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Abstract

The I*" Workshop on Maritime Computer Vision (MaCVi)
2023 focused on maritime computer vision for Unmanned
Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV),
and organized several subchallenges in this domain: (i)
UAV-based Maritime Object Detection, (ii) UAV-based Mar-
itime Object Tracking, (iii) USV-based Maritime Obstacle
Segmentation and (iv) USV-based Maritime Obstacle Detec-
tion. The subchallenges were based on the SeaDronesSee
and MODS benchmarks. This report summarizes the main
findings of the individual subchallenges and introduces a

new benchmark, called SeaDronesSee Object Detection v2,
which extends the previous benchmark by including more
classes and footage. We provide statistical and qualitative
analyses, and assess trends in the best-performing method-
ologies of over 130 submissions. The methods are sum-
marized in the appendix. The datasets, evaluation code
and the leaderboard are publicly available (https://
seadronessee.cs.uni-tuebingen.de/macvi).
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(a) UAV-based Maritime Object Detection

(b) UAV-based Maritime Object Tracking

(c) USV-based Maritime Obstacle Segmentation

(d) USV-based Maritime Obstacle Detection

Figure 1: Overview of MaCVi challenges.

1. Introduction

The open water covers over 70% of our planet and ac-
counts for 80% of international trade [87]. The use of cam-
eras and robotic platforms in this domain is growing fast,
and ocean scientists are gathering large amounts of visual
data using various sensors with a clear need for robust and
reliable methods for quantification, detection, classification
and understanding [42,52,53,67,69,76,88,99]. Evidence of
this is also reported in recent literature surveys [15,69, 103].

In particular, significant efforts have been invested in re-
cent decades into development of autonomous robots that
operate on and above the water surface. Unmanned surface
vehicles (USVs) are emerging from this research in form of

autonomous boats and ships. Their autonomy profoundly
depends on perception capability, particularly in busy mar-
itime traffic, near the coast or in inland waters. Despite
important advances made in maritime computer vision for
USVs [17,70,72,73], this remains an unsolved problem.
Another class of autonomous robots that is emerging are
Unmanned Aerial Vehicles (UAVs), or drones, which pro-
vide an aerial view over a scenery, allowing to oversee large
areas quickly and in a relatively inexpensive manner. While
computer vision methods are not as crucial for navigation
in UAVs, perception capabilities are required for automated
perimeter inspection [106].

Indeed, UAVs and USVs cater a wide range of mar-
itime applications, such as maritime Search and Rescue
(SaR) [66, 88], maritime patrol [75,94], monitoring of oil
and sewage spills from ships [44,46], trash detection [34,84],
illegal fishing prevention [14,77], animal population survey-
ing [49,71], wind farm and oil rig inspection [25,95], and
coral reef monitoring [12,36] to name a few. All of these
applications require robust vision systems for UAVs and
USVs for practical use. Therefore, the maritime domain
poses several unique challenges:

* Water texture: Naturally, the most distinguishing prop-
erty comes from the water surface itself. Sea foam or
waves are unpredictable and inhibit reliable detection.
Furthermore, sun reflections result in random artifacts
in the case of standard, thermal and multi-spectral cam-
eras. While the water surface seems to be homoge-
neous, it differs drastically between different bodies of
water. Furthermore, plants, animals, trash and other
confounders make the detection even harder.

« Lighting conditions: Relative camera orientation with
respect to the sun position affects the apparent scene
lighting. Acute angles with horizon visible may render
certain image areas underexposed while other overex-
posed and saturated.

Size of objects and obstacles: UAVs fly at high alti-
tudes to increase the field of view, which makes objects
appear very small. This requires models to operate with
large resolutions and large foreground-background im-
balances. For USVs, a comparable situation is detection
of small crafts from a vantage point of a large ship.

Limited Hardware: Typical relevant UAVs have a
small payload and a limited power supply, only al-
lowing embedded hardware to be deployed. In long-
distance missions, where it is not possible to transmit a
video stream, this restricts the use of computer vision
algorithms to small models. Meanwhile, USVs must
process most of the sensory data on board in real-time
for sailing control and timely obstacle avoidance.
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Figure 2: Overview diagram of what the maritime computer vision is comprised of and what applications the four challenges,

UAV-based Object Detection & Tracking (red) and USV-based Obstacle Detection & Segmentation (yellow), are aimed at
tackling (orange applies to both).

* Real-time requirements: Maritime SaR missions and
other applications require models running in real-time,
such that there are no false negatives and a quick re-
sponse is possible. Furthermore, the high speed of
UAVs demand fast synchronization between navigation
sensors and potentially multiple cameras to allow for
georeferencing or tracking applications, and in both,
UAVs and USVs, real-time requirements are crucial for
navigation itself.

To address these challenges in a way that unites many
maritime applications and to spark interest in the mar-
itime domain, the 1% Workshop on Maritime Computer Vi-
sion (MaCVi) 2023 was organized in conjunction with the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV) 2023. An integral part of the workshop
were the challenges listed in Figure 1, i.e. UAV-based Object
Detection & Tracking, and USV-based Obstacle Detection
& Segmentation.

The first group of challenge tracks are geared towards
Maritime Search and Rescue (SaR) applications, where the
footage aims to simulate such scenarios (see Figure 2 for
a challenge categorization). These two tracks are mainly
based on the SeaDronesSee benchmark [88], although we
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extended it considerably in the case of the object detection
part. Sections 3 and 4 describe in detail the dataset and the
challenge of these tracks. The second group of challenge
tracks are aimed at autonomous boats applications. They
resemble real-world application challenges in the context of
unmanned water vehicles. The challenges are based on the
MODS benchmark [20] and the challenge tracks and dataset
will be described in Section 5.

The rest of the paper is organized as follows. First, we
provide an overview of the challenge protocol before we
review the outcomes of the individual challenge tracks with
their underlying benchmarks and datasets.

2. Challenge Participation Protocol

The challenge tracks were announced on the 20th of Au-
gust 2022 and ran until the 25th of October 2022. At the
announcement date, participants could download the datasets
and evaluation and visualization toolkits from the workshop
homepage!. Participants could experiment with their meth-
ods on this data before they could upload their predictions
on the individual tracks’ test sets on the webserver from
the 14th of September onwards. The predictions were com-

https://seadronessee.cs.uni-tuebingen.de/wacv23
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pared with the corresponding ground truth annotations on
the server-side. Lastly, participants could choose to show
their result on the leaderboard or to delete the submission.

At the start of the uploading phase, participants were al-
lowed to upload predictions three times per day independent
of the challenge track. The submitted predictions were said
to be subject to further inspection on our side regarding the
exact performances and participants were required to provide
information on their used methods, and in the USV-based
tracks, participants were required to submit their code as well.
The respective metrics for the individual challenge tracks
decided whether the submission reached a top-3 position.
Furthermore, we required every participant to submit infor-
mation on the speed of their method measured in frames per
second wall clock time and their hardware. Lastly, partici-
pants needed to indicate which data sets (also for pretraining)
they used during training.

Additionally, the teams that reached a performance above
our least performing baseline were asked to submit a short
technical report, describing their methods and training con-
figurations. These reports are attached to this paper.

2.1. Evaluation Server

The evaluation server is an extended version of original
webserver for the SeaDronesSee benchmark. The updated
version of the evaluation server has been available online
for several months before the start of the challenges. In
addition to the challenge tracks, it also supports the following
tracks: Boat-MNIST (toy dataset for image classification),
UAV-based Object Detection v1, Single-Object Tracking
and a variant of the Multi-Object Tracking task focusing on
swimmers only.

3. UAV-based Object Detection Challenge

The goal of this challenge was to detect humans, boats
and other objects in open water. The task of object detec-
tion in maritime SaR is far from solved. For example, the
best performing model of the SeaDronesSee object detec-
tion track currently achieves 36% mAP, as opposed to the
COCO benchmark with the best performer achieving over
60% mAP. SeaDronesSee is more challenging due to lighting
conditions and sun reflections, different appearances coming
from various altitudes and viewing angles. While the spar-
sity of object locations often results in false positives, the
small sizes of objects along partial occlusion due to water
lead to false negatives.

For the challenge of the workshop, we made a few
changes from the original SeaDronesSee object detection
benchmark. In addition to the already publicly available data,
we collected further training data, which is included at the
start of the challenge. In particular, we extend the object
detection track of SeaDronesSee by roughly 9k newly cap-
tured images depicting the sea surface from the viewpoint of

Figure 3: Example images of newly generated images in the
SDS ODv2 dataset. The black rectangle denotes an ignored
region.
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Figure 4: Altitude and gimbal pitch angle distribution of

images in SDS OD v2.

a UAV. See Figure 3 for examples images. The ground-truth
bounding boxes are available and the evaluation protocol is
based on the standard mean average precision. Owing to
the application scenario, we also evaluate the class-agnostic
performances, which resembles the use-case of detecting
anything that is not water.
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Figure 5: Camera and class distribution in SDS ODv2.

Figure 6: Class instances in SDS ODv2. From top to bottom:
swimmer, buoy, life vest/life belt, jetski, boat.

3.1. Dataset

The SeaDronesSee-Object Detection v2 (S-ODv2) dataset
contains 14,227 RGB images (training: 8,930; validation:
1,547; testing: 3,750). The images are captured from var-
ious altitudes and viewing angles ranging from 5 to 260
meters and 0 to 90° degrees (gimbal pitch angle) while pro-
viding the respective meta information for altitude, view-
ing angle and other meta data for almost all frames. See
Figure 4 for the altitude and viewing angle distribution.
Most images come with additional meta data as depicted
in Table 2. Note that there are 2,830 images without any
meta data labels and 686 images with only gimbal pitch

Table 1: Overview of used cameras, its properties (all had
RGB functionality) and the corresponding UAV to transport
it for the SeaDronesSee Object Detection v2 dataset. Note
that the zoom function was only used in a few images (< 100),
in the case of the multispectral and dual-thermal camera, only
RGB channels were taken.

Camera Resolution Type UAV
L1D-20C 3840x2160 Vid Mavic
RedEdge-MX 1280x960  Multispectral = Trinity
UMC-R10C 5456x3632 Trinity
Zenmuse X5 3840x2160 Vid  MI100
Zenmuse XT2 3840x2160 Vid+Thermal M210
Zenmuse Z30  1920x1080 Vid+Zoom  M210

Table 2: Meta data that comes with most images.

Data Unit Min. value Max.value
Time since start ms 0 00
Date and Time  ISO 8601 - -
Latitude degrees —-90 +90
Longitude degrees -90 +90
Altitude meters 0 00
Gimbal pitch degrees 0 90
UAV roll degrees -90 +90
UAV pitch degrees —-90 +90
UAV yaw degrees —180 +180
z-axis speed m/s 0 00
y-axis speed m/s 0 00
z-axis speed m/s 0 00

angle labels. The images were captured with six differ-
ent cameras as depicted in Table 1. Note that we only
used the RGB channels if more channels were available.
Figure 5 shows the unbalanced camera distribution in the
dataset. Each image is annotated with labels for the classes

e swimmer
¢ boat

* jetski
* buoy

e life saving appli-
ance (life vest/belt).

See sample instances of these classes in Figure 6. Addition-
ally, there is an ignore class. This region contains difficult to
label or ambiguous objects. We blackened out these regions
in the images already. Figure 5 shows the class distribution
and the heavy class imbalance in the dataset. Although the
bounding box annotations for the test set are withheld, the
meta data labels for the test set were provided.

3.2. Evaluation Protocol

We evaluate the predictions on the commonly used AP,
AP50, AP75, AR1 and AR10 from the COCO evaluation

269



protocol [61]. We provided the full evaluation protocol as
part of our evaluation kits available on Github [54]. For the
first subtrack, we average the AP results over all classes.
For the second subtrack, denoted binary object detection, we
only have a single class called non-water. We further analyze
the models using other metrics, such as TIDE [16] and by
leveraging the available meta data. The determining metric
for winning will be AP. In case of a draw, AP50 counts.

3.3. Submissions, Analysis and Trends

We received 77 submissions from 18 different teams. We
also provided two additional baselines, a YOLOV7 (A.14)
and a Faster R-CNN with ResNet-18 backbone (A.15). In
our analysis, we will focus on the top 13 models that outper-
formed both these baselines. None of the methods employed
ensembles or were trained on any uncommon dataset. Only
some submissions used the SDS ODv2 validation set for
training. Three of the submitted models were transformer-
based, which originally were especially hard to tune for
small object detection, but was recently found popular also
in the aerial object detection domain [24]. More precisely,
the winner of this challenge, Maritime-VSA (A.1), the 4th
place, DyHead (A.4), and the 6™ place (A.6) rely either en-
tirely or partly on transformer-based blocks. Maritime-VSA
showcase their recently published varied-size window atten-
tion, which is suitable for processing large image resolutions
compared to more traditional transformer architectures. In
conjunction with the popular Cascade R-CNN as a detection
head and test-time augmentations, they obtained a signifi-
cant lead. DyHead leverage the recent so-called dynamic
heads to unify the object detection heads for localization and
classification via attention mechanisms [35]. Test-time aug-
mentations and large image resolutions were employed. The
method rightfully mentions the problems with annotation
errors, which will be analyzed below.

The remaining models are different types of CNNs. The
ond place, DetectoRS (A.2), base their submission on Cas-
cade R-CNN ( [21]), which is well known for its performance
in small object detection (see e.g. performance on VisDrone
workshop [24]). A likely significant addition is that they
employed large resolutions and multi-scale testing. Several
other methods are based on a YOLO-variant, most promi-
nently the current YOLOV7 [90] architecture. In fact, the 3
(A3, [107]), 5™ (A.5), 7™ (A7), 9™ (A.9), 10™ (A.10), 12
(A.12) and 13™ (A.13) places all base their submissions on
YOLOv7. Many YOLOvV7 submissions either adapted the
architecture to include an attention module (A.3) or tuned
hyperparameters, such as considerably increasing the image
size (A.5, A.7, A.10), or included augmentations, such as
random cropping (A.9), mosaicing (A.9) or color changes
(A.7) just to name a few. A.9 has an interesting take by ap-
plying a super-resolution network before applying the object
detector. Authors in A.12 take a more targeted approach

Figure 7: Example predictions from Maritime-VSA (top)
and DetectoRS (bottom). Note that we did not filter based
on the confidence score, which is why the first method has
many predictions for each object. The confidence score for
most of them is very low, which is why the AP won’t suffer
from these.

to the maritime domain by clustering the pixel colors via
Kmeans, such that mostly blue-green appearing water pix-
els can better be distinguished by the downstream YOLOv7
detector.

