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FIXED ANGLE INVERSE SCATTERING FOR SOUND SPEEDS CLOSE

TO CONSTANT

SHIQI MA, LEYTER POTENCIANO-MACHADO, AND MIKKO SALO

Abstract. We study the fixed angle inverse scattering problem of determining a sound
speed from scattering measurements corresponding to a single incident wave. The main
result shows that a sound speed close to constant can be stably determined by just one
measurement. Our method is based on studying the linearized problem, which turns out
to be related to the acoustic problem in photoacoustic imaging. We adapt the modified
time-reversal method from [P. Stefanov and G. Uhlmann, Thermoacoustic tomography with
variable sound speed, Inverse Problems 25 (2009), 075011] to solve the linearized problem
in a stable way, and use this to give a local uniqueness result for the nonlinear inverse
problem.

Keywords: Inverse scattering, wave equation, time-reversal, progressive wave expansion.
2020 Mathematics Subject Classification: 35R30, 35Q60, 35J05, 31B10, 78A40.

1. Introduction and main result

Inverse scattering problems appear in real-life phenomena and have applications in a wide
range of fields such as radar, sonar, fault detection in fiber optics, geophysical exploration,
medical imaging and nondestructive testing. In this work, we study the inverse acoustic
scattering problem of recovering a sound speed from fixed angle scattering measurements.
Let n ≥ 2 and θ ∈ Sn−1 be a fixed vector. Consider η ∈ Hs0(Rn) with s0 > 0 being large
enough and so that 1− η is compactly supported in Ω with Ω := {x ∈ Rn : |x| < 1}, i.e.

η(x) = 1, |x| ≥ 1− σ, (1.1)

for a fixed number σ ∈ (0, 1). We also assume that for some M > 1

M−1 ≤ η(x) ≤M, x ∈ Rn. (1.2)

Now consider a plane wave solution Ũ to the wave equation

(η(x) ∂2
t −∆)Ũ = 0 in Rn+1, Ũ |{t<−1} = δ(t− x · θ). (1.3)

This model describes the propagation of scattered sound waves in an inhomogeneous medium
(whose properties are described by the coefficient η) produced by the interaction of an in-
cident plane wave of the form δ(t − x · θ) with the medium. If c(x) is the sound speed in
the medium then η(x) = c(x)−2, but for simplicity we will refer to η as the sound speed.

The aim of this paper is to prove that the sound speed η is uniquely determined by
boundary measurements of a solution to (1.3) corresponding to a fixed direction θ ∈ Sn−1.
From the mathematical viewpoint, for T > 1, the measurements are encoded by the map

Ã : η 7→ Ũ|ΣT , (1.4)

where Ũ is the solution to (1.3) and ΣT stands for the lateral boundary of the space-time
cylinder Ω× (−T, T ), that is

ΣT := ∂Ω× (−T, T ).

In Proposition 1.2 we prove that there is a unique solution Ũ to (1.3) in a suitable Hilbert

space so that the restriction on ΣT , denoted by Ũ |ΣT , is well defined.
1
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In this framework, our first main result states that if Ã(η) = Ã(1) where η satisfies (1.1)–
(1.2) and is close to 1, then η = 1. Moreover, we also derive the corresponding quantification
(stability estimate) with a modulus of continuity of Hölder type.

Theorem 1.1. Let n ≥ 2, M > 1 and θ ∈ Sn−1. Fix some s0 � n/2 + 2. There exist a
small % > 0, µ = µ(n) ∈ (0, 1), T = T (n) > 1, s1 > s0, and C > 0 such that

‖η − 1‖Hs0 (Rn) ≤ C‖Ã(η)− Ã(1)‖µ
H−5((−T,T );H1/2(Sn−1))|{t>z}

for all η ∈ Hs0(Rn) satisfying (1.1)–(1.2) and ‖η − 1‖Hs0 (Rn) ≤ %, ‖η‖Hs1 (Rn) ≤M .

Theorem 1.1 is an instance of a fixed angle inverse scattering result, where one determines
a sound speed from scattering measurements corresponding to a single incident plane wave.
There are several results of this type for determining a time-independent potential q instead
of a sound speed. The equation in this case is

(∂2
t −∆ + q(x))W = 0 in Rn+1, W|{t�0} = δ(t− x · θ). (1.5)

One can alternatively work on the frequency side with the Schrödinger equation{
(−∆− k2 + q(x))u = 0 in Rn,
u is outgoing.

The fixed angle scattering problem consists of determining q from the knowledge of W|ΣT ,
or equivalently from the scattering amplitude aq(k, θ, ω) for all k > 0 and ω ∈ Sn−1. This
equivalence is discussed in detail in [RS20a].

There are several known results related to recovering small or generic potentials and
singularities from fixed angle measurements [BCL+20,BLM89,Mer18,Rui01,Ste92]. In the
recent works [RS20a, RS20b] it was shown that a potential q ∈ C∞c (Rn) is uniquely deter-
mined by measurements corresponding to two incident plane waves from opposite directions
θ = ±θ0, or just a single incident plane wave if q satisfies some symmetry conditions. This
result was extended in [MS21] to the case when −∆ is replaced by the Laplace-Beltrami
operator −∆g in (1.5), with g being a known metric satisfying certain symmetry condi-
tions. Using similar ideas, in [MPMS21] the authors proved analogous results in the case of
time-independent first order coefficients. We also mention the recent work [KRS20], which
studies fixed angle scattering for time-dependent coefficients also in the case of first-order
perturbations. However, the problem of determining a general potential q ∈ C∞c (Rn) from
fixed angle measurements remains open and so does the corresponding inverse backscatter-
ing problem (see [RU14] for more information).

The purpose of the present article is to study the fixed angle problem for determining
a sound speed η instead of a potential q. The method in [RS20b, RS20a], which is based
on Carleman estimates and reflection arguments, requires symmetry and appears to break
down for most nonconstant sound speeds. In this work we approach the problem for sound
speeds by studying the linearized problem. The main observation is that the linearization
of the fixed angle inverse problem for a sound speed has similar features as the acoustic
problem in thermo/photoacoustic tomography [?Bal, SU13]. We then adapt the modified
time-reversal method introduced in [SU09b] to our case and establish uniqueness, stability
and reconstruction for the linearized problem at a constant sound speed. This can be used
to prove local uniqueness and stability for the nonlinear inverse problem as in [SU09a],
leading to Theorem 1.1.

Remark 1.1. It is possible that the methods in this work can be extended to deal with
the linearized problem at a general sound speed, and to obtain a counterpart of Theorem
1.1 showing that ‖η1 − η2‖ ≤ C‖Ã(η1) − Ã(η2)‖µ in suitable norms when both η1 and η2
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are close to some fixed nonconstant sound speed. These questions are more involved and
will be left to a future work.

We now describe our method in more detail. Throughout this work we will assume that
θ = en, the nth vector of the standard basis in Rn. If x ∈ Rn we write x = (y, z) where
y ∈ Rn−1 and z ∈ R. Thus x ·θ = z. As mentioned above, the proof of Theorem 1.1 reduces

to studying the injectivity and stability properties of the linearization of the map Ã at a
constant sound speed and to using a general result in [SU09a]. Due to technical reasons,
we consider a smoother initial value than the one in (1.3) and study instead the equation

(η(x) ∂2
t −∆)U = 0 in Rn+1, U|{t<−1} = H1(t− z), (1.6)

where H1(s) = s when s ≥ 0 and zero otherwise. We now consider the fixed angle inverse
scattering problem associated with (1.6), where the measurement operator is given by

A(η) = U|ΣT . (1.7)

Since η is time-independent, one has Ũ = ∂2
t U and thus the fixed angle inverse scattering

problems for A and Ã are equivalent. The following result describes the precise function
spaces involved (its proof is presented in Appendix A).

Proposition 1.2. Let n ≥ 2, T > 1 and M > 1. Fix some s0 > n/2 + 2. Let η ∈ Hs0(Rn)
be a function satisfying

‖η‖Hs0 (Rn) ≤M, M−1 ≤ η(x) ≤M a.e in Rn.

There exists a unique solution U ∈ H−1((−T, T );H1(Rn)) to (1.6) with

‖U‖H−1((−T,T );H1(Rn)) ≤ C(n, T,M).

Moreover, Ũ = ∂2
t U ∈ H−3((−T, T );H1(Rn)) is the unique solution to (1.3), and hence it

satisfies

‖Ũ|ΣT ‖H−3((−T,T );H1/2(Sn−1)) . ‖Ũ‖H−3((−T,T );H1(Rn))

. ‖U‖H−1((−T,T );H1(Rn)) ≤ C(n, T,M).

Since our approach involves a linearization argument, we shall first study the Fréchet
derivative of A at the constant 1, denoted by A1. It is proved in Section 2 that A1 is given
by

A1(f) = U |ΣT ,
where U solves

(∂2
t −∆)U = −f(x)δ(t− z) in Rn+1, U |{t<−1} = 0. (1.8)

By employing the progressive wave expansion method, one can further show that any solu-
tion to (1.8) can be written as

U(t, x) = u(t, x)H(t− z),

where H stands for the Heaviside function and u is a C2 function in the set {t ≥ z} solving
the equation (∂2

t −∆)u = 0 in {t > z} ,

(∂t + ∂z)u = −1

2
f on {t = z} .

(1.9)

Thus the linearized inverse problem associated with A1 amounts to determining the initial
value f(x) from the knowledge of u|ΣT∩{t>z}.
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It is worth mentioning that the linearized problem above is similar to the acoustic problem
in thermo/photoacoustic tomography. There one needs to recover an initial condition g(x)
from the boundary measurement v|∂Ω×(0,T ), where v solves

(∂2
t −∆)v = 0 in Rn × (0, T ),

v = g on {t = 0} ,
∂tv = 0 on {t = 0} .

This problem was studied in detail in [SU09b], also for general sound speeds, by using a mod-
ification of the time-reversal method. Error estimates, reconstruction formulae and numeri-
cal implementations in case of non-trapping sound speeds were obtained earlier in [HKN08]
and [Hri09] by using the time-reversal method. For more details on thermo/photoacoustic
tomography inverse problems we refer the readers to [KK08,KK11,SU13,AKK17] and the
references therein. We will adapt the modified time-reversal method to show uniqueness,
stability and reconstruction for the inverse problem associated with (1.9). The main differ-
ence with previous results is that the initial data is given on the characteristic set {t = z}
instead of the standard set {t = 0}. This creates various difficulties, and in order to over-
come these we employ energy estimates in space-time domains that are adapted to this
characteristic geometry.

The following result is the precise statement of uniqueness and stability in the linearized
inverse problem with respect to suitable norms. We refer to Proposition 4.6 for a recon-
struction formula involving a Neumann series. Denote Γ := (Ω× (−T, T )) ∩ {t = z}.
Proposition 1.3. Let s0 � n/2 + 2, M > 1 and T > 1. There exists C > 0 so that

‖f‖L2(Ω) ≤ C(‖A1f‖H1(ΣT∩{t>z}) +
T 1/2

σ1/4
‖A1f‖H1(ΣT∩Γ)),

for f ∈ Hs0
Ω

(Rn) with supp f ∈ {x ∈ Rn ; |x| ≤ 1− σ}.

We outline the method for proving Proposition 1.3. Instead of A1, it is convenient to
work with the closely related operator A′1 : F 7→ u|Σ where u solves{

(∂2
t −∆)u = 0 in {t > z} ,

u = F on {t = z} ,
(1.10)

and Σ := (∂Ω× (−T, T )) ∩ {t > z}. Recall Γ = (Ω× (−T, T )) ∩ {t = z}. Define the space

H := {F ∈ H1({t = z}) : supp(F ) ⊂ Γ}
equipped with the H1-norm. In Section 3.3 we actually use a slightly different definition of
H, see (3.26) and (3.27), but here for illustration purpose we prefer to keep the definition
simple. One would like to think of A′1 as a bounded operator H → H1(Σ). In fact this
holds in the standard case where the initial surface is {t = 0} instead of {t = z} since the
trace of u is in H1 [BS91,FR05]. We are not aware of such a result for our slanted case, so
we will work with smooth functions instead and use norm estimates with uniform bounds
in the energy spaces.

