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Abstract
Weaddress the question of finding global solutions of theHelmholtz equation that are positive
in a given set. This question arises in inverse scattering for penetrable obstacles. In particular,
we show that there are solutions that are positive on the boundary of a bounded Lipschitz
domain.

Keywords Helmholtz equation · Acoustic equation · Lipschitz domain ·
Inverse scattering problem

Mathematics Subject Classification (2010) 35J05 · 35J15 · 35J20 · 35R30 · 35R35

1 Introduction

The objective in this short note is to consider the following problem.

Question 1.1 Let k > 0 and let E be a subset of Rn (n ≥ 2). Does there exist a solution of
(Δ + k2)u = 0 in R

n with u|E > 0?

Note that any solution of the Helmholtz equation (Δ + k2)u = 0 is C∞, and thus the
condition u|E > 0 can be understood pointwise. There is a substantial literature on zero sets
of solutions of elliptic equations and eigenfunctions, as discussed in the review [11]. In our
setting, any real valued solution of (Δ + k2)u = 0 in Rn must have a zero in any closed ball
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of radius j n−2
2 ,1k

−1 where j n−2
2 ,1 is the first zero of the Bessel function Jn−2

2
(see e.g. [14,

Lemma 3.1]). Question 1.1 above is related to producing a global solution whose zero set
avoids a given set E .

Our motivation comes from inverse scattering theory and the works [2, 9, 14]. In these
works, one considers a bounded open set D ⊂ R

n (penetrable obstacle) together with a
coefficient h ∈ L∞(Rn) with |h| ≥ c > 0 a.e. near ∂D (contrast), and asks whether it is
possible to find a solution u0 �≡ 0 of (Δ + k2)u0 = 0 in R

n (incident wave) such that the
obstacle D with contrast h does not produce any scattering response. The last condition can
be precisely formulated as the existence of a function u solving

(Δ + k2 + hχD)u = 0 in R
n,

u = u0 outside some ball.

If this happens for some contrast h, then the obstacle D is called a non-scattering domain
and it will be invisible with respect to probing with the incident wave u0.

It was proved in [14, Theorem 2.1] that if D has real-analytic boundary and if there is an
incident wave u0 with u0|∂D > 0, then D is a non-scattering domain. Similarly, the work [9]
introduced the notion of quadrature domains for the Helmholtz operator Δ + k2 and proved
that if D is such a domain, and if there is an incident wave u0 with u0|∂D > 0, then D is a
non-scattering domain. On the other hand, the works [2, 14] show that under a nonvanishing
condition for u0 on ∂D, the boundary of a non-scattering domain can be interpreted as a free
boundary in an obstacle-type problem and hence such a domain must be either regular or
have thin complement near any boundary point.

It was also proved in [14] that one may be able to find incident waves that are positive on
the boundary of a bounded C1 domain (Lipschitz if n = 2, 3). Our first main result extends
this to Lipschitz domains in any dimension.

Theorem 1.1 Let D ⊂ R
n (n ≥ 2) be a bounded Lipschitz domain such that Rn \ D is

connected. Suppose that k2 > 0 is not a Dirichlet eigenvalue of −Δ in D. Then there exists
a Herglotz wave function u0 (see Definition 2.1) satisfying

(Δ + k2)u0 = 0 in R
n and u0|∂D > 0.

The proof of Theorem 1.1 is done in two steps. One first constructs a solution v of
(Δ + k2)v = 0 in D with v|∂D > 0 by solving a Dirichlet problem. Then one approximates
v in D by a suitable Herglotz wave u0 in R

n via a Runge approximation argument. This
approximation needs to be done in a suitable norm to obtain the pointwise condition u0|∂D >

0, but since D only has Lipschitz boundary the solution v is not very regular and this limits
the choice of possible norms. We will work with fractional Sobolev spaces Hs,p and invoke
the theory of boundary value problems in Lipschitz domains.1

We remark that the assumption in Theorem 1.1 that k2 is not an eigenvalue is necessary,
at least when D is a ball (see Example 2.5). For the first eigenvalue this was pointed out in
[14, Remark 3.2].

Another instance of subsets E ⊂ R
n where one can arrange u0|E > 0 is given in the

following result.

