecture is equivalent 
to the following exact statement: When external gravitational and electro­
magnetic fields of a collapsing mass distribution finally reach an equilibrium, 
the resulting black hole geometry is uniquely described by three parameters: 
mass M, angular momentum J and electric charge Q. Wheeler's "no hair" 
theorem has been proved in a series of even stronger results of the so-called 
uniqueness theorems of black holes [56]. The remarkable feature of the "no 
hair" theorem is that in the process of the gravitational collapse external 
matter fields "forget" all the other properties of matter except the mass, the 
electric charge and the angular momentum. When an outside observer tries 
to distinguish two black holes from each other, the only properties the ob­
server has at his disposal are masses, electric charges and angular momenta 
of the two black holes. Hence, any two black holes with the sa111e mass, 
angular momentum and electric charge are from the point of view of an ex­
ternal observer exactly identical. This observation does not depend on the 
process of the gravitational collapse at all. On the other hand, when matter 
falls into a black hole, only the mass, angular momentum and electric charge 
of the black hole change. The proofs of the uniqueness theorems are out of 
the scope of this thesis. However, the uniqueness theorems play a central 
role in our quantum-mechanical description of black holes, and therefore we 
shall briefly state their essential physical content. 

One of the uniqueness theorems is known as Birkhoff 's theorem (47]. 
This theorem says that any spherically symmetric vacuum solution is static 
and it agrees with the Schwarzschild spacetime. Birkhoff's theorem can be 
generalized to cover the Reissner-Nordstrom spacetime by considering the 
static solutions to the Einstein-Maxwell equations (2.18) and (2.19), and by 
showing that they reduce to the Reissner-Nordstrom solution [32]. Espe­
cially, Birkhoff's theorem guarantees that the Schwarzschild geometry is the 
exact exterior geometry that agrees with the interior solution for any spher­
ically symmetric star. Unfortunately, being static does not imply spherical 
symmetry. However, according to Israel's theorem [32] an asymptotically 
flat, static and vacuum spacetime geometry exterior to a mass distribution 
is necessarily Schwarzschild if the spacetime geometry is non-singular every­
where outside and on the boundary of the Schwarzschild black hole. 

Rotating black holes are not static but stationary and axisymmetric. 
According to the Carter-Robinson theorem [57] an asymptotically flat, sta­
tionary and axisymmetric vacuum black hole spacetime that is non-singular 
on and outside an event horizon, is the Kerr spacetime characterized by 
two parameters M and J. This theorem can be stated and proven for the 
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electrically charged Kerr black hole also [56] thus a stationary vacuum final 
state of any black hole formed in a gravitational collapse must always be a 
Kerr-Newman black hole which is described by mass M, electric charge Q 

and angular momentum J. 
An analogous lesson about the moral of the uniqueness theorems we 

have already learnt in thermodynamics of ordinary matter: After a thermo­
dynamical system of ordinary matter reaches an equilibrium with its sur­
roundings, the system is completely described by few macroscopical quan­
tities i.e. by its total energy, temperature etc. In thermodynamics one has 
managed to formulate the four laws of thermodynamics. Similarly a station­
ary black hole spacetime is in equilibrium with its surroundings, and because 
of that they are described by only a few parameters. Now, it would not be 
surprising if there were laws similar to the laws of thermodynamics for sta­
tionary black holes as well. Indeed, in the beginning of the 70's Hawking [58] 
found the so-called area law of black holes which is similar to the second 
law of thermodynamics. A bit later Bardeen, Carter and Hawking [59] de­
veloped systematically three other laws of black hole physics. These four 
laws are also called the laws of black hole mechanics. Their importance to 
the evolution of black hole physics at the quantum-mechanical level cannot 
be overemphasized. We shall return to the quantum aspects of black holes 
later in Chapter 4. In the following subsections we formulate the black hole 
laws in manner analogous to the laws of thermodynamics and discuss their 
effects. 

2.5.1 Zeroth Law 

We first introduce the concept of surface gravity which plays a major role in 
the zeroth law of black hole mechanics. The surface gravity 

(2.64) 

describes the limiting value of the force that must that be exerted at infinity 
to hold a unit test mass in place. For rotating holes, a test mass cannot be 
hold in place at the horizon with respect to infinity, but r., is anyway called 
the surface gravity. 

The zeroth law of black hole physics: 

r., is constant over the future event horizon of a stationary black hole. 

{2.65) 
This law resembles the zeroth law of thermodynamics, which states that the 
temperature of a whole system in thermal equilibrium is constant. Therefore 
the zeroth law hints that the temperature of a stationary black hole should 
be proportional to r.,. 

2.5.2 First Law 

The first law of black hole physics: 

K, 

8M = 

8
71" 8A + QH8J + 4>Hr5Q , {2.66) 
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where M is the black hole mass, A is the area of the future event horizon, 
J = aM is the angular momentum, nH := dcp/dt = a/(r! +a2) is the angular 
velocity of the event horizon and <I>H = Qr+/ (r! +a2) is the electric potential 
on the horizon. This is closely analogous to the first law of thermodynamics 
which states that 8E = T8S-P8V +µ8N. The remarkable thing is that the 
term 8A in black hole physics has a similar role as 8S has in thermodynamics. 
Moreover, "', again, plays Lhe role of temperature of a black hole. These 
analogues are further complemented by the second and third law. 

2.5.3 Second Law 

The second law of black hole physics - the so-called area law: 

If the Cosmic Censorship hypothesis holds6 then 

(2.67) 

in any process. 

This law is closely analogous to the second law of thermodynamics: 8S 2: 0. 
Again, the area of the event horizon is related to the entropy. 

The area theorem has some interesting consequences. First, the hori­
zon area A can be expressed in terms of the irreducible mass (2.62) as in 
Eq. (2.61). Therefore a special case of the area law is 

(2.68) 

Eq. (2.68) restricts, for example, the amount of energy that can be extracted 
from a black hole by means of the Penrose process. Secondly, the amount of 
energy radiated in black hole collisions is limited by the area theorem, and it 
can be shown that about 29% of the original mass is allowed to be radiated 
away. The third interesting consequence is that black holes cannot bifurcate. 
It is easy to show that bifurcation of black holes leads to an inconsistency 
between the area law and the energy conservation. 

2.5.4 Third Law 

The third law of black hole physics: 

1,, = 0 cannot be reached. (2.69) 

This is analogous to the third law of thermodynamics which states that 
T = 0 cannot be reached. 

As the surface gravity 1,, is zero for extreme black holes, it follows from 
the third law of black hole thermodynamics that nonextreme black hole 
cannot become extreme via any physical process. This is very interesting 
from our point of view [14, 16). 

Is the analogue between thermodynamics and black hole physics merely 
formal without any physical relevance? Does a black hole have a temperature 
and an entropy? These questions can be properly answered when quantum 

6 Actually, we should also assume that the stress-energy tensor T
µv satisfies a certain

reasonable energy condition. 
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mechanics is taken into account in Chapter 4. However, parallelisms be­
tween the black hole area law and the second law of thermodynamics made 
J. D. Bekenstein in 1973 to suggest that black holes have entropy SBH which
is proportional to its event horizon area A [19]:

(2.70) 

or in SI-units 

(2.71) 

where I a real number of the order of unity. As one would expect, at that 
time this was universally considered nothing but a speculation. 
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Chapter 3 

Hamiltonian Dynamics of 

Primordial Black Hole 

Spacetimes 

3.1 Introduction 

From ordinary quantum mechanics we know that before we can go from a
classical theory to the corresponding canonical quantum theory the classical
theory must be cast into the Hamiltonian form. When general relativity is 
cast into the Hamiltonian form, there are two possible routes to canonical
quantization: One may either replace the classical constraints by their op­
erator counterparts, or try to solve the constraints first in the classical level,
identify the physical degrees of freedom, and then quantize the system in
the resulting physical phase space. The former of these methods is known as
the Dirac constraint quantization, whereas the latter is known as the reduced

phase space quantization. Chapters 5 and 6 are devoted to reduced phase
space quantization of stationary black hole spacetimes. In this chapter we
investigate the classical Hamiltonian dynamics of such spacetimes. 

At first sight, it might seem unreasonable to investigate dynamics of
stationary spacetimes but even stationary black hole spacetimes have dy­

namics. More precisely, even stationary black hole spacetimes have a region
which does not admit a timelike Killing vector field [60]. This means that
in a certain spacetime region the black hole spacetime geometry evolves in
time no matter how we choose the time coordinate. It is this time evolution
of black hole spacetime geometry on which we focus our attention. 

To see what this means consider, as an example, the simplest possible
black hole, the Schwarzschild black hole. In the curvature coordinates T

and R it has the spacetime metric 

( 2M) dR2 

ds2 
= - 1 - R dT2 

+ 1 _ 2t/_ + R2 (d02 
+ sin2 0d</>2) (3.1)

One observes that when R < 2M, the coordinate R becomes timelike, 
and because spacetime geometry inside the event horizon depends on R,
it evolves in time. In that region R describes the radius of the wormhole
throat of the black hole. In a more precise manner the fact that space­
time inside the event horizon really has dynamics in its geometry can be
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seen if one considers the conformal diagram of Kruskal spacetime: When 
R < 2M one cannot move in any timelike direction without changing R,

and therefore the geometry of the spacelike hypersurfaces of spacetime. In 
Reissner-Nordstrom and Kerr-Newman black hole spacetimes the dynami­
cal region lies in the intermediate region between the outer and the inner 
horizons of the hole. 

In this chapter we shall, in detail, perform the so-called Hamiltonian

reduction of the phase space of spherically symmetric electrovacuum space­
times. We shall also state and give some justification to the corresponding­
although still unproven -results for the axially symmetric electrovacuum 
spacetimes containing a black hole. The Hamiltonian formulation of spher­
ically symmetric electrovacuum spaetimes is based on the results found by 
Louko and Winters-Hilt [20), and by Makela and Repo [14 ]. The results con­
cerning the Hamiltonian formulation of axially symmetric spacetimes can be 
found in the paper written by Makela et al. [1 6]. The Hamiltonian reduction 
of the spherically symmetric spacetime is performed in Ref. [61]. 

3.2 Hamiltonian Action of Einstein-Maxwell The­

ory 

The Einstein-Maxwell theory is a theory of an electromagnetic field interact­
ing with a gravitational field. In this section we shall develop the Hamilto­
nian formulation of such a theory in all details, paying particular attention 
to the boundary terms appearing in asymptotically flat spacetimes as a con­
sequence of the requirement of internal consistency of the theory. 

The action of the Einstein-Maxwell theory can be written, in general, as 

S = -1-/ d4x,,,!="g (R - FµvFµv) + (boundary terms) . (3.2) 
167r 

M 

In this equation the integration is performed over the whole four-dimensional 
spacetime M. Here g is the determinant of the spacetime metric 9µ,v, and 

(3.3) 

is the electromagnetic field tensor. Aµ is the electromagnetic four-vector 
potential. R is the four-dimensional scalar curvature. 

As it is well known, we can write the action (3.2) as 

s = srav 

+ sfm 
+ srg.;_v 

+ SaE

where Sfav is given by Eq. (1.24) and 

sem ·=-1-fdt { d3x r,:;qNF Fµv . E . lfrlr jE V 'i 
µv ' 

(3.4) 

(3.5) 

si;r and SaE are the boundary terms associated with spacelike asymptotic 
infinities of asymptotically flat spacetimes. In Eqs. (1.24) and (3.5) the 
spatial integration is performed over the whole spacelike hypersurface I: for 
spacetime where the time t is constant. 

The properties of the actions S!rav and Sf.;_v are well known. Consider 
now the action Sfrn of Eq. (3.5). To begin with, consider first the case where 
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the spacetime metric can be written as in Eq. (1.5). In other words, we have 
chosen Gaussian normal coordinates, where the lapse N is unity, and the 
shift N° vanishes identically. In these coordinates we can write 

(3.6) 

where 

.c,em := 
l
�

7r 
../q { 2q

ab [.Aa.Ab - 2Aa(8bAo) + (8aAo)(8bAo)] - (3)pab
(3)p

ab }
(3.7) 

is the electromagnetic Lagrangian in curved spacetime. The dot means a 
time derivative, and we have defined 

(3)pab OaAb - ObAa , 
(3)

p
ab .- q

am
q

bn (3)pmn .

The canonical momentum conjugate to Aa is 

7r
a := a.c,�

m = ../q 
q
as (.As - 8sAo) ·= .Jq qas Fo s 

8Aa 41r 41r 

This relation can be inverted, and we have 

where we have defined 

. 41r 
Ab = .,/q 1Tb + 8bAo , 

In terms of 1ra we can write the electromagnetic Lagrangian as 

Hence, we get 

where 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

1iem ·
= 

21r 
q 

1fa
1f

b + �(3}F. (3)pab (3.15)· .,/q ab 167r 
ab · 

In Eq. (3.14) we have dropped the term ½ J dt J
r; 

d3x80(Ao1ra) which can be 
transformed into a boundary term. 

We now include, in a manner similar to the one used in Sec. 1.4, the 
lapse and the shift in our formulation. To include the lapse we replace dt

by dt' = N dt and, because Ao transforms into 

8xµ 
A� = 

8x'O Aµ' (3.16) 

we find that for a general lapse but for a vanishing shift the electromagnetic 
action is 

(3.17) 
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As we replace dxa by dx'a 
= dxa + Nadt we include a non-vanishing shift 

vector, from which it follows that Ao is replaced by 

A� = Ao - N5 As (3.18) 

Moreover, at the hypersurface where x0 
= t + dt, Aa is replaced by 

Hence, we find that Aa must be replaced by 

(3.20) 

Substituting Eqs. (3.18) and (3.20) into Eq. (3.17) we obtain an expression 
for the electromagnetic action in the presence of a non-vanishing shift: 

(3.21) 

where we have defined 
(3.22) 

and we have ignored the term J dt J
-r; 

d3x8a(A5N51ra). 
We are now ready to write down the whole Einstein-Maxwell action 

without boundary terms. The gravitational part Sfav is a mere ADM ac­
tion (1.44). Putting the actions (3.21) and (1.44) together we get the 
Einstein-Maxwell action 

(3.23) 

where 
'H. := 11,grav + 1{.em (3.24) 

is the Hamiltonian constraint, 

(3.25) 

is the diffeomorphism constraint, and 

(3.26) 

is the Gaussian constraint. 
We shall consider asymptotically flat spacetimes. In those kind of space­

times we must include the boundary terms (1.60), (1.68) and (1.72) related 
to pure gravity. We still have to include boundary terms related to electro­
magnetism. First of all, we observe that variation of the action with respect 
to the momentum 1ra conjugate to Aa brings along a term 

which must be cancelled at infinity. Hence, we need an electromagnetic 
boundary term, 

Sa'£:= - / dtAt(t)Q(t) , 
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where 
(3.28) 

is the electric potential at infinity, and 

Q := - lim f 1radSa 

r-+oo 

(3.29) 

is the electric charge of spacetime. 
We are prepared to write down the whole Einstein- Maxwell action, with 

appropriate boundary terms. We get 

S = f dt h d3x ( 1fab<J.ab + 1fa .A.a - Nti - Natia - Ao9)

- f dt[N+(t)EADM(t) + N+(t)P:DM(t) + wb LtDM(t)

+At(t)Q(t)] , (3.30) 

where EADM(t), P,;\DM(t) and LtDM(t) are given by Eqs. (1.60), (1.68) 
and (1. 72), respectively. Because of that, the total Hamiltonian of the 
Einstein-Maxwell theory is 

H = h d3x (Nti + N"tis + Ao9) + N+(t)EADM(t) 

+N+(t)P:DM(t) + wb LtDM(t) + At(t)Q(t) (3.31) 

Hence, one is left with the last four terms only when the classical constrainsts 

1-i = 0 , (3.32) 
1-is 0 , (3.33) 
g 0 (3.34) 

are satisfied. 

3.3 Spherically Symmetric Hamiltonian Action of 

Einstein-Maxwell Theory 

In this section we present a classical Hamiltonian formulation of spherically 
symmetric electrovacuum spacetimes with boundary conditions of Ref. [14]. 
The classical solutions to Einstein's field equations representing these kinds 
of spacetimes are uniquely characterized by the mass M and the electric 
charge Q. The spacetime geometry is described by the Reissner-Nordstrom 
line element which takes, in the curvature coordinates T, R, the form 

2 ( 2G M Q ) 2 ( 2G M Q )-i 2 2 2 ds = 1 - -- + - dT - 1 - -- + - dR - R dn 
R R2 R R2 

(3.35) 
The spacelike hypersurfaces of constant time t in the spacetime foliation ex­
tend from left to right asymptotic infinities in the conformal diagram of the 
maximally extended Reissner-Nordstrom spacetime (see Fig. 3.1). The max-
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Figure 3.1: The conformal diagram of Reissner-Nordstrom spacetime. Our 
spacelike hypersurfaces t = constant begin their evolution at the past r = r _ 
hypersurface, then go through the bifurcation point [62], and finally end their 
evolution at the future r = r _ hypersurface. 

imally extended Reissner-Nordstrom spacetime has a periodic geometrical 
structure. We choose one such a period and let the spacelike hypersurface 
go through the interior regions of the hole in arbitrary ways. However, if 
we look at the conformal diagram in Fig. 3.1, we find that it is not possi­
ble to push these hypesurfaces beyond the inner horizons, where r = r _. 
Otherwise the hypersurface would necessarily fail to be spacelike. Hence 
our study of the Hamiltonian dynamics of Reissner-Nordstrom spacetimes 
must be restricted to include, in addition to the left and right exterior re­
gions of the hole, only such an interior region of the hole that lies between 
two successive r = r _ hypersurfaces in the conformal diagram. Our space­
like hypersurfaces t = canstant begin their evolution at the past r = r _ 
hypersurface, then go through the bifurcation point, and finally end their 
evolution at the future r = r _ hypersurface. The Hamiltonian formulation 
of Reissner-Nordstrom spacetimes was performed in Ref. [20]. However, the 
considerations of those authors were thermodynamically motivated and so 
they investigated the exterior regions of the hole, whereas our interest lies 
in the interior regions of the hole. Therefore our boundary conditions differ 
greatly from those given by authors Louko and Winters-Hilt, but as to most 
technical details the discussion goes exactly like in Ref. [20]. 

3.3.1 Lagrangian Formulation 

Our starting point is the general spherically symmetric ADM metric 

(3.36) 
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where dD.2 is the metric on the unit two-sphere, and the lapse N, the shift 
Nr, as well as the dynamical variables A and R of the spacetime geometry 
are assumed to be functions of the time coordinate t and the radial coor­
dinate r only. The electromagnetic four-potential is taken to be spherically 
symmetric such that its nonzero components are 

cp ) 

r, 
(3.37) 
(3.38) 

where cp and r are assumed to be functions of t and r only. The radial 
coordinate r takes all values from negative to positive infinity. The region, 
where r = -oo corresponds to the left-hand side, and the region, where 
r = oo corresponds to the right-hand side asymptotically infinite regions in 
the conformal diagram of Reissner-Nordstrom spacetime. We shall further 
assume both the spatial and the spacetime metric to be nondegenerate, and 
we take both functions A and R to be positive. 

The spatial part of the line element (3.36) leads via Eq. (1.8) to the 
three-dimensional curvature scalar 

R = -4A-2 R- 1 R" + 4A -3 R-1 A' R' - 2A-2 R-2 R'2 + 2R-2 (3.39)

The nonzero components of the extrinsic curvature tensor Kab with nonva­
nishing shift Nr are given by Eq. (1.52), and they are: 

Kn = -N-1 A[A- (ANr )'], (3.40) 

K22 -N-1 R [R- R'Nr ] (3.41) 

K33 = sin2 0K22. (3.42) 

Inserting the curvature scalar (3.39) and the nonzero components of the 
extrinsic curvature tensor into the ADM action (1.24) of pure gravity and 
integrating over the two-sphere we obtain (in natural units G = 1 = c) the 
gravitational action 

Sgrav [A R· N Nr] 
E ' ' ' 

= j dt i: dr [ - N-1 ( R(-A. + (AW)')(-R + R' Nr ) 

+½A(-R + R'Nr )2) + N( A-2 RR'A' - A-1 RR" - ½A-1 R'2 

+½A)] . (3.43) 

Inserting the components of the electromagnetic potential (3.37) and (3.38) 
in the electromagnetic Lagrangian (3.13) we obtain the electromagnetic ac­
tion 

sem [A R f· N Nr <I>]= N-1 A-1 R2 (I' - <I>')2 
E ' ' ' ' ' . 

Up to boundary terms, we thus get the action 

SE[A, R, r; N, NT, <I>] 

= J dt i: dr [ - N-1 R(-A. + (ANr )')(-R + R'Nr ) 
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+�N-l A(-R + R' Nr)2 + N- 1 A-1 R2("r' - <I>')2 
2 

+N ( A-2RR'A' - A- 1 RR" -�A-1 R'2 +�A)] (3.45) 

The Einstein-Maxwell equations can be derived by varying the action (3.45). 
The appropriate boundary terms shall be inserted after passing on to the 
Hamiltonian formulation. 

3.3.2 Hamiltonian Formulation 

The canonical momenta conjugate to metric variables A, R and f are 

PA 

0
:: = -N-1R(R-R'Nr) , 

PR = 
0
/:_ = -N-1 ( A(R - R' Nr) + R(A - (ANr)'))

Pr 
8�E = N-1 A-1 R2(f' - <I>') • 
or 

(3.46) 

(3.47) 

(3.48) 

The action (3.45) can be cast into the Hamiltonian action by the Legen­
dre dual transformation (63] 

SE[A, R, r, PA, PR, Pr; N, Nr ' �] 

= f dt 1_: dr (PAA+ PRR + Pr I' - N'H. - Nr'H.r - �Q) (3.49) 

where the Hamiltonian constraint 1-l = 0, the diffeomorphism constraint 1-lr =
0, and the Gauss constraint Q = 0 are obtained by varying the action (3.49) 
with respect to the lapse N, the shift Nr and the quantity �, so that the 
constraints equations are given by 

H. = -R-1 PRPA + �R-2 A(Pl_ + Pf) + A-1 RR" - A-2 RR' A' 2 

+�A-1R'2 
- �A= 0 

2 2
'

PRR' - AP11. - f Pf = 0
Q = -Pf = 0 . 

(3.50) 

(3.51) 
(3.52) 

It is convenient to define the quantity � in terms of the electric potential <I> 
such that 

(3.53) 

which is not a dynamical variable but the Lagrange multiplier associated 
with the Gauss constraint (3.52). Note that the diffeomorphism constraint 
(3.51) generates three-dimensional spatial diffeomorphisms in both the grav­
itational and electromagnetic parts of the formulation. 

The Hamiltonian equations of motion can be obtained by varying the 
action (3.49) with respect to the variables A,R,f,PA ,PR and Pr. The 
dynamical equations in the presence of the electromagnetic field are 

A = N(R-2 APA - R-l PR) + (Nr A)' 
R -NR-1PA + NrRt , 
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r 

P;... 

N AR-2 Pr + (NT)'+ <I>' , (3.56)
N [-R-2 (Pl + Pf) - (A- 1 R'/ + 1 + 3e-2 R2] 

-A-2 N' RR'+ NT p� , (3.57)

PR N [AR- 3 (Pl + Pf) - R-2 PAPR - (A- 1 R1

)
1 

+ 3C2 AR]

-(A-1 N' R)
1 + (NT PR)' , (3.58)

Pr NT Pf . (3.59)

3.3.3 Boundary Conditions 

Regge and Teitelboim (21] pointed out that in order to evaluate the appro­
priate boundary terms at the asymptotic infinities, it is essential to adopt
asymptotic falloff conditions for the canonical variables and the Lagrange
multipliers at infinity. The form of the falloff conditions depends on the
chosen spacetime and on the spacetime foliation. We shall adopt a class of 
falloff conditions that ensure every classical solution to the Einstein-Maxwell
theory to be asymptotically flat at asymptotic infinities. Therefore we shall
follow and partly modify the treatments of Kuchar (61], and of Louko and
Winters-Hilt [20]. 

Primordial electrovacuum black hole spacetimes are asymptotically flat
and we may choose a global coordinate system xa which is asymptotically
Cartesian on the spatial hypersurfaces t = constant. Therefore such a co­
ordinate system and the spherical coordinate system r, 0, if> are related by
the ordinary flat-space spherical coordinate transformation. In particular,
at spatial infinity the line element of asymptotically flat Reissner-Nordstrom
spacetime behaves like

2 ( 2M
) 2 ( xaxb ) a b ds ~ l - 7 dt - clab + 2M � dx dx (3.60)

At the asymptotic infinity the spatial metric qab and the conjugate momenta
1rab are required to fall off such that 

qab - clab ~ r-l ,7rab ~ r-2 
(3.61)
(3.62)

These general falloff conditions yield the falloff conditions of the canonical
variables. However, primordial black holes have left- and right-hand side
spatial asymptotic infinities, where r --+ ±oo. The conformal diagram of
Reissner-Nordstrom spacetime is symmetric with respect to the spacelike
coordinate r. Hence, the general behaviour of the spatial hypersurfaces at
both the asymptotic infinities is similar and the falloff conditions of the
canonical data at the right- and left-hand side of the hypersurfaces t =

constant may be easily adopted at one blow. At r--+ ±oo, we assume that
the canonical variables and the Lagrangian multipliers of the theory behave
such that 

A(t, r)
R(t, r)

PA(t,r)

1 + M±(t)lr1- 1 
+ 000 (1rl-l-<)

lrl + 000 (lrl-')
O(lrl-') ,

67

(3.63)
(3.64)
(3.65)



PR(t, r) = ooo(lrl-1-,) , {3.66) 
N(t, r) N±(t) + 000{1rl-') (3.67) 

Nr(t,r) 000{lrl-') , {3.68) 
r(t, r) ooo{lrl-1-,) {3.69) 

Pr(t,r) Q±(t) + 000(1rl-') {3.70) 
�(t, r) �±(t) + 000(1rl-') (3. 71) 

where M±(t) > 0 and N±(t) � 0 . In these equations, 0 < E :S: 1, and 
O{lrl-') denotes a term that falls off at infinity as lri-< and whose deriva­
tives with respect to lrl fall accordingly as lri-<-k, where k = l, 2, 3, .... 
These falloff conditions are consistent with the constraint equations and 
they are preserved by the dynamical equations of the theory. Thus the 
canonical action SE is well-defined. Of particular interest is the falloff con­
dition {3.68), which states that the shift vanishes at infinities. This means 
that our asymptotic coordinate systems are at rest with respect to the hole. 

3.3.4 Boundary Terms 

As we have previously seen, one must include in asymptotically flat space­
times certain boundary terms in order to make the variational principle 
consistent. Our particular interest are the boundary terms in spherically 
symmetric electrovacuum spacetimes. In this section we shall calculate these 
boundary terms by using the falloff conditions of the canonical data. 

There are no boundary contributions from the ADM linear and angular 
momentum boundary terms {1.68) and {1.72) since our asymptotic coor­
dinate systems at both infinities were chosen to be at rest with respect 
to the hole. The only nonzero boundary contributions correspond to the 
time translations and to the electromagnetic gauge transformations. These 
boundary terms, in the case of one spatial infinity, are given by Eqs. {1.63) 
and {3.27). Now we have two asymptotic infinities and because of that there 
are four boundary terms 

sr.;v 

= -I dt (N+(t)E+(t) + N_(t)E_(t)) , 

S'//£ = -J dt (At(t)Q+(t) -A0(t)Q-(t)) 

(3.72) 

{3. 73) 

where E+ and E_ are the ADM energies (1.60) at the spatial infinities. Note 
that when evaluating E_, the limit r--+ oo must be replaced by the limit 
r --+ -oo, and the integration is performed over the two-sphere S: at the 
left-hand side spatial infinity. One can see from the falloff conditions {3.63) 
and {3.64) that the boundary term sf.;,v takes the form 

{3.74) 

where M+{t) and M_(t) are the ADM energies of spherically symmetric 
electrovacuum spacetimes. At the asymptotic infinity we see that At =

<I>+ ~ � + and A0 = <I>_ ~ � _, and therefore the electromagnetic boundary 
term sir. becomes 

{3. 75) 
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The boundary term Sa,:. is a sum of the terms sr;v and SaE. Hence the 
total action is 

S"E.[A, R, r, PA, PR, Pr ; N, NT, <I>]

= / dt [: dr (hA + PRR + Pr I' - Ntl - Nrtlr - <I>Q)

-I dt(N+(t)M+(t) + N_(t)M-(t)

+<I>+(t)Q+(t) - <I>_(t)Q-(t)) . (3.76) 

It should be noted that one is not allowed to vary the action with respect 
to the functions N and <I> at infinities but these functions should be kept as 
prescribed functions of the time t. That is because varying the action with 
respect to N± would imply vanishing ADM mass -and hence flatness- of 
spacetime; varying action with respect to <I>±, in turn, would imply vanishing 
electric charge. 

3.3.5 Reconstructing Mass, Electric Charge and Time 

Our boundary conditions (3.63)-(3.71) for the spherically symmetric elec­
trovacuum spacetimes ensure that every classical solution is asymptotically 
flat. As it was mentioned in Sec. 2.3 the Reissner-Nordstrom spacetime is the 
unique spherically symmetric asymptotically flat solution to the Einstein­
Maxwell theory. The Reissner-Nordstrom solution is completely character­
ized by the parameters M and Q which are, respectively, the mass and 
the charge of Reissner-Nordstrom spacetime. It was found in Ref. [20] that 
these parameters can be read off from any small piece of the exterior region 
ofReissner-Nordstrom spacetime if the values of the phase space coordinates 
A,R,f,Pr,PR and Pr are known on a spacelike hypersurface embedded in 
such a region of the spacetime. We wish to recover from the canonical data 
the mass and the charge parameters of spacetime when the spatial hyper­
surfaces extend from the left- to the right-hand side asymptotic infinities. 
In Ref. [20] it was found how the information about the positions of the 
spacelike hypersurfaces have been embedded into the Reissner-Nordstrom 
spacetime can be read off from the canonical data at any point on the hy­
persurface. Even the information about electromagnetic gauge fixing can 
be read off from the phase space coordinates of the theory. In other words, 
we wish to show that it is possible to tell from the canonical data the mass 
and the charge of the black hole, the information about the choice of the 
electromagnetic gauge, and how the hypersurfaces t = constant have been
embedded in spacetime. 

Let us first consider the charge parameter. The Gauss constraint (3.52) 
and the dynamical equation (3.59) imply that Pr is independent of r and 
t. Because of that, it is remained unchanged under time reparametrizations
and spacelike diffeomorphisms. Equation (3.48), in turn, implies that Pr 

remains unchanged under the electromagnetic gauge transformation A
µ 

----+
A

µ + o
µ

(, where e is an arbitrary function of T and R. Moreover, it was 
shown in Ref. [20] that 

(3. 77) 
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Let us then consider the mass parameter. When the hypersurface folia­
tion 

T = T(t,r) , R = R(t,r) (3.78) 

is implemented in the formulation the mass function takes the expression [20] 

1 Pi 1 Pf 1 1 R(R')2M= --+--+-R----
2 R 2 R 2 2 A2 

(3.79) 

in the exterior region of the hole. 
Let us consider the embedding. In Ref. [20] it was found that 

(3.80) 

where 

(3.81) 

From Eq. (3.80) one can solve T as a function of r provided that one knows 
T for one value of r. Keeping t as a constant one can read off from that 
solution the position of the t = constant hypersurface of spacetime in the 
Reissner-Nordstri:im manifold. 

Let us finally consider the electromagnetic gauge. The usual electromag­
netic potential 

Ar=g_R (3.82) 

is a solution to Maxwell's equations that involves a specific fixing of the 
electromagnetic gauge. The general spherically symmetric solution can be 
written as 

Ar = 

AR = 

Q f) 
-+-(R EJT

f) 

EJR( 

Hence, the general solution expressed in the coordinates t and r is 

At = 2r+i R ,

Ar = g_T'+tR 
Comparing Eqs. (3.38), (3.77), (3.80) and (3.87) one finds that 

e = f + R-2p-l APAPr 

(3.83) 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

(3.88) 

If one knows the gauge function ( for one value of r, one can solve l for 
any r from Eq. (3.88). Hence, the information about the choice of the 
electromagnetic gauge is carried by the phase space coordinates of the theory. 

At first sight, there might seem to be a difficulty with the horizons 
R = T±, because it follows from Eqs. (3.77), (3.79) and (3.81) that

2M Q2 

F=l--+­
R R2 
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Hence, the quantities T' and t appear to have a singularity when R = r±. 
This problem has been considered in the case Q = 0 by Kuchai (61]. His 
conclusion was that one can nevertheless propagate at a well-determine rate 
through horizon one's knowledge of T by using Eq. (3.80). The very same 
arguments can be applied also when Q -=/- 0. Hence, the event horizon does 
not pose a problem for our knowledge of T and ( as functions of r.

3.3.6 Canonical Transformation 

The equations (3.77), (3.79), (3.80) and (3.81) were obtained by using 
Einstein's equations from the known form of the Reissner-Nordstrom so­
lution. Those equations therefore have a clear geometrical meaning only 
when the equations of motion are satisfied. Let us now forget for the mo­
ment the fact that M and Q are the mass and the charge parameters of 
the Reissner-Nordstri:im black hole and consider M and Q as functions of 
the phase space variables given by Eqs. (3.79) and (3.77), even when the 
equations of motions are not satisfied. It was shown in Ref. (20] that the 
function Q of Eq. (3.77) has vanishing Poisson brackets with the function 
M of Eq. (3.79) and the function -T' of Eq. (3.80). Moreover, it was shown 
that f is canonically conjugate to Q as well as that -T' is canonically con­
jugate to M, whereas t Poisson commutes with M and -T'. Therefore, 
M and Q may be considered as the new configuration coordinates, and the 
quantities -T' and -t may be taken to be the corresponding canonical mo­
menta. As in the Schwarzschild case (61], the momentum PR was modified 
also in Ref. [20] in order to have a canonical chart such that the canonical 
transformation [64) from the old to the new phase space becomes 

1 P'J.. 1 Pf 1 1 R(R')2 

M .- 2R + 2R + 2R-
2�

PM .- R-1F-1 APA 
R .- R ,

1 1 PR .- PR --R-1 APA --R- 1F-1 APA
2 2 

-R-1 A-2F- 1 ((APA)' (RR') - (APA) (RR')')
+R-1F-1 APA PfR-2 

, 

Q .- Pr , 

PQ .- -r- R-2F-1 APA Pr . 