After some natural derivations, uniqueness and stability for A1 reduces to uniqueness
and stability for A′1. Now we use a time-reversal method as in [SU09b] and define an
approximate inverse B for A′1 as the map B : h 7→ v|Γ, where v solves the Dirichlet problem

(∂2
t −∆)v = 0 in QT ∩ {t > z},

v = h on Σ,

v = φ0, vt = 0 in QT ∩ {t = T},
∆φ0 = 0 in Ω, φ0 = h(·, T ) on ∂Ω,

(1.11)
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with QT = Ω × [−T, T ]. We prove that B is a bounded operator H1(Σ) → H1(Γ). Note
that in odd dimensions, the sharp Huygens’ principle implies that any solution u of (1.10)
with F ∈ H satisfies u( · , T )|Ω = 0 for T large enough. Hence letting h = u|Σ in (1.11)
implies that v = u and hence BA′1F = F , so that B is an exact inverse of A′1. In even
dimensions this is no longer true. Instead, we will show that B is almost an inverse of A′1
in the following parametrix sense

BA′1F = F − K̃F

where K̃ is a bounded operator on H with norm strictly less than 1 when T is large enough.
In [SU09b] this was done by using a unique continuation property for the wave equation,
but in our case due to a technical issue we use local energy decay instead. This argument
allows us to invert A′1 by a Neumann series and prove Proposition 1.3.

This paper is structured as follows. Section 2 is dedicated to proving Theorem 1.1 under
the assumption that Proposition 1.3 related to linearized problem is known. Then the proof
is reduced to finding suitable function spaces so that [SU09a, Theorem 2] can be applied.
In Section 3 we study the basic properties of the linear map A1. In Section 4 we prove
Proposition 1.3 as a consequence of a reconstruction formula stated in Proposition 4.6. In
the Appendix we give some results on the well-posedness of the forward problem for wave
equations in negative Sobolev spaces that are required in our arguments. The results are
stated with finite regularity assumptions on the coefficients, and the dependence of the
constants in norm estimates on different quantities is explicitly specified.

Acknowledgements. S. M., L. P-M. and M. S. were supported by the Academy of Finland
(Finnish Centre of Excellence in Inverse Modelling and Imaging, grant numbers 312121 and
309963), and M.S. was also supported by the European Research Council under Horizon
2020 (ERC CoG 770924).

2. The nonlinear map. Proof of Theorem 1.1

In this section we will prove Theorem 1.1 by using Propositions 1.2, 1.3 and 3.1 as well
as Lemma A.5. The proofs of these results will be given in later sections. We shall use the
following abstract local uniqueness and stability result from [SU09a, Theorem 2].

Proposition 2.1. Let Xj, Yj with j = 1, 2, 3 be Banach spaces with X3 ⊂ X1 ⊂ X2 and
Y3 ⊂ Y2 ⊂ Y1, such that the following interpolation estimates hold:

‖f‖X1 . ‖f‖
µ1

X2
‖f‖1−µ1

X3
, ‖g‖Y2 . ‖g‖

µ2

Y1
‖g‖1−µ2

Y3
, µ1, µ2 ∈ (0, 1], µ1µ2 > 1/2. (2.1)

Let A : V1 → Y1 be a nonlinear map where V1 ⊂ X1 is an open subset of X1. Consider
f0 ∈ V1 and assume that

A(f) = A(f0) +Af0(f − f0) +Rf0(f), ‖Rf0(f)‖Y1 ≤ C(f0)‖f − f0‖2X1
(2.2)

holds for all f in some neighbourhood of f0 in V1. Here Af0 stands for the Fréchet derivative
of A at f0. In addition, suppose that

‖h‖X2 ≤ C‖Af0h‖Y2 , h ∈ X1. (2.3)

Then for any L > 0 there exists ε > 0, so that for any f with

‖f − f0‖X1 ≤ ε, ‖f‖X3 ≤ L, (2.4)

one has the conditional stability estimate

‖f − f0‖X1
≤ CL2−µ1−µ2‖A(f)−A(f0)‖µ1µ2

Y1
.

In particular, if A(f) = A(f0) for some f satisfying (2.4), then f = f0.
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The task now is verifying that A and A1 from Section 1 satisfy all conditions of Propo-
sition 2.1 in appropriate Banach spaces. In fact we will change the setup slightly and write
η = 1 + f , and A will be considered as the operator f 7→ U|ΣT∩{t>z} (note that U = 0 when
t < z). Similarly, instead of A1 we consider the operator A0 : f 7→ U |ΣT∩{t>z}. In this
setting, we will apply Proposition 2.1 with f0 ≡ 0.

We first introduce some useful notation. If F ⊂ Rn is closed, define for any s0 ∈ R the
set

Hs0
F (Rn) = {f ∈ Hs0(Rn) : supp(f) ⊂ F}.

We also write

Ωσ = {x ∈ Rn : |x| < 1− σ}
where σ ∈ (0, 1) is fixed as in (1.1). Let s0 > n/2 + 2 and M > 1. The map A will be
defined in the open subset

Vs0M (Rn) = {f ∈ Hs0
Ωσ

(Rn) : M−1 < 1 + f < M}

of Hs0
Ωσ

(Rn) as the map

A : Vs0M (Rn)→ H−1((−T, T );H1/2(Sn−1))|{t>z}, A(f) = U|ΣT∩{t>z} (2.5)

where η = 1 + f . This is a well defined map by Proposition 1.2. We will prove in Lemma
2.2 that the linearization of A at 0 is given by

A0 : Hs0
Ωσ

(Rn)→ H−1((−T, T );H1/2(Sn−1))|{t>z}, A0f = U |ΣT∩{t>z} (2.6)

where U solves {
(∂2
t −∆)U = −f(x) δ(t− z) in Rn+1,

U |{t<−1} = 0.
(2.7)

Let us verify one by one the conditions of Proposition 2.1.

Condition (2.2). We claim that the map A, defined by (2.5), verifies the condition (2.2)
with

X1 = Hs0
Ωσ

(Rn), Y1 = H−3((−T, T );H1/2(Sn−1))|{t>z}.
Indeed, the proof is contained in the following result, where we write

Â : Vs0M (Rn)→ H−1((−T, T );H1/2(Sn−1)), Â(f) = U|ΣT ,

Â0 : Hs0
Ωσ

(Rn)→ H−1((−T, T );H1/2(Sn−1)), Â0f = U |ΣT .

Thus A and A0 are the restrictions A(f) = Â(f)|{t>z} and A0f = Â0f |{t>z}.

Lemma 2.2. Let s0 � n/2 + 2, M > 1 and T > 1. The map Â is well defined

Â : Vs0M (Rn) ⊂ Hs0
Ωσ

(Rn)→ H−1((−T, T );H1/2(Sn−1)).

Moreover, it is C1,1 near 0 as a map Vs0M (Rn)→ H−3((−T, T );H1/2(Sn−1)), so that

‖Â(f)− Â(0)− Â0(f)‖H−3((−T,T );H1/2(Sn−1)) . ‖f‖
2
Hs0 (Rn), (2.8)

for all f ∈ Vs0M (Rn) near the origin.

Proof. The fact that Â maps Vs0M (Rn) to H−1((−T, T );H1/2(Sn−1)) is an immediate con-
sequence of Proposition 1.2. Let us move to prove the C1,1 regularity near 0. Fix η = 1 + f
with f ∈ Vs0M (Rn) near the origin. Let Â0f = U |ΣT where U is as in (2.7), and let R be
defined by

Â(f) = Â(0) + Â0(f) +R|ΣT , R|ΣT := Â(f)− Â(0)− Â0(f).
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In order to prove (2.8), we will actually prove a stronger estimate

‖R|ΣT ‖H−3((−T,T );H1/2(Sn−1)) . ‖f‖
2
L∞(Rn), f ∈ Hs0

Ω
(Rn),

which trivially implies the required estimate by using Morrey’s inequality since s0 > n/2.
To do that, we first set

Â(f) = U|ΣT , Â(0) = U0|ΣT , Â0(f) = U |ΣT ,

where the distributions U , U0 and U satisfy

(η(x)∂2
t −∆)U = 0, in Rn+1, U|{t<−1} = H1(t− z),

(∂2
t −∆)U0 = 0, in Rn+1, U0|{t<−1} = H1(t− z),

(∂2
t −∆)U = −f δ(t− z), in Rn+1, U |{t<−1} = 0.

By Proposition 1.2, we deduce that U ∈ H−1((−T, T );H1(Rn)). By uniqueness of distribu-
tional solutions, we have U0(y, z, t) = H1(t− z). Furthermore, Proposition 3.1 ensures that
U ∈ H−1((−T, T );L2(Rn)). On the other hand, a straightforward computation shows that
R := U − U0 − U satisfies in Rn+1

(∂2
t −∆)R = −f ∂2

t (U −H1), R|{t<−1} = 0.

In addition, we also have in Rn+1

(∂2
t −∆)(U −H1) = −f∂2

t U , U −H1|{t<−1} = 0. (2.9)

Note that the sources on the right of above equations belong to H−3((−T, T );L2(Rn)).
Since f = f(x) is independent of t, for all α ≥ 0 and F ∈ H−α((−T, T );L2(Rn)) one has

‖fF‖H−α((−T,T );L2(Rn)) . ‖f‖L∞(Rn) ‖F‖H−α((−T,T );L2(Rn)) .

These facts combined with Lemma A.4 give that

‖R‖H−3((−T,T );H1(Rn)) . ‖f‖L∞(Rn)

∥∥∂2
t (U −H1)

∥∥
H−3((−T,T );L2(Rn))

. (2.10)

We bound the norm on the left with the help of (2.9) and Lemma A.4 as follows

‖∂2
t (U −H1)‖H−3((−T,T );L2(Rn)) ≤ ‖∂2

t (U −H1)‖H−3((−T,T );H1(Rn))

≤ ‖U −H1‖H−1((−T,T );H1(Rn))

. ‖f ∂2
t U‖H−1((−T,T );L2(Rn))

. ‖f‖L∞(Rn)

∥∥∂2
t U
∥∥
H−1((−T,T );L2(Rn))

.

This estimate combined with (2.10) gives

‖R‖H−3((−T,T );H1(Rn)) . ‖f‖2L∞(Rn)‖∂
2
t U‖H−1((−T,T );L2(Rn)). (2.11)

Finally, by using the trace theorem, (2.11) gives the desired estimate for the remainder term
R|ΣT . This finishes the proof. �

Condition (2.3). By Proposition 1.3, whose proof is presented in Section 4, we consider

X2 = L2
Ωσ

(Rn), Y2 = H3/2(ΣT ∩ {t > z}).

Now for any f ∈ X1 = Hs0
Ωσ

(Rn), Proposition 1.3 and the trace theorem imply that

‖f‖X2 ≤ C‖A0f‖Y2 .

Thus condition (2.3) is satisfied.
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Condition (2.1). We have to choose a pair of Banach spaces X3 ⊂ X1 and Y3 ⊂ Y2 so that
for some µ1, µ2 ∈ (0, 1) with µ1µ2 > 1/2 one has

‖f‖Hs0 (Rn) . ‖f‖
µ1

L2(Rn)
‖f‖1−µ1

X3
, f ∈ X3, (2.12)

and

‖g‖H3/2(ΣT∩{t>z}) . ‖g‖
µ2

H−3((−T,T );H1/2(Sn−1))|{t>z}
‖g‖1−µ2

Y3
, g ∈ Y3. (2.13)

Fix an arbitrary µ1 ∈ (0, 1). Consider s1 > s0 satisfying s0 = 0(µ1)+s1(1−µ1). A standard
interpolation argument yields (2.12) with

X3 = Hs1
Ωσ

(Rn).

On the other hand, if we fix µ2 ∈ (0, 1) and choose s2 > 3/2 with 3/2 = (−3)(µ2)+s2(1−µ2),
then interpolation gives that

‖g‖H3/2(ΣT∩{t>z}) . ‖g‖
µ2

H−3(ΣT∩{t>z})
‖g‖1−µ2

Hs2 (ΣT∩{t>z}).

Thus choosing

Y3 = Hs2(ΣT ∩ {t > z})
implies (2.13). Note that we can make µ1µ2 as close to 1 as we want by choosing s1 and s2

large enough. Thus, the condition µ1µ2 > 1/2 is satisfied.
We are now in a position to apply Proposition 2.1: there exist µ ∈ (0, 1), C = C(L) > 0

and % > 0 small enough so that

‖f‖Hs0 (Rn) ≤ C(L)‖A(f)−A(0)‖µ
H−3((−T,T );H1/2(Sn−1))|{t>z}

whenever ‖f‖Hs0 (Rn) ≤ % and ‖f‖Hs1 (Rn) ≤ L for f ∈ Hs1
Ωσ

(Rn). If we recall that A(f) =

Â(f)|{t>z} and Ã(1 + f) = ∂2
t Â(f), Lemma A.5 applied with k = −5 implies that

‖η − 1‖Hs0 (Rn) ≤ C(L)‖Ã(η)− Ã(1)‖µ
H−5((−T,T );H1/2(Sn−1))|{t>z}

when ‖η − 1‖Hs0 (Rn) ≤ % and ‖η‖Hs1 (Rn) ≤ L for f ∈ Hs1
Ωσ

(Rn). This finishes the proof of

Theorem 1.1.