The remaining methods use more specific architectures,
such as VarifocalNet [100] (A.8), a single-stage object de-
tector, which itself is based on FCOS [86]. Further aug-
mentations, such as tiling (also multi-scale) improved the
performance significantly. Authors in A.11 base their sub-
mission on a one-stage detector proposing to better align the
outputs from the two subbranches, classification and local-
ization [41]. See Table 3 for an overview of the submitted
methods.

Table 4 shows the final standing of this challenge track.
Notably, the performance of the top models is above 90 AP5.
Owing to the aerial nature and potentially sub-optimal label
accuracy (e.g. shifted labels), the averaged AP is far lower,
which is also reflected in the lower AR; and AR;( scores.
The binary AP, which measures the foreground vs. back-
ground performance, is slightly worse for almost all models
which is likely caused by the class imbalance with the ma-
jority of the instances being swimmers, which is generally a
hard class to predict (see Table 5).
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Table 3: Object Detection v2 submissions overview. For brevity, we denoted S=SeaDronesSee, O=Object Detection v2,
all=(t)rain and (v)al set, IN=ImageNet, C=COCO, TTA=test-time augmentations. Augmentations only lists non-common
augmentations and do not include techniques, such as resizing, color changes, cropping and more.

Model name Data Type Backbone Module = Augmentations Ref.
Maritime-VSA (A.1) IN-22k, C, S-O, Transf. DB-Swin-S  Casc. R-CNN VSA, TTA [102]
DetectoRS (A.2) C, S-Ouu 2-stg.-CNN ResNet-50  Casc. R-CNN TTA [78]
YOLOv7-Sea (A.3) C, S-Oy 1-stg.-CNN E-ELAN SimAM TTA, WBF [90]
DyHead (A.4) IN22k,C,S-O; Transf. Swin-L. Dynamic Head TTA [35]
YOLOvV7-X (A.5) C, S-Oy 1-stg.-CNN YOLOV7-X [90]
YOLO-CNS (A.6) C,S-0O; Transf./CNN  Swin Transf. @ CBAM, NAM [71
YOLOvV7-W6 (A.7) C, S-O; 1-stg.CNN YOLOvV7-W6 [90]
M10 (A.8) IN, S-O, 1-stg.CNN ResNeXt-101 VarifocalNet TTA  [100]
YOLOvV7-NYU (A.9) C, S-Oy 1-stg.CNN E-ELAN Super-Res. TTA, SAHI [90]
YOLOV7-FIT (A.10) C, S-Oy 1-stg.CNN  YOLOvV7-E6 [90]
DurObj (A.11) VisDrone, S-O; 1-stg.CNN ResNet-101 TOOD [41]
APX (A.12) C, S-0O; 1-stg.CNN Yolov7 APX [90]
YOLOV7-TILE (A.13) C, S-0O; 1-stg.CNN YOLOvV7 SAHI, TTA [90]
Table 4: Final leaderboard for SeaDronesSee Object Detection v2.

Model name FPS Hardware AP APsg AP7s AR; ARy Binaryap

Maritime-VSA 1 A100

DetectoRS 1 Tesla V100 0.60 090 0.66 047 0.54

YOLOv7-Sea 1 Tesla V100 0.68 0.54

DyHead 1 AI100 0.57 0.62 045 0.68

YOLOvV7-X 15 RTX 3090 0.54 085 057 044 0.61 0.50

Yolo-CNS 60 TeslaP6 053 083 056 044 0.62 049

YOLOvV7-W6 10  RTX 3090 053 084 056 044 0.62 049

MI10 1 RTX3090 053 084 055 043 0.60 047

YOLOvV7-NYU -1 2080 052 086 054 043 0.60 046

YOLOvV7-FIT 6 RTX3090 0.52 080 055 042 0.58 049

DurObj 4 TITAN XP 0.50 079 051 042 0.58 047

APX 60 RTX 3050 0.50 083 050 041 058 045

YOLOvV7-TILE 3  Nvidia Titan 042 0.71 044 036 050 044

YOLOvV7-BL 66 RTX 3080 042 072 042 036 049 041

FRCNN-RN-BL 290 GTX1080Ti 024 052 020 024 032 021

Generally, the classes swimmers and life saving appli-
ances are believed to be the hardest classes as their appear-
ance vary the most and they are the smallest (and thus hardest
to predict) objects (see also Figure 6). Furthermore, these
two classes are harder to distinguish and there are only few
instances of life saving appliances. Furthermore, the meth-
ods’ ranks in performance across different precision levels
are consistent as can be seen from Figure 11, i.e. every
model is more or less better or worse than any other model
for all precision scores consistently.

A closer analysis on the type of error can be seen from the
TIDE plots in Figure 10. There, we plot the different error
types of the two best performing submissions, Maritme-VSA

and DetectoRS. Both models behave similarly in their error
type influence distribution, e.g. most of the errors come
from localization errors (roughly 50%). Background errors
(falsely predicting background to be any class instance) are
a similarly often cause of errors as missing to detect objects
in the case of Maritime-VSA. However, DetectoRS takes
a different trade-off and mostly only misses objects as op-
posed to detecting background as foreground objects. Note,
however, that the overall magnitude of errors is lower for
Maritime-VSA for both types of errors (bottom bar charts).
The less common duplicate detections errors only play a role
in Maritime-VSA, which aligns with the qualitative predic-
tion example in Figure 7. Note, however, that these duplicate
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Figure 8: Altitude angle distribution of images in SDS
ODv2.

predictions have low confidence and hence do not matter too
much in the overall AP calculation.

Table 6 shows the AP values broken down by different
meta data configuration intervals. Again, the models perform
mostly consistently across different domains. Generally sig-
nificantly visible, the performance for acute angles is low
across all models. While this may simply be the cause of
having fewer images in that domain (compare to Fig. 4),
these images often contain very small objects in the distant
horizon. Furthermore, in the case of swimmers, these are
hardly visible as only their body parts above the water are
visible (see e.g. the first swimmer of Figure 6 compared to
the third one). Surprisingly, the performance on high alti-
tudes is the highest. This could be the cause of consistent
viewpoints, as images from high altitude exhibit viewpoints
almost always of close to 90° (looking downwards; see Fig-
ure 8. The performances broken down by different cameras
is not conclusive. The performance for the M210 UAV is
very low, which can only be hypothesized to be partly at-
tributed to the M210 UAV carrying the lower resolution
Zenmuse Z30 (see Tab. 1), although there exist many images
(compare to Fig. 5). The high performance for the trinity
drone is again believed to be caused by the consistent 90°
facing downwards viewpoint as this UAV only has facing
downwards cameras.

The dataset contains a fair amount of label errors, which
we found upon reiterating a whole manual annotation pass
over the dataset. Table 7 shows the number of found la-
bel errors. See examples of label errors in Figure 9. Dis-
placed label errors come from the used annotation tool Dark-
label’s tracking functionality?, which causes a drag in the
bounding box labels in scenes where there is a lot of cam-

2github.com/darkpgmr/DarkLabel, accessed: Nov 2022.

era or UAV movement. Missing labels mostly occur in
static images where there was no underlying video that aided
the human annotators in finding objects to label. Table 8
shows the performances of the individual submissions on the
cleaned/corrected dataset. It shows that the performances
indeed improve across all models but the overall order stays
almost the same.

3.4. Discussion and Challenge Winners

The challenge results have shown that transformer archi-
tectures start to gain traction in the aerial domain as well,
while CNN architectures are still the standard choice for
such tasks. The easy-to-use and yet strong one-stage detec-
tor YOLOV7 is a very popular choice. As is common for
these kind of challenges (compare to VisDrone [10]), test-
time augmentations are applied and significantly boost the
performance at the cost of slower run times. Furthermore,
using large resolutions is one of the keys to obtaining high
accuracies, be it by means of architecturally supporting large
resolutions or by targeted augmentations, such as cropping.

The observation above is exemplified by the winner trio:
The first place from The University of Sydney, Maritime-
VSA (A.1), employed transformers, the second place from
Fraunhofer IOSB, DetectoRS (A.2), leveraged the popu-
lar two-stage detector Cascade R-CNN, and the third place
from Beijing University of Posts and Telecommunications,
YOLOv7-Sea (A.3), built upon the current YOLOv7 detec-
tor.

Furthermore, most submitted object detectors run far from
real-time. While A.7 made experiments with a real-time ca-
pable YOLOv7-tiny, they obtained detrimental accuracies.
Furthermore, special consideration should be given to the
used hardware in that case since in this challenge, partici-
pants mostly relied on high-end GPUs, such as V100s.

Therefore, research in this domain needs to consider run-
time constraints imposed in real applications of these detec-
tors. In future iterations of MaCVi, this would need to be a
focus.

4. UAV-based Object Tracking Challenge

Part of the SeaDronesSee benchmark was the Multi-
Object Tracking track. This track focuses on tracking objects
in water which are of interest in SaR scenarios, while it could
also be leveraged for surveillance. In SaR scenarios, it might
be of interest to track the detection and position of people
or boats over time, so that the found subjects are easily
distinguishable. However, tracking small, partly occluded
subjects, which change their appearance based on their move-
ment and occlusion level due to water, is non-trivial. Gimbal
movement and altitude change cause objects to move quickly
within the video frames. For these reasons, we hosted the
first SeaDronesSee-MOT challenge track, which will be dis-
cussed in the following.
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Figure 9: Label errors revealed after another iteration of
manual annotation. Top: Displaced labels, Bottom: missing
labels (red font: old, black font: new).

Figure 10: TIDE evaluations for Maritime-VSA (left) and
DetectoRS (right).

4.1. Dataset

The SeaDronesSee-MOT dataset consists of 21 clips in
the train set, 17 clips in the validation set and 19 clips in the
test set with a total of 54,105 frames and 403,192 annotated
instances. Every frame is annotated with the ground-truth
bounding boxes along unique ids for the following classes:

Figure 11: Precision (x-axis)-recall (y-axis)-curve, for sub-
mitted methods.

Table 5: Class APs for (Sw)immer, (Bo)at, (Je)tski, (L)ife
(s)aving appliances and (Bu)oy.

Model name Sw Bo Je Ls Bu
Maritime-VSA

DetectoRS 043 078 0.62 049 0.66
YOLOv7-Sea 0.43 077 0.61 047 0.67
DyHead 041 078 0.63 039 0.64
YOLOv7-X 038 0.74 059 034 0.64
Yolo-CNS 0.37 073 058 032 0.64
YOLOvV7-W6 0.36 074 058 0.33 0.61
MI10 034 075 058 034 0.62

YOLOv7-NYU 035 0.70 0.56 0.39 0.59
YOLOV7-FIT 037 0.74 059 025 0.63
DurObj 036 0.74 058 021 0.62
APX 033 0.70 055 030 0.61
YOLOV7-TILE 033 0.66 050 0.08 0.55
YOLOvV7-BL 030 0.64 050 0.15 0.50
FRCNN-RN-BL 0.13 042 035 0.00 0.32

e swimmer on boat
¢ floater on boat
¢ boat

e swimmer
¢ floater
* life jacket

Floater denotes a swimmer wearing a life jacket. Follow-
ing [88], for the SeaDronesSee-MOT challenge track, we
restrict the task as follows. We only require the objects boats,
swimmer and floater to be tracked in a one-class setting,
where we do not distinguish between different classes. We
note that this is a short-term tracking task [56], i.e. objects
that disappear from the scene need not be tracked anymore.
Each frame comes with precise meta data labels regarding
altitude, angles of the UAV and the gimbal, GPS, and more.
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Table 6: AP results for subsets, divided by altitude ((L)ow, (M)edium, H(igh)), gimbal pitch ((A)cute, (A)cute to (R)ight,
(R)ight), and camera ((Mav)ic, M210 and (Tri)nity. We divide the *Altitudes’ and *Angles’ into three equidistant intervals.

Model name APL AP]\/[ APH APA APAR APR AP]\lav APM210 APT”'
Maritime-VSA 0.68

DetectoRS 0.61 0.55 022 0.63 0.63 0.59 0.17 0.69
YOLOv7-Sea 0.61 0.63 0.59

DyHead 049 0.63 0.18 0.60 0.17 0.64
YOLOv7-X 056 048 056 0.18 0.59 055 054 0.59
Yolo-CNS 056 042 064 0.18 0.58 055 0.53 0.13 0.61
YOLOv7-W6 055 047 062 0.17 058 0.58 0.53 0.12 0.62
M10 055 041 0.14 0.57 0.60 0.52 0.13 0.61
YOLOvV7-NYU 053 049 063 0.13 0.57 0.61 051 0.14 0.55
YOLOV7-FIT 053 042 0.17 0.56 0.58 0.51 0.13 0.63
DurObj 052 040 064 0.13 056 056 049 0.14 0.58
APX 054 039 054 013 0.56 0.53 0.50 0.11 0.54
YOLOvV7-TILE 045 036 030 0.13 0.49 035 043 0.10 0.47
YOLOvV7-BL 044 034 042 0.06 050 045 042 0.12 0.43
FRCNN-RN-BL 0.26 023 026 000 0.33 027 0.25 0.03 0.21

Table 7: Annotation error statistics.

Train Val Test

# missed boxes 404 81 193
# displaced boxes 257 118 240

Table 8: Prediction results on datasets with corrected annota-
tions.

Model name AP AP;
Maritime-VSA

DetectoRS 0.63 0.93
YOLOVv7-Sea

DyHead 0.60
YOLOvV7-X 0.56 0.89
Yolo-CNS 0.56 0.87
YOLOV7-W6 0.55 0.87
MI10 0.56 0.88
YOLOv7-NYU  0.54 0.89
YOLOvV7-FIT 0.54 0.83
DurObj 052 0.82
APX 0.52 0.87
YOLOvV7-TILE 045 0.74
YOLOv7-BL 0.44  0.76
FRCNN-RN-BL 0.26 0.55

4.2. Evaluation Protocol

We evaluate the submissions by using the following met-
rics: HOTA, MOTA, IDF1, MOTP, MT, ML, FP, EN, Recall,
Precision, ID Switches, Frag [57,65]. The determining met-

ric for winning is HOTA. In case of a tie, MOTA is the
tiebreaker.

Furthermore, we require every participant to submit in-
formation on the computational runtime of their method
measured in frames per second wall-clock time along their
used hardware.

4.3. Submissions, Analysis and Trends

We received 18 submissions from 7 different institutions.
Additionally, we provided a baseline, i.e. a Tracktor-based
tracker using ECC with a Faster R-CNN ResNet-50 detector
(B.6). We used the mmtracking implementation [28] with
default hyperparameters. We also provided public detections
so that participants do not need to train their own detectors.
These are from a YOLOvV7 model pretrained on COCO and
trained on SeaDronesSee-MOT train set for 8 epochs yield-
ing an AP of roughly 0.5. For reference, the same model
(except for the number of class outputs) has an AP of 0.4181
on Object Detection v2, which is not optimal (compare to
best models).