(3.90) 

(3.91) 
(3.92) 

(3.9 3) 
(3.94) 
(3.95) 

This transformation was, indeed, shown in Ref. [20) to be canonical and dif­
ferentiable in the exterior region of the hole. But with our boundary condi­
tions the transformations really become singular when F = 0. In particular, 
F goes to zero at the horizons and, as a result, the canonical momenta be­
come infinite on the horizons. In other words, the new canonical chart must 
be used carefully. Outside the horizons the canonical transformation is well­
defined and differentiable. The inverse transformation is also well-defined 
and differentiable. 

The new falloff conditions for the new phase space variables at both 
asymptotic infinities are 

M(t, r) (3.96) 
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R(t, r) lrl + i!2p(t)lrl-2 
+ 000(1rr3

) (3.97) 
Q(t, r) Q+(t) + O(lrl-1

) (3.98) 
PM(t,r) ooo(lrl-6) (3.99) 
PR(t,r) ooo(lrl-4) (3.100) 
PQ(t, r) = ooo(lrl-2) (3.101) 

3.3.7 Hamiltonian Action and Constraints in the New Vari-

bles 

Using Eqs. (3.52), (3.77) and (3.79), and the expressions of Ref. [20] for the 
Hamiltonian and the diffeomorphism constraints H and Hr in the absence 
of the cosmological constant, one finds that the spatial derivatives of the 
mass and the charge functions M and Q can be written in terms of the 
constraints: 

M' = -A-1R'H - A-lR-1PAHr +
(A-1R-1rPr - R-1Pr)G ,

Q' = -G .

Hence, the constraint equations (3.50), (3.51) and (3.52) imply that 
M' = 0 
Q' = 0 . 

(3.102) 
(3.103) 

(3.104) 
(3.105) 

In other words, the mass and charge functions M and Q are constants with 
respect to r, and therefore we write 

M(t,r) 
Q(t, r) 

m(t) 
q(t) 

(3.106) 
(3.107) 

Moreover, it was noted in Ref. [20] that the expression for 11.r in the new 
variables must be 

11.r = PMM1 
+ PQQ1 

+ PRR1 (3.108) 
Eqs. (3.51), (3.104) and (3.105) therefore imply that 

PR =0 (3.109) 
Hence, the set of new constraints M' = 0, Q' = 0 and PR = 0 are equivalent, 
expect on the horizons, to the old set of constraints. 

The total action written in terms of the variables M, Q, R and their 
canonical momenta takes the form 

S[M, R, Q, PM, PR, PQ; N, Nr, �] 
= f dt 1_:00 dr (PMM + PQQ + PRR - N11. - Nr11.r - �G) 
-I dt (N+ M+ + N_M_ + �+Q+ - �-Q-) , (3.110) 

where the Hamiltonian, the diffeomorphism and the Gaussian constraints 
are functions of the new variables. It is also possible to write an action in 
terms of the new canonical varibles by redefining the Lagrange multipliers, 
but this procedure is not very illuminating. The results of such a procedure 
can be found in Ref. [20]. 

72 



3.3.8 Hamiltonian Reduction 

When the constraint equations are satisfied, the Hamiltonian action (3.110) 
takes the form 

S[m,q,Pm,Pq ;N-,N+,<I>-,'l>+J = J dt[pmrii+Pq tj-(N+ +N-)m-(<I>+ -<I>-)q], 
(3.111) 

where we have defined: 

Pm(t) 1_:00 dr PM(t, r) 

Pq(t) := 1_:00 dr PQ(t, r) 

(3.112) 

(3.113) 

The infinite-dimensional phase space is thus reduced to a phase space which 
is spanned by just four canonical coordinates. These canonical coordinates 
are the variables m and q - which can be identified as the mass M and 
the charge Q of the hole when Einstein's equations are satisfied - and the 
corresponding canonical momenta Pm and Pq -

The momenta Pm and Pq have an interesting interpretation: because we 
have defined PM := -T' and PQ := -t, we find that Pm is simply the 
difference in the Minkowski time T at the left and right infinities on the 
spacelike hypersurface t = constant. The momentum Pq, in turn, reveals 
the difference between the choices of the gauge function e at the asymptotic 
infinities of spacetime. 

One can read off from Eq. (3.111) the true reduced Hamiltonian of the 
Reissner-Nordstri:im hole in terms of the variables m and q:

The Hamiltonian equations of motion are therefore 

(3.114) 

(3.115) 

(3.116) 

(3.117) 

(3.118) 

As one can see from Eqs. (3.115) and (3.116), the mass m and the charge 
q are constants of motion of the system. This statement is in accordance 
with the result that m and q are equal to the mass M and the charge Q 
parameters of the Reissner-Nordstri:im black hole solution. 

Now, one could, of course, use the variables m and q and their canoni­
cal momenta as the phase space coordinates of the system, and construct a 
Hamiltonian quantum theory of the Reissner-Nordstri:im hole based on the 
use of these coordinates. There is, however, a very grave disadvantage with 
these coordinates: They describe the static aspects of the black hole space­
time only. Indeed, we saw in Eqs. (3.115) and (3.116) that the variables m
and q are constants of motion of the system. However, there is dynamics 
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in the Reissner-Nordstrom spacetime in the sense that in the region where 
r _ < R < r +, there is no timelike Killing vector field orthogonal to a space­
like hypersurface. Our next task is to find such phase space coordinates 
which describe the dynamics of spacetime in a natural manner. 

3.3.9 Hamiltonian Dynamics with Charge as an External Pa-

rameter 

The aim of all physical theories, at least in principle, is to be able to predict 
the possible outcomes of measurements. When we talk about measurements, 
however, we need a reference to an observer performing these measurements: 
the possible outcomes of measurements are the possible outcomes of mea­
surements as such as they can be measured, in principle, by a certain ob­
server. The properties of the observer, in turn, motivate the structure of 
the theory. An interesting point of view to the interpretation of quantum 
mechanics was suggested by Rovelli [65]. His idea was, in rough terms, that 
one is not justified to talk about any absolute quantum state of a physical 
system. Instead, one should talk about a quantum state relative to some 
observer. This idea has given some inspiration to the point of view adopted 
in this thesis. 

In this section we choose the observer in a most simple manner: our 
observer is at the right hand side asymptotic infinity in the conformal dia­
gram, at rest with respect to the Reissner-Nordstrom hole. Our aim is to 
construct a quantum theory of the Reissner-Nordstrom spacetime from the 
point of view of such an observer. To this end, we choose the lapse functions 
N±(t) at asymptotic infinities so that 

N+(t) = 1 
N_(t) = 0 

(3.119) 

(3.120) 

In other words, we have chosen the time coordinate at the right infinity to 
be the proper time of our observer, and we have "frozen" the time evolution 
at the left infinity. This can be considered justified on grounds that our 
observer can make observations at just one infinity. 

The next task is to fix the functions <I>±(t) . As one can see from Eqs. (3.53) 
and (3.71), the functions <I>±(t) are just the electric potentials at asymptotic 
infinities. It is customary to choose the zero point of the electric potential 
in such a way that at asymptotic infinities the electric potential vanishes. 
This choice is compatible with the Reissner-Nordstrom solution to Einstein­
Maxwell equations. Hence, we choose: 

(3.121) 

With these choices of the lapse functions and the electric potentials the 
reduced Hamiltonian (3 .114) takes the form 

H=m . (3.122) 

Because of that, the numerical value of our Hamiltonian is just the mass M
of the hole. This mass includes, from the point of view of our observer, all 
the energy of the system, gravitational as well as electromagnetic. 
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When choosing the phase space coordinates we again refer to the prop­
erties of our observer. Our observer sees the exterior regions of the black
hole as static, and he is an inertial observer. These properties prompt us to
choose the phase space coordinates in such a manner that when the classical
equations of motion are satisfied, all the dynamics is, in a certain sense,
confined inside the apparent horizon R = r + of the hole. Moreover, as we
shall see in a moment, the choice of the phase space coordinates describing
the dynamics of spacetime is related to the choice of slicing of spacetime into
space and time. We choose a slicing where the proper time of an observer
in a radial free fall through the bifurcation two-sphere coincides with the
proper time of our far-away observer at rest. On grounds of the Principle of
Equivalence one may view these kind of slicings to be in a preferred position
in relating the physical properties of the black hole interior to the physics
observed by our far-away observer. 

The new phase space coordinates describing the dynamics of the black
hole spacetime can be obtained from the phase space coordinates m, q,

Pm and P
q 

by means of an appropriate canonical transformation. To make
things simple, we shall in this section consider the charge q as a mere external
parameter of the system, having a fixed value Q. In the next section, the
charge will be considered as a dynamical variable. Hence, the dimension of
the phase space of our system is, in this section, just two. 

As in Ref. [66), we perform a canonical transformation from the phase
space variables (m,pm) to the new phase pace variables (a,pa) such that the
relationship between the old and the new phase space variables is (q is now
a constant, which we denote by Q): 

✓2ma - a
2 

- Q2 + m sin-1 
---;=== + -7rm(

m-a 
) 

1 
Jm2 -Q2 2 

Pa = sgn (pm) J2ma - a2 - Q2 

and we have imposed by hand a restriction:

-7rm ::; Pm ::; 7rm

,(3.123)

(3.124)

(3.125)

With the restriction (3.125) the transformations (3.123) and (3.124) are
well-defined and one-to-one. It follows from Eq. (3.124) that 

p� 1 Q2 

m=-+-a+- . 
2a 2 2a (3.126)

If one substitutes this expression for m to Eq. (3.123), one gets Pm in terms
of a and Pa· One finds that the fundamental Poisson brackets between m
and Pm remain invariant, and hence the transformation is canonical. 

Eqs. (3.122) and (3.126) imply that the classical Hamiltonian takes, in
terms of the variables a and Pa, the form 

p� 1 Q2 

H= -+-a+-
2a 2 2a

(3.127)

The geometrical interpretation of the variable a is extremely easy to find.
We first write the Hamiltonian equation of motion for a:

. 8H Paa=-=-
OPa a ' 
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and it follows from Eq. (3.126) and the fact that m = M when the classical
equations of motion are satisfied that the equation of motion for a is 

- 2 2M Q2 

a =--1--
a a2 

(3.129) 

One can see from the Reissner-Nordstrom metric (3.35) that the equation of 
motion for an observer in a radial free fall through the bifurcation two-sphere 
is 

· 2 2M Q2 

R =--1--
R R2 ' 

(3.130) 

where the overdot means proper time derivative. As one can see, Eqs. (3.129) 
and (3.130) are identical. Hence, we can interpret a as the radius of the 
wormhole throat of the Reissner-Nordstrom black hole, from the point of 
view of an observer in a radial free fall through the bifurcation two-sphere. 
Moreover, we see from Eq. (3.129) that a is confined to be, classically, within
the region [r-,r+J- In other words, our variable a "lives" only within the 
inner and outer horizons of the Reissner-Nordstrom black hole, and this is 
precisely the region in which it is impossible to find a time coordinate in such 
a way that spacetime with respect to that time coordinate would be static. 
Hence, both of the requirements we posed for our phase space coordinates 
are satisfied: dynamics is confined inside the apparent horizon and the time 
coordinate on the wormhole throat is the proper time of an observer in a 
radial free fall. 

With the interpretation explained above, the restriction (3.125) becomes 
understandable. One can see from Eq. (3.117) that when the lapse functions 
N± at asymptotic infinities are chosen as in Eq. (3.119), the canonical mo­
mentum Pm conjugate to m is -t + constant, where t is the time coordinate 
of our asymptotic observer. Now, the transformation defined by Eqs. (3.123) 
and (3.124) involves an identification of the time coordinate t with the proper 
time of a freely falling observer on the throat. However, as it was noted at 
the beginning of Sec. 3.3, it is impossible to push the spacelike hypersurfaces 
t = constant beyond the R = r _ hypersurfaces in the conformal diagram. 
The proper time a freely falling observer needs to fall from the past R = r _ 
hypersurface to the future R = r _ hypersurface through the bifurcation 
two-sphere is, as it can be seen from Eq. (3.130), 

1
r+ R'dR' 

flt = 2 -;:.===-==c= = 21r M 
T- J2MR1 

- R'2 -Q2 
(3.131) 

and hence the restriction (3.125) is needed. As one can see from Eq. (3.123), 
IPm l = 0, when a= r+, and IPm l = 1rM, when a= r_. We have chosen 
Pm to be posititive, when the hypersurface t = constant lies between the 
past R = r _ hypersurface and the bifurcation point, and negative when 
that hypersurface lies between the bifurcation point and the future R = r _ 
hypersurface. 

As to the classical Hamiltonian theory, the only thing one still needs 
to check is, whether there exist such foliations of the Reissner-Nordstrom 
spacetime where the Minkowski time t at asymptotic infinity and the proper
time of a freely falling observer at the throat through the bifurcation two­
sphere really are the one and the same time coordinate. It is easy to see that 
time coordinates determining this sort of foliations really exist. As a concrete 
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example, consider a generalization of the so-called Novikov coordinates in 
the Schwarzschild geometry [29]. More precisely, one takes a collection of 
freely falling test particles whose initial three-velocity with respect to the 
curvature coordinates is zero when T = 0. If one relates the radial coordinate 
of spacetime to the positions of these test particles when T = 0, and takes 
the time coordinate to be at every spacetime point the proper time of the 
test particle falling through that point, one finds that the time coordinate 
of our distant observer at rest, the Minkowski time, and the proper time 
of a freely falling observer in the throat are the one and the same time 
coordinate. It should be noted, however, that all foliations in which the 
proper time in the throat and the asymptotic Minkowski time are identified ,  
are incomplete, since such foliations, in addition to failing to cover regions 
outside the past and future R = r _ hypersurfaces, also fail to cover the 
whole exterior regions of the hole. More precisely, these foliations are valid 
only when -1rM :'St '.'S 1rM. 

3.3.10 Hamiltonian Dynamics with Charge as a Dynamical 

Variable 

To complete the classical Hamiltonian theory we need to consider the charge 
Q as a dynamical varible. The guiding principle in our search for appropriate 
canonical variables describing the dynamics of the electromagnetic field is 
that since our distant observer at rest observes the electromagnetic field 
outside the event horizon as static, all the dynamics of the electromagnetic 
field must be confined, classically, inside the horizon. 

To find appropriate canonical variables, recall that when the classical 
equations of motion are satisfied, the only non-vanishing component of the 
electromagnetic potential Aµ 

is, in curvature coordinates, the component 
Ar = Q / R. Now, this component is static with respect to time T everywhere 
outside the horizon. However, since R becomes a timelike coordinate when 
r _ < R < r +, we find that Ar necessarily has dynamics between the inner 
and outer horizons of the Reissner-Nordstrom black hole. In terms of AT 

we can write the Reissner-Nordstrom metric (3.35) as 

( 2M ) dR2 

ds2 
= - 1 - - + A2 dT2 + ----- + R2 d0.2 

R r 1- 2M + A2 

R r 

(3.132) 

In what follows, we shall "forget" the explicit dependence of AT on Rand 
Q, and instead treat AT as an independent dynamical variable of our theory. 
However, in all our investigations we shall assume that AT is independent 
of T or, more precisely, 

8AT = O 
8T - . (3.133) 

From this restriction it follows that we can treat Ar as a function of an 
appropriate time coordinate only. Hence, our phase space, which will be  
spanned by the throat variables (a,pa) and the electromagnetic variables 
(AT,PA

r
), where PAr 

is the canonical momentum conjugate to AT, will be 
four-dimensional, which is  in harmony with the results of  Ref. [20]. To com­
plete the classical theory we must just find a canonical transformation from 
the old phase space variables ( m, Pm, q, P

q
) to the new phase space variables 
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(a,pa,Ar,PA
T

), and write the classical Hamiltonian, from the point of view 
of our distant obsever at rest, in terms of the variables a,pa, Ar and PAT ·

To find a clue to the expression of the classical Hamiltonian in terms of 
the gravitational and electromagnetic variables, let us write the Hamiltonian 
constraint on the timelike geodesic going through the bifurcation two-sphere 
of the Reissner-Nordtsrom spacetime, using the foliation of Sec. 3.3.9. In 
that foliation the spacetime metric can be written as 

ds2 
= -dt2 + (2� - 1 -A}) dT2 + a2 d0.2 (3.134) 

As one can see, T is now a spatial coordinate of spacetime. Hence, 
we can identify the expression (2;;: - 1 -A})112 with the variable A(r, t)
of Sec. 3.3.1. Moreover, we can identify Ar with r. The variable </J(r, t) is 
assumed to vanish. With these identifications, and treating M as a constant, 
we find that the Hamiltonian contraint of Ref. [20] written in terms of A, R 
and r and their time derivatives, can be written in terms of a and Ar and 
their time derivatives as 

1l = (
2M 2)

-112
[

1 2 -2 · . 1 2 · 2 

--;;: -l -Ar 2
(1 + Ar)a + aArAra + 2

a Ar 

M 1 2 ] -- + -( 1 + Ar) = 0 
a 2 

From this equation one can solve M: 

It is easy to see that if one substitutes 

Q Ar = -;;, 

and keeps Q as a constant, one gets 

1 . 2 1 Q2 

M= -aa +-a+-
2 2 2a 

(3.135) 

(3.136) 

(3.137) 

(3.138) 

Hence, if one interprets the right hand side of Eq. (3.138) as the classical 
Hamiltonian of the system, one gets, with the substitution (3.137), the same 
Hamiltonian as in Eq. (3.127). 

At this point we define a new variable 

b := aAr 

As a result, Eq. (3.136) becomes simpler: 

1 . 2 1 -2 1 b2
M = -aa + -ab + -a + -

2 2 2 2a 

(3.139) 

(3.140) 

Because of that, we are prompted to write the classical Hamiltonian of the 
Reissner-N ordstrom black hole, from the point of view of our distant observer 
at rest, as 

P2 p2 l b2
H = � + ...l!. + -a+ - , 

2a 2a 2 2a 
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where Pa is the canonical momentum conjugate to the throat radius a, and 

Pb:= ab 

is the canonical momentum conjugate to the variable b.

(3.142) 

We obtained the Hamiltonian (3.141) by means of a guesswork based 
on the study of the Hamiltonian constraint on the timelike geodesic going 
through the bifurcation two-sphere, in a specific foliation of the Reissner­
N ordstrom spacetime. The real problem is to find out, whether there exists 
a well defined one-to-one canonical transformation from the phase space 
coordinates m, Pm, q and P

q
, introduced in Sees. 3.3.7 and 3.3.8, to the 

phase space coordinates a, Pa , b and Pb such that the Hamiltonian takes the 
form (3.141) if we choose the lapse functions and the electric potentials at 
asymptotic infinities as in Sec. 3.3.9. 

We shall perform such a transformation in two steps. We first define a 
canonical momentum Pw conjugate to a yet unknown variable w as 

Pw := q 

With this choice the classical Hamiltonian takes the form 

P2 p2 1 
H= _!!:.+2!.+-a

2a 2a 2 

(3.143) 

(3.144) 

The variables m and Pm are expressed in terms of a and Pa as in Eqs. (3.123) 
and (3.126), but we have replaced Q with Pw · 

The next task is to find w. One expects w to be related in one way or 
another to the momentum P

q 
conjugate to q. Since pq 

defines the electro­
magnetic gauge, we first write the Hamiltonian in a general gauge, 

p�p� 1 - -
H = 2a + 2a + 2a + ( <fa+ - <fa-)Pw (3.145) 

which follows from Eq. (3.114). Using Eq. (3.118) we find that the Hamil­
tonian equation of motion for w is 

. 8H Pw . 
W= -- = - -pq OPw a 

(3.146) 

An expression of P
q 

in terms of a, Pa, wand Pw can be gained by integrating 
the both sides ofEq. (3.146) along the classical trajectory in the phase space: 

where we shall substitute 

P
q 

= J p": da - waa 

. (p )✓2m pi a = -sgn w - - 1 - -
a a 

(3.147) 

(3.148) 

This substitution involves choosing p
q 

= 0. When the electric potential 
is assumed to vanish at asymptotic infinities, this choice can be made. With 
an appropriate choice of the integration constant we get 
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where we have made the substitution 

p� p� l m=-+-+-a 
2a 2a 2 (3.150) 

Eqs. (3 .123), (3.124), (3.143) and (3.150) constitute a transformation 
from the phase space coordinates m, Pm, q and Pq to the phase space co­
ordinates a, Pa, w and Pw · It is easy to see that this transformation is 
well-defined and canonical. Moreover, the transformation is one-to-one pro­
vided we impose the restriction 

tqp:
w

l � 7r 
(3.151) 

This restriction is related to the fact that we are considering spacetime 
between two successive R = r _ hypersurfaces. Since 'Pq vanishes when the 
electric potentials are assumed to vanish at asymptotic infinities, we find 
that, classically, w = -q1r + Pq at the past R = r _ hypersurface, w = Pq at 
the bifurcation point, and w = q1r+pq at the future R = r _ hypersurface. In
other words, the domain of w is bounded by the fact that the t = constant

hypersurfaces cannot be pushed beyond the R = r _ hypersurfaces. 
It only remains to find a canonical transformation from the variables w

and Pw to the variables b and Pb· We define

b .- Pw Sin (;:) 

Pb := Pw cos(;:)

(3.152) 

(3.153) 

This transformation is well-defined and canonical as well as, with the re­
striction (3.151), one-to-one. Because of that, we are justified to write the 
classical Hamiltonian as in Eq. (3.141). Moreover, since it follows from 
Eqs. (3.152) and (3.153) that 

(3.154) 

we can identify the quantity p� + b2 as the square of the electric charge of
the black hole. 

3.4 Axially Symmetric Hamiltonian Action of Ein­

stein-Maxwell Theory 

In this section we shall consider a classical Hamiltonian formulation of axially 
symmetric electrovacuum spacetimes with boundary conditions of Ref. (16]. 
The complete Hamiltonian formulation of Kerr-Newman spacetimes has not 
yet been performed, but the study of Hamiltonian dynamics is based on 
an important theorem proved by Regge and Teitelboim [21]. This theorem 
states, essentially, that the physical Hamiltonian of an asymptotically flat 
spacetime with matter fields can be gained if we first solve the classical 
constraints, and then substitute the solutions to the constraints, in terms of 
the physical phase space coordinates of the theory, to the boundary terms 
at asymptotic spacelike infinity. It is unclear whether the assumptions of 
Regge's and Teitelboim's theorem are valid for Kerr-Newman spacetimes, 
but we accept this as an unproved hypothesis and see where it takes us. 
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3.4.1 Boundary Terms in Kerr-Newman Spacetime 

As we saw in Chapter 1, one must include, in asymptotically flat spacetimes,
certain boundary terms in order to make the variational principle consistent.
Now, of particular interest are the boundary terms in Kerr-Newman space­
time, the most general black hole spacetime. 

We begin with the Kerr-Newman line element (2.34) in Boyer-Lindquist
coordinates. To calculate the boundary terms we must approximate the line
element (2.34) at asymptotic infinity, where r-+ oo, when only leading order
terms are taken into account: 

2 ( 2M) 2 4J sin2 0 2 . 2 2 ( 2M) 2 2 ds � - l - -:;:- dt 
r 

dtd</>+r sm 0d<f> + l + -:;:- dr +r d02 
, 

(3.155)
where J := Ma is the angular momentum of the hole. In Cartesian coordi­
nates this expression takes the form 

ds2 � - ( 1 -
2�) dt2 - !; (xdy -ydx)dt + ( 1 + 2�) (dx2 + dy2 + dz2 ) ; 

(3.156)
here r is not the same r as in Eq. (3.155). In Eq. (3.155) r is one of the
Boyer-Lindquist coordinates, whereas in Eq. (3.156) r is defined to be equal
to (x2 + y2 + z2)1/2. 

We proceed to evaluate the boundary terms. When evaluating the
boundary terms the first task is to fix the coordinate system far away from
the black hole. In other words, we must fix the lapse N and the shift Na.
In this paper we choose a far-away coordinate system which revolves, with
respect to the Cartesian coordinates x, y and z, with an extremely small
angular velocity w around the z-axis. (We must assume w to be extremely
small since otherwise the velocities of the far-away observers would exceed
the velocity of light. More precisely, we choose w to be so small that even
for observers who are so far away from the hole that the boundary terms
are, to a very good approximation, those calculated at infinity, the velocities
are well below the velocity of light.) Because, in flat space, the velocity of
an observer at the point r = xi + y] + zk revolving with angular velocity w
is 

v= w x r, (3.157)

and because, in Cartesian coordinates, Na represents the a-component of
velocity, we find that Nadt is given by Eq. (1. 70) and therefore 

(3.158)

where c\
c 

is the Levi-Civita symbol such that c123 = 1.
What sort of boundary terms do show up with this kind of a choice of

the shift? We recall from Section 1.5.3 that if the shift Na is chosen as in 
Eq. (3.158), we must therefore bring along the boundary term (1.71). 

Now, when calculating the boundary term S8� of Eq. (1.71) we should,
of course, first perform a coordinate transformation where the spacetime
metric (3.156) is replaced by the corresponding expression in revolving co­
ordinates, and then proceed to calculate the boundary term by using this
expression. However, when the far-away coordinate system revolves very
slowly, we are interested in terms linear in w only. Taking into account
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the transformation in the expression of the metric would produce terms 
quadratic in w, which can be neglected. Hence, we are allowed to calculate 
the boundary term (1.71) by using the metric (3.156). Since w = wk, we 
have w1 = 0 = w2 and w3 = w, and so the boundary term can be written in 
the form 

(3.159) 

By comparing the line element of Eq. (3.156) with the ADM line element 
of the form 

(3.160) 

where N is the lapse function, Na is a component of the shift vector (a= 
1,2,3) and qab is a spacelike component of the metric tensor associated with 
the hypersurface, we find that the only nonzero spacelike components of the 
metric tensor are 

2M 
qu = 1 + - = q22 = q33 r 

For the components of the shift vector N a we have 

where 

N _ 
2Jy 2Jx 

1 - -;:a, N2 = --;:a, N3 = 0 ,

(3.161) 

(3.162) 

(3.163) 

Comparing Eqs. (3.156) and (3.160) we obtain the lapse fnnction N 

N= 
2M 4J2 ( 2M

)
-l

1 - -+ - 1 + - (x2 + y2) . r r6 r (3.164) 

To evaluate the covariant derivatives of Na we must calculate the Christof­
fel symbols using the nonzero components of qab expressed in Eq. (3.161). 
The nonzero Christoffel symbols needed in the calculations are 

rl1 = ri2 

ri1 = r5 3 

r�2 = n3 
= 

r�2 = r�2 

rb = r�3 = 

3 Mx 
( 

2M
)

-l
r1 3

= -- 1+-
r3 r 

My 
(l +

2M
)

-l
r3 r 

Mx 
( 

2M
)

-l- l+-
r3 r 

r�3 = _ _Jf_ 1 + -
M 

( 
2M

)
-l

r3 r 
Mz 

( 
2M

)
-l

-- l+- . 
r3 r 

(3.165) 

(3.166) 

(3.167) 

(3.168) 

(3.169) 

By using Eq. (1.52) for the exterior curvature tensor Kab, we get for the 
nonzero components 

= 
2Jxy 

( 
2M _

3) Nr5 r+2M

82 

(3.170) 



K22 

K12 = K21 

K13 = K31 

K23 = K32 

2Jxy 
( 

2M 
) - Nr5 r + 2M - 3 '

_ _!_ (x2 _ y2) ( 
2M 

_ 
3) Nr5 r+ 2M 

Jyz 
( 

2M 
3) Nr5 r+2M - ' 

Jxz 
( 

2M 
)-Nr5 r+2M -3 

(3.171) 

(3.172) 

(3.173) 

(3.174) 

To evaluate 1rab, the canonical momentum conjugate to qab, by using the
expression (1.26) we must first calculate K and ,,fii, and we obtain that 

K := q11 Ku + q22 K22 + q33 K33 = 0 , (3.175) 

and 

(3.176) 

When the results from Eqs. (3.175) and (3.176) are substituted to Eq. (1.26) 
and the indices are pushed down by the spatial metric qab, we get the nonzero 
components 

7r11 = 

1r22 

1r12 = 1r21 

1r13 = 7r31 = 

1r23 = 7r32 = 

3 

(1 + 2�) 2 2Jxy
( 

2M _ 
3) l61r Nr5 r+2M

3 

_ (1 + 2�) 2 2Jxy 
( 

2M _ 3) l61r Nr5 r+2M 
3 

(1 + 2�) 2 

l61r 
J 

( 2 2) ( 
2M 

) N r5 
x 

- y 
r + 2M - 3 

3 

(1+ 2�) 2 Jyz 
( 

2M _
3) l61r Nr5 r +2M ' 

3 

(1+2�) 2 Jxz 
( 

2M _
3) l61r Nr5 r+2M

(3.177) 

(3.178) 

, (3.179) 

(3.180) 

(3.181) 

The boundary term Sa� can be expressed by using the components calcu­
lated above and the components of the unit normal on the surface: 

Sa� = -2 / dt W f [xq22 (1r21n1 
+ 1r22n2 

+ 1r23n3) 
-

-yq11 (1r11n1 + 1r12n2 + 7r13n3) ]ds

...!__jdtwJf (1+ 2M
)½ ( 

2M 
-3)

-1
81r r r+2M Nr5 

x [ (x2 -y2) (xn1 
-

yn2) + 2xy (yn1 
- xn2) 

+z(x2 
+ y2)n3] dS . (3.182) 

This integral is easy to evaluate in the spherical coordinates. We first con­
sider a 2-dimensional spherical surface with radius r. The relations between 

83 



the spherical coordinates r, 0 and 1> and the Cartesian coordinates x, y and
z are 

x = r cos 1> sin 0, y = r sin 0 sin 1>, z = r cos 0 . (3.183)

The components of the unit normal na, (a= l, 2, 3) on the spherical surface
are 

1 ,1,.·0 2 ·0·,1,. 3 0n = nx = cos'l' s1n ' n = ny = sin Sln'I', n = nz = cos

and the area element of the sphere is

dS = r2 sin 0d0dcp .

In these coordinates the boundary term takes the form

Srot _ 8E -
1 / ( 2M

) 
½ 

( 
2M 

)- dt wJ 1 + - --- - 3 
81r r r + 2M 

7r 21r 

x f f ! [ (cos2 cp - sin2 cp)2 sins 0 +
8=0</>=0 

4 cos2 cf> sin2 cp sins 0 + cos2 0 sin3 0] dcf>d0 .

(3.184)

(3.185)

(3.186)

As r approaches infinity N goes to unity and so the denominator can be
approximated as unity as well. The integration gives then 

rot 1 ( 
2M

) 
½ 

( 
2M 

) 81r 
/ S8r; � - 1 + - --- - 3 - dt wJ ,81r r r + 2M 3 

and so the boundary term at spatial infinity, where r -+ oo, is

Sa�= -f dtwJ.

(3.187)

(3.188)

We must still calculate the ADM boundary term (1.60) as well as the
electromagnetic boundary term (3.27). The ADM boundary term of the
Kerr-Newman spacetime is, for arbitrary lapse N+ at infinity, 

(3.189)

To calculate the electromagnetic boundary term we first recall that for Kerr­
Newman solution the only nonzero components of A

µ in Boyer-Lindquist
coordinates are 

Qr -
�

,

Qar . 20Tsm 

(3.190)

(3.191)

Using Eqs. (3.10), (3.18) and (3.20) one finds that for general lapse and shift
one can write 1ra, the canonical momentum conjugate to Aa, as 

1fa 
= 

_!_ y'q
q

as (Fi _ Nb(3) F. )
N 47!" 

0s bs 
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This expression, together with Eqs. (3.190) and (3.191), implies that in 
Boyer-Lindquist coordinates the only surviving component of '/fa is '/fr which, 
in the leading order, can be written very far away from the hole as 

'/fr = _ _g_ + ('.) (r-3) 
47rr2 

(3.193) 

Hence, the electromagnetic boundary term (3.27) is 

S'ao/5 = -I dtAtQ' (3.194) 

as expected. The slow rotation of the asymptotic coordinate system will 
change the ADM and the electromagnetic boundary terms a bit but the 
resulting corrections will be of the order of O(w2 ) and can therefore be 
neglected. 

3.4.2 Hamiltonian Dynamics of Kerr-Newman Spacetimes 

We shall proceed to the study of the Hamiltonian dynamics of maximally 
extended Kerr-Newman spacetimes. To begin with, consider a foliation of 
such spacetimes into space and time. Obviously, we want the spacelike 
hypersurfaces where the time t = constant to cover as great a portion of 
spacetime as possible. Maximally extended Kerr-Newman spacetimes have 
a periodic geometrical structure, and we pick up one such period. We choose 
the spacelike hypersurfaces t = constant such that they begin from the left­
hand-side asymptotic infinity, then go through the interior regions of the 
hole in arbitrary ways, and finally end at the right hand side asymptotic 
infinity in the conformal diagram. However, such spacelike hypersurfaces 
cannot be pushed beyond the interior horizons, where the Boyer-Lindquist 
coordinate is 

r = r _ := M - J M2 
- Q2 

- a2 
, (3.195) 

since otherwise our hypersurfaces would fail to be spacelike. Hence our 
study of the Hamiltonian dynamics of Kerr-Newman spacetimes must be 
restricted to include, in addition to the left and the right exterior regions of 
the Kerr-Newman black hole, only such an interior region of the hole that 
lies between two successive r = r _ hypersurfaces in the conformal diagram. 
Our spacelike hypersurface t = constant therefore begins its evolution at the 
past r = r _ hypersurface, then goes through the bifurcation point where 

r = r + := M + J M2 - Q2 - a2 ' (3.196) 

and finally ends its evolution at the future r = r _ hypersurface (see Fig. 3.2). 
Bearing this restriction in mind, we shall go into the Hamiltonian dynamics 
of Kerr-Newman spacetimes. 