3. The linearized map

We now concentrate on studying the main properties of the linearization at 0 of the map
A given in (2.5). Recall that this linearization is denoted by A0 and it is given by (2.6) and
(2.7). The existence and uniqueness of solutions to (2.7) is provided by the following result.
Its proof is provided in the Appendix.

Proposition 3.1. Let s0 � n/2 + 2 and T > 1. Consider f ∈ Hs0
Ω

(Rn). There is a unique

distributional solution U(y, z, t) to (2.7), and it is supported in the region {t ≥ z}. In
particular, one has

U(y, z, t) = u(y, z, t)H(t− z),
where u is a C2 function in {t ≥ z} satisfying the IVP

(∂2
t −∆)u = 0 in {t > z} ,

(∂t + ∂z)u = −1

2
f on {t = z} ,

u|{t<−1} = 0.

(3.1)

In addition, given any K ≥ 3 we may arrange that u is CK in the set {t ≥ z} by taking s0

large enough. In particular, one always has U ∈ H−1((−T, T ), L2(Rn)).
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Using standard ODE techniques, one has

u(y, z, t)|t=z = −1

2

∫ 0

−∞
f(y, s+ z)ds := F (y, z, z) (3.2)

It turns out that instead of (3.1) it is more convenient to consider the characteristic initial
value problem {

(∂2
t −∆)u = 0 in {t > z},

u = F on {t = z}.
(3.3)

We will apply this with F given in (3.2), so that the initial value F (y, z, z) satisfies

ZF (y, z, z) = −1

2
f(y, z).

Here Z is defined as ZF (y, z, z) := ∂s
(
F (y, s, s)

)
|s=z. Thanks to the chain rule, one can see

that Z := ∂t + ∂z.

As explained in Section 2, the Fréchet derivative of A at 0 is the map A0 : f 7→ U |ΣT .
However, it is technically easier to study the map

A′0 : F 7→ u|ΣT∩{t≥z}, (3.4)

where u solves (3.3). The original map A0 can be recovered by A0f = E0(A′0F ) where F is
defined in (3.2) and E0 denotes extension by zero from ΣT ∩ {t ≥ z} to ΣT . Therefore in
the linearized part we mainly focus on the inverse problem for A′0 instead of A0. We shall
adapt the modified time-reversal method proposed in [SU09b] to study A′0. Denote

Σ := {(y, z, t) ; z ≤ t ≤ T, (y, z) ∈ ∂Ω},
Σ− := {(y, z, t) ; −1 ≤ t ≤ z, (y, z) ∈ ∂Ω},

Γ := {(y, z, z) ; (y, z) ∈ Ω}, ΓT := {(y, z, T ) ; (y, z) ∈ Ω},
Q := Ω× [−1, T ],

(3.5)

In the time reversal procedure, we generate an approximate inverse for A′0 as the map
h 7→ v|Γ, where v solves the problem

(∂2
t −∆)v = 0 in Q, v = h on Σ ∪ Σ−, v = v0, vt = v1 in ΓT ,

with prescribed boundary data h and certain data (v0, v1) at the final time t = T . For the
time reversal argument it would be natural to work with energy spaces. However, it is not
obvious that h ∈ H1(Σ) would imply v|Γ ∈ H1(Γ). We will prove this fact by using energy
estimates. To that end, we first investigate an initial boundary value problem.

3.1. An initial boundary value problem. For a function h, we adopt the following
convention:

ht := ∂th, hz := ∂zh, hy := ∇yh, hx := (∇yh, ∂zh), hν := ν · hx.
We define a seminorm ‖·‖H as follows,

‖h‖H =
( 1√

2

∫
Γ
(|∇yh|2 + |hz + ht|2) dS

) 1
2 . (3.6)

We introduce the following PDE,
(∂2
t −∆)v = G in Q,

v = u on Σ ∪ Σ−,

v = φ0, vt = φ1 in ΓT .

(3.7)

We have the following a priori estimate.
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Proposition 3.2. Assume v ∈ C2(Q) solves (3.7) with φ0 ∈ H1(Ω), φ1 ∈ L2(Ω), G ∈
L2(Q) and u|Σ∪Σ− ∈ H1(Σ ∪ Σ−). For T ≥ 1, we have

‖v‖H ≤ C(‖∇φ0‖L2(Ω) + ‖φ1‖L2(Ω) + ‖G‖L2(Q) +
√
neT/2‖v‖H1(Σ)). (3.8)

for some constant C independent of v, φ0, φ1, G, n and T .

Remark 3.1. The result in Proposition 3.2 is contained in [Ma21]. Though, for self-
containedness of this paper, and also for preparing necessary ingredients for the following
sections, we demonstrate a proof of Proposition 3.2 below.

To prove Proposition 3.2, we do some preparations first. Let us introduce the following
notations: 

Q̃τ := {(y, z, t) ; (y, z) ∈ Ω, z ≤ t ≤ τ} ⊂ Q,

Σ̃τ := {(y, z, t) ; (y, z) ∈ ∂Ω, z ≤ t ≤ τ} ⊂ Σ,

Γ̃τ := {(y, z, τ) ; (y, z) ∈ Ω} ∩ Q̃τ ,
thus ∂Q̃τ = Γ̃τ ∪ Σ̃τ ∪ Γ for τ ≥ 1. Note also that when −1 ≤ τ < 1 the set Γ̃τ is a strict
subset of Ω× {τ}. To abbreviate, we denote � := ∂2

t −∆.

Lemma 3.3. Under the same assumptions as in Proposition 3.2, we have

‖v‖2H ≤ C(‖∇φ0‖2L2(Ω) + ‖φ1‖2L2(Ω) + eT ‖G‖2L2(Q) + ‖vt‖L2(Σ)‖vν‖L2(Σ))

for some constant C independent of u, φ0, φ1, G and T .

Proof. Integrating the identity

2 Re{vt�v} = Re divx,t
(
− 2vt∇xv, |vt|2 + |∇xv|2

)
(3.9)

over Q̃τ when τ ≥ 1 and noticing that �v = G in Q̃τ , we obtain that

Re

∫
Q̃τ

2vtG =

∫
Γ̃τ

(|vt|2 + |∇xv|2) dS − 2 Re

∫
Σ̃τ

vtvν dS

− 1√
2

∫
Γ
(|∇yv|2 + |vz + vt|2) dS,

(3.10)

Hence, (3.10) becomes

Re

∫
Q̃τ

2vtG =

∫
Γ̃τ

(v2
t + |∇xv|2) dS − 1√

2
‖v‖2H − 2 Re

∫
Σ̃τ

vtvν dS. (3.11)

We set

e(τ) :=

∫
Γ̃τ

(|∇xv|2 + |vt|2) dS. (3.12)

From (3.11) we deduce

e(τ) ≤
∫ τ

0
e(s) ds+

∫
Q̃τ

|G|2 +
1√
2
‖v‖2H + 2

∫
Σ̃τ

|vtvν |dS,

so the Gronwall’s inequality gives

e(τ) ≤ eτ (
1√
2
‖v‖2H +

∫
Q̃τ

|G|2 + 2

∫
Σ̃τ

|vtvν |dS). (3.13)

From (3.11) we also obtain

1√
2
‖v‖2H =

∫
Γ̃τ

(v2
t + |∇xv|2) dS − 2 Re

∫
Σ̃τ

vtvν dS − Re

∫
Q̃τ

2vtG

≤ e(τ) + 2[1 + ε(eτ − 1)]

∫
Σ̃τ

|vtvν |dS + [
1

ε
+ ε(eτ − 1)]

∫
Q̃τ

|G|2 + ε(eτ − 1)
1√
2
‖v‖2H.
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By setting ε = [2(eτ − 1)]−1 > 0 and absorbing ‖v‖2H on the right hand side, we obtain

1

2
√

2
‖v‖2H ≤ e(τ) + 3

∫
Σ̃τ

|vtvν |dS + 4eτ
∫
Q̃τ

|G|2. (3.14)

Now setting τ = T and noting that v(·, T ) = φ0 and vt(·, T ) = φ1, (3.14) gives

‖v‖2H ≤ C(‖∇φ0‖2L2(Ω) + ‖φ1‖2L2(Ω) + ‖vt‖L2(Σ)‖vν‖L2(Σ) + eT ‖G‖2L2(Q)),

for some constant C independent of T . We arrive at the conclusion. �

The norm ‖vν‖L2(Σ) can also be estimated. Following [RS20b, Lemma 3.3], we examine
the quantity (x · ∇v)�v and use integration by parts.

Lemma 3.4. Assume v ∈ C2(Q) solves (3.7) For τ ≥ 1, we have

‖vν‖2L2(Σ̃τ )
≤ Cneτ (‖G‖2

L2(Q̃τ )
+ ‖v‖2H + neτ‖v‖2

H1(Σ̃τ )
),

for some constant C independent of v, G, τ and the dimension n.

Proof. Integrating the identity

2 Re(x · ∇v)�v = Re divx,t

(
x(|∇v|2 − |vt|2)− 2(x · ∇v)∇v, 2(x · ∇v)vt

)
+ n|vt|2 − (n− 2)|∇v|2

over Q̃τ and noticing that �v = G in Q̃τ , similar to (3.10) we now have

2

∫
Σ̃τ

|vν |2 =
1√
2

∫
Γ
[z|∇

(
v
)
|2 − 2 Re{x · ∇

(
v
)
∂z
(
v
)
}] + Re

∫
Γ̃τ

2(x · ∇v)vt

− 2 Re

∫
Q̃τ

(x · ∇v)G+

∫
Σ̃τ

(|vν |2 +
1

2

∑
i 6=j
|Ωijv|2 − |vt|2)

+

∫
Q̃τ

(n|vt|2 − (n− 2)|∇v|2), (3.15)

where we used (see [RS20b, (1.19)]) the fact

|∇ϕ(x)|2 = |ϕν(x)|2 +
1

2

∑
i 6=j
|Ωijϕ(x)|2, where |x| = 1, Ωij = xi∂j − xj∂i.

By moving the vν-term on the RHS of (3.15) to the left, we further obtain∫
Σ̃τ

|vν |2 . ‖v‖2H + e(τ) + ‖v‖2
H1(Σ̃τ )

+ n

∫ τ

0
e(s) ds+ n

∫
Q̃τ

|G|2, (3.16)

where e(τ) is defined in (3.12). Combining (3.16) and (3.13), we have∫
Σ̃τ

|vν |2 . (n+ 1)eτ (‖v‖2H +

∫
Q̃τ

|G|2 +
1

ε
‖vt‖2Σ̃τ + ε‖vν‖2Σ̃τ ) + ‖v‖2H + ‖v‖2

H1(Σ̃τ )
.

Setting ε = [2C(n+ 1)eτ ]−1 for some constant C big enough, we have∫
Σ̃τ

|vν |2 . (n+ 1)eτ
∫
Q̃τ

|G|2 + neτ‖v‖2H + n2e2τ‖v‖2
H1(Σ̃τ )

.

We arrive at the conclusion. �

Now we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. Combining Lemma 3.3 and Lemma 3.4, we get

‖v‖2H ≤ C(‖∇φ0‖2L2(Ω) + ‖φ1‖2L2(Ω)) + εCneT ‖G‖2L2(Q) + (
C

4ε
+ εCn2e2T )‖v‖2H1(Σ)

+ εCneT ‖v‖2H.



FIXED ANGLE INVERSE SCATTERING 12

By setting ε = (2CneT )−1 and absorbing the ‖v‖2H term on the RHS by the LHS, we finally
arrive at (3.8). The proof is complete. �

3.2. The time reversal method. Recall the notation from (3.5). Given the data {u|Σ},
we aim to construct an approximation of F in (3.3) by using a modified time-reversal method
as in [SU09b]. We define a function v as the solution of the following system:

(∂2
t −∆)v = 0 in Q,

v = ũ on Σ ∪ Σ−,

v = φ0, vt = 0 in ΓT ,

∆φ0 = 0 in Ω, φ0 = u(·, T ) on ∂Ω.

(3.17)

Here ũ is a suitable extension of u from Σ to Σ− given in Lemma 3.6 below. The choice
of this extension will have no influence on the analysis in the rest of the paper. However,
as mentioned earlier, it is not obvious that v|Γ is in H1(Γ) if u ∈ H1(Σ). Hence, we shall
define

v|Γ := lim
ε→0+

vε|Γ

where vε solves 
(∂2
t −∆)vε = 0 in Q,

vε = uε on Σ ∪ Σ−,

vε = φ0, ∂tvε = 0 in ΓT ,

∆φ0 = 0 in Ω, φ0 = uε(·, T ) on ∂Ω.

