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Abstract

We derive limiting distributions of symmetrized estimators of scatter, where instead of all n(n−
1)/2 pairs of the n observations we only consider nd suitably chosen pairs, 1 ≤ d < ⌊n/2⌋. It
turns out that the resulting estimators are asymptotically equivalent to the original one whenever
d = d(n) → ∞ at arbitrarily slow speed. We also investigate the asymptotic properties for arbitrary
fixed d. These considerations and numerical examples indicate that for practical purposes, moderate
fixed values of d between 10 and 20 yield already estimators which are computationally feasible and
rather close to the original ones.
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1 Introduction

Robust estimation of multivariate scatter for a distribution P on Rq, q ≥ 1, is a recurring topic in
statistics. For instance, different estimators of multivariate scatter are an important ingredient for
independent component analysis (ICA) or invariant coordinate selection (ICS), see Nordhausen
et al. (2008), Tyler et al. (2009) and the references therein. Other potential applications are clas-
sification methods and multivariate regression, see for instance Nordhausen and Tyler (2015). Of
particular interest are symmetrized estimators of scatter which are defined in Section 2. Through-
out this paper we consider independent random vectors X1, X2, . . . , Xn with distribution P . The
symmetrized estimators are just standard functionals of scatter (with given center 0 ∈ Rq) applied
to the empirical distribution

Q̂n :=

(
n

2

)−1 ∑
1≤i<j≤n

δsXj−Xi
,

where δsz := 2−1(δz + δ−z), and δz denotes Dirac measure at z ∈ Rq. Thus, Q̂n is the empirical
distribution of all n(n − 1) differences of two different observations, and it may be viewed as
a measure-valued version of a U -statistic as introduced by Hoeffding (1948). It is an unbiased
estimator of the symmetrized distribution

Q = Q(P ) := L(X1 −X2). (1)

Here and throughout, L(·) stands for ‘distribution of’. The computation of symmetrized M -
estimators of scatter is rather time-consuming, whence some people refrain from using them.
However, the symmetrized estimators have two desirable properties: one avoids the estimation
of a location nuisance parameter, and the underlying scatter functional has the so-called block
independence property as explained in Section 2; see also Dümbgen (1998) and Sirkiä et al. (2007).

To diminish the computational burden, one could replace the empirical distribution Q̂n with
the empirical distribution

Q̂n,d := (nd)−1
n∑

i=1

i+d∑
j=i+1

δsXj−Xi

for some integer 1 ≤ d ≤ (n−1)/2, where Xn+s := Xs for 1 ≤ s ≤ n. This is a measure-valued
version of a reducedU -statistic as introduced by Blom (1976) and Brown and Kildea (1978). Other
authors, e.g. Lee (1990), call this a balanced incomplete U -statistic. In the context of estimation
of scatter, Miettinen et al. (2016) illustrate the potential benefits of Q̂n,d compared to Q̂n in simu-
lations. As a preliminary proof of concept, they present the asymptotic properties of the estimator
2−1

∫
Rq yy

⊤ Q̂n,d(dy) in comparison to the usual sample covariance matrix 2−1
∫
Rq yy

⊤Q̂n(dy).
Their findings are encouraging, but the latter estimator can be computed rather easily in O(n)

steps and is non-robust of course.

The purpose of the present paper is to provide an in-depth analysis of robust and smooth
symmetrized scatter estimators based on Q̂n and Q̂n,d, where the computation time with Q̂n can
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definitely become a limiting factor. It turns out that these two scatter estimators are asymptotically
equivalent whenever d = d(n) → ∞. Here and throughout the sequel, asymptotic statements are
meant as n→ ∞. More precisely, if Σ(·) is our functional of scatter, then it will be shown that the
following statements are true: There exist two stochastically independent and centered Gaussian
random matrices G1,G2 whose distribution depends only on P and Σ(·) such that

√
n
(
Σ(Q̂n,d(n))−Σ(Q)

)
=

√
n
(
Σ(Q̂n)−Σ(Q)

)
+ op(1) →L G1

provided that d(n) → ∞. Here ‘op(1)’ denotes a random term converging to zero in probability,
and ‘→L’ denotes convergence in distribution. For any fixed integer d ≥ 1,

√
n
(
Σ(Q̂n,d)−Σ(Q)

)
→L G1 + d−1/2G2.