The first task is to write the action with appropriate boundary terms. 
Again, the problem is now that we have two asymptotic infinities, and at 
both of these infinities we have certain boundary terms. When this fact is 
taken into account, we find that the action takes the form 

S = J dt h, d3x (Pabqab + Pa Aa - N1-l - N51-{5 - Ao9)

-
I dt [(N+ + N_)m + (At - Ao)q + (w+ - w_)l] . (3.197)
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Figure 3.2: The conformal diagram of Kerr-Newman spacetime. Our space­
like hypersurfaces t = constant begin their evolution at the past r = r _ 
hypersurface, then go through the bifurcation point, and finally end their 
evolution at the future r = r _ hypersurface. 

In this equation, quantities equipped with plus and minus, respectively, are 
quantities written at the right and the left asymptotic infinities. In partic­
ular, w+ and w_ are the angular velocities of far-away coordinate systems 
around z-axis. Hence, the total Hamiltonian of Kerr-Newman spacetime is 

Htot = l d3x(N1-l + N51-£5 + Ao9)

+(N+ + N_)m + (At - A0)q + (w+ - w_)t. (3.198)

Now, the problem with our Hamiltonian is that it contains an enormous 
number of independent degrees of freedom. Indeed, our Hamiltonian may 
be considered as a function of the hypersurface metric qab at each point x on 
the spacelike hypersurface :E, together with the corresponding canonical mo­
menta 1rab. However, the ultimate object of interest in this paper is canonical 
quantization of the stationary black hole sector of Einstein-Maxwell theory. 
Stationary black holes, in turn, are characterized by just three independent, 
classical degrees of freedom, and hence an enormous number of degrees of 
freedom must be truncated. 

For non-rotating black hole spacetimes, the truncation process has al­
ready been performed in this chapter. A similar truncation could also be 
performed for rotating black holes: One begins with asymptotically flat 
Einstein-Maxwell theory with appropriate symmetries, solves the classical 
constraints, and is finally left with just six physical, canonical degrees of 
freedom which may be taken to be the mass m, the electric charge q, and 

86 



the angular momentum i of the Kerr-Newman black hole, together with the 
corresponding canonical momenta Pm, p

q 
and p,. 

An important feature of the process explained above, in which the phase 
space becomes reduced in such a way that only the physical degrees of 
freedom are left, is that the resulting Hamiltonian, the so-called reduced 
Hamiltonian, involves the boundary terms only. In particular, the reduced 
Hamiltonian of Kerr-Newman spacetimes is 

(3.199) 

As a matter of fact, the reduced Hamiltonian may be used as the real, 
physical Hamiltonian of the system. This was proved by Regge and Teitel­
boim [21]. They found that if one solves the classical constraints and then 
substitutes the solutions to the reduced Hamiltonian, then the correct equa­
tions of motion for the canonical variables are obtained. More precisely, 
they showed the following: One assumes that the variables qab and 1r

ab can 
be separated by a one-to-one, time independent, functionally differentiable 
canonical transformation in two sets (<p°',1ra) and ('lj;A,1rA) in such a way 
that 

a) the reduced Hamiltonian depends only on <p°' and 7ra 

b) when 7ra are prescribed as functions Pa of spacetime coordinates x
which satisfy

(3.200) 

then the constraints 1-l = 0 and 1-ls = 0 can be solved to express <p°' 

as functionals 
(3.201) 

of the remaining canonical variables. 

The functional derivatives of Ja with respect to 'I/JA and 1r A are assumed
to exist. If the above conditions are true then Hamilton's equation for the 
reduced Hamiltonian 

Hred ['I/JA ; 7rA
] = (boundary terms)! , 

cp0 =/Q,1f'o=Po 

{3.202) 

together with Eqs. (3.200) and (3.201) are equivalent to Einstein's equations 
in the particular frame defined by 7ra = Pa · 

The proof of this result is easy: The Poisson brackets are invariant under 
canonical transformation and the Hamiltonian is unchanged in value if the 
canonical transformation is independent of time. Hence 

On the other hand, 

H[<p°' ; 'Ira, 'I/JA ; 7rA] I
cpo. =/o.,1ro. =Po. 

(3.203) 

= (boundary terms{,o,,=J<>,1r,,=p,,
= Hred ['I/JA ; 7rA] . {3.204) 
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Differentiating Eq. (3.204) with respect to 1r A gives 

r d3 y __!!!_ I 8 r(y) + __!!!_ 
I jE Ocp°'(y) </P=f"',1ra=Pa 07rA(x) 01rA(x) <p0=f0 ,1ra=Pa 

However, by Eq. (3.200) 

and therefore 

1ro:(x) = -- =0,
. 8H 

I 
Ocp°'(x) <p"'=/0 ,1ro=Pa 

8H 
I 

07rA(x) <p"'=f"',1ro=Pa 

8Hred 

07rA(x) 
. (3.205) 

(3.206) 

(3.207) 

In other words, Hred generates the correct equation of motion for 'lj;A. In a 
completely analogous way one shows that the correct equation of motion is 
also generated for 7rA. Although we have here considered pure gravity only, 
it is clear that our analysis could be easily generalized to include electro­
magnetic fields as well. 

The real problem is: Are the assumptions of the previous theorem valid
for Kerr-Newman spacetimes? In other words, is it possible to divide the
phase space of Einstein-Maxwell theory with appropriate symmetries in two
parts in a manner explained above? For spherically symmetric, asymptot­
ically flat Einstein-Maxwell theory this has been done in this chapter. For 
theories having the Kerr-Newman solution as their unique solution to the 
classical constraints this has not been done. However, there is not an obvious 
reason why this could not be done, and we state the following hypothesis: 

Hypothesis 1 For an appropriately symmetric, asymptotically fiat Einstein­
Maxwell theory having the Kerr-Newman solution as its unique solution to 
the Hamiltonian, diffeomorphism and Gaussian constraints, there exists a 
one-to-one, time independent, differentiable canonical transformation which 
divides the phase space (qab,Pab,Aa,Pa) into two sets (M,Q,J,PM,PQ,PJ)
and ( 'lj;A , PA) in such a way that 

a) the reduced Hamiltonian depends only on M, Q, J, PM, PQ and PJ 

b) when M, Q and J are prescribed as functions m, q, and L which satisfy

m=q=i=0, (3.208) 

then the constraints can be solved to express the PM, PQ and PJ as 
functionally differentiable functionals of 'lj;A and PA. 

We have been unable to find an exact proof of this hypothesis for Kerr­
Newmann black hole spacetimes and, indeed, this is the weak point of our 
model. However, there are no obvious reasons why it would not be true. In 
what follows, we shall consider our hypothesis as true and see where it takes 
us. 

The first consequence of our hypothesis is that Hred of Eq. (3.199) may
be used as the real, physical Hamiltonian of our theory, with m, q and L as
the coordinates of the configuration space. For that reason we shall drop
"red" from our Hamiltonian, and denote it simply by H. 
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Our Hamiltonian implies the following canonical equations of motion:

m 

q 

Pm

Pq

P,

= &H 
=0

&pm 

= &
H 

=0

&pq 

= &
H 

=0
ap, 

8H 
=

-
am 

=-(N++N_)'

8H + _ = -aq = -(Ao - Ao) '

&H 
=-a;= -(w+-w-),

(3.209) 

(3.210) 

(3.211) 

(3.212) 

(3.213) 

(3.214) 

where Pm, P
q 

and p,, respectively, are the canonical momenta conjugate tom,
q and l. As expected, m, q and l are constants in time. The time derivative of
Pm depends on the choice of the lapse function at both asymptotic infinities
of our spacelike hypersurface, Pq depends on the difference between electric
potentials at infinities, and p, depends on the difference between the angular
velocities of far-away coordinate systems.

The quantities N±, At and W± determine the gauge for our theory. For
physical reasons, it is sensible to work in a specific gauge, where

N+ = 1' (3.215) 

N_ :.:::0' (3.216) 

W± :.:::0' (3.217) 

A± 
0 

= 0 . (3.218) 

In this gauge the Hamiltonian takes a particularly simple form in terms of
the canonical coordinates:

H=m . (3.219) 

The physical sense of this kind of a gauge fixing lies in the fact that we
consider Kerr-Newman spacetimes from the point of view of a certain specific
observer: Our observer is at rest at the right-hand-side asymptotic infinity, 
and his time coordinate is the asymptotic Minkowski time, the proper time
of such an observer. We have "frozen" the time evolution at the left infinity, 
which is sensible because our observer can make observations from just one
infinity. For such an observer, the classical Hamiltonian of the Kerr-Newman
spacetime is just M, the ADM mass of the Kerr-Newman black hole.

Now, the problem with the phase space coordinates m, q, l, Pm, pq and
p, is that they describe the static aspects of Kerr-Newman spacetimes only.
However, there is dynamics in Kerr-Newman spacetimes in the sense that
between the event horizons there is a region in which it is impossible to find
a timelike Killing vector field. Our next task is to find canonical variables
describing the dynamical properties of Kerr-Newman black holes in a natural
manner.

When choosing the phase space coordinates, we refer to the properties
of our observer: Our observer lies at rest very far away from the hole and he
is an inertial observer. For such an observer, the Kerr-Newman spacetime
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appears as stationary, and all the relevant dynamics of the Kerr-Newman 
spacetime is, in a certain sense, confined inside the event horizon of the 
hole. These properties prompt us to choose the phase space coordinates 
in such a manner that when the classical equations of motion are satisfied, 
all the dynamics is, in a certain sense, confined inside the event horizon 
r = r + of the hole. Moreover, as we shall see in a moment, the choice of the 
phase space coordinates describing the dynamics of spacetime is related to 
the choice of slicing of spacetime into space and time. We choose a slicing 
where the proper time of an observer in a free fall through the bifurcation 
surface coincides with the proper time of our far-away observer at rest. On 
grounds of the principle of equivalence one may view these types of slicings 
to be in a preferred position in relating the physical properties of the black 
hole interior to the physics observed by our far-away observer. 

3.4.3 Hamiltonian Dynamics with Charge and Angular Mo­

mentum as External Parameters 

To make things simple, consider q and i first as mere external parameters of 
the theory, having fixed values Q and J, respectively. In that case our phase 
space is just two-dimensional being spanned by the phase space coordinates 
m and Pm · In this two-dimensional phase space we perform the following 
transformation from the old phase space coordinates m and Pm to the new 
phase space coordinates Rand PR: 

IPml 

PR 

= J2mR-R2 -Q2 -a2 + m sin-1 ( m-R 
)

Jm2 -Q2 -a2 

1 
+rrrm , 

�
--

�
-

--
(3.220) 

= sgn(pm)J2mR -R2 - Q2 - a2 ; (3.221) 

and, moreover, we have imposed by hand the restriction 

-'ll"m � Pm � 'll"m (3.222) 

With the restriction (3.222) the transformation given by Eqs. (3.220) and (3.221) 
is well-defined and one-to-one. It follows from Eq. (3.221) that 

1 
m = 2R 

(Pk + R2 + Q2 + a2) • (3.223) 

If one substitutes this expression form into Eq. (3.220), one gets Pm in terms 
of R and PR· One finds that the fundamental Poisson brackets between 
m and Pm are preserved invariant, and hence the transformation given by 
Eqs. (3.220) and (3.221) is canonical. 

Equations (3.219) and (3.223) imply that the classical Hamiltonian takes, 
in terms of the variables Rand PR, the form 

1 
H = 2R (p� + R2 + Q2 + a2) (3.224) 

The geometrical interpretation of the variable R is extremely interesting. 
We first write the Hamiltonian equation of motion for R: 

R
= 

{)H = PR . 
OPR R 

, (3.225) 
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and it follows from Eq. {3.224) that when the classical equations of motion 
for m and Pm are satisfied, then the equation of motion for R is 

· 2 2m Q2 + a2 

R =--1---.
R R2 

(3.226) 

Now, one can see from the Kerr-Newman metric (2.34) that for an observer 
falling freely through the bifurcation surface at the equatorial plane 0 = 1r /2 
such that iJ = ef> = 0, the proper time elapsed when r is changed from r to 
r + dr is dT such that 

r
2 

-dT2 
= �-------dr2 

r2 +a2 +Q2-2Mr ' 

and therefore the equation of motion of our observer is 

-2 2M Q2 + a2 

r =---1----=--,
r r2 

(3.227) 

(3.228) 

where the dot means proper time derivative. As one can see, Eqs. (3.226) 
and (3.228) are identical. Hence, we may interpret R as the radius of the 
wormhole throat of the Kerr-Newman black hole, from the point of view of 
an observer in a free fall at the equatorial plane such that ef> = 0 through 
the bifurcation two-sphere. Moreover, one can see from Eq. (3.226) that 
R is confined to be, classically, within the region [r -, r +l- In other words, 
our variable R "lives" only within the inner and outer horizons of the Kerr­
Newman black hole, and this is precisely the region in which it is impossible 
to find a time coordinate such that spacetime with respect to that time 
coordinate would be static. Hence, both of the requirements we posed for 
our phase space coordinates are satisfied: Dynamics is confined inside the 
apparent horizon and the time coordinate on the wormhole throat is the 
proper time of a freely falling observer. 

With the interpretation explained above, the restriction (3.222) becomes 
understandable. One can see from Eq. (3.117) that when the lapse functions 
N± at asymptotic infinities are chosen as in Eqs. (3.215) and (3.216), the 
canonical momentum Pm conjugate to m is -t + constant, where t is the 
time coordinate of our asymptotic observer. Now, the transformation given 
by Eqs. (3.220) and (3.221) involves an identification of the time coordinate 
t with the proper time of a freely falling observer on the throat. However, 
as it was noted at the beginning of this section, it is impossible to push the 
spacelike hypersurfaces t = constant beoynd the r = r _ hypersurfaces in 
the conformal diagram. The proper time a freely falling observer needs to 
fall from the past r = r _ hypersurface to the future r = r _ hypersurface 
through the bifurcation surface is, as it can be seen from Eq. (3.228), 

1r+ r'dr' flt = 2 --;======= = 21r M 
r_ J2Mr' - r'2 - Q2 - a2 

' (3.229) 

and hence the restriction (3.222) is needed. As one can see from Eq. (3.220) 
that IPml = 0 when R = r + and IPml = 1rm when R = r -· We have 
chosen Pm to be positive when the hypersurface t = constant lies between 
the past r = r _ hypersurface and the bifurcation surface, and negative when 
that hypersurface lies between the bifurcation point and the future r = r _ 
hypersurface. 
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Concerning the classical Hamiltonian theory with J and Q as mere exter­
nal parameters the only thing one still needs to check is whether there exist 
such foliations of the Kerr-Newman spacetime where the Minkowski time at 
asymptotic infinity and the proper time of a freely falling observer at the 
throat through the bifurcation surface really are the one and the same time 
coordinate. In a certain sense, one may view these observers and their time 
coordinates as physically equivalent. In Refs. [66) and [14] similar identifi­
cations are performed and they are based on the Novikov coordinate system 
(see, for instance, Ref. [29]), where the time coordinate of a given point is 
given by the proper time T of a freely falling observer in the Schwarzchild or 
Reisner-Nordstrom spacetime through that point, and the radial coordinate 
R* in the Novikov coordinate system is related to the point r where the 
freely falling observer has begun his journey. 

Since the R-coordinate in the classical Hamiltonian (3.224) can be geo­
metrically interpreted as the radius of a wormhole throat at the equatorial 
plane 0 = 1r /2 in the Kerr-Newman black hole, we begin the construction of 
the slicing with desired properties by considering the Kerr-Newman line ele­
ment (2.34) written in Boyer-Lindquist coordinates at the equatorial plane. 
The construction of the particular spacetime foliation proceeds exactly like 
the investigations performed in Sec. 2.4.1. The only major difference now is 
that the geodesics of the timelike observer are required to be non-rotating in 
the intermediate and in the exterior regions of the Kerr-Newman black hole. 
In other words, we choose e = 0 and 8 = 1, and because of these particular 
choices we get from Eq. (2.52) that 

r2 .2 
R* l (r4 + 2r2a2 - a2(.6. - a2) R* 

) 2HKN = 1 = --r +---;:===-.6. J1 + R*2 .6. r2 J1 + R*2 

As we set i- = 0, Eq. (3.230) yields us a quartic equation for r: 

R*2 

.6.r2 = --� [r4 + 2r2a2 - a2(.6. - a2)] . 
1 +R*2 

(3.230) 

(3.231) 

From this equation one can calculate the r-coordinate Tmax of the point from 
which an observer in a free fall begins his journey, in terms of R* which 
henceforth will be used as a radial coordinate of Kerr-Newman spacetime. 
Eq. (3.230) implies an implicit expression r( T, R*) for the old radial coordi­
nate r in terms of the new time coordinate T and the new radial coordinate 
R*: 

T = ±Jl + R*2 --;============ dr' . 
1

r(T,R•) r'2 

rmax(R•) ✓ R*2(r'2 + a2)(2Mr' _ Q2) _ r'2.6.
(3.232) 

In this equation the signs+ and-, respectively, correspond to the past and 
the future of the line where the time coordinate t is zero in the conformal di­
agram. To obtain an explicit expression r( T, R*) for r one should first solve 
the quartic equation (3.231), and then perform the integration in Eq. (3.232). 
Solving Eq. (3.231), however, would yield a tremendously complicated ex­
pression for rmax, and we shall not write it down here. However, it is easy to 
see that there are always at least two positive roots r = Tmax = Tmax(R*). 
This can be seen by plotting the both sides of Eq. (3.231) and varying R*.
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Moreover, one finds that if one puts r = Tmax = r + then Eq. (3.231) implies 
R* = 0, and vice versa: if one sets R* = 0, then Eq. (3.231) is solved by 
r = r +. Hence, we have found that for every R* � 0 there is an observer in 
free fall such that this observer is at rest at the time t = T = 0 with respect
to the old radial coordinate r. When R* = 0 our observer begins his journey
at the bifurcation surface and his world line is a straight vertical line in the 
conformal diagram. 

Can we extend this coordinate transformation to the right-hand-side 
asymptotic infinity? Yes we can, since we may choose the coordinate R* such 
that the solution r = Tmax > r + is the largest of the roots of Eq. (3.231).
When this choice is made, one can show starting from Eq. (3.231), that for 
large Tmax 

(3.233) 

Hence R* goes to infinity as Tmax goes to infinity and vice versa. Moreover, 
the time coordinate T of an observer at the asymptotic infinity coincides 
with the proper time T of a freely falling observer at the wormhole throat. 

Another issue to be investigated still is that do the observers rotate or 
not with respect to the Boyer-Lindquist coordinates? We wrote our Hamil­
tonian from the point of view of an asymptotic non-rotating observer, and 
we assumed a foliation in which the time coordinate at the throat is a proper 
time of a non-rotating observer in a free fall. To show that in our foliation 
both of the observers are non-rotating we must show that � ➔ 0 as r ➔ r + 
and r ➔ oo. The latter case is straightforward, since in the expression 

� = � a(r2 
+ a2 - .6.) R* 

.6. r2 J1 + R*2 
(3.234) 

given by Eq. (2.51) when f.= 0, the factor R* / J1 + R*2 approaches unity 
and the factor in front of it approaches zero. The first case, where r ➔ r +, 
is a bit tricky, since we do not know the explicit relation between r and 
R* at the bifurcation point. We have solved the tricky part by expanding 
Eq. (3.231) in terms of r near the bifurcation point. If we take only the 
zeroth and the first order terms, we find that the point r = Tmax where 
r = 0 is related to R* by an expression 

5 ( 
R•2 

) 4 2 3 R•2 
2 2 R*2 2 2 R*2 

r + 2 - i+R*"2" - 2M r + + a r + i+R*"2" + 4M a r + i+R*"2" - 3a q r + i+R*"2" 
Tmax :=::l 

( ) 
, 4 R•2 3 2 R•2 

2 2 R•2 
2r+ 1- 1+R•2 -2Mr++2Ma r+1+R•2 -2a q 1+R·2

(3.235) 
which gives that Tmax = r + as R* -➔ 0, as it should. Now, when Eq. (3.235) 
is substituted into Eq. (3.234), and letting R* ➔ 0, one gets the result 

� -➔ 0 (3.236) 

In other words, we have managed to construct a foliation of Kerr-Newman 
spacetime with desired properties at the equatorial plane: At the asymptotic 
infinity the time coordinate is the proper time of a freely falling, non-rotating 
observer at rest, and at the wormhole throat of a similar non-rotating ob­
server in a radial free fall through the bifurcation surface. 
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Figure 3.3: The world line of an observer in free fall at the throat is a vertical
line going through the bifurcation point in the conformal diagram. The
proper time of such an observer is identified with the asymptotic Minkowski
time. 

It is even possible to show that our construction gives the Novikov co­
ordinate system in the Schwarzschild spacetime when one sets q = a = 0
in Eq. {3.231). This result is given by Eqs. {3.231) and {3.232). We get an
analogous coordinate system for the Reissner-Nordstrom spacetime when
a= 0. It can be shown that then the relation between Tmax and R* is 

r = Tmax = ( M + ✓ M2 - q2{1 + R*2)-l) {1 + R*2) {3.237)

It should be noted, however, that all foliations in which the proper time
on the throat and the asymptotic Minkowski time are identified are incom­
plete since such foliations, in addition to failing to cover the regions outside
the past and the future r = r _ hypersurfaces, also fail to cover the exte­
rior regions of the hole. More precisely, these foliations are valid only when
-1rM :St :S 1rM (see Fig. 6.2). 

3.4.4 Hamiltonian Dynamics with Charge and Angular Mo-
mentum as Dynamical Variables 

The next task is to complete the classical Hamiltonian {3.224) such that q
and ii:= i/m are replaced by functions of appropriate phase space variables
describing the dynamics of Kerr-Newman spacetimes in a natural manner.
To this end, we must find, for constant M, a canonical transformation from
the phase space coordinates (q,p

q
) and {i,p.) to some new phase space co­

ordinates which we shall denote by u and v, and their canonical momenta
Pu and Pv·
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We shall perform such a transformation in two steps. At the first stage 
we replace Q and a by canonical momenta conjugate to yet some unknown 
coordinates w1 and w2 of the configuration space: 

Pw, :=q,

Pw2 := ii · 

Then the classical Hamiltonian of Eq. (3.224) takes the form 

H _ 1 
( 

2 2 2 R2) - 2R PR + Pw, + Pw2 + 

(3.238) 
(3.239) 

(3.240) 

The next task is to find w1 and w2. One expects that w1 and w2 are 
related in one way or another to the momenta Pq and Pi conjugate to q

and t, respectively. Because we see from Eq. (3.213) that Pq determines the 
electromagnetic gauge and from Eq. (3.214) that p, determines the angular 
velocity of far-away coordinate systems we first write the classical Hamilto­
nian in a general electromagnetic gauge when far-away coordinate systems 
rotate with arbitrary angular velocities: 

H = 2� (p� + P!, + P�2 + R2) +(At-Ao)Pw, +m(w+-w-)pw2 , (3.241)

which follows from Eq. (3.199). Using Eqs. (3.213) and (3.214) and the fact 
that m is a constant when the classical equations of motion are satisfied, we 
get for the Hamiltonian equations of motion for w1 and w2 

8H Pw, . WI 
:= OPw, = R - Pq 

,

8H Pw2 
w2 := OPw2 = R - mp, .

(3.242) 

(3.243) 

An expression for Pq 
and p, in terms of R, PR, w1, w2, Pw, and Pw2 

can 
be gained by integrating both sides of Eqs. (3.242) and (3.243) along the 
classical trajectory in phase space: 

where we have substituted 

R. _ ( ) ✓2M l Pi, + Pi2 

- -sgn Pm R - - R 

(3.244) 

(3.245) 

(3.246) 

This substitution involves choosing '[Jq = p, = 0. When the electric potentials 
are assumed to vanish at infinities, and the asymptotic coordinate systems 
are assumed to be non-rotating, this kind of a choice can be made. With an 
appropriate choice of the integration constant we get 
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where we have made the substitution 

1 ( 2 2 2 R2) m
= 2R PR+ Pw1 

+ Pw2 + (3.249) 

Equations (3.221), (3.238), (3.239), (3.247) and (3.248) constitute a trans­
formation from the phase space coordinates m, Pm, q, p

q
, l and p. to the 

phase space coordinates R, PR, w1, Pw1, w2, and Pw2 - One can easily show 
that this transformation is well-defined and canonical. Moreover, the trans­
formation is one-to-one provided that we impose the restrictions 

I P9+w1 

I '.S 7f, 
Pw1 

(3.250) 

l mp�
w2 I '.S 7f. (3.251) 

These restrictions are related to the fact that we are considering the space­
time between two successive r = r _ hypersurfaces. Since both Pq 

and Pi 

vanish when the electric potentials are assumed to vanish at asymptotic 
infinities and the asymptotic coordinate systems are assumed to be non­
rotating, we find that classically w1 and w2 have the following properties: 
At the past r = r _ hypersurface w1 = -q7r + Pq 

and w2 = -a7r + mp., at
the bifurcation surface w1 = Pq 

and w2 = mp,, and at the future r = r _ 
hypersurface w1 = q7r + Pq

, and w2 = a,7r + mp.. In other words, the clas­
sical domains of w 1 and w2 are bounded by the fact that the t = constant 

hypersurfaces cannot be pushed beyond the r = r _ hypersurfaces. 
As the last step we perform a canonical transformation from the variables

w1, Pw1 , w2 and Pw2 to the variables u, Pu, v and Pv 

1. We define 

u 

Pu 

V 

Pv 

. ( W1) 
:= Pw1 

Sill - , 
Pw1 

:= Pw1 cos ( �) ,
Pw1 

. ( W2) 
:= Pw2 Sill - , 

Pw2 

:= Pw2 COS ( W2 ) 

Pw2 

(3.252) 

(3.253) 

(3.254) 

(3.255) 

This transformation is well-defined, canonical and, with the restrictions (3.250) 
and (3.251), one-to-one as well. We find that 

(3.256) 
(3.257) 

1u and v should not be confused with light cone coordinates or anything like that! 
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In other words, we may identify p� + u2 as the square of the electric charge 
q, and p� + v

2 as the square of the angular momentum per unit mass of the 
hole a. Because of that, the classical Hamiltonian of Kerr-Newman black 
holes finally takes a very simple form 

(3.258) 

3.5 Hamiltonian Dynamics of Schwarzschild Space­

times 

In this chapter we shall give a short review of the classical Hamiltonian 
theory of spacetimes containing a Schwarzschild black hole. The Hamilto­
nian dynamics of spherically symmetric vacuum spacetimes can be obtained 
from the Hamiltonian dynamics of the corresponding electrovacuum space­
times in the absence of the electromagnetic field. In other words, the re­
sults of this section can be obtained from the results of Sec. 3.3 by setting 
the electromagnetic field to zero. Originally, the Hamiltonian dynamics of 
spherically symmetric vacuum spacetimes was investigated, among others, 
by K. Kuchar [61]. 

The only spherically symmetric, asymptotically flat vacuum solution to 
Einstein's field equations is the Schwarzschild solution. When the space­
like hypersurfaces, where t = constant, are chosen to go from the left- to 
the right-hand asymptotic infinities in the Kruskal diagram, crossing both 
horizons, Kuchar [61] found that the total action of spherically symmetric 
vacuum spacetimes containing a primordial black hole takes the form 

00 

= J dt J dr (PAA+ PRR- NH - NrHr)
-00 

(3.259) 

where A, PA, R and PR are the configuration coordinates and the corre­
sponding canonical momenta (compare to Eqs. (3.36), (3.46) and (3.47)). 
N and Nr are the lapse function and the radial component of the shift 
vector, respectively. 1-l and Hr give the Hamiltonian and the diffeomor­
phism constraints in the spherically symmetric vacuum spacetimes. N + and 
N_ are the fixed lapse functions at the infinities, and M_ and M+ are the 
ADM energies of spherically symmetric vacuum spacetimes. Note that this 
action is, indeed, a special case of the action (3. 76) in the absence of the 
electromagnetic field. 

When one follows the procedure given in Sec. 3.3 by reconstructing of 
the mass and time, and performing the appropriate canonical transformation 
from the old phase space A, PA, R, PR to the new phase space M, PM, R, PR 
and solving the constraints, only two canonical degrees of freedom are left. 
If these two degrees of freedom are chosen to be the Schwarzschild mass m, 
and its conjugate momentum Pm, the classical action of the system is 

SK = J dt [pmm - m (N+ + N_)] 
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which is given by Eq. (3.111) when the electromagnetic degrees of freedom 
are not present. The classical Hamiltonian of the whole maximally extended 
Schwarzschild black hole spacetime found by Kuchar can therefore be written 
in terms of the two physical phase space coordinates m and Pm 

Hwhole = m (N+ + N_) (3.261) 

Classically, Hwhole may be understood as the total energy of the whole 
spacetime. To choose a specific observer, who measures the energy of the 
gravitational field, we fix the values of the lapse functions at asymptotic 
infinities. From the point of view of an observer at the right-hand-side 
infinity at rest with respect to the hole, we can set N _ = 0 and N + = 1. On 
the other hand, one may view the Schwarzschild mass m as the total energy 
of the Schwarzschild spacetime, measured by a distant observer. Hence, we 
may write Hwhole = m. 

The classical Hamiltonian theory of the right-hand-side exterior region 
of the Schwarzschild black hole was investigated by Louko and Whiting [67]. 
Louko and Whiting considered a spacetime foliation where the spacelike 
hypersurfaces begin from the bifurcation two-sphere, and end at a right­
hand-side timelike three-surface, i.e. at a "box wall" in the Kruskal dia­
gram. With this choice, the spatial slices are entirely contained within the 
right-hand-side exterior region of the Kruskal spacetime. One of the main 
observations, and the only difference with the approach of Sec. 3.3, was that 
such foliations bring along an additional boundary term into the classical 
action. Hence, the Louko-Whiting boundary action Sar:. consists of terms 
resulting from the initial and the final spatial snrfac.es, that is, from the 
bifurcation two-sphere and from the "box wall". After solving the classical 
constraints, Louko and Whiting found that when the physical degrees of 
freedom are identified, the true Hamiltonian action is 

SLw = / dt (pmm - h(t)) , (3.262) 

where h(t) is the reduced Hamiltonian such that, when the radius of the 
initial boundary two-sphere does not change in time t. The Hamiltonian 
h(t) is defined as 

h(t) := (1 - ✓1-
2
;) Rv'"=9tt- 2N0(t)m2 

, (3.263) 

where R is the time independent value of the radial coordinate of general 
spherically symmetric, asymptotically flat vacuum spacetime at the final 
timelike boundary, i.e., at the "box wall". Here 9tt is the tt-component 
of the metric tensor expressed as a function of the canonical variables after 
performing a canonical transformation and of Lagrange's multipliers. No is 
a function of the global time t at the bifurcation two-sphere such that 

1t2 
0 := dtNo(t) 

t, 

(3.264) 

is the boost parameter elapsed at the bifurcation two-sphere during the time 
interval [t1, t2]. Details can be seen in Ref. [67]. 
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It is easy to see that if one transfers the "box wall" to the asymptotic 
infinity by taking the limit R ➔ oo, the Hamiltonian h(t) of Eq. (3.263) 
reduces to the the classical Hamiltonian 

1 2 Hext = mN+ - zRhNO ' (3.265) 

where Rh = 2m is the Schwarzschild radius, and, as before, N+ is the 
lapse function at the right-hand-side asymptotic infinity. Classically, the 
Hamiltonian Hext describes the exterior region of the Schwarzschild black 
hole spacetime and may be interpreted, in a certain foliation, as the total 
energy of the exterior region of the hole. Another interpretation has been 
suggested by Bose et al. [68] Hext· According to those authors Hext is the 
free energy of the whole black hole spacetime. 
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Chapter 4 

Semiclassical Results: 

Hawking Radiation and 

Black Hole Entropy 

4.1 Brief Introduction to Semiclassical General Rel­

ativity 

In semiclassical general relativity one investigates the properties of quan­
tized matter fields in curved spacetime geometry which is kept as a non­
dynamical background. Since the spacetime geometry is considered as a 
rigid background, the quantum effects of the spacetime itself are assumed 
to be unimportant for the quantum phenomena taking place in spacetime. 
However, in the full theory of quantum gravity one should take into account 
the quantized gravitational field and its effects as well. The semiclassical 
theory of quantized matter fields in general relativity is called quantum field 

theory in curved spacetime [69, 70, 71]. This theory is extensively used to in­
vestigate the influence of the classical gravitational field on quantized matter 
fields. 

The exact region of validity of semiclassical gravity is not known until 
the complete theory of quantized gravitational field is available. However, 
when one treats the gravitational field as a small perturbation in a flat 
spacetime background and tries to quantize it in a usual manner, one no­
tices that the gravitational effects become very significant at the distances 
of the order of the Planck length lp1 := (Gli/c3) 112 

~ 10-35 m. Therefore, 
one suspects that the semiclassical approximation is valid as far as to the 
Planck length scale. On the other hand, it is possible to combine the uni­
versal constants G, Ii and c such that they produce the so-called Planck

time tp1 := (Gli/c5 ) 112 
~ 10-43 s. For this reason, strong gravitational 

effects are believed to occur also when the gravitational field suffers rapid 
time-dependent changes taking place in the Planck timescale. Thus one ex­
pects that semiclassical approximation fails only when we consider either 
microscopic black holes or the very early epoch of the universe. 
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4. 2 Haw king Effect

By using the methods of quantum field theory in curved spacetime it was 
found in 197 4 by Hawking [17] that black holes are not black, but they 
emit radiation with a perfect thermal spectrum of a black body. Hawking's 
original analysis [72, 73] considered quantized real-valued scalar fields in a 
spacetime geometry produced by a collapsing spherically symmetric mass 
distribution in vacuum. In this section we follow Hawking's treatment, and 
we calculate the particle production caused by a continously changing gravi­
tational field surrounding collapsing matter. For a good review of the field of 
particle production in curved spacetime see Ref. [74] and references quoted 
therein. Essential features of the Hawking effect are briefly discribed in 
Ref. (75, 76] 

It is known that the unique spacetime metric outside the collapsing 
spherically symmetric mass distribution is the Schwarzschild metric. The 
Schwarzschild spacetime, in turn, is asymptotically flat and stationary. There­
fore, far from the surface of the collapsing matter distribution spacetime can 
be regarded as the Minkowski spacetime with well-defined concepts of energy 
and particles. In Minkowski spacetime one can construct a unique vacuum 
of particles. As the matter distribution collapses the spacetime geometry 
changes and the quantum vacuum of the resulting spacetime geometry no 
longer corresponds to the particle vacuum in Minkowski spacetime. As the 
spacetime geometry changes the changes in the resulting quantum vacua 
produce particles. 