(3.18)

Here uε is a modification of u on the lateral boundary given in (3.19) such that the com-
patibility requirements on ∂ΓT required by the existence of a smooth solution vε (when u|Σ
is smooth) are satisfied. Then we know that vε ∈ C2(Q) by [LLT86, Remark 2.10], and
hence Proposition 3.2 can be applied to vε and the limit exists due to the estimate given in
Proposition 3.2. For convenience we reproduce [LLT86, Remark 2.10] in the next lemma.

Lemma 3.5. Let Φ be a solution of the system
(∂2
t −∆)Φ = F in Ω× [0, T ],

Φ = g on Ξ := ∂Ω× [0, T ],

Φ = Φ0, Φt = Φ1 in Ω× {t = 0},

with (F, g,Φ0,Φ1) satisfying the regularity assumptions (m is a non-negative integer)
F ∈ L1(0, T ;Hm(Ω)),

dmF

dtm
∈ L1(0, T ;L2(Ω)),

Φ0 ∈ Hm+1(Ω), Φ1 ∈ Hm(Ω),

g ∈ Hm+1(Ξ) := L2(0, T ;Hm+1(Ξ)) ∩Hm+1(0, T ;L2(Ξ))

and satisfying all necessary compatibility conditions up to order m. Then

Φ ∈ C([0, T ];Hm+1(Ω)),
d(m+1)Φ

dt(m+1)
∈ C([0, T ];L2(Ω)), and

∂Φ

∂ν
∈ Hm(Ξ).

Note that in contrast with u which is defined in the infinite half plane {(y, z, t) ; t ≥ z},
v is only defined in the finite cylinder Ω× [−1, T ].

Lemma 3.6. If u|Σ ∈ CK(Σ) where K = dn/2e + 2, then there exists a unique solution
v ∈ C([−1, T ];H1(Ω)) of the system (3.17), and v|Γ ∈ H1(Γ).
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Proof. We extend u from Σ to Σ− as follows. Inspired by the Taylor’s expansion, we define
the following extension of u,

ũ(y, z, t) :=


u(y, z, t), on Σ,

K∑
k=0

(∂kt u)(y, z, z) · (t− z)k/k!, on Σ−.

Then ũ ∈ CK(Σ∪Σ−) ⊂ HK(Σ∪Σ−). By the trace theorem ũ|∂Ω×{T} is inHK− 1
2 (∂Ω×{T}),

which implies that the harmonic function φ0 in (3.17) is in HK(ΓT ).
Now we construct a series of approximate Dirichlet boundary data {uε}ε>0 such that the

compatibility conditions needed in Lemma 3.5 will be satisfied. To that end, we fix a cutoff
function χ0 ∈ C∞c (R) satisfying χ0(t) = 1 when |t| ≤ 1 and χ0(t) = 0 when |t| ≥ 2, and we
set

uε(x, t) := χ0(
T − t
ε

)ũ(x, T ) + (1− χ0(
T − t
ε

))ũ(x, t). (3.19)

We see uε = ũ = u on ΓT . We denote the initial velocity of (3.18) as φ1, i.e. ut = φ1 = 0
in ΓT . The compatibility conditions for Lemma 3.5 up to the order K are the following
(cf. e.g. [Eva10, §7.2 (62)]):

(∆kφ0,∆
kφ1) = (∂2k

t uε, ∂
2k+1
t uε) on ΓT , ∀k : 0 ≤ k ≤

⌊K
2

⌋
. (3.20)

It can be checked that (3.20) is true, and this is simply because φ0 = uε(·, T ), ∆φ0 = 0,

φ1 = 0 and ∂jt uε(·, T ) = 0 for ∀j ≥ 1.
It is straightforward to check that

‖u− uε‖L2(Σ) → 0, ‖∇|Σ,x(u− uε)‖L2(Σ) → 0, as ε→ 0+, (3.21)

where ∇|Σ,x stands for the spacial component of the gradient on the manifold Σ. We aim to
make the sequence {uε}ε>0 converge to u in H1(Σ). According to (3.21), it is left to show
‖∂t(u− uε)‖L2(Σ) → 0 as ε→ 0+. One can compute

∂t(uε − ũ)(x, t) =
1

ε
χ′0(

T − t
ε

)[ũ(x, t)− ũ(x, T )] + (1− χ0(
T − t
ε

))ũt(x, t)− ũt(x, t)

=
1

ε
χ′0(

T − t
ε

)[(t− T )ũt(x, T ) +O(|t− T |2)]− χ0(
T − t
ε

)ũt(x, t)

= −T − t
ε

χ′0(
T − t
ε

)[ũt(x, T ) +O(|t− T |)]− χ0(
T − t
ε

)ũt(x, t).

Note that T−t
ε χ′0(T−tε ) → 0 point-wise in [0, T ], and χ0(T−tε ) → 0 point-wise in [0, T ) as

ε→ 0+, so ∂t(uε − ũ)(x, t)→ 0 almost everywhere on Σ, and hence

‖∂t(ũ− uε)‖L2(Σ) → 0, as ε→ 0+. (3.22)

Combining (3.21) with (3.22), we arrive at

‖ũ− uε‖H1(Σ) → 0, as ε→ 0+. (3.23)

The smoothness of ũ implies uε ∈ CK(Σ∪Σ−) ⊂ HK(Σ∪Σ−). For the system (3.18), the
prerequisites of Lemma 3.5 are all satisfied now, especially the compatibility requirements
(3.20), so we can conclude

vε ∈ C([−1, T ];HK(Ω)), ∂tvε ∈ C([−1, T ];HK−1(Ω)).

By the Sobolev embedding theorem we know HK(Ω) ⊂ C2(Ω) when K − n/2 ≥ 2, so we
set K = dn/2e+ 2, and thus

vε ∈ C([−1, T ];C2(Ω)), ∂tvε ∈ C([−1, T ];C1(Ω)), (3.24)



FIXED ANGLE INVERSE SCATTERING 14

so ∆vε(·, t) ∈ C(Ω) for each t. Therefore, the equation (∂2
t −∆)vε = 0 implies

∂2
t vε(x, t) is continuous w.r.t. t. (3.25)

By (3.24) and (3.25) we obtain vε ∈ C2(Q), thus vε is well-defined on the slanted plane Γ
and vε|Γ ∈ H1(Γ).

Finally, by Proposition 3.2 and the convergence in (3.23), we see {vε|Γ} is a Cauchy
sequence in H1(Γ), so we can define v|Γ as the limit of vε|Γ, i.e.,

v|Γ := lim
ε→0+

vε|Γ,

and the estimate in Proposition 3.2 implies v|Γ ∈ H1(Γ). The proof is done. �

Remark 3.2. According to (3.3) and (3.18) we see that an F ∈ Hs0
Ω

(Rn) produces a u

and a vε. By Proposition 3.1 and Lemma 3.6, we can conclude there exists a large enough
integer s0 such that u ∈ Cdn/2e+2 and vε ∈ C2, respectively.

3.3. The approximate inverse of A′0. To introduce the approximate inverse B of A′0, we
introduce some function spaces first. Recall once more the notation given in (3.5). We wish
to consider functions F in {t = z} that satisfy ZF = 0 outside Γ, since this is true in (3.2)
when supp(f) ⊂ Ω. Thus we consider functions h on {t = z} that satisfy the conditions:

supp(h) ⊂ {(y, z, z) ; |(y, z)| ≤ 1 and |y| ≤ 1− σ

2
}, and Zh = 0 outside Γ. (3.26)

Later on, we will see that in (4.9), we have to make sure that the denominator 1 − |y|2 is
positive away from zero, and due to this technical reason, we have to put the prerequisite
“|y| ≤ 1− σ

2 ” in (3.26), and for the same reason we also need “|x| ≥ 1− σ” in (1.1). These
are due to computations in (4.9)-(4.11) and we do not explain the details here.

We define the function spaces{
H′ := {h ∈ H1

loc({t = z}) ; h satisfies (3.26)},
H := {h ∈ H′ ; supph ⊂ Γ},

(3.27)

Recall the seminorm ‖h‖H defined in (3.6),

‖h‖H =
( 1√

2

∫
Γ
(|∇yh|2 + |hz + ht|2) dS

) 1
2 .

Note that Z = ∂z + ∂t is tangential to Γ, and hence ‖h‖H corresponds to ‖∇Γh‖L2(Γ). Note

also that by (3.26) ‖ · ‖H is in fact a norm on H′, so that (H′, ‖·‖H) is a Banach space
and (H, ‖·‖H) is a closed subspace. Moreover, by Poincaré inequality, the norm ‖h‖H is
comparable to ‖h‖H1(Γ) for h ∈ H. We shall use these facts several times in the following
computations.

By Lemma 3.6 we can define an approximate inverse B of A′0 as follows,{
B := lim

ε→0+
Bε, where Bε : C

K(Σ) ⊂ H1(Σ)→ H′, u|Σ 7→ ṽε,

ṽε is the zero extension of vε|Γ to {t = z} where vε solves (3.18).
(3.28)

Remark 3.3. Due to the prerequisite “|y| ≤ 1− σ
2 ” in the definition of H′ given in (3.26),

the actual approximate inverse will be χB where χ is a function satisfying

χ ∈ C∞({t = z}), |χ| ≤ 1, χ(y, z, z) =

{
1, when |y| ≤ 1− σ,
0, when |y| ≥ 1− σ/2.

(3.29)
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From the proof of Lemma 3.6 we see v|Γ := limε→0+ vε|Γ ∈ H1(Γ), and ṽ is the zero
extension of v, so ṽ ∈ H′. Note that the restriction of u on {t = z} belongs to H′, so a
solution of (3.17) will always have an extension in H′. The map B shall be understood
intuitively as a parametrix of A′0, and BA′0F as an approximation of F for any F ∈ H but
not for F ∈ H′. This fact related to compact supports will be taken care of in Section 4).
We will prove below in Proposition 3.7 that in fact B : H1(Σ)→ H′ is a bounded map.

3.4. Boundedness of the approximate inverse.

Proposition 3.7. The map B extends as a bounded operator from H1(Σ) to H′, and for
T ≥ 1, we have

‖Bu‖H ≤ CeT/2‖u‖H1(Σ)

for some constant C independent of u and T .

Proof. By density it is enough to prove the estimate when u|Σ is smooth. The equation
(3.17) is a special case of (3.7) when we choose (φ0, φ1, G) according to{

∆φ0 = 0 in Ω, φ0 = u(·, T ) on ∂Ω,

φ1 = 0 in Ω, G = 0 in Q.

Recall the definition of B in (3.28) and the proof of Lemma 3.6. From (3.8) we obtain

‖vε‖2H ≤ C(‖∇φ0‖2L2(Ω) + neT ‖vε‖2H1(Σ)),

and by taking the limit ε→ 0+ it gives

‖v‖2H = ‖Bu‖2H = C(‖∇φ0‖2L2(Ω) + neT ‖u‖2H1(Σ)). (3.30)

It remains to bound the ‖∇φ0‖ term by ‖u‖. Since φ0 is a harmonic function in Ω with
Dirichlet data u( · , T )|∂Ω, so it follows from standard estimates for the Dirichlet problem
and from the trace theorem on Σ that

‖φ0‖H1(Ω) ≤ C‖u( · , T )‖H1/2(∂Ω) ≤ C‖u‖H1(Σ).

Then (3.30) becomes

‖Bu‖H ≤ C(‖u‖H1(Σ) +
√
neT/2‖u‖H1(Σ)).

This is the required statement. �

Readers may note that the constant eT/2 in Lemma 3.4, Proposition 3.2 and Proposition
3.7 might not be optimal.

4. The error operator

In this section we recover the function F in (3.3) by employing an iterative algorithm,
and the function space at the beginning of the algorithm is different from these in the rest
of the algorithm. We define

Hint := {h ∈ H1
loc({t = z}) ; h satisfies (3.26) with

σ

2
replaced by σ} ∩Hs0

Γ
({t = z}).