All of the 18 submitted trackers outperformed the base-
line. See an overview of the submitted methods in Table 9.
Table 10 shows the results of the best submissions of the
best five teams. All submissions followed the tracking-by-
detection paradigm. Since it was allowed to train on any data,
most submissions did so and incorporated stronger detectors
as the provided public detection baseline.

MoveSORT (B.1) performed best in terms of HOTA,
MOTA and IDF1 metrics although they only trained on
SeaDronesSee-MOT. Being the best model in these met-
rics suggests that it is a very robust model w.r.t. detection
and association accuracy. However, they relied on the recent
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Table 9: Multi-Object Tracking submissions overview. For brevity, we denoted d=detector, t=tracker, S=SeaDronesSee,

0O=0bject Detection v2, all=train and val set. Furthermore, ”+’=adding and ”-’=removing” the respective module.
Model name Data Detector Modules FPS  C/GPU Reference
MoveSORT COCO, YOLOv7 +ECC [40], 10 T4 DeepSORT
(B.1) S-MOT ([90]) +NSA K. [39] (d+t) [91]
byteTracker COCO, YOLOX 6 A100 ByteTrack
(B.2) S-MOT [9,43] (d+t) [1,105]
StrongerSORT S-MOT pub. det. -AFLink, -GSI 10 M StrongSORT
(B.3) Market1501 (YOLOvVT) [38], +PCB [83] () [6,38]
MOT COCO, Casc. R-CNN 1 V100 DeepSORT
B4 S-0! ResNet-50, (d+t) [91]
OCSORT S-0, YOLOX-XL 20 V100 OCSORT
(B.5) S-MOT:! [9,43] (d+t) [4,23]
Tracktor COCO, F. R-CNN, ECC [40] 10 RTX Tracktor
Baseline (B.6) S-MOT ResNet-50 (d+t) 3080 [28]

Table 10: Multi-Object Tracking results on the SeaDronesSee-MOT test set. The submissions are ranked based on HOTA. The
last row indicates the baseline. Gold, silver and bronze denote the first, second and third place, respectively.

Model name HOTA MOTA IDF1 MOTP MT ML FP FN Re Pr IDs Frag
0.19 8761 805
byteTracker 0.65 0.77 260 113 10569 11123 0.88 0.89 68 841
StrongerSORT 0.63 0.74  0.75 0.20 303 73 10779 13308 0.86 0.88 243 1396
MOT 0.62 0.76  0.71 0.19 305 79 11534 10657 0.88 445 672
OCSORT 0.61 0.72  0.69 0.19 291 97 18018 0.81 106
Tracktor Baseline 0.46 048  0.50 175 157 11960 35765 0.62 0.83 1435 2522

YOLOV7 [90] detector, which may yield good detection re-
sults to work with. Notably, it only made 44 ID switches,
which may the cause of the underlying DeepSORT imple-
mentation, which focuses specifically on decreasing the num-
ber of ID switches. However, also note all models have rather
low id switch numbers, which is due to the sparse nature of
the dataset where objects are not too cluttered (see e.g. Fig.
12). MoveSORT further claims to improve on DeepSORT
by using the enhanced correlation coefficient maximization
module (ECC) to estimate the global rotation and translation
between adjacent frames (B.1). Indeed, association between
frames for fast moving camera movements is a problem in
certain video clips of SeaDronesSee-MOT as exemplified
qualitatively in Figure 12. Furthermore, they added the NSA
Kalman filter module [39] from the second place tracker of
the VisDrone 2021 MOT challenge [27].

The method byteTracker (B.2) placed second basing their
submission on the recent ByteTrack implementation [1].
They adapted the tracker’s focus on the MOT17 challenge
[68] to the maritime setting by removing the vertical bound-
ing box restriction and by changing hyperparameters, such
as increasing the non-max-suppression threshold to remove

potential false associations and to decrease the number of
ID switches (B.2). The underlying detector was a large
YOLOX-x model, which might explain some of the good
performance.

StrongerSORT (B.3) placed third, mostly owing to its
ability to reliably associate tracklets as indicated by its high
IDF1 score and few lost tracklets (ML). They removed the
newly introduced GSI and AFLink and added the part-based
re-identification model PCB, which is pretrained on Mar-
ket1501. This submission relied on the sub-optimal pro-
vided public detections. Moreover, in a second submission,
STI-StrongSORT, they hypothesized that spatio-temporal
information is more important than appearance-based in-
formation from a re-identification model. They based this
hypothesis on the observation that objects have a very similar
appearance and because occlusions are rare. With their pro-
posed changes they manage to increase the speed from 10fps
to 30fps. With a competitive HOTA score, they managed to
decrease the number of ID switches fivefold.

MOT (B.4) placed fourth as measured in HOTA, but
placed third as measured in MOTA and IDF1. They based
their submission also on DeepSORT. However, they trained
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Figure 12: Three common types of error causes. Predicted tracks from MoveSORT. Top: Panning by changing the heading
angle cause the tracker to lose the three swimmer in the second frame. Middle: Tilting the camera has the same effect. Bottom:

Fast movements of the UAV cause a duplicate detection.

Table 11: Multi-Object Tracking rounded HOTA results in % on video clips 0 — 21 (7, 8, 20 do not exist) on the SeaDronesSee-
MOT test set. The last row indicates the baseline. Gold, silver and bronze denote the first, second and third place, respectively.

Model name 0 1 2 3 4 5 6 9

10 11 12 13 14 15 16 17 18 19 21

MoveSORT 63 46 80 67 79 59 51 65 86 57 75 52 92 66
byteTracker 60 61 82 64 65 82 38 53 55 57 83 61 72 60 88 96

StrongerSORT 37 77 47 69 T2 35 53 61 83 52 56 75 56 85 47 87 066
MOT 57 84 52 68 31 47 55 o4 52 65 63 43 60
OCSORT 57 43 22 65 82 38 52 85 56 15 66 57 50 94 63
Baseline 47 31 56 49 31 22 35 18 47 61 37 20 50 37 80 40 56
Average 58 47 77 43 64 71 34 51 48 60 80 52 47 69 57 87 48 93 63

their detector on the whole SeaDronesSee ODv2 dataset
(train+val), which has a larger domain/appearance variance,
but fewer (yet less correlated) images. Furthermore, their
backbone is a ResNet-50 (~23M parameters), which is small
compared to, e.g., a YOLOX-x with almost 100M parame-
ters. They adapted to the aerial domain by setting appropriate
scale parameters for the anchors and employed several train
and test augmentation strategies while tuning respective hy-
perparameters. Similar to others, they set hyperparameters
so as to ignore occlusion cases They set the detection score
for updating tracks to 0, which may come from a similar

motivation to that of ByteTrack [105].

OCSORT (B.5) placed fifth as measured in HOTA, while
having the smallest amount of fragmentations and the highest
precision. They also employ the large YOLOX-x detector
and train on all of SeaDronesSee ODv2 and MOT.

Table 11 shows the HOTA results of the models on all the
test video clips. Interestingly, there is no clear best model
on the majority of the clips. In the following, we try to
explain some of the results on the clips, ordered from easiest
to hardest clip.

In clip 19, only a single boat needs to be tracked which
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Figure 13: Meta data visualization of video clips with lengths longer than 300 frames.
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Figure 14: Meta data visualization of video clips with lengths
shorter than 300 frames.

explains the high performances of all trackers. Similarly,
clip 17 also shows only three boats which have to be tracked
in a near static scene (compare to Figure 13). Clips 2 and 12
are also static scenes (compare to Figure 14). While clip 5 is
also static (small altitude increase), the high altitude causes

many trackers to not detect and track the small swimmers.

Clip 15 also only features boats although some of them are
further away in the horizon and the movement and heading

rotation of the drone in addition to the camera pitch angle
change cause some trackers to fail to reliably track. See also
Figure 12 for examples of these errors. Clip 4 is the most
dynamic one with camera and UAV panning and tilting and
movement of the UAV in x,y and z directions. However,
these movements are rather gently such that successful track-
ing can still be done by most of the trackers. Clip 21 features
many swimmers and three boats. Furthermore, there are
quick pitch angle changes along with a UAV movement and
rotation. Clip 11 only shows a boat and a swimmer while the
UAV is rotating around itself, although the swimmer is quite
far away and hardly visible. Missing detections are pun-
ished relatively hard since the clip is short with few objects.
While clip O is at very low altitude, there are many swimmer
with a fast moving and rotating drone. Clip 16 shows many
swimmers and boats and inherits a high dynamic range w.r.t.
camera panning and tilting and movement of the UAV. Clip
13 shows a 90° scene where the UAV is moving at quite
high altitude at constant speed. The swimmers are close to
boats which is why it is hard to detect and track them. Clip
9 shows many swimmers with sudden changes in camera
pitch and heading angle, resulting in many fragments and
id switches. Clip 10 shows a few swimmers and several
boats with a slow minimal camera pan. However, the acute
angle lets swimmers appear very small and hard to detect.
Similarly, clip 1 shows a scene with slowly rotating UAV
and acute pitch angle, which results in many very far away
swimmers that are quite small and are failed to detect ro-
bustly by most trackers. The hardest clip, 6, shows several
boats and swimmers with a great amount of movement and
dynamic camera panning and tilting. Furthermore, objects
are hardly visible due to sun reflections.
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4.4. Discussion

The submitted methods are already very strong. Many of
the errors are still caused by very hard detections. However,
the nature of UAV camera movements also cause several er-
rors. Both, the detection and tracking errors could potentially
be mitigated by using the available meta data.

The winner method from Beijing University of Posts and
Telecommunications, MoveSORT (B.1), leveraged a recent
YOLOV7 detectors but included several modules to enhance
the performance. The second place from National University
of Defense Technology, byteTracker (B.2) also employed the
recent ByteTrack framework. The third place from EPFL,
StrongerSORT (B.3), use the sub-optimal provided public
detections to achieve the third place.

Further analysis would be necessary to discriminate based
on classes and having real-time capable trackers with poten-
tially worse but faster detection backbones. The necessity of
certain tracking modules is also questionable in this setting,
such as the reidentification module. Also, it is not clear
how good the ECC module can really perform in the case of
feature-poor maritime sceneries.

5. USV-based Perception Challenges

Two USV-oriented challenges focusing on perception for
maritime navigation were considered — the obstacle segmen-
tation and obstacle detection challenges (Fig. 15). Both
challenges were based on the recent MODS Benchmark [20].
The challenges provided images from the viewpoint of a
small USV, with the overall goal to detect obstacles and the
boundaries of the visible water surface and thus prevent any
kind of collisions that would endanger either the USV or
its environment. The challenges include a wide variety of
obstacles, as it can be seen in Fig. 16.

5.1. Dataset

For both USV challenges, the MODS dataset [20] was
provided by the challenge organizers. A large corpus of
initial sequences was acquired during eight voyages with
our over a span of seven months in the years 2018-2019.
The sequences were captured in two geographically disjoint
areas of Slovenian coastal waters (port of Koper and close
to resort village of Strunjan) to diversify the obstacles and
environment appearance. To further diversify the dataset
and capture the realism of USV missions, the voyages were
planned at different times of the day and under different
weather conditions. An expert manually piloted the USV
and included realistic navigation scenarios with dangerous
situations in which the boat is heading straight towards an
obstacle or passing it by in a close range. Illustrative selec-
tion of images from the MODS dataset can be seen in the
Fig. 16.

Data acquisition. Approximately forty-eight hours of

footage with on-board synchronized sensors (in particular,
stereo cameras, IMU, compass and GPS) was captured un-
der the described protocol. The recordings were cut into
sequences with interesting navigation scenarios and out of
these, 94 sequences, jointly containing 80, 828 images were
selected. In the sequence selection, care was taken to include
many diverse obstacle interactions as well as phenomenons
challenging for visual recognition such as prominent sun-
glitter, distinct sea-foam and driving through dense shellfish
farms and floating debris.

Data annotation and refinement. To reduce the anno-
tation burden, while maintaining the dataset diversity, only
every 10-th frame was annotated (i.e., once per second). The
annotation task involved placing a tight bounding box over
each dynamic obstacle and assign it a high-level label: ves-
sel, person or other. The MODD protocol from [18,55] was
followed for static obstacles annotation by drawing a poly-
gon over their lower edge, where the obstacle touches the
water (i.e., the water-obstacle edge). This type of annotation
was chosen since the obstacle-water edge denotes the most
informative part used for practical robotic navigation. For
example, inaccurate segmentation of the upper part of a pier
does not affect navigation, however incorrect segmentation
of the part touching the water can lead to collision.

Finally, the data was refined and corrected by experienced
researchers with background in maritime computer vision.
A Matlab tool was designed for this stage to allow easy ma-
nipulation of the existing annotations, addition of categorical
labels (vessel, person, other) to the dynamic obstacles and
cross-frame label propagation. The final annotations were
screened by another expert to ensure labeling consistency.
This amounted to 63, 579 dynamic object annotations and
10, 706 obstacle-water edge annotations which appeared in
99.3% of frames.

5.1.1 The danger zone

The danger that obstacles pose to the USV depends on their
distance. Obstacles located in close proximity are more
hazardous than distant ones. To address this, we defined
a danger zone as a radial area, centered at the location of
the USV. The radius is chosen in such a way, that the far-
thest point of the area is reachable within ten seconds when
travelling continuously with an average speed of 1.5m/s. Fol-
lowing [19] we thus estimate the danger zone in each image
(see Figure 17) from the camera-IMU geometry. This opens
the way for reporting method performance both on the whole
image as well as constrained only to the danger zone.

5.2. USV-based Obstacle Segmentation Challenge

The goal of USV-based Obstacle Segmentation Challenge
was to classify the pixels of an input image into three seman-
tic categories — obstacles, water or sky. To train semantic
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Figure 15: Two major perception tasks crucial for USV collision avoidance as defined by both MODS benchmark [20] and the
two MaCVi USV challenges: maritime object detection (left) and obstacle segmentation (right). The first problem assumes
that static obstacles such as shoreline are known in advance by maps, while the second problem addresses prediction of the

entire navigable area in which obstacle localization is implicit.

Figure 16: MaCVi USV challenges cover a broad range of obstacle appearances and types. In the above examples various

boats, buoys, swimmers and even swans are visible.

segmentation models for this purpose we suggested the use
of the MaSTr1325 dataset [19]. Authors were allowed to use
other datasets as well.

