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New machine learning approach for detection of injury risk factors in

young team sport athletes

Abstract

The purpose of this article is to present how predictive machine learning methods can be utilized for
detecting sport injury risk factors in a data-driven manner. The approach can be used for finding new
hypotheses for risk factors and confirming the predictive power of previously recognized ones. We
used three-dimensional motion analysis and physical data from 314 young basketball and floorball
players (48.4% males, 15.72+1.79yr, 173.34+9.14cm, 64.65+£10.4kg). Both linear (L1-regularized
logistic regression) and non-linear methods (random forest) were used to predict moderate and severe
knee and ankle injuries (N=57) during three-year follow-up. Results were confirmed with permutation
tests and predictive risk factors detected with Wilcoxon signed-rank-test (p<0.01). Random forest
suggested twelve consistent injury predictors and logistic regression twenty. Ten of these were
suggested in both models; sex, body mass index, hamstring flexibility, knee joint laxity, medial knee
displacement, height, ankle plantar flexion at initial contact, leg press one-repetition max, and knee
valgus at initial contact. Cross-validated areas under receiver operating characteristic curve were 0.65
(logistic regression) and 0.63 (random forest). The results highlight the difficulty of predicting future
injuries, but also show that even with models having relatively low predictive power, certain

predictive injury risk factors can be consistently detected.
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Basketball and floorball



1. Introduction

Sport injuries are very common across different sports, among both elite and recreational athletes [1—
3]. They can have significant effects on the health and performance and may even cause prolonged
problems in persons life [3]. Sport injuries can lead to, for example, pain, loss of playing or working
time, and decreased motility and stability [3]. The incidence rate of some injuries, such as the anterior
cruciate ligament (ACL) injury, is a growing case of concern [4]. Effective prevention of injuries
presumes that the most relevant risk factors are found. Even though many intrinsic and extrinsic risk

factor have been identified, there is no clear consensus with the findings [5].

A large majority of existing sport injury studies rely on explanatory analysis approach [6, 7].
Explanatory methods have played an important role in the development of sport injury research and
will be needed in future research as well. They are used when the purpose is to explain or understand
data or phenomena of interest. However, high explanatory power does not necessarily imply high
predictive power [8]. Therefore, risk factors that are identified by explanatory methods only
demonstrate a statistically significant association with injuries, but might not have predictive power

on them [6, 7].

Another limitation of explanatory analysis is that they often focus on a small number of variables and
their linear associations with injuries in isolation. However, underlying causes behind sport injuries
have been considered to be multifactorial, indicating that a high number of variables and their inter-
relationships should be considered [9, 10]. It has also been suggested that using cut-off values and
studying only linear interactions between isolated variables can not successfully identify injury
predictors, but more complex models should be applied [11]. To overcome these limitations,
predictive analysis should be utilized alongside explanatory methods. This has been previously

suggested specifically for sport injury research as well [12].

Predictive analysis focuses on predicting new or future observations from data [8]. By exploiting
computational power, predictive methods are able to analyze a larger set of variables including their

interactions and nonlinear relationships as well as to efficiently remove redundant variables from a



model. Therefore, they can be used for generating new hypotheses for sport injury risk factors in a

data-driven manner.

In predictive analysis, the generalization ability of a model should always be assessed on independent
test data, i.e., data that have not been used in the training phase. This measures how accurate the
trained model will be on new unseen observations and only after this validation can any conclusions
about the predictive power be drawn [8]. In addition, when constructing a predictive model it is
necessary to confirm that the prediction results were significantly above the random chance level.
This kind of confirmatory analysis is especially relevant with smaller sample sizes. If this issue is not
considered, in the worst case it can lead to false interpretations and conclusions. For example, in
neuroscience the problem has been widely recognize [13]. One way to confirm significance of the

models and relevance of the chosen predictors are permutation tests [13].