Here s0 shall be chosen large enough such that Proposition 3.1 can be applied. The subscript
in Hint stands for “initial”, and Hint is the function space at the beginning of the iteration.
The construction of χ in (3.29) guarantees

χh = h in Hint. (4.1)

Recall the operators A′0 and Bε defined in (3.4) and (3.28). Recall Remark 3.3. We
wish to consider the operator χBA′0χ, where χ satisfies (3.29). We need χ because F is
supported in {χ = 1} (recall (1.1)), so we want the approximate inverse to be also supported
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in {χ = 1}. By (4.1) and Proposition 3.1, we see that if h ∈ Hint, we have A′0χh ∈ H1(Σ),
and moreover h = A′0χh on ∂Γ. Here A′0χh stands for A′0(χh). And by (3.18), (3.19) and
(3.28) we see A′0χh = BA′0χh on ∂Γ. Hence, h = BA′0χh on ∂Γ, and combining this with
h = χh on ∂Γ induced by (4.1), one can conclude

h− χBA′0χh = 0 on ∂Γ. (4.2)

By Proposition 3.7 we have χBA′0χh ∈ H′, so,

h− χBA′0χh ∈ H′. (4.3)

We introduce the second cutoff to preserve the vanishing trace of h− χBA′0χh. Indeed, by
combining (4.2) and (4.3), we can conclude

∀h ∈ Hint ⇒ h− χBA′0χh ∈ H.

Hence we can define an error operator K by the formula

K := lim
ε→0+

Kε, where Kε : Hint → H, h 7→ (I − χBεA′0χ)h. (4.4)

There are two cutoff functions χ inside the operator (I − χBA′0χ). The first χ (on the
right-hand-side of A′0) is to make sure the argument after (3.26) stays valid. The second χ
(on the left-hand-side of B is to guarantee (I − χBA′0χ) maps Hint into not only H′ but
also, more importantly, into H; without the second χ, this will not be true.

In the linearized inverse problem for (3.4), KF indicates the difference between the
original F and the approximation χB(u|Σ) = χBA′0χF . For F ∈ H′ ∩Hs0({t = z}) with
suppF ⊂ suppχ, we have

(I −K)F = χB(A′0χF ) = χB(A′0F ) = χB(u|Σ).

Note that u|Σ, B and K are all known. Hence one would expect to recover F using the
formula (I−K)−1χB(u|Σ) provided that I−K is invertible, which would hold in particular
if the operator norm ‖K‖ between suitable spaces is strictly less than 1.

Instead of (4.4), it would be more convenient if the domain and image of K would be the
same. This is necessary, for instance, to perform a Neumann series argument. This leads
us to considering the restriction of K to H. We denote the restriction as K̃, i.e.,

K̃ : H ∩Hs0({t = z})→ H, h 7→ (I − χBA′0χ)h.

We will prove in Proposition 4.4 that K̃ extends as a bounded operator H → H with
norm strictly less than 1 if T is large enough. Based on this, a reconstruction formula
F = (I +

∑
j≥0 K̃

jK)χB(u|Σ) is given in (4.22). After obtaining F , the f can be recovered
by f = ZF . Based on this, a stability result is also given, see Proposition 4.6 for details.
An illustration of the recovering procedure of F is given in Fig. 1.

Hint H′,
BA′0 Hint H H · · · H · · ·K K̃ K̃ K̃ K̃

Figure 1. An illustration of the recovering procedure.

To elaborate how the error operator K works, we give an intuitive example. Assume
F ∈ H′, u and v satisfy the following systems,

(∂2
t −∆)u = 0 in {t > z}

u = F on {t = z}
suppF ⊂ suppχ

,


(∂2
t −∆)v = 0 in Q

v = u on Σ ∪ Σ−

v = φ0, vt = 0 in ΓT
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with {
∆φ0 = 0 in Ω,

φ0 = u(·, T ) on ∂Ω.

Then, by ignoring the regularity issues we could say KF = (u− χv)|Γ.

4.1. The energy estimates. For τ ∈ [0, T ] and h ∈ H1(Rn × {t = τ}), we define the
energy E(τ, h) as follows

E(τ, h) :=

∫
Rn

(|∇xh(x, τ)|2 + |ht(x, τ)|2) dx.

We also define a functional ‖h‖HT as follows,

‖h‖HT :=
( ∫

Ω
(|∇xh(x, T )|2 + |ht(x, T )|2) dx

)1/2
. (4.5)

The relations among ‖·‖H, ‖·‖HT and E(T, ·) are described in the following lemmas.

Lemma 4.1. Assume u is C2(Q) and u and v are associated to each other by means of
(3.17), and uε and vε are defined as in the proof of Lemma 3.6. Set wε := u− vε. Then we
have

lim
ε→0+

‖wε‖H = lim
ε→0+

‖wε‖HT .

Moreover, we have

‖u‖2HT = ‖u− φ0‖2HT +

∫
Ω
|∇φ0(x)|2 dx.

Proof. According to the construction of vε, we know ωε ∈ C2(Q). Moreover, ωε satisfies{
(∂2
t −∆)ωε = 0 in Q,

v = u− uε on Σ ∪ Σ−.

Then according to (3.10) we have

0 = ‖ωε‖2HT − ‖ωε‖
2
H − 2 Re

∫
Σ̃T

∂tωε∂νωε dS,

Note that ωε ∈ C2(Q). Combining this with Lemma 3.4, we can compute

‖ωε‖2H ≤ ‖ωε‖2HT + 2‖ωε‖H1(Σ)‖∂νωε‖L2(Σ)

≤ ‖ωε‖2HT + C‖ωε‖H1(Σ)(‖ωε‖H + C‖ωε‖H1(Σ))

= ‖ωε‖2HT + C‖ωε‖H1(Σ)‖ωε‖H + C2‖ωε‖2H1(Σ)

= ‖ωε‖2HT + 2C2‖ωε‖2H1(Σ) +
1

2
‖ωε‖2H + C‖ωε‖2H1(Σ). (4.6)

We have ‖ωε‖H1(Σ) → 0 as ε → 0+ due to (3.23). And, the function ωε (:= u − vε) is
independent of ε on ΓT because vε is independent of ε on ΓT , see (3.19). Hence, (4.6)
implies ‖ωε‖H is uniformly bounded when ε→ 0+. Based on this fact, we re-compute (4.6)
in the following way with the help of Lemma 3.4,

|‖ωε‖2H − ‖ωε‖2HT | ≤ 2‖ωε‖H1(Σ)‖∂νωε‖L2(Σ) ≤ C‖ωε‖H1(Σ)(‖ωε‖H + C‖ωε‖H1(Σ)). (4.7)

By the boundedness of ‖ωε‖H w.r.t. ε as well as the fact that ‖ωε‖H1(Σ) → 0 as ε→ 0+, we
can conclude from (4.7) that

‖ωε‖H − ‖ωε‖HT → 0 as ε→ 0+.
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For the second claim, we have

‖u− φ0‖2HT =

∫
Ω
|∇x

(
u(x, T )− φ0

)
|2 dx+

∫
Ω
|ut|2 dx

= ‖u‖2HT − 2 Re

∫
Ω
∇x
(
u
)
· ∇xφ0 dx+

∫
Ω
|∇xφ0|2 dx

= ‖u‖2HT − 2 Re

∫
Ω
∇x
(
u− φ0

)
· ∇xφ0 dx−

∫
Ω
|∇xφ0|2 dx

= ‖u‖2HT − 2 Re

∫
∂ΓT

(u− φ0)∂νφ0 dx+ 2 Re

∫
Ω

(u− φ0)∆φ0 dx

−
∫

Ω
|∇xφ0|2 dx

= ‖u‖2HT −
∫

Ω
|∇xφ0|2 dx.

The last equal sign is due to u− φ0 = 0 on ∂ΓT and ∆φ0 = 0. The proof is complete. �

Lemma 4.2. Assume h satisfies (∂2
t −∆)h = 0 in {t ≥ z} with the restriction h|Γ satisfying

h|Γ ∈ Hint, then we have

‖h‖2HT ≤ E(T, h) ≤

‖h‖
2
H +

√
2T√
σ
‖h‖2H1(∂Γ), if h ∈ Hint,

‖h‖2H, if h ∈ H ∩Hs0
Γ

({t = z}).

Proof. By the definition of the energy and the norm, it is obvious that ‖h‖2HT ≤ E(T, h).
Now we prove the second inequality. Recall Remark 3.2. Replacing the function v in

identity (3.9) by h and integrating the identity in the region

{(y, z, t) ∈ Rn+1 ; y ∈ Rn−1, z ≤ t ≤ T},

we can obtain

E(T, h) =
1√
2

∫
{t=z}

(|∇yh|2 + |∂z
(
h(y, z, z)

)
|2) dS. (4.8)

The computation is similar to what has been done in Section 3.1, so we omit the details
here.

When h|Γ ∈ H′ ∩ Hs0
Γ

({t = z}), we know h ∈ C2({t ≥ z}). Moreover, h ∈ H′ gives

∂z
(
h(y, z, z)

)
= 0 outside Γ and ∇yh is constant along the curve γ(z) := (y, z, z) for each

y, so (4.8) becomes

E(T, h) =
1√
2

∫
{t=z ; t≤T}

(|∇yh|2 + |∂z
(
h(y, z, z)

)
|2) dS

= ‖h‖2H +
1√
2

∫
{t=z ; t≤T}\Γ

|∇y
(
h(y, zy, zy)

)
|2 dS (∂z

(
h(y, z, z)

)
= 0)

= ‖h‖2H +

∫
π({t=z ; t≤T}\Γ)

∣∣∇y(h(y, zy, zy)
)∣∣2 dy dz

≤ ‖h‖2H + T

∫
|y|≤1

|∇y
(
h(y, zy, zy)

)
|2 dy

= ‖h‖2H + T

∫
|y|≤1

1

1− |y|2
| ~Xh(y, zy, zy)|2 dy, (4.9)
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where zy :=
√

1− |y|2, π : (x, t) 7→ x is a projection map, and ~X is a vector of vector fields
defined as

~X :=
√

1− |y|2∇y − y∂z − y∂t.

The vector field ~X is tangential to ∂Γ+ := ∂Γ∩ {(y, z, t) ; z ≥ 0}. To see this, we denote
S1 := {(y, z, t) ; |(y, z)|2 = 1} and S2 := {(y, z, t) ; t = z}. Then ∂Γ+ = S1 ∩ S2, and
~X(|(y, z)|2 − 1) = ~X(t − z) = 0 on ∂Γ+. Therefore, ~X is tangential to both S1 and S2 at
∂Γ+, and hence tangential to ∂Γ+.

Denote the volume form on ∂Γ+ as dS, then it can be checked that√
1 + |y|2√
1− |y|2

dy = dS.

Hence, (4.9) implies

E(T, h) ≤ ‖h‖2H + T

∫
∂Γ+

1√
1− |y|4

| ~Xh|2 dS. (4.10)

Recall that supph|Γ ⊂ {(y, z, t) ; |y| ≤ 1−σ/2} for the fixed constant σ ∈ (0, 1), so ~Xh = 0
when |y| ≥ 1− σ/2, see also [MPMS21, Proof of Lemma 2.9]. Therefore,

E(T, h) ≤ ‖h‖2H +
T√

1− (1− σ/2)4

∫
∂Γ+

| ~Xh|2 dS (4.11)

≤ ‖h‖2H +

√
2T√
σ
‖h‖2H1(∂Γ).

Hence, when h ∈ C2 ∩H, we know h = 0 on ∂Γ, so E(T, h) ≤ ‖h‖2H. The proof is done. �

4.2. Boundedness of the error operators. In the definition of K and K̃, the two op-
erators are defined on certain subsets of H′ and H, respectively. As we mentioned earlier,
their domain of definitions can be extended to the whole H′ and H. To that end, we first
show some boundedness result of K and K̃ in certain dense subsets of their domain. For
simplicity we denote the operator norm of K̃ as ‖K̃‖, i.e., ‖K̃‖ = ‖K̃‖H→H, and we also
write

‖K‖ := sup

{
‖Kh‖H

‖h‖H + ‖h‖H1(∂Γ)
; h ∈ Hint, h 6= 0

}
.

Lemma 4.3. Let σ ∈ (0, 1) be as in (1.1). If C > 0 is the constant from Lemma 4.2 and
s0 is determined as in Remark 3.2, then we have

‖Kh‖H ≤ C(‖h‖H +
T 1/2

σ1/4
‖h‖H1(∂Γ)), h ∈ Hint, (4.12)

‖K̃h‖H ≤ C‖h‖H, h ∈ H ∩Hs0
Γ

({t = z}). (4.13)

Note that (4.12) implies ‖K‖ ≤ CT 1/2/σ1/4.

Proof. For any function h ∈ H′ ∩Hs0
Γ

({t = z}), let u be the solution of system (3.3) driven

by h so that u = h on Γ, then according to Proposition 3.1 we can conclude u ∈ Cdn/2e+2

in {t ≥ z}.
Assume v is associated to u by (3.17), and uε and vε are defined as in the proof of Lemma

3.6, and we denote wε = u− vε. By (4.1) we know χh = h. By (4.4) we see

Kεh = wε|Γ = h− χvε|Γ = χ(h− vε|Γ) = χωε,
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so we have

‖Kh‖2H = lim
ε→0+

‖Kεh‖2H = lim
ε→0+

‖χwε‖2H.