5.2.1 Evaluation Protocol

To evaluate segmentation predictions, we employ the
MODS [20] segmentation evaluation protocol. Segmentation

methods provide per-pixel labels of semantic components
(water, sky and obstacles). Traditional approaches for seg-
mentation evaluation (e.g. mIoU) do not reflect the aspects
relevant for USV navigation. Instead the MODS protocol
focuses on two important aspects of obstacle segmentation:
water-edge estimation (static obstacles) and dynamic ob-
stacle detection performance. The water-edge detection is
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Camera view Top-down view

Figure 17: Nearby objects require immediate attention to
avoid potential collision. A 15m hazardous area around USV
(i.e., danger zone) is thus specified and visualized by a color
gradient, ranging from red (dangerous) to blue (safe).

analysed in terms of (1) localization accuracy (u 4), defined
as the root mean square error (RMSE) computed from the
distances between the ground truth water edge and the per-
pixel vertical nearest water edge in the segmentation mask,
and (2) detection robustness (), defined as the percentage
of correctly detected water edge pixels. A water-edge pixel
is considered correctly detected when the vertical distance to
the nearest water edge in the predicted segmentation is less
than ©,, = 20px.

The dynamic obstacles detection accuracy is computed
from the predicted obstacle segmentation mask as follows.
First, true positives (TP) and false negatives (FN) are com-
puted. A ground-truth dynamic obstacle counts as a TP if
its bounding box region is covered sufficiently by the pre-
dicted segmentation, otherwise it counts as a false positives
(FP). The coverage threshold is determined based on the
automatically-estimated segmentation of the obstacle. Then,
FP can be computed from predicted segmentations that fall
outside GT obstacle bounding boxes. Regions that corre-
spond to static obstacles (i.e. above the water edge) are also
removed from the segmentation mask. We determine the
individual FP predictions using a connected-components-
based approach on the remaining obstacle segmentations.
For further details please see [20]. Finally, the dynamic ob-
stacle detection accuracy is summarized by the precision (Pr),
recall (Re) and the F1-score metrics. We also report these
metrics separately within the danger zone (Section 5.1.1).

5.2.2 Submissions, Analysis and Trends

We have received 26 submissions from 5 different teams.
This includes two baselines provided by the MaCVi2023
committee, DeepLabv3 (C.6) and WaSR (C.5). We have
grouped the methods by teams and only analyse the best
method by each team. Table 12 presents the overview of
the best submitted methods by individual teams. One of the
teams submitted two reports of very different methods by
different authors, thus we decided to include both. In this
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— MariFormer
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Figure 18: Methods detection performance across different
obstacle sizes.

analysis we will focus on all the methods that have beaten
the DeepLabv3 baseline in terms of the average score. In the
following we will refer to the methods by their ranking on
the leaderboard with the notation (#n), where n is the rank
of the method.

Overall, all models except (#3) MariFormer use convolu-
tional neural networks as the base. Models (#13) RevDeep,
(#16) APTXO003 and (#18) DeepLabv3 are based on the
DeepLabv3 family of models, (#1) Multi-WaSR and (#15)
WaSR are based on the recent maritime model WaSR [17],
and (#17) uses HRNet with an additional Transformer-based
OCR module [85]. Model (#3) MariFormer on the other
hand derived from a recent Transformer-based method Seg-
Former [92].

Authors make several tweaks and changes to the archi-
tecture or methodology to increase performance on this task.
(#1) Multi-WaSR extends the original WaSR architecture by
replacing the Attention Refinement Modules (ARM) with
two Transformer blocks. While this model does not achieve
the best results (#14), authors train several models, each with
their own strengths and weaknesses, and then use an ensem-
ble approach to make predictions by combining the votes of
several models. The final ensemble model achieves the 1st
place on the leaderboard. This is also the only entry in this
analysis that uses an ensemble approach.

Authors of (#3) MariFormer remove the boundaries of
the camera housing, that is visible in several sequences of
MODS, to prevent its influence. (#13) RevDeep employs
label smoothing as regularization. (#16) APTX003 uses
conditional random fields (CRF) to refine the output segmen-
tation maps, and morphological post-processing to fill holes
in obstacle segmentations.

Almost all methods have been trained exclusively on the
suggested MaSTr1325 dataset [19]. The exception is (#13)
RevDeep, which also utilizes the additional 153 images of
MaSTr1478 [110]. A majority of approaches also employs
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Table 12: Overview of the submissions for the USV Obstacle Segmentation challenge. We outline the base model from which
the methods were derived and whether the method used an ensemble approach. Ranking of the method on the leaderboard as
well as the final placement of the teams are indicated. We also include the self-reported inference speeds.

Place Rank Team Model name Section Base Ens FPS C/GPU Avg. score
Ist 1 BUPT  Multi-WaSR C.1 WaSR v 12 V100 93.5
2nd 3 HKUST MariFormer C.2.1 SegFormer 4 RTX3090 93.2

13 HKUST RevDeep C.2.2 DeepLabv3 10 RTX3090 91.6

15 UL WaSR - WaSR 14 RTX2080Ti 91.3
3rd 16 Xiaomi APTX003 C3 DeepLabv3+ 3 RTX3090 89.9
4th 17 NCKU HRNet-OCR C4 HRNet-OCR 4 V100 89.6

18 UL  DeepLabv3 - DeepLabv3 20  RTX2080Ti 89.5
5th 24 Couger Al Lightnet - - - - 36.3

Table 13: Performance of submitted segmentation methods on MODS. Performance is reported in terms of F1 score, precision
(Pr) and recall (Re) for dynamic obstacle detection, and water-edge detection accuracy (i 4) and robustness (( ).

Overall Danger zone (<15m)

method WA UR Pr Re F1 Pr Re F1 Avg.

#1  Multi-WaSR  14.8 979 96.0 92,6 943 904 952 927 93.5
#3  MariFormer 104 98.6 97.5 89.7 934 904 955 929 93.2
#13 RevDeep 14.1  98.0 957 91.8 93.7 853 943 89.6 91.6
#15 WaSR 16.5 97.7 95.6 927 94.1 829 947 884 91.3
#16 APTX003 33.7 9438 93.8 92.1 929 794 96.0 869 89.9
#17 HRNet-OCR 114 98.3 95.5 91.8 93.6 77,5 953 855 89.6
#18 DeepLabv3 171 97.6 93.7 894 915 81.6 944 87.6 89.5

various image augmentations, such as color transformations,
addition of noise and geometric transformations.

The detailed performace of the different methods is re-
ported in Table 13. The methods can be roughly grouped
into three categories based on their performance: 1) state-
of-the-art, 2) WaSR-like performance and 3) DeepLabv3-
like performance. The Ist and 2nd overall methods (#1)
Multi-WaSR and (#3) MariFormer achieve very similar per-
formance and significantly outperform the WaSR baseline
(+2.2% and +1.9% average F1). Multi-WaSR is slightly bet-
ter overall (+0.9% F1), while MariFormer performs slightly
better inside the danger-zone (+0.2% F1). (#13) RevDeep
performs on par with the WaSR baseline, outperforming it by
0.3% in average F1 score, and outperforming the DeepLab
baseline by 2.1% in average F1. (#17) APTX003 and (#17)
HRNet-OCR perform close to the DeepLabv3 baseline, out-
performing it slightly (+0.4% and +0.1% average F1).

Note that the largest differences between methods seem
to be dictated by the performance inside the danger zone,
where the precision varies widely. The danger zone is a
common place for maritime visual artefacts such as sun
glitter, reflections or foam which are often a source of FP
detections. The precision (Pr) of the methods is thus largely
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determined by their robustness to such artefacts.

In terms of water-edge localization, (#3) MariFormer
achieves the best results, followed closely by (#17) HRNet-
OCR (+1.0 j24). Both these methods outperform other meth-
ods by a large margin in this aspect, which suggests higher
segmentation accuracy. We also observe this in the qual-
itative analysis (see Figure 19), where more accurate seg-
mentation of thin objects such as ropes and water barriers is
apparent. These two methods operate at a higher resolution
than other approaches and use transformers, which might
both contribute to this result.

Detection by obstacle size: For a better insight into
the strengths and weaknesses of different methods we also
perform an analysis of the dynamic obstacle detection perfor-
mance based on the obstacle sizes. To do this we group GT
obstacles (and FP detections) by covered area (in pixels) into
12 equally populated bins and compute the F1 metric within
each group. The results are presented in Figure 18. The most
significant difference between methods occurs on small ob-
stacles. This is where (#1) Multi-WaSR and (#15) WaSR per-
form the best, while (#3) MariFormer and (#18) DeepLabv3
are the worst performing in this category. However, the per-
formance of (#3) MariFormer increases significantly with
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Figure 19: Qualitative comparison of methods for USV obstacle segmentation. Examples of errors and good behaviour are
highlighted.




obstacle size and it achieves the best performance on large
obstacles.

5.2.3 Discussion and Challenge Winners

We have received a lot of interesting entries into the chal-
lenge. Authors have explored various architectures, data
augmentations and post-processing techniques. Tthe overall
winners of the USV Obstacle Segmentation Challenge are:

1% place: Beijing University of Posts and Telecommunica-
tions (BUPT) with Multi-WaSR, and

2" place: Hong Kong University of Science and Technol-
ogy (HKUST) with MariFormer.

The best performing method demonstrated that ensemble
techniques can be effectively used to increase the robustness
in this domain. The second best approach closely matches
the detection performance of the winning method and demon-
strates outstanding segmentation accuracy by using a trans-
former architecture and a higher output resolution. However,
this comes at a large cost in inference speed. Exploring effi-
cient ways to incorporate these techniques is an interesting
direction for future work.

5.3. USV-based Obstacle Detection Challenge
5.3.1 Evaluation Protocol

To evaluate obstacle detection predictions, we employ the
detection evaluation protocol of MODS [20]. All competing
algorithms were required to output detections of all water-
borne objects of the MODS semantic classes: vessel, person
and others with rectangular axis-aligned bounding boxes.

We followed the standard COCO/LVIS object detection
evaluation protocol from [45, 62], which is based on the
Jaccard index, i.e., an intersection-over-union (IoU) between
ground truth and detected bounding boxes. A detection
counts as a true positive (TP) if its respective IoU exceeds
a predefined threshold, otherwise it is counted as a false
positive (FP). Because the precise localization of waterborne
obstacles is difficult, especially if the objects are small, we
used IoU=0.3 for the detection threshold. Precision and
recall are calculated over all the images in the dataset and
the F1 score is reported as the primary performance measure.

In order to focus only on the dynamic obstacles and avoid
detections of people and boats on land, we use the water
edge annotations to exclude detections above the water edge,
unless there exists an overlap with a ground truth annotation.
Thus, a detector not reporting objects above the water edge
does not count as a false negative. As per the LVIS proto-
col [45], false positives are not counted in the images that
are labelled as not exhaustively annotated.

The final score is composed of three different metrics:

» Average F1 score, F'1; when taking into account the
class of the ground truth and the prediction.

* Average F1 score, F'13 where the class information is
ignored.

» Average F1 score, F'13 of objects within a 15m large
radial area in front of the boat (i.e. danger zone). The
ground truth and the detection bounding boxes are con-
sidered as within the danger zone if at least 50% of the
area lies within the danger zone.

To determine the winner of the challenge, the average
of the above three F1 scores, F'1,,4 was used as an overall
measure of quality of the method.

5.3.2 Submissions, Analysis and Trends

We received 9 submissions from five different teams (in one
case, team/institution name was not provided). Submissions
are listed in Table 14. Sorted by F'1,,4 metric, the top of the
list is dominated by two teams: Fraunhofer IOSB and Nvlab
x Acvlab, whose methods ranked from first to the fourth.
The best method of the single team determined their final
place in the challenge, and therefore the third place went to
Ocean U. team, with method ranked the fifth overall. All
the submissions outperformed the baseline method, Mask
R-CNN. Teams were invited to submit their technical reports,
but we received only the reports from the Fraunhofer IOSB,
Nvlab x Acvlab and Ocean U, which are provided in sections
D.1, D.2 and D.3, respectively.

Fraounhofer IOSB’s wining submission is based on De-
tectorRS [78] architecture, with tweaks allowing it to de-
tect smaller objects, and was extensively trained on several
different datasets featuring water-borne environment. It is
interesting that while it achieved the first rank according to
the decisive F'14,4 metric, it fared poorly when observing
only objects in danger zone (using the F'13 metric), that is,
in the 15 meter radius in front of the USV. Observing only
F'13, the method is ranked only fifth, but this is compensated
with distinctively higher F'11, which requires proper class
information in addition to obstacle detection.

Nvlab x Acvlab’s top submission is based on PRB-
Net [32], trained on MS COCO, with extensive postpro-
cessing to reduce the number of false positives. Dataset
metadata (shore information) is also used for this purpose. It
should be noted that this method outperforms the first ranked
DetectorRS in the danger zone evaluation, using the F'l3
metric.

Ocean U’s submission, which was awarded the third place
is based on Yolo v7 [8] with modified computational block.
The network was trained on MS COCO dataset, and the
only adaptation to the marine domain by selecting marine-
relevant categories, and merging all other categories into
MODS-stipulated others category.
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Table 14: Overview of the submissions for the USV Obstacle Detection challenge, with results. Ranking of the method on the
leaderboard as well as the final placement of the teams are indicated. We also include the self-reported inference speeds, used
hardware, and whether any other datasets were used in the training.

Place Rank Team Model name Section Other FPS  Hardware Fl,,, F1; Fl, Fl4
Ist 1 F“;‘g‘él];’fer DetectoRS ~ D.1 v 5  TeslaV100 0.546 0265 0400 0.973
2nd % AL PRBNet D.2 v 6 TeslaVio0 0.514 0236 0328 0.980
Acvlab
3 Nvlab x Yolo v7 - v 6  TeslaVIO0 0.513 0260 0296 0.984
Acvlab
4 F“}‘g’;’;fer FIOSB KA - v 17 TeslaV100 0509 0223 0328 0.976
3rd 5 OceanU.  Ocean U. D3 v 05 i7CPU 0492 0223 028 0970
Nvlab x PRBNet
6 Aol Yolo v - 6 TeslaV100 0485 0216 0260 0.980
7 nutn pcb - 10 RTX2080 0457 0.187 0218 0.965
8 9 Yolo v7 - 20 1080ti 0443  0.156 0228 0.944
9 NCKU YOLO - 10 RTX2080 0436 0.162 0.166 0.980
Baseline - UL Mask - 10  RTX2080 0419 0.122 0.172 0.964
R-CNN : : : :

Qualitative evaluation provides some further insighs into
the performance of the methods, competing in the USV ob-
ject detection challenge. The main conclusions are illustrated
in Fig. 20.