Another important issue related to predictive analysis is the explainability of a model. Explainability
means that the model somehow explains its predictions, for example, gives information on how
individual variables contribute to the prediction outcome, and does not only predict as black box [14].
Explainable models and their predictions are more informative, easier to trust, and therefore can
provide more practical benefits. A term widely used with sophisticated machine learning methods is
Explainable Artificial Intelligence (XAI) [14]. In some domains, such as medicine, model
explainability is considered highly important [15] and should be pursued in sport science and

medicine as well.

During the last couple of years, the first studies using predictive analysis in sport injury research have
been conducted [6, 9, 16, 17]. The previous studies have, however, focused solely on the prediction
task without paying attention to the explainability of the models. In addition, two of the studies also
used a very low number of variables (from three to eleven), although a larger set might have increased
the accuracy [9, 16]. The need and potential of predictive machine learning methods in sport injury

prediction have been recognized but more research is needed [12, 17].



Therefore, the aim of this study is to utilize predictive machine learning methods to detect variables
with predictive power on sport injuries. We present a framework that can be used to detect consistent
injury predictors in a data-driven manner and validate their predictive power on independent test data.
Consistent means that the variable is constantly chosen as an important predictor in the used model.
Our framework utilizes both linear and non-linear classification methods, namely L1-regularized
logistic regression and random forests, to predict moderate and severe knee and ankle injuries.
Generalization ability of these models is assessed with 10-fold cross-validation. A reference model
based on randomized labels is constructed to confirm that the observed prediction performance is not
achieved by chance. Consistent injury predictors are detected with Wilcoxon signed-rank test. This
approach can be used for finding new hypotheses for injury risk factors as well as confirming the
predictive power of previously recognized risk factors. Our secondary aim is to compare linear and

non-linear methods for the task.

2. Methods

2.1. Participants

The data were collected in the Predictors of Lower Extremity Injuries in Team Sports (PROFITS)
study [18]. The study was conducted in accordance with the Declaration of Helsinki and was
approved by the Ethics Committee of the Pirkanmaa Hospital District, Tampere, Finland (ETL-code
R10169). The authors declare that this study meets the ethical requirements of the journal [19].
Altogether 175 basketball and 139 floorball youth (12-21 years) players, including 162 females
(15.44+1.95 years, 167.92+6.44 cm, 60.86+8.58 kg) and 152 males (16.03£1.59 years, 179.1348.00
cm, 68.68+10.76 kg) from the two highest junior league levels of the Tampere city district, Finland,
were recruited. To be included they had to be official team members (i.e., have valid playing contract
and licenses), 21 years old or younger at baseline, and free from injury at baseline. Information about
previous injuries, their treatment, and whether the player was fully recovered were assessed with a

baseline questionnaire. The players entered the study during the preseason in 2011, 2012, or 2013.



They signed a written informed consent form before inclusion (including parental consent for players

aged <18 years).

2.2. Data collection

At baseline, each player participated in physical tests including a vertical drop jump (VDJ) (3D
motion analysis), height, weight, isokinetic concentric quadriceps and hamstring strength, isometric
hip abductor strength, one repetition maximum (1RM) leg press, knee joint laxity (KT-1000),
generalized joint laxity (Beighton scale), genu recurvatum, navicular drop, hip anteversion, and
hamstring flexibility (for more details see Supplementary Table 1 and online supplementary

appendices in [18]).

The VDJ was performed from a 30-cm box. Players were instructed to drop off the box and perform a
maximal jump upon landing with their feet on two separate force platforms (BP6001200; AMTI). The
3D motion analysis was carried out using sixteen reflective markers placed over anatomic landmarks
on the lower extremities according to the Plug-In Gait Marker set (Vicon Nexus v.i.7; Oxford
Metrics) and eight highspeed cameras (Vicon T40). Kinetics and kinematics variables were extracted
using the Vicon Nexus Plug-in Gait model. Medial knee displacements were extracted using a custom
MATLAB script (MathWorks Inc). For more detailed description of the motion data collection and

variable extraction see [18, 20].

