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Abstract
The ability to estimate the state of a human partner is an insufficient basis on
which to build cooperative agents. Also needed is an ability to predict how peo-
ple adapt their behavior in response to an agent’s actions. We propose a new
approach based on computational rationality, which models humans based on
the idea that predictions can be derived by calculating policies that are approx-
imately optimal given human-like bounds. Computational rationality brings
together reinforcement learning and cognitive modeling in pursuit of this goal,
facilitating machine understanding of humans.

INTRODUCTION

Building machines that understand people is a key goal
for research on cooperative AI (Lake et al. 2017; Dafoe
et al. 2021; Hadfield-Menell et al. 2016; Anderson, Boyle,
and Reiser 1985; Batmaz et al. 2019), with applications
in adaptive interfaces, automated vehicles, human–robot
interaction, tutoring, decision support, and design. How,
for example, is it possible for amachine to understandwhy
Tina took the long route to work (Figure 1)? The answer
might concern her utility function (her preferences) or her
capacities (including memory and attention). She might
have taken route C, for example, because she prefers the
scenery or because it has fewer intersections and, there-
fore, implies lower cognitive workload. Arguably, the key
challenge to solving this type of problem is in the com-
plexity of the latent psychological processes that underpin
behavior. This is a problem of identifiability; any observed
human behavior may have arisen due to one of a number
of possible underlying processes. Figuring outwhich latent
processes cause which events is a hard problem at the cut-
ting edge of Artificial Intelligence and Cognitive Science
research (e.g., Dafoe et al. 2021; Gershman and Daw 2017;
Jara-Ettinger 2019; Lake et al. 2017; Russell 2019).
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original work is properly cited.
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A related problem concerns how to predict behavior
in unseen, or counterfactual circumstances, that is by
answering “what if?” questions. In Figure 1, for exam-
ple, to predict whether it is worth suggesting route B, a
cooperative agent might conduct a number of “what if?”
simulations in order to determine the probable outcome
of this intervention. The simulations might be conducted
under a distribution of assumptions about Tina’s subjec-
tive utilities and capacities; in other words, planning could
be assisted by asking “what if?” questions of a model. In
the current article, we argue that answering “what-if?”
and “why?” questions about human behavior requires a
very specific type of model known as a Computationally
Rational model. Their goal is to capture the extraordinary
capacity of the humanmind to adapt behavior in service of
an individual’s utilities, capabilities, and the environment.
They are information processing models of cognition in
which predictions are made by a decision policy that is
optimally adapted to the internal factors that limit human
behavior (Gershman, Horvitz, and Tenenbaum 2015;
Lewis, Howes, and Singh 2014; Lieder and Griffiths 2019).
The limits (or bounds) include individual utility functions,
capacities, and experiences. The limits are stated as a uni-
fied theory of the mechanisms of cognition and are not
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(A) (B) (C)

F IGURE 1 Panel (A):Why did Tina take the long route C? Was it because of the scenery (a subjective utility) or because it had lower
workload (a capacity limit)? In order to assist a human partner, an AI assistant must be able to (1) reason about causes of behavior by using a
model to answer why? questions, and (2) predict the consequences of its actions, by using the same model to answer what if? questions. For
example, would advising Tina to take route A, through a city with multiple interchanges, or B be annoying or useful? Computational
rationalitymodels human behavior as optimization of expected utility under bounds (possible causes of behavior). Human behavior is
predicted by the optimal policy 𝜋∗ given the environment, cognitive capacities and utility of the individual. Panel (B) illustrates how bounds
limit the policy space and thereby permit the prediction of human behavior. Given a utility function (a model of human subjective utility),
computational rationality considers the space determined jointly by the environment and human capacities (intersection of yellow and blue
squares). The optimal subset of these policies (green square) 𝜋∗ provides a basis for cooperative AI to understand people. Panel (c): Tina’s
available behaviors are illustrated as consequences of different policies and therefore different causal bounds allowing why questions to be
answered. Why did not Tina take route A? Answer: because it is only a consequence of a suboptimal 𝜋𝐴 with respect to capacity limits. Why
not B? Because B is a consequence of a suboptimal policy with respect to utility. Why C? Because C is a consequence of a bounded optimal
policy with respect to bounds on environment, capacity limits, and utility. What if any of these bounds change, or are changed by the
cooperative AI? Then the analysis of the policy space must be rerun and the implications of the changes for behavior calculated.

merely aweighted set of factors.Modeling these limits, and
the ability to calculate their implications for behavior,must
be a core challenge for research on cooperative AI.
Computational rationality explains human behavior by

establishing a causal connection between subjective utility,
capacities, and experience on the one-hand and behav-
ior on the other. Computationally rational models achieve
this by finding a policy that maximizes utility under
bounds. Deployed in cooperative agents, both “what if”
and “why?” questions can be answered by iteratively
posing problems to the model and then running it to
determine, after factoring in adaptation, the predicted
outcome.
Computational rationality brings together a number

of ideas from cognitive science, including ideas from
cognitive architectures (Newell 1990; Meyer and Kieras
1997; Anderson 2014; Laird 2019; Forbus and Hinrich
2017), ecological rationality (Luan, Reb, and Gigerenzer
2019), and Bayesian rationality (Oaksford and Chater
2007; Anderson 1990). What computational rationality
adds is that predictions are made by calculating the
bounded optimal policy in a given environment. It seeks
explanations of behavior as optimal adaptations to both
ecological and cognitive bounds (including intentions)
(Howes, Lewis, and Vera 2009; Lewis, Howes, and Singh

2014). It covers not only information processing capacities
but also the way that their use is adaptive.
Computationally rational models can explain why

behavior differs among individuals and conditions, as
opposed to just describing them. In psychology, it has
been used to explain how behavior adapts to a number of
cognitive limits, including the limits of memory (Howes
et al. 2016), perception (Geisler 2011), and motor system
(Tseng and Howes 2015). It has also been used to explain
how behavior adapts to the environment, visible, for exam-
ple, in multitasking strategies that adapt to switch costs
of the task environment (Brumby, Salvucci, and Howes
2007), the probability of error (Quinn and Zhai 2016), and
information gains in documents (Duggan and Payne 2009).
As a model-based approach, computational rationality

is a departure from the repertoire of model-free machine
learning methods for cooperative AI. Arguably, the latent
states and processes that are characteristic of human cog-
nition are not captured easily by model-free methods that
learn from patterns in observed behavior. In probabilis-
tic methods, computationally rational models can serve
as a strong prior to help AI reason better about peo-
ple, through counterfactual experiments that reference
psychologically meaningful constructs concerning subjec-
tive utilities, goals, cognitive limits, and experience. Other
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AI MAGAZINE 3