Note that

‖χwε‖2H ≤ ‖(∇Γχ)wε‖2L2(Γ) + ‖χ∇Γwε‖2L2(Γ)

≤ ‖∇Γχ‖2L∞(Γ)‖wε‖
2
L2(Γ) + ‖∇Γwε‖2L2(Γ)

≤ C‖∇Γχ‖2L∞(Γ)‖∇Γwε‖2L2(Γ) + ‖∇Γwε‖2L2(Γ)

= (1 + C‖∇Γχ‖2L∞(Γ))‖wε‖
2
H,

where we used Poincaré inequality with partial zero boundary trace, so we can continue

‖Kh‖2H ≤ (1 + C‖∇Γχ‖2L∞(Γ)) lim
ε→0+

‖wε‖2H = (1 + C‖∇Γχ‖2L∞(Γ)) lim
ε→0+

‖wε‖2HT ,

where the last equal sign is due to Lemma 4.1. Note that on ΓT , wε = u − φ0, which is
independent of ε, so

‖Kh‖2H ≤ C‖u− φ0‖2HT , (4.14)

where C = (1 + C‖∇Γχ‖2L∞(Γ)). Now, combining (4.14) with Lemma 4.1 and Lemma 4.2

we have

‖Kh‖2H ≤ C‖u‖2HT (by Lemma 4.1)

≤ CE(T, u) ≤ C[‖u‖2H + T/
√
σ‖u‖2H1(∂Γ)] (by Lemma 4.2)

= C[‖h‖2H + T/
√
σ‖h‖2H1(∂Γ)], (4.15)

where C = (1 + C‖∇Γχ‖2L∞(Γ)). This is (4.12), and we obtain ‖K‖ ≤ C from (4.12). When

h ∈ H ∩Hs0
Γ

({t = z}), we know h|∂Γ = 0, so similar to (4.12) we have

‖K̃h‖2H ≤ C‖u‖2HT ≤ CE(T, u) ≤ C‖u‖2H = C‖h‖2H, (4.16)

where C = (1 + ‖∇Γχ‖L∞)2. This gives (4.13). We arrive at the conclusion. �

We are ready to extend K̃ and to show its boundedness with norm strictly less than 1.

Proposition 4.4. K̃ can be extended to H, and it is a bounded linear operator H → H
with ‖K̃‖ < 1.

Proof. The linearity of K̃ can be easily seen from systems (3.3) and (3.7). Recall the s0 in
Remark 3.2. It can be checked that H ∩ Hs0

Γ
({t = z}) is dense in H. Assume h ∈ H, we

choose a sequence {hj}j≥1 in H∩Hs0
Γ

({t = z}) such that hj → h under the ‖·‖H-norm. By

(4.13) we know {K̃hj}j≥1 is a Cauchy sequence in H, so limj→∞ K̃hj exists and the limit
is unique, and we define

K̃h := lim
j→∞

K̃hj . (4.17)

The norm estimate for ‖K̃‖ in Lemma 4.3 can be improved to ‖K̃‖ < 1 by using local
energy decay. Indeed, fix a constant T0 ∈ (1, T ), then when t > T0, (3.3) gives{

(∂2
t −∆)u = 0 in Rn × [T0, T ],

u = u0, ut = u1 on {t = T0},
(4.18)

where u0(x) = u(x, T0) and u1(x) = ut(x, T0). By the local energy result in [Ike05] we see
that when t− T0 is large enough, we have

‖u‖2Ht ≤
λE(T0, u)

t− C
, ∀t : max{T0, C} ≤ t ≤ T, (4.19)
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for some real numbers λ and C independent of u and t. Here the Ht-norm is defined by
changing T to t in (4.5). The authors remind that originally the result in [Ike05] is for
wave equations in an exterior domain with a bounded Dirichlet obstacle contained inside.
But the method in [Ike05] applies directly to the case where the obstacle is an empty set,
i.e. applies to the free upper space case, e.g. (4.18). See also [Tam81,Vod04].

Now let h ∈ H ∩ Hs0
Γ

({t = z}) and let u be associated with h by (3.3). By (4.19) and

Lemma 4.2, when T − T0 is large enough, we see that

C‖u‖2HT ≤ λ
′E(T0, u) ≤ λ′‖u‖2H

of some constant λ′ < 1, and the second equal sign is due to the tact that h ∈ H. Hence,
the chain of inequalities (4.16) can be further improved: for h ∈ H ∩Hs0

Γ
({t = z}) we have

‖K̃h‖2H ≤ C‖u‖2HT ≤ λ
′‖u‖2H = λ′‖h‖2H.

Therefore, we can conclude ‖K̃‖ < 1. The proof is complete. �

Remark 4.1. The authors think the arguments in [SU09b, Proof of Theorem 1] in proving

‖K̃‖ < 1 does not directly apply to our case. This is mainly because K̃ is defined by a limit

process, see (4.17). In the limit, the condition ‖K̃‖ < 1 becomes ‖K̃‖ ≤ 1. Consequently, it

is not possible to use a Neumann series argument to invert an operator of the form I − K̃.
See Section 4.3 for details.

4.3. Reconstruction and stability result of the linearized sound speed. By defini-
tion (4.4) we have (I −K)F = χBA′0χF . When suppF ⊂ {χ = 1}, we have (I −K)F =

χBA′0χF . Proposition 4.4 says the operator norm of K̃ is less than 1, so we can use
Neumann series to recover F . Before that, we need the following claim.

Claim 4.5. (χBA′0χ)K = K(χBA′0χ).

Proof. We have

(χBA′0χ)K = (χBA′0χ)(I − χBA′0χ) = χBA′0χ− (χBA′0χ)(χBA′0χ)

= (I − χBA′0χ)(χBA′0χ) = K(χBA′0χ).

The proof is done. �

Proposition 4.6. Assume F ∈ Hint, and f satisfies ZF = f . Let u be the solution of the
system (3.3). Then

F = (I +
∑
j≥0

K̃jK)χB(u|Σ), f = Z[(I +
∑
j≥0

K̃jK)χB(u|Σ)], (4.20)

Moreover, we have the stability

‖f‖L2(Ω) ≤ C(‖A0f‖H1(Σ) +
T 1/2

σ1/4
‖A0f‖H1(∂Γ)), (4.21)

where C = C
√
nTeCT/2[1 + ‖K‖(1 − ‖K̃‖)−1] and the constant C is independent of f , K

and T .

Remark 4.2. Note that ‖K̃jKBu‖H ≤ ‖K̃‖j‖K‖‖Bu‖H . ‖K̃‖j‖K‖‖u‖H1(Σ) with 0 <

‖K̃‖ < 1 by Proposition 4.4. The last inequality sign is due to Proposition 3.7. Hence the
infinite sum in (4.20) converges.

Proof of Proposition 4.6. Note that (4.4) gives the identity I − K = χBA′0χ, and K̃ is a

restriction of K, so I − K̃ = χBA′0χ also holds when restricted to H.
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For F ∈ Hint, we denote F1 := (I − χBA′0χ)F = KF , thus F1 ∈ H and (I − K̃)F1 =

χBA′0χF1 because I − K̃ = χBA′0χ on H, so

F1 = (I − K̃)−1χBA′0χF1 = (I − K̃)−1χBA′0χKF,

and by Claim 4.5 we obtain F1 = (I − K̃)−1KχBA′0χF . Because F1 = (I − χBA′0χ)F , we

have F − χBA′0χF = (I − K̃)−1KχBA′0χF , which finally gives

F = [I + (I − K̃)−1K]χBA′0χF = [I + (I − K̃)−1K]χBA′0F

= (I +
∑
j≥0

K̃jK)χB(u|Σ). (4.22)

We used the fact χF = F . Note that χ, K, K̃, B and u|Σ are known, thus F can be

recovered using (4.22). The invertibility of (I − K̃) is guaranteed by Proposition 4.4. The

image of K, i.e. H, falls into the domain of (I − K̃)−1, so the RHS of (4.22) is well-defined.
The identity (4.22) is an analogue of [SU09b, eq. (11)]. Recall f = ZF , so finally we
obtained (4.20).

Combining Proposition 3.7, Lemma 4.3 and the fact ‖K̃‖ < 1, we have

‖F‖H = ‖(I + (I − K̃)−1K)χBu‖H ≤ ‖χBu‖H + (1− ‖K̃‖)−1‖KχBu‖H

≤ C‖Bu‖H + C(1− ‖K̃‖)−1‖K‖(‖χBu‖H +
T 1/2

σ1/4
‖χBu‖H1(∂Γ))

≤ C
[
‖Bu‖H + (1− ‖K̃‖)−1‖K‖(‖Bu‖H +

T 1/2

σ1/4
‖χu‖H1(∂Γ))

]
≤ C[1 + ‖K‖(1− ‖K̃‖)−1](‖Bu‖H +

T 1/2

σ1/4
‖u‖H1(∂Γ))

≤ C
√
neT/2[1 + ‖K‖(1− ‖K̃‖)−1](‖u‖H1(Σ) +

T 1/2

σ1/4
‖u‖H1(∂Γ)).

On the another side, the norm of F satisfies (see (3.6))

‖F‖2H =

∫
Ω
|∇yF (y, z, z)|2 + |ZF (y, z, z)|2 dx ≥

∫
Ω
|ZF (y, z, z)|2 dx

=

∫
Ω
|f(y, z)|2 dx.

Hence,

‖f‖L2(Ω) ≤ C
√
neT/2[1 + ‖K‖(1− ‖K̃‖)−1](‖u‖H1(Σ) +

T 1/2

σ1/4
‖u‖H1(∂Γ)).

Recall u|Σ = A0f . The proof is done. �

Remark 4.3. It is worth noting that, when the dimension is odd, and when the final
time T is large enough, by the Huygens’ principle we know u(·, T ) will be zero in Ω (see
e.g. [Eva10, §2. eq. (31)]), hence the final condition in (3.17) will be v = 0 and vt = 0 in
ΓT , and this matches with the values of u and ut in ΓT because they are all zero functions
at time T . In this case, the function v will be exactly the same as u, and hence K̃ will be
a zero map, and so the reconstruction formula (4.20) can be simplified as

F = (I +K)χB(u|Σ), f = Z[(I +K)χB(u|Σ)].

However, in even dimensions we do not have such a conclusion.
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Appendix A. Well-posedness of the linear forward problem

We wish to consider the well-posedness for the wave equation in Sobolev spaces that
have a negative smoothness index with respect to time. For smooth coefficients such results
may be found in [Hör76, Chapter 9]. Since we need to deal with coefficients having finite
regularity, we will give the required results and proofs in this appendix.

Throughout this Appendix, the notation Hs with s ∈ R stands for Hs(Rn). For s ∈ R,

consider the norm ‖f‖Hs = ‖Jsf‖L2 where Js = (1−∆x)s/2, and the corresponding inner
product as (f, g)Hs = (Jsf, Jsg)L2 . We will consider wave equations of the form

∂2
t u− γ−1∂j(γa

jk∂ku) + qu = 0

where γ and (ajk) are positive. This form includes both the standard wave equation (∂2
t −

c(x)2∆x)u = 0 as well as the Riemannian wave equation (∂2
t −∆g)u = 0. However, in the

proofs we need to use the modified inner product (γu, v)L2 in order to make the elliptic part
symmetric.

We begin with an energy estimate for smooth functions.

Lemma A.1. Consider the operator

Au = −γ−1∂j(γa
jk∂ku) + qu

where (ajk(x)) is a symmetric matrix and one has for some M ≥ 1

M−1|ξ|2 ≤ ajk(x)ξjξk ≤M |ξ|2, M−1 ≤ γ(x) ≤M a.e. in Rn. (A.1)

Let s ∈ R, and assume further the Sobolev multiplier properties

‖[Js, γ−1∂j(γa
jk∂k)]‖Hs+1→L2 + ‖q‖Hs+1→Hs ≤M. (A.2)

Let T > 0 and let t0 ∈ [0, T ]. Then for any u ∈ C∞c (Rn × R) one has

1∑
j=0

‖∂jt u‖L∞((0,T ),Hs+1−j) ≤ C(‖(∂2
t +A)u‖L1((0,T ),Hs) + ‖u(t0)‖Hs+1 + ‖∂tu(t0)‖Hs),

where C = C(M,T ) > 0.

Proof. Write F = (∂2
t +A)u and v = Jsu, and define the energy

E(t) = ‖u(t)‖2Hs + ‖∇xu(t)‖2Hs + ‖∂tu(t)‖2Hs

= ‖v(t)‖2L2 + ‖∇xv(t)‖2L2 + ‖∂tv(t)‖2L2 .