The injury definition was based on the time-loss definition by Fuller et al. [21]. We focused on
moderate to severe acute non-contact knee and ankle injuries that resulted in an athlete being unable
to fully participate in training or match play for at least 8 days. Non-contact injury was defined as an
injury which occurred without direct contact to the injured body part. Injuries were recorded by a
team coach or another designated team member. For injury registration, the study physicians
contacted the team coach or designate on a weekly basis by phone or email. Designate was someone
who was always present at practice and matches, e.g., head, assistant, or strength and conditioning
coach, team manager, or physiotherapist. The study physicians contacted the athlete after each injury

and collected information about the injury time, place, cause, type, location, and the time-loss due to



the injury in a standardized phone interview. For exposure registration, the team coaches recorded
player participation in team practice and game play and emailed the records to the study group at the

end of each month.

2.3. Data preprocessing

All data analysis was performed with MATLAB R2016b (MathWorks Inc) and classification methods
run with the Statistics and machine learning toolbox 11.0. For classification, the players with
moderate and severe acute ankle and knee injuries formed the first group (group A, n=57) and players
with no injuries formed the other (group B, n=257). Athletes with mild injuries (time-loss <7days,
n=21) were excluded from the analysis. Altogether 58 variables were chosen for further analysis by a
group of experts in sport medicine, including a sports medicine researcher and four clinical
researchers (one physiotherapist and three physicians). Four variables had more than 50% of missing
values (iliopsoas and quadriceps extensibility from both legs) as they were added to the test patterns
only in the second year of testing and these were excluded from the analysis, resulting into 54

variables. The chosen variables are described in the Supplementary Table 1.

After dropping out irrelevant and sparse variables, 22 variables with missing data remained and were
imputed with K-nearest neighbour imputation with k value of 10. On average, each of these 22
variables had five missing values (1.6% of the 314 observations). Data was normalized to have mean
of zero and standard deviation of one for each column. The variables that had been measured
separately for both right and left legs were transformed to dominant (leg used for kicking a ball) and

non-dominant leg variables.

2.4. Choice of classification methods

Two commonly used methods, random forest and L1-regularized logistic regression, were chosen for
the binary classification task in our framework. These methods were selected because of their inbuilt
variable importance features. Random forest is a nonlinear classification and regression method that
has become a standard data analysis tool in different fields such as medicine and bioinformatics [22]

and has been used in sport injury research as well [23]. It is based on building an ensemble of multiple



decision trees [24]. The model was trained with a hundred trees [24] and the minimum number of
observations per tree leaf and the number of predictors to sample at each split were chosen with
Bayesian optimization. To estimate the predictive power of the variables, we recorded and analyzed

the out-of-bag estimates of variable importance [24].

L1-regularized logistic regression, in turn, is a linear classification method that has been used to
model sport injury outcomes [23]. A benefit of this method is that it is capable of automatically
discarding redundant and/or irrelevant variables from the model. This is done by penalizing the model
with the L1 norm and as a result, some of the variable coefficients tend to shrink to exactly zero. The

optimal amount of penalization was estimated with stratified 10-fold cross-validation.

Variable importance for logistic regression was based on the variable coefficient values. We analyzed
whether a variable was chosen as a predictor in the model, i.e., the variable coefficient was not shrunk
to zero. Variable importance was then the number of times the variable was chosen over the ten CV
folds (a value between zero and ten). The sign of each variable coefficient was also assessed in order

to perceive whether the variable decreased or increased the injury risk.

2.5. Validation

Generalization ability of our models was assessed with 10-fold cross-validation (CV). K-fold CV is
based on randomly splitting the data into K sets and leaving each set at a time for testing while the
rest of the sets are used to train a model. Test performance was assessed with Area Under the
Receiver Operating Characteristics Curve AUC-ROC [25]. It is based on both true positive and false
positive rates and it can be used with imbalanced class distributions which is the case in our data.

AUC-ROC provides a value 1.0 for perfect prediction and 0.5 for purely random prediction.

AUC-ROC and variable importance values were estimated by ten-fold cross-validation.
Normalization and imputation of the training data were done separately inside each fold and the test
data were then normalized using coefficients estimated from the training data. Because K-fold CV is

based on random splitting of the data, there is variation in the K-fold validation estimates [26].



Therefore, the analysis was repeated a hundred times and results were averaged over the runs to

obtain a more reliable estimate for the generalization ability.