4.2.1 Quantum Field Theory in Curved Spacetime 

The equation of motion of a real scalar field </J(x) in a flat Minkowski space­
time with signature ( +, -, -, -) is the Klein-Gordon equation 

(4 .1) 

which in a curved spacetime takes the form 

(4.2) 

where D
µ 

is the covariant derivative compatible with the metric 9
µv and m 

is the mass of the field quantum. If the spacetime is taken to be globally 
hyperbolic then the Klein-Gordon equation ( 4.2) has a well-posed initial­
value formulation. The inner product between any two solutions (/J1 and (/J2 

of the Klein-Gordon equation ( 4.2) is 

(</J1l<P2) := -i I d'EP [<Pi (8µ</>2)
-

(8µ</>1) <P2l ' (4.3) 
E 

where * denotes the complex conjugate, dI�P := nµdE such that nµ is a 
future-directed timelike unit vector orthogonal to the spacelike hypersurface 
E and it means the volume element on the hypersurface E. The hypersurface 
E is taken to be a Cauchy surface. It is possible to show that the value of 
the inner product ( 4.3) is independent of the the choice of the hypersurface 
E, and therefore the solutions u; and their complex conjugates must satisfy 

(4.4) 
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Miu;) 
(u;Ju;) 

The solutions u; are called orthonormal wavemodes.

(4.5) 
(4.6) 

A general solution to the classical Klein-Gordon equation (4.2) can be 
written in the form of the Fourier series:

(4.7) 

where a; and aj E (C are the Fourier coefficients which can be obtained from 

a; = (u;Jq,) , 
aJ = -(u;Jq,) . 

(4.8) 
(4.9) 

The covariant quantization procedure in curved spacetime is based on 
the canonical commutation relations between the quantized field operator J 
and its canonical momentum operator ft conjugate to the field on the Cauchy 
surface � such that 

[J(�, P),ft(�, P')] = iM3 (P, P') , (4.10) 

[ J(�, P), J(�, P')] 0' (4.11) 

[ft(�, P), ft(�, P')] 0' (4.12) 

where P and P' E �, and the classical canonical momentum p is related to 
the field configuration variable 1> by the definition 

(4.13) 

where the classical Lagrangian density .C for the real scalar field 1> in curved 
spacetime can be chosen to be 

(4.14) 

When the scalar field expansion ( 4. 7) is replaced by its operator coun­
terpart 

the operators a; and aj satisfy commutation relations 

[ · • t] ai,aj iMij, 

[a;,a1] 0' 

[·t •t] a;,a
1 

0, 

which are equivalent to (4.12). 

( 4.15) 

(4.16) 

( 4.17) 

( 4.18) 

From the quantum field theory in flat Minkowski spacetime we know how 
to construct normalized basis vectors from the standard Minkowski space 
vacuum state JO) by using the operators a; and a). In flat spacetime the 
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operators ai and a! annihilate and create particles. In curved space on a 
Cauchy surface the construction of the Hilbert space proceeds exactly in 
the same manner as in the Minkowski spacetime: One just operates by the 
linear operators a; and a! to a vacuum state IO) for all i. However, in flat and 
curved spacetimes there is one major difference in the interpretation of the 
basis states of the system. While in the flat spacetime the basis states can 
be interpreted as the particle or many-particle states, the basis states do not 
necessarily have such an interpretation in curved spacetime. This difference 
is a manifestation of missing the notion of global inertial observer in curved 
spacetime, whereas Minkowski spacetime has global inertial observers that 
are related to each other by Poincare transformations. Poincare symmetry of 
the global inertial observers ensures the existence of a unique vacuum state 
and a unique definition of energy. As the curved spacetime has no global 
inertial observers, it has no Poincare symmetry, and therefore the notions of 
energy vacuum cannot be defined uniquely, but they depend on the observer 
and on the geometry of spacetime. For this reason the basis states in curved 
spacetime cannot be necessarily interpreted as particle states. However , 
asymptotically flat and stationary spacetimes have the standard particle 
interpretation in the asymptotic regions, since asymptotically flat regions 
possess Poincare symmetry, and the stationary spacetime, in turn, has a 
time coordinate in which the spacetime geometry is constant. 

Because of the non-unique vacuum state in curved spacetime we shall 
define the so-called Bogolubov transformations between any two complete 
orthonormal sets of solutions { Uj : j E I} and { u.i : j E I}, where I is an 
index set. In terms of the primed basis, the Klein-Gordon field opera.tor J 
can be expanded as 

(4.19) 

and therefore we may define a new vacuum IO') and a new Fock space. The 
Bogolubov transformations between the two sets are 

u
j 

L (AjjUj + BjiUn , (4.20) 

Uj 
= L (AJ;uJ - Bjiuj*) (4.21) 

j 

The numbers Aji and Bji are complex-valued and they are called Bogolubov 
coefficients. 

As we transform from one complete set of modes { Uj : j E I} to another 
complete set { u.i : j E I}, the annihilation and creation operators a_; and a,�t 
must change also. The relations between the two sets of annihilation and 
creation operators are 

aj = L ( Aija� + Biia;t) 

a.i 
= 

L ( A;ia; - BJia!) 

( 4.22) 

( 4.23) 

Therefore the two Fock spaces related to the two different sets of modes 
are clearly different only if B;j f. 0. This can be seen from Eq. (4.22). 
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By the definition, the operator aj annihilates the vacuum state IO) and, 
correspondingly, the operator a3 annihilates the vacuum state IO'), but for 
example the operator aj will not annihilate the vacuum IO): 

aj10) L ( A1iai - s;iar) !O) = LA;iailO) - Ls;ia;10) (4.24) 

(4.25) 

As the vacuum state IO) defined at the asymptotically Minkowski space­
time changes to another vacuum state JO) at the asymptotic infinity, it is 
easy to show that the number of particles in the state corresponding to the 
mode j is given by the expectation value of the operator Nj := a}aj . The 
number of Uj-mode particles in the state vacuum JO') is 

(4.26) 

4.2.2 Quantum Scalar Field in a Collapsing Spacetime Ge-

ometry 

The orthonormal set of modes change circumstances that are very natural. 
For example, consider the spacetime geometry during the evolution of the 
gravitational collapse of a spherically symmetric mass distribution. Initially, 
the spacetime geometry at the locus of the far-away observer is stationary 
and asymptotically flat, and hence, according to Birkhoff's theorem, the 
geometry is uniquely given by the Schwarzschild line element (2.3). During 
the collapse, the interior geometry of the collapsing mass distribution suffers 
from continuous changes, and these changes, in turn, alter the solutions to 
the Klein-Gordon equation (4.2). Finally, when the late time solutions of 
the Klein-Gordon field are once more considered far-away from the collaps­
ing mass distribution the spacetime geometry may be taken stationary. In 
this manner the spacetime geometry changes from a stationary state to an­
other. During some time interval, the ingoing solutions to the Klein-Gordon 
equation travel through the continuously changing interior geometry, and 
therefore the vacuum state of the outgoing solutions is different from the 
ingoing vacuum state. 

Our next task is to reproduce the Bogolubov coefficients between the 
ingoing and outgoing vacuum states and calculate the particle production 
of the Schwarzschild black hole. As the particle production seems to be 
involved in the details of the collapse, one might expect black hole radiation 
to be related to the collapse only. However, as the time coordinate used in 
the analysis is the Schwarzschild time coordinate, we know that the particle 
production is due to the presence of the event horizon and is independent of 
the details of the collapse, since otherwise it would take an infinite amount 
of time to escape to infinity. Further research has shown that the particles 
are created by eternal black holes as well. 

Let us consider the Klein-Gordon equation for the massless particles 
(m = 0) in the Schwarzschild spacetime geometry. As we write the positive 
frequency w > 0 mode solutions u in the Schwarzschild coordinates in the 
form 

(4.27) 
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where Yim, is a spherical harmonic, the Klein-Gordon equation (4.2) can be 
separated and the radial function p(r) satisfies the radial equation 

where 

[-::
; 

+ V(r)] p(r) = w2p(r)

V(r) = (l _ 2M
) [

l(l + 1) 
+ 

2M
]r r2 r3 

( 4.28) 

( 4.29) 

and r. is the Regge-Wheeler tortoise coordinate defined in Eq. (2.5). 
Because the 'potential' V(r) vanishes at the event horizon r = Rs and 

in the asymptotic region r ---+ oo, the ingoing and the outgoing positive
frequency mode solutions u�lm, and u�1;,,, right in the vicinity of the event 
horizon and in the asymptotic region are 

1 N wlm1 Yim, - exp( -iw V)r 
1 N wlm, Yim, - exp( -iwU) ,r 

(4.30) 

(4.31) 

where U, r and V, r are the Eddington-Finkelstein coordinates defined in
Eqs. (2.6) and (2.7), and Nwtm, is a normalization constant. Note that the 
solutions near the event horizon and in the asymptotic infinity are the same, 
because we have already chosen m = 0. 

In order to see that these mode solutions describe particles moving along 
lightlike geodesics, we perform a coordinate transformation from the Kruskal 
coordinates u, v (definition given in Eqs. (2.10) and (2.11)) to a set of null 
r.oordinates ii., ii such that 

V = 1 C -)
2 

v+u (4.32) 

u = 

1 C -)2 
v-u (4.33) 

In terms of the null coordinates u, ii the Schwarzschild line element takes 
the form 

ds2 = 
32M3 exp( -r /2M)diidu + r2 ( dB2 + sin2 Bdql) ' r (4.34) 

which tells us that in the vicinity of the event horizon the coordinates u and 
ii give affine parameters to the lightlike geodesics. Moreover, at the horizon, 
where v = u, is u zero, and at the horizon, where v = -u, is ii zero. 

In the exterior spacetime region the null coordinates u and ii are related 
to Eddington-Finkelstein coordinates U and V by 

ii = exp ( 4
:) , (4.35) 

u - exp(�) (4.36) 

and therefore the outgoing and the ingoing mode solutions (4.31) and (4.30) 
to the Klein-Gordon equation, in terms of ii and u, take in the vicinity of 
the event horizon the form 

u�'t;,,, = N wlm, Yim, ! exp( -i4M w log ( -u)) ,r 
Nwlmi Yim, ! exp(-i4Mw log(ii)) .r 
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As the null coordinates ii, and ii approach zero at the event horizon, 
the outgoing mode solution suffers an infinite decrease in frequency, i.e., 
infinitely increasing redshift whereas the ingoing solution suffers an infinite 
increase of frequency, i.e., infinite blueshift. This observation allows us to 
approximate the lightlike geodesics of particles as classical light rays with 
constant phase reflecting from mirrors and propagating as straight lines in 
ordinary manner. This approximation is called the geometric optics ap­

proximation. We will use the geometric optics approximation as we trace 
the worldline of light like particle backwards in time from J+ to ::1- (see 
Fig. (1.4) in Sec. 1.5.1). 

Let us consider the worldline of a light ray in the spacetime geometry 
of a collapsing spherically symmetric, non-charged and non-rotating star. A 
Penrose-Carter diagram of the collapsing star that collapses to a black hole 
is represented in Fig. 4.1. As it can be noticed from Fig. 4.1 the light rays 

Black hole 

r 

r= 0 

",4..L-¾-______ The null ray passes
through the centre of 
the star and forms the 
event horizon . 

. 

I 

Figure 4.1: Collapsing mass distribution is represented by the shaded region 
and the exterior region is a portion of the regions I and II given in Fig. 2.2. 
The figure includes two worldlines of light rays. 

that leave the past null infinity J- 'early enough' go through the collapsing 
star and reach the future null infinity J+ , but the light rays that leave 'too 
late' are either emerged to form the event horizon or destined to go to the 
black hole singularity r = 0. On the other hand, we are interested in how 
the ingoing mode solutions (4.38) change to outgoing mode solutions (4.37) 
near the event horizon written in the future null infinity J+. Therefore we 
shall trace back to the past the worldlines of such light rays that propagate 
close but exterior to the event horizon that is formed during the collapse. 
Let us denote the distance of the light rays which have U = constant from 
the event horizon U = Uo by c such that the distance is given by the affine 
parameter u (see Fig. 4.2): 

f.= -ii,' (4.39) 

and therefore the outgoing mode solution ( 4.37) near the horizon can be 
expressed as 

u�'t:,., ex exp[i4Mw log(c)] , ( 4.40) 

which represent very densely propagating wavefronts. Next we transport 
these wave forms back to the J-. 
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Black hole 

r = 0 

�,,.(,.,::::....��-----The null ray passes 
through the centre of 
the star and forms the 
event hori,.on U=U,. 

D 
I 

--,...--.:: _____ Ingoing light ray which is ai 
an affine distance g from the 
light ray that emerges to form 
the event horizon. 

Figure 4.2: In the figure the light ray of interest is represented by the dashed 
line. Its affine distance is£ from the light rays that form the horizon U = U0. 

At the asymptotic infinity 'J- far from i- the spacetime is flat and, 
as shown, the 'potential' V(r) vanishes. Therefore the ingoing mode solu­
tions u�lmz are, in terms of the Eddington-Finkelstein coordinates, of the 
form {4.30), whereas near the event horizon the corresponding outgoing 
mode solutions u�1;,,

1 
are of the form {4.31). In what follows, we shall sim­

ply denote 

in 
Uwtm1 .-

out 

Uwtm1 .-

Uw 
I 

Uw 

' {4.41) 
{4.42) 

The transformation from the solutions Uw to the solutions u� is given by 
the Bogolubov transformation (4.20), and our task is to calculate the Bogol­
ubov coefficients Aww' and Bww'. The key idea in calculating the Bogolubov 
coefficients is that the surface V = Vo (see Fig. 4.2) corresponds to the event 
horizon in the following technical sense: the light rays that are emitted from 
'J- and obey V = Vo form the horizon of the black hole. Therefore, the light 
rays that are at an affine distance £ from the horizon correspond to the sur­
face V = constant, which is at an affine distance£ from the surface V = Vo.

Because the spacetime is flat at the asymptotic infinity, the line element for 
constant 0 and </> in terms of the Eddington-Finkelstein coordinates is 

ds2 
= -dUdV, {4.43) 

and therefore Vo - V corresponds to an affine distance from the surface 
V = constant to the surface V = Vo. Furthermore, affine distances Vo -V

and £ are related to each other: 

Vo -V =Cc, {4.44) 

where C is a constant. Hence, at 'J-, when Vo - V is taken to be very small, 
we may write the outgoing mode solution (4.31) as 

u� = Nwtm1 Yim,�exp{i4Mwlog[(Vo -V)/C]}, 
r 
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and thus for Vo - V > 0 the Bogolubov transformation (4.20) at J- takes
the form

exp{ i4M w log[ (Vo -V) / Cl} = L [ Aww' exp( -iw'V) + Bww' exp( iw'V)]
w' 

( 4.46)
If Vo - V :s; 0, the left hand side of Eq. (4.46) vanishes since the particles
that follow the surfaces where Vo -V :s; 0 cannot escape from the black hole.
The coefficients Aww' and Bww' in Eq. 4.46) are, in fact, Fourier transforms
of the function

V 
·= 

{ 
0, when Vo - V � 0 

fw( ) · exp{i4Mwlog[(Vo -V)/C]}, when Vo -V > 0 .  ( 4.47)

Hence, by the definition of the Fourier transforms, the coefficients Aww' and
B

ww
' may be obtained from the integrals

Vo 

Aww' 2� / dV exp( iw'V) exp{ i4M w log[ (Vo - V) / Cl} , ( 4.48)
-00 

Vo 

Bww' = ;7r / dV exp(-iw'V) exp{i4Mwlog[(Vo -V)/C]}. (4.49)
-oo 

When we substitute Vo - V = x into the integrals (4.48) and (4.49), and
consider the absolute values IAww' I and IBww' I only, they take the form

[A,,.,, [ ~ 2� ll dxexp(iw'x) exp[i4Mw log(-x )] ,

[B=•l ~ 2� ll dxexp(-iw'x) exp[i4Mwlog(-x)]

(4.50)

(4.51)

These integrals may be integrated by using the residue theorem of complex
variable functions. We shall not explicitly calculate these integrals, but we
just give the results. After some residue calculus one finds that IAww' I is
related to IBww' I such that 

(4.52)

Since the mode solutions u� are orthonormal, the Bogolubov coefficients
satisfy the relation

L (Aww
1 A:"

w' -Bww
1 B:"

w
') = dww

" ,
w' 

and therefore

w' 

Because of the relation (4.52), Eq. (4.54) implies that

L [exp(81rMw) - 1] 1Bww'l2 
= 1 .

w' 
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( 4.54)
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Hence, the sum of the squared absolute value of the coefficients Bww' is 

E 2 
1 

IBww'I =-----.
exp(81rMw) - 1 

w' 

( 4.56) 

Hence, even when there are no ingoing particles, i.e., nw = (OllV"wlO) = 0, 
according to Eqs. (4.26) and (4.56) the expectation value of the number of 
the outgoing particles of frequency w at J+ is 

w' 

� 2 1 
= �IBww'I = ----.,---

w , exp(81rMw) - 1 
(4.57) 

which agrees with the Planck distribution for black body radiation at the 
Hawking temperature 

or, in the SI-units 

1 K, 

TH= -- =-81rM 21r 

1'ic3 

TH = 81rGkBM 

(4.58) 

( 4.59)

where 1i, = 1,055 • 10-34 Js is Planck's constant and kB = 1,381 • 10-23 J /K 
is Boltzmann's constant.

As the classical black holes were totally black, quantum black holes radi­
ate exactly like black bodies. This seems quite contradictory, since classically 
nothing can come out of the black hole. Heuristically, there are two possible 
explanations to the Hawking radiation: One can think the positive energy 
particle at J+ having tunneled out through the event horizon. Alternatively, 
continous spontaneous creation of virtual particle-antiparticle pairs at the 
vicinity of the event horizon may be used to illustrate the Hawking effect. 
In normal situations virtual particle-antiparticle pairs would annihilate each 
other very soon after their emergence. However, when such a pair is pro­
duced in the vicinity of the black hole event horizon, sometimes the particle 
with the positive energy escapes to infinity contributing to the Hawking 
radiation flux, while the negative energy antiparticle ends up in the black 
hole. The tunneling explanation arises from the method used extensively by 
Damour and Ruffini [77], where they consider the possibility that the cor­
rect outgoing wave is an adequate superposition of outgoing waves written 
separately outside and inside the black hole. The authors show that the 
outgoing wave function inside the hole in fact corresponds to the ingoing 
negative energy wave. We must emphasize that these are just qualitative 
attempts to explain the Hawking radiation. 

One can notice from the expression of the Hawking temperature (4.58) 
that small black holes are hotter than large holes. In particular, when the 
cosmic background temperature is greater that the Hawking temperature the 
holes are absorbing rather than emitting radiation, and therefore large holes 
cannot be detected by their characteristic Hawking radiation. Moreover, the 
specfic heat of the hole is negative - the more they radiate the hotter they 
become. 
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According to Wien's displacement law the frequency w0 corresponding 
to the maximum of the energy distribution of the thermal radiation is pro­
portional to the temperature T:

wo = aT, ( 4.60) 

where a is the constant of proportionality. Because the Hawking tempera­
ture TH is proportional to 1/M, Wien's displacement law implies that for 
the frequency 

or, in SI-units, 

wo~ M
,

c3 

wo ~GM.

(4.61) 

( 4.62) 

Hence the energy of the radiation increases as the mass of the hole decreases. 
The thermal radiation of a black hole carries energy from the gravita­

tional field to infinity, and therefore the black hole must lose its mass. Be­
cause of that black holes evaporate. A rough approximation to the energy 
radiated by a hole is given by the Stefan-Boltzmann law: 

dE 
= -aT,H4 A 

dt ' ( 4.63) 

where a= 7!'2ki/(60n3 c2) = 5, 67 · 10-B J/(m2sK4) is the Stefan-Boltzmann 
constant and A is the event horizon area given in Eq. (2.4). By using 
E = Mc2 we get 

dM nc4 

dt � 153607!'G2 M2 

which yields for the time of evaporation 

~ 51207l'G2

M3 = 9. 0-16 /k 3 M3 

t~ nc4
1 s g . 

(4.64) 

(4.65) 

Eq. (4.64) implies that the evaporation tends to escalate towards the end of 
the life of the hole. However, its final state has not yet been resolved and 
the present theory even does not hold when the lifetime of the hole is of the 
the order of the Planck time tp1 = (nG/c5) 112 

~ 10-43 s, since the concept 
of the fixed classical background geometry cannot be assumed any more due 
to the severe quantum fluctuations of spacetime. Whatever happens during 
the last stages of the evolution, we may say within the present theory that 
the hole emits an energy equivalent to 106 megaton thermonuclear bombs 
during the final tenth of a second of its life. 

When we reproduced the Hawking temperature of black holes, we as­
sumed no backscattering nor backreaction from the gravitational field. More 
precisely, we did not pay any attention to the portion of modes that are 
scattered back to the hole from the 'potential' V ( r). For a more realistic 
calculation we should have allowed the mass M of the hole change during 
the process while we kept it constant. The backreaction becomes important 
not until dM/dt ~ M, i.e., in the final stages of the evaporation. These 
effects have been considered carefully and a short introduction can be found 
in Ref. (69]. As a result of these additional effects of the gravitational field 
the Hawking radiation is not purely thermal, but in a certain sence it may 
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be considered as thermal: Like the outgoing particles the ingoing particles 
are also backscattered when the black hole is in a heat bath, and therefore 
the ingoing-outgoing flux ratio is independent of the details of the backscat­
tering. Thus, the black hole remains to be in thermal equilibrium with its 
surroundings and can be seen as producing a black body spectrum. 

4.3 Black Hole Entropy 

Since black holes radiate with the temperature TH = r;,/21r they may be 
assigned an entropy as Bekenstein has anticipated. In particular, when the 
expression for the Hawking temperature is substituted into Eq. (2.66) one 
notices that 

( 4.66) 

Because of that, the first law of black hole mechanics (2.66) may now be 
written as the first law of black hole thermodynamics: 

where SBH is the Bekenstein-Hawking entropy

1
SBH = 

4
A.

( 4.67) 

(4.68) 

The first law of black hole thermodynamics is now built on fairly firm 
grounds and it is no longer based on just an analogy. In addition to es­
t.ablishing the provort,ioualit,y beLweeu the horizon area and the entropy, 
the constant of proportionality 'Y is also given by Hawking's work and it is 
equal to 1 / 4. 

The fact that the black hole looses its mass forces the event horizon area 
to decrease in violation of the second law of black hole mechanics. On the 
other hand, when matter enters the black hole and if one does not assign an 
entropy to the hole, then the entropy Sext in the exterior spacetime region 
would decrease. Therefore Bekenstein conjectured that the total entropy 
S = SBH + Sext should always be a non-decresing function of time in any 
physical process [78]. This statement is the so-called generalized second law

of thermodynamics and it simply states that 

6S � 0 in any process (4.69) 

This law has the status that is reminiscent of the status that the second 
law of thermodynamics had before statistical mechanics was found. Today 
one of the most challenging problems is to find a fundamental or "statistical 
mechanical" explanation for the black hole entropy. One needs to answer the 
basic question: What are the underlying quantum mechanical microstates of 
the black hole corresponding to the Bekenstein-Hawking entropy? Are the 
microstates related to the matter quantum fields on a background geometry 
or is it possible to assign the notion of a black hole entropy purely to a 
geometrical entity of the hole? Since the black hole entropy is ¼A, one 
might expect that there are exp(¼A) microstates corresponding to the same 
macrostate of the hole, and the problem is to identify these microstates. 
This assumption of degeneracy is justified because entropy, in general, can 
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be interpreted as the logarithm of the number of microstates corresponding 
to the same macrostate. 

The classical no-hair theorem states that after the collapse, when a black 
hole has settled down to a stationary state, its properties are determined by 
very few parameters observed far from the hole: the mass M, the charge Q 
and the angular momentum J of the hole. Thus, from the classical point of 
view, black holes have only three degrees of freedom. What has happened 
to the enormous amount of the degrees of freedom of the collapsing matter? 
The no-hair theorem prompts one to believe that these degrees of freedom, 
and the information contained in them, is lost in the collapse, and that the 
entropy of the black hole may be understood as a measure of information loss 
during the gravitational collapse, because between entropy and information 
there is a well-known relationship given by Brilliouin [79]: the decrease in in­
formation increases entropy. This viewpoint is purely quantum mechanical: 
According to quantum mechanics all the information from the collapsing 
star is not able to reach an observer exterior to the newly formed event 
horizon. In other words, all the microstates of the collapsing star can not 
be measured by the external observer. This results to an increasing entropy 
S. The question now arises: After the collapse of matter, are the degrees of 
freedom contained in the matter fields somehow encoded into the quantum
states of the black hole spacetime itself, or have they vanished altogether,
leaving no trace whatsoever? Of course, it is natural to claim that they are
encoded into the quantum states of spacetime itself such that there is a vast
exp(¼A}-fold degeneracy in the quantum states of the hole itself. This leads
us to a conclusion that the total number of the unknown quantum states of
the black hole must be enormous, too. Thus, from a quantum-mechanical
point of view, the number of the physical degrees of freedom of the hole is 
not limited to just few parameters. The contradiction between quantum and 
classical black hole is obvious. The number of physical degrees of freedom of 
the classical hole is three, whereas the number of physical degrees of freedom
of the quantum black hole is enormous. The problem with this view is that
it is not quite clear how, starting from general relativity, quantization itself
might bring along a huge number of additional degrees of freedom. Later
in this chapter we shall consider one possible interpretation to the origin of
the black hole entropy [15].

4.3.1 Area Spectrum 

A viable solution to the question about the origin of the black hole entropy 
is given by one of Bekenstein's brilliant proposals [22], suggesting that the 
possible eigenvalues of the event horizon area of the black hole are of the 
from 

(4.70} 

where I is a pure number of order one, n ranges over all non-negative inte­
gers, and lp1 := (!iG/c3 )112 is the Planck length. This proposal was made in 
1974, and since then it has been revived by several authors [16, 14, 66, 80, 
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]. It 
is interesting to notice that Bekenstein's proposal immediately leads one to 
conclude that the angular frequencies of the quanta of the Hawking radiation 
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are of the form 
w=mwo, ( 4. 71) 

where w0 := rl;-b is the so-called fundamental angular freguency, and m 
is a positive integer. This can be understood on the grounds of the fact 
that the horizon area is quantized and that the difference between any two 
consecutive area eigenvalues is a constant and equal to 

( 4. 72) 

In other words, the area spectrum is uniformly spaced. As the hole emits one 
quantum of the radiation such that the horizon area of the hole decreases 
by the amount of ,zi,, and since the relation between the horizon area and 
the mass of the hole is A = 16-rr M2 , the total mass of the radiation quantum 
is then equal to the decrease of the mass of the hole 

6.M = 

,Mi,
321rM 

(4.73) 

where Mp1 = (!ic/G) 112
. According to quantum mechanics the energy 

change of the hole is 6.E = fiwo , where wo is the frequency of the radia­
tion quantum. On the other hand, the change in energy 6.E and the change 
in mass 6.M are related by the famous result 6.E = 6.M c2 • Because of that 
the frequency of the radiation quantum, when the hole performs a transition 
from one stationary state to the nearest lower area eigenstate, is 

1 
wo ex 6..M ex 

M
. (4.74) 

In other words, according to Bekenstein's proposal (4.7 0 )  the radiation spec­
trum of the black hole is discrete and the wavelength of the emitted quanta is 
~ M, whereas according to Hawking's calculation the spectrum is continu­
ous with the characteristic wavelength of ~ M. This discrepancy was inves­
tigated in Ref. [90], and the resolution to the apparent contradiction follows 
from the uncertainty principle of quantum mechanics. Within the limits of 
the uncertainty principle Bekenstein's proposal and Hawking's semiclassical 
results can be regarded as special cases of the one and same theory of quan­
tum black holes. The difference between the spectra arises from the fact 
that Hawking's semiclassical theory describes black holes in the presence of 
the matter fields, whereas Bekenstein's proposal can be seen to follow from 
the quantum description of the vacuum black hole geometry itself. 

Now, if we adopt Bekenstein's proposal then one may think that the 
event horizon area is constructed from small patches each having an area ,,zi, 
and carrying one bit of information. Let us imagine O or 1 written on each 
patch. As the area of the horizon is A, the number of the equally probable 
configurations would be N = 2A/('yli1), and the corresponding Boltzmann 
entropy would be ( kB = 1) 

log2 
S = logN = -

12 A, (4.75) 
1' PI 

which gives the correct result (4.68) provided that 1 = 4 log2 [101, 102]. 
The above argumentation was originally intended to demystify the direct 
proportionality of black hole entropy and horizon area. The key incredient in 
the argumentation is its dependence on the uniformly spaced area spectrum. 
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4.4 Path Integral Approach to Black Hole Space­

times 

The essential difference between Hawking's and Bekenstein's approaches 
seems to be that the black hole entropy in the former case depends on the 
behaviour of the quantum matter fields and in the latter case the entropy is 
a purely geometrical quantity not depending on any matter fields present. 
This difference alludes that the black hole entropy may be an intrinsic prop­
erty of the black hole and more than just quantum field theory in curved 
spacetime. To show that the entropy really can be undestood as a geo­
metrical quantity we shall reproduce another calculation made by Hawking, 
namely, the path integral derivation of the black hole entropy [103, 104). 

4.4.1 Path Integrals in Non-Relativistic System 

The basic object in the path integral quantization of any system of particles 
is the propagator

( 4.76) 

which gives the probability amplitude that the particle is propagated from 
point Xi at time ti to point Xf at time t1 (t1 > ti)- lxi, ti) and lx1, t1) are the 
eigenstates of the position operator x in the Heisenberg picture at the initial 
and the final states of the system, i.e., the state Ix, t) := exp(i/li.Ht)lx), 
where iI is the Hamiltonian operator of the system. An essential feature 
of the path integral quantization is that the system could move from the 
initial spacetime point ( ti, x;) to the final spacetime point ( t f, x f) along any 
smooth classical path x = x(t) in spacetime. By the definition (4.76) the 
propagator K(x1, t1; x;, ti) gives the time evolution of the system: 

(4.77) 

where iI!i(x f, t1) and iI! 1(x f, t f) are the corresponding initial and final states 
of the system. Thus, in order to get the time evolution of the system in the 
path integral approach one has to obtain the propagator of the system. It 
was Feynman's idea that the propagator is [105] 

K(x1, t1; x;, t;) = f 'D[x(t)] exp { �S[x(t)]} , (4.78) 
paths 

where the integration is performed over all smooth paths x = x(t) joining 
the spacetime points (ti,Xi) and (t1,x1), 'D[x(t)] is a measure on the space 
of all smooth paths. S = ft�1 dtL(x(t),:i:(t);t) is the classical action of the 
system corresponding to the path x = x(t) and L is the Lagrangian of the 
system. 

In contrast to the canonical approach which is based on the Hamiltonian 
formulation, the path integral approach rests on the Lagrangian formulation. 
However, since the propagator gives the time evolution of the system the 
path integral approach should be equivalent to the canonical quantization, 
and indeed, by using the propagator (4.79) one can obtain the Schrodinger 
equation HiI!(t,x) = ili8/8tiJ!(t,x), and vice versa. 
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4.4.2 Path Integrals and Gravitation 

As we proceed to quantize the gravity the first task is to find the "gravita­
tional" counterparts of the concepts such as spacetime point, path, propa­
gator and configuration coordinates of the system. In Sec. 1.1 we already 
found that the concept of time in general relativity corresponds uniquely 
to a hypersurface Et of globally hyperbolic spacetime manifold M, and the 
concept of path, in general, is equivalent to the history of the system, which 
in geometrodynamics corresponds to spacetime geometry between two hy­
persurfaces Et; and Et 

1
. The configuration coordinates in general relativity 

are chosen to be the components of the three-dimensional metric tensor qab 

of the spacelike hypersurfaces Et , With these gravitational counterparts we 
can represent the propagator in quantized gravity as 

J (4. 79) 

4-geometries 

S[g
µ
v] is the gravitational action corresponding to the spacetime in between 

the hypersurfaces Et; and Et1 
and 9

µv is the metric of the spacetime. The 
hypersurfaces Et; and Et1 

are usually asymptotically flat or closed. We 
shall consider the path integral approach in asymptotically flat spacetimes 
and therefore the four-geometries of our spacetimes are bounded by two 
asymptotically flat spacelike hypersurfaces. 

Normally the gravitational contribution to the action without any matter 
fields present is taken to be the Einstein-Hilbert action (1.1). This action 
is zero for vacuum solutions, therefore one might suspect that the classi­
cal action for the Schwarzschild spacetime is zero. However, we have seen 
in Sec. 1.1 that the Ricci scalar R on the spacetime manifold M contains 
second derivatives of the metric 9µv, and these derivatives, in turn, can be 
transferred into the first derivatives of the metric by integrating by parts. 
When the spacetime is bounded or asymptotically flat there is no reason 
why the first derivatives should automatically cancel each other at the hy­
persurfaces Et; and Et 

1
, and if the derivatives at the boundaries are not 

the same then the gravitational action (1.1) is not an extremum. Therefore, 
in order to get a stationary action and correct field equations by varying 
the action with respect to the metric which vanishes on the boundaries but 
which may have non-zero first-order derivatives we must supplement S by 
the so-called Gibbons-Hawking boundary term [106] 

Batt= 
8
� J d3xKFq+C,

8M 

(4.80) 

where q is the determinant of the induced three-metric on the boundary 
and C is a term which does not depend on the four-geometry inside the 
boundaries, the integration is performed over the boundary of the region 
for which the action is being evaluated and K is the trace of the extrinsic 
curvature tensor Kab of the boundary given in Eq. (1.17). The nature of the 
C-term is quite difficult. C is a term that depends only on the boundary aM,

and in asymptotically flat spacetimes the boundary aM can be chosen to be 
the t-axis times a sphere ofradius r = r0• In other words, the boundary aM

can be obtained by joining the initial and final hypersurfaces Et; and Et 1 
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IR 

Figure 4.3: In the asymptotically flat spacetime the initial and final spacelike 
hypersurfaces are joined to form a timelike tube at large radius r0. Note 
that this region over which we perform the path integral is compact. 

by a timelike tube. The tube is illustrated in Fig. 4.3. Hence the boundary 
of the asymptotically flat spacetime can then be understood as a timelike 
three-cylinder IR x S2 with large radius r = ro. Now, it is natural to choose
C such that the contribution to the action S is zero when the spacetime 
metric 9

µv is the flat Minkowski metric T/
µv · In that case the surface term 

for the flat space is 

C = -� f d3xyCqK0 
, 

87r 
8M 

(4.81) 

where K0 is the trace of the extrinsic curvature tensor of the boundary 
imbedded in flat space. As a result, we substract off the surface term (4.81) 
for flat space and the surface term ( 4.80) for the surface S2

. Hence the 
correct vacuum spacetime action is 

S = l�7r [ / d4xR..j=g + 2 / d3xyCq (K - Ko)]
M 8M 

(4.82) 

To be able to evaluate the action ( 4.86) in general one should be able to 
imbed all kinds of curved boundaries in flat space, but there are surfaces that 
cannot be imbedded in any-dimensional flat spaces. However, in an asymp­
totically flat space case one can take the boundary surface asymptotically 
imbeddable as the radius of the two-sphere gets large enough. Therefore 
in the path integral approach for the asymptotically flat spacetimes we use 
non-compact and spatially asymptotically flat metrics, all of which can be 
written for large r in the form 

ds2 = - ( 1- 2:t) dt2 + ( 1 + 2A:r) dr2 + r2(d02 + sin2 0dq}) + O(r-2) . 

