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New machine learning approach for detection of injury risk factors in 
young team sport athletes 

Abstract 

The purpose of this article is to present how predictive machine learning methods can be utilized for 

detecting sport injury risk factors in a data-driven manner. The approach can be used for finding new 

hypotheses for risk factors and confirming the predictive power of previously recognized ones. We 

used three-dimensional motion analysis and physical data from 314 young basketball and floorball 

players (48.4% males, 15.72±1.79yr, 173.34±9.14cm, 64.65±10.4kg). Both linear (L1-regularized 

logistic regression) and non-linear methods (random forest) were used to predict moderate and severe 

knee and ankle injuries (N=57) during three-year follow-up. Results were confirmed with permutation 

tests and predictive risk factors detected with Wilcoxon signed-rank-test (p<0.01). Random forest 

suggested twelve consistent injury predictors and logistic regression twenty. Ten of these were 

suggested in both models; sex, body mass index, hamstring flexibility, knee joint laxity, medial knee 

displacement, height, ankle plantar flexion at initial contact, leg press one-repetition max, and knee 

valgus at initial contact. Cross-validated areas under receiver operating characteristic curve were 0.65 

(logistic regression) and 0.63 (random forest). The results highlight the difficulty of predicting future 

injuries, but also show that even with models having relatively low predictive power, certain 

predictive injury risk factors can be consistently detected. 

Keywords: Sport medicine, Predictive methods, Machine learning, Knee injuries, Ankle injuries, 

Basketball and floorball  



1. Introduction 

Sport injuries are very common across different sports, among both elite and recreational athletes [1–

3]. They can have significant effects on the health and performance and may even cause prolonged 

problems in persons life [3]. Sport injuries can lead to, for example, pain, loss of playing or working 

time, and decreased motility and stability [3]. The incidence rate of some injuries, such as the anterior 

cruciate ligament (ACL) injury, is a growing case of concern [4]. Effective prevention of injuries 

presumes that the most relevant risk factors are found. Even though many intrinsic and extrinsic risk 

factor have been identified, there is no clear consensus with the findings [5]. 

A large majority of existing sport injury studies rely on explanatory analysis approach [6, 7]. 

Explanatory methods have played an important role in the development of sport injury research and 

will be needed in future research as well. They are used when the purpose is to explain or understand 

data or phenomena of interest. However, high explanatory power does not necessarily imply high 

predictive power [8]. Therefore, risk factors that are identified by explanatory methods only 

demonstrate a statistically significant association with injuries, but might not have predictive power 

on them [6, 7].  

Another limitation of explanatory analysis is that they often focus on a small number of variables and 

their linear associations with injuries in isolation. However, underlying causes behind sport injuries 

have been considered to be multifactorial, indicating that a high number of variables and their inter-

relationships should be considered [9, 10]. It has also been suggested that using cut-off values and 

studying only linear interactions between isolated variables can not successfully identify injury 

predictors, but more complex models should be applied [11]. To overcome these limitations, 

predictive analysis should be utilized alongside explanatory methods. This has been previously 

suggested specifically for sport injury research as well [12]. 

Predictive analysis focuses on predicting new or future observations from data [8]. By exploiting 

computational power, predictive methods are able to analyze a larger set of variables including their 

interactions and nonlinear relationships as well as to efficiently remove redundant variables from a 



model. Therefore, they can be used for generating new hypotheses for sport injury risk factors in a 

data-driven manner.  

In predictive analysis, the generalization ability of a model should always be assessed on independent 

test data, i.e., data that have not been used in the training phase. This measures how accurate the 

trained model will be on new unseen observations and only after this validation can any conclusions 

about the predictive power be drawn [8]. In addition, when constructing a predictive model it is 

necessary to confirm that the prediction results were significantly above the random chance level. 

This kind of confirmatory analysis is especially relevant with smaller sample sizes. If this issue is not 

considered, in the worst case it can lead to false interpretations and conclusions. For example, in 

neuroscience the problem has been widely recognize [13]. One way to confirm significance of the 

models and relevance of the chosen predictors are permutation tests [13]. 

Another important issue related to predictive analysis is the explainability of a model. Explainability 

means that the model somehow explains its predictions, for example, gives information on how 

individual variables contribute to the prediction outcome, and does not only predict as black box [14]. 