Theorem 1.2 Let k > 0, and let D ⊂ R
n (n ≥ 2) be a bounded Lipschitz domain such that

R
n \ D is connected and |D| ≤ |Br | where r = j n−2

2 ,1k
−1. If E ⊂ D is compact, then there

1 This is one of the areas where Carlos Kenig has made pioneering contributions.
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exists a Herglotz wave function u0 (see Definition 2.1) satisfying

(Δ + k2)u0 = 0 in R
n and u0|E > 0. (1.1)

The proof is similar to that of Theorem 1.1, except that in the first step we use the Faber–
Krahn inequality to produce a solution v that is positive near E .

Remark 1.3 If E is sufficiently nice and low dimensional, it may be possible to use
Theorem 1.2 to find solutions that are positive on E . For example, let E be a smooth compact
manifold with dim(E) = m ≤ n− 2 embedded in Rn , which is homeomorphic to a compact
submanifold E1 ofRn−1 ∼= R

n−1×{0} ⊂ R
n . This holds e.g. whenm < n/2 by theWhitney

embedding theorem, or when E is homeomorphic to Sm . Since R
n \ E1 is connected, by

[12, Corollary 7.9] one sees thatRn \ E is (pathwise) connected. One can construct a tubular
neighborhood D = {x ∈ R

n : d(x, E) < ε} of E having smooth boundary ∂D and arbi-
trarily small measure [12, Theorem 9.23 and Remark 9.24] (see also [10, Theorem 6.24]).
SinceRn \ E is connected, one can connect any two points inRn \ D by a curve γ inRn \ E .
By considering the curve F(γ ) where F is a continuous map on R

n that fixes Rn \ D and
collapses D \ E to ∂D, we see that Rn \ D is connected. Since D has smooth boundary,
also R

n \ D is connected. (See [5, pp. 61–62] for a related discussion.) Thus we may apply
Theorem 1.2 to find a Herglotz wave function u0 satisfying (1.1). Note that the connectedness
of Rn \ E can fail when E has dimension n − 1.

2 Solutions Satisfying the Positivity Condition

In this section we will prove Theorems 1.1 and 1.2. We begin with some preparations.

2.1 Fractional Sobolev Spaces

For each s ∈ R and 1 < p < ∞, the fractional Sobolev space Hs,p(Rn) is the Banach space
equipped with the norm

‖u‖Hs,p(Rn) := ‖〈D〉su‖L p(Rn),

where 〈D〉s is the the Bessel potential of order s, i.e. the Fourier multiplier corresponding to
〈ξ 〉s = (1 + |ξ |2) s

2 . In particular when s = k ≥ 1 is an integer, we also have Hk,p(Rn) =
Wk,p(Rn), where

Wk,p(Rn) = {u ∈ L p(Rn)|Dαu ∈ L p(Rn)for all multi-indices α with |α| ≤ k}.
From [1, Corollary 6.2.8], we have the duality statement

(Hs,p(Rn))∗ = H−s,p′
(Rn) for all s ∈ R and 1 < p < ∞, (2.1)

where (p′)−1 + p−1 = 1. We also recall the Sobolev embedding ([1, Theorem 6.5.1]):

Hs,p(Rn) ⊂ Hs1,p1(Rn)

whenever 1 < p ≤ p1 < ∞, −∞ < s1 ≤ s < ∞, and s − n
p = s1 − n

p1
.

Let D be an open set in Rn . We define

Hs,p(D) := {u|D | u ∈ Hs,p(Rn)} for all s ∈ R and 1 < p < ∞.
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This is a Banach space equipped with the quotient norm

‖v‖Hs,p(D) := inf{‖u‖Hs,p(Rn) | u|D = v}.
When D is a bounded Lipschitz domain, from [8, Theorem 2.3] we know that there exists a
bounded linear extension operator

E : Hs,p(D) → Hs,p(Rn) with Eu = u in D for all u ∈ Hs,p(D).

If F ⊂ R
n is closed, we define

Hs,p
F (Rn) := {u ∈ Hs,p(Rn) | supp(u) ⊂ F}.

If D is a bounded Lipschitz domain, the following result can be found in [8, Remark 2.7]:

C∞
c (D) is dense in Hs,p

D
(Rn) for each s ∈ R and 1 < p < ∞. (2.2)

2.2 Runge–Herglotz Approximation

The next objective is to prove a result stating that solutions in Hs,p(D) can be approximated
in D by Herglotz waves. We first give a definition.

Definition 2.1 Let k > 0 and consider the operator Pk : C∞(Sn−1) → C∞(Rn) defined by

(Pk f )(x) :=
∫
Sn−1

eikx ·ẑ f (ẑ) dẑ, x ∈ R
n .

The functions u = Pk f with f ∈ C∞(Sn−1) are called Herglotz waves, and they are
particular solutions of (Δ + k2)u = 0 in R

n .