Thus

M−2E(t) ≤ E1(t) := (γv(t), v(t))L2 + (γajk∂jv(t), ∂kv(t))L2 + (γ∂tv(t), ∂tv(t))L2 .

Since (∂2
t +A)u = F , note that the function v solves the equation

∂2
t v − γ−1∂j(γa

jk∂kv) = G,

where

G = JsF + [Js, γ−1∂j(γa
jk∂k)]u− Js(qu).

Differentiating E1(t) and using the equation ∂2
t v − γ−1∂j(γa

jk∂kv) = G gives

1

2
E′1(t) = (γ∂tv(t), v(t))L2 + (γajk∂jv(t), ∂k∂tv(t))L2 + (γ∂2

t v(t), ∂tv(t))L2

= (γ∂tv(t), v(t))L2 + (γG(t), ∂tv(t))L2 .

Note that

‖γ1/2G(t)‖L2 ≤M1/2(‖F (t)‖Hs +M‖u(t)‖Hs+1).
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Thus we have
1

2
E′1(t) ≤ ‖γ1/2∂tv(t)‖L2(‖γ1/2v(t)‖L2 +M1/2‖F (t)‖Hs +M3/2

√
E(t))

≤
√
E1(t)((1 +M5/2)

√
E1(t) +M1/2‖F (t)‖Hs).

Since
√
E1(t) may not be smooth, we study

√
ε+ E1(t) for ε > 0. This satisfies

d

dt

√
ε+ E1(t) =

E′1(t)

2
√
ε+ E1(t)

≤ C1

√
ε+ E1(t) +M1/2‖F (t)‖Hs

where C1 = 1 +M5/2. By Gronwall’s inequality we obtain for any τ ∈ [0, T ] that√
ε+ E1(τ) ≤ eC1T (

√
ε+ E1(t0) +M1/2

∫ τ

t0

‖F (t)‖Hse−C1t dt).

Letting ε→ 0 proves the required statement. �

We next discuss sufficient conditions for (A.2). We will use the following result.

Lemma A.2. For any a ∈ Hα0 with α0 > n/2 one has the Sobolev multiplier property

‖au‖Hα ≤ Cα0‖a‖Hα0‖u‖Hα , |α| ≤ α0.

For any a ∈ Hs0 with s0 > n/2 + 1 one has the commutator estimate

‖Js(au)− aJsu‖L2 ≤ Cs0‖∇a‖Hs0−1‖u‖Hs−1 , 1 ≤ |s| ≤ s0.

Proof. The first part follows e.g. from [Tay11, Section 13.10]. The second part for s = 1
follows from Calderón’s commutator formula [Ste93, Section VII.3.5], and for n/2+1 < s ≤
s0 it follows from the Kato-Ponce inequality [KP88]. Since we could not locate a precise
reference for this result under the given conditions, we will give a proof following [Kat75].

The commutator estimate follows if we show that the operator T = [Js, a]J1−s is bounded
on L2. First let 1 ≤ s ≤ s0. Computing the Fourier transform of Tu gives

T̂ u(ξ) = 〈ξ〉s(â ∗ 〈ξ〉1−sû)− â ∗ 〈ξ〉û

=

∫
(〈ξ〉s − 〈η〉s)â(ξ − η)〈η〉1−sû(η) dη.

Since the function f(t) = (1 + t2)s/2 satisfies f ′′(t) ≥ 0 for s ≥ 1, we have

|〈ξ〉s − 〈η〉s| ≤ s(〈ξ〉s−1 + 〈η〉s−1)|ξ − η|.

Let h be the function satisfying ĥ(ξ) = |ξ| |â(ξ)|. It follows that T = T1 + T2 where

|T̂1u(ξ)| ≤ s〈ξ〉s−1

∫
ĥ(ξ − η)〈η〉1−s|û(η)| dη,

|T̂2u(ξ)| ≤ s
∫
ĥ(ξ − η)|û(η)| dη.

Now one has

‖T̂1u‖L2 ≤ s‖hF−1{〈η〉1−s|û(η)|}‖Hs−1 ≤ s‖h‖Hs−1→Hs−1‖û‖L2 ,

‖T̂2u‖L2 ≤ s‖h‖L∞‖F−1{|û(η)|}‖L2 ≤ s‖h‖L∞‖û‖L2 .

Moreover, since s0 > n/2 + 1, we have the estimate ‖h‖L∞ ≤ C‖h‖Hs0−1 = C‖∇a‖Hs−1

and ‖h‖Hs−1→Hs−1 ≤ C‖h‖Hs0−1 = C‖∇a‖Hs0−1 . The required commutator estimate for
1 ≤ s ≤ s0 follows by using the Plancherel theorem.

Now let −s0 ≤ s ≤ −1. We use duality and compute

‖[Js, a]u‖L2 = sup
‖v‖L2=1

([Js, a]u, v)
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= sup
‖v‖L2=1

(Js−1u, J1−saJsv − J1av)

≤ sup
‖v‖L2=1

‖u‖Hs−1‖J1[J−s, a]Jsv‖L2 .

Note that

‖J1[J−s, a]Jsv‖L2 ≤ ‖[J−s, a]Jsv‖L2 + ‖[J−s,∇a]Jsv‖L2 + ‖[J−s, a]∇Jsv‖L2 .

We use the commutator estimate for [J−s, a] to conclude that the first and last terms on
the right are . ‖v‖L2 . For the middle term we use that

‖(J−s(∇a)− (∇a)J−s)Jsv‖L2 ≤ ‖(∇a)Jsv‖H−s + ‖(∇a)v‖L2 . ‖v‖L2 .

This concludes the proof. �

Remark A.1. Using Lemma A.2, one can check that a sufficient condition for (A.2) is the
following: if s0 > n/2 and

γ ≥ 1/E, ajkξjξk ≥ |ξ|2/E, ‖γ‖Hs0+1 + ‖ajk‖Hs0+1 + ‖q‖Hs0 ≤ E, (A.3)

then (A.2) holds whenever |s| ≤ s0 for some M = M(n, s, E).

We next give a simple solvability result which follows directly from the energy estimate
in Lemma A.1 and duality. In fact under suitable regularity assumptions for the coefficients
one has a unique solution in the class C([0, T ], Hs+1) ∩ C1([0, T ], Hs), see e.g. [Smi98].

Lemma A.3. Assume (A.1) and (A.3) for some s0 > n/2, and let −s0 ≤ s ≤ s0. Given
any u0 ∈ Hs+1, u1 ∈ Hs and F ∈ L1((0, T ), Hs), there is u ∈ L∞((0, T ), Hs+1) which is a
weak solution of

(∂2
t +A)u = F in Rn × (0, T ), u(0) = u0, ∂tu(0) = u1,

in the sense that

(γu, (∂2
t +A)ϕ) = (γF, ϕ)− (γu0, ∂tϕ(0)) + (γu1, ϕ(0))

for any ϕ ∈ C∞c (Rn × [0, T )). This solution satisfies

‖u‖L∞((0,T ),Hs+1) ≤ C(‖F‖L1((0,T ),Hs) + ‖u0‖Hs+1 + ‖u1‖Hs)

where C = C(n, s,M,E, T ).

Proof. Let X = C∞c (Rn × [0, T )), i.e. any ϕ ∈ X vanishes near t = T . Now if ϕ1, ϕ2 ∈ X
and (∂2

t +A)ϕ1 = (∂2
t +A)ϕ2, then Lemma A.1 with t0 = T implies that ϕ1 = ϕ2. We may

thus define the linear functional

` : (∂2
t +A)X → R, `((∂2

t +A)ϕ) = (γF, ϕ)− (γu0, ∂tϕ(0)) + (γu1, ϕ(0)).

Applying Lemma A.1 with t0 = T again, one has

|`((∂2
t +A)ϕ)| . (‖F‖L1Hs + ‖u0‖Hs+1 + ‖u1‖Hs)‖(∂2

t +A)ϕ‖L1H−s−1 .

By the Hahn-Banach theorem ` extends as a bounded linear functional on L1H−s−1, and
by duality it can be represented by a function u ∈ L∞Hs+1 satisfying

`((∂2
t +A)ϕ) = (γu, (∂2

t +A)ϕ), ϕ ∈ X,
and

‖u‖L∞Hs+1 . ‖F‖L1Hs + ‖u0‖Hs+1 + ‖u1‖Hs .

This proves the result. �

We next move to solutions that are in negative Sobolev spaces with respect to time.
For any integer k ≥ 0 and any α ∈ R, we let H−k((−T, T ), Hα(Rn)) be the dual of
Hk

0 ((−T, T ), H−α(Rn)).
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Lemma A.4. Assume (A.1) and (A.3) for some s0 > n/2 + 2. Let k ≥ 0 be an integer,
and let −s0 ≤ s ≤ s0. Given any F ∈ H−k((−T, T ), Hs) with F |{t<0} = 0, there is a unique

distributional solution u ∈ H−k((−T, T ), Hs+1) of

(∂2
t +A)u = F in Rn × (−T, T ), u|{t<0} = 0. (A.4)

This solution satisfies

‖u‖H−k((−T,T ),Hs+1) ≤ C‖F‖H−k((−T,T ),Hs)

where C = C(n, k, s,M,E, T ).

Proof. Consider the space X = C∞c (Rn × [0, T )) and the linear functional

` : (∂2
t +A)X → R, `((∂2

t +A)ϕ) = (γF,Eϕ)

where Eϕ is any smooth extension of ϕ from Rn × [0, T ) to Rn × (−T, T ). The right hand
side is well defined since F |{t<0} = 0. Choosing E to be a bounded extension operator on

Hk, one has

|`((∂2
t +A)ϕ)| . ‖F‖H−k((−T,T ),Hs)‖ϕ‖Hk((0,T ),H−s).

Applying Lemma A.1 with t0 = T to ϕ, ∂tϕ, . . . , ∂
k
t ϕ gives that

|`((∂2
t +A)ϕ)| . ‖F‖H−k((−T,T ),Hs)‖(∂2

t +A)ϕ‖Hk((0,T ),H−s−1).

Using the Hahn-Banach theorem and duality, there is u ∈ H−k((−T, T ), Hs+1) satisfying

(γu, (∂2
t +A)ϕ) = `((∂2

t +A)ϕ) = (γF,Eϕ), ϕ ∈ X,

and

‖u‖H−k((−T,T ),Hs+1) . ‖F‖H−k((−T,T ),Hs).

Given any ψ ∈ C∞c (Rn × (−T, 0)) we may find a solution of (∂2
t + A)ϕ = ψ with ϕ(0) =

∂tϕ(0) = 0. Then we have (γu, ψ) = (γF,Eϕ) for any extension of ϕ, and choosing the zero
extension gives u = 0 for t < 0. Thus u is a distributional solution of (A.4).

It remains to prove that any u ∈ H−k((−T, T ), Hs+1) satisfying

(∂2
t +A)u = 0 in Rn × (−T, T ), u|{t<0} = 0,

must be identically zero. Fix some F ∈ C∞c (Rn× (−T, T )) and choose ϕ to be a solution of

(∂2
t +A)ϕ = F in Rn × (−T, T ), ϕ(T ) = ∂tϕ(T ) = 0.

Then ϕ ∈ L∞Hs0+1. For any χ ∈ C∞([−T, T ]) with χ = 1 near [0, T ] and χ = 0 near
t = −T one has

(u, F ) = (u, (∂2
t +A)ϕ) = (u, (∂2

t +A)(χ(t)ϕ)).

Thanks to Assumption (A.3), we have γ, ajk ∈ C1,1(Rn) for j, k = 1, 2, . . . , n. By [Smi98,
Theorem 4.7], we conclude that ϕ belongs to L2Hs0+3. We claim that ϕ has more regularity
in time. Indeed, since ∂2

t ϕ = F−Aϕ, we deduce ϕ ∈ H2Hs0+1. We can iterate this argument
so that by means of the Morrey’s embedding one has ϕ ∈ C2((−T, T );Rn) and hence χ(t)ϕ
so. Since ϕ(T ) = ∂tϕ(T ) = 0 and χ(−T ) = χ′(−T )=0, one can thus integrate by parts and
obtain that

(u, F ) = ((∂2
t +A)u, χ(t)ϕ) = 0.