Explainable models and their predictions are more informative, easier to trust, and therefore can 

provide more practical benefits. A term widely used with sophisticated machine learning methods is 

Explainable Artificial Intelligence (XAI) [14]. In some domains, such as medicine, model 

explainability is considered highly important [15] and should be pursued in sport science and 

medicine as well. 

During the last couple of years, the first studies using predictive analysis in sport injury research have 

been conducted [6, 9, 16, 17]. The previous studies have, however, focused solely on the prediction 

task without paying attention to the explainability of the models. In addition, two of the studies also 

used a very low number of variables (from three to eleven), although a larger set might have increased 

the accuracy [9, 16]. The need and potential of predictive machine learning methods in sport injury 

prediction have been recognized but more research is needed [12, 17]. 



Therefore, the aim of this study is to utilize predictive machine learning methods to detect variables 

with predictive power on sport injuries. We present a framework that can be used to detect consistent 

injury predictors in a data-driven manner and validate their predictive power on independent test data. 

Consistent means that the variable is constantly chosen as an important predictor in the used model. 

Our framework utilizes both linear and non-linear classification methods, namely L1-regularized 

logistic regression and random forests, to predict moderate and severe knee and ankle injuries. 

Generalization ability of these models is assessed with 10-fold cross-validation. A reference model 

based on randomized labels is constructed to confirm that the observed prediction performance is not 

achieved by chance. Consistent injury predictors are detected with Wilcoxon signed-rank test. This 

approach can be used for finding new hypotheses for injury risk factors as well as confirming the 

predictive power of previously recognized risk factors. Our secondary aim is to compare linear and 

non-linear methods for the task.  

2. Methods 

2.1. Participants 

The data were collected in the Predictors of Lower Extremity Injuries in Team Sports (PROFITS) 

study [18]. The study was conducted in accordance with the Declaration of Helsinki and was 

approved by the Ethics Committee of the Pirkanmaa Hospital District, Tampere, Finland (ETL-code 

R10169). The authors declare that this study meets the ethical requirements of the journal [19]. 

Altogether 175 basketball and 139 floorball youth (12-21 years) players, including 162 females 

(15.44±1.95 years, 167.92±6.44 cm, 60.86±8.58 kg) and 152 males (16.03±1.59 years, 179.13±8.00 

cm, 68.68±10.76 kg) from the two highest junior league levels of the Tampere city district, Finland, 

were recruited. To be included they had to be official team members (i.e., have valid playing contract 

and licenses), 21 years old or younger at baseline, and free from injury at baseline. Information about 

previous injuries, their treatment, and whether the player was fully recovered were assessed with a 

baseline questionnaire. The players entered the study during the preseason in 2011, 2012, or 2013. 



They signed a written informed consent form before inclusion (including parental consent for players 

aged ≤18 years).  

2.2. Data collection 

At baseline, each player participated in physical tests including a vertical drop jump (VDJ) (3D 

motion analysis), height, weight, isokinetic concentric quadriceps and hamstring strength, isometric 

hip abductor strength, one repetition maximum (1RM) leg press, knee joint laxity (KT-1000), 

generalized joint laxity (Beighton scale), genu recurvatum, navicular drop, hip anteversion, and 

hamstring flexibility (for more details see Supplementary Table 1 and online supplementary 

appendices in [18]). 

The VDJ was performed from a 30-cm box. Players were instructed to drop off the box and perform a 

maximal jump upon landing with their feet on two separate force platforms (BP6001200; AMTI). The 

3D motion analysis was carried out using sixteen reflective markers placed over anatomic landmarks 

on the lower extremities according to the Plug-In Gait Marker set (Vicon Nexus v.i.7; Oxford 

Metrics) and eight highspeed cameras (Vicon T40). Kinetics and kinematics variables were extracted 

using the Vicon Nexus Plug-in Gait model. Medial knee displacements were extracted using a custom 

MATLAB script (MathWorks Inc). For more detailed description of the motion data collection and 

variable extraction see [18, 20].  