Proposition 2.2 Let k > 0, 0 < s ≤ 1, 1 < p < ∞, and let D ⊂ R
n (n ≥ 2) be a bounded

Lipschitz domain such thatRn \D is connected. Given any v ∈ Hs,p(D)with (Δ+k2)v = 0
in D, there exist Herglotz waves u j ∈ C∞(Rn) such that

‖u j − v‖Hs,p(D) → 0 as j → ∞.

If v is real-valued, then so are u j .

The proof of Proposition 2.2 is very similar to [14, Proposition 3.4] that considered
approximation in W 1,p(D). Here we need to work with fractional Sobolev spaces instead.

Proof In view of the Hahn–Banach theorem, it is enough to prove that any bounded linear
functional 	 : Hs,p(D) → C that vanishes on {Pk f |D | f ∈ C∞(Sn−1)} must also vanish
on {v ∈ Hs,p(D) | − (Δ + k2)v = 0 in D}. Let 	 be such a linear functional, and define a
bounded linear functional 	1 : Hs,p(Rn) → C by 	1(u) := 	(u|D). By duality (2.1), there
exists a unique μ ∈ H−s,p′

(Rn) such that

	1(u) = (u, μ) for all u ∈ Hs,p(Rn),

where (·, ·) is the sesquilinear distributional pairing in R
n . It is easy to see that μ = 0 in

R
n \ D, and the condition 	(Pk f |D) = 0 for all f ∈ C∞(Sn−1) implies that

(Pk f , μ) = 0 for all f ∈ C∞(Sn−1). (2.3)
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We now define the distribution w := Φk ∗ μ, where

Φk(x) = ik
n−2
2

4(2π)
n−2
2

|x |− n−2
2 H (1)

n−2
2

(k|x |)

is the outgoing fundamental solution of the Helmholtz operator −(Δ + k2) and H (1)
α is the

Hankel function (see [15, §1.2.3]). Then w is a distributional solution of

− (Δ + k2)w = μ in R
n . (2.4)

Elliptic regularity yields w ∈ H2−s,p′
loc (Rn), and since supp(μ) ⊂ D we also have that w is

C∞ in R
n \ D.

Given any f ∈ C∞(Sn−1), we write u = Pk f ∈ C∞(Rn). Using (2.3) and the fact that
μ has compact support, we have

0 = (u, μ) = lim
r→∞(u, μ)Br , (2.5)

where (·, ·)Br is the sesquilinear distributional pairing in the ball Br . We now consider a
cut-off function χ ∈ C∞

c (Rn) satisfying 0 ≤ χ ≤ 1 and χ = 1 near D. Using (2.4), we can
write (2.5) as

0 = lim
r→∞

[
(χu, (Δ + k2)w)Br + ((1 − χ)u, (Δ + k2)w)Br

]

= lim
r→∞

[
((Δ + k2)(χu), w)Br + ((Δ + k2)((1 − χ)u), w)Br

+
∫

∂Br
(u∂|x |w − (∂|x |u)w) dS

]

= lim
r→∞

∫
∂Br

(u∂|x |w − (∂|x |u)w) dS, (2.6)

where ∂|x | = x̂ ·∇ denotes the radial derivative. Here we also used the fact that (Δ+k2)u = 0
in R

n .
Using [13, Lemma 1.2 and equation (1.18)], we know that the Herglotz function u = Pk f

has the following asymptotics as |x | → ∞:

u(x) = c′
n,k |x |− n−1

2

(
eik|x | f (x̂) + in−1e−ik|x | f (−x̂)

)
+ O(|x |− n+1

2 ), (2.7a)

∂|x |u(x) = c′
n,k |x |− n−1

2 ik
(
eik|x | f (x̂) − in−1e−ik|x | f (−x̂)

)
+ O(|x |− n+1

2 ), (2.7b)

where c′
n,k = k

n−1
2 e

π(n−1)i
4 (2π)− n−1

2 . On the other hand, from [15, equation (2.27)], we know
that w has the asymptotics

w(x) = c′′
n,k |x |−

n−1
2 eik|x |μ̂(kx̂) + O(|x |− n+1

2 ) as |x | → ∞, (2.7c)

∂|x |w(x) = c′′
n,k |x |−

n−1
2 ikeik|x |μ̂(kx̂) + O(|x |− n+1

2 ) as |x | → ∞, (2.7d)

where c′′
n,k = 2−1e− π(n−3)i

4 (2π)− n−1
2 k

n−3
2 and μ̂ ∈ C∞(Rn) is the Fourier transform of the

compactly supported distribution μ.
Combining (2.6) with (2.7a)–(2.7d), we obtain∫

Sn−1
f (x̂)μ̂(kx̂) dx̂ = 0.
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By the fact that f ∈ C∞(Sn−1) was arbitrary, we conclude μ̂(kx̂) = 0 for all x̂ ∈ Sn−1.
Consequently, (2.7c) becomes

w(x) = O(|x |− n+1
2 ) as |x | → ∞.