(4.83) 
Consider the Schwarzschild solution to the Einstein's field equation with 
mass M, then Mt = Mr

= M. Furthermore, ifwe choose the boundary 8M 
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to be the one illustrated in Fig. 4.3 then the extrinsic curvature tensor Kab 
for surfaces of constant r becomes 

1 oqab Kab = 2N or
( 4.84) 

where the induced three-metric qab on the timelike boundary is represented 
by the matrix 

0 
) 0 ' 

r2 sin2 0 
(4.85) 

and N = (1- 2M/r) 112. For the two-sphere ofradius r imbedded in the flat 
space the curvature scalar is K0 

= 2/r. Thus the surface term for a large 
radius r = ro is given by the non-zero integral 

(4.86) 

Hence the action for the asympotically flat spherically symmetric spacetime 
can be evaluated from the boundary represented by the timelike tube, and 
in the highest-order approximation it is 

( 4.87) 

In the path integral approach one has to take into account all the possible 
metrics. Therefore it is useful to expand the classical action in its Taylor 
series with respect to the variations of the metric ogµ11 about the background 

t . background th t t · th · · h" h · 1 · h me nc 9µv a ex rem1ze e action, 1.e., w 1c 1s so ution to t e
classical field equations: 

where the first-order term vanishes identically since the background metric 
is a solution to the field equations. The higher-order terms are expected 
to be finite but small corrections to the zeroth-order term. For this, as 
a matter of fact, very subtle reason, which we shall not discuss in length 
here, the main contribution to the action is given by the Gibbons-Hawking 
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boundary term. When all the possible asymptotically flat metrics are taken
into account the path integral (4.79) simply becomes 

J D[gµv] exp { �S[gµv]} = 

4-geometries 

I D[gµv] exp{-;:/ dt - iS2 [0gµ�
(ogµv)2 

- . . .  } (A.89)
4-geometries 

This path integral oscillates and probably will not converge. Because of this
we perform the so-called Wick rotation, where the time axis is rotated 90° 

making it imaginary. More presicely, we make the transformation

t � -iT ' ( 4.90)

As a consequence of the Wick rotation the metric on the purely imaginary
timelike boundary becomes positive definite, i.e., our pseudo-Riemannian
boundary of the spacetime manifold has become Riemannian, or the so
called Euclidean metric with the signature ( +, +, +, +). Therefore the action
S[gµv] in Eq. (4.88) becomes an Euclidean action:

I[gµv] = -iS[gµv] = /[gZ�kgroulltll + h[ogµv](Ogµv)2 + . . .  , (4.91)

where
(4.92)

The corresponding Euclidean integral turns out to be exponentially damping

J D[9µv] exp { �S[gµv]} =
4-geometries 

/ 1)[ l {
-M Id - h[ogµv](ogµv)2 - } 

gµv exp 2n, T n, . . . ;(4.93)
4-geometries 

here the integration is performed over all positive definite four-geometries
9µv that induce the given positive definite metric ( 4.85) on the timelike
imaginary boundary. 

It may seem that the Wick rotation is an 'ad-hoe' trick just to guarantee
converging path integrals. However, one may find some justification to the
trick from other than quantum field theories of gravitation when the path
integral approach is applied. When such a quantum field theoretical system
possesses non-converging path integrals, one usually introduces a new term
of the form iH/>2 into the Lagrangian density, if the field cp is to be quantized.
After performing evaluations of the converging integrals, f may be set to
zero. It is possible to show that this procedure is equivalent to a small
rotation of the time axis in the complex plane towards the imaginary time
axis. Such a rotation is also possible when the angle of rotation is taken to
be finite, for example, one may choose a rotation of an amount of 90° , which
is equivalent to the Wick rotation we performed.

After all the necessary calculations have been performed in the Euclidean
spacetime, the Euclidean results, in principle, could be analytically contin­
ued back to the Riemannian spacetime. However, this is not necessary, when
one is interested in the thermodynamical properties of the system.
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4.4.3 Propagators and Partition Functions 

Consider, for example, a one-dimensional, non-relativistic system of parti­
cles, which is represented by the complete set { <Pn} of eigenfunctions of the 
Hamiltonian operator iI of the system such that the eigenvalue equation 

( 4.94) 

and the orthonormality condition 

( 4.95) 

are satisfied. Then 

iJ! 1(x1, t1) = J dxi (X J, t1 lxi, ti)iJ!i(Xi, ti)

where 

= J dx; L(Xj, t1 l<Pn)(<Pnlx;, t;)iJ!i(X;, ti)
n 

= J dxi L (xii exp(-i/1iHt1 )l<Pn)(<Pnl exp(i/liHt;)lxi)iJ!i(x;, t;)
n 

= J dxi L exp(-i/liEnt J )(x J l<PnH<Pnlx;) exp(i/liEnti)iJ!i(Xi, t;)
n 

= J dx; L 4>;(x)4>n(x) exp[-i/liEn(tJ - ti)]iJ!i(X;, t;)
n 

= j dx;K(x1,t 1;x;,ti)iJ!i(Xi,t;), 

n 

(4.96)

is the propagator of the system given in the basis {<Pn}-
The density matrix of the system, in the basis { <Pn}, is usually defined 

as 
(4.98) 

n 

where fJ is a real number. The trace of the density matrix gives the partition

function of the system field configuration in thermal equilibrium with its 
surroundings with the temperature T. Let us show this: 

Trp(x1;xi) = J dxp(x;x) = J dx L<P;(x)4>n(x)exp(-f3En)
n 

L exp(-f3En) 
n 

z, (4.99) 

where Z, indeed, is called the partition function of the system (107]. Now, 
from statistical mechanics it is well known that Shannon's entropy S of the 
system is 

S = - L Pn logpn , (4.100) 
n 
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where Pn := exp(-/3En)/Z gives the probability that the system is in the 
state n. Therefore the entropy of the system is 

S = 

°" exp(-/3En) 
l 

. exp(-/3En)
- 0 z 

og 
z 

/3 L 
En expi-/3En) + log Z

/3(E) + log Z , (4.101) 

where (E) := Ln 
En exp1-f3En) is the expectation value of the energy of the

system. Since the inverse of the temperature of the system and the entropy 
of the system are related by the relation 

1 as 

T 8(E) ' 

we get from Eq. (4.101), in natural units, that 

!:... = /3 
T 

(4.102) 

(4.103) 

Hence, the partition function Z for the canonical ensemble consisting of 
the fields { <Pn } really describes the thermodynamics of the system at the 
temperature T = 1/ /3. Moreover, if one performs the Wick rotation, i.e., 
sets t1 - ti = -i/3 and requires the periodicity <Pn(xi) = <Pn(x1) in the 
propagator (4.97), and integrates over all possible spatial points one finds 
that the partition function Z is related to the propagator, which , in turn, 
is related to the path integral 

Z = Trp = f dxK(x, -i/3; x, 0) = f dx f V[x(t)] exp(-J[x(t)]) , 
paths 

(4.104) 
where the path integral is over all classical paths which are periodic with 
period /3 in imaginary time. 

As we transform this to the case of the gravitational fields {gµv }, then 
the partition function Z of the gravitating system at the temperature T is 
given by the path integral over all Euclidean metrics which have the period 
fJ = 1 /T in the imaginary time direction. More precisely, we have 

Z = f dgµv f "D[gµv ] exp(-l[gµv])/!i) (4.105) 

and when the initial and final hypersurface are not fixed, the integration 
J dqab may be included in the path integral, and therefore 

Z = f "D[9µv] exp(-I[gµv])/!i) . (4.106) 

We have already argued that the main contribution to the path inte­
gral (4.106) comes from the background metric. Moreover, if the spacetime 
background settles down to the Schwarzschild geometry, then the back­
ground action is zero everywhere but on the asymptotic boundary. Therefore 
the non-zero contribution to the path integral arises from the boundary of 
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the background spacetime. So the remaining crucial task in the evaluation 
of the partition function of the Schwarzschild background is to find out what 
is the period in the imaginary time of the Eucledian Schwarzschild space­
time. The Schwarzschild metric is given in Sec. 2.2 in Eq. (2.3). If we put 
t = -iT then the Schwarzschild metric becomes positive definite for r > 2M.

Because of the coordinate singularity at the event horizon, we define a new 
radial coordinate x = 4M(l - 2M/r)112 for r :2 2M, and substitute it into 
the Schwarzschild line element. Then the metric for x :2 0 becomes 

( X ) 2 ( r2 ) 2 

ds2 
= 

4M dT2 +
(2M)2 

dx2 + r2(d02 + sin2 0d<fi) , (4.107) 

which is singularity free at the point x = 0. If one compares the met­
ric (4.107) in the XT-plane to the flat space metric ds2 = dp2 

+ p
2d</>2 writ­

ten in the polar coordinates (p, </J) then one notices that the coordinates x 
and T behave like the polar coordinates provided that the coordinate T is 
not assigned the period 2rr but 81rM. The manifold defined by x :2 0 and 
0 � T � 81r M is called the Euclidean section of the Schwarzschild solution. 
On the Euclidean section the metric is positive definite, asymptotically flat 
and non-singular. 

As the Euclidean section of the Schwarzschild solution is periodic the 
boundary is not represented by the tube Ill x 82 but by the torus 81 x 82 

where the time axis is rolled. Hence the topology of the Schwarzschild solu­
tion changes when performing the Wick rotation. The path integral (4.106) 
is performed over all metrics that are periodic in the imginary time direc­
tion. Because the period in imaginary time coincides with 81rM, the time 
interval between the initial and the final metric on the boundary is given by 
the period fJ = 81rM. Thus the temperature of such metric configurations 
is 

T=--, 
81rM 

(4.108) 

which agrees with the Hawking temperature (4.58) corresponding to the 
radiation flux of matter fields caused by the collapsing spherically symmetric 
mass distribution. 

Because the background spacetime boundary is periodic with the period 
fJ = 81r M the Euclidean background boundary term contribution to the 
action I[gµv], according to Eq. (4.92), is

( 4.109) 

Then the highest-order contribution to the path integral for the partition 
function is exp[-,B2 /(16rr)], and the partition function itself takes the form

Z = N exp ( �::), (4.110) 

where 

N := I 'D[gµv] exp {- I2[8gµv�
(8gµv)2 

- V ((8gµv)3)} (4.111)
4 -geometries 

124 



The first term in Eq. {4.111) is the so-called one-loop term representing 
the effect of quantum fluctuations around the background metric caused 
by the quantization of gravitons [106). The higher-order terms cannot be 
renormalized-thus their infinite contribution is ignored altogether. We even 
ignore the one-loop correction to the action since we are interested in the 
thermodynamical properties of the background spacetime. Because of that 
the pure background contribution to the partition function {4.110) is 

(32
logZ = -­

l61r ' 
(4.112) 

and the entropy S corresponding to the background spacetime geometry, 
given by Eq. {4.100), is 

S fJ(E) + log Z 

fJ
Blog Z 

l z - -W-+og 

f3 (32

f3 81r - l61r 
81r M2 

- 41r M2 

= 41rM2 

!A
4 

{4.113) 

This is a most remarkable result and it agrees exactly with the Bekenstein­
Hawking entropy of black holes obtained by using the first law of black hole 
thermodynamics and considering the particle-antiparticle pair creation on a 
fixed background. 

What have we learnt from all of this? The lesson is that classical solu­
tions in general relativity contribute to the entropy, and therefore gravity 
has intrinsic entropy 1

. At first sight this seems rather peculiar since we 
have only one classical background metric that gives rise to a non-zero en­
tropy. This property is closely connected to the facts that general relativity 
allows the gravitational field to have different topologies and that the grav­
itational action is not scale invariant, i.e., the action transforms I --t k2 I

under the scale transformation 9
µv --t k2g

µv , where k is a constant. For 
more information about the implications of the scale transformation, see 
Ref. [103). 

The key to the non-zero entropy lies in the fact that the gravitational 
action of the Euclidean background metric is only fJ(E)/2 and not fJ(E). 
Since if the action were fJ(E) then the entropy of the background metric 
would be zero. This difference in the actions is explained by the different 
topologies of the Schwarzschild solution and the Euclidean section of the 
Schwarzschild solution. Hawking has shown that the total action of the 
Schwarzschild solution arises from four different surface terms of which the 
event horizon contributes the missing part /3(E) /2 of the action. The total 
action in that case is equal to fJ(E) which yields zero entropy as one would 
expect. On the other hand, we have just seen that the periodic spacetime has 
only one boundary two-sphere of radius r = r0 contributing /3 (E) /2 and, in 
particular, there is no boundary at the event horizon. The single boundary 

1 This is not a characteristic feature of other classical field theories. 
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of the periodic Schwarzschild spacetime gives rise to the action equal to 
/3(E) /2, yielding the entropy ¼A. Hence, from these qualitative arguments 
one can see that the entropy of the gravitational field is a consequence of 
different allowed topologies for the gravitational field. Moreover, the entropy 
can be seen as a consequnce of the existence of the event horizon, since the 
Euclidean Schwarzschild section does not include the event horizon nor the 
region r < 2GM, which gives rise to the action equal to /3(E)/2. Therefore 
one may think that neglecting this contribution is equal to as summing 
over all metrics for r < 2G M. If there were not an event horizon present 
in the background metric the corresponding entropy would then be zero. 
Therefore, the gravitational entropy ¼A can be regarded as an intrinsic 
entropy of the event horizon of the Schwarzschild black hole. 

Perhaps it is not so remarkable that similar results hold for Kerr-Newman 
black holes as well. The periodicity of the Euclidean section of stationary 
spacetimes is related to the surface gravity of the spacetime under consid­
eration. Such a relation is always shown to lead to an entropy equal to 
¼A. 

4.5 Further Properties of the Partition Function 

of the Schwarzschild Black Hole 

In this section we consider partition functions for the whole maximally ex­
tended Schwarzschild spacetime, i.e., Kruskal spacetime, and its right-hand­
side exterior region in the approach based on the Hamiltonian dynamics of 
such spacetimes. This problem has been investigated by Kastrup [108), and 
by Louko and Whiting [67], and by Bose et. al [68], and by Makela and 
Repo [15], and recently by Gour [109]. Kuchar gave a detailed analysis of 
the geometrodynamics of the classical Kruskal extension of the Schwarzschild 
spacetime [61], and Louko and Whiting adapted and applied Kuchar's analy­
sis to the region exterior of a Schwarzschild black hole in a box with timelike 
boundary (see Sec. 3.5.). It was shown in Ref. [67] that a boundary term 
associated with the bifurcation two-sphere in the Lorentzian Hamiltonian of 
the exterior region with the timelike boundary yields the black hole entropy 
after perfoming the Wick rotation to the Hamiltonian operator of the sys­
tem. Another way to look at the thermodynamics of these spacetimes is to 
consider the corresponding Lorentzian partition functions. 

In general, one of the major difficulties in obtaining a Lorentzian parti­
tion function of a thermodynamical system is that one needs to know the 
density of the energy eigenstates. One may expect that if one assumes that 
the hole has exp(¼A)-fold degeneracy in the quantum states of the en­
ergy, then the Lorentzian counterpart of the reduced Hamiltonian operator 
of the Kruskal extension of the black hole would give rise to the correct 
Bekenstein-Hawking entropy. In fact, this will be shown in this section. 
Furthermore, we shall see that the Bekenstein-Hawking entropy of a black 
hole is reproducable from the statistical mechanics of the exterior region of 
the Schwarzschild black hole spacetime, even if we assume that there is no 
degeneracy in the mass eigenstates of the hole. That we choose to investi­
gate the thermodynamics of the exterior region of the black hole spacetime 
may be justified on the grounds that the exterior region of the black hole is 
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separated from the interior region by a horizon. Hence, an external observer 
cannot make any observations on the interior region, and one is justified to 
take a point of view that, for such an observer, physics of a black hole is 
physics of its exterior region. 

4.5.1 Hamiltonian Thermodynamics 

Black holes can be considered as thermodynamical systems in a heat bath 
of temperature T [59, 110, 111, 112]. Therefore, if fI is the Lorentzian 
Hamiltonian operator of a black hole spacetime, the partition function of 
the system in a thermal equilibrium is 

Z = Tr exp(-/3H) , (4.114) 

where /3 = (kBT)-1
, kB is Boltzmann's constant and T is the temperature 

of the system in the heat bath. 
We first obtain the partition function corresponding to the whole maxi­

mally extended Schwarzschild spacetime. To do this, we have to substitute 
into Eq. (4.114) an operator counterpart flwhole of the Hamiltonian Hwhole· 

We saw in Sec. 3.5 that Hwhole = m. Because of that, we define the 
Hamiltonian operator of the whole maximally extended Schwarzschild space­
time to be flwhole := m. In Sec. 4.3.1 we saw that during the recent years 
there has been increasing evidence that the mass spectrum of the black hole 
spacetime might be discrete. If we denote these discrete mass eigenvalues of 
the mass operator m by mn (n = 0, 1, 2, .. . ) and the corresponding eigen­
vectors by lmn), we obtain the eigenvalue equation 

(4.115) 

W hen the discrete energy spectrum is employed, the partition function cor­
responding to the Kruskal spacetime becomes 

00 

Zwho!e(/3) = Trexp(-/3Hwho!e) = L exp(-/3mn) (4.116) 
n=O 

To actually calculate this partition function, we have to make two as­
sumptions about the density of the mass states of the spacetime and the mass 
spectrum itself. First, it is natural to assume an exp(¼A)-fold degeneracy in 
the possible mass eigenvalues mn of the hole. Since for a Schwarzschild black 
hole with mass m, A = 16-rrm2 holds, we are prompted to define g(mn) as 
the number of degenerate states corresponding to the same mass eigenvalue 
mn such that 

g(mn) = exp(41rm�) . (4.117) 

However, this definition is valid only at the semiclassical limit of the full 
quantum theory of gravity. Hence, our partition function for the Kruskal 
spacetime is a semiclassical approximation to the full partition function of 
a Schwarzschild black hole. Secondly, we have to assume that the mass 
eigenvalues mn of the hole obey a specific spectrum. Bekenstein made a 
proposal that the possible eigenvalues of the area of the event horizon of 
the black hole are of the form given by Eq. (4.70). When imposing this 
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proposal, we find that the partition function of the whole Schwarzschild 
black hole spacetime is 

� ( /3 fin 7n)Zwho!e(/3) =�exp -4y-;- + 4 
( 4.118) 

where the summation is performed over different mass eigenvalues only. The 
partition function (4.118) diverges very badly, indeed, and we shall investi­
gate this issue a bit later. 

Let us turn our attention to the partition function corresponding to 
the exterior region of the Schwarzschild black hole spacetime. To obtain 
the partition function for the exterior region, we replace the operator iI 
of Eq. (4.114) by an operator counterpart Hext of Hext and we require, as 
before, that the mass spectrum is discrete. The quantization of Hext is 
performed simply by replacing m with its operator counterpart m. Then,
from the point of view of the observer at the right-hand-side asymptotic 
infinity, one gets 

Hext = m - 2Nom2 
, (4.119) 

where we have, again, fixed the value of the lapse function such that N+ = 1. 
In contrast to our discussion concerning the partition function of the 

whole spacetime, we assume the mass eigenstates of the exterior region of 
the Schwarzschild spacetime to be non-degenerate. This assumption of non­
degeneracy will be justified by its consequences. We assume, again, that 
the possible eigenvalues of the area of the event horizon of the hole is given 
hy Eq. (4.70). This assumption fixes the spectrum of the ADM mass of 
the spacetime observed at the asymptotic infinity. When these assumptions 
are used for the exterior region of the Schwarzschild spacetime, we get the 
following partition function: 

� [ (1 fin No 7n)] 
Zext (/3) = � 

exp -/3 4 y -;- - 8-;- (4.120) 

which also diverges. 
We have obtained two diverging partition functions (4.118) and (4.120) 

for the Kruskal spacetime and for its right-hand-side exterior region. Kas­
trup has suggested some very original and interesting solutions to the diver­
gency problem [108]. Gour, in turn, successfully investigated Schwarzschild 
black hole as a grand canonical ensemble [109]. Our solution to this problem 
is to study not the partition functions of spacetime itself but, instead, the 
partition function of the radiation emitted by the hole. First, according to 
the semiclassical picture, Hawking radiation is created by means of quantum 
mechanical processes just outside the black hole horizon [72]. To make use 
of our idea to consider partition functions of the radiation, we must assume 
that black holes evaporate in a reversible way, i.e., when black holes evapo­
rate in a time-symmetric way they send out radiation in es ways [113]. In 
other words, we assume that the entropy of the Schwarzschild black hole 
is converted exactly into the entropy of the radiation. The validity of this 
assumption has been investigated by Zurek [114]. His conclusion was that 
if the temperature of the heat bath is the same as that of the hole, then the 
black hole evaporation is a reversible process. This is exactly the case in our 
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approach to black hole thermodynamics, since we assumed that the black 
hole is in a thermal equilibrium in a heat bath. Let us put this assumption 
into practise. First, we choose the zero point of the energy emitted by the 
hole. This could be done in many ways, but we choose the total energy of 
the radiation emitted to be zero when the hole has evaporated completely 
leaving nothing but radiation. With this choice of the zero point of the to­
tal energy of the radiation, we find that the relationship between the energy 
Erad emitted by the hole and the mass m of the Schwarzschild black hole 
measured at the asymptotic right-hand-side infinity is 

Brad = -m (4.121) 

Note that the zero point of the energy emitted by both the Kruskal and 
the exterior region spacetime can be chosen to coincide because the distant 
observer outside the hole observes the same energy Brad. 

Since all the entropy of the hole is assumed to be converted into the en­
tropy of the radiation by means of reversible transitions between the energy 
eigenstates of the hole, the degeneracy of the energy of the radiation is, up 
to a normalization, the same as is the degeneracy of the black hole energy 
eigenstates. This means that, in the case of Kruskal spacetime, the num­
ber of degenerate states corresponding to the same total energy emitted by 
the hole since its formation up to the point where the Schwarzschild black 
hole has totally evaporated, is exp(¼Ao), where Ao is the initial surface area 
of the black hole event horizon, measured just before the hole has begun 
its evaporation, whereas in the case of the exterior region of Schwarzschild 
spacetime the number of degenerate states corresponding to the radiation 
energy of the hole is always zero. The number of the degenerate states cor­
responding to the same total energy emitted by the hole since its formation 
up to the point where the Schwarzschild mass has achieved the value mn, 
is given by a function grad(mn)- In a reversible proceses, all the entropy of
the hole is exactly converted into the entropy of the radiation emitted by 
the hole. In that case we may choose the function grad(mn) for the Kruskal 
spacetime to be 

( 4.122) 

This expression satisfies the intuitive properties of the degeneracy of the 
radiation energy eigenstates: grad(mn) increases when mn decreases and 
the decrease of the black hole entropy from ¼ A to ¼ ( A - dA) increases the 
number of degenerate states of the radiation emitted by the hole by a factor 
exp(¼dA). Moreover, this choice reflects the fact that just after the hole 
has been formed, and not yet radiated, the entropy of the radiation is zero, 
whereas the entropy is ¼A after the hole has evaporated completely. 

Now, since Erad 
= -m and HwholP. = m, we argue that 

and, also 

( 4.123) 

( 4.124) 

since all the energy of the exterior region is assumed to be converted into 
the energy of the radiation. 
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After quantizing the Hamiltonians (4.123) and (4.124), we can use ex­
actly the same procedure as before to obtain our partition functions for the 
radiation. Eqs. (4.114), (5.61), (4.122), (4.70) and (4.123) yield 

Z{vh�Ie(J3) = exp GAo) � exp ( qpJ- '4n) ( 4.125) 

This partition function describes the radiation emitted by the Schwarzschild 
black hole. It is easy to see that z:h�le converges very nicely. The simi­
larly obtained partition function corresponding to the exterior region of the 
Schwarzschild spacetime is 

rad (
1 

) 
� 

[ /3 
( 

fin No ,n)] 
Zext (/3) = exp 4 Ao ;;;ti exp 

4 V -;- - 2-;-
' (4.126) 

which, when keeping No fixed, converges, too. Here we have chosen an 
appropriate normalization constant to the partition function. This is al­
lowed, since the normalization does not have any effects on the measurable 
thermodynamical quantities, like the temperature, of the system. 

At the semiclassical limit the mass m of the hole is assumed to be very 
large. This implies, because of Hawking's expressions for the black hole 
temperature, that (3 is also very large. Thus, at the semiclassical limit, we 
may approximate the sums (4.125) and (4.126) by integrals [115): 

and 

z�
a

h�Ie (/3) � exp G Ao) 1
00 

dn exp ( q fJ - ,4n)
= exp GAo) { � + � [1 +erf (4�)] (4.127) 

xexp(!:)} (4.128) 

Z!!? (/3) � exp GAo) 100 

dn exp [ q ( pJ- �o 1;)]

exp GAo) { ,;�
o 

+ �v1 (;J 312 
[ � (4.129) 

+ �erf ( s!J 
112

] exp ( 8!0) } , ( 4.130) 

where erf(x) is the error function. 
If we choose 

then 

27T 
No = /3 , (4.131) 

( 4.132) 

This is a very interesting result. It should be noted that this result in not 
just an artefact of an approximation of a sum by an integral, but it holds 
even for exact expressions (4.125) and (4.126). We shall shortly discuss some 
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of the possible consequences of our result at the end of this section. Let us, 
in the meantime, try to justify Eq. (4.131). 

It was noted by Bose et al. that when Einstein's field equations are 
satisfied, the quantity No can be expressed as N0 = r;,�I [68), where T is 
the Schwarzschild time coordinate, i.e., the Killing time t is the global time 
coordinate, and r;, = 4;,, is the surface gravity of the black hole. If we now
foliate the spacetime near the black hole horizon such that the foliation 
is determined by the Schwarzschild time coordinate T, then �I = 1, and 
No = 4;,,. This kind of a foliation is justified on the grounds of our aim
to describe the black hole thermodynamics from the point of view of a far­
away observer at rest: The Schwarzschild time coordinate is just the time 
coordinate used by our external observer at rest when he makes observations 
on spacetime properties. This observation prompts us to make two more 
requirements: If one requires that, at the semiclassical limit, 

1 
No ;:;; 

4(m) '

and that the the energy expectation value of the radiation is: 

then - as noted in Ref. [68) - one gets 

( 4.133) 

(4.134) 

(4.135) 

where C is a constant of integration. At the semiclassical limit this reduces 
to 

fJ;:;; 4C(m) , (4.136) 

where the constant C can be chosen to be 2-ir, since it is well known from 
the semiclassical calculations that /3 = 8-ir(m). Now, substituting this into 
Eq. (4.133), we get the No of Eq. (4.131). Hence, if we use a Schwarzschild 
-type foliation right from the beginning, we can obtain, up to a constant,
our choice (4.131). In other words, the meaning of the choice (4.131) is that
the spacetime foliation near the horizon of the Schwarzschild black hole is,
in the semiclassical limit, determined by the Schwarzschild time coordinate
T. 

If Eq. (4.131) holds z:h�Ie and Z!;f coincide at the semiclassical limit, 
and the semiclassical partition function of the radiation observed by an 
external observer at asymptotic infinity is 

zrad (/3) ;::; exp -Ao - exp -( 
1 

) 
2/3 

( 
/32 )

4 'Y 16-ir 
(4.137) 

It is easy to show that the upper bound for the absolute error made, when 
replacing the sums (4.125) and (4.126) by integrals (4.128) and (4.1::l0) is, in 
the leading order approximation, exp(l/4A0 + /32 /16-ir). If one compares the 
result (4.137) to the absolute error made when replacing the sums by inte­
grals, one notices that, for very large /3, the fractional error is much smaller 
than unity. Hence, in the leading order approximation, the resulting parti­
tion function (4.137) approximates the sums (4.125) and (4.126) very well 
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and, most importantly, the effect of the error bars on the thermodynamical 
quantities is negligibly small. 

When calculcating the entropy srad of the radiation and the first-order 
correction to Srad , one uses Eqs. (4.130), (4.133) and (4.135). This calcula­
tion gives the following corrected semiclassical entropy of radiation: 

5rad = 
a 

lnZ -,8-lnZ 
8,8 

-(Ao -A)+-1nA+1n - --+-A-
1 1 (4fo) 127 129 1 

4 2 'Y 64 4096 

+O A- exp --A+ - ---A-( 1/2) ( 1 1 1 1) 
4 64 4096 

( 4.138) 

Hence, when the area of the black hole has shrinked from Ao to A, the 
entropy carried away by the radiation is, in the leading order approximation, 
¼(A0 -A). Under the assumption that the black hole radiation is a reversible 
process, this result is compatible with the Bekenstein-Hawking expression for 
black hole entropy: A decrease in the area by an amount Ao -A decreases 
the entropy of the hole by an amount ¼{Ao - A). The error made when 
approximating the sum by an integral causes an error in the entropy which 
is of the order O (A-112).

It is most interesting that, in Lorentzian spacetime, the Bekenstein­
Hawking entropy of the Schwarzschild black hole can be attained by con­
sidering the exterior region of the black hole only, without assuming any 
degeneracy for the mass eigenstates of the hole. Implications of this result 
are far from clear to us but they might point to the direction that interpre­
tation of black hole entropy as something else than just as a logarithm of the 
number of microscopic states of the gravitational field corresponding to the 
same macrostate could also be worth of at least a tentative consideration. 

4.6 Black Hole Thermodynamics in String Theory 

and Quantum Geometry 

Physicists have made many brave attempts to explain the thermodynamical 
properties of black holes in a precise statistical mechanical manner and, 
in particular, reproducing the semiclassical Bekenstein-Hawking entropy is 
usually used as a preliminary test when counting the black hole microstates. 
Currently there are two ambitious theories under development that have 
been succesful in counting the black hole microstates and reproducing the 
correct black hole entropy. These theories are called the string theory and the 
loop quantum gravity or quantum geometry. In this section we shall shortly 
discuss these theories and their application to the black hole entropy. 

4.6.1 Black Hole Entropy in String Theory 

In a conventional field theory particles are considered pointlike fundamen­
tal objects, whereas in string theory a one-dimensional object called the 
string takes the role of the fundamental object. When a string moves in a 
higher-dimensional flat spacetime it forms a two-dimensional "world sheet" 
which has an intrinsic geometry gµv (µ, v = 1, 2). The coordinates Xµ of the 
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world sheet points in a higher-dimensional spacetime can be considered as 
configuration variables of the theory and the string action can be written in 
terms of these variables. After finding the action for the string and matter 
fields on the string, the resulting string theory can be quantized as usual. 
The quantized string theory has certain infinities. When one requires that 
the infinities should vanish at the one-loop level then, remarkably, one finds 
that the background geometry of the finite quantized string theory must 
obey Einstein's field equations. Especially, when one considers the one-loop 
term in five dimensions, one finds that the string theory has five-dimensional 
black hole solutions. In other words, this particular model of string theory 
is two-dimensional quantum field theory possessing five-dimensional black 
hole solutions. These "stringy" black holes have a notion of event horizon 
and they emit Hawking radiation as well. In other words, the concept of 
black hole entropy can be assigned to these black hole solutions also. An in­
teresting question then is, provided that the entropy of the five-dimensional 
black holes agrees with the Bekenstein-Hawking entropy, what is the mi­
croscopic origin of entropy of the five-dimensional black holes. By counting 
the number of the string states corresponding to the black hole solution 
Strominger and Vafa [116, 117] managed to derive the Bekenstein-Hawking 
entropy. While the string theory seems to have an explanation to the origin 
of the black hole entropy, the explanation was first provided for extremal 
black holes only. Since then string theorists have managed to count the 
quantum states of the string corresponding to the non-extremal black holes 
as well [118]. In spite of the great success, string theoretical approaches have 
some serious problems. First of all, it seems that the black hole entropy for 
extremal black holes could be zero [119, 120, 121, 122] and not ¼A since the 
surface gravity � is zero for extremal holes. Secondly, there is no physical 
reason why one should use more than four spacetime dimensions. 