This explains why for sufficiently large but fixed d, the estimator Σ(Q̂n,d) is a good surrogate for
Σ(Q̂n).

An easy way to compute Σ(Q̂n,d) is to generate a data matrix containing the nd differences
Xj − Xi, where i ∈ {1, . . . , n} and j ∈ {i + 1, . . . , i + d}, and to apply Σ(·) to the empirical
distribution (nd)−1

∑nd
k=1 δ

s
Yk

of these nd vectors Yk. But for large values of nd, this may be

too cumbersome. A possible alternative is to compute the average d−1
∑d

ℓ=1Σ(Q̂
(ℓ)
n,1) with the

same d ≥ 1, where Q̂(1)
n,1, . . . , Q̂

(d)
n,1 are defined as Q̂n,1, but with d random permutations of the

observations X1, X2, . . . , Xn. It turns out that for fixed d, this average has the same asymptotic
distribution as Σ(Q̂n,d).

The remainder of this paper is organized as follows: In Section 2, we recall some basic facts
about scatter functionals and symmetrized scatter functionals as presented by Dümbgen et al.
(2015). In Section 3, the asymptotic results mentioned before are stated in detail. The theory
is illustrated with numerical examples in Section 4. All proofs are deferred to Section 5 and
Appendix A. The starting point is standard theory for complete and incomplete U -statistics as
presented, for instance, by Serfling (1980) and Lee (1990). Suitable modifications of these results,
combined with linear expansions for functionals of scatter yield the asymptotic distributions of
Σ(Q̂n) and Σ(Q̂n,d). For the averaging estimator d−1

∑d
ℓ=1Σ(Q̂

(ℓ)
n,1), we derive and use a vari-

ation of the combinatorial central limit theorem of Hoeffding (1951). This result is potentially of
independent interest, for instance, in the context of kernel mean embeddings as used in machine
learning (Muandet et al., 2017).

2 Functionals of Scatter

The material in this section is adapted from the survey of Dümbgen et al. (2015), where the latter
builds on previous work of Tyler (1987), Kent and Tyler (1991) and Dudley et al. (2009).

The space of symmetric matrices in Rq×q is denoted by Rq×q
sym, and Rq×q

sym,+ stands for its subset
of positive definite matrices. The identity matrix in Rq×q is written as Iq. The Euclidean norm of
a vector v ∈ Rq is denoted by ∥v∥ =

√
v⊤v. For matrices M,N with identical dimensions we
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write

⟨M,N⟩ := tr(M⊤N) and ∥M∥ :=
√

⟨M,M⟩,

so ∥M∥ is the Frobenius norm of M .

2.1 Functionals of scatter for centered distributions

Let Q be a given family of probability distributions on Rq which are viewed as centered around
0. In our specific applications, this is plausible, because Q consists of symmetrized distributions.
We consider a function Σ : Q → Rq×q

sym,+, called a functional of scatter, and Σ(Q) is the scatter
matrix of Q ∈ Q. For the general theory presented in the next section, we assume that Q and Σ

have two important properties.

Linear equivariance. We assume that for any nonsingular matrix B ∈ Rq×q and any distribu-
tion Q ∈ Q, the distribution QB := L(BY ) with Y ∼ Q belongs to Q too, and that

Σ(QB) = BΣ(Q)B⊤. (2)

Linear equivariance has some interesting implications. For instance, if Q ∈ Q is spherically
symmetric in the sense that QB = Q for all orthogonal matrices B ∈ Rq×q, then Σ = cIq for
some c > 0. Furthermore, if QB = Q for some matrix B = diag(ξ1, . . . , ξq) with ξ ∈ {−1, 1}q,
then for arbitrary different indices i, j ∈ {1, . . . , q}, the (i, j)-th component of Σ(Q) satisfies

Σ(Q)ij = 0 whenever ξi ̸= ξj . (3)

Differentiability. We assume that Q is an open subset of the family of all probability distribu-
tions on Rq in the topology of weak convergence. Moreover, for any distribution Q ∈ Q, there
exists a bounded, measurable and even function J = JQ : Rq → Rq×q

sym such that
∫
Rq J dQ = 0,

and for other distributions Q̌ ∈ Q,

Σ(Q̌) = Σ(Q) +

∫
Rq

J dQ̌+ o
(∥∥∥∫

Rq

J dQ̌
∥∥∥)

as Q̌ → Q weakly. Note that this differentiability property of Σ(·) implies its robustness in the
sense that Σ(Q̌) → Σ(Q) as Q̌→ Q weakly, because then

∫
Rq J dQ̌→

∫
Rq J dQ = 0.