researchers have gone as far as arguing that progress in AI
will curtail without better use of models (Pearl 2021; Lake
et al. 2017). Given the intrinsic difficulty of the problem,
the problem of interacting with humans could well be one
of the problems where this is true. However, while there is
an abundance of work on how AI agents can model other
artificial agents (Albrecht and Stone 2018), there is much
less on how to model humans.
This paper reviews assumptions and progress in com-

putational rationality, an area that has developed rapidly
during the last decade thanks to a convergence of research
in machine learning and cognitive science (Dayan and
Daw 2008; Lewis, Howes, and Singh 2014; Gershman,
Horvitz, and Tenenbaum 2015; McClelland and Botvinick;
Lake et al. 2017; Lieder andGriffiths 2019). One core insight
has been that the adaptive problems faced by people can
be defined as reinforcement learning (RL) problems and
solved accordingly. The vast range of modern RL (and
deep-RL) methods provide the means to derive approx-
imately optimal policies given formal specifications of
the problems faced by people. In addition, deep neural
networks have made contributions to understanding not
only computing optimal policies for complex state-action
spaces, but also in modeling human bounds such as in
perception. Thanks to this convergence, computational
rationality is pushing to the forefront in a range of applied
problems where people demonstrate adaptive behavior,
particularly in human–computer interaction (HCI) and
robotics (Chen et al. 2015, 2017; Jokinen et al. 2020; Chen
et al. 2021; Hadfield-Menell et al. 2016; Fisac et al. 2020;
Oulasvirta, Jokinen, and Howes 2022).
The assumption that human behavior is boundedly

optimal is controversial in cognitive science (Rahnev and
Denison 2018). Some researchers claim evidence against it,
and even support the idea that people are often irrational
(Bowers and Davis 2012; Colombo, Elkin, and Hartmann
2020). However, there is evidence that people appear
optimal when the bounds imposed by computation or
environment are taken into account (Swets, Tanner Jr,
and Birdsall 1961; Maloney and Mamassian 2009; Geisler
2011; Körding and Wolpert 2006; Oaksford and Chater
2007; Gigerenzer 2018; Hahn and Warren 2009; Howes
et al. 2016; Bahrami et al. 2010; Howes, Lewis, and Vera
2009; Juechems et al. 2021; Callaway, Antonio, and Tom
2020; Chen et al. 2015; Lewis, Howes, and Singh 2014).
There is also emerging evidence in social interaction.
People assume that other people are bounded optimal
in order to understand their behavior (Johnson and Rips
2015; Bridgers, Jara-Ettinger, and Gweon 2020). For the
purposes of cooperative AI, the question is not whether
people are able to optimize behavior, but whether behavior
can be predicted by an optimization algorithm. Indeed,
a number of approaches to cooperative AI now assume

that human collaborators behave rationally and calculate
behavioral predictions accordingly (Consul et al. 2021;
Hadfield-Menell et al. 2016; Fisac et al. 2020).
In the rest of the paper, we first explain the background

to computational rationality, paying particular attention
to the adaptive nature of cognition. We then outline the
general structure of an approach to cooperative AI, focus-
ing on how models can be used to answer “what if?”
questions, including the problems of intervention and
inference. Finally, we turn to outstanding challenges and
propose an agenda for research.

UNDERSTANDING HUMAN
ADAPTATION AS COMPUTATIONAL
RATIONALITY

Computationally, rational models view cognition as a
bounded optimization problem (Lewis, Howes, and Singh
2014; Lieder and Griffiths 2019). Bounded optimality (Rus-
sell and Subramanian 1994), is distinguished from bounded
rationality, where, in the latter, the role of optimization in
understanding behavior is rejected (Chase, Hertwig, and
Gigerenzer 1998). An agent is bounded optimal if its pro-
gram is a solution to the optimization problem presented
by its utility function (objective), capacity limits (archi-
tecture), and the task environment. When a model of a
human and the environment defines a bounded optimal-
ity problem, the solution is a program 𝑃∗ (Lewis, Howes,
and Singh 2014)—a policy𝜋∗ (see Equation 1 in Box 1). The
program simulates the user’s strategy, which determines
the choice of actions. 𝑃∗ is adapted through optimiza-
tion to the bounds imposed by the tuple, possibly using
machine learning. In Box 1, Equation (1), this assumption
is highlighted by stating that the optimal policy 𝜋∗ is a
function of the agent’s subjective utility, capacity limits,
and experience of the environment (its history).
Computational rationality is a departure from the earlier

idea that human behavior can be predicted by considering
only the environment, and, “not the assumed structure of
the mind” (Anderson 1991). It is also a departure from the
idea that behavior is shaped to external rewards. Internal
bounds matter. Different assumptions about the bounds
on adaptation are illustrated in Figure 1. The largest,
outer-box, represents the space of policies defined by the
environment. There is an optimal space of policies given
just the environment (Anderson 1991) but the space of poli-
cies given the environment and the agent’s capacities is a
different, possibly overlapping, space. The optimal space of
policies given this space is the smaller subset, 𝜋∗.
A computationally rational model demands the speci-

fication of an optimization problem in terms of human
subjective utilities, capacities, and environment (Lewis,
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4 AI MAGAZINE

Howes, and Singh 2014). If a cooperative AI is to explain
human behavior, then it must do so in terms of a model
of these components of the problem and a derived optimal
policy. In other words, cooperative AI needs a computa-
tional model of the human that is defined in terms of an
objective function representing human subjective utility, a
model of human capacities (memory, perception, reason-
ing, etc.), and a model of how humans experience the task
environment over a lifetime.
In addition, to be utilized in cooperative AI, the gen-

eral human model needs to be “fit” to each individual
collaborator. People vary widely along all three of the
key dimensions. For example, in subjective utility, while
most people are risk-averse, there is considerable variation
(Mata et al. 2018), with some individuals even being risk-
seeking in the domain of gains. Similarly, internal bounds
vary. Humans form intentions in the context of these pref-
erences and cooperative AI must be informed by a model
of human preferences if it is to be successful (Russell 2019).
While admitting to the possibility of variation in subjec-
tive weightings, computational rationality commits to a
normative model of subjective utility, which is a require-
ment of the rationality assumption. Rather than appealing
to “biases” in choice, a computationally rational account
explains behavior as an emergent consequence of resource
limits rather than as a consequence of “irrational” poli-
cies (Howes et al. 2016; Juechems et al. 2021). In Howes
et al. (2016), for example, contextual effects on choice
are explained in terms of the agent’s uncertainty about
expected value, rather than in terms of distortions of utility.
Similarly, Juechems et al. (2021) show that apparent distor-
tions of value and probability are consequences of optimal
decision making given the assumption that humans oper-
ate with finite computational precision (Bhui, Lai, and
Gershman (2021) provide a review).
Humans also vary in capabilities and experience of the