4.6.2 Black Hole Entropy in Loop Quantum Gravity 

The idea in loop quantum gravity is to quantize general relativity. So loop 
quantum gravity is a quantum theory of spacetime itself. Therefore the the­
ory cannot be formulated as a quantum field theory on spacetime, because 
there is no background metric in which spacetime evolves. However, loop 
quantum gravity is quantum field theory in spacetime without the metric. So 
far the main merit of loop quantum gravity is that it provides a mathemat­
ically consistent formulation of a background independent non-perturbative 
covariant quantum field theory of gravity. Especially, the theory has certain 
geometrical Hermitian operators such as the area and volume operator. The 
area operator is diagonal in the spin network states [13], and the area of a 
surface is determined by the spins on the lines that puncture the surface. 
The number of ways to obtain the same area is the exponential of the area 
times a still unknown constant. Thus, loop quantum gravity succeeds in 
calculating the microscopical states corresponding to the area, and espe­
cially, it succeeds in calculating the microscopical origin of the black hole 
entropy corresponding to the black hole event horizon [13]. The unknown 
constant should coincide with 1/4, but to obtain it, one should be able to 
find the classical limit of the theory. To find this limit one should be able 
to deal with the dynamics of the loop quantum gravity, but this aspect of 
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the theory is not yet fully understood and therefore the factor 1/4 is not 
yet accounted for. The loop quantum gravity approach to quantum gravity 
appeals relativists more than the string theory, but it has its own problems 
too. The whole construction of the loop quantum gravity is based on more 
or less convenient choices. Perhaps the most disturbing choice is made when 
the basis of the Hilbert space is taken to be the spin network basis [13]. 
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Chapter 5 

Quantum-Mechanical Models 

of Black Holes 

5.1 Quantum-Mechanical Model ofReissner-Nord­

strom Black Holes 

After finding the classical Hamiltonian (3.141) that reflects the dynamical
properties of Reissner-Nordstrom spacetimes, we are now prepared to go
into the Hamiltonian quantization of such spacetimes.

5.1.1 Quantum Theory with Charge as an External Param­

eter 

First we shall consider the electric charge as an external parameter of the
theory. In what follows, we shall adopt a particular class of Hamiltonian
quantum theories. More precisely, we choose our Hilbert space to be the
space L2(JR+ ,a5da) with the inner product 

(-it,1l'/P2) := l
xi 

-ip�(a)-ip2(a)a5 da , (5.1)

where s is some real number. Through the substitution Pa --+ -id/da we
replace the classical Hamiltonian H of Eq. (3.127) with the corresponding
symmetric Hamiltonian operator

(5.2)

Since the numerical value of the classical Hamiltonian His the total (ADM)
energy of the Reissner-Nordstrom hole, we can view the eigenvalue equation

H-ip(a) = E-ip(a) (5.3)

as an eigenvalue equation for the total energy of the hole, from the point of
view of a distant observer at rest.

Before going into the detailed analysis of Eq. (5.3), let us pause for a
moment to investigate some qualitative aspects of that equation. One finds,
by substituting M for E, that Eq. (5.3) can be written in the form

a-s:a
(as-l:a

)-ip(a) = (�
2 

+a-2M)-ip(a) (5.4) 
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As one can see, the function ( ff- + a - 2M) is negative, when r _ < a <
r +, and positive (or zero) elsewhere. Semiclassically, one may therefore 
expect oscillating behaviour from the wave function 'lj;(a), when r _ < a < 
r +, and exponential behaviour elsewhere. Hence, our system is somewhat 
analogous to a particle in a potential well such that a is confined, classically, 
between the outer and inner horizons of the black hole. What happens 
semiclassically is that the wave packet corresponding to the variable a is 
reflected from the future inner horizon. As a result we get, when the hole is 
in a stationary state, a standing wave between the outer and inner horizons. 
Thus, the classical incompleteness, associated with the fact that our foliation 
is valid only when -1rM :s; t :s; 1rM, is removed by quantum mechanics: in a 
stationary state there are no propagating wave packets between the horizons, 
and our quantum theory is therefore valid in any moment of time. 

Let us go into the detailed analysis of the eigenvalue equation (5.3). To 
begin with, we see, as in Ref. [66], that if we denote 

X .- a3/2 , 

'lj; .- x-rx(x)

where we have defined 

2s -1 
s�2 r .- 6 

7-2s
s<2 r .- --

6
-; 

then Eq. (5.3) takes the form: 

� [-.!!!_ r(r - 1) i ( 2/3 !f._)] _ 
8 dx2 + x2 + 9 

x 
+ x2/3 

x(x) - Ex(x) 

The Hilbert space is L2(�+ , dx) with the inner product 

(x1lx2) := L
xi 

xi(x)x2(x) dx

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

It was shown in Ref. (14] that the energy spectrum in Eq. (5.9) is discrete, 
bounded below, and can be made positive. From the physical point of view, 
the semi-boundedness and positivity (in some cases) of the spectrum are 
very satisfying results: the semi-boundedness of the spectrum implies that 
one cannot extract an infinite amount of energy from the system, whereas 
the positivity of the spectrum is in harmony with the well-known positive 
energy theorems of general relativity which state, roughly speaking, that 
the ADM energy of spacetime is always positive or zero when Einstein's 
equations are satisfied. However, one can prove even more than that, and 
to show it we have to introduce the so-called WKB approximation [123] to 
the solutions of differential equations. The WKB approximation is reviewed 
in Appendix A. 

5.1.2 Solution of the Energy Eigenvalue Equation for Large 

Energies and Charges 

In this subsection we evaluate the large eigenvalues of the Hamiltonian op­
erator iI which was written in Eq. (5.2). This leads us to the eigenvalue 
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equation (5.3) as we have already seen. We shall find the large eigen­
value solutions of the eigenvalue equation by using the WKB approximation
method when both IQI and E2 - Q2 are, in natural units, much greater
than unity and, in addition, we demand that r _ 2: 1 or, which is the
same thing, (2E - 1)/Q2 ::; 1. The basic idea is to match the WKB ap­
proximation with an expression of the wave function in terms of modified
Bessel functions close to the point where a = 0. The results used here on
the matching of the WKB wave function and the Bessel function approx­
imations close to the turning points are widely known - see for example
Ref. [124] - and therefore we shall use them without any special review.
Cases r = 1/2, r 2: 3/2, r = 7/6, 7/6 < r < 3/2 and 1/2 < r < 7/6
will be discussed separately. First we shall look for the general solution
1/J(a), when the argument a is very small, i.e., IQla « 1. After that we shall
search for the solution for "slightly bigger" a, i.e., IQla ::; M, where M is
an arbitrary positive number.

To begin with we recast the eigenvalue equation (5.9) in an appropriate
manner. If we substitute into Eq. (5.9)

a .- x
2f3

x .- a-114u(a)

we get

(5.11)
(5.12)

(5.13)

where r is defined in Eqs. (5.7) and (5.8). Eq. (5.13) is invariant under the
transformation r ➔ 1 - r; thus it is sufficient to consider solutions of the
eigenvalue equation (5.13) for r 2: 1/2. As a consequence the inner product
of Eq. (5.10) becomes 

(u1lu2) = fo
00 

ui(a)u2(a)a da (5.14)

We shall solve Eq. (5.13) when E2 -Q2 
» 1, IQI » 1 and (2E-1)/Q2 ::; 

1. For very small a, the linearly independent solutions to Eq. (5.13) are,
when r > 1/2 and r -:f, 7/6,

Aa(3/2}r[a-lf4 + O(a7f4)] ,
= Ba-(3/2}r[a

5f4 + O(a13/4)] ,
(5.15)
(5.16)

where A and B are constants. The case r = 1/2 will be considered later
in this section, and if r = 7 /6 then the term proportional to a-(3/2}r+I3/4 

in Eq. (5.16) must be multiplied by a term proportional to ln(½IQla). The
leading term, however, is the same as in Eq. (5.16) when r > 1/2.

By writing
x= IQla ,

we get from Eq. (5.13)

[.!!!.__ _ (!r - ¼H!r - i) _ _ x2 2Ex] 
_ 

dx
2 x2 1 

Q4 + IQl3 u(x) - 0
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Now the terms proportional to x2 and x are asymptotically small at large IQI,
whenever x E (0, M], where M is an arbitrary positive constant. Omitting
these last terms we get

when the substitution (5.17) is inversed. The general linearly independent
solutions are, when ½(r -1/2) is not an integer, modified Bessel functions
of the first kind, up to an overall normalization constant:

al/2 I�(r- 1/2}(1Qla) '
= a112 I-!(2-1;2)(IQJa) ·

If !(r -1/2) is an integer then the general solutions are, similarly,

a112I!(r-1/2)(IQJa) ,

al/2 K �(r-1/2/IQJa) '

(5.20)

(5.21)

(5.22)

(5.23)

where Kp is the modified Bessel function of the second kind of order p.

1. Case r 2: 3/2

We first consider the case r 2: 3/2. Throughout the discussion we shall
assume that E2 - Q2 > 0. The solutions (5.15) and (5.16) to Eq. (5.13) are
normalizable with respect to the inner product (5.10) only if the constant B
vanishes. Now, a comparison with the asymptotic behaviour of the modified
Bessel functions of Eqs. (5.20) and (5.21) for small a implies that the only
normalizable solution for small a is 

(5.24)

when ½(r -1/2) is not an integer. If ½(r -1/2) is an integer, a comparison
with Eqs. (5.22) and (5.23) gives similarly that the leading term is the same
as in Eq. (5.24). To verify this, the Bessel functions must be expanded as
their small a series. If we fix 81 , 02 > 0 such that 01 :S a :S 02 , the asymptotic
large IQI behaviour of u(a) is, up to a normalization constant,

u(a) ci (27rlQl)-112 exp(IQJa) (5.25)

for all r 2: 3/2. From now on, the symbol ci is used for the asymptotic form
at large IQI, up to a possibly (E, Q)-dependent coefficient.

After a very small, small, and slightly bigger argument a we enter into the
region a E (0, a_), where a_ is the smaller turning point that for large E and
JQI satifies a_� r -· Our aim is now to use the WKB approximation method
to the wave function in the region in question. The WKB approximation
corresponding to such a wave function u(a), which decreases to the left of
the turning point a_, is

uwKB(a) = [p1(a)r 112 exp[- l
a

_ P1(a')da1 +771] , (5.26)
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where 
( ) ✓ 2 

(3/2r - 1/4)(3/2r - 5/4) 2E Q2 
Pl a = a + 

2 
- a+ a (5.27) 

The major problem in the WKB approximation involves the evaluation of 
the integral (5.26). It turns out, however, that it is not necessary to evaluate 
the WKB integral (5.26) at all: We are interested in solutions for small a, 
i.e., IQla « 1 and such solutions can be achieved easily by Taylor series.
In the evaluation of the series it should be clear that E2 - Q2 and IQI are 
assumed to be very large and (2E - 1)/Q2 � 1. Furthermore, we assume
that a 2: o1 such that of is negligible. The integral in the exponent in
Eq. (5.26) is

S(a) := - la_ da' ✓ 
a'2 + Q2 - 2Ea' - (3/2r - 1/4l,�3/2r - 5/4) . (5.28)

With the help of Eq. (5.28) the exponent for small a in Eq. (5.26) can be 
written as 

(5.29) 
where S' denotes ��. Hence for small a, we have for the WKB wave function, 
given by Eqs. (5.26) and (5.29), 

(5.30) 
when the constant 'T/l in Eq. (5.26) takes the form 

(5.31) 
This connects the WKB solution with the asymptotic solution in Eq. (5.25). 
In other words, the WKB solution decreases exponentially to the left of the 
turning point a_. 

We next enter into a region with oscillations. We let the energy E to 
be so large that the eigenvalue equation has two turning points. We denote 
them like before as a_ and a+ · It should be clear that a_ :::::: r _ and a+ :::::: r +, 
when E2 - Q2 and IQI are large enough. The region of oscillations is far 
right of r _ and far left of r +· As the wave function decreases exponentially 
right of the larger turning point and left of the smaller turning point, the 
WKB approximation to the solution, according to Eqs. (A.17) and (A.18), 
can be written far right of r _ as 

and far left of r + as 

where 

p2(a) := J-a2 + 2Ea _ Q2 1 _ (3/2r - l/4)(3/2r - 5/4)
a'2 ( -a'2 - Q2 + 2Ea') 
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The wave functions above are equal if 

(5.35) 

where n :::: 0 is an integer. This integral fixes the levels of the spectrum of 
the Reissner-Nordstri:im black hole. 

In the evaluation of the WKB integral (5.34), E2 - Q2 and \Q\ are 
assumed to be very large. We can expand the second square root in its 
Taylor series as the first square root is of order O(E2 - Q2) and the second 
term in the second square root is of order 0(1/(a_ 2 J E2 - Q2)). Thus we 
can write the integral as 

S=l
a

+ da [J-a2- Q2
+ 2Ea-

(3/2r-1/4)(3/2r-5/4) 
- . . .  ] .

a_ 2a2 J-a2 - Q2 + 2Ea 
(5.36) 

Now that a_ = r _ +0(1/r _ 3) and a+ = r +-0(1/r + 3), the evaluation of the 
integral S can be done by parts, and by replacing the limits a_ and a+ by r _ 
and r + the second integral gives us a term of the onler of O ( E / Q3), which,
on the grounds of the requirement (2E - 1)/Q2 :S 1, is small compared 
to the first term. Thus the second term can be omitted from S. In the 
evaluation of the third term from r _ to r + the integral does not converge. 
We therefore have to alter the integration region near the turning points by 
cho osing a couple of constants, namely, 83, 84 > 0 such that we are able 
to restrict the argument a in the region a_ < r _ + 83/(E2 - Q2) 118 :S a :S
r + - 84/(E2 - Q2) 118 < a+ for large enough E2 

- Q2. Then the limits can
be replaced by r _ + 83/(E2 - Q2)118 and r + - 84/(E2 - Q2)118. Now the
third term in the integral S gives us a term, which is at most of the order of 
O(r _ -4(E2 - Q2)-114), which is small compared to the first term and can
thus be omitted. The remaining integral is elementary and we obtain 

(5.37) 

This yields for large energies and charges, when r � 3/2 and r _ :::: 1, the 
WKB estimate 

E2 - Q2 ~ 2n + 1 + o(l) 

2. Cases 7/6 < r < 3/2 and 1/2 < r < 7/6

(5.38) 

Now we are in a situation where we cannot just exclude either of the inte­
gration constants A or B in Eqs. (5.15) and (5.16) on the grounds of the 
normalizability of the wave function. However, the self-adjointness [125] of 
the Hamiltonian operator implies the following boundary condition for the 
solutions u1 ,2(a): 

1. [ 
*( ) 

du2(a) dui(a)
( )] 0 1m u1 a -- ----u2 a = a➔O da da {5.39) 

Here u1 and u2 are two linearly independent, non-degenerate eigenfunclium;. 
As shown in Eqs. (5.15) and (5.16) the differential equation flu(a) = Eu(a) 
has two small a solutions which satisfy all those conditions stated above 
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- at least when E2 
- Q2 > 0. It is easy to show that, for very small

a, the eigenfunctions of a self-adjoint Hamiltonian operator behave, up to
normalization, as 

u(a) � cos(0)a<312)r-l/4 + sin(0)a-(3/2)r+5/4 , (5.40)

where 0 E [0, 7r) is a parameter to be fixed later. Comparing the small
a expansions of Eq. (5.40) with Eqs. (5.20) and (5.21) we can adjust the 
constants A and B such that u(a) behaves asymptotically the following
manner: 

u(a)cxa1!2 [2!(r-l/2lr(3/2r + 3/4)IQ1-½<r-l/2) cos(0)I!(r- 1/2)(1Qla)

+r ½<r-1/2lr(-3/2r + 5/4)IQI ½(r- 1/2) sin(0)I_!(r-1/2) (IQla)] (5.41)

When 0 = 0, the second term in Eq. (5.41) vanishes and we can proceed
just as in the case r � 3/2 from which it follows that the WKB estimate is
given by Eq. (5.38). When 0 =I= 0 the second term in Eq. (5.41) dominates
at large IQI and the asymptotic behaviour is as in Eq. (5.25). Therefore the
WKB estimate is again given by Eq. (5.38). 

3. Case r = 7/6

When r = 7 /6, the number ½(r-1/2) becomes an integer and the general so­
lution of Eq. (5.19) includes modified Bessel functions of the second kind as
shown before. Furthermore, we cannot rule out either of the adjustable con­
stants A or Band therefore we have to keep both the solutions in Eqs. (5.22)
and (5.23). As before we get from the boundary condition (5.39) that at
least when E2 

- Q2 > 0 the eigenfunction of a self-adjoint Hamiltonian
operator is, for small a, 

u(a) � sin(B)a-1/2 
+ cos(0)a312 , (5.42)

where again 0 E [0, 7r) is a parameter.
After expanding the general solution of Eq. (5.19) when a is small we

have that u(a) is asymptotically 

u(a) ex a112 [(2 cos(0)IQl-1 - sin(0) IQl1')li (IQla) + sin(0)IQIKi(IQla)] , 
(5.43)

where 1' is Euler's constant. When 0 = 0 the term proportional to a112 K1 (IQla)
vanishes and we get the same WKB estimate as before in Eq. (5.38). On the 
other hand, when 0 =I= 0, the term proportional to a112 Ii (IQla) dominates
for large IQI and the situation is quite the same as before. The resulting
WKB estimate is therefore given by Eq. (5.38). 

4. Case r = 1/2

When r = 1/2 we can no more write the solutions of Eq. (5.19) as powers
of small a, because of the loss of linear independence of the solutions (5.15)
and (5.16). By using the boundary condition (5.39), however, and expanding
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the general solution of Eq. (6.37) as u(a) = a112 [C Io(IQla) + D Ko(IQla)] 
for small a, we notice that Eq. (5.41) can be replaced by 

u(a) ex IQl114a112 [(cos(0) - sin(0)('y + ln(�IQl)))Io(IQla) - sin(0)Ko(IQla)] . 
(5.44) 

For any 0 the term proportional to a112 Io(IQla) dominates the term pro­
portional to a112 Ko(IQla) for large charges, and the asymptotic behaviour 
is given by Eq. (5.25). Thus the WKB result is, again, given by Eq. (5.38). 

It should be noted that we have not investigated what happens when the 
condition (2E - 1)/Q2 ::; 1 following from the requirement r _ � 1 does not 
hold; i.e., when Q is arbitrarily small when compared to E. In that case, 
however, one expects that the WKB eigenenergies given by Eq. (5.38) should 
be replaced by those given in Ref. [66] for the Schwarzschild black hole. On 
the grounds of the results of Ref. [66] it is likely that the eigenvalues of the 
quantity JE2 - Q2 are of the form v'2n even when IQI is arbitrarily small 
compared to the black hole energy E.

We have shown that the analysis of Eq. (5.61) will yield the result that 
when IQI » 1 and E2 - Q2 

» 1, such that r _ � 1, the large eigenenergies 
En have a property 

E';. - Q2 
~ 2n + 1 + o(l) , (5.45) 

where n is an integer and o(l) denotes a term that vanishes asymptotically 
for large n. We have tested the accuracy of this WKB estimate numeri­
cally, and we have found that, up to the term 1 on the right hand side of 
Eq. (5.45), the WKB estimate (5.45) gives fairly accurate results even when 
IQI and n are relatively small (i.e., of order ten).1 In other words, it seems 
that the eigenvalues of the quantity J E2 - Q2 are of the form v'2n in the 
semiclassical limit. 

5.1.3 Positiveness of the Spectrum of the Quantity E2 - Q2 

In this subsection we shall investigate the possible positiveness of the spec­
trum of the quantity E2 - Q2 . Cases r = 1 /2 and r � 3 /2 and 1 /2 < r < 3 /2 
will be considered separately. 

1. Case r � 3/2

Let u(a) be an eigenfunction of Eq. (5.13) with any eigenvalue E2 - Q2 . 

Now, when r � 3/2, we have, up to a well-chosen normalization constant, a 
small a expansion to the eigenfunction u(a), given by Eq. (5.15) as u(a) =
a<312)r[a-¼ + O(a714)]. It is clear that u(a) and u'(a) are both real-valued 
and positive. Therefore the eigenfunction is positive and real-valued for 
sufficiently small a. It is easy to see that the eigenvalue equation (5.13) can 
be written as 

Let us assume that E2 - Q2 is not strictly positive, i.e., E2 - Q2 ::; 0. In 
that case Eq. (5.46) implies that u"(a) > 0 for all a such that u(a) > 0. 

1We thank Dr. Matias Aunola for performing this numerical analysis to us. 
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Since both u(a) and u'(a) are positive for sufficiently small a, the positivity 
of u"(a) whenever u(a) is positive implies that u'(a), and hence u(a), are 
increasing functions of a. Because of that, we have lima-+oo u{a) > 0 and 
u(a) is not normalizable. Hence we must have E2 

- Q2 > 0. 

2. Case 1/2 < r < 3/2 

Here we shall show that it is possible to find self-adjoint extensions of the 
Hamiltonian operator such that the spectrum is strictly positive. This corre­
sponds to an appropriate choice of the parameter 0 introduced in Eq. (5.40). 
We have already shown that when 7 /6 < r < 3/2 and 1/2 < r < 7 /6 the 
extensions take, up to an overall normalization constant, for small a the 
form given in Eq. {5.40), where the parameter 0 specifies the self-adjoint 
extensions. 

We consider first an extension with 0 E [O, 7r /2]. By taking E2 
- Q2 in 

Eq. {5.46) to be negative or zero, we get, when u(a) is positive,

{5.47) 

To find a possible lower bound for u(a) we therefore consider an equation 

Now when r > 1/2 the general solution of Eq. {5.48) is 

f(a) = Aa(3/2)r-1/4 + Ba-(3/2)r+5/4 ,

{5.48) 

{5.49) 

and we see that if we choose A = cos 0 and B = sin 0 then f (a) coincides 
with the small a solution (5.40). Since u(a) is positive for sufficiently small 
a when both cos 0 and sin 0 are positive, we find that the solution u( a) is 
equal or greater than the solution f (a) for all a ?: 0 when O $ 0 $ 7r /2. 
Hence the solution u(a) does not vanish exponentially as a goes to infinity. 
Yet, the potential increases without bound as a increases towards infinity; 
therefore any eigenfunction must vanish exponentially at large a. Hence the 
spectrum must be strictly positive. 

As to the remaining range 0 E (7r /2, 7r) we refer to the results of Ref. [66], 
which state that the energy spectrum is bounded from below. 

3. Case r = 1/2

For r = 1/2, Eqs. {5.47) and {5.48) still hold and Eq. (5.49) must be replaced 
by the solution 

u(a) = (cos0- sin0)a112 
- sin0a112 ln a . {5.50) 

W hen 0 = 0, f (a) is positive for all a?: 0 and one can proceed as before. 
In the remaining range O < 0 < 'lr, the energy spectrum is bounded from 

below on the grounds of the results presented in Ref. [66]. 
We have shown that the eigenvalue equation (5.9) implies that when 

r ?: 3/2, the eigenvalues of the quantity 

E2 -Q2
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are strictly pos-itive, and when 1/2:::; r < 3/2, the eigenvalues of the quantity 
E2 - Q2 can, again, be made positive by means of an appropriate choice of 
the boundary conditions of the wave function x(x) at the point x = 0 or, 
more precisely, by means of an appropriate choice of a self-adjoint extension. 

5.1.4 Quantum Theory with Charge as a Dynamical Variable 

We proceed to quantize the charge, and we choose our Hilbert space to be 
the space £2 (JR+ x IR, a5 da db) with the inner product 

( 5.51) 

Through the substitutions Pa -+ -i f
a 

and Pb -+ -ii,; we replace the classical 
Hamiltonian Hof Eq. (3.127) with the corresponding symmetric operator 

(5.52) 

As in Sec. 5.1.1, we can view the corresponding eigenvalue equation H'ljJ =
E'ljJ as an eigenvalue equation for the total ADM energy of the Reissner­
Nordstrom black hole, from the point of view of a distant observer at rest. 

The eigenvalue equation fI 'ljJ = E'ljJ can be separated if we write 

'ljJ(a, b) := cp(a),B(b) , 

and we get 

(5.53) 

(5.54) 

(5.55) 

Eq. (5.54) is identical to Eq. (5.61), which is an eigenvalue equation for the 
total energy of the hole when Q is treated as an external parameter, whereas 
Eq. (5.55) can be understood as an eigenvalue equation for the square of the 
electric charge Q of the hole. When the eigenfunctions ,B ( b) are chosen to be 
the harmonic oscillator eigenfunctions, we find that the possible eigenvalues 
of Q2 are of the form 

Q% = 2k + 1 , (5.56) 

or, in SI units 
e

2 

Q% = (2k + 1 )- , 
a 

(5.57) 

where k = 0, 1, 2, 3, .... In this equation, e is the elementary charge, and 

e2 1 
a:=---;::::-

41re01ic 137 (5.58) 

is the fine structure constant. In other words, our theory implies that the 
electric charge of the Reissner-Nordstrom black hole has a discrete spectrum. 
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5.2 Quantum-Mechanical Model of Kerr-Newman 

Black Holes 

After discussing the classical Hamiltonian theory of stationary spacetimes 
containing a Kerr-Newman black hole in Sec. 3.4, we are prepared to consider 
the canonical quantum theory of such spacetimes. In what follows, we shall 
concentrate on a specific class of canonical quantum theories. More precisely, 
we define the Hilbert space to be the space L2 (�+ x � x �, R

5 dRdudv) with 
the inner product 

(5.59) 

Through the substitutionspR ➔ -i/
R

,Pu ➔ -ifu andpv ➔ -fv we replace
the classical Hamiltonian of Eq. (3.258) by the corresponding symmetric 
operator 

- 1 a ( a ) 1 82 1 82 1 u2 v2 

H := 2R-s 
8R 

Rs

-
1 
oR 2R8u2 2R8v2 + 2 R+ 2R + 2R

. (5-60)

This operator may be viewed as the Hamiltonian operator of Kerr-Newman 
black holes. Its eigenvalues are eigenvalues of the ADM energy E of such a 
hole, from the point of view of a far-away observer at rest. The eigenvalue 
equation in question takes the form 

[ 
1 8 

( 
8 

) 
1 82 1 82 l u2 v2 ] 

2
R

-
s

8R 
R

s

-
1

8R 2R8u2 2R8v2
+

2
R +

2R +
2R 

w(R,u,v)

= Ew(r, u, v)(S.61) 

This equation is one of the main results of this thesis. In a certain sense, 
it can be considered as a sort of a "time-independent Schrodinger equa­
tion of all the possible black holes", and w(R, u, v) as the wave function of 
black holes. Specifying to the quantum theories, where s = l, we find that 
Eq. (5.61) takes a particularly simple and beautiful form 

1 
( 

a2 a2 a2 
2 2 2) 

2R -8R2 
- au2 

- av2 + R +u +v '11(R,u,v) =E'll(R,u,v).

(5.62) 
If we write 

(5.63) 
we find that Eq. (5.61) can be separated into eigenvalue equations for M,

Q2 and a2 : 

[ 
l

R
_' d 

(Rs-1 d
) l

R 
Q2 a2

] .11 ) -2 dR dR + 2 + 2R + 2R ""R = M'l/1.,R) '(5-64)

(- d�2 + u
2) <p1(u) = Q2<p1(u) ,(5.65)

(-::2 + v
2) <p2(v) a2<p2(v) . (5.66)

Consider Eq. (5.64), the eigenvalue equation for the ADM mass M of 
the hole, in more details. It can be written as 

(5.67) 
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As one can see, the function 
Q2 a2 
-+-+R-2M 
R R 

is negative when r _ < R < r + and positive (or zero) elsewhere. Semiclassi­
cally, one may therefore expect oscillating behaviour from the wave function 
when r _ < R < r + and exponential behaviour elsewhere. Hence, our system 
is somewhat analogous to a particle in a potential well such that R is con­
fined, classically, between the outer and inner horizons of the Kerr-Newman 
black hole. What happens semiclassically is that the wave packet corre­
sponding to the variable R is reflected from the inner horizon. As a result, 
we get, when the hole is in a stationary state, a standing wave between the 
outer and inner horizons. Thus the classical incompleteness, associated with 
the fact that our foliation is valid only when -1rM � t � 1rM, is removed 
by quantum mechanics: In a stationary state there are no propagating wave 
packets between the horizons and our quantum theory is therefore valid at 
any moment of time.

When a = Q = 0, we have a Schwarzschild black hole, and the inner 
horizon is replaced by the black hole singularity: The wave packets are no 
longer reflected from the inner horizon but from the singularity. Again, we 
have a standing wave in a stationary state and the quantum theory is valid at 
any moment of time, but the wave lies between the Schwarzschild horizon 
and the singularity. As such there is an interesting resemblance between 
the properties of Eq. (5.61) and those of the Schri:idinger equation of a 
hydrogen atom: When the hydrogen atom is in an s-state where the orbital 
angular momentum of the electron orbiting the proton vanishes, the electron 
should, classically, collide with the proton in a very short time. Quantum 
mechanically, however, the wave packet representing the electron is reflected 
from the proton, and finally the electron is represented by a standing wave,
which makes the quantum theory of the hydrogen atom valid at any moment
of time. In a Schwarzschild black hole, the proton is replaced by the black 
hole singularity, and the distance of an electron from the proton is replaced 
by the throat radius R of the hole. Nevertheless, the solution provided by 
quantum theory to the problems of the classical one is similar for both black 
holes and hydrogen atoms. 

We shall now enter the detailed analysis of the eigenvalue equation (5.64). 
To begin with, we see that if we denote 

X := R3/2 , 
'Ip := x(l-2s)f6x(x) ,

and define 
2s -1 

, s � 2p .-

6 
7 - 2s

p 6 ,s < 2 

then Eq. (5.64) takes the form 

9 
[ 

d2 p(p - 1) 4 
( 2;3 Q2 

+ a2 )] _ 
8 -dx

2 + x2 + g x + x2/3 x(x) - Mx(x) ·

146 

(5.68) 
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(5.70) 

(5.71) 

(5.72) 



This equation has been analyzed in details in Sec. 5.1. The only difference 
between Eq. (5.72) and Eq. (5.9) is that Q2 has been replaced by Q2 + a2

. 

Hence one just replaces Q2 by Q2 
+ a2 in the results obtained for Eq. (5.9) 

in Sec. 5.1. 
As in Ref. [66), one can show that the spectrum of Mis discrete, bounded 

from below, and can be made positive. Furthermore, one can show that the 
eigenvalue equation (5. 72) implies that when p ?:'. 3/2, the eigenvalues of the 
quantity 

M2 -Q2 -a2 

are strictly positive, and when 1/2 :S: p < 3/2, the eigenvalues of the quantity 
M2 -Q2 -a2 can again be made positive by means of an appropriate choice 
of the boundary conditions of the wave function x(x) at the point x = 
0 or, more precisely, by means of an appropriate choice of a self-adjoint 
extension. Moreover, the WKB analysis of Eq. (5.72) yields the result that 
when Q2 

+ a2 
» 1, and M2 - Q2 - a2 

» 1 such that r » l, the WKB 
eigenvalues Mn have a property 

M; -Q2 
- a2 

~ 2n + 1 + o(l) , (5.73) 

where n is an integer and o(l) denotes a term that vanishes asymptotically 
for large n. A numerical analysis of Eq. (5. 72) yields the result that, up to 
the term 1 on the right hand side, Eq. (5. 73) gives fairly accurate results 
even when JQ2 + a2 and n are relatively small (i.e., of order 10). In other 
words, it seems that the eigenvalues of the quantity J M2 

- Q2 
- a2 are of 

the form )2n in the semiclassical limit.
Before considering the implications of Eq. (5.73), let us calculate the 

spectra of Q and a from Eqs. (5.65) and (5.66). As one can see, Eq. (5.65) 
is exactly the same as Eq. (5.55). Hence the eigenvalues of Q2 are given by 
Eq. (5.56). 

Let us turn our attention to Eq. (5.66) which gives the spectrum of a2. 
As for the electric charge, we find that the possible eigenvalues of a2 are 

or, in SI units, 

af = 2l + 1 

!iG 
af = (2l + 1)- , 

C 

(5. 74) 

(5.75) 

where l = 0, 1, 2, . . .. Again, one observes that the quantity under consider­
ation is quantized in such a way that Ii is multiplied by an integer. Putting 
Eqs. (5.56), (5.73) and (5.74) together we find that, semiclassically, the mass 
eigenvalues of the black hole are 

Mm ~ v'2m (5.76) 

or, in SI units, 
Mm ~�Mp1, (5.77) 

where 
m := n + l + k = 0, 1, 2, . . .  , (5.78) 

and 

Mp1:= (5.79) 
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is the Planck mass. 
Consider the angular momentum spectrum of black holes. We observe 

from Eqs. (5.75), (5.77) and (5.78) that the possible eigenvalues of the an­
gular momentum J = Ma of the hole are, semiclassically, of the form 

Jn,l,k ~ ±2Jl(l + n + k)fi . (5.80) 

For an uncharged black hole where k = 0 we therefore find, in the limit of 
extremality where l » n, that the angular momentum eigenvalues are of the 
form 

(5.8 1) 

where mj = 0, ±2, ±4, .... 

5.3 Concluding Remarks 

In this chapter we have considered two particular quantum-mechanical mod­
els concerning Reissner-Nordstrom and Kerr-Newman black holes. Our anal­
ysis of Kerr-Newman spacetimes produced Eq. (5.61) which, in a certain 
very restricted sense, may be considered as a sort of "Schrodinger equation 
of black holes". That equation gives, in the context of our Kerr-Newman 
black hole model, the mass, the electric charge and the angular momentum 
spectra of Kerr-Newman black holes. When the angular momentum is zero, 
the "Schrodinger equation" gives the mass and the electric charge spectra of 
Reissner-Nordstrom black holes. In fact the results presented in Sec. 5.1 can 
be obtained from the results given in Sec. 5.2. Moreover, our "Schrodinger 
equation of black holes" gives the results found in Ref. (66] for Schwarzschild 
black holes. 

Eq. (5.61) implied that the mass, the electric charge and the angular 
momentum spectra of black holes are discrete. Moreover, it implied that 
the mass spectrum is bounded from below and can be made positive. By 
means of a choice of an appropriate self-adjoint extension we showed that 
the spectrum of the quantity 

where a is the angular momentum per unit mass of the hole, is always 
positive. 