In other words, the far-field pattern of w is vanishing. By the Rellich uniqueness theorem [4,
7], the unique continuation principle and the connectedness of Rn \ D, we conclude that

w = 0 in R
n \ D.

Since w ∈ H2−s,p′
loc (Rn), we also conclude that w ∈ H2−s,p′

D
(Rn).

Now let v ∈ Hs,p(D) be any solution of (Δ + k2)v = 0 in D, and let ṽ ∈ Hs,p(Rn) be
such that ṽ|D = v. We see that

	(v) = 	1(ṽ|D) = (ṽ, μ) = (ṽ, (Δ + k2)w).

From (2.2), we know that there are w j ∈ C∞
c (D) with w j → w in H2−s,p′

(Rn). Since
(Δ + k2)ṽ = 0 in D, we finally conclude that

	(v) = lim
j→∞(ṽ, (Δ + k2)w j ) = lim

j→∞((Δ + k2)ṽ, w j ) = 0,

which is our desired result. ��

2.3 Proof of themain result

Theorem 1.1 is an immediate consequence of the following result:

Theorem 2.3 Let D be a bounded Lipschitz domain in R
n (n ≥ 2) such that Rn \ D is

connected. Suppose that k2 > 0 is not a Dirichlet eigenvalue of −Δ in D. Given any
constant c0 ∈ R, there exist Herglotz wave functions u j ∈ C∞(Rn) solving (Δ + k2)u j = 0
in R

n such that
lim
j→∞ ‖u j − c0‖L∞(∂D) = 0.

Before we prove Theorem 2.3 we need the following result, which is a special case of [8,
Theorems 1.1 & 1.3].

Proposition 2.4 Let D be a bounded Lipschitz domain in R
n (n ≥ 2). If 2 ≤ p < ∞ and

f ∈ Hs−2,p(D) where
1

p
< s <

3

p
,

then there exists a unique u ∈ Hs,p(D) satisfying −Δu = f in D and u = 0 on ∂D.

Proof We first consider the case when n ≥ 3. Let p0 be as in [8, Theorem 1.1] (with
� = D). If p′

0 ≤ p < ∞, the result follows from [8, Theorem 1.1(c)]. On the other hand, if
2 ≤ p < p′

0, the result follows from [8, Theorem1.1(a)] since s < 3
p ≤ 1+ 1

p . The casewhen
n = 2 can be proved using identical reasoning using [8, Theorem 1.3] and the observation
3
p ≤ 2

p + 1
2 . ��

Proof of Theorem 2.3 Since k2 is not a Dirichlet eigenvalue in D, there exists a unique
solution v ∈ H1,2(D) such that

(Δ + k2)v = 0 in D and v = c0 on ∂D.
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If v ∈ Hs,p(D) for some 0 < s ≤ 1 and p > n/s, using Proposition 2.2, we know that there
exist Herglotz waves u j ∈ C∞(Rn) such that

‖u j − c0‖L∞(∂D) = ‖u j − v‖L∞(∂D) ≤ ‖u j − v‖C(D) ≤ C‖u j − v‖Hs,p(D) → 0,

where we used the Sobolev embedding.
It remains to show that v ∈ Hs,p(D) for some s, p with s > n/p, and this follows from

a standard bootstrap argument based on Proposition 2.4. We claim that

v ∈ H
2
p j

,p j
(D) for 0 ≤ j <

n − 2

4
, (2.5)

where
1

p j
= 1

2
− j

2

n − 2
.

The case j = 0 follows since v ∈ H1,2(D). We argue by induction and assume that this
holds for j . Define w := v − c0 and note that w solves

−Δw = k2v ∈ H
2
p j

,p j
(D), w|∂D = 0.

We next use the Sobolev embedding H
2
p j

,p j
(D) ⊂ H

2
q −2,q

(D) where 2
p j

> 2
q − 2 and

2

p j
− n

p j
= 2

q
− 2 − n

q
.