In the first row of Fig. 20 we can see the typical examples
of failed detections (white ground truth bounding boxes with
few or no detections). Small objects, such as faraway buoys
are not detected by any of the methods. Low contrast ob-
jects are often detected only by DetectoRS. Finally, atypical
objects (rarely found in object databases, in our example
mooring posts) are missed by all methods, regardless of their
apparent size.

In the second row of Fig. 20 we can see the typical ex-
amples of false positive detections. Most often, these are
reflections on the water surface, and most often, the algo-
rithm that fails in this case is DetectoRS, which could be
seen as the flip side of DetectoRS being able to detect low-
constrast objects in marine environment.

The third row of Fig. 20 shows further effect of reflections
on the water surface in the first image, and the effect of waves
(false positives) in the second image. Second image shows
fragmentation of detection that plagues multiple models, but
not DetectorRS, which may explain its good performance in
the framework of IoU-based evaluation.

5.3.3 Discussion and Challenge Winners

Authors of the submitted methods tried to address various
challenges of maritime obstacle detection, such as the large
number of small objects and sensitivity to FP detections.

Overall, the winners of the USV object detection challenge
are as follows:

1% place: Fraunhofer IOSB with DetectoRS,
2™ place: Nvlab x Acvlab with PRBNet,
3rd place: Ocean U. with their Ocean U. approach.

In the analysis of the methods, we observed notable dif-
ferences in the detection of the well known object categories,
which are included in many standard datasets (e.g. person,
boat) and more specialized objects, that can only be seen
in the marine domain, such as mooring piers. This could
be a natural consequence of the use of the common ob-
ject detection datasets for training marine domain detection
methods. This implies limited domain understanding of
the environment and should be countered with emphasis on
collecting visual data that contains a healthy proportion of
marine-environment-only objects and obstacles.

6. Conclusion

In this summary work, we analyzed the challenges as
part of the 1% Workshop on Maritime Computer Vision. We
looked at the aerial and surface domain and the challenges
they pose. We worked out the advantages and limitations
of submitted methods in these domains. For all challenge
tracks, the need for real-time models has been raised and in
future iterations, this could be a focus.

Winners of the UAV-based Object Detection challenge
were (1%) Maritime-VSA from the The University of Sydney,
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Figure 20: Qualitative comparison of methods for USV obstacle detection. Results of the individual methods are shown with
colored bounding boxes as follows: white = ground truth, blue = DetectoRS, red = PRBNet, green = Nvlab x Acvlab’s Yolo
v7, yellow = FIOSB KA, cyan = Ocean U, magenta = Nvlab x Acvlab’s PRBNet+Yolo v7.

(2" DetectoRS from Fraunhofer IOSB in Karlsruhe, and
(3™) YOLOV7-Sea from the Beijing University of Posts and
Telecommunications. Each of these teams offered a distinct
solution to the task, that is either transformer-based, a two-
stage detector or a one-stage detector.

Winners of the UAV-based Multi-Object Tracking chal-
lenge were (1%') MoveSORT from the Beijing University
of Posts and Telecommunications, (2") byteTracker from
the National University of Defense Technology, and (3™)
StrongerSORT from EPFL. Each of these teams reaches top
3 performance with different backbones, but performances
degrade for all methods if there are quick camera move-
ments.

Winners of the USV Obstacle Segmentation Challenge
were (1%) Multi-WaSR from Beijing University of Posts
and Telecommunications, and (2"%) MariFormer from Hong

Kong University of Science and Technology. Both methods
achieve similar overall performance, the former using an
ensemble of weaker models, and the latter using transformers
with a higher output resolution. The 2™ placing method also
demonstrates outstanding water-edge segmentation accuracy,
however at a large cost in inference speed, which is critical
for real-life deployment.

Winners of the USV Obstacle Detection Challenge are
(1°Y DetectoRS from Fraunhofer IOSB, (2"Y) PRBNet from
Nvlab x Acvlab, and (3') Ocean U. from Ocean U. We
observed notable differences in the detection of well known
object categories and maritime-specific objects, which could
be a consequence of training with common object detection
datasets. We thus believe more effort should be put into the
collection and annotation of diverse maritime datasets.

Importantly, to obtain more significant challenge results,
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there needs to be a shift to sequestered test sets or at least hid-
den test set performances during submission phase. Lastly,
the maritime domain brings up many related tasks and use-
cases, such as maritime anomaly detection, which should be
looked at in future iterations of MaCVi.
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Submitted Methods

A. UAV-based Detection
A.l. Maritime-VSA

Qiming Zhang, Yufei Xu, Jing Zhang, Dacheng Tao
{qzha2506,yuxu7116} @uni.sydney.edu.au,
Jjing.zhangl @sydney.edu.au, dacheng.tao @ gmail.com

This technical report describes the solutions to the MaCVi
Object Detection v2 Challenge. Our team is with the ‘USYD’
Institution. We obtain the first place in the leaderboards
of both tracks, i.e., 61.52 mAP in Object Detection v2 and
55.83 mAP in Binary Object Detection v2, and outperform
the second participant by 1.9 mAP and 1.0 mAP in the two
tracks, respectively. We use a single model without model
ensemble. This technical report introduces our solutions to
the challenge in detail.

Overall architecture: The model architecture is based
on our recent work VSA [102] with several backbone aug-
mentations, i.e., CBNetv2 [59] with Swin Transformer [63].
Specifically, we use varied-size window attention (VSA)
for the attention in Vision Transformer and select DB-Swin-
S in CBNetv2 as the base model, which uses two Swin-S
models in sequential to enhance the feature representations.
It should be noted that the hand-crafted fixed window de-
sign in current works [63, 101] restricts the model’s capacity
to model long-term dependencies and adapt to objects of
different sizes. VSA is better at processing images with
large resolutions. Regarding the image resolutions in the
SeaDronesSee v2 dataset are 3840x2160, 5456x3632, and
1229x934, our proposed VSA is suitable in this case. It can
adapt the windows to various resolutions for the detection
task in SeaDronesSee v2 by learning the window scales and
shifts as adaptive window configurations from data and con-
ducting self-attention within the learned windows. It can
thus learn large window scales from high-resolution images
in SeaDronesSee v2, model long-term dependencies, capture
rich context from diverse windows, and extract better feature
representations to improve detection performance. Besides,
it is an easy-to-implementation module with minor modifi-
cations and negligible extra computational cost for window
attention while improving the performance by a large mar-
gin. We use the popular Cascade R-CNN as the detection
head. We obtain 61.2 mAP for DB-Swin-S and 61.7 mAP
for DB-Swin-S-VSA on the validation set in SeaDronesSee
v2. DB-Swin-S-VSA obtains 60.62 mAP and 55.17 mAP on
the test set in SeaDronesSee v2 and Binary SeaDroneSee v2,
respectively. With test time augmentation (TTA), the results
further increase to 61.52 mAP and 55.83 mAP.

Training methods: We use MMDetection Toolbox [28] and
the default training settings for COCO detection [61], such
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as an Adam optimizer and image augmentation techniques
like normalizing, resizing, and flipping. We calculate the
mean and std values of the images based on the training set
to normalize the inputs. After pretraining on the training sets
in ImageNet-22k and MS COCO, the model is finetuned with
SeaDronesSee v2 for 12 epochs, resulting in three datasets
in total, as described in the leaderboard. We use NVIDIA
A100 GPUs for the experiments, and the inference speed is
roughly 1.5 images per second per GPU with batch size 1
and image resolutions of 3840 x 2160.

A.2. DetectoRS

Lars Sommer, Raphael Spraul
{lars.sommer, raphael.spraul’} @iosb.fraunhofer.de

To generate our detections, we used DetectoRS [78]
with Cascade R-CNN and ResNet-50. For initialization,
we used weights pre-trained on MS COCO. To account for
small object dimensions, we set the “scales” parameter to
3, yielding smaller anchor boxes. The “ratios” parameter
was set to 0.5, 0.7, 1.0, 1.4 and 2.0 to increase the number
of anchor boxes All other parameters remained unchanged.
SGD was used as optimizer with an initial learning rate of
0.02, a momentum of 0.9 and a weight decay of 0.0001.
The model was trained for 12 epochs. We employed the
SeaDronesSee Object Detection v2 train and validation
set as training data. For images with dimensions less than
3840x2160 pixels, we used multiple scales (1920x1080,
2376x 1296, 2688x1512 and 3360x1890 pixels). Otherwise,
we set the input scale to 3360x1890 pixels. For inference,
we applied multiscale testing (2688x1512, 3360x1890 and
4032x2268 pixels). We considered all five classes during
training and inference. The implementation provided by
MMDetection [28] - an open source object detection toolbox
based on PyTorch — was used to train our detector. We
used 2 Tesla V100 GPUS (CPU: Intel Xeon E5-2698 v4 @
2.20GHz). The inference speed of the detector was about 1
FPS. We tried several other baselines. To avoid redundant
information of adjacent frames, we reduced the number of
images (using every 2nd or every 3rd frame), which yield
slightly worse AP values. Using only the train set as training
data, yielded clearly worse AP values.

A.3. YOLOvV7-Sea

Hangyue Zhao, Hongpu Zhang, Yanyun Zhao
{zhaohy21315, zhp, zyy} @bupt.edu.cn

Our method is mainly based on YOLOV7 for improvement.

The whole architecture consists of three parts. First, the
ELAN backbone from YOLOV7 is employed to extract
feature maps. To make the network better learn useful
information, we introduce SimAM attention module. In
this way, the key target features contained in the shallow

network can be highlighted, the irrelevant information
can be weakened, and the detection performance of the
algorithm on small targets can be improved. Since the
SeadroneSee dataset contains many very small instances, we
add the predicted head to the neck and head parts. Finally,
other effective techniques are employed to achieve better
accuracy and robustness, including Test Time Augmentation
(TTA) and Weighted Box Fusion (WBF).

Training: Augmentation: Mosaic, Mixup

Dataset: SeedroneSee dataset for training (only used train-
set part); Pretrained on COCO dataset.

Device: NVIDIA Tesla V100 GPUs Time: about 1 fps

See a more thorough explanation in our paper [107].

A.4. DyHead

Jan Lukas Augustin
augustin@hsu-hh.de

Method: We chose to use the Dynamic Head [35]
framework combined with a powerful Swin-L [63] back-
bone. Considering the high amount of small objects in the
SeaDronesSee dataset, Dynamic Head seemed promising
due to its scale-awareness and the excellent results in terms
of APS on the COCO test-dev dataset. MMDetection [28]
served as a powerful toolbox to modify proven pipelines and
tune pretrained models and backbones.

Backbone: Swin-L pretrained on ImageNet22k 384x384
Neck: Feature Pyramid Network [60] (3 scales)

Head: Dynamic Head (6 blocks)

Box: Adaptive Training Sample Selection [104]

Training:

Optimizer: AdamW, learning rate Se-05, decay 0.05
Schedule: 7 epochs, learning rate steps at epochs 5 and 7
Augmentations: Multiscale resize in range 1400 to 2000
Datasets used:

Backbone pretraining: ImageNet22k

Model pretraining: COCO 2017

Finetuning: SeaDronesSee train

* The best submission was trained with the all model pa-
rameters being unfrozen. Partially frozen experiments
showed similar but slightly inferior results.

» The SeaDronesSee dataset was left unchanged training
only on the train split assuming training on the valida-
tion set would be against challenge rules.

Hardware:

We used a A100 40GB for training to allow for a powerful
backbone and larger training input size. Test time augmenta-
tions were used to improve prediction performance on the
test set at the cost of inference speed. Augmentations of the
best submission included multiple scales (4096, 2048 and
1280 pixels) and horizontal flipping at each scale. Inference
time including test time augmentations was 4.83s per image.
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The gains compared to a single forward pass are marginal
(0.55 vs. 0.57 AP) and so in practice at an input size such as
2000 pixels would be used and result in an inference time of
0.38s.

Adaptations considered:

* Augmentations such as color jitter to improve robust-
ness to different light conditions were considered but
not evaluated.

* Giving the model meta data information to improve
scale-awareness was considered but not implemented
due to time constraints.

Observations:

* Wrong annotations in the dataset were noticed but left
unchanged assuming changing them or leaving them
out would be against challenge rules. Analyses on the
validation set suggest that cleaning the dataset may have
helped significantly. This assumption is based on the
observation that the model learned to predict bounding
boxes with offsets resembling the offsets of misplaced
annotations. Early stopping mitigated the problem at
the cost of poorer classification performance.
Increasing the input size played a significant role. This
way even the model pretrained on COCO was already
able to detect tiny ships on the horizon in the largest
images. Only replacing the classification head did not
work better than tuning the entire model. Boxes were
well placed and scaled, but bright colors would always
be linked to all bright classes (life vests, jetskis, buoys).
It may be a good option for the binary case, especially
when the dataset is smaller.

A.5. YOLOvV7-X

Eui-ik Jeon, Impyeong Lee
{euiik0323,iplee} @uos.ac.kr

We used 6 models provided by the official YOLOv7
Github [8]. The hyperparameter was hyp.scratch.p5.yaml
provided by yolov7. In the learning process, weights
pretrained with cocodataset were used, and at this time, the
optimization algorithm and data augmentation used ADAM,
flip left-right, mosaic, mixup, and paste-in, respectively. We
thought a flip up-down would not be necessary for data
augmentation, but we now believe that that idea is wrong.
We used the given object detection v2 dataset without
change, and no additional dataset was used. In fact, we
recently started a research project related to search and
rescue. So, at the end of September, I found out that this
challenge was going on in the process of investigating prior
research. Unfortunately, we did not consider using other
datasets due to lack of time. In the paper of YOLOV7,
YOLOvV7-E6E had 151.7M parameters, and mAP50 was
the highest at 74.4. We thought that small object detection
was important in this challenge. So, in order to enlarge the

size of the feature map, the size of the image was simply
enlarged rather than changing the structure of the model. As
a result of changing the image size from 640 to 1920, it was
found that mAP50 continuously increased. However, the
image size change experiment was applied up to 1920 only
in the basic model of YOLOv7 and X due to the limitations
of the GPU, and up to 1600 in the rest of the models. As
a result, YOLOv7-X with image size set to 1920 showed
slightly higher mAP than YOLOv7-E6E with image size
1600. And we did an experiment using YOLOv5. YOLOVS
provides 10 models according to the backbone structure. In
YOLOVS5, we experimented with the same input image size
(640x640) as a model with the same bottleneck structure
(eg s, s6). As a result, s6, where the size of the feature
map becomes smaller due to a deeper backbone, showed
lower accuracy. The reason we did not use YOLOVS for
the challenge is that the mAP of the validation dataset was
lower than that of YOLOv7. Finally we used NVIDIA’s
RTX 3090 24GB, YOLOvV7-X consumed 15 fps to inference
one picture.