2.6. Confirmatory data analysis

To confirm the significance of our results, permutation tests were used [13]. A reference model was
constructed by randomly shuffling the class labels in the training data. By comparing the outcome of
the true models to the distribution of values from the random models we confirmed that the
performance was not observed by chance. In addition, we can detect significantly consistent injury
predictors by comparing the variable importance of the true and the random reference models. If a
variable is consistently important in the true model, but not in the reference model, that confirms its

significance in the prediction.

To confirm the significance of obtained performance, a paired comparison between AUC-ROC values
of the true and random model from a hundred repeated 10-fold CV runs was conducted based on a
Wilcoxon signed-rank test. In each CV run, the fold divisions were kept the same for random and true

models to allow fair pairwise comparison.

To detect significantly consistent injury predictors, we compared the variable importance values.
Again, the values from the hundred repetitions were compared between the random and true models
but with Wilcoxon signed-rank test. The limit of significance was set to 0=0.01 and corrected with

Bonferroni correction. The used framework is summarized in Figure 1.
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Figure 1. Framework of the proposed predictive analysis approach.

3. Results

3.1. Random forest

Random forest suggested twelve consistent injury predictors (p < 0.01). The variable importance
values averaged over the CV folds and hundred repeated runs can be seen in Figure 2. The larger the
importance value, the greater the importance of the variable is for the prediction task. By comparing
the values between true and randomized results, variables with true predictive power can be detected.
If the value of true model is significantly larger than the value of random model, its predictive power
is not likely result of chance or noise in data. Negative values indicate the variable was not important

in prediction.

As seen in the figure, sex, hamstring flexibility (both dominant and non-dominant legs), body mass
index (BMI), KT1000 (dominant leg), and height show the highest random forest importance values.
Other suggested predictors include leg press 1RM, knee valgus at IC (dominant leg), knee flexion
peak (non-dominant leg), medial knee displacement (dominant leg), ankle flexion at IC (dominant

leg), and navicular drop (non-dominant leg).



The mean AUC-ROC value for random forest was 0.63 (0.94 for the training data). The AUC-ROC
values were higher (p<0.001) with real responses than the randomized ones (mean AUC-ROC 0.48),

which confirms the significance of the random forest models.
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Figure 2. Variable importance values from random forest. Blue bars correspond to the results with real
response, red ones with randomized response.



3.2. Logistic regression

Figure 3 shows the variables chosen most frequently as predictors in the L1-regularized logistic
regression. The bars represent the number of CV folds where a variable was chosen for the predictive
model (i.e., its coefficient was not shrunk to zero). As can be seen in the figure, a part of variables
were chosen for prediction in almost every CV split , whereas the others were regarded as not
important and their coefficients shrunk to exactly zero. Twenty variables were suggested as consistent

injury predictors (p<0.01) with the logistic regression model.

The suggested variables were sex, BMI, hamstring flexibility (both legs), KT1000 (dominant leg), hip
flexion peak (dominant leg), medial knee displacement (both legs), vertical ground reaction force
(VGRF) (both legs), height, knee flexion at IC (non-dominant leg), ankle flexion at IC (both legs), leg
press 1RM, hip flexion moment peak (non-dominant leg), previous injuries of non-dominant knee,
knee valgus at IC (dominant leg), knee valgus peak (non-dominant leg), and knee flexion moment
peak (non-dominant leg). In the figure, these are the twenty variables with the highest frequency

value.

The mean AUC-ROC value for logistic regression models was 0.65 (0.76 for the training data). The
AUC-ROC values were higher (p<0.001) with real responses than the randomized ones (mean AUC-

ROC 0.50).
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Figure 3.Variable importances for L1-regularized logistic regression. Measured as the number of times
each variable was chosen over the ten CV folds. Blue bars correspond to the results with real

response, red to the randomized response

3.3. Logistic regression coefficients

Whenever a variable was chosen to the logistic regression model, the direction of the coefficient was

extremely consistent, always either positive or negative. Therefore, over all the folds and a hundred

runs, the variable always had a similar effect on the prediction, i.e., it either increased or decreased the

risk of injury. Directions of variable coefficients for the ten most often selected variables, as well as

those that were found by both models, can be seen in Table 1.