task environment. While most people have a working
memory capacity between 3 and 5 items (Cowan 2010),
for example, some remember fewer, and some more,
items (Conway, Jarrold, and Miyake 2008). And, of course,
experiences also vary, partly through the laws of chance,
but sometimes also due to whether statistical information
is acquired through experience or through description
(Rakow and Newell 2010). As regards, the task environ-
ment, there is evidence that humans are adapted to the
task environment with extraordinary subtlety (Anderson
1990; Oaksford and Chater 2007). Simon (1969) pointed
out that it is impossible to understand human behavior
without understanding that it is adapted to both the
structure of the environment and cognitive limitations.
Computational rationality provides a formal framework
for investigating both as constraints on human behav-
ior. We believe that it is impossible to explain human

behavior without taking utility, capabilities, and
experienced environment into account simultaneously.
In sum, computational rationality explains individual

behavior (Howes, Lewis, and Vera 2009) despite the diffi-
culties associated with diversity by providing the means to
establish a causal link from subjective utilities, capacities,
and experience, via the calculation of a bounded optimal
policy, to observed behavior. In Box 1, the model is fit to
individuals via parameter inference, which is carried out
in Equation (2) and results in a set of parameters 𝜃∗ that
govern the functioning of the model.
In cognitive science, it has been shown that explanations

for some puzzling aspects of human behavior have some-
times beenmisattributed amongst these three components
of the bounded optimization problem. Kahneman (Kahne-
man and Tversky 1979), for example, attributes a number
of human behaviors to distorted utility functions when
these should, instead, be attributed to the structure of
the task environment (Gigerenzer 2018). Similarly, contex-
tual effects on choice have been attributed to irrationality
(Ariely 2009) when, they aremore likely caused by rational
adaptation to information provided by the context about
the structure of the environment (Howes et al. 2016) and
the way in which information is presented (Rakow and
Newell 2010).
Coin flipping illustrates the issue (Hahn and Warren

2009). Consider a setting where a fair coin is thrown 𝑛

times and we are interested in the probability of sequences
with certain subsequences of length 𝑘 where 𝑘 < 𝑛. Peo-
ple have been shown to, correctly, believe that under these
conditions, (e.g., 𝑛 = 4 and 𝑘 = 3) HHT (heads, heads,
tails) will occur more frequently than HHH. This result
is surprising to those who ignore the task environment
and incorrectly calculate that the probability of HHH =

0.5 × 0.5 × 0.5 = the probability of HHT. The correct cal-
culation requires counting the relative frequencies of each
sequence within sequences of length 4. The relative fre-
quency of encountering at least one HHT is 4∕16 = 0.25

whereas that of encountering HHH is 3∕16 = 0.19. The
reason thatHHHoccurs in fewer sequences of length𝑛 = 4

is that two of the occurrences overlap in a single sequence.
It is wrong to cite the fact that a person believes that they
will experience HHT more often than HHH in a sequence
as evidence for a biased utility function. Hahn (Hahn and
Warren 2009) reached this breakthroughwith amathemat-
ical analysis of the problem. A computationally rational
model embedded in a cooperative AI system would reach
the same conclusion.
Almost always, of course, behavior is attributable to

some mix of all three components of the adaptation prob-
lem.When people performmore than one task at the same
time, performance of the tasks can interfere; one or both
tasks may be slowed, or the rate of errors may increase
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AI MAGAZINE 5

F IGURE 2 Illustrations of two alternative Markovian
definitions of the computationally rational problems faced
by humans. Left: An agent operating directly in the external
environment. Right: an agent operating via its internal
environment (Singh, Lewis, and Barto 2009) and yoked to
the external environment by stimulus and response. When
the latter is used to model humans, cognitive bounds are
modeled as functions bounding observations (o), reward (r),
and internal action (a). Here, the agent operates in an
internal environment; it observes percepts, motor system,
memory, fatigue, pain, stress, and so forth. Stimuli are
perceived and represented in the internal environment and
responses are caused by changes in the internal
environment. The reward is a subjective utility function
capturing the agents preferences.

(Welford 1952). In addition, people can make strategic
choices about which task to prioritize and whether to pri-
oritize speed or accuracy (Meyer and Kieras 1997). The fact
that task performance is influenced by both capacity limits
and strategic concerns makes it difficult for an observer to
tease out the contribution of each. A driver-assist AI sys-
tem that attempts to infer whether a driver is (a) swerving
to avoid a pothole, or (b) drifting due to simultaneously
driving and browsing the web, must tease apart the causal
roles of goals (leading to swerving) and resource limits
combined with a unhealthy appetite for risk (leading to
drifting) in multitask performance. It is impossible to
understand human behavior without understanding that
it is adapted to both the structure of the environment and
the structure of cognition (Simon 1969). This is an impor-
tant lesson for cooperative AI and one that raises questions
that may be answered with computational rationality,
which provides a framework for attributing environmental
and cognitive causes to behavioral phenomena.
Recent evidence has started to speak for a human

disposition to attribute rationality to others and thereby
determine causes for behavior. The “naive utility calcu-
lus,” or the ability to infer causes behind the observed
behavior of others by assuming that they are bounded
rational, seems to be an essential feature of human social
interactions and theory ofmind (Jara-Ettinger, Schulz, and
Tenenbaum 2020). Importantly, the computational princi-
ples behind this ability seem to imply that humans are able
to process this inference problem by presenting it as an
inverse utility maximization or rational planning problem
(Baker et al. 2017; Jara-Ettinger, Schulz, and Tenenbaum
2020). Computational rationality is, therefore, a plausible
candidate for both simulating how humans infer latent
states of each other, as well as for how a computational
agent might implement a computational theory of mind,
granting it the ability to better understand its users.