A.6. YOLO-CNS

Luca Zedda, Andrea Loddo, Cecilia Di Ruberto
l.zeddal2 @studenti.unica.it,
{andrea.loddo,dirubert} @unica.it

For this challenge, we propose a novel and innova-
tive architecture based on YOLOVS5, YOLO-CNS. It stands
for You Only Look Once CBAM NAM SwinTransformer
and has the following characteristics:
* the architecture’s neck and backbone contain several
Convolution Block Attention Modules (CBAM)
¢ the features of the last C3 module of each head with
a set of 3 sequential Swin transformer blocks were
merged to create a custom set of heads
* the final layer is a Normalization-based Attention Mod-
ule (NAM), projected to give more importance to the
best features.
Because of the large amount of small objects in the chal-
lenge dataset, a YOLO head specialized for small objects
has been employed. It work with features retrieved from the
first layers of the backbone.
The hyperparameters employed are described as follows:
number of epochs: 150; input image size 1280 x1280 pixels;
10U threshold: 0.2; confidence-threshold 0.01.
The remaining hyperparameters were left as defaults and are
those defined by the authors of YOLOVS. They can be found
at [7].
The model architecture, pretrained on the COCO dataset, was
trained on the SeaDronesSee Object Detection v2 Dataset.
All the experiments have been conducted on the same ma-
chine with the following configuration: Intel(R) Xeon(R)
Gold 6136 CPU @ 3.00GHz CPU and Tesla P6 16 GB GPU.
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Our team has studied a similar model for a malaria parasite
detection task [98], which shares many technical difficulties
with this challenge’s track, such as the presence of tiny ob-
jects. Our different submissions are related to the current
epoch of the training process. We decided to validate our
model every 25/30 epochs to recognize possible overfitting
issues or incremental improvements of the model.

A.7. YOLOV7-Wé6

Sagar Verma, Siddharth Gupta
{sagar, sid} @ granular.ai

1. Solution

This submission is from YOLOvV7-W6 [90] network trained
directly on the training set of the dataset. We use the
network as it is. During training, we used images with an
input size of 1280 while maintaining the aspect ratio. We
train the network on 4xV100 NVIDIA GPUs using PyTorch
data parallelism. We manage our experiments on GeoEngine
platform [81,89].

An initial learning rate of 0.01, a momentum of 0.937, and
a weight decay of 0.0005 have been used. The following
gain parameters in the loss function have been used: box
loss gain is 0.05, class loss gain is 0.3, object loss gain is
0.7, IoU threshold is 0.20, and anchor multiple threshold is
4.0. Following augmentations have been used: HSV- Hue
(0.015), HSV-Saturation (0.7), HSV-Value (0.4), rotation
(+/- 0.25 degrees), translate (+/- 0.2), scale (+/- 0.5), shear
(+/- 0.1), horizontal flips (0.1 probability), mixup (0.1), copy
paste (0.1) and paste in (0.1).

We also tried training on the synthetic dataset and then
fine-tuning it on the real dataset. We observed that this did
not improve results that much. In the later analysis, we
found out that classes are balanced in the synthetic dataset
and imbalanced in the real dataset. Also, the synthetic
dataset has a huge variance in object sizes for a given class.
For inference, we used a single RTX 3090 GPU and used
input image size to be 2560 while maintaining the aspect
ratio. We infer one image at a time and found that 10 images
can be processed in 1 second. This can be sped up by using
batch during inference.

2. Solution

The main problem we found with the above submission is
that YOLOV7-W6 is quite big and unsuitable for search and
rescue applications. It is not a practical solution if the search
and rescue will be performed in a remote area and the model
requires a huge GPU or a network connection to a remote
GPU server. Also, if search and rescue happen over a large
lake or ocean, the model will see the ocean most of the
time. Using this information, we can use smaller networks
like YOLOv7-Tiny to detect the presence of an object, and
if something exists, then we can use EfficientNet-BO to
classify the object (extracted patch) into one of the five

classes.

We trained YOLOvV7-Tiny using the same strategy as used
for YOLOV7-W6. We also extract 256x256 patches for
all the objects such that the object is in the center of the
image and train an EfficientNet-BO classifier. We then join
both networks and create a two-stage pipeline in which
the classifier is triggered only one YOLOV7-Tiny detects
objects. This strategy is good in terms of speed (88 FPS) but
not accuracy. We found out that the binary object detection
performance was good, but the classifier was confused due
to class imbalance. We tried to solve this problem using
copy-paste, mix-up augmentations, and label smoothing but
did not significantly improve results. We believe this could
work if done correctly, which we failed to manage as the
deadline was almost there.

A.8. M10

Shishir Muralidhara, Niharika Hegde
{s_muralidhara21, n_hegde21} @cs.uni-kl.de

In our work, VarifocalNet is used as the architecture,
with ResNeXt-101 as the backbone. We use the model
provided by PyTorch pretrained on ImageNet, without any
additional datasets or explicit pretraining. VarifocalNet
is a single-stage object detector, with a custom varifocal
loss which treats the positive examples and the negative
examples asymmetrically, that is, a higher emphasis is
placed on positive instances. This is significant in case of
aerial images which are large and suffer from sparseness
resulting in an imbalance between the positive and negative
instances. Another challenge associated with large images
is that the defining characteristics of objects are often
indiscernible since the objects of interest are extremely
small. Addressing this, we experimented with different
scales of input data.

All the models were trained with identical hyperparameters
and for 24 epochs on a single RTX3090 GPU. First, we set
the baseline with the model trained on the full-sized raw
image, using the train-val split. We also experimented with
a tile-based approach, where each image is split into tiles
of 512x512 by a sliding window approach with overlap
and only retaining tiles containing a positive instance of an
object. The tile-based approach ensures that representations
of an object are feature rich. We observed that using tiles in
conjunction with multi-scale representation of the full-sized
image improved the performance significantly. As part of
data augmentation, we implement normalisation, random
flipping and cropping. Following the tile-based approach
used during training, we utilised Slicing Aided Hyper
Inference (SAHI) for testing, which again divides the image
into tiles and performs object detection in each tile. We also
tested the model using the full image at multiple scales and
with test-time augmentation. The latter improved the results,
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achieving our best mAP of 52.54, with an inference speed of
one image/second.

A9. YOLOvV7-NYU

Daitao Xing, Nikolaos Evangeliou, Anthony Tzes
{daitao.xing, nikolaos.evangeliou, anthony.tzes} @nyu.edu

In this challenge, our team implemented a YOLO-
based object detection method. Specifically, we employ
the recently released YOLOV7 [90] as our main detector,
considering its good balance on accuracy and inference
speed. The YOLOv7-X with modified E-ELAN network
has 120 stacked layers and predicts bounding boxes on P3
to P5 layers, which correspond to 8 1 to 32 feature maps.
The SeaDroneSee [88] dataset consists of images with
ultra-high resolution and tiny bounding boxes annotations
from swimmers and life-saving applications. However,
YOLOvV7-X takes a resized image of 640 x 640 as input in
default settings, which is inadequate for object detection
in 4K images. To address this problem, we modified
the anchor size based on YOLOV7-tiny settings. During
training, we randomly crop the patches of size 640 x 640
from the input images. We also employ the crop-and-paste
method to increase the number of instances in patches.
Other augmentations including color jitter, random rotation,
scaling, flip, and mosaic are applied to improve the model’s
robustness. We only use the provided dataset for training and
validation purposes without pre-training on the additional
dataset. The network is trained on a server with 4 GPUs for
300 epochs. The batch size is set to 32 and the learning rate
is 0.01. During inference, we use SAHI [11] to slice the
input into overlapped patches of size 640. After slicing, the
patches are fed into the network in a batch way. We noticed
that even though the patches are extracted for best inference
preference, the objects are still too tiny to be detected
especially when the drones are hovering at high altitudes. So
during inference, we apply an off-the-shelf super-resolution
network [58] to boost the image qualities. Specifically, for
bounding boxes smaller than 200 pixels, we first cropped
patches of size 60 x 60 centered at the bounding boxes. We
then apply the super-resolution network on those patches
and fed the output into the detector again. We observe a
significant performance jump (about 1.3% point on AR
score) after applying SR techniques. The performance
can be further improved if the super-resolution network is
fine-tuned on the training dataset. Overall, the inference
speed on a 2060 GPU is around 1 FpS and the best AP score
is 0.5193.

A.10. YOLOvV7-FIT

Vojtéch Bartl, Jakub gpaﬁhel, Adam Herout
{ibartl, ispanhel, herout} @fit.vutbr.cz

Method AP AP50 AP75 ARl ARlO
YOLOvV7 0.517 0.801 0.551 0421 0.580
TOOD 0471 0.732 0492 0.396 0.536
Pix2seq 0419 0.749 0.406 0.394 0.538
DETR 0.350 0.676 0.334 0.321 0.439

Table 15: Results of tested methods.

We participated at 1st Workshop on Maritime Com-
puter Vision (MaCVi) in task Object Detection v2. The
task was to detect objects in sea drones images. All our
experiments were done on a personal computer with the
following setup:

e System: Ubuntu 20.04.5

» CPU: Intel Core i7-11700K

* GPU: Nvidia RTX3090

* RAM: 128 GB
We experimented with 4 different methods and achieved re-
sults as described in Table 15. In all cases we used models
pretrained on COCO dataset and fine-tuned them on SeaD-
ronesSee dataset provided by the challenge authors. If not
mentioned all training parameters were same as in training
scripts provided in relevant repositories. Only YOLOV7 was
able to run about =10 FPS; all other methods run about ~1.5
FPS.
YOLOvV7: We used YOLOV7 repository [90] with prepared
fine-tuning scripts — our variant was YOLOvV7-E6 with im-
age size 1280 x 1280, batch size 4, and training for 300
epochs.
TOOD: Another tested method was TOOD [41]. We used
implementation provided in MMDetection toolbox [28] —
our variant was ResNet101 backbone with DCNv2 (R-101-
denv2). Model was learned for 24 epochs with batch size 6.
Pix2seq: Next tested method was Pix2seq [33] which
also provide prepared scripts for fine-tuning — we used
ResNet50 backbone with image size 1333 x 1333. The
model was trained for 40 epochs with batch size 4.
DETR: We also tried DETR [26] model. Similarly to TOOD
we used implementation provided in MMDetection tool-
box. Backbone was ResNet50 and model was trained for 80
epochs with batch size 6.
Observations: We tried to fine-tune two “classical” CNN
models (YOLOv7, TOOD) and also two models based on
transformers (Pix2seq, DETR) on SeaDronesSee dataset.
Our main observation is that “classical” CNN models still
reach comparable results and transformers do not provide
significant result improvement.

A.11. DurObj

Neelanjan Bhowmik, Toby P. Breckon
{neelanjan.bhowmik, toby.breckon} @durham.ac.uk

290



In the context of object detection tasks, most efforts
have focused on detecting objects-of-interest in standard
colour imagery by using Convolutional Neural Networks
based object detection architecture of diverse characteristics
such as, singe-stage [41, 80], multi-stage [22, 47], and
transformer-based [26, 109]. In this challenge, we employ
a transfer learning approach where the object detector
(TOOD [41]) is initialised with task-specific pre-trained
weight to obtain the knowledge and transferred to the target
domain (e.g. SeaDronesSee v2 dataset).

TOOD [41]. Recent one-stage detectors [79] predict two
separate outputs by deploying two sub-networks to deal with

two sub-tasks, classification and localisation respectively.

However, there is a degree of misalignment when two
separate branches are used to make predictions. To
overcome this misalignment, a sample assignment scheme
and a task-aligned loss function are designed in Task-aligned
One-stage Object Detection (TOOD) by explicitly aligning
the two tasks (object classification and localisation) in a
learning-based manner by utilising novel task- aligned head
(T-Head) which offers a better balance between learning
task-interactive and task-specific features and task alignment
learning via a designed sample assignment scheme and a
task-aligned loss.

Model Initialisation. The object detection method relies
heavily on architectures that have been trained on large-scale
colour imagery datasets. We incorporate a task-specific
model initialisation or transfer learning strategy in this
challenge. In our prior work of [13], we analysed the impact
of object area on the performance of object detectors. As
the target dataset (SeaDronesSee v2) primarily consists
of aerial imagery (air-to-ground) with small-size object
area (object-area < 32 x 32 pixel [13]), we initialised our
model with pre-trained on VisDrone [10] (aerial imagery
dataset) instead of the commonly used ImageNet [37] or
MS-COCO [61] datasets.

Implementation Details. TOOD is implemented using the
MMDetection framework [28] and initialised with weights
pre-trained on the VisDrone dataset. Our model is trained
only on the train split of SeaDronesSee v2 dataset using
a ResNet 101 [48] backbone with the following training
configuration: backpropagation optimisation is performed
via Stochastic Gradient Descent (SGD), with initial learning
rates of 1072, trained for 40 epochs. Standard data
augmentation techniques, such as Random Crop, Random
Flip, have applied during model training with an application
probability of 0.5. The model inference is carried out on
the NVIDIA TITAN RTX GPU, with an achieved inference
speed of 4 FPS.

A.12. APX

Shivanand Kundargi*, Tejas Anvekar®* Ramesh Ashok
Tabib, Uma Mudengudi (*equal contribution)
{shivanandkundargi992,anvekartejas} @ gmail.com,
{ramesh_t, uma} @kletech.ac.in

At sea, rescue operations are carried out to save stranded
sailors and passengers, as well as survivors of crashed
aircraft. Climate change and migration across major oceans
have increased the importance of maritime search and
rescue. In this report, we propose APX: Adaptive Pixel
Clustering for seamless marine object detection for quicker
convergence and a faster train-to-deployment pipeline for
marine drones.

Figure 21: APX is an immanent method to perform Adaptive
Pixel Clustering for seamless marine object detection. (a)
depicts Most Dominant colour distribution of a sample image
in SeaDronesSee Object Detection v2 Dataset. (b) depicts
Adaptive Pixel Clustering with Elbow-method for setting no
of cluster K.