The injury definition was based on the time-loss definition by Fuller et al. [21]. We focused on 

moderate to severe acute non-contact knee and ankle injuries that resulted in an athlete being unable 

to fully participate in training or match play for at least 8 days. Non-contact injury was defined as an 

injury which occurred without direct contact to the injured body part. Injuries were recorded by a 

team coach or another designated team member. For injury registration, the study physicians 

contacted the team coach or designate on a weekly basis by phone or email. Designate was someone 

who was always present at practice and matches, e.g., head, assistant, or strength and conditioning 

coach, team manager, or physiotherapist. The study physicians contacted the athlete after each injury 

and collected information about the injury time, place, cause, type, location, and the time-loss due to 



the injury in a standardized phone interview. For exposure registration, the team coaches recorded 

player participation in team practice and game play and emailed the records to the study group at the 

end of each month. 

2.3. Data preprocessing 

All data analysis was performed with MATLAB R2016b (MathWorks Inc) and classification methods 

run with the Statistics and machine learning toolbox 11.0. For classification, the players with 

moderate and severe acute ankle and knee injuries formed the first group (group A, n=57) and players 

with no injuries formed the other (group B, n=257). Athletes with mild injuries (time-loss ≤7days, 

n=21) were excluded from the analysis. Altogether 58 variables were chosen for further analysis by a 

group of experts in sport medicine, including a sports medicine researcher and four clinical 

researchers (one physiotherapist and three physicians). Four variables had more than 50% of missing 

values (iliopsoas and quadriceps extensibility from both legs) as they were added to the test patterns 

only in the second year of testing and these were excluded from the analysis, resulting into 54 

variables. The chosen variables are described in the Supplementary Table 1. 

After dropping out irrelevant and sparse variables, 22 variables with missing data remained and were 

imputed with K-nearest neighbour imputation with k value of 10. On average, each of these 22 

variables had five missing values (1.6% of the 314 observations). Data was normalized to have mean 

of zero and standard deviation of one for each column. The variables that had been measured 

separately for both right and left legs were transformed to dominant (leg used for kicking a ball) and 

non-dominant leg variables. 

2.4. Choice of classification methods 

Two commonly used methods, random forest and L1-regularized logistic regression, were chosen for 

the binary classification task in our framework. These methods were selected because of their inbuilt 

variable importance features. Random forest is a nonlinear classification and regression method that 

has become a standard data analysis tool in different fields such as medicine and bioinformatics [22] 

and has been used in sport injury research as well [23]. It is based on building an ensemble of multiple 



decision trees [24]. The model was trained with a hundred trees [24] and the minimum number of 

observations per tree leaf and the number of predictors to sample at each split were chosen with 

Bayesian optimization. To estimate the predictive power of the variables, we recorded and analyzed 

the out-of-bag estimates of variable importance [24].  

L1-regularized logistic regression, in turn, is a linear classification method that has been used to 

model sport injury outcomes [23]. A benefit of this method is that it is capable of automatically 

discarding redundant and/or irrelevant variables from the model. This is done by penalizing the model 

with the L1 norm and as a result, some of the variable coefficients tend to shrink to exactly zero. The 

optimal amount of penalization was estimated with stratified 10-fold cross-validation.  

Variable importance for logistic regression was based on the variable coefficient values. We analyzed 

whether a variable was chosen as a predictor in the model, i.e., the variable coefficient was not shrunk 

to zero. Variable importance was then the number of times the variable was chosen over the ten CV 

folds (a value between zero and ten). The sign of each variable coefficient was also assessed in order 

to perceive whether the variable decreased or increased the injury risk.  

2.5. Validation 

Generalization ability of our models was assessed with 10-fold cross-validation (CV). K-fold CV is 

based on randomly splitting the data into K sets and leaving each set at a time for testing while the 

rest of the sets are used to train a model. Test performance was assessed with Area Under the 

Receiver Operating Characteristics Curve AUC-ROC [25]. It is based on both true positive and false 

positive rates and it can be used with imbalanced class distributions which is the case in our data. 

AUC-ROC provides a value 1.0 for perfect prediction and 0.5 for purely random prediction.  

AUC-ROC and variable importance values were estimated by ten-fold cross-validation. 

Normalization and imputation of the training data were done separately inside each fold and the test 

data were then normalized using coefficients estimated from the training data. Because K-fold CV is 

based on random splitting of the data, there is variation in the K-fold validation estimates [26]. 