Since F was arbitrary we obtain u = 0 as required. �

As a consequence, we prove the well-posedness of (1.3) and (1.6).
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Proof of Proposition 1.2. We start by setting U := V +H1(t− z). Thus, U is a solution
to (1.6) if and only if V is a solution to the IVP

(η(x) ∂2
t −∆)V = −(1− η)δ(t− z) in Rn+1, V|{t<−1} = 0. (A.5)

The source on the LHS belongs to H−1
loc (R;L2(Rn)). Hence, Lemma A.4 with the configu-

ration

γ = η, ajk = η−1δjk, s = 0, k = −1 and s0 = [n/2] + 3

ensures that there exists a unique distributional solution V ∈ H−1((−T, T );H1(Rn)) to
(A.5) with

‖V‖H−1((−T,T );H1(Rn)) . ‖(1− η)δ(t− z)‖H−1((−T,T );L2(Rn)) . C(T,M).

In addition, one can verify that U := V+H1(t−z) is a solution to the IVP (1.6). Moreover,
the above estimate remains valid with U instead of V. A straightforward computation shows
that ∂2

t U satisfies (1.3). By uniqueness of distributional solutions we deduce Ũ = ∂2
t U .

Thanks to the trace theorem one has the following sequence of inequalities

‖Ũ|ΣT ‖H−3((−T,T );H1/2(Sn−1)) . ‖U‖H−1((−T,T );H1(Rn)) . C(T,M).

This finishes the proof of Proposition 1.2.

Proof of Proposition 3.1. We start by proving the uniqueness. It is reduced to proving
that zero is the unique distributional solution to the homogeneous equation

(∂2
t −∆)U = 0 in Rn+1, U |{t<−1} = 0,

which is true by [Hör83, Theorem 23.2.7]. The method we shall use to prove the existence
is the so-called progressing wave expansion method, see e.g. [Shi85, Lemma 1] and [RU14,
Theorem 1]. For any j ≥ 0, define

sj+ =

{
sj , s ≥ 0,
0, s < 0.

Note that s0
+ = H(s) is the unidimensional Heaviside function at s ∈ R. Let f ∈ Hs0

Ω
(Rn).

Assume that f ∈ Cmc (Rn), where m ∈ N (wich will be fixed later) with s0 > n/2 + m.
This is always possible due to Morrey’s inequality and the fact that supp(f) ⊂ Ω. Consider
N ∈ N and suppose that the solutions to (∂2

t − ∆)U = −f(x)δ(t − z) have the following
ansatz

U(x, t) =
N∑
j=0

aj(x)(t− z)j+ +RN (x, t), (A.6)

where the coefficients aj , j = 0, 1, . . . , N , and the remainder term RN satisfy the initial
value conditions

RN |t<−1 = 0, aj |z<−1 = 0, j = 0, 1, . . . , N.

A straightforward computation shows that the remainder term RN must hold

(∂2
t −∆)RN (x, t) = − (2 ∂z a0 + f) δ(t− z) + (∆ aN ) (t− z)N+

−
N−1∑
j=0

(2(j + 1)∂z aj+1 −∆ aj) (t− z)j+.
(A.7)

The task now is proving the existence of the coefficients (aj)
N
j=0 and RN , satisfying the

recursive identity (A.7). One expects to get a smoother remainder term RN when N is
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large enough. This can be done by dropping most of the non-smooth terms on the right of
(A.7). By standard ODE techniques, it is easy to see that if

a0(y, z) = −1

2

∫ 0

∞
f(y, s+ z) ds,

and for k = 0, 1, . . . , N − 1:

ak+1(y, z) =
1

2(k + 1)

∫ 0

−∞
(∆ ak)(y, s+ z) ds,

then the remainder term RN has to satisfy

(∂2
t −∆)RN (x, t) = (∆ aN ) (t− z)N+ , RN |{t<−1} = 0. (A.8)

Note that ak ∈ Cm−2k(Rn) and

‖ak‖L∞(Rn) . ‖f‖Cm−2k(Rn).

Setting

β = min {m− 2N − 2, N − 1} ,
we deduce that r(y, z, t) := (∆ aN ) (t− z)N+ belongs to Cβ(Rn+1). In particular, r belongs

to Hβ1

loc(R;Hβ2

loc(R
n)) with βj ≥ 0 and β1 + β2 = β. Here both β1 and β2 will be fixed later.

Since ∂2
t − ∆ is a strictly hyperbolic operator, [Hör76, Theorems 9.3.1 and 9.3.2] ensures

that there exists a unique solution RN ∈ Hβ1+1
loc (R;Hβ2

loc(R
n)) to (A.8) such that for any

given T > −1 we have

‖RN‖Hβ1+1((−1,T ];Hβ2 (Rn)) .
∥∥(∆ aN ) (t− z)N+

∥∥
Hβ1 ((−1,T ];Hβ2 (Rn))

.

We claim that RN ∈ C2(Rn+1) by suitably choosing the parameters m, N , β1, and β2.
Indeed, by [Hör83, Theorem B.2.8/Vol III], this follows if for instance

n+ 3

2
< β1 + β2 = β and

3

2
< β1,

and furthermore

‖RN‖C2((−1,T ]×Rn) . ‖RN‖Hβ1+1((−1,T ];Hβ2 (Rn))

.
∥∥(∆ aN ) (t− z)N+

∥∥
Hβ1 ((−1,T ];Hβ2 (Rn))

.
(A.9)

Equating the parameters involved in the definition of β, that is, m − 2N − 2 = N − 1;
allow us to choose m = 3N + 1, and hence β = N − 1. We distinguish two cases:

• When n is even we consider

N =
n+ 6

2
, m =

3

2
n+ 10, β1 = 2, β2 =

n

2
.

• When n is odd we consider

N =
n+ 7

2
, m =

3

2
(n+ 1) + 10, β1 = 2, β2 =

n+ 1

2
.

The desired claim is proved by combining the above choices with (A.9). On the other hand,
by (A.6) we deduce that U can be written as follows

U(x, t) = u(x, t)H(t− z),
where clearly

u(x, t) =
N∑
j=0

aj(x)(t− z)j+ +RN (x, t)
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is of class C2 in the region {t ≥ z}. This shows that u satisfies all the properties stated in
Proposition 3.1. We point out that taking s0 large enough we can make another choose of
the parameters β1, β2, m and N so that u will be in CK in the region {t ≥ z} for arbitrary
K ≥ 3. This finishes the proof of Proposition 3.1.

Relation between A and Ã. Recall that Ã(η) = Ũ |ΣT and A(η) = U|ΣT , where Ũ = ∂2
t U

and both U and Ũ vanish for t < −1. The following result can be used to estimate A terms
of Ã and vice versa. This is quite standard, but one needs some care in the case of Sobolev
spaces with negative smoothness index.

Lemma A.5. Let M be a compact smooth manifold without boundary. Let T > 1, let
k ∈ Z, and let α ∈ R. There is C > 0 such that

C−1‖u‖Hk+2((−T,T ),Hα(M)) ≤ ‖∂2
t u‖Hk((−T,T ),Hα(M)) ≤ C‖u‖Hk+2((−T,T ),Hα(M))

for any u ∈ Hk((−T, T ), Hα(M)) satisfying u|{t<−1} = 0.

The proof uses the following Poincaré type inequality.

Lemma A.6. Let a < a′ < b and let k ∈ Z. There is C > 0 so that

‖u‖Hk+1((a,b)) ≤ C‖∂tu‖Hk((a,b)), u ∈ C∞c ((a′, b]).

Proof. We begin with a simple Poincaré inequality: for any u ∈ C∞c ((a, b]) one has∫ b

a
u2 dt =

∫ b

a
∂t(t− b)u2 dt = −2

∫ b

a
(t− b)u∂tu dt ≤

1

2

∫ b

a
u2 dt+ 2

∫ b

a
(t− b)2(∂tu)2 dt.

Absorbing one term to the left hand side gives the inequality

‖u‖L2((a,b)) ≤ C‖∂tu‖L2((a,b)), u ∈ C∞c ((a, b]).

This shows that for any k ≥ 0

‖u‖2Hk+1((a,b)) =

k+1∑
j=0

‖∂jt u‖2L2((a,b)) ≤ C‖∂tu‖
2
Hk((a,b)).

Suppose now that k ≤ −1. If v ∈ C∞c ((a, b)), define

w(t) = −
∫ b

t
v(s) ds.

Then ∂tw = v. Using that |w(t)| ≤ C‖v‖L2((a,b)) for t ∈ [a, b], one has

‖w‖H−k((a,b)) ≤ C‖v‖H−k−1((a,b)).

For any u ∈ C∞c ((a, b]) and v ∈ C∞c ((a, b)), since w(b) = 0 we have∫ b

a
uv dt =

∫ b

a
u∂tw dt = −

∫ b

a
(∂tu)w dt.

Here w is in H−k0 ([a, b)) but not necessarily in H−k0 ((a, b)), so we cannot directly use duality
to get a bound in terms of ‖∂tu‖Hk . However, if we use the fact that u vanishes for a ≤ t ≤ a′,
we have∫ b

a
(∂tu)w dt =

∫ b

a
(t− a)−|k|(∂tu)(t− a)|k|w dt ≤ ‖(t− a)−|k|∂tu‖Hk‖(t− a)|k|w‖H−k0

.

Now ‖(t− a)−|k|∂tu‖Hk ≤ C‖∂tu‖Hk and ‖(t− a)|k|w‖H−k0
≤ C‖w‖H−k ≤ C‖v‖H−k−1 . We

have proved that ∫ b

a
uv dt ≤ C‖∂tu‖Hk‖v‖H−k−1 .
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Since Hk+1((a, b)) is the dual of H−k−1
0 ((a, b)), we obtain the desired inequality also for

k ≤ −1. �

Proof of Lemma A.5. By density argument, it is enough to prove the statement is true for
u ∈ C∞([−T, T ], C∞(M)) with u|{t<−1} = 0. Clearly for k ≥ 0

‖∂2
t u‖2Hk((−T,T ),Hα) ≤ ‖u‖

2
Hk+2((−T,T ),Hα)

and by duality for k ≤ −2

‖∂2
t u‖Hk((−T,T ),Hα) = sup

‖v‖
H−k0

=1
(∂2
t u, v) = sup

‖v‖
H−k0

=1
(u, ∂2

t v) ≤ C‖u‖Hk+2((−T,T ),Hα).

For the remaining case k = −1, note that

‖∂2
t u‖H−1((−T,T ),Hα) = sup

‖v‖
H1

0
=1

(∂2
t u, v) = sup

‖v‖
H1

0
=1

(∂tu, ∂tv) ≤ C‖∂tu‖L2((−T,T ),Hα)

and use that ‖∂tu‖L2((−T,T ),Hα) ≤ ‖u‖H1((−T,T ),Hα).
To prove the converse inequality, let g be some Riemannian metric onM and let (ϕl)

∞
l=1

be an orthonormal basis of L2(M) consisting of eigenfunctions of −∆g. Write ul(t) =

(u(t), ϕl)L2(M) and 〈l〉 = (1 + l2)1/2. If m ≥ 0 one has

‖u‖2Hm((−T,T ),Hα) =
m∑
j=0

∫ T

−T
‖∂jt u(t)‖2Hα dt =

m∑
j=0

∞∑
l=1

∫ T

−T
〈l〉2α|∂jt ul(t)|2 dt

=

∞∑
l=1

〈l〉2α‖ul‖2Hm((−T,T )). (A.10)

For m ≤ −1, using (A.10) to ‖v‖H−m((−T,T ),H−α) gives

‖u‖Hm((−T,T ),Hα) = sup
‖v‖

H−m0 ((−T,T ),H−α)
=1

(u, v)L2

= sup
v∈H−m0 ,

∑
l〈l〉−2α‖vl‖2H−m=1

∫ T

−T

∞∑
l=1

〈l〉αul(t)〈l〉−αvl(t) dt

≤ sup
v∈H−m0 ,

∑
l〈l〉−2α‖vl‖2H−m=1

∞∑
l=1

‖〈l〉αul‖Hm((−T,T ))‖〈l〉−αvl‖H−m0 ((−T,T ))

≤

( ∞∑
l=1

〈l〉2α‖ul‖2Hm((−T,T ))

)1/2

.

Choosing vl so that

‖〈l〉−αvl‖H−m0 ((−T,T )) =
‖〈l〉αul‖Hm((−T,T ))(∑∞

l=1〈l〉2α‖ul‖2Hm((−T,T ))

)1/2

gives that

‖u‖2Hm((−T,T ),Hα) =

∞∑
l=1

〈l〉2α‖ul‖2Hm((−T,T )) (A.11)

for any m ∈ Z.
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Now let k ∈ Z. Since ul(t) = 0 for t < −1, we obtain from (A.11) and Lemma A.6 (used
twice) that

‖u‖2Hk+2((−T,T ),Hα) ≤ C
∞∑
l=1

〈l〉2α‖∂2
t ul‖2Hk((−T,T )) ≤ C‖∂

2
t u‖2Hk((−T,T ),Hα).

This concludes the proof. �
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