COMPUTATIONALLY RATIONAL
MODELS OF COGNITION

In many, though not all, computationally rational models,
the optimal policy is generated by defining the bounded
optimality problem as a Markovian decision problem
(MDP) and then solving it using classical planning
algorithms (Dayan and Daw 2008; Daw 2014; Littman
2015; Lieder and Griffiths 2019). In addition to MDP, the
approaches include partially observable Markov decision
problems (POMDPs), meta-level MDPs, belief-MDPs,
semi-MDPs, and multi-agent MDPs. All of these problems
share the fact that they can be used to precisely capture
a sequential bounded optimalisation problem in which
goals are expressed as cumulative reward maximization
(Bellman 1966; Sutton and Barto 2018). The definition
of a MDP sets aside the mechanisms by which the opti-
mization problem might be solved in favor of a precise
formalization of the problem itself.
MDPs offer the flexibility needed to model hypotheses

about human cognition, including hypotheses concerning
bounds, hierarchies, reward-generating mechanisms, and
so forth (see Figure 2). They have been used to model
a large range of human decision problems (Daw 2014;
Dayan andDaw 2008; Callaway, Rangel, andGriffiths 2021;
Rieskamp and Otto 2006; Jara-Ettinger 2019; Spektor et al.
2019; Chen, Chang, andHowes 2021; Chen et al. 2017, 2015;
Lieder and Griffiths 2019; Callaway, Rangel, and Griffiths
2021; Callaway et al. 2022), for example, prediction learn-
ing, where people learn what to expect will happen after a
visual cue (Dayan and Daw 2008). Here, bounds imposed
by the statistical structure of the task environment can
be captured in the state transition probabilities. The for-
malism allows modeling internal bounds as well, such as
bounds in the observation function (𝑜 in Figure 2) and
transitions of the internal environment.
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6 AI MAGAZINE

Computational rationality allows modeling cognition
as an internal environment that is acted on by a controller.
While in standard uses of Markovian formalisms, the
agent interacts with an external environment, in some
computationally rational models, an agent interacts with
an internal environment via observations and actions and
a yoked external environment via stimuli and responses.
To our knowledge, the first extension of Markovian mod-
els to agents with internal environments was proposed by
Barto and colleagues (Barto, Singh, and Chentanez 2004)
and later Singh, Lewis, and Barto (2009); however, the
first applications in complex human tasks emerged only
a decade later (Chen et al. 2015). See Oulasvirta, Jokinen,
and Howes (2022) for a review.
MDPs have also been used to model how people rea-

son about the behavior of others (Jara-Ettinger 2019).
They have also had particular success in modeling human
visual search (Rao 2010; Acharya et al. 2017), attention
allocation in simple choice tasks (Callaway, Rangel, and
Griffiths 2021), and risky decision making (Chen et al.
2017; Chen and Howes 2012; Lieder, Krueger, and Grif-
fiths 2017; Chen, Chang, and Howes 2021). For example, in
Callaway, Rangel, and Griffiths (2021)’s meta-level Marko-
vian model of attention allocation, beliefs are posterior
distributions over choice item values and the reward
function includes costs of computation. Even complex
human behavior, such as multitasking, can be modeled by
assuming a hierarchical organisation of multiple intercon-
nected Markovian models (Jokinen et al. 2021; Jokinen,
Kujala, and Oulasvirta 2020). MDPs are also being used
to investigate human motivation, theories of which can
be formulated as theories of subjective utility ( in Box
1) (Biehl et al. 2018). The internal reward framework
proposed by Singh et al. (2010) is consistent with this view.

Box 1: CooperativeAIwith computational ratio-
nality
The problem of cooperative AI is to maximize a
value function  that summarizes some objective
goodness of the interaction, while a human part-
ner attempts tomaximize their own subjective utility
 . The distinction between  and  allows mod-
eling situations where the two objectives are not
the same. Both  and  are defined as mappings
from a history ℎ ∈  to a scalar value:  ∶  → ℝ

and  ∶  → ℝ, where  is the set of all possible
histories.
Acomputationally rationalmodel of the user: A
task history ℎ ∈  is generated from the model 𝑀,
following a policy 𝜋 with parameters 𝜃 of the mech-
anisms of human cognition, in a task environment
𝜙. A computationally rational agent (Lewis, Howes,

and Singh 2014) deploys a bounded optimal policy𝜋∗
that maximizes the utility of the task:

𝜋∗ = argmax
𝜋

 (ℎ), (1)

where ℎ ∼ 𝑀(𝜋, 𝜃, 𝜙).
Why? questions: Parameter inference determines
the most plausible set of parameters 𝜃∗ by maxi-
mizing the likelihood of observed human data 𝑦:

𝜃∗ = argmax
𝜃

𝑝(𝑦 ∣ 𝑀) (2)

In practice, computationally rational models require
a likelihood-free estimation method (Gutmann and
Corander 2016; Jokinen et al. 2021; Kangasrääsiö
et al. 2019). The likelihood is computed based on the
model 𝑀 of the user interacting with the task envi-
ronment 𝜙. The posterior of parameters can be used
to assess what caused the observed behavior, such as
subjective utility and capacities.
What if? questions: The agent attempts to optimize
a set of interventions 𝑖∗ ⊂  (often called “designs”),
that out of the space of all possible designsmaximize
the expected value function  , given the predicted
history of behavioral sequences that are adaptations
to these interventions by the user:

𝑖∗ = argmax
𝑖

(ℎ), (3)

where ℎ ∼ 𝑀(𝜋∗, 𝜃∗, 𝜙𝑖). Similarly as the utility
function , the value function  maps a history ℎ to
a scalar. Determining  is problem-dependent, but
for instance, one can set  =  , so that the AI has
the same utility as the user.

WHAT IF? MAKING PREDICTIONS
UNDER ADAPTATION

Computational rationality permits answering “what if?”
questions by simulating the consequences of candidate
interventions (Oulasvirta, Jokinen, and Howes 2022).
Unique to the approach is that it allows taking the human
adaptive response into account, including its costs, thereby
allowing the AI to design optimal interventions.
Recently, applications have emerged in two areas: (1)

computational design and (2) adaptive user interfaces
(UIs). In computational design, computationally rational
models have been used to determine design objectives
(Equation 3 in Box 1). For example,models of sensorimotor
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AI MAGAZINE 7

performance in typing have been used in the optimization
of intelligent text entry support for users with dyslexia and
tremor (Sarcar et al. 2018). Here, the design problem is how
to organize letters on keys, how to size them, and how to
offerword prediction support. Combinatorial optimization
was used to find the best design by consulting amodel that
adapted its typing strategy—here speed–accuracy trade-
off and proofreading frequency—to each candidate design;
thereby answering “what if?” questions. Typing errors for
users with tremor were predicted to reduce from 50% to
around 5% on a keyboard where letter groups and word
predictions were optimized. Approaches to computational
design prior to computational rationality did not consider
how users adapt their interaction as a function of their
capabilities and goals, instead they assumed a fixed policy
(e.g., Gajos, Wobbrock, and Weld 2008).
In applications of adaptive interfaces, the key challenge