Therefore, the analysis was repeated a hundred times and results were averaged over the runs to 

obtain a more reliable estimate for the generalization ability. 

2.6. Confirmatory data analysis 

To confirm the significance of our results, permutation tests were used [13]. A reference model was 

constructed by randomly shuffling the class labels in the training data. By comparing the outcome of 

the true models to the distribution of values from the random models we confirmed that the 

performance was not observed by chance. In addition, we can detect significantly consistent injury 

predictors by comparing the variable importance of the true and the random reference models. If a 

variable is consistently important in the true model, but not in the reference model, that confirms its 

significance in the prediction.  

To confirm the significance of obtained performance, a paired comparison between AUC-ROC values 

of the true and random model from a hundred repeated 10-fold CV runs was conducted based on a 

Wilcoxon signed-rank test. In each CV run, the fold divisions were kept the same for random and true 

models to allow fair pairwise comparison.  

To detect significantly consistent injury predictors, we compared the variable importance values. 

Again, the values from the hundred repetitions were compared between the random and true models 

but with Wilcoxon signed-rank test. The limit of significance was set to α=0.01 and corrected with 

Bonferroni correction. The used framework is summarized in Figure 1. 



 
Figure 1. Framework of the proposed predictive analysis approach. 

3. Results 

3.1. Random forest 

Random forest suggested twelve consistent injury predictors (p < 0.01). The variable importance 

values averaged over the CV folds and hundred repeated runs can be seen in Figure 2. The larger the 

importance value, the greater the importance of the variable is for the prediction task. By comparing 

the values between true and randomized results, variables with true predictive power can be detected. 

If the value of true model is significantly larger than the value of random model, its predictive power 

is not likely result of chance or noise in data. Negative values indicate the variable was not important 

in prediction. 

As seen in the figure, sex, hamstring flexibility (both dominant and non-dominant legs), body mass 

index (BMI), KT1000 (dominant leg), and height show the highest random forest importance values. 

Other suggested predictors include leg press 1RM, knee valgus at IC (dominant leg), knee flexion 

peak (non-dominant leg), medial knee displacement (dominant leg), ankle flexion at IC (dominant 

leg), and navicular drop (non-dominant leg).  



The mean AUC-ROC value for random forest was 0.63 (0.94 for the training data). The AUC-ROC 

values were higher (p<0.001) with real responses than the randomized ones (mean AUC-ROC 0.48), 

which confirms the significance of the random forest models.  

 

Figure 2. Variable importance values from random forest. Blue bars correspond to the results with real 
response, red ones with randomized response. 

 

 



3.2. Logistic regression 

Figure 3 shows the variables chosen most frequently as predictors in the L1-regularized logistic 

regression. The bars represent the number of CV folds where a variable was chosen for the predictive 

model (i.e., its coefficient was not shrunk to zero). As can be seen in the figure, a part of variables 

were chosen for prediction in almost every CV split , whereas the others were regarded as not 

important and their coefficients shrunk to exactly zero. Twenty variables were suggested as consistent 

injury predictors (p<0.01) with the logistic regression model. 

The suggested variables were sex, BMI, hamstring flexibility (both legs), KT1000 (dominant leg), hip 

flexion peak (dominant leg), medial knee displacement (both legs), vertical ground reaction force 

(vGRF) (both legs), height, knee flexion at IC (non-dominant leg), ankle flexion at IC (both legs), leg 

press 1RM, hip flexion moment peak (non-dominant leg), previous injuries of non-dominant knee, 

knee valgus at IC (dominant leg), knee valgus peak (non-dominant leg), and knee flexion moment 

peak (non-dominant leg). In the figure, these are the twenty variables with the highest frequency 

value. 

The mean AUC-ROC value for logistic regression models was 0.65 (0.76 for the training data). The 

AUC-ROC values were higher (p<0.001) with real responses than the randomized ones (mean AUC-

ROC 0.50). 



Figure 3.Variable importances for L1-regularized logistic regression. Measured as the number of times 
each variable was chosen over the ten CV folds. Blue bars correspond to the results with real 
response, red to the randomized response 

3.3. Logistic regression coefficients 

Whenever a variable was chosen to the logistic regression model, the direction of the coefficient was 

extremely consistent, always either positive or negative. Therefore, over all the folds and a hundred 

runs, the variable always had a similar effect on the prediction, i.e., it either increased or decreased the 

risk of injury. Directions of variable coefficients for the ten most often selected variables, as well as 

those that were found by both models, can be seen in Table 1.  