Based on the coefficients, female sex contributes to bigger risk than male (male=1, female=2 in data)
as well as larger BMI, lower height, and higher leg press 1RM result. Higher hamstring flexibility and
VGREF of both legs increase the risk of injury. The higher value of KT1000 of dominant leg as well as
higher hip flexion peak and knee flexion at IC of non-dominant leg also contribute to the injury risk.
Less ankle plantar flexion (negative values) and larger knee valgus angle (negative values) of the
dominant leg contribute to the higher risk. Interestingly for medial knee displacement, the direction
was different between the legs. For non-dominant leg, higher medial knee displacement increased the
risk but for dominant leg, a lower value increased it.

Table 1. The number of coefficients with positive, negative and zero values over the ten folds and
hundred runs.

Variable Positive Negative Zero
Sex 0 999 1
Body mass index 968 0 32
Hamstring flexion non-dominant 957 0 43
KT1000 dominant 911 0 89
Hamstring flexion dominant 831 0 169
Hip flexion peak dominant 648 0 352
Medial knee displacement non-dominant 552 0 448
Vertical ground reaction force non-dominant 539 0 461
Medial knee displacement dominant 0 494 506
Height 0 485 515
Knee flexion IC non-dominant 375 0 625
Ankle flexion IC dominant 318 0 682
Leg press one repetition maximum 230 0 770
Knee valgus IC dominant 0 169 831
Vertical ground reaction force dominant 126 0 874

3.4. Consistent injury predictors chosen by both methods

The following ten variables were suggested as consistent injury predictors (p<0.01) by both models:
sex, body mass index, hamstring flexibility (non-dominant leg), KT1000 (dominant leg), hamstring
flexibility (dominant leg), medial knee displacement (dominant leg), height, ankle (plantar) flexion at

IC (dominant leg), leg press one repetition maximum (1RM), and knee valgus at IC (dominant leg).



4. Discussion

The purpose of this study was to utilize predictive machine learning methods to detect variables with
predictive power on sport injuries. Multiple injury risk factors have been recognized in previous
explanatory studies, but the predictive power of these variables remains unclear until tested on
independent data. We presented a framework that detects consistent injury predictors in a data-driven
manner and validates their predictive power on independent test data. This approach can be used for
finding new hypotheses for injury risk factors as well as confirming the predictive power of
previously recognized risk factors. Any new hypotheses should then be confirmed by domain experts

in future studies, utilizing explanatory methods as well.

Despite the low predictive accuracy (AUC=0.65), a set of ten consistent injury predictor variables was
detected by both models. The obtained AUC score is in line with the previous studies [6, 9, 16, 17]
and confirms the difficulty of predicting sport injuries. A recently published predictive analysis study
that compared different methods and their injury prediction accuracies, obtained an AUC score of

0.747 when predicting lower extremity muscle injuries in 132 male professional soccer and
handball players [9]. A paper by Dower and colleagues [17] utilized time series data and artificial

neural networks, achieving AUC scores between 0.75 and 0.80 on average when predicting soft tissue

injuries in Australian football players.

Another study found that previously detected risk factors with explanatory power had a very poor
predictive performance (median AUC scores 0.57 and 0.52) on hamstring strain injuries in 362 elite
Australian footballers [16]. However, this study used a small number of variables in the prediction
(three and eight). In addition, previous studies have focused solely on the prediction task, without
considering the explainability of the predictive model. Explainable models, assessing, for example,
the effect of each variable in prediction, are easier to trust and provide more practical information to

the domain experts.

Most of the injury predictor variables suggested in our study are supported by previous research. Our

results suggest that female sex, larger BMI, and lower height increased the risk of acute non-contact



knee and ankle injury. Previous explanatory research has detected similar associations with lower
extremity sport injuries [2, 5, 27, 28]. For muscle flexibility, there are contradicting findings [5, 29].
Our results propose that increased hamstring flexibility of both dominant and non-dominant leg

contribute to larger risk of acute non-contact knee and ankle injury.