We observe that, majority of the colour-variance in the
SeaDronesSee dataset are in blue-green tones, as the dataset
is a drone-view image of oceans. Almost 80-90% of image
consists blue-green tones. An object-detection model can
be aided by simply binning the colour variance such that
true objects are implicitly emphasised. As shown in Figure
21, we propose APX: Adaptive Pixel Clustering to facilitate
object-detection in Marine. Our method is adaptive as
we use Kmeans [51] + Elbow method to choose the no
of dominant colours in a given image. We observe that
for training set, Elbow method yields K = 28 £ 4 and we
achieve best mAP on validation set for K = 32.
Experimental Setup: We train the proposed pipeline on
compressed version of SeaDronesSee object detection v2
dataset, the resolution of the image is resized to 640 x 640
for quicker convergence, better inference time and resource
management. We train the network on RTX-3090 for 50
epochs, batch-size: 32 and the other hyperparameters are
the same as those listed in YoloV7 [8,90].

Results and Discussions: The results on test set as per
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the leader-board of SeaDronesSee & MODS challenge, we
obtain the following results, AP: 0.4968, AP50: 0.8326,
AP75: 0.5004, AR1: 0.4131, AR10: 0.5797.

On the validation set, YoloV5 trained for 100 epochs
achieves mAP @ 0.5:0.95 = 0.2998, YoloV7 trained for 100
epochs achieves mAP @ 0.5:0.95 = 0.4632, Ours (YoloV5
+ APX) trained for 50 epochs achieves mAP @ 0.5:0.95
= 0.3122, Ours (YoloV7 + APX) trained for 50 epochs
achieves mAP @ (0.5:0.95 = 0.4808.

A.13. YOLOV7-TILE

Arpita Vats
avats @scu.edu

The dataset provided was unbalanced, so the first
step was to balance the dataset using PyTorch library
WeightedRandomSampler, which is responsible for
making sure that the model sees the minority classes more
while training. We used different datasets provided for
training, validation, and testing We used high-resolution
uncompressed images for training and Inference. We
executed all our experiments on a system running Ubuntu
Linux version 20.04 and equipped with a 12-core Intel(R)
Core(TM) 19-7920X CPU @ 2.90GHz, 128 GB RAM, and
2 NVIDIA RTX 3090 24G GPUs. it took approximately
5-6 hours for training and around 2-3 hour for inference
However, while portions of our method take advantage of
multi-threaded CPU-based processing, our method uses
two GPUs for training and one GPU for inference. In
our proposed model, we used the yolov7 model as the
backbone for object detection. Since the actual object to
be detected was very tiny, we tried different approaches to
make sure the tiny objects are detected correctly. One of the
approaches that we considered is Orient ed-RCNN, which
proposes an effective and simple oriented object detection
framework, termed Oriented R-CNN,which is a general
two-stage oriented detector with promising accuracy and
efficiency. To be specific, in the first stage, they proposed
an oriented Region Proposal Network (oriented RPN) that
directly generates high-quality-oriented proposals in a nearly
cost-free manner. The second stage is oriented R-CNN
head for refining oriented Regions of Interest (oriented
ROIs) and recognizing them [93], this model was not able to
perform on the given dataset. SAHTI [11] Inference model
based on image tiling, which currently supports yolov7 and
many others. SAHT provided us with motivation to try the
approach of Image Tiling [74], which divides the image into
tiles for training and testing, so for tilling training images, it
uses the bounding box region given in the labels for training
images for tilling and these tiled images are used for training
using Yolov7 pre-trained weights. For inference, we used
the testing images provided and tiled those testing images to
use them for inference, and after the inference is completed

prediction on tile images is stitched back to the original
images, to get the final prediction in the required format
(COCO format). We were able to achieve an AP of 0.42315.

A.14. YOLOv7 Baseline
MaCVi Organizers

We trained a pre-trained (on COCO) YOLOvV7 model [90]
for eight epochs on the SDS ODv?2 train data set with default
configurations.

A.15. Faster R-CNN ResNet-18 Baseline
MaCVi Organizers

We trained a pre-trained (on COCO) Faster R-CNN model
[90] with ResNet-18 backbone on the SDS ODv?2 train data
set with adapted anchor sizes.

B. UAV-based Tracking
B.1. DeepSORT with ECC (MoveSORT)

Yang Song, Delong Liu
{sy12138,liudelong} @bupt.edu.cn

We propose the MoveSORT algorithm for Multiple
Object Tracking tasks in the maritime UAV view. The
MoveSORT algorithm makes use of some advanced
modules and inference tricks to effectively improve the
DeepSORT [91] algorithm. Detector: DeepSORT uses
the optimized Faster R- CNN presented in as the detector.
Instead, we replace the detector with YOLOv7, which
holds excellent trade-off performance between accuracy and
speed.

ECC: Enhanced Correlation Coefficient Maximization
(ECC [40]) is a technique for parametric image alignment,
which can estimate the global rotation and translation
between adjacent frames. Motion scenes may cause the
linear Kalman filter of DeepSORT algorithm to fail, so we
use ECC to compensate for the non-linear variations caused
by the UAV camera.

IOU: We use the IOU distance instead of the Mahalanobis
distance in DeepSORT cascade matching and choose a
larger IOU threshold, resulting in cascade matching that
focuses more on matching in terms of appearance features
and improving the robustness of algorithms in mobile
scenes.

NSA Kalman: The Kalman filter is susceptible to low-
quality detection and ignores detection noise. To solve
this problem,we borrow the NSA Kalman algorithm from
GIAOTracker [39], which adaptively calculates the noise
covariance Rk. based on the detection confidence score:

Rk = (1 — Ck)Rk
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where R is the preset constant measurement noise covari-
ance and ¢ is the detection confidence score at state k.
Though its simplicity, it can help improve the accuracy of
updated states. Our model was run on a Tesla T4 with FPS
of 10 frames per second. We only use the official dataset and
have achieved excellent results.

Method ECC I0U NSA HOTA MOTA

DeepSORT 62.7 77.2
MoveSORTvl Vv 63.6 78.3
MoveSORTV2 Vv v 64.7 78.4

MoveSORTvV3 Vv v v 66.6 80.0

Table 16: Ablation study of MoveSORT on the
SeaDronesSee-MOT set. HOTA and MOTA in %.

B.2. byteTracker

Yonglin Li, Shuman Li, Chenhao Tan, Long Lan
{liyonglin12345, lishumanl3} @nudt.edu.cn,
2826554153 @qq.com, long.lan@nudt.edu.cn,

We use the ByteTrack as our method. Specially, the
YOLOX is selected as backbone network to detect and
the BYTE implements the association. In our method, we
remove the vertical bbox restrict in Byte to satisfy marine
scene. Compared to the pedestrian tracking task in MOT
challenge [68], we decrease detection threshold from 0.7 to
0.6 and tracking threshold from 0.6 to 0.5 to adapt smaller
and sparser objects. ByteTrack public code are re-leased
at [1]. YOLOX public code are released at [9].

Implementation Details: The detector is YOLOX with
YOLOX-x as the backbone and the COCO-pretrained model
is introduced as the initialized weights. For SeaDronesSee
MOT, the training schedule is 120 epochs on train dataset.
The input size is 1440 x 800. The shortest side ranges
from 576 to 1024 during multi-scale training. The data
augmentation we used includes Mosaic and Mixup. The
used model is trained on 8 NVIDIA Tesla A100 GPU with
batch size of 48. The optimizer is SGD with weight decay
of 510~* and momentum of 0.9. The initial learning rate is
10~3 with 1 epoch warm-up and cosine annealing schedule.
In inference, the default detection score threshold is 0.5,
unless otherwise specified. We only use IoU as the similarity
metrics. In the linear assignment step, if the IoU between
the detection box and the tracklet box is smaller than 0.2,
we reject the matching. For the lost tracklets, we keep it
for 30 frames in case it appears again. FPS is measured
with FP16-precision and batch size of 1 on a single GPU.
The FPS on our machine is about 6 FPS. Compared to the
pedestrian tracking in MOT, SeaDronesSee MOT has more
sparser scenes and smaller objects. Based on it, We decrease
detection threshold and tracking threshold for adapting

it. Meanwhile, as the overlap objects in the dataset are
rarely, we increase nms threshold to remove potential false
association and decrease num of ID Switch.

B.3. StrongerSORT and STI-StrongSORT

Vladimir Somers, Christophe De Vleeschouwer, Alexan-
dre Alahi
{vladimir.somers, alexandre.alahi} @epfl.ch,
christophe.devleeschouwer@uclouvain.be

To address the SeaDronesSee Multi-Object Tracking
challenge, we focus on the data association problem and
propose two methods using the provided public detections.
We first detail both methods below and then provide some
insights about their performance.

StrongSORT with PCB+GiLt: The first method is fully
online and adapted from StrongSORT (implementation pro-
vided at [6]) [38], with the two offline modules GSI and
AFLink removed. For the ReID model, we employed a
PCB [83] part-based re-identification model, pre-trained on
Market1501 [108] with a GiLt (Github: [2]) loss [82]. This
method achieves 10fps.

Spatio-temporal StrongSORT with Interpolation: On
the SeaDronesSee MOT dataset, targets (boats and swim-
mers) have very similar appearance, occlusions are rare be-
cause of the aerial nature of the shots and tracking targets
that go out and back in view is not necessary according to
challenge rules. For these reasons, we argue spatio-temporal
information is more valuable to solve the data association,
compared to appearance information from a re-identification
model. Based on these observations, we introduce our sec-
ond method that rely solely on spatio-temporal information.
We changed two components to the above method for our
second offline method. We first use a new two stage as-
sociation step using only spatio-temporal information: (1)
tracklets are matched with current detections using the IOU
score with a minimum threshold of 0.1, and (2) remaining
detections are matched according to their bbox centers dis-
tance with a max threshold of 60 pixels. The goal of this
second step is to address large displacements caused by fast
camera motion from UAV rotations. Finally, to address the
false negatives that are predominant in the public detections,
we adopt a post-processing strategy to linearly interpolate
missing detections within each final tracklet. We also delete
tracklets that do not span at least 20 frames. This method
runs at 30fps.

Analysis: Both methods ranked third in the final leader-
board. The second method induces big improvement regard-
ing all metrics related to data association, with a much lower
fragmentation and five times decreased id switches: the vast
majority of targets are now tracked from the beginning to
the end of each video. However, the interpolation module
is more sensitive to false positive detections, which induces

293



a drop in detection accuracy and therefore in MOTA and
HOTA metrics. Moreover, the bbox centers distance match-
ing step is still sensitive to false positives/negatives and
would strongly benefit from a better object detector. Just like
most other MOT works, there’s a big detection/association
accuracy trade-off between our two methods, the second one
achieving better association.

B.4.MOT

Lars Sommer, Raphael Spraul
{lars.sommer, raphael.spraul} @iosb.fraunhofer.de

Our approach is comprised of an initial object detec-
tor followed by multiple object tracker.

Detector: To generate our detections, we used Detec-
toRS [78] with Cascade R-CNN and ResNet-50. For
initialization, we used weights pre-trained on MS COCO.
To account for small object dimensions, we set the “scales”
parameter to 4, yielding smaller anchor boxes. All other
parameters remained unchanged. SGD was used as
optimizer with an initial learning rate of 0.02, a momentum
of 0.9 and a weight decay of 0.0001. The model was trained
for 12 epochs. We employed the SeaDronesSee Object
Detection v2 train and validation set as training data. For
images with dimensions less than 3840x2160 pixels, we
used multiple scales (1920x1080, 2376x 1296, 2688x1512
and 3360x1890 pixels). Otherwise, we set the input scale
to 3360x1890 pixels. For inference, we applied multiscale
testing (2688x1512, 3360x1890 and 4032x2268 pixels). We
considered all five classes during training and inference.
The implementation provided by MMDetection [28] - an
open source object detection toolbox based on PyTorch —
was used to train our detector. We used 2 Tesla V100 GPUS
(CPU: Intel Xeon E5-2698 v4 @ 2.20GHz). The inference
speed of the detector was about 1 FPS.

Tracker: For tracking we use the DeepSORT [91] tracking
approach. Since our detector output does not provide any
appearance features for the individual boxes, we chose
constant feature values as input for the tracker. Tracks were
only initialized on detection boxes with a confidence value
greater than 0.3. For updating tracks we considered every
detection with detection score greater then 0.0. Since we
didn’t expect large occlusions in the test scenarios, we set
the max age value to 1. max age is the maximum number
of consecutive misses before the track is deleted. The
remaining parameters were left at the default settings. The
inference speed of the tracker was about 500 FPS on an
AMD Ryzen 9 3900X @ 3.8GHz.

B.S. OCSORT

Hsiang-Wei Huang, Cheng-Yen Yang, Jeng-Neng Hwang,
Pyong-Kun Kim, Kwangju Kim, Kyoungoh Lee
{hwhuang, cycyang, hwang} @uw.edu,

{iros, kwangju, longweek7} @etri.re.kr

We use YOLOX-XL as our detector, we dump all
the five different classes into one class and train the model
for 20 epochs. The model is pretrained on the MaCVi object
detection dataset for 20 epochs and then finetune with
MaCVi object tracking training and validation dataset. The
tracking algorithm we used is OCSORT.

Device: We use V100 for model training and inference. The
inference speed is roughly 20 FPS.

Adaptation: Due to the different drone heights of the
testing video, the size of the target can vary significantly.
For several videos with lower height, we use the detector
trained on MaCVi object detection dataset to conduct object
tracking. But the performance is not improved significantly.
4. Result We achieve 0.608 in HOTA, 0.724 in MOTA and
0.692 in IDF1.

B.6. Tracktor Baseline
MaCVi Organizers

The baseline we provided is a Tracktor-based tracker
using Camera Motion Compensation with a Faster R-CNN
ResNet-50 detector. We used the tracking implementations
from mmdetection [28] with default hyperparameters.

C. USV-based Obstacle Segmentation
C.1. Multi-WaSR

Shuai Jiang, Haiwen Li
{js, lihaiwen52}@bupt.edu.cn,
Beijing University of Posts and Telecommunications (BUPT)

Inspired by [17], we use the WaSR network as our base-
line model. During the competition, we tried a total of four
network architectures. Combining different data augmen-
tation methods, we got five models and trained them sepa-
rately. Model-1 and model-2 both use WaSR-Res101 [17],
but their augmentation methods are different. Model-3 uses
WaSR-Res50 [17] as its architecture, while model-4 uses
DeepLab [31]. Model-5 modifies the WaSR framework to
improve its effect on Water-edge segmentation. Specifically,
we replace ARM1 and ARM?2 with two Transformers [97]
named TRF1 and TRF2. Unlike the WaSR network which
concatenates one channel of IMU feature, model-5 concate-
nates four channels of IMU feature. Each of these five
models has its own strengths. Thus, we trained the above
models separately and perform inference. Then we propose
a module to fuse the segmentation outputs by the five mod-
els, which leads to our first ranking on the leaderboard. The
fusion criterion is to vote on each pixel and the class with
the highest votes is used as the classification result for that
pixel. The models involved in our experiments are shown in

294



Figure 22: Multi-WaSR: The process for the fusion method.