is to estimate the costs of changing the interface, given the
user’s history. Amodel of visual search and layout learning
was used to individualize websites based on user history
(Jokinen et al. 2020; Todi et al. 2019). The model simulated
cognitive abilities, such as visual search and long-term
memory using existing psychological models. Search poli-
cies were estimated that optimally exploited the available
resources provided by the website design, given bounds
such as foveated vision and limited memory. When user’
histories with different layouts was considered, the impact
of adjusting a layout could be calculated by simulating
how the user adapts to the change. Websites optimized
using this approachwere 25% faster to search visually (Todi
et al. 2019). In another example, computational rational-
ity was used to explore how drivers might adapt their
multitasking to different lane control implementations
(Jokinen and Kujala 2021). The example highlights the
importance of being able to model how humans adapt
to changes in the task environment: increased automa-
tion, especially if the user trusts its capabilities, may result
in drastic behavioral changes that need to be considered
when adapting interaction.
Researchers have also looked at how to use “what if?”

questions to help learn a model of the user’s reward func-
tion (Reddy et al. 2020). Here, a user model synthesizes
hypothetical behaviors, asks the human user to label the
behaviors with rewards, and then trains a neural network
to predict the rewards. The approach was tested on a nav-
igation task and a video game. The results show that a
method that asks “what if?” questions of a user model sig-
nificantly outperforms prior methods in learning reward
functions that transfer to new environments with different
initial state distributions.
The ability to ask “what if?” questions is also a key

element of approaches to automate the testing of psycho-
logical models. The idea is to estimate model parameters

and choose between models by choosing optimal
experiments for a human participant. Cavagnaro et al.
(2013) demonstrated that querying a space of candidate
models of human risky choice with proposed experimental
stimuli could be used to generate optimal stimuli (mini-
experiments) for discriminating between models. This
approach attempts to choose the most diagnostic stimuli
by estimating the consequences of potential stimuli
using its model, in other words by conducting “what if?”
experiments. By simulatingmany such hypothetical exper-
iments, an expected utility of each stimuluswas computed,
and the stimulus with the highest expected utility was
selected as the next to be given to the participant. While
this approachmakes no commitment to a particular utility
function, the choice is critical to the success of its use. The
particular form of the utility function used by Cavagnaro
et al. (2013) was mutual information between a variable
representing the uncertainty over the set of models under
consideration and a variable representing the uncertainty
associated with a particular miniexperiment (a single
trial). This utility can be interpreted as the reduction
in uncertainty that would be achieved by observing the
outcome if the miniexperiment was actually conducted.
However, no published examples of the use of this method
have considered the utility to the experimental participant
( in Equation 1).

WHY? INFERENCE AND THE PROBLEM
OF INVERSEMODELING

An ideal answer to a “why?” question might consist of
a distribution over psychologically relevant latent con-
structs, including, (1) subjective utilities, (2) capacities, and
(3) the adaptation environment. The problem for a cooper-
ative agent is to calculate this distribution from observed
behavior; a number of approaches to related problems
are relevant.
One approach is inverse reinforcement learning (IRL)

(Kangasrääsiö and Kaski 2018; Ng and Russell 2000);
the reward function of an observed agent is inferred
from observations of its behavior under the assumption
that the behavior was generated with an optimal policy
(Equation 2). A typical IRL algorithm takes as input a set
of behavioral trajectories and outputs a reward function.
The observed agent is modeled as an MDP and the reward
function of this MDP is modeled as, for example, a distri-
bution over possible rewards. Given an initialization, the
MDP is solved for the current reward function to generate
a policy and a behavior. IRL then updates the current
reward function to minimize the divergence between
the observed behavior and the behavior generated by the
learned policy. This process is repeated until convergence,
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8 AI MAGAZINE

or alternatively a posterior distribution is produced for
estimating plausible reward functions (Jokinen et al. 2021).
IRL is claimed to be a route to learning from a human

expert from demonstrations and could be applied to
answering “why?” questions when the answer is in terms
of human goals (Hadfield-Menell et al. 2016). However,
there are a number of challenges (Arora and Doshi 2021;
Zhifei and Meng Joo 2012). The computational costs of
solving the problems tend to grow rapidly with the size
of the problem. More importantly, from the perspective
of the current paper, IRL is not developed to take into
account latent factors other than the reward function;
factors that are critical to modeling humans including
cognitive limitations and experienced ecology, which are
known causal determinants of behavior, that vary across
people.
Another problem with IRL is that it assumes that the

human policy is optimal with respect to the task at hand,
which precludes the possibility that the human is optimal
with respect to say, teaching the task; in other words, the
human is performing the task in a way tomake it easier for
the IRL agent to learn. The human might position a hand
in such a way so as to make an action visible, rather than
so as to minimize movement time. This problem with IRL
is addressed by cooperative inverse reinforcement learning
(CIRL) (Hadfield-Menell et al. 2016), which as with IRL
makes inferences about the reward function but does so by
framing the problem as a cooperative partial-information
game. CIRL, thereby, computes optimal joint policies.
A different approach to answering “why?” questions

could be based on likelihood-free inference (LFI) meth-
ods. The problem of inferring a reward function, or a
memory or attention parameter, is a problem of parameter
inference (Kangasrääsiö et al. 2019). As computationally
rational simulators of human cognition are not expressed
as closed-form equations, they have no known closed-
form likelihood functions. As a consequence, it is difficult
to estimate the plausibility of parameter values. LFI has
received increasing interest as a way to infer parameters
of complex simulation models (Cranmer, Brehmer, and
Louppe 2020; Turner and Van Zandt 2012; Lintusaari et al.
2017; Sisson, Fan, and Beaumont 2019; Kangasrääsiö et al.
2017; Kangasrääsiö et al. 2019).
In LFI, observations are compared to sampled predic-

tions made using the simulator. This permits approximat-
ing the plausibility of parameter values without an explicit
likelihood function. Although the likelihood-function is
not known, it does exist, and drawing a large number
of samples from the model can give sufficient informa-
tion about the plausibility of different parameter values.
For instance, approximate Bayesian computing (ABC) per-
forms parameter inference by simulating amodel multiple
times with various parameter values, and rejecting all