It follows that q = p j+1 and then indeed 2
p j

> 2
q −2. In particular−Δw ∈ H

2
p j+1

−2,p j+1
(D)

with w|∂D = 0, and we may use Proposition 2.4 to conclude that w ∈ H
2

p j+1
,p j+1

(D). This
completes the induction step and proves (2.5).

We have proved that v ∈ H
2
p j

,p j
(D) where j is the largest integer < n−2

4 . Using the

above notation, we have Δw ∈ H
2
p j

,p j
(D) and w|∂D = 0. By Sobolev embedding we have

Δw ∈ Hs−2,p(D) whenever p ≥ p j and

2

p j
− n

p j
= s − 2 − n

p
.

The last condition implies that

s − n

p
= 2 + 2 − n

p j
= 2 + 2 − n

2
+ 2 j ≥ 0

since j ≥ n−2
4 − 1. If j > n−2

4 − 1, using Proposition 2.4 once again we obtain that w and
hence v is in Hs,p for some s > n/p. On the other hand, if j = n−2

4 − 1 we iterate the
argument once more to get v ∈ Hs,p for some s > n/p. This concludes the proof. ��

The next simple example shows that the condition that k2 is not an eigenvalue is necessary
at least for balls.

Example 2.5 Let v(x) := |x | 2−n
2 Jn−2

2
(|x |). We see that v ∈ C∞(Rn) and (Δ + 1)v = 0 in

R
n . Suppose that u1 is a real-valued function satisfying (Δ + 1)u1 = 0 in R

n . Since

v(x) = 0 when |x | = j n−2
2 ,m for any m ≥ 1,
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where j n−2
2 ,m denotes the mth positive zero of Jn−2

2
, we have

∫
|x |= j n−2

2 ,m

u1
∂v

∂r
dS =

∫
|x |< j n−2

2 ,m

(u1Δv − vΔu1) dx = 0.

Since

(−1)m
∂v

∂r
(x) > 0 when |x | = j n−2

2 ,m,

it follows that u1 must change sign on |x | = j n−2
2 ,m .

Similarly, if R > 0 and if u0 solves (Δ + k2m)u0 = 0 in R
n where km = R−1 j n−2

2 ,m ,
define u1 via the rescaling

u0(x) = u1
(
R−1 j n−2

2 ,mx
)

for x ∈ R
n .

We see that (Δ + 1)u1 = 0 in Rn . The above discussion shows that u0 must change sign on
∂BR .

The following strong maximum principle can be found in [9, Appendix A]. However, for
readers’ convenience, here we exhibit the statement as well as its proof.

Lemma 2.6 (Strong maximum principle) Let D be a bounded Lipschitz domain in Rn (n ≥
2), and let k2 < λ1(D), where λ1(D) > 0 denotes the smallest H1

0 (D)-eigenvalue of −Δ. If
the solution u ∈ H1(D) satisfies

(Δ + k2)u = 0 in D, u ≥ 0 on ∂D,

then for each open component G of D we have either u ≡ 0 in G or u > 0 in G (note that
u ∈ C∞(G) by elliptic regularity).

Proof It is easy to see that for each component G of D we have k2 < λ1(G) and

(Δ + k2)u = 0 in G, u ≥ 0 on ∂G.

Testing the equation above by u− ∈ H1
0 (G) and using Poincaré inequality, we have

∫
G

|u−|2 dx ≤ 1

λ1(G)

∫
G

|∇u−|2 dx = k2

λ1(G)

∫
G

|u−|2 dx .

Since k2
λ1(G)

< 1, then u− ≡ 0 in G, that is,

u ≥ 0 in G. (2.6)

Let x0 ∈ G such that u(x0) = 0. Themean value theorem for Helmholtz equation (see e.g. [9,
Appendix A]) gives that ∫

Bε(x0)
u(x) dx = 0 (2.7)

for all sufficiently small ε > 0 so that Bε(x0) ⊂ G. Since u is continuous in G, combining
(2.6) and (2.7) we know that u = 0 in Bε(x0), and this shows that {x ∈ G | u(x) = 0} is
both open and closed in G. Since G is connected, then we have either

{x ∈ G | u(x) = 0} = G or {x ∈ G | u(x) = 0} = ∅,

which concludes our lemma. ��
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Finally, we give the proof of Theorem 1.2.

Proof of Theorem 1.2 Since |D| ≤ |Br | where r = j n−2
2 ,1k

−1, the Faber–Krahn inequality
(see e.g. [3, Theorem III.3.1]) implies that each connected component G of D satisfies

λ1(G) ≥ λ1(Br ) = k2.