Table 17 (Multi-WaSR shows the results after fusion). The
fusion process is shown in Figure 22.

Model Backbone Ranking Avg. Score
1 WaSR-Res101 # 92.5
2 WaSR-Res101 8th 92.3
3 WaSR-Res50 # 88.8
4 Deeplab 12th 92.0
5 WaSR-TRF-Res101 14th 91.4
6 Multi-WaSR # 93.5

Table 17: Multi-WaSR: The models correspond to the sub-
missions in the leaderboard (# represents not submitted to
the leaderboard).

The training dataset is MaSTr1325 [19] and the test
dataset is MODS [20]. Considering that light spots reflected
from sea level may be considered as false positives, we add
two augmentation methods, namely Random-Brightness and
Random-Contrast, which can also improve the generaliza-
tion performance. We modify epoch to 50, the rest of the
hyperparameters and the loss function are the same as in
reference [17]. The device we take is a Tesla V100 with an
inference speed of approximately 12 FPS.

C.2. MariFormer & RevDeep

Zheng Zigiang, Tuan-Anh Vu, Hai Nguyen-Truong, Sai-Kit
Yeung

{z zhengaw, tavu, thnguyenab}@connect .ust.hk,
saikit@ust.hk

Hong Kong University of Science and Technology (HKUST)

C.2.1 MariFormer

Algorithm Outline: The proposed maritime obstacle seg-
mentation is based on the transformer-based neural archi-
tecture SegFormer [92]. SegFormer is a simple, efficient
yet powerful semantic segmentation framework, which intro-
duces Transformer architecture into the semantic segmenta-
tion. The lightweight multi-layer perception (MLP) decoders
are utilized for generating high-quality segmentation map
based on multi-scale feature representations from a novel

Figure 23: MariFormer: The illustration of generating
the cropped image based on the given mask for sequence
“kope100-00006790™.

Table 18: The best submission result of our method.

Methods Average Ha IR Pr Re F1 Prp Rep Flp
MariFormer 93.2 1047 98.6 89.7 975 935 955 90.6 93.0

hierarchically structured Transformer encoder. The MLP
decoder could aggregate information from different layers
to generate more powerful representations. Also, the Seg-
Former could support the precise semantic segmentation on
the high resolution images.

We perform the semantic segmentation based on MMSeg-
mentation [3]. The training configuration is “segformer_mit-
b5_8x1.1024x1024_80k”. The image resolution is set to
1024 x 1024 and the training schedule is set to “sched-
ule_80k”. The optimizer is SGD optimizer and learning
rate is 0.01. The momentum is 0.9 and the weight decay is
0.0005. The data augmentation includes random crop and
resize, random flipping, and normalization.

We only use the MaSTr1325 dataset [19] for training and
no other additional images are used. The training device is
RTX 3090 with 24G memory. The inference speed is about
3.8 frames per second under the image resolution 1278 x 758.

Special processing: For sequence “kope100-00006790”,
we remove the boundary according to the given mask as
shown in following Figure 23 to remove the influence of the
boundary.

Limitation: we observe that the proposed method show
limited performance for the segmentation of the obstacles
that will cause danger. There are many wrongly detection
for this kind of object category. To alleviate this, we may
introduce the other cross-modal supervision (from IMU in-
formation) to formulate additional constraint, which may
lead to further improvement.

Best submission: The best submission of this method
achieved the average score 93.2 shown in Table 18.

C.2.2 RevDeep

Deeplab [30] is one of the most influential neural architec-
tures for semantic segmentation. In this report, we revisit
Deeplabv3 and modify it to USV Obstacle Segmentation
task. Our model is constructed by a Deeplabv3 model us-
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ing a ResNet-101 backbone [48]. Firstly, we use combi-
nations of data augmentations from color transform (color
jitter, random gamma), noise transform (Gauss Noise, ISO
Noise), and image transform (Horizontal and Vertical Flip,
Shift, Rotate, Scale, Random Brightness and Contrast, and
CLAHE). Then, we found that the efficiency of a neural
network depends on loss functions, optimizers, learning rate
schedulers, and hyperparameters. Our loss is the combina-
tion of CrossEntropy with label smoothing and Focal loss,
then our loss is optimized using AdamW optimizer [64],
Cosine Decay, and learning rate = 1e-6. The network was
trained on the mix of MaSTr1325 [19], and 153 additional
hard examples from WaSR-T paper [110] to force the net-
work to learn deeper features. Our network was trained with
a batch size of 16 for 100 epochs and on a single NVIDIA
RTX 3090 GPU. Finally, our model can achieve the average
of F1 and F1D scores at 91.7%.

C.3. APTXO003
Zhuang Jia

jiazhuang@xiaomi.com
Xiaomi Inc.

Our model named APTX003 in leaderboard is based on
DeepLabV3+ with ResNet101 backbone, we use the imple-
mentation of this model in Segmentation Models PyTorch [5].
The segmentation network is trained on MaSTr1325 dataset
for total 100 epochs using Adam optimizer with initial learn-
ing rate of 5e-4. After 80 epochs, the learning rate drops to
le-5. The loss function is cross entropy loss. For data aug-
mentation, the input image is firstly resized to 512x512, then
horizontal flip (vertical flip is not used concerning the relative
positions of sky and water) and random brightness/contrast
are applied to the resized image. In inference phase, condi-
tional random field (CRF) is used to refine the output seg-
mentation maps with the color information of input image.
Moreover, as the large obstacles often tend to be tattered
in the final predictions, with edges well detected yet planes
may not, we conduct morphological post-processing to "fill”
the holes inside the obstacle regions. The training and in-
ference processes are all conducted in a Ubuntu server with
Nvidia GeForce RTX 3090 GPU. Inference speed is circa
3fps including CRF and post-processing time.

C.4. HRNet-OCR

Sophia Yang', Chih-Chung Hsu?, Xiu-Yu Hou?, Yu-An
Jhang?

sophias94171@gmail.com,

cchsu@gs.ncku.edu.tw,

{xiuyu.hou.tw, styuanpj4}@gmail.com

' National Tsing Hua University (NTHU), 2National Cheng
Kung University (NCKU)
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Figure 24: Hierarchical Attention Network Architecture

We propose a High-resolution network (HRNet) incor-
porating with Transformer as the downstream head, as sug-
gested in [96], for this challenge to effectively address the
issues brought by small objects in Obstacle Segmentation
track under USV sequences (Track 3). The team members
include Chih-Chung Hsu, Xiu-Yu Hou, Yu-An Jhang, and
Sophia Yang. We provide the implementation details and the
network architecture in the following subsections.

Improved HRNet-OCR: The main issue in this chal-
lenge is that classifying the pixels in a given image into one
of three classes: sky, water, or obstacle. We take advan-
tage of HRNet for object segmentation, as well as adopt
Object-Contextual Representations (OCR) to achieve higher
performance on the MaSTr1325 datasets. The low-resolution
features are upsampled with bilinear interpolation for multi-
scale feature fusion.

Network Architecture: The network structure of the
HRNet-OCR is presented in Figure 24. We adopt the pre-
trained weights based on HRNetV2 ImageNet to quickly
and effectively train our HRNet-OCR. Note that we did not
adopt the pretrained weights from segmentation datasets.

Training Tricks and Results: We deploy the HRNet-
OCR on a personal computer equipped with Tesla V100 with
4 FPS inference. We trained the model on four V100s with
batch size 6 per GPU for 484 epochs. For training, the image
size is 1024*512. We use SGD as the optimizer with weight
decay 5 x 10e~°, and the learning rate is 0.01 with default
learning rate decay scheduling.

C.5. WaSR Baseline
MaCVi Organizers

WaSR [17] is a segmentation network based on the
DeepLabv2 architecture. The decoder is redesigned and
includes several attention refinement (ARM) and feature
fusion (FFM) modules which adaptively reweigh the fea-
ture channels to improve the performance. Another critical
component of WaSR is the auxiliary water separation loss,
which encourages the separation of features of water and
other classes early in the encoder. For training we follow the
procedure in [17]. We train the model on the MaSTr1325
dataset. ResNet-101 is used as the backbone. Image aug-
mentation, including random rotation, horizontal flipping,
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random color transformations and adding noise, is used to
introduce additional variation. We train for 50 epochs with a
batch size of 8 per GPU on 2 V100 GPUs.

C.6. DeepLabv3 Baseline
MaCVi Organizers

We train the DeepLabv3 [31] model on the MaSTr1325
dataset. We use the built-in PyTorch implementation of the
network. In training we follow the exact setup as WaSR
(Section C.5) including image augmentation.

D. USV-based Obstacle Detection
D.1. DetectoRS

Lars Sommer'?, Raphael Spraul*?

{lars.sommer, raphael.spraul}
@iosb.fraunhofer.de

L Fraunhofer 10SB, % Fraunhofer Center for Machine Learn-
ing

To generate our detections, we used DetectoRS [78] with
Cascade R-CNN and ResNet-50. For initialization, we used
weights pre-trained on MS COCO. To account for small
object dimensions, we set the “scales” parameter to 2, yield-
ing smaller anchor boxes. All other parameters remained
unchanged. SGD was used as optimizer with an initial learn-
ing rate of 0.02, a momentum of 0.9 and a weight decay of
0.0001. The model was trained for 12 epochs. For our sub-
mission, we used the model after eight epochs, as it achieved
the highest AP values on a validation set.

We used five different datasets to train our model: ABO-
ships [50], MODD [55], MODD2 [18], SeaDronesSee v23
and a small set of images with ships and buoys crawled from
the Internet. Except for SeaDronesSee, we re-annotated
parts of the other dataset. We used 305 images of ABOships,
269 images of MODD, 794 images of MODD?2, 1142 im-
ages of SeaDronesSee v2 and 165 images from the Internet.
For ABOships, we varied the input image scales between
1152x648 and 1600x1200 pixels. For MODD, we varied
the input image scales between 576x432 and 768x576 pix-
els. For MODD?2, we varied the input image scales between
1150x862 and 1600x1200 pixels. For SeaDronesSee v2,
we varied the input image scales between 1920x1080 and
2688x1512 pixels. For images from the Internet, we varied
the input image scales between 1728x972 and 2376x1296
pixels. We further applied random gamma, random bright-
ness contrast and RGB shift as data augmentation techniques.
For inference, we applied multiscale testing (1600x1200 and
2000x1500 pixels). To reduce the number of false negatives,
we filtered out detections with a confidence score below 0.3.

3https://seadronessee.cs.uni-tuebingen.de/
dataset

The implementation provided by MMDetection [29] - an
open source object detection toolbox based on PyTorch —
was used to train our detector. We used 2 Tesla V100 GPUS
(CPU: Intel Xeon E5-2698 v4 @ 2.20GHz). The inference
speed of the detector was about 5 FPS.

D.2. PRBNet

Sophia Yangl, Chih-Chung Hsu?, Xiu-Yu Hou?, Yu-An
Chang®

sophias94171@gmail.com,
cchsu@gs.ncku.edu.tw, { xiuyu.hou.tw,
styuanpj4}@gmail.com

'National Tsing Hua University, 2National Cheng Kung
University

We propose a Prior-Guided Parallel Residual Bi-Fusion
Feature Pyramid Network (PPRB-FPN) for this challenge to
effectively address the issues brought by small objects for
Obstacle Detection for USV sequences (Track 4). The team
members include Sophia Yang, Chih-Chung Hsu, Xiu-Yu
Hou, and Yu-An Chang. We provide the implementation
details as well as the network architecture in the following
subsections.

D.2.1 Proposed PPRB-FPN

The main issue in this challenge is that the object or obstacles
could be very small, leading to the information vanishing
problem. We take advantage of PRB-FPN [32] for small
object detection, as well as adopt the state-of-the-art single-
stage object detector, i.e., YOLOV7 [90] to effectively detect
the obstacles. With the extensive data analysis of the given
UAV sequences, the mask of the shores given by organizers
is used in the training and inference phase to reduce the false
alarm, termed as prior-based PRB-FPN.

Network Architecture. PRBNet [32]: The network
structure of the PRBNet is presented in Figure 25. We
enlarge the input size to 1280 to achieve better accuracy
on small objects and adopt the pretrained weights based
on MS-COCO to quickly and effectively train our PRB-FPN.

Prior-Guided Labeling and Masking: Most of the obsta-
cles are not presented in MS-COCO dataset, so we label all
of the objects not classified as human and boat into other.
While this approach can easily use the pretrained model with
other datasets, it also triggers a lot of false positives on un-
related regions. We choose to filter these false alarms out
by applying the prior that objects on shores are actually not
affecting USV sailing.

D.2.2 Training Tricks and Results

We deploy our method on a machine with Intel Xeon Gold
6248R and Tesla V100-DGXS and achieve a 6 fps frame
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Figure 25: Bi-Fusion Feature Pyramid of PPRBNet

rate, which is mostly taken for inferencing with PRBNet.
The total number of the training process is 500, 500 with
the AdamW optimizer. The step decay learning rate 0.001.
Then the learning rate is multiplied by a factor 0.01 at the
400, 000 steps and 450, 000 steps, respectively. PRB model
were trained on a single V100 with batch size 64 and 400
epochs. The data augmentation strategies used in this paper
are Mixout, random rotation, CutMix, and color jitters.

D.3. OceanU

Simon Yang', Mau-Tsuen Yang®
lordolddog@gmail.com

National Taiwan Ocean University, Taiwan, 2National
Dong-Hwa University, Taiwan

Neural network architecture: YOLOvV7 [8].

Adaptations of E-ELAN: The computational block is mod-
ified by using expand, shuffle, merge cardinality to contin-
uously enhance the learning ability without destroying the
original gradient path.

Detection: python detect.py —--weights
yolov7-e6e.pt —-conf 0.1 {iou 0.25
——img-size 1280

Training: python train_aux.py —--workers
4 —--device 0 —--batch-size 16 —--data
data/coco.yaml —--img 1280 1280 —--cfg
cfg/training/yolov7-e6e.yaml —-weights
"yolov7-e6e.pt’ —--name yolov7-ebe —-hyp
data/hyp.scratch.p6.yaml

Train dataset: MS COCO dataset

Local machine: Nvidia GeForce RTX 2060 GPU / Intel
i7-9700 CPU

Inference speed: 50ms on GPU /3000ms on CPU
Adaptations for MODS: There are 80 categories in COCO
dataset. We replace type O by ‘person’, type 8 by ‘ship’,
and all other types by ‘other’ so only three categories are
recognized.

Observations: Instead of detecting everything, should focus
on detecting objects on the water area.
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