M -functionals of scatter. An important example for Σ are M -functionals of scatter, driven by
a function ρ : [0,∞) → R with the following properties: ρ is twice continuously differentiable
such that ψ(s) := sρ′(s) satisfies the inequalities ψ′(s) > 0 for s > 0 and q < ψ(∞) :=

lims→∞ ψ(s) <∞. For any distribution Q on Rq and Σ ∈ Rq×q
sym,+, let

Lρ(Σ, Q) :=

∫
Rq

[
ρ(y⊤Σ−1y)− ρ(y⊤y)

]
Q(dy) + log det(Σ). (4)
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The function Lρ(·, Q) has a unique minimizer Σ(Q) on Rq×q
sym,+ if and only if

Q(W) <
ψ(∞)− q + dim(W)

ψ(∞)

for any linear subspace W of Rq with 0 ≤ dim(W) < q. The set Q of distributions which satisfy
the latter constraints is open with respect to weak convergence.

A particular example for a function ρ with the stated properties is given by ρ(s) = ρν(s) :=

(ν + q) log(s+ ν), where ν > 0.

The function J = JQ is rather complicated in general. But in case of a spherically symmetric
distribution Q with Σ(Q) = Iq,

J(y) =
q + 2

q + 2 + 2κ
ρ′(∥y∥2)

(
yy⊤ − ∥y∥2

q
Iq

)
+

1

1 + κ

(
ρ′(∥y∥2)∥y∥

2

q
− 1

)
Iq

for y ∈ Rq, where κ := q−1
∫
Rq ρ

′′(∥y∥2)∥y∥4Q(dy) ∈ (−1,∞).

2.2 Tyler’s (1987) functional of scatter

For any distribution Q on Rq such that Q({0}) = 0 and Σ ∈ Rq×q
sym,+, let

L0(Σ, Q) := q

∫
Rq

log
(y⊤Σ−1y

y⊤y

)
Q(dy) + log det(Σ).

Note that L0(tΣ, Q) = L0(Σ, Q) for all t > 0. The function L0(·, Q) has a unique minimizer
Σ0(Q) on the set

{
Σ ∈ Rq×q

sym,+ : det(Σ) = 1
}

if and only if

Q(W) <
dim(W)

q

for any linear subspace W of Rq with 1 ≤ dim(W) < q. The set of all distributions Q which
satisfy the latter constraints and Q({0}) = 0 is denoted by Q0.

The functional Σ0 satisfies a restricted equivariance property: For any Q ∈ Q0 and any
nonsingular matrix B ∈ Rq×q with |det(B)| = 1, equation (2) holds true with Σ0 in place of
Σ. This implies that Σ0(Q) = Iq if Q is spherically symmetric. Moreover, if QB = Q with
B = diag(ξ1, . . . , ξq) and ξ ∈ {−1, 1}q, then (3) is satisfied with Σ0 in place of Σ.

The functional Σ0 is also differentiable in the following sense: For any distribution Q ∈ Q0

there exists a bounded, continuous and even function J : Rq\{0} → Rq×q
sym such that

∫
Rq J dQ = 0,

trace
(
Σ0(Q)−1J

)
≡ 0, and for any distribution Q̌ ∈ Q,

Σ0(Q̌) = Σ0(Q) +

∫
Rq

J dQ̌+ o
(∥∥∥∫

Rq

J dQ̌
∥∥∥)

as Q̌ → Q weakly. Again, the function J = JQ is rather complicated in general. But in case of a
spherically symmetric distribution Q ∈ Q0,

J(y) = (q + 2)
(
∥y∥−2yy⊤ − q−1Iq

)
, y ∈ Rq \ {0}.
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2.3 Symmetrized M -functionals of scatter

Now we consider a general distribution P on Rq and want to define its scatter matrix without
having to specify a center of P . To this end we consider the symmetrized distribution Q = Q(P )

as defined in (1). Then the symmetrized version of the functional of scatter Σ is given by

Σs(P ) := Σ(Q(P )).