Case 1. If λ1(G) = k2, we choose v to be an eigenfunction corresponding to the first
eigenvalue with v > 0 in G, i.e. v solves (Δ + k2)v = 0 in G with v ∈ H1

0 (G), see e.g. [6,
Theorem 2(ii) in Section 6.5.1].
Case 2. If λ1(G) > k2, then there exists a unique solution v ∈ H1(G) such that

(Δ + k2)v = 0 in G, v = 1 on ∂G.

Using the strong maximum principle in Lemma 2.6, we know that v > 0 in G.
Next we choose a bounded Lipschitz domain D1 that satisfies E ⊂ D1, D1 ⊂ D, and

R
n \D1 is connected. The function v|D1 is in H1,p(D1) for any p > n and satisfies v|D1

> 0.
The approximation result in Proposition 2.2 yields a sequence ofHerglotzwaves u j satisfying

‖u j |D1 − v‖H1,p(D1)
→ 0 as j → ∞.

If j is sufficiently large, the Sobolev embedding ensures that u j |E > 0. ��
Acknowledgements This project was finalized while the authors stayed at Institute Mittag Leffler (Sweden),
during the programGeometric aspects of nonlinear PDE. Kow and Salo were partly supported by the Academy
of Finland (Centre of Excellence in Inverse Modelling and Imaging, 312121) and by the European Research
Council under Horizon 2020 (ERC CoG 770924). Shahgholian was supported by Swedish Research Council.

Funding Open access funding provided by Royal Institute of Technology.

Data Availability All data needed are contained in the manuscript.

Declaration

Conflicts of interest The authors declare that there are no competing or conflict of interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wis-
senschaften, vol. 223. Springer-Verlag, Berlin, Heidelberg (1976)

2. Cakoni, F., Vogelius, M.S.: Singularities almost always scatter: Regularity results for non-scattering
inhomogeneities. arXiv:2104.05058 (2021)

3. Chavel, I.: Isoperimetric Inequalities.DifferentialGeometric andAnalytic Perspectives. CambridgeTracts
in Mathematics, vol. 145. Cambridge University Press, Cambridge (2001)

4. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Applied Math-
ematical Sciences, vol. 93. Springer, Cham (2019)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2104.05058


P.-Z. Kow et al.

5. Cronwell, R.H., Fox, R.H.: Introduction to Knot Theory. Graduate Text inMathematics, vol. 57. Springer-
Verlag, New York, Heidelberg (1977)

6. Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. American
Mathematical Society, Providence, RI (2010)

7. Hörmander, L.: Lower bounds at infinity for solutions of differential equations with constant coefficients.
Isr. J. Math. 16, 103–116 (1973)

8. Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal.
130, 161–219 (1995)

9. Kow, P.-Z., Larson, S., Salo, M., Shahgholian, H.: Quadrature domains for the Helmholtz equation with
applications to non-scattering phenomena. Potential Anal. (2022). https://doi.org/10.1017/s11118-022-
10054-5

10. Lee, J.M.: Introduction to SmoothManifolds, 2nd edn. Graduate Texts inMathematics, vol. 218. Springer,
New York (2013)

11. Logunov, A., Malinnikova, E.: Review of Yau’s conjecture on zero sets of Laplace eigenfunctions. In:
Current Developments in Mathematics, vol. 2018, pp. 179–212. Int. Press, Somerville, MA (2020)

12. Madsen, I., Tornehave, J.: From Calculus to Cohomology: de Rham Cohomology and Characteristic
Classes. Cambridge University Press, Cambridge (1997)

13. Melrose, R.B.: Geometric Scattering Theory. Stanford Lectures. Cambridge University Press, Cambridge
(1995)

14. Salo, M., Shahgholian, H.: Free boundary methods and non-scattering phenomena. Res. Math. Sci. 8, 58
(2021)

15. Yafaev, D.R.: Mathematical Scattering Theory. Analytic Theory. Mathematical Surveys andMonographs,
vol. 158. American Mathematical Society, Providence, RI (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1017/s11118-022-10054-5
https://doi.org/10.1017/s11118-022-10054-5

	On Positivity Sets for Helmholtz Solutions
	Abstract
	1 Introduction
	2 Solutions Satisfying the Positivity Condition
	2.1 Fractional Sobolev Spaces
	2.2 Runge–Herglotz Approximation
	2.3 Proof of the main result

	Acknowledgements
	References