Based on the coefficients, female sex contributes to bigger risk than male (male=1, female=2 in data) 

as well as larger BMI, lower height, and higher leg press 1RM result. Higher hamstring flexibility and 

vGRF of both legs increase the risk of injury. The higher value of KT1000 of dominant leg as well as 

higher hip flexion peak and knee flexion at IC of non-dominant leg also contribute to the injury risk. 

Less ankle plantar flexion (negative values) and larger knee valgus angle (negative values) of the 

dominant leg contribute to the higher risk. Interestingly for medial knee displacement, the direction 

was different between the legs. For non-dominant leg, higher medial knee displacement increased the 

risk but for dominant leg, a lower value increased it. 

Table 1. The number of coefficients with positive, negative and zero values over the ten folds and 
hundred runs. 

Variable Positive Negative Zero 

Sex 0 999 1 

Body mass index 968 0 32 

Hamstring flexion non-dominant 957 0 43 

KT1000 dominant 911 0 89 

Hamstring flexion dominant 831 0 169 

Hip flexion peak dominant 648 0 352 

Medial knee displacement non-dominant 552 0 448 

Vertical ground reaction force non-dominant 539 0 461 

Medial knee displacement dominant 0 494 506 

Height 0 485 515 

Knee flexion IC non-dominant 375 0 625 

Ankle flexion IC dominant 318 0 682 

Leg press one repetition maximum 230 0 770 

Knee valgus IC dominant 0 169 831 

Vertical ground reaction force dominant 126 0 874 

3.4. Consistent injury predictors chosen by both methods 

The following ten variables were suggested as consistent injury predictors (p<0.01) by both models: 

sex, body mass index, hamstring flexibility (non-dominant leg), KT1000 (dominant leg), hamstring 

flexibility (dominant leg), medial knee displacement (dominant leg), height, ankle (plantar) flexion at 

IC (dominant leg), leg press one repetition maximum (1RM), and knee valgus at IC (dominant leg). 



4. Discussion 

The purpose of this study was to utilize predictive machine learning methods to detect variables with 

predictive power on sport injuries. Multiple injury risk factors have been recognized in previous 

explanatory studies, but the predictive power of these variables remains unclear until tested on 

independent data. We presented a framework that detects consistent injury predictors in a data-driven 

manner and validates their predictive power on independent test data. This approach can be used for 

finding new hypotheses for injury risk factors as well as confirming the predictive power of 

previously recognized risk factors. Any new hypotheses should then be confirmed by domain experts 

in future studies, utilizing explanatory methods as well. 

Despite the low predictive accuracy (AUC=0.65), a set of ten consistent injury predictor variables was 

detected by both models. The obtained AUC score is in line with the previous studies [6, 9, 16, 17] 

and confirms the difficulty of predicting sport injuries. A recently published predictive analysis study 

that compared different methods and their injury prediction accuracies, obtained an AUC score of 

0.747 when predicting lower extremity muscle injuries in 132 male professional soccer and 

handball players [9]. A paper by Dower and colleagues [17] utilized time series data and artificial 

neural networks, achieving AUC scores between 0.75 and 0.80 on average when predicting soft tissue 

injuries in Australian football players. 

Another study found that previously detected risk factors with explanatory power had a very poor 

predictive performance (median AUC scores 0.57 and 0.52) on hamstring strain injuries in 362 elite 

Australian footballers [16]. However, this study used a small number of variables in the prediction 

(three and eight). In addition, previous studies have focused solely on the prediction task, without 

considering the explainability of the predictive model. Explainable models, assessing, for example, 

the effect of each variable in prediction, are easier to trust and provide more practical information to 

the domain experts.  

Most of the injury predictor variables suggested in our study are supported by previous research. Our 

results suggest that female sex, larger BMI, and lower height increased the risk of acute non-contact 



knee and ankle injury. Previous explanatory research has detected similar associations with lower 

extremity sport injuries [2, 5, 27, 28]. For muscle flexibility, there are contradicting findings [5, 29]. 