Here we assume that P belongs to the family P of all probability distributions on Rq such that
Q(P ) ∈ Q. In case of an M -functional Σ with underlying function ρ, a sufficient condition for
P ∈ P is that

P (H) = 0 for any hyperplane H ⊂ Rq. (5)

Analogously, one may define the symmetrized version of Tyler’s functional Σ0 via Σs
0(P ) :=

Σ0(Q(P )), where we assume that P belongs to the family P0 of all probability distributions on
Rp such that Q(P ) ∈ Q0. Again, condition (5) is sufficient for that.

As to the benefits of symmetrization, suppose that P is elliptically symmetric with unknown
center µ∗ ∈ Rq and unknown scatter matrix Σ∗ ∈ Rq×q

sym,+. That means, the distribution of
Σ
−1/2
∗ (X1 − µ∗) is spherically symmetric. Then Q(P ) is elliptically symmetric with center 0

and the same scatter matrix Σ∗. Note that Σ∗ is defined only up to positive multiples. This is no
problem as long as one is mainly interested in the shape matrix shape(Σ∗), where

shape(Σ) := det(Σ)−1/q Σ

for Σ ∈ Rq×q
sym,+, that is, shape(Σ) is a positive multiple of Σ with determinant one. For instance,

in connection with principal components, regression coefficients and correlation measures, mul-
tiplying Σ∗ with a positive scalar has no impact. Our specific choice of shape(Σ) is justified by
Paindaveine (2008).

Symmetrization has a second, even more important advantage: Consider an arbitrary distri-
bution P , not necessarily symmetric in any sense. Suppose that a random vector X ∼ P may
be written as X = [X⊤

a , X
⊤
b ]⊤ with independent subvectors Xa ∈ Rq(a) and Xb ∈ Rq(b). Then

Σs(P ) is block-diagonal in the sense that

Σs(P ) =

[
Σa(P ) 0

0 Σb(P )

]

with certain matrices Σa(P ) ∈ Rq(a)×q(a)
sym,+ and Σb(P ) ∈ Rq(b)×q(b)

sym,+ .

At this point, it is not clear whether Q̂n or Q̂n,d belongs to Q. As explained in Section 5, Q̂n

and Q̂n,d converge weakly in probability toQ, uniformly in 1 ≤ d ≤ (n−1)/2. Thus, IP(Q̂n ∈ Q)

and min1≤d≤(n−1)/2 IP(Q̂n,d ∈ Q) converge to 1. The same conclusion is true for (Σ0,Q0) in
place of (Σ,Q), if we assume that P has no atoms, that is, if P ({x}) = 0 for any x ∈ Rq. Here
is also a non-asymptotic result for M -estimators of scatter in case of smooth distributions P :
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Proposition 1. Suppose that P satisfies (5). With probability one, Q̂n({0}) = Q̂n,d({0}) = 0,
and in the case of n > q,

Q̂n(W), Q̂n,d(W) <
dim(W)

q

for arbitrary linear subspaces W of Rq with 1 ≤ dim(W) < q and 1 ≤ d ≤ (n− 1)/2.

This theorem implies that for the M -functional Σ(·), the symmetrized M -estimators Σ(Q̂n)

and Σ(Q̂n,d) are well-defined almost surely for 1 ≤ d ≤ (n − 1)/2, provided that n > q and P
satisfies (5). The same conclusion is true for Tyler’s M -functional Σ0(·) in place of Σ(·).

3 Asymptotic Expansions and Distributions

In what follows, Σ(·) denotes either a linear equivariant and differentiable scatter functional or
Tyler’s functional Σ0(·). In addition to Q̂n and Q̂n,d, we consider the usual empirical distribution
of the observations Xi,

P̂n := n−1
n∑

i=1

δXi
.