but the subset of simulated samples that are close to the
observed data. Due to the high-dimensionality of data from
most stochastic simulations, a practical step commonly
used in LFI methods is to reduce dimensionality by cre-
ating summary statistics (Hartig et al. 2011). The choice of
these summaries is a critical factor for successful inference:
they must represent the original data sufficiently, that is,
an ideal summary statistic is informationally equivalent to
the original data, given the goal of inferring model param-
eters. Domain-specific knowledge is, therefore, generally
necessary when reducing dimensionality of data, although
there are some recent examples of doing this automatically
(Chen et al. 2020). By running the simulatormultiple times
and computing the difference between the summary statis-
tics from the observed data and generated data, one can
arrive at an approximation of the likelihood of different
parameter values.
The choice of summaries presents a critical challenge for

machines that understand people (Jokinen et al. 2021; Kan-
gasrääsiö et al. 2019; Kangasrääsiö and Kaski 2018). The
high-dimensionality of observation data necessitates the
summaries, but at the same time, the sufficiency of any
given summary statistics is questionable exactly because
they reduce dimensionality and therefore reduce infor-
mativeness of the data (Hartig et al. 2011; Turner and
Sederberg 2014). The key is in finding metrics that serve
cooperative objectives, and acknowledging that the sum-
maries they provide are not sufficient in the strict math-
ematical sense, but that they are sufficient with regards
to what is relevant for capturing the individual variation
in task behavior and explaining it using parameters of
cognitive models.
The approach of treating parameters of cognitive

models as random quantities instead of fixed values has
implications for the types of statistics that are best suited
to perform LFI. Because answers to “why?” questions
should be expressed in terms of how likely different causes
of observed behavior are, parameter inference techniques
that estimate a posterior are preferable to those that
estimate a fixed point. In this regard, some techniques,
such as ABC, seem especially well suited, because they use
probability theory to express information and uncertainty
about parameters (Turner and Van Zandt 2012). The
outcome of such methods is a posterior distribution of
plausible parameter values instead of a fixed point esti-
mate, permitting machines to evaluate the probabilities of
alternative responses to “why?” questions. The advantages
are that they permit accounting of prior information about
parameter values, exploring uncertainty about parameter
estimates by directly expressing how plausible certain
values are, and accumulating evidence throughout longer
time periods (Myung and Pitt 2016). This is important
in cases where incorrect answers might have drastic
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AI MAGAZINE 9

outcomes, for instance, in terms of user adaptations that
lead to unsafe interaction.
LFI was recently used to understand task interleaving

(Gebhardt, Oulasvirta, and Hilliges 2020). It explains why
some people are more proficient at making efficient task
switching decisions by modeling task interleaving as a
hierarchical RL problem, where each available task is asso-
ciated with its own cost and reward estimates. Fitted to
almost 200 individual participant data, the analysis sug-
gested that just two parameters—the discount factor of
the supervisory controller and a coefficient that controlled
a trade-off between rewards and task switching costs—
could explain much of individual differences observed;
thereby answering a “why?” question. Users with high dis-
count factor persisted longer in a task before switching to
another task.
“Why?” questions were answered in work by Jokinen

et al. (2021) in an effort to determine the causes of lane
deviation in driving. The inference was used to determine
the level of motor noise giving rise to observed devia-
tions. Individually, inferred parameters were presented as
a posterior over different values, indicating confidence in
the inference, with the posteriors of some users being
more concentrated than for others, thus expressing how
much power the driving noise parameter had in explaining
a particular driver’s behavior. Moreover, these posteriors
were then sampled to generate posterior predictions of
driving, resulting in isolating individuals who were at
high risk at producing “tail cases,” that is, situations of
extreme and therefore dangerous lane deviations. This
ties back to asking “what if?” in terms of probabili-
ties. Combining computationally rational models with LFI
significantly enhances the power of both for explaining
human behavior.
Answering “why?” questions is rarely a one-shot exer-

cise with given data, rather data are gathered through a
sequence of interventions, or experiments. A problem then
concerns how to design an optimal sequence of experi-
ments. This problemhas been pursued in cognitive science
(Cavagnaro et al. 2013; Myung and Pitt 2016; Turner, Seder-
berg, and McClelland 2016) and in statistics (Ryan et al.
2016). It sometimes referred to as “adaptive design opti-
mization,” sometimes as “optimal design.” It provides
methods for the allocation of experiments in an informa-
tion gathering procedure.While there is interest in optimal
experimental design across the sciences, there is partic-
ular interest in cognitive science. Optimal experimental
designsmay be used to achieve parameter estimationmore
efficiently and therefore answer “why?” questions more
quickly and with lower cost to the human. Bayesian meth-
ods for optimal experimental design have been extensively
explored (Ryan et al. 2016). One feature of Bayesian design
methods is that the prior distribution can be updated after

only a single experiment (intervention) and observation.
Bayesian experimental design requires the definition of a
utility function,which represents the value of experiments.
The Bayes optimal design maximizes the expected utility
function over the design space. One of themost commonly
used utility function is mutual information, which is used
for both parameter estimation and model discrimination.
However,mutual information is not straightforward to cal-
culate and Bayesian design has mostly been limited to
simple models because of the computational challenges of
performing the maximization.
These issues have recently been addressed using amor-

tized methods (Foster et al. 2019, 2021; Valentin et al. 2021;
Ivanova et al. 2021). These involve learning a design pol-
icy upfront and then deploying this policy to make rapid
design decisions at the time of experimentation. In other
words, the computational challenge of Bayesian design is
addressed by precomputing the design policy. A different
approach uses a neural network to estimate a lower-bound
of the mutual information—which is more cost-effective
than the more constrained problem (Kleinegesse and
Gutmann 2020; Gutmann and Corander 2016).

EXAMPLE: BUILDING
COMPUTATIONALLY RATIONAL
MODELS

In this section, we illustrate three key steps in a work-
flow for building computationally rational models, and
exemplify it with a model:

1. Specify the external environment of the user.
2. Specify the internal environment as an MDP (Marko-

vian decision process). It describes the user’s cognitive
processes and the reward function.

3. Estimate cognitive parameters from human data.

As the working example, we use a driver model created
for intelligent lane assistance in semi-autonomous vehi-
cles. In intelligent lane assistance, the ideal timing and
degree of assistance depend both on the traffic situation
and the driver’s state. Assistive actions should be taken
with consideration of the adaptive response of the driver
given this state. Importantly, the driver’s response depends
on howmuch they trust the assistance. While this illustra-
tive example is hypothetical, it builds on recent papers on
the topic (Jokinen, Kujala, and Oulasvirta 2020; Jokinen
and Kujala 2021; Jokinen et al. 2021).