Concerning the association between muscle strength and sport injury risk, the findings are conflicting
[30, 31]. Our study found higher leg press 1RM to be associated with higher injury risk. This could
be, for example, because stronger athletes exert greater forces and moments to the joints and muscles
during activity; are more mature; and tend to train more and perform at higher levels. Also, our
findings that increased knee laxity (KT-1000) and less ankle plantar flexion at IC of the dominant leg

contribute to higher injury risk have been previously recognized [32, 33].

Our results suggest that larger knee valgus and medial knee displacement of non-dominant leg
increase the risk of acute non-contact knee and ankle injury. Associations between knee valgus
loading and risk of lower extremity injuries have been found previously [34]. However, our results
also suggested that smaller medial knee displacement of the dominant leg increased the risk, which is
contradictory to the results of the non-dominant leg. In the group of non-injures athletes, the medial
knee displacement of dominant leg is notably larger than with the non-dominant leg. In the injured
group, there is no such difference (see Supplementary Table 1). This side difference is causing the
conflicting regression coefficients inside the framework. However, such side differences were not
observed in the knee valgus angles. This might be due to the medial knee displacement being more
sensitive towards the athlete rotating during landing. In our data, approximately 74% of the athletes
rotated towards the side of their dominant leg during VDJ. Another possible explanation might simply

be differences in the use of dominant and non-dominant leg.

Our secondary aim was to assess differences between linear and non-linear methods. In our prediction
task, the predictive accuracy of the linear L1-regularized logistic regression was slightly better
(AUC=0.65) than the accuracy of the non-linear random forest model (AUC=0.63). The difference is,

however, negligible for drawing conclusion of their mutual superiority. The suggested injury risk



factors were largely the same for both models, but logistic regression suggested a larger set of
predictors. Generally, we believe it can be beneficial to utilize a combination of methods to detect the

most relevant injury risk factors.

The strength of our approach is that with predictive methods and confirmatory analysis, consistent
injury predictors can be detected even from data with weak phenomena. For example, with small
datasets the approach can help to avoid findings by chance. Thus, it can be useful in other sport
science and medicine studies as well, even though the used data does not necessarily possess high
predictive power or strong phenomena itself. Another strength is the prospective data collection of a
large number of variables from a large cohort of athletes. Predictive methods utilize computational
power and thus enable analysis of all relevant data and do not require exclusion based on prior
assumptions. In addition, our study uses a well defined prediction outcome of moderate and severe

knee and ankle injuries which risk factors have been established in explanatory research previously.

However, there are also limitations related to the used data. After baseline data was collected, the
injury follow-up lasted for 12 months. Many of the collected variables might, however, change
notably during this period, especially in young athletes [10]. In the future, more comprehensive data
that observes short-term changes in variables should be collected as there can be changes, for
example, based on the time in season and weekly training and game loads. Wearable technologies, for
example, allow continuous monitoring of athletes. It can be expected that time series data from
wearable devices combined with applicable predictive methods will increase the prediction accuracy

as the study by Dower et al. indicated [17].

To conclude, in order to have practical value in the clinical assessment of injury risk, the predictive
accuracy of the presented models that were trained on the prospective data should be improved. The
models were, however, able to detect a set of consistent injury predictors. Thus, the approach can be
useful for finding new hypotheses for injury risk factors as well as confirming the predictive power of
risk factors found in previous explanatory studies. While the achieved predictive accuracy of our

study remained relatively low (AUC=0.65), a set of ten consistent injury predictor variables was



detected by both models (sex, body mass index, hamstring flexibility, knee joint laxity, medial knee
displacement, height, ankle plantar flexion at initial contact, leg press one-repetition max, and knee
valgus at initial contact). The obtained accuracy is in line with previous studies and confirms that
predicting sport injuries is a cumbersome task. More research is required to find risk factors that best
predict injury and to include more comprehensive data. The obtained performance was similar
between the linear and non-linear methods. Future research is needed to assess the suitability and

performance of linear versus non-linear methods in sport injury prediction tasks.
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