Our results propose that increased hamstring flexibility of both dominant and non-dominant leg 

contribute to larger risk of acute non-contact knee and ankle injury. 

Concerning the association between muscle strength and sport injury risk, the findings are conflicting 

[30, 31]. Our study found higher leg press 1RM to be associated with higher injury risk. This could 

be, for example, because stronger athletes exert greater forces and moments to the joints and muscles 

during activity; are more mature; and tend to train more and perform at higher levels. Also, our 

findings that increased knee laxity (KT-1000) and less ankle plantar flexion at IC of the dominant leg 

contribute to higher injury risk have been previously recognized [32, 33].  

Our results suggest that larger knee valgus and medial knee displacement of non-dominant leg 

increase the risk of acute non-contact knee and ankle injury. Associations between knee valgus 

loading and risk of lower extremity injuries have been found previously [34]. However, our results 

also suggested that smaller medial knee displacement of the dominant leg increased the risk, which is 

contradictory to the results of the non-dominant leg. In the group of non-injures athletes, the medial 

knee displacement of dominant leg is notably larger than with the non-dominant leg. In the injured 

group, there is no such difference (see Supplementary Table 1). This side difference is causing the 

conflicting regression coefficients inside the framework. However, such side differences were not 

observed in the knee valgus angles. This might be due to the medial knee displacement being more 

sensitive towards the athlete rotating during landing. In our data, approximately 74% of the athletes 

rotated towards the side of their dominant leg during VDJ. Another possible explanation might simply 

be differences in the use of dominant and non-dominant leg.  

Our secondary aim was to assess differences between linear and non-linear methods. In our prediction 

task, the predictive accuracy of the linear L1-regularized logistic regression was slightly better 

(AUC=0.65) than the accuracy of the non-linear random forest model (AUC=0.63). The difference is, 

however, negligible for drawing conclusion of their mutual superiority. The suggested injury risk 



factors were largely the same for both models, but logistic regression suggested a larger set of 

predictors. Generally, we believe it can be beneficial to utilize a combination of methods to detect the 

most relevant injury risk factors.  

The strength of our approach is that with predictive methods and confirmatory analysis, consistent 

injury predictors can be detected even from data with weak phenomena. For example, with small 

datasets the approach can help to avoid findings by chance. Thus, it can be useful in other sport 

science and medicine studies as well, even though the used data does not necessarily possess high 

predictive power or strong phenomena itself. Another strength is the prospective data collection of a 

large number of variables from a large cohort of athletes. Predictive methods utilize computational 

power and thus enable analysis of all relevant data and do not require exclusion based on prior 

assumptions. In addition, our study uses a well defined prediction outcome of moderate and severe 

knee and ankle injuries which risk factors have been established in explanatory research previously. 

However, there are also limitations related to the used data. After baseline data was collected, the 

injury follow-up lasted for 12 months. Many of the collected variables might, however, change 

notably during this period, especially in young athletes [10]. In the future, more comprehensive data 

that observes short-term changes in variables should be collected as there can be changes, for 

example, based on the time in season and weekly training and game loads. Wearable technologies, for 

example, allow continuous monitoring of athletes. It can be expected that time series data from 

wearable devices combined with applicable predictive methods will increase the prediction accuracy 

as the study by Dower et al. indicated [17]. 

To conclude, in order to have practical value in the clinical assessment of injury risk, the predictive 

accuracy of the presented models that were trained on the prospective data should be improved. The 

models were, however, able to detect a set of consistent injury predictors. Thus, the approach can be 

useful for finding new hypotheses for injury risk factors as well as confirming the predictive power of 

risk factors found in previous explanatory studies. While the achieved predictive accuracy of our 

study remained relatively low (AUC=0.65), a set of ten consistent injury predictor variables was 



detected by both models (sex, body mass index, hamstring flexibility, knee joint laxity, medial knee 

displacement, height, ankle plantar flexion at initial contact, leg press one-repetition max, and knee 

valgus at initial contact). The obtained accuracy is in line with previous studies and confirms that 

predicting sport injuries is a cumbersome task. More research is required to find risk factors that best 

predict injury and to include more comprehensive data. The obtained performance was similar 

between the linear and non-linear methods. Future research is needed to assess the suitability and 

performance of linear versus non-linear methods in sport injury prediction tasks. 
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