Step 1.
The first step of the workflow is to formalize the external
environment. This is a radical departure from data-driven
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10 AI MAGAZINE

approaches, which usually begin with acquiring training
data. The definition of the external environment involves
modeling the states and transition dynamics of the exter-
nal environment, and how they are affected by the actions
of both the human user and the computer agent. The
transition function can be modeled as hand-coded state
transitions or via a physics simulator (e.g., Ikkala et al.
2022). In the driving model, the external environment (𝜙)
would contain those aspects of the cockpit and traffic envi-
ronment that are important for lane keeping, such as the
road, signs, relative positions and speeds of vehicles, and
the dynamics of the traffic flow. It may also contain steer-
ing controls and driving automation needed for lane assist.
The level of detail in the model of the external environ-
ment depends on the goals of the modeling. It might be
a high-level symbolic model and may, or may not, provide
pixel-level renderings.

Step 2.
The second step is to specify the internal environment,
which describes the user’s cognitive processes and states.
The internal environment is specified as an MDP. This
step involves operationalizing psychological hypotheses
about how the human mind processes task-relevant infor-
mation. This requires answering questions such as how
human senses provide information, how this informa-
tion is integrated as goal-directed mental representations,
and how those representations are stored, processed, and
retrieved when making decisions. Previous work has
modeled a number of cognitive, motor, and perceptual
bounds (see Oulasvirta, Jokinen, and Howes (2022) for
a review).
In the driver model, the internal environment simulates

how a human driver perceives the external environment,
and uses “percepts” to form an internal representation
of the state. The representation integrates the percep-
tual information with prior representations of the task
using an internal model of the task environment (Joki-
nen, Kujala, and Oulasvirta 2020). To account for more
complex situations in driving, we may also need to model
beliefs about the goals and behaviors of other drivers
and a model of naive physics, or how drivers understand
physics related to driving. Furthermore, beliefs such as
how the driver represents the internalworkings of the driv-
ing automation, are encoded here. Parameters 𝜃 are used
to encode individual differences related to the internal
environment; they can, for example, capture how novice
versus expert drivers mentally represent and simulate the
environment.
As part of this step, one needs to specify the reward

function. While humans have complex, multifaceted
preferences and life goals, the modeler should consider
mainly those goals that are relevant to the task at hand.

Previous work has modeled a number of factors relevant
for interactive tasks, such as efficiency (Chen 2015), effi-
cacy (Jokinen, Kujala, and Oulasvirta 2020), ergonomics
(Ikkala et al. 2022), or intrinsic motivation (e.g., Biehl et al.
2018; Singh et al. 2010). In complicated cooperative tasks,
the reward function may include goals that conflict with
those of the collaborator and which need to bemanaged or
resolved.
In the driver model, the reward function quantifies

the driver’s aim to reach the intended destination safely
and efficiently. In addition, a driver may have preferences
about how they can best enjoy the trip, including music
or the choice of alternative routes. These preferences will
often be in conflict; for instance, the driver may need to
consult an in-car interface for navigation or selection of the
song, but this results in glances out of road and reduces
safety. The resulting reward function should express how
a driver might trade-off such objectives. Such preferences
are encoded as weight parameters included in 𝜃.
Specification of the internal and external environment

also demands definition of the stimulus function that
presents the external state to the internal environment,
and the response function which transmits internal state
to the external environment, largely through movement.
Given the full model, the agent is trained using RL. It is
trained through interaction with the model of the external
environment. In the computational rationality workflow,
unlike in earlier cognitive architecture models, the mod-
eler does not need to predefine the policy. Instead, it is
assumed that the agent’s policy is optimal (𝜋∗) within its
bounds. The parameters 𝜃 are initially provided with a
prior based on themodeler’s assumptions about the values
that researchers may have. At this stage in the workflow,
the model is complete and initial steps can be taken to
check that the policy converges to reasonable behaviors
for sampled values of the parameters. Moreover, the opti-
mal policy adapts to the design of the task, for example,
how reliable the lane assist is (Jokinen and Kujala 2021),
meaning that the predicted adapted behavior depends on
the interventions that the AI chooses (elaborated below).

Step 3.
The third step in the workflow is parameter estima-
tion. For instance, there may be a need to fit the model
parameters 𝜃 to each individual human driver, or to a
particular class of drivers. Both the internal and external
environments have parameters that govern variation in
the task and user behavior. Usually, the parameters of
the external environment are well-known, but those of
the internal environment are not. For example, the goals
of the driver, how they process information and what
knowledge they have, are unknown and must be inferred
from their individual performance data. To facilitate
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AI MAGAZINE 11

parameter estimation, the modeler can use a theoretical
or empirical prior about plausible parameter values in
the user population. Such priors can guide the use of the
model during the early stages of interaction. However, as
more observational data about a particular user are col-
lected, cooperative AI must perform parameter inference
in order to establish the most likely parameter estimates
for that user. The main goal of this step is to define the
parameters, how they are inferred from the data, and what
priors to use, in order to accurately model the human user.
Parameter estimation can be extremely expensive com-

putationally, especially when full Bayesian posteriors are
required. Here, an additional step in the workflow can
involve training the model, in silico, on a distribution
of possible user parameters (Moon et al. 2022; Moon,
Oulasvirta, and Lee 2023; Kwon et al. 2020) and even
training the cooperativeAI to acquire user data that ismax-
imally useful for parameter estimation (Ryan et al. 2016;
Foster et al. 2019; Ivanova et al. 2021; Keurulainen et al.
2023).
How could a model built with this workflow be tested

and deployed? The first part of the answer to this ques-
tion, is very carefully and responsibly, taking full account
of the potential dangers, and ensuring oversight at every
step (Yeung, Howes, and Pogrebna 2020). Technically, the
goal of a cooperative AI system is to design an optimal
set of interventions 𝑖∗ ⊂  to maximize the  . Practically,
this happens by simulating the parameterized model and
assessing what sorts of interactions maximize this value.
A vehicle using the driver model observes actions made
by the driver and infers a posterior 𝜃∗ that best describes
the behavior. If the driver seems unsure of the correct
lane, or if there is a relatively large sway in the driv-
ing wheel, then the AI can infer that the driver is not
very experienced, and adjust accordingly by designing an
intervention (𝑖 ∈ ) to make driving safer and more effi-
cient. It could boost the lane assist to help the driver
to keep the lane, or provide the driver with information
about the best lane, given where the driver is going. By
searching or planning possible changes to the environ-
ment, and using predictions made by the fitted model,
the AI agent can factor in how the human user adapts to
particular design interventions, allowing it to determine
the best set of design interventions. This is a potentially
powerful feature of computational rational models, as it
makes it possible to study how a particular human user
adapts to various design interventions without the mod-
eler having to specify beforehandhow thehumanuser acts.
While such interventions remain, for the moment, prob-
lems for studying in the laboratory, we are hopeful that
they are on the critical path to real-world systems in the
future.