Now, how should we understand these results? The positivity of the spec­
trum of the quantity M2 

- Q2 
- a

2 has an interesting consequence regarding 
Hawking radiation: If one thinks of Hawking radiation as an outcome of a 
chain of transitions from higher- to lower-energy eigenstates, the positivity of 
the spectrum of M2 -Q2 -a2 implies that a non-extreme Kerr-Newman black 
hole can never become, through Hawking radiation, an extreme black hole 
with zero temperature, as well as in the case when a = 0 the positivity of the 
spectrum of M2 

- Q2 implies that a nou-exlreme Reissuer-Nonfotrom black 
hole can never become, through Hawking radiation, an extreme Reissner­
Nordstrom black hole with zero temperature. These results are in agreement 
with both the third law of thermodynamics and the qualitative difference 
between extreme and non-extreme black holes. One may consider this as a 
strong argument in favor of our models. 
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The spectra of the quantities M, Q and a have interesting consequences 
regarding the area spectrum of black holes. As it is well known, the area of 
the outer horizon of a Kerr-Newman black hole is 

(5.82) 

whereas the area of the inner horizon is 

(5.83) 

Using Eqs. (5.73), (5.74) and (5.56) we observe that the semiclassical eigen­
values of the quantity 

(5.84) 

which we shall call, for the sake of convenience, the total area of a black 
hole, are of the form 

A�i,k ~ l61r(2n + 21 + k) (5.85) 

or, in SI units, 
A�l,k ~ l61r(2n + 21 + k)zi1 , (5.86) 

where 

(5.87) 

is the Planck length. In other words, we have obtained a result which is 
closely related, although not quite identical to Bekenstein's proposal (4.70). 
In other words, we have obtained a result which states that the total area 
of the hole, with,= l61r, instead of the area of its inner horizon, is quan­
tized as in Eq. (4.70). (In contrast to our result (5.86) and to Bekenstein's 
proposal (4.70), in (126] C. Vaz and L. W itten interestingly found that the 
difference between the outer and inner horizon areas is quantized in integer 
Planck units.) Later in this section we shall consider in more details the 
possibility that it is perhaps the total area, and not the area of the outer 
horizon nor the difference between the outer and inner horizon areas, which 
should be an integer in Planck units. A similar result holds for the Reissner­
Nordstrom black hole horizon areas: The area of the apparent horizon of 
the Reissner-Nordstrom hole is, in natural units, 

(5.88) 

and 
(5.89) 

is the area of the inner horizon. We get 

(5.90) 

where 
(5.91) 

is the area of an extremal black hole. Eq. (5.38) now gives the spectrum of 
the total area of the horizons: 

(5.92) 
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Although our result about an equal spacing for the spectrum of the 
sum of the horizon areas may have certain esthetic merits, it also involves 
some problems. For instance, the fact that the mass eigenvalues are of the 
form -Jim, which, together with the fact that Q and a have similar spectra, 
implied the area spectrum under consideration, also implies that the angular 
frequencies of quanta of Hawking radiation emitted in transitions between 
nearby states is 

(5.93) 

For Schwarzschild black holes this is something one might expect because 
the Hawking temperature of such a hole is given by Eq. ( 4.58), and therefore 
it follows from Wien's displacement law that the maximum of the thermal 
spectrum of black hole radiation corresponds to the angular frequency 

1
Wmax ex 

M 
(5.94) 

In other words, the angular frequency associated with the discrete spectrum 
of Hawking radiation as predicted by our model, behaves, as a function of 
M, in the same way as does the angular frequency corresponding to the 
maximum of the thermal spectrum as predicted by Hawking and others (see 
Eq. (4.61)). 

Unfortunately, this nice correspondence between Hawking's result and 
our model breaks down when Q or a are different from zero. In that case 
the Hawking temperature (4.58) of the black hole is 

TH = [ � 2 ] ' 
21r ( M + J M2 -Q2 - a2) + a2 

(5.95) 

and one finds that the maximum of the thermal spectrum corresponds to 
the angular frequency 

JM2 -Q2-a2 

Wmax CX: ----'--------�2�-

( M + J M2 _ Q2 _ a2) + a2 

(5.96) 

In other words, the angular frequency (5.93) predicted by our model corre­
sponds, when the hole is near extremality, to a temperature which is much 
higher than the Hawking temperature. 

However, there may be a possible way out of this problem. In all our 
investigations we have emphasized the importance of the dynamics of the 
intermediate region between the horizons of the black hole. The dynamics of 
this intermediate region is, in our model, responsible for the discrete eigen­
values of the mass, electric charge and angular momentum of the hole. Now, 
if we take this point of view to its extreme limits we are tempted to spec­
ulate that both of the horizons of the hole, acting as the boundaries of the 
intermediate region, may participate, in one way or another, in the radiation 
process of the black hole. In other words, both of the horizons may radiate. 
The radiation emitted by the inner horizon is probably emitted inside the 
inner horizon, and is therefore not observed by the external observer. Nev­
ertheless, an emission of this radiation is likely to reduce considerably the 
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number of quanta, and hence the temperature, of the radiation coming out 
from the hole: The more the inner horizon radiates, the less quanta are left 
for the outer horizon. 

Let us give up for a moment our resistance to this most charming temp­
tation and have a play with the thought that both of the horizons have an 
important role in black hole radiation. For instance, one might consider one 
quarter of the total area of the hole as a sort of "total entropy" of the hole: 

(5.97) 

Moreover, one might be inclined to define a temperature T corresponding 
to this entropy (whatever that means) such that 

1 8Stot 
T:= BE ) 

and one finds, quite unexpectedly, that 

1 
T = 81rM

.

(5.98) 

(5.99) 

In other words, we have recovered the Hawking temperature of the Schwarz­
schild black hole (see Eq. (4.58)). This expression is the same for all black 
holes, and it is inversely proportional to the mass M of the hole. It may well 
be that all this is just meaningless play with symbols, without any physical 
content, but nevertheless the idea that it is the total area, and not the 
area of the outer horizon, which is of fundamental importance in black hole 
quantum mechanics, appears to possess remarkable internal consistency: If 
the total area of the hole has equal spacing in its spectrum, one expects the 
temperature of the hole to be inversely proportional to the mass M, and 
this result is recovered if the total entropy of the hole is taken to be one 
quarter of not the area of the outer horizon but of the total area of the hole. 
These ideas might be worth of a more detailed investigation in the future. 

The WKB spectrum (5. 73) has yet another property which is of some 
interest. It follows from the mass formula of black holes that the ADM mass 
of a rotating electrovacuum black hole is, from the point of view of a distant 
observer at rest [127, 124), 

K, M 
= 41r 

A + 4>Q + nJ (5.100) 

In this equation, r;, is the surface gravity, A is the area of the (outer) horizon, 
41 is the electric potential of the hole, and n is the angular velocity of the 
horizon. For a Kerr-Newman black hole we have 

K, 

21r(r+-r-) 
A 

(5.101) 

<I> 
Qr+ 

(5.102) 
= r! +a2 '

n 
a

(5.103) 
= r2 

+ a2 

+ 

Eq. (5. 73) implies that the WKB eigenvalues of the quantity 4: A are of the 
form ffn,. The physical interest of this result lies in its charge independence. 
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In other words, the spectrum of the quantity y;,A/41r is the same for the Kerr­
Newman, Reissner-Nordstrom and Schwarzschild black holes. Moreover, 
one may be tempted to regard the quantity <I>Q as a sort of electromagnetic 
energy, 0.J as a sort of rotational energy, and ,,,A/ 41r as a sort of gravitational 
energy of the hole. Hence the gravitational energy appears to have the same 
spectrum whether or not the hole is charged or rotating or neither. Such a 
feature is not posed by Bekenstein's proposal (4.70). 

Consider the charge spectrum (5.56). It is interesting that the electric 
charge of the primordial Reissner-Nordstrom and Kerr-Newman black holes 
is quantized in terms of the "Planck charge" e / fo in exactly the same way 
as the quantity J M2 

- Q2 
- a2 is quantized in terms of the Planck mass 

mp1 := (hc/G)112, i.e., it is proportional to ,/2n. In fact, one may have
very mixed feelings about the physical validity of the charge spectrum of 
Eq. (5.56): For elementary particles at least, the electric charge Q itself, 
instead of its square Q2 , is an integer. Because of that it might appear at 
the first sight that the charge spectrum we have just obtained contradicts all 
the possible observations and expectations, and should therefore be rejected 
on physical grounds. 

Such a conclusion, however, would be much too rapid. Firstly, elemen­
tary particles are certainly not black holes because for them !QI » M. Sec­
ondly, a dimensional investigation reveals that the charge spectrum (5.56) 
is exactly what one expects for primordial black holes: when one writes the 
electric charge in terms of the natural constants 1:0, Ii and c, one finds that 
the natural unit of electric charge is the so called "Planck charge" 

Qp1 := J 41r1:olic . (5.104) 

One observes that the square Qi1 
of the Planck charge Qp1, instead of the 

Planck charge Qp1 itself, is proportional to h. Now, for bounded systems, 
the observed quantities usually tend to be quantized in such a manner that 
when we write that quantity in terms of the natural constants relevant to the 
system under consideration, then Ii must be multiplied by an integer in the 
spectrum. In a hydrogen atom, for instance, the relevant natural constants 
are 1:0, Ii, e and the mass me of the electron. From these quantities one may 
construct a natural unit of energy in a hydrogen atom: 

and one expects the energy to be quantized such that the energy eigenvalues 
are of the form 

E 
mee 

n = -'Y 
(41r1:0)2fi2n2 

, (5.105) 

where 'Y is some pure number and n is an integer. Indeed, if we take 'Y = 1/2, 
we get exactly the correct energy spectrum for the hydrogen atom. Now, 
for black holes the only natural constants we are allowed to use are, in SI 
units, Ii, c, G and 1:0. Hence, the Planck charge Qp1 of Eq. (5.104) is the 
natural unit of charge for black holes, and therefore one expects that the 
square of the electric charge, instead of the charge itself, must be an integer. 
In other words, the charge spectrum (5.56) is exactly what one expects for 
primordial black holes. 
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In addition to the dimensional arguments, there is yet another reason 
why the electric charge of the black hole does not necessarily have the same 
spectrum as ordinary matter. Consider the conformal diagram of Fig. 3.2 
of the Reissner-Nordstri:im black hole. It is easy to see that the spacelike 
hypersurfaces t = constant never touch the singularity R = 0 of the black 
hole. From this it follows that the lines of force of the electric field on these 
hypersurfaces neither begin nor end anywhere (if they did, they would do 
so at the singularity R = 0). Beacuse of that it is not possible to talk about 
the electric charge of a primordial black hole in the same sense as we talk 
about electric charge of ordinary matter: For ordinary matter the charge 
lies at the point where the lines of force of the electric field either begin or 
end but for primordial black holes no such point exists. Hence it appears 
that what an external observer observes as the "electric charge" of the black 
hole is a consequence from the geometrical and causal properties of a black 
hole spacetime, rather than from the properties of matter. Since the electric 
charge of the black hole is not necessarily connected with the electric charge 
of ordinary matter, it does not necessarily have the same spectrum, either. 

Consider the angular momentum spectrum (5.74). As one can see, the 
angular momentum spectrum of black holes, as predicted by our theory is, 
at least in the limit of extremality, exactly what one might expect. Even 
the fact that the angular momentum J is an even number, is in harmony 
with our expectations: When the black hole performs a transition from one 
angular momentum eigenstate to another, a graviton is emitted or absorbed. 
Because the spin of a graviton is two, one might expect that the angular 
momentum of the black hole could change only by an even number. For 
instance, one may show, quite rigorously, that when a system consisting of 
two mass points revolving around their common center of mass emits or 
absorbs a graviton, the angular momentum quantum number of the system 
can change only by an even number (see the next chapter). Because of 
that, the angular momentum spectrum given by Eq. (5.81) for extremal 
black holes may be used as a very strong argument in favor of the physical 
validity of our quantum-mechanical model of black holes. 

Unfortunately, our model also appears to contain a very serious problem 
regarding the angular momentum spectrum: According to Eq. (5.80) the 
angular momentum of a black hole is not in general an integer times the 
Planck constant Ii. Should we be worried because of this result? 

The answer to this question is: Not necessarily. The usual rules for 
the quantum mechanics of angular momentum follow from the symmetries 
of flat spacetime, and spacetime containing a Kerr-Newman black hole is 
certainly not flat. In curved spacetime the angular momentum eigenvalues 
of a system do not necessarily have the same properties as they would have 

in flat spacetime. 

To illustrate this fact by a simple example, consider a particle moving 
in a conelike spacetime geometry (see Fig. 5.1). The z-component Lz of the 
angular momentum eigenvalues may be calculated from the equation 

(5.106) 

from which it follows that the angular momentum eigenfunctions are of the 
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Figure 5.1: A particle moving in a conelike spacetime geometry. When the 
cone is stretched on a plane, the deficit angle £ appears. As a result of 
the appearance of this deficit angle, the periodic boundary condition for the 
angular momentum eigenfunction '1/J(ef;) is '1/J(</J + 21r - c) = '1/J(ef;). 

form 
(5.107) 

where C is a constant. In flat spacetime the period of w(ef;) is 21r, producing 
the usual angular momentum spectrum. In a conelike spacetime geometry, 
however, the period of W is not 21r but 21r - E, where € is the deficit angle of 
the cone (see Fig. 6.3). In other words, we must have 

w(</J + 21r - 1:) = w(efJ) , (5.108) 

and therefore the angular momentum eigenvalues are of the form 

(5.109) 

where mz = 0, ±1, ±2, .... In other words, the angular momentum of a 
system is not necessarily an integer times the Planck constant in curved 
spacetime. 

As a final test of our model, we find that the possible eigenvalues of the 
area A ext : = 41r ( Q2 + 2a 2) of an extreme Kerr-Newman black hole are of the 
form 

(5.110) 

In other words, we have recovered Bekenstein's proposal (4.70), with 1 = 81r, 
for a black hole near extremality. One can also see from Eq. (5.85) that even 
when the electric charge and the angular momentum are made dynamical 
variables, the spectrum of the total area of the horizons of the Kerr-Newman 
hole is the same as, according to Bekenstein, is the area spectrum of the outer 
horizon of the hole. However, it should be noted that when k is very big, 
the difference between two successive charge eigenvalues is 

(5.111) 

and we find that we have, in practice, continuous charge spectra. 
To conclude, our quantum-mechanical models of Reissner-Nordstrom 

and Kerr-Newman black holes appear to involve several physically sensi­
ble properties but also some problems. For instance, the claim that Kerr­
Newman spacetime and our phase space variables satisfy the assumptions 
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of Regge's and Teitelboim's theorem has been left unproved. The proper 
analysis of the Hamiltonian dynamics of Kerr-Newman spacetimes along 
the lines shown by Kuchar for Schwarzschild spacetime should therefore be 
performed [61]. However, we have shown that the assumptions of Regge's 
and Teitelboim's theorem hold for the Reissner-Nordstrom spacetimes. 

Another problem is, whether the quantum mechanics of black holes can 
be described with a sufficient accuracy by means of a model having just 

two or three independent degrees of freedom. In other words, are the mass, 
the electric charge and the angular momentum spectra obtained from our 
model reliable? When answering this question one can just say that at least 
the spectra are such as one might expect on semiclassical and dimensional 
grounds. As to the problems related to the statistical origin of black hole 
entropy and things like that our model says nothing. 

A somewhat analogous situation can already be met with in ordinary 
quantum mechanics. Consider a hydrogen atom. In elementary textbooks, 

the only degrees of freedom under consideration are the three degrees of 
freedom associated with the electron going around the proton. In more ad­
vanced textbooks, however, a student is revealed that not only should one 
quantize the degrees of freedom associated with the electron but also the de­
grees of freedom associated with the electromagnetic field. As a result, one 
gets an enormous number of degrees of freedom associated with the virtual 
photons and electron-positron pairs appearing as an outcome of the quanti­
zation of the electromagnetic field. In other words, although classically we 
have, in effect, only the degrees of freedom associated with the electron, the 
full quantum theory with quantized electromagnetic field reveals an enor­
mous number of particles and an enormous number of degrees of freedom. 
However, the whole contribution of all these additional degrees of freedom 
to the energy levels of the hydrogen atom is very small. Now, something 
similar may happen with black holes: classically, the number of relevant de­
grees of freedom is very small, but when the full quantum theory of gravity 
is employed, an enormous amount of degrees of freedom are likely to appear. 
Hence, one may feel tempted to regard the relationship between our model 
and the full quantum theory of black holes as somewhat analogous to the 
relationship between the treatments of a hydrogen atom in elementary and 
advanced textbooks: quantization of the three degrees of freedom of the 
classical Kerr-Newman hole corresponds to the quantization of the three de­
grees of freedom associated with the electron going around the proton in a 
hydrogen atom. Whether the additional degrees of freedom appearing as a 
likely outcome of the full quantum theory of black holes have great or small 
effects to the energy levels of the hole is an open question. However, given 

the enormous pace of progress in the current research in black hole physics, 
one may hope for a definite answer in the not so distant future. 
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Chapter 6 

Microscopic Black-hole Pairs 

Some years ago Hawking and others introduced an interesting idea about 
a possible spontaneous creation of virtual black-hole pairs [113, 119, 128, 
129, 130]. This process would be analogous to the spontaneous creation 
of electron-positron pairs in quantum electrodynamics, and the members 
of the black-hole pairs would presumably be Planck-size objects. As it is 
well known, electrons and positrons may sometimes, in very favorable condi­
tions, form a system called positronium, in which an electron and a positron 
revolve around their common center of mass. The possibility of a sponta­
neous creation of black-hole pairs, then, gives rise to some very interesting 
questions: Could the black hole pairs sometimes form systems, analogous to 
positronium, where two microscopic black holes revolve around each other? 
What are the possible quantum states of such systems? What happens when 
the system performs a transition from one quantum state to another? Could 
one observe these transitions? 

These are the questions which will be addressed in this chapter. Actually, 
such questions were raised already, among others, by Novikov and Frolov in 
their book [127]. In this chapter, however, we shall consider these questions 
in details. We shall consider the simplest possible case where the members 
of the pair are Schwarzschild black holes, both having the same mass M.

In general, the problem of quantization of a system containing a black-hole 
pair presents immense difficulties: Indeed, even the classical solution to 
Einstein's equations describing a spacetime containing two black holes is 
unknown. However, if the two microscopic black holes are sufficiently far 
away from each other, they can be considered, to a very good approximation, 
as point-like particles moving with non-relativistic speeds. Moreover, the 
gravitational interaction between the holes can be described by the good 
old Newtonian theory of gravitation. Hence, the quantum mechanics of the 
black-hole pair is described by the non-relativistic Schrodinger equation 

(6.1) 

whereµ:= ½Mis the reduced mass of the system, and Eis its total energy. 
r is the distance between the black holes. 

Our first task is to check whether the approximations we just made 
are valid. As it is well known from elementary quantum mechanics, for 
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stationary states the energy eigenvalues calculated from Eq. (6.1) are
(6.2)

where n = 1, 2, 3, ... is the principal quantum number of the system. In
these states the expectation values of r are

2!i2 
2 { 1 [ l ( l + 1) ] } (r)n,l = GM3n 1 + 2 1- � , (6.3)

where l = 0, 1, 2, ... , n -1 is the angular momentum quantum number of the
system. Our approximations are valid if

where
Rs := 

20:4
C 

(6.4)

(6.5)
is the Schwarzschild radius of a black hole with mass M. Combining Eqs. (6.4)
and (6.5) we find that we must have

where
Mc R Mp1 :=VG:::::: 2.2 x 10-· kg

(6.6)

(6.7)
is the Planck mass. Hence, either n must be very big or M must be much
smaller than the Planck mass. The average velocity on the orbit is 

1 ( M ) 2 1
(vave)n = 2 MPl ;;;_c, 

(6.8)
As one can see, the black holes move with non-relativistic speeds if Eq. (6.6)holds. In what follows, we shall always assume that M is smaller than, or
equal to, the Planck mass, and n is very large. In other words, we shall
consider microscopic black-hole pairs in highly-excited states. 

Consider next the transitions between highly-excited stationary states.
It follows from Eq. (6.2) that the energy released when the system performs
a transition where n is reduced by one is

G2M5 1 ( M ) 4 

En - En-1 :::::; 21i,2n3 = 2n3 Mpz Mc
2 . (6.9)

For instance, if n is around ten and M is the Planck mass, the energy released
is 0,0005 times the Planck energy, or 106 J, which is about the same as the
energy needed when an automobile is accelerated from rest to the speed of
100 miles per hour. As one can see, enormous energies could, in principle,
be stored in systems containing microscopic black-hole pairs. Since the holes are assumed to be uncharged, one may expect that the
main reason for transitions between stationary states are quantum fluctua­
tions of the gravitational field between the holes: quantum fluctuations of
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the gravitational field perturb the stationary states, a transition occurs, and 
a graviton is emitted or absorbed spontaneously. Since the black holes are 
assumed to be in a highly-excited state, and therefore relatively far away 
from each other, we may use the linear field approximation when investi­
gating the perturbative effects caused by the quantum fluctuations of the 
gravitational field. 

The Lagrangian of a point particle moving in a weak gravitational field 
hµv is 

L=-M (6.10) 

Under the assumptions that lhµv l « 1, and the particle moves very slowly, 
we may write Eq. (6.10), in SI units: 

2 1 " k  · 

1 2 L;:::: -Mc + 
2

M(8jk - hjk)ih:; - Mchoji;J -
2

Mc hoo, (6.11) 

where j, k = 1, 2, 3 and j;J := dxJ / dt. Dropping the term -M c2, which is 
a mere constant, we may infer that, in the center of mass coordinates, the 
Lagrangian of the black-hole pair can be written, in effect, as 

L = 

(6.12) 

where f is the vector joining the hole 1 to the hole 2, and the xJ 's are defined 
such that r= xJej, where the e/s are orthonormal basis vectors. 

Now, it is easy to see that the terms proportional to hoo represent the 
gravitational potential energy of the system. These terms should give, when 
the system is in a highly-excited state, the Newtonian potential energy be­
tween the holes. The terms proportional to hoj and hjk, in turn, are related 
to the quantum fluctuations of the gravitational field. If we assume that 
transitions from one stationary state to another are associated with spon­
taneous emissions or absorptions of gravitons, the only remaining terms, in 
addition to the Newtonian potential energy, are the terms proportional to 
hjk · That is because the "scalar" and the "vector" gravitons proportional 
to hoo and hoj, respectively, can be gauged away, and the physical gravitons 
correspond to the (jk)-components of the field hµv· Therefore, the La­
grangian of our system interacting with spontaneously emitted or absorbed 
gravitons is 

L = -µ 8 k - -h·k(- t) - -h·k(-- t) x1x + -- .
1 

[ 
1 f I r ] · k GM2 

2 1 2 1 2' 2 1 2' r 
(6.13) 

Hence we find, under the assumption that hjk is small, that the Hamiltonian 
operator of the black-hole pair interacting with gravitational radiation is 

� 2 , p GM 
H = -2 - -,- +Hint,

µ r 
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where 

Hint:= 
4
� [i,,ik(;,t)+hik(-i,t)]pjpk

, ( 6.15) 

and Pi is the canonical momentum conjugate to xi. In these equations, ob­
jects equipped with hats are operators replacing the corresponding classical 
quantities. 

The transition rate R;-+J from the initial state Ii) to the final state If) 
can be evaluated by means of the Golden Rule [131]. Evaluation of the 
transition rate involves quantization of the linearized gravitational field in 
the radiation gauge where hoµ = 0 for every µ = 0, 1, 2, 3. This has been 
performed in Appendix B, and we find that if exactly one graviton with 
angular frequency w is emitted in a transition, then 

(6.16) 

where k is the wave vector of the graviton, E
ab its polarization tensor, and 

dQ is the solid angle into which the graviton emerges. The polarization 
tensors E(l)ab and €(2)ab corresponding to the two physical polarizations of
the graviton have been chosen such that 

/X')ab €��) = 2o.>.' .>. (6.17) 

for every >..',A= 1, 2. In the lowest order approximation we can write 

(6.18) 

Transitions corresponding to this expression may be viewed as the gravita­
tional analogues of El transitions in atomic physics. We shall therefore call 
them as G 1 transitions. 

The next task is to integrate Eq. (6.16) over all the possible directions 
into which the gravitons may emerge. This has been done in Appendix C. 
If the initial state Ii) and the final state If) are taken to be solutions to 
the Schri:idinger equation (6.1) of the black-hole pair, and, moreover, one 
takes into account the fact that gravitons have exactly two independent 
polarizations, one finds that the integrated transition rate from the state Ii) 
to the state If) in Gl transitions is 

4Gw I( 1-21-)12R;-+J = 3c5nµ2 f P1 i (6.19) 

Transition rates in processes associated with spontaneous emissions of 
gravitons have also been investigated by Weinberg in Chapter 10 of his 
book [132]. Weinberg's idea was to consider first the power emitted as grav­
itational radiation by an arbitrary classical system, which he expressed in
terms of the energy-momentum-stress tensor of that syslem. He then at;­

sumed that gravitational radiation consists of gravitons with energies nw,

and he also replaced the classical energy-momentum-stress tensor by a ma­
trix whose elements correspond to transitions between different quantum 
states of the system under consideration. As a result, he got an expres­
sion for the transition rates in spontaneous emissions of gravitons. It is far 
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Figure 6.1: The integrated transition rate R, ..... f as a function of k, which 
is the difference between the initial value n; and the final value n f of the 
principal quantum number n. In this figure we have t:.l = t:.m1 = -2. The 
initial values of n, l and m1 are, respectively, n; = 100, l; = 50 and m1

i = 50. 

from clear, however, what is the precise relationship, if there is any, between 
Weinberg's semiclassical reasoning, and our systematic quantum-mechanical 
derivation of the expression (6.18) for transition rates. 

From the expression (6.19) one can obtain the Gl selection rules for the 
black-hole pair. In other words, one finds the transitions for which the inte­
grated G 1 transition rate (6.19) is non-zero. Since gravitons may be viewed 
as spin-two particles, one might expect that for allowed Gl transitions the 
angular momentum quantum number l as well as the corresponding az­
imuthal quantum number m1 could change only by zero, or by plus or minus 
two. A detailed investigation, which has been performed in Appendix D, 
shows that this is indeed the case: the G 1 selection rules are 

t:.l = 0, ±2 , 
t:.m1 = 0, ±2 . 

(6.20) 
(6.21) 

It is straightforward, although very laborious, to calculate the transition 
rates in allowed Gl transitions from Eq. (6.19). This arduous task, with 
explicit expressions for transition rates in different G 1 transitions, has been 
performed in Appendix E. For instance, if the principal quantum number n
is of the order of 100, then it turns out that the transition rates in transitions 
between nearby states are of the order of 1028 1/s, if t:.l = 0, -2, and of the 
order of 1024 1/s, if t:.l = +2, provided that we assume that the mass Mis 
equal to the Planck mass Mp1. Transitions between nearby states, however, 
are not necessarily the most favored ones. In Figs. 6.1, 6.2, and 6.3 we 
have plotted the transition rates as functions of k, the difference between 
the initial and the final values of the principal quantum number n. In 
all of the figures R, ..... J has been plotted in the units of 2i1Pi x 10-15, where

tp1 := j¥i- :::::: 5.4 x 10-44 s is the Planck time. One finds, for instance, 
that when t:.l = t:.m1 = -2, and l; = m1; = 50, then the most favoured 
transitions are those where k :::::: 20, and if, for the same values of l; and m1

i , 

t:.l = 0 and t:.m1 = -2, then for the most favoured transitions k :::::: 10. If 
t:.l = +2 and t:.m1 = 0, then k = 3 for the most favoured transitions. 

161 



0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

004 

0.02 

'data.11!02.tlat" + 

10 15 W 2S � � � 
k 

50 

Figure 6.2: R;-;J as a function of k, when n; = 100, l; = m1; = 50, 6.l = +2, 
and 6.m1 = 0. 
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Figure 6.3: �-+! as a function of k, when n; = 100, l; = m1, = 50, 6.l = 0, 
and 6.m1 = -2. 
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As we have seen, Planck-size black-hole pairs perform extremely rapid 
transitions from one stationary state to another. However, the problem is, 
whether the transitions are probably too rapid so that one cannot meaning­
fully talk about discrete energy eigenstates at all. To answer this question, 
one must calculate the lifetime of an initial state with large n, when all the 
allowed G 1 transitions are taken into account. The lifetime of an initial 
state, in turn, is the inverse of the sum of the transition rates of all the 
allowed G 1 transitions. Using the formulas of Appendix E, and assuming 
that transitions from higher to lower states are dominant, one finds that the 
lifetime of an initial state with n of the order of 100, is of the order of 

TIOO ~ 10-30 S, (6.22) 

if M = Mp1 • This result settles, within the approximations made in this 
chapter, the question about the existence of sharp energy eigenstates. Ac­
cording to Heisenberg's uncertainty principle the natural linewidth of a state 
with lifetime Tn is 

(6.23) 

and therefore 

'5E100 ~ 10-
4 J . (6.24)

However, the energy difference between nearby states is, according to Eq. (6.9), 

and therefore 
'5E100 

~ 10_7. 
E100 - Egg 

(6.25) 

(6.26)

In other words, the uncertainty of the energy eigenvalues of the system is 
much smaller than the energy difference between nearby states. Hence, the 
energy spectrum appears to be discrete, at least as far as one can trust 
in the approximations made in this chapter. The transitions between dis­
crete energy eigenstates are extremely rapid, and the energies released are 
enormous. 

In this chapter we have investigated microscopic Schwarzschild black­
hole pairs revolving around their common center of mass. Considering 
the holes as point-like objects interacting with the Newtonian gravitational 
force, we quantized the system and studied the stationary energy levels 
when the system is in a highly-excited state. We then calculated, by means 
of perturbative methods, the transition rates and lifetimes in a certain class 
of transitions. These calculations were based on the quantization of the 
linearized gravitational field in the radiation gauge. We obtained, in the 
lowest-order approximation, explicit expressions for the transition rates and 
evaluated the transition rates numerically when for the principal quantum 
number n ~ 100, and the mass of a microscopic black hole is assumed to 
be one Planck mass. We found that the transition rates are of the order of 
1024 -1028 1/s for allowed transitions, and the lifetimes of energy eigenstates 
are of the order of 10-30 s. Gravitons with energies of the order of 1022 eV, 
or even higher, are emitted in these very rapid transitions between discrete 
energy eigenstates. 
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No doubt, one might be justified to have some feelings of suspicion to­
wards the validity of the approximations on which our investigation is based. 
Indeed, it may well be somewhat daring to apply Newton's ancient theory of 
gravitation to microscopic black holes! However, if one accepts the view that, 
at the classical level, Einstein's general theory of relativity is the correct the­
ory of gravitation (so far we have no experimental evidence suggesting that 
the things could be otherwise), having Newton's theory as its non-relativistic 
limit, one is also forced to accept the "Newtonian approximation" made in 
this chapter: Holes with M = Mp1 move, if n ~ 100, with velocities which 
are of the order of 0.0lc and the expectation value of their mutual distance 
is about 104 times their Schwarzschild radius. Of course, one could calcu­
late general-relativistic corrections to energy levels and transition rates but 
as far as one is interested in mere order-of-magnitude estimates, Newton's 
theory should be sufficiently accurate. Quite another matter is, whether the 
first-order perturbative quantum theory of linearized general relativity is a 
sufficiently accurate approximation of quantum gravity for the evaluation of 
transition rates and lifetimes. As far as the energies of the emitted or ab­
sorbed gravitons are well below the Planck energy, which is the case at least 
for transitions between nearby states when n ~ 100, however, one might be 
inclined to rely on the approximations made in this chapter. 

One of the basic lessons one can learn from this chapter is that enor­
mous energies could be released by means of the quantum effects of the 
gravitational field: The energies released in transitions between the energy 
eigenstates of the microscopic black-hole pair are, even in the transitions 
between nearby states when n ~ 100, about fourteen orders of magnitude 
greater that the energies typically released in nuclear phenomena, and yet 
we are talking about a microscopic system. 

As a whole, our investigation has been based on the assumptions that 
Planck-size black-hole pairs really exist, and that the lifetimes of the mem­
bers of the pair are much longer than the lifetimes of the discrete energy 
eigenstates of the system. The object of this investigation has been to an­
swer the question: If black-hole pairs with those properties do exist, then 
what will happen? It seems to us that the question about the existence or 
nonexistence of such black-hole pairs remains unsettled at the present state 
of research. To be able to give a definitive answer to that question we should 
have a complete quantum theory of gravity. Until then all bets are there. 

For the sake of completeness, however, one may consider appropriate to 
list the main options. The first option is that Planck-size black holes evap­
orate within Planck time which is much smaller than 10-30 s, the typical
lifetime of the energy eigenstate considered in this chapter, and therefore 
our calculation has no physical content whatsoever. When making such 
a conclusion, however, we are actually extrapolating the results originally 
obtained for the evaporation of macroscopic black holes by means of semi­
classical methods down to Planck-size black holes - an extrapolation which 
may seem somewhat objectionable from the physical point of view. 

Another option is that primordial black holes actually have a certain 
ground state where the mass is positive and of the order of one Planck mass. 
In that case primordial black holes leave Planck-size remnants as the end 
products of their evaporation. The existence or nonexistence of remnants, 
again, is a very controversial question [70] and remains completely unsettled 
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until the complete quantum theory of gravity is found, altough it is possi­
ble to construct mathematically consistent quantum theories of black holes 
where the ground state energy of the hole is positive (see Refs. [66, 14]). 
If such remnants exist, however, it is possible that some of the them form 
pairs. Our calculation shows that if the masses of the remnants are of the 
order of the Planck mass, extremely energetic gravitons are emitted in very 
rapid transitions from one state to another. Some of these very energetic 
gravitons, in turn, may materialize into observable particles producing cos­
mic rays with very high energies. Measuring the amount of very energetic 
cosmic rays could therefore be used when trying to estimate the abundance 
of the Planck-size black-hole remnants in the universe. If there are black­
hole pairs formed by black-hole remnants of the order of the Planck mass, 
one expects to observe cosmic rays with energies of the order of 1020 eV, or 
even higher. 