Theorem 2. Suppose that Σ(Q) is well-defined for Q = Q(P ). With J = JQ, define

H1(x) := IE J(x−X1) and H2(x, y) := J(x− y)−H1(x)−H1(y)

for x, y ∈ Rq, where J(0) := 0 in connection with Tyler’s functional. Let G1 and G2 be two
stochastically independent Gaussian random matrices in Rq×q

sym such that IEG1 = IEG2 = 0, and

IE
(
⟨A,G1⟩2

)
= IE

(
⟨A,H1(X1)⟩2

)
,

IE
(
⟨A,G2⟩2

)
= IE

(
⟨A,H2(X1, X2)⟩2

)
for all matrices A ∈ Rq×q

sym. If (n− 1)/2 ≥ d(n) → ∞, then

Σ(Q̂n)

Σ(Q̂n,d(n))

}
= Σ(Q) + 2

∫
Rq

H1 dP̂n + op(n
−1/2).

For fixed integers d ≥ 1,

Σ(Q̂n,d) = Σ(Q̂n) +Mn,d + op(n
−1/2),

where

Mn,d := (nd)−1
n∑

i=1

i+d∑
j=i+1

H2(Xi, Xj).

Moreover, (√
n

∫
Rq

H1 dP̂n,
√
ndMn,d

)
→L (G1,G2).

In particular, as d(n) → ∞,
√
n
(
Σ(Q̂n)−Σ(Q)

)
√
n
(
Σ(Q̂n,d(n))−Σ(Q)

) }
→L 2G1,
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whereas for fixed integers d ≥ 1,
√
n
(
Σ(Q̂n,d)−Σ(Q)

)
→L 2G1 + d−1/2G2.

It remains to explain the asymptotic properties of the alternative estimator d−1
∑d

ℓ=1Σ(Q̂
(ℓ)
n,1),

where Q̂(ℓ)
n,1 is defined as Q̂n,1 with (XΠ(ℓ)(i))

n
i=1 in place of (Xi)

n
i=1. Here Π(1), . . . ,Π(d) are

independent random permutations of {1, 2, . . . , n}, and independent from the data (Xi)
n
i=1.

Theorem 3. For fixed d ≥ 1 and 1 ≤ ℓ ≤ d,

Σ(Q̂
(ℓ)
n,1) = Σ(Q) + 2

∫
Rq

H1 dP̂n +M
(ℓ)
n,1 + op(n

−1/2),

where

M
(ℓ)
n,1 := n−1

n∑
i=1

H2(XΠ(ℓ)(i), XΠ(ℓ)(i+1))

with Π(ℓ)(n+ 1) := Π(ℓ)(1). Moreover,

√
n
(∫

Rq

H1 dP̂n, M
(1)
n,1, . . . ,M

(d)
n,1

)
→L

(
G1, G

(1)
2 , . . . ,G

(d)
2

)
with independent random matrices G1 and G

(1)
2 , . . . ,G

(d)
2 , where G1 and G

(ℓ)
2 have the same

distribution as G1 and G2, respectively, in Theorem 2. In particular,

√
n
(
d−1

d∑
ℓ=1

Σ(Q̂
(ℓ)
n,1)−Σ(Q)

)
→L 2G1 + d−1/2G2.

This theorem shows that averaging Σ(Q̂
(ℓ)
n,1) over ℓ = 1, . . . , d is asymptotically equivalent

to computing Σ(Q̂n,d). One could guess that averaging over d(n) random permutations with
d(n) → ∞ leads to an estimator with the same asymptotic distributions as Σ(Q̂n). But this is not
obvious, because the average of d(n) random variables which are uniformly of order op(1) need
not be of order op(1) too.

4 Numerical Illustration

The computations are based on Partial Newton algorithms proposed by Dümbgen et al. (2016).
They are implemented in the R package fastM by Dümbgen et al. (2014) which is publicly avail-
able on CRAN.

As explained in Section 2.3, in numerous applications one is mainly interested in the scatter
matrix up to positive scalars. Thus we illustrate the previous results with the shape matrix H :=

shape(Σ(Q)) and its estimators

Ĥn := shape(Σ(Q̂n)),

Ĥn,d := shape(Σ(Q̂n,d)),

Ĥ
rand
n,d := shape

(
d−1

d∑
ℓ=1

Σ(Q̂
(ℓ)
n,1)

)
.
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Figure 1: (q, n) = (10, 100): Relative approximation errors D(Ĥn,d, Ĥn)/D(Ĥn,H).

On the one hand, we look at the approximation errors, that is, the distances between Ĥn,d