PROGRESS AND CHALLENGES

Computational rationality is a model-based, first-
principles approach to understanding humans. We
believe that it has the potential, in the long-term, to
go beyond data-driven methods—thanks to combining
machine learning with psychological assumptions about
the data-generating process, the human.
Critical to computational rationality is the assump-

tion of rationality. Predictions about behavior are derived
from a policy that is optimally adapted to utility and the
bounds—possible causes of behavior. The assumption is
simple but powerful: Human behavior can be explained
and predicted by assuming that people do what is best,
given what they want and are able to do. The identifiabil-
ity problem is reduced, though not solved, by excluding
nonoptimal policies from the space of possible explana-
tions. The causal link, made available by the optimization
assumption, makes it possible to use the model to answer
the “what if?” and “why?” questions that are essential
to the evaluation of interventions as well as to updating
the model when new evidence is observed. Theories of
bounds can build on results in cognitive science, provid-
ing a strong prior that would otherwise make the inverse
problem intractable.
Many significant challenges remain if this vision is to

be fully realized, however. One of the most significant
concerns the nature of human motivation: What makes a
person pursue some activities and not others? What, for
example, makes one person give up in the face of adver-
sity, while others persist? One part of the answer is, as we
have argued, that explanations of behavior must be a joint
function of reward function, resource limits, and environ-
ment. But another answer rests on a deeper understanding
of the human reward function itself. In computational
models of intrinsic motivation, such as curiosity, for exam-
ple, states that are novel to the agent are hypothesized
to be rewarding in their own right (Schmidhuber 1991).
However, psychological theory suggests an even more
nuanced picture. Related to this is work on the rational
basis of motivation (Dubey and Griffiths 2020a, 2020b;
Biehl et al. 2018; Schmidhuber 2010; Roohi et al. 2018; Ecof-
fet et al. 2021). A rational agent should be motivated to
explore stimuli that maximally increase the usefulness of
its knowledge (Dubey and Griffiths 2020a). Curiosity is
studied as a mechanism by which humans approximate
this rational behavior. Further, self-determination theory
(Deci and Ryan 2000) can help understand how motiva-
tions evolve dynamically over time, in a complex interplay
of beliefs, experiences, and basic organismic needs.
Another challenge concerns the human ability to gen-

eralize knowledge and skills. Without understanding this
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12 AI MAGAZINE

ability, AI will grossly underestimate human abilities in
novel encounters, such as when facing an intervention
the AI has taken. So far, most models of computational
rationality use model-free RL, which does not perform
well compared to model-based alternatives when the envi-
ronment changes and transfer of knowledge and skills is
required (Moerland, Broekens, and Jonker 2020). Research
in cognitive sciences suggests that planning, memory, and
supervisory control are exploited to overcome this limi-
tation, such as in models of human cognition based on
model-based (Doll, Simon, and Daw 2012), episodic (Ger-
shman and Daw 2017), and hierarchical RL (Botvinick
and Weinstein 2014). In probabilistic program induction,
motor programs are learned by inducing them from expe-
rience and combining them like computer programs can
combine scripts (Lake, Salakhutdinov, and Tenenbaum
2015). Future work should look at how generalization
is achieved by combining symbolic (e.g., concepts) and
other capabilities.
Computational rationality may also appear to be at odds

with human emotions. However, this perceived conflict
arises only if one associates emotions with maladaptive
and irrational behavior, and contrasts them with rational
goal-directed adaptive behavior (Volz and Hertwig 2016).
The challenge emotions pose to computational rationality
is that of treating emotion as part of rational adaptation,
requiring a goal-directed account of emotion (Moors and
Fischer 2019). A possible path towards a computationally
rational account of emotion would exploit the connec-
tion between reward-prediction errors (RPEs) used in RL
algorithms and the phasic activity of midbrain dopamine
neurons, which seem to track RPEs in the human brain
(Gershman and Uchida 2019; Mikhael et al. 2022). This
approach could investigate the possibility that the mech-
anisms of rational adaptation and emotion are inseparable
in humans. A collaborative agent equipped with such a
model could predict not only the emotional responses of
humans, but also how emotions might impact behavior in
both positive and negative ways.
Social interaction poses another significant challenge

to computational rationality. While there is increasing
interest in MDP-based formalisms of social interaction,
such as social MDPs (Tejwani et al. 2022), for applica-
tions in cooperative settings with humans, there is a need
to model humans as special type of social interactors. In
our account, human behavior in collaborative settings is
adaptive: in social interaction, people adapt their expres-
sion to the distribution of relationships present in the
audience. For example, when using social media, people
exhibit a range of strategies in order to attempt to prevent
context collapse (Davis and Jurgenson 2014). The basis of
such adaptation should be modeled as beliefs about oth-
ers, including their capabilities, personalities, intent, and

so forth. A scientific basis for this was laid in the the-
ory of social cognition in the late 1980s (Fiske and Taylor
1991). The topic has experienced a revival in AI research
in the study of social robotics (Wykowska, Chaminade,
and Cheng 2016) and theory of mind in artificial agents
(Nguyen and Gonzalez 2021).
Finally, we believe that computational rationality is a

candidate technology on the path to human–AI align-
ment (Russell 2019). Russell outlines three principles of
alignment: the machine (1) should maximize human util-
ity, (2) is uncertain about the human utility function,
and (3) should decrease this uncertainty by observing
human behavior. While Russell presented IRL as a possi-
ble method for accomplishing this vision, a strong prior
is required to push forward. IRL and cooperative IRL
(Hadfield-Menell et al. 2016) will prove more effective if
complemented with viable models not only of human util-
ities but also of human bounds. Rather than assuming
that humans can be modeled as rational agents with vary-
ing reward functions, as in IRL, computational rationality
also embraces variation in internal bounds, including
variation in observation functions, internal state tran-
sitions, and environments of adaptation. The resulting
optimization problems are more challenging but must be
faced if IRL is to produce useful solutions to alignment
problems.

CONCLUSION

We believe that model-free learning is insufficient for
cooperative AI. Computational rationality offers a prin-
cipled, model-based, basis for algorithms to drive both
inference and planning in cooperative agents. It puts psy-
chological constructs, similar to those that underlie human
cooperative abilities, at the center of such algorithms. This
enables the theory to disentangle causal contributions that
a person’s goals, capabilities, and environment make to
their behavior. It offers an exciting avenue for research
on cooperative agents that better understand humans,
plan interventions, and make available explanations that
are human-understandable.
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