165 



Epilogue 

Let us make some general and final remarks in the same spirit as we did 
in Prologue. Perhaps it is correct to state that the greatest enterpriee of 
modern theoretical physics is to find a quantum theory of gravity. Although 
this enterprile has been recognized for several decades, I feel that one has 
just managed to find some hints about the right questions that would lead 
the way to the correct formulation . Perhaps one should try to learn from 
the history of the development of physics and question the old underlying 
principles of physics. This is often a hard and a lengthy journey but usually 
worth the pay. Although the old principles of physics are not thrown away 
in this thesis and the so-called right questions remain disguised, the moral 
of this work is that very simple models of black holes produce results that 
should be applicable in the semiclassical limit of the final formulation of 
quantum gravity. 
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Appendix A: WKB 

approximation 

The purpose of the WKB approximation [123] is to find an approximative 
solution to differential equations. We shall concentrate our attention on the 
one-dimensional time-independent Schri:idinger equation 

{ J2 2m } dx2 
+ ¥[E - U(x)] w(x) = 0 . (A.l) 

Let us now write a trial function for the stationary solution to Eq. (A.l) as 

w(x) 

W(x) 

A(x) 

exp [*w(x)] 
n 

= S(x) + -:T(x) 

exp [T(x)] , 

(A.2) 

(A.3) 

(A.4) 

where Sand T are required to be even functions of x. A and iii' are uniquely 
defined in terms of 8 and T. Note that A and 8 are not necessarily real. 

Substituting the expression (A.2) into the Schri:idinger equation and sep­
arating real and imaginary parts, one obtains two equations equivalent to 
the Schri:idinger equation 

8'2 - 2m[E - U]
2A'S' +AS"

Eq. (A.6) can be integrated to yield 

A" n2 A, 

0 

A= C · (8')-1!2 
, 

(A.5) 

(A.6) 

(A.7) 

where C is a constant of integration. When substituting Eq. (A.7) into 
Eq. (A.5) one obtains an equivalent equation to the Eq. (A.l): 

[3 (8") 2 1 8'"] 512 
= 2m[E- U] + n2 4 S' - 28' (A.8) 

The key idea in the WKB approximation is to expand S in n2 such that 

8 = So + S1 n2 
+ . . . . (A.9) 

In general, this expansion does not converge but it gives, for small n and 
for a finite numbers of terms, a good approximation to 8. In that case, 
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substituting the expansion (A.9) into Eq. (A.8) and keeping the zero-order 
terms only, one obtains 

S'2 
::::: Sb2 

= 2m(E - U] (A.10) 

For the future development one must divide the investigation into two 
cases: in the first case we consider E > U, which is a classically allowed 
region of space. In the second case we consider E < U, which is a classically 
forbidden region of space. 

E>U:

Inside the allowed region for classical particles the solutions are oscillating. 
Using a wavelength 

r,, 
,\(x) := --;=====;, 

J2m[E - U(x)] 
(A.11) 

Eq. (A.10) will be satisfied if S' ::::: ±n/ ,\. Then 

(A.12) 

where a and r.p are constants, is the WKB solution to the time-independent 
Schri:idinger equation. 

E<U: 

Inside the forbidden region for classical particles one may define a wavelength 

r,, 
l(x) :=--;:::==== 

J2m[U(x) -E]
(A.13) 

Now, Eq. (A.10) is satisfied if S'::::: ±n/l, and the linear combination 

(A.14) 

where 'Y and o are constants, is the WKB solution to the time-independent 
Schri:idinger equation. 

The WKB approximation is valid if 

>.'(x) « 1 when E > U(x) , 
l'(x) « 1 when E < U(x) 

(A.15) 

(A.16) 

These criteria can be found by calculating the effect of the next-to-leading­
order term S1n2 of the expansion (A.9). In most cases the criteria are 
satisfied. However, there are the so-called turning points of the classical 
motion which satisfy E = U(x). At the turning points the wavelength 
becomes infinite and the WKB approximation is not legimate. In order to 
get the complete solution, one must solve the Schri:idinger equation in a 
small neighbourhood of the turning points, and then smoothly join these 
solutions to the exponential and oscillatory WKB solutions. However, this 
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joining problem is a difficult task and we only give the so-called connection

formulae between the exponential and the oscillatory WKB solution. The 
connection formulae are [124]: 

(

E=V(x) 

) W1(x) = Jl(x) exp [ t(:) 

t 

W1(x)=-v'Asin( f ':{-¾) 
E=V(x) 

0W ( E=
V(x) 

dx
) W2(x)=-2-exp - [ T(x) 

t 

W2(x) = -v'Acos ( f ':{ - t) 
E=V(x) 

(A.17) 

(A.18) 

i.e., if the solution \JI is exponentially increasing in the classically forbidden
region it must be joined with the solution \JI that is proportional to sine
function inside the classically allowed region. If the solution \JI is exponen­
tially decreasing in the classically forbidden region it must be joined with
the solution W that is proportional to cosine function inside the classically
allowed region. Note that the general solution is a linear combination of
two solutions w1(x) and IY2(x) in each region. These formulae are used in 
the next subsection in the special case of Reissner-Nordstrom black holes. 
Finally, joining the oscillatory solutions inside the classically allowed region 
one obtains the rule that fixes the energy levels of the discrete spectrum. 
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Appendix B: Quantization of 

Linearized Gravity in the 

Radiation Gauge 

The Lagrangian density 

C = 
64

�
G ( 0>.hµvfi•hµv - 28µhµv0>.hv >. 

+ 28µhµv<Yh - OvhiYh) . (B.1)

of the linearized gravitational field hµv can be written, when the Hilbert 
gauge condition 

is used, as (c = 1) [133)

L = -
1
- (ah o >.hµv - !a ho vh) 

641rG >. µv 2 v 

In the radiation gauge we have, in addition, 

hµO = 0 Vµ = 0, 1, 2, 3 ,  

and the Lagrangian density can be written in the form 

(B.2) 

(B.3) 

(B.4) 

where hmn := ohmn/ at, and the Latin indices take the values 1,2,3. The 
canonical momentum conjugate to hab is therefore 

pab := �£, = _l_f,,ab 

ohab 321rG (B.6) 

As the first step towards quantization we write the field hab as a Fourier 
expansion: 

hab(t, r) = L L €��) ( u,;(t, r)af) + uf (t, r)ai
>.)t) (B.7) 

k >.=l 

In this equation, the sum is taken over the wave vectors k and the polar­
izations ,\. Ei�) is the polarization tensor, a�>.) and a�>.)t are the Fourier 
coefficients, and the functions uk are orthonor�al wav/modes: 

u-(t r' = N-ei(k·r-wt) k '' I k ' (B.8) 
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where Nk is a normalization constant, and w is the angular frequency of the 
graviton. 

Introducing periodic boundary conditions in a box with edge L,

hab(0, Y, z, t) hab(L, y, z, t) , 
hab(X, 0, z, t) = hab(X, L, z, t),

hab(X, Y, 0, t) hab(x, Y, L, t) , 

we find that the possible values of kx, ky and kz are 

kx 
21r 

nx y,

ky 

21r 
ny y,

kz 
21r 

nz y,

(B.9) 
(B.10) 
(B.11) 

(B.12) 

(B.13) 

(B.14) 

where nx, ny and nz are integers. Introducing, moreover, an inner product 
between wave modes, 

(uf,luf} := -i fo
L 

dx fo
L 

dy fo
L 

dz ( uf,uic - u;;,u1c) (B.15) 

together with the requirement that the wave modes are orthonormal, 

(B.16) 

indicates that 
(B.17) 

Consider now the polarizations of gravitons. The Hilbert gauge condi­
tion (B.2), together with the radiation gauge condition (B.4) implies 

(B.18) 

for all a = 1, 2, 3 and .A = 1, 2. To satisfy this condition, we may choose the 
polarization tensors E��) such that 

for all >., >.' = 1, 2. 

/X) E(>.')ab = 20.U' 
ab ,

For instance, we may choose 

(! 
0 

n( E��l) -1
0

0 
1 

n ( 1:�!l) 0 
0 

(B.19) 

(B.20) 

(B.21) 

In that case the gravitons propagate to the z-direction. Using Eqs. (B.16) 
and (D.19) we can write the Fourier coefficients a�>-) and a�>-)t as 

k k 

(8.22) 

(B.23) 
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We now proceed to quantization. It follows from Eq. (B.6) that the 
canonical equal time commutation relations between the field operators hab 
and their conjugates pab,

[ha&(t,i'),pcd(t,i)] ili83 (i',i)8�8g, (B.24) 

[fiab(t,i'),hcd(t,i)] = [fiab(t,i'),pcd(t,r)] =0, (B.25) 

can be written as 

[ hab(t, i'), ii
°
\t, i)] i327rGM3 (i', r)8�og,

[fiab(t,i'),hcd(t,i)] = [fi°\t,i'),h
cd

(t,i)] =0. 

(B.26) 

(B.27) 

Using Eqs. (B.19), (B.23) and (B.23) we find that the commutation relations 
between the operators af)t and afl are

[a<>-'> • (>-lt] l67rGM>-' >-ok-,k-,f.1 
,a

f. 

[at'l,afl] = [a��'lt,aflt] = o. 
(B.28) 

(B.29) 

Hence, af lt creates and at) annihilates a graviton with wave vector k and 
polarization >.. More precisely, they act on the vacuum jO) such that 

a�>-H10) = ✓167rGnll) , (B.3o) 
k 

atljo) = 0, (B.31) 

where jl) is the one-graviton state. If we put everything here derived in 
together, we find that the operator Hint of Eq. (6.15) takes the form 

2 

Hint= ;µ � L (2L3w)-112 €>.)ab cos Gk · r) ( e-iwt at) + eiwt ai>-)t) Pa'Pb .
k >-=I 

(B.32) 
Now, the Golden Rule [131] implies that if in a transition from the state 

ji) to the state jf), a graviton with energy liw, wave vector k and polarization 
>. is emitted, the corresponding transition rate is 

D. 27r
j
(fj 

1 (2L3 )-1/2 (>.)ab (lk- -)·(>-)t. ·1-)12 (E) 
u-,,-, J = h 2µ 

w E cos 
2 

· r ak PaPb i p f , 

(B.33) 
where 

(B.34) 

is the density of states close to the final state, and dQ is the solid angle into 
which the graviton emerges. If the state ji) represents a zero-graviton state 
and the state If) a one-graviton state, Eq. (A20) implies that 

R;
-,J = 

Gw 
2 IUI cos (-

2

1 
k · r) E(>.)abPaPb li)l2 dQ (B.35) 

27rliµ 
or, in SI units, 

R;-,J = 271"��µ2 l(JI COS Gk · i) E(>.)abPaPbli)l2 dQ, 

which is Eq. (6.16). 
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Appendix C: Integration 

Over All Directions of the 

Gravitational Radiation 

In this appendix we shall calculate the integrated transition rate by integrat­
ing over all the possible directions into which the graviton may emerge. To 
evaluate the integral, we assume first that all the gravitons are the so-called 
h12-gravitons propagating into the z-direction. Then the only non-zero com­
ponents of the polarization tensor f.ab are 

(C.l) 

Now, the idea is here that the components of the polarization tensor 
change when the direction of propagation of the emitting graviton changes. 
When the gravitons no more propagate into the z-direction, we introduce a 
new Cartesian coordinate system K' which is rotated such that the gravitons 
always propagate, in frame K', along z-axis, and the original coordinate 
system K is kept fixed. The relationship between the orthonormal basis 
vectors ea and e� of the frames K and K' is 

sin <p e1 + cos <p e2 , 
-cos (} cos <p e1 + cos (} sin <p e2 + sin(} e3 ,
sin(} cos <p e1 + sin(} sin <p e2 + cos(} e3 ,

(C.2) 
(C.3) 
(C.4) 

where (} and <p are polar spherical angles. These relations imply that the 
polarization tensor corresponding to h12-gravitons propagating into an ar­
bitrary direction is, in frame K, represented by the matrix 

( 
-cos0sin2</J cos0(2sin2 </J- l) sin0sin<p

)f.= cos0(2sin2 <jJ-1) cos0sin2</J sin0cos<p 
sin(} sin </J sin0 cos <p 0 

(C.5) 

To begin with, we perform the summation in Eq. (6.18). Because the mo­
mentum operators commute with each other, we get 

/ lf.11

(/li>ili) + f.22Uli>�li) + i3Uli>�li) 

+2f.12 Uli>1i> 2li) + 2f.13Uli> 1fi3li)
+2f.23Uli>2fi3li)l2dn. (C.6 ) 
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After squaring and integrating the expression (C.6) over all directions, we 
have 

I 1Ulcab.Pa.Pbli)l2df2 = 
2
; (IUlfiili)l

2 

+ 1Ulfi�li)l2 
+ 4l(flfi1fi2li)l

2 

+ 8l(flfi1fi3Ji)l2 + 8l(flfi2fi3Ji)l2 - Ulfi�li)*(flfiili)
- Ulfiili)*Ulfi�li) + 8(flfi1fi3Ji)*(flfi2fi3li)

+ 8(flfi2p3Ji)*(Jlfi1foli)) · (C.7) 

In Appendix E we shall calculate the above transition amplitudes in all 
details. If we now use the results (E.16)-(E.18), we get for the integrated 
transition rate a simple and nice expression, by taking into account that 
gravitons have two independent polarization states: 

16w 
I( 1•21-)12R;-+ f = 3M2 f P1 i 

in the units where G = c = 1i = 1. 
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Appendix D: Gl Selection 

Rules 

In this appendix we shall consider, in the lowest order approximation, the 
selection rules for the spontaneous emissions and absorptions of gravitons 
by a microscopic black-hole pair. These selection rules we shall call Gl 
selection rules, in analogy to the El selection rules in atomic physics. The 
most convenient way of deriving these rules is to use the so-called Wigner­
Eckart theorem [131]. That theorem concerns irreducible tensor operators 
on a spherical basis. The Cartesian components 'f>1, 2, 3 of the momentum 
operator can be written in terms of the standard components 'f>-i, +l, o of 
the irreducible momentum operator j; of rank 1 as 

'Pl
1 

- ../'2.('i>+1-'f>-i)' (D.l) 

'P2 = � ('i>+1 + 'P-1) , (D.2) 

p3 'i>o. (D.3) 

To find the G 1 selection rules, we must find all the allowed changes in the 
angular momentum of the microscopic black-hole pair between the initial and 
final states. To determine these changes one has to consider the transition 
amplitude given in Eq. (C.8). The transition amplitude can be written in 
terms of the standard components as 

(f 1 -21 •) (f 1 1 ( '2 A A A A A2 ) 1 •) P1 i = 2 P+1 -P+1P-1 -P-1P+1 + P-1 i , (D.4)

where all the products between the standard components can be written, by 
using the definition of the tensor product, as 

Ul'i>ili) � [u1 I)1, 1, 1, 111,M)f.P'P1JMli)
2 J,M 

- (JI 1)1, 1, 1,-llJ,M)[p'pJJMli)
J,M 

J,M 

+ Ul�)l,-1,1,-llJ,M)(p'pJJMli)], (D.5)
J,M 

where f.P'P1JM denotes the JM-component of the irreducible tensor ofrank 2, 
J corresponds to the eigenvalue of the total angular momentum operator J, 
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and Mis the corresponding eigenvalue of the projection operator Jz . After 
taking the sum over J and M, Eq. (D.5) reduces to 

which, by the Wigner-Eckart theorem, is equal to 

Ulfiili) = 

where mi and m I are the eigenvalues of the z-component of the angular 
momentum operator at the final and the initial states of the microscopic 

black-hole pair, respectively, ( 
l I 

ML li 
) denotes a 3j-symbol, and m1 mi 

(111'.r'Llli) is the reduced matrix element of the irreducible tensor operator 
of rank L.

It is well known that the 3j-symbol vanishes unless the following two 
conditions hold for the eigenvalues of the angular momenta: 

ll,-Ll�li� lt +L, 
mi-mt +M 0 .  

(D.8) 

(D.9) 

These conditions, together with Eq. (D. 7), imply that the allowed transitions 
are the ones where b.l = 0, ± l, ± 2 and b.m1 = 0, ± 2. However, there 
is a further constraint which comes from the parity conservation: Since the 
position operator i;a is odd in reflections for every a = 1, 2, 3, then pa is 
also odd for all a. Therefore papb must behave as an even linear operator 
in reflections, and the states of the microscopic black-hole pair must not 
change parity in G 1 transitions. Since the parity of any state is given by 
(-1) 1, the value of l cannot be ±1. As the final Gl selection rules for the 
microscopic black-hole pairs we find that the only allowed transitions in the 
lowest-order approximation are the ones where 

b.l = 0, ± 2 ,  
b.m1 = 0, ± 2. 
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Appendix E: Transition 

Rates 

In this appendix we shall derive explicit expressions for the transition rates 
in Gl transitions for microscopic black hole pairs. In addition, we shall 
estimate the transition rates numerically in some well-chosen cases. Fur­
thermore, we shall estimate the lifetime of the initial quantum state of the 
black-hole pair. 

In position representation the initial and final quantum states, Ii) and 
If), respectively, are represented by the "hydrogenic wave functions", where 
the factor q2 / 4rrEo is replaced by G M2, where G is the gravitational constant 
and M is the mass of each hole [134]: 

where 

[(
GM3

)
3 (n - l -1)!

] 
112 

(
-GM3 

) nfi2 2n(n + l)!
exp 

2nn2 r 

21+1 (
GM3 

) 
X Ln-l-1 nfi2 r Yim1 (0, </J) ,

s( )  �( )m (s+k)! m Lk x := L -1 
( 

_ )'(k
)
' , x 

m=O s m . + m .m.

is the associated Laguerre polynomial, and 

(
GM3 )l 
nfi2 r 

(E.l) 

(E.2) 

)·-( )m1 [
(2l+l)(l-mi)!

]
1/2 

mz
( ) (

" 
Yim1 (0,<p .- -1 

4rr(l +mi)! 
Pi cos0 exp im1</J) (E.3) 

is the spherical harmonic function. Pim' ( x) is the associated Legendre func­
tion. When calculating an expression for the transition rate, we will mostly 
be interested in the transitions where the initial and final states are in their 
maximal projection state where m1, = Li and m11 = z,. In that case we may 
use the result 

P/(cos0) = (2l - l)!!sin1 0, (E.4) 

where the double factorial is defined by n!! := n(n-2)(n-4) ···•and 0 !! = 1. 
In Appendix D we derived the Gl selection rules (D.10) and (D.11). 

Because of these rules we must consider four different cases: We calculate 
the three transition rates � ..... f where either !::,.[ = 0 or !::,.[ = ±2 such that 
the initial and final states are maximal projection states, and, moreover, we 
consider the case where!::,.[= 0 and !::,.m1 = -2. 
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Case f:::..l = -2

We first calculate the transition rate in the case where f:::..l = -2 = f:::..m1. 
In other words we take the initial and final states to be Ii) = In, l, l) and 
If)= In - k, l -2, l -2) (k = 1, 2 ,  3, ... ) such that l > 2 and n » l. We can 
write these states in the position representation using Eq. (E.1). To evaluate 
the integrals in Eq. (C.7), we must express the momentum operators Pa in 
the spherical coordinates: 

'P2 

'P3 

"Ii ( 
. 0 ,1, a cos 0 cos cp a sin cp a 

) -i Sill cos'+'-+---------
8r r ae r sin0 acp ' 

-iii Sill Sill'+'-+---------. 
( 

. 0 
. ,1, 8 cos 0 sin cp a cos cp a 

) 8r r ae r sin 0 acp ' 
. ( a sin0 a)-iii cos 0 

Dr 
-

-r- 80 

(E.5) 

(E.6) 

(E.7) 

After employing the expressions for the wave functions and for the momen­
tum operators one gets a rather messy expression for the first transition 
amplitude in Eq. (C.7), which we still have to integrate ( in the units where
c = G =Ii= M = 1): 

( I 2 1 ) /,,d
f I' ") - /,;; JI' ") - (21 - 1)!!(21 - 5)!!

f P1 i = \J-'l p1i - \1-'l p1i - 8 1ml+2 (n - k)l 

x 
[
(21 + 1)(2l - 3)(n - l - l)!(n - k -l + 1)!

] 
1/2 

(n + l)!(2l)!(n - k + l - 2)!(2l - 4)! 

x n1:
1 

am 
n-I:

+l 

bm, 1
00 

drr211r 

d0sin01
21r 

dcpexp(i2</J) 
m=O m'=O O O 0 

x (sin21 0 cos2 </)R;(r)R1 (r) + l sin21-2 0 cos2 0 cos2 cp�R;,(r)R1 (r) 

- !!:_ sin21-2 0sin2</JR;,(r)R'1(r)2r 

+ l - 2 sin21-4 0cos2 0cos2 </)R:(r)R1 (r)
r 

+ l(l - 2) sin21-4 0 cos4 0 cos2 </)R;,(r)R1 (r)
r2 

-
i (l

; 
2) sin21-2 0sin2</JR;(r)R1(r)

+ l(l
�

2) 
sin21-4 0sin2 </JR;,(r)R1(r)], (E.8) 

where we have denoted 

am .-

bm, .-

R;,(r) 

R1(r) 

(-1r 
(n+l)! 

(n - l - m - 1)!(21 + m + l)!m!nm 

m' (n - k + l - 2)!(m'!(n - k)"'')-1 
( -l) ( n - k - l - m' + 1) ! ( 2l + m' - 3) ! ' 
rl+m exp (-;n)
rl+m'-2 exp (- r 

) 2 (n - k) '
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and the prime' denotes the partial derivative with respect to r. The cp-part 
of the integral is very easy to perform, and the radial part gives four different 
integrals which can be integrated separately by using the well-known result 

dxxn exp(-ax) = 

n
+. 1 

. 

j•oo I 

o an (E.13) 

Moreover, it is straightforward to show that the 0-integrals in Eq. (E.8) can
be reduced to the following integral: 

· 21+1 _ · 
111' 

221+1z,2 

0 d0
sm 0 - (2l+l)!' (E.14) 

When substituting all these integrals into Eq. (E.8), we get, for the transi­
tions where b.l = -2, such that the system always remains in its maximal 
projection state, 

Ulfiili) = 

1 
8n1+2(n - k)1 

[
2l(2l - 2)(n + l)!(n - k + l - 2)!(n - l - l)!(n - k - l + l)!

] 
112 

(2l + 1)(2l - 1) 
n-l-1 (-lr 

x l; (n - l - m - 1)!(2l + m + l)!m!nm 

n-k-l+l (-1 )m' 
x L (n - k - l -m' + 1)!(2l + m' - 3)!m'!(n - k)m'

m'=O 

[
2 ( k) 2l+m+m'

] { x �:: k (2l + m + m' - 2)!(2l + m + 2)m' 

2n-k 
x----,--

2n(n - k)

_ (2l , _ l)
' 

(
2l + m' - 4 2l + m - 1

) +m+m · 2n + 
2(n-k) 

(2l + m + m')!
} + 2(2n- k) 

. (E.15) 

In a very similar manner one can show that the rest of the transition am­
plitudes in Eq. (C.7) in this particular case are given by 

= -(flPili) Ulfi�li) 
UlfiiP3li) = 
Ulfi1fi2 Ii) 

0 \/j = 1,2, 3 ,  

i U lfii Ii) 

(E.16) 
(E.17) 
(E.18) 

The only difference between these amplitudes and the first amplitude (E.lfi) 
comes from the </>-integration. 

The angular frequency w depends on the quantum number n and on
b.n = -k as follows: 

(E.19) 
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As the final result, when then-dependence of the angular frequency is taken 
into account, the transition rate for the microscopic black-hole pairs be­
comes, in the case where !:.l = -2 = !:.m1, 

R;-+J = -2
1
4 (:2 - (n � k)2)

X 
2l (2l - 2)(n + l)!(n - k + l -2)!(n - l - l)!(n - k - l + 1)! 

(2l + 1)(2l - l)n2l+4(n - k) 2l 

x f%
1 

(n - l- m - 1\;�:: m + l)!m!nm 

n-k-l+l (-l)m' 
x L (n - k- l - m' + 1)!(2l + m' - 3)!m'!(n - k)m'

m'=O 

X [
2n(n - k) 21+m+m'

] 2n- k 

x [(2l + m + m' - 2)!(2l + m + 2)m' 
2��n -_

k

k) 

- (2l + m + m' - 1)! (2l +
;::

- 4
+ frac2l + m - 12(n - k))

+ 
(2l + m + m')!

] 
}2 

(E.20) 2(2n - k) 

Tf one prefors ST-units to the natural units, then the ahove transition rate 
should be multiplied by the factor a;5�8

15 
• 

As an example, let us now consider a binary black-hole system consisting 
of two microscopic black holes with equal masses M = Mr1 � 22 µg. In 
that case the transition rate between two neighbouring states from state 
Ii) = I 100, 50 , 50 ) to state If) = 199, 48, 48) is approximately 

27 1 
R_;-+J � 2.25 X 10 - , 

s 
and the corresponding lifetime of the initial state in this transition is 

T = D.l ::::; 4.46 X 10-2B S. "'i-+J 

(E.2 1) 

(E.22) 

When !:.m1 # -2, we may calculate transition rates from Eq. (D.7), since 
the reduced matrix elements do not depend on the value of the z-component 
of the angular momentum operator. If !:.m1 = +2 one can easily show that 
the transition rate is given by 

R;-+ = ( 
l � 2 �i ) 2 ( 

l 1 2 l; 
)

-2
R;-+ ,1 -mi 2 m; -mi -2 m; f (E.23) 

where R i-+f is the transition rate related to the case !:.m1 = -2 and the 
tilde - denotes the case !:.m1 = + 2. 

In the same way one can show that the case !:.m1 = 0 is related to the 
case !:.m1 = -2 such that 

(E.2 4) 
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where R;__.1 is the transition rate related to the case D..m1 = -2 and now
the tilde ~ denotes the case D..m1 = 0. 

Case D..l = 0 

Let us next consider the case where D..l = 0 such that the system always 
stays in its maximal projection state. In other words the initial state is ji) =
jn,l,l) and the final state is jf) = In - k,l,l). The position representation 
of these states can be read from Eq. (E.l). In fact, the whole procedure to 
derive an expression for the transition rate in this case is analogous to the 
previous case where D..l = -2. Therefore we just give the final result: 

1
(

1 1 
)(

l+1
)

2 
Ri--tf

= 

-3 n2 - (n - k)2 2l + 3 
(n + l)!(n - k + l)!(n - l - l)!(n - k - l - l)!X -'-------�.....,...,--c-=-,-c-------

n 2 l +4 ( n - k)2l+4

x rf 
1 

(n - l - m - l\;��: m + l)!m!nm 

n-k-l-1 

(-lr' 
x L (n - k - l - m' - 1)!(2l + m' + l)!m'!(n - k)m'm'=O 

[
2 ( k) 21+m+m'+2

] [ ( x �::: k
(2l + m + m')! (l(m + m' + l) + mm') 

_ 6l3 - 4l2 + 3l + (m + m')(2l2 
- 4l)) 2n - k 

2l+2 2n(n-k) 

, 1 ( l - m' + 1 l + m - 1
) + (2l +m+m + 1). 2n - 2(n- k) 

+ 
(2l + m + m' + 2)!(n - k)] 

}
2 

(E.25) 2n-k 

For instance, if the initial and the final states are fixed such that the initial 
state is ji) = I 100, 50, 50) and the final state is jf) = j99, 50, 50), then the 
transition rate between these states is 

28 
l 

Ri➔J � 1.44 x 10 - , (E.26) 
s 

and the corresponding lifetime of the initial state in this transition is 

T � 6.94 X 10-29 s . (E.27) 

When D..m1 -/= 0, we cannot use Eq. (D.7) to derive expressions for the 
transition rates; instead we have to perform another lengthy calculation. 
The difference between these cases comes from the definition of the associ­
ated Legendre function, since we cannot use Eq. (E.4), which holds only for 
the maximal projection states, in the cases where D..m1 -/= 0. Because our 
system is not necessarily in a maximal projection state we have to use the 
general definition for the associated Legendre functions: 

Pm1
( ) 

·- (1 - x2ri/2 � (-1)1-il! l+
rr

m1-l j2' - ·1 2i-l- m1
l X .- 211, � i!(l - i)! j=O

t J X . (E.28) 
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As this definition comes to have an effect on Eq. {E.l), the transition rate 
is still given by (C.8). One can show, after performing some integrals, that 
when 6.l = 0 and 6.m1 = -2, the transition rate of our system obeys, for 
large n, the following expression: 

where we have denoted 

am 

bm' 

Ii .-

h .-

h .-

l4 

Ri(r) .-

R1(r) .-

Kss' .-

T;s' 

T;
5

, 

Tf5, 

(- 1r 
(n -l - m - 1)!{2l + m + l)!m!nm '

(-1r'

(n -k - l - m' - 1)!{2l + m' + l)!m'!(n -k)m' '

lx, 
drr2 R�(r)R1(r), 

100 

drrR\(r)R1(r), 

100 

drrR;,(r)R1(r), 

100 

drR;,(r)R1(r), 

rl+m exp (-;n)

l+m' 
( 

r 
) r exp 

- 2(n -k)

( -1 )21-s-s' l+m1-l 

221s!(l - s)!s'!(l - s')! rr 
i=O 

2s+s'-1(s + s1 -l)!

l+mi-3 
12s - ii rr 

j=O 

(2s + 2s' - 2l + 3)(2s + 2s' - 2l + l)!' 
2s+s'-l(s + s1 - l)!

X 

(2s + 2s' -2l + l)! 

(2(2s + 2)-2l + 3) 
+ 281 -mi -

z) '

m1(2m1)! 
2s+s'-1+2m1 (s + s1 -l -1)!{2m1 - l)m1!2'
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12s' -ii,

(E.30) 

(E.31) 

(E.32) 

(E.33) 

(E.34) 

(E.35) 

(E.36) 

(E.37) 

(E.38) 

(E.39) 

{E.40) 

(E.41) 



2s+s'-1(s + s' -l)!
.- -----'-------'--- X 

2m1(2m1 - 2)(2s + 2s' - 2l)! 
( 2 - mi

4 
+ 2s' - m1 - l + 2) ,

2m1-
(2 - mt)(2m1)!2s+s'-t-2m1(s + s' - l)!

m1!2(2s + 2s' - 21 + 1)! 

.
- 2s+s'-1(s + s' - l)! ( m1 - 2 

2(2s + 2s' - 2l)! (2s + 2s' - 2l + 1)(2m1 -2) 

(E.42) 

(E.43) 

2s' - l - m1 + 2 (m1 - 2)(2s - l - m1) 
+ ------...,...,..--------,-( 2 s + 2s' -2l + 3)(2s + 2s' - 2l + 1) m1(2m1 - 2) 

(2s - l - m1)(2s' - l - m1 + 2)) (E.44) + m1(2s+ 2s'-2l+l) ' 

(2m1)!2s+s'-l-2m1(s + s' -l)! 
m,!2 

( m1(2- mt) 
x (2s + 2s' - 2l)!(2m1 - 5)(2m1 -3)(2m1 - 1)

(2 - mt)(2s - l -mt) m1(2s' - l - m1 + 2) +-'-----'--'-���---'-�+----'--------'-----
(s + s1 

- l+)!222s+2s'-21 (2m1 - 3)(2m1 -1)(2s + 2s' - 2l)!

+ 
m1(2-mt) ) 

(2m1 - 1)228+2s'-21(s + s' - l)!2(2s + 2s' - 2l + 2) ' (E.45)

(2 - m1)2s+s'-1(s + s' - l)!
2(2s + 2s' - 2l + 1)! (E.46) 

When flm1 = +2, we may use Eq. (D.7) to give an expression for the 
transition rate 

fl. _ ( l J 2 li ) 
2 

( l f 2 li )-z R; 
➔J - -ih1 2 mi -mi -2 mi ➔J'

where R;
➔J corresponds to the case fll = 0 and flm1 = -2. 

Case fll = +2 

(E.47) 

The only case we are left with is fll = +2. If, for now, we only allow the 
transitions where flm1 = +2, then all the calculations, except for the angular 
part, proceed in a manner very similar to the first case considered in this 
appendix. However, the angular integrals are straightforward to evaluate. 
Therefore we just present the result of the calculation. The transition rate 
in the case fln = -k, fll = +2 and flm1 = +2 for large n is 

1 ( 1 1 ) (2l+ 2)(2l+ 4)(n+ l)!(n-k+ l+2)! 
R;

➔J =
-24 n2 

- (n -k)2 (2l + 3)(2[ + 5)n2l+4(n - k)2l+B
x (n - l - l)!(n - k - l - 3)! 

{n-1-1 
(-1r 

x fo (n - l - m -1)!(2l + m + l)!m!nm 

n-k-l-3 

X I: 
m'=O 

(n - k - l - m' -3)!(2l + m' + 5)!m'!(n - k)m' 
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X 
[2n(n - k) 21+m+m'+4] 

[
(21 + m + m' + 4)!

2n - k 4n - k

( 
l + m' + 2 l + m 1 ) 

,
1 

2n - k 
2n + 2n - 2k + 2 (21 + m + m + 3)-+ 2n(n - k)

x [(l+m'+ 2)(l+m)-i] (21+m+m'+2)!]}
2 

(E.48) 

As an example, let us now consider a transition between two neighbour­
ing states from state Ii) = I 100, 50, 50) to state If) = 199, 52, 52). We obtain 

23 1 
R;,-;f � 8.30 X 10 - , s 

and the corresponding lifetime is 

T � 1.20 X 10-24 
S. 

(E.49) 

(E.50) 

For fim1 =I= +2, we may calculate transition rates from Eq. (D.7). If 
fim1 = -2 one can easily show that the transition rate is given by 

R; _ l t 2 li l t 2 li R;, ( )2 ( )-2
➔J - -m1 -2 mi -m1 2 mi ➔J' (E.51) 

and in the same way one finds that the case fim1 = 0 is related to the case 
where fi l  = +2 and fim1 = -2 in the following manner: 

R; 
_ l t 2 li l t 2 li

R;, ( )2 ( )-2
➔J - -m1 0 mi -m1 2 mi ➔J.

These relations conclude our considerations in these particular cases. 

(E.52) 

To answer the problem concerning the discreteness of the energy spec­
trum of microscopic black-hole pairs, we have calculated the lifetime T of 
the initial state of the system when all the possible transitions from a fixed 
initial state are taken into account. We have chosen the initial state to 
be Ii) = 1100, 50, 50). This initial state yields a summation of about three 
hundred transition rates, when all the allowed Gl transitions are taken into 
account. A numerical estimate for each transition rate can be calculated 
by using the expressions for transition rates given in this appendix. The 
lifetime of the initial state is obtained as an inverse of the sum of all the 
possible transition rates. We have found that when all the transitions are 
taken into account, the lifetime of the initial state is 

T � 1.14 X 10-30S. (E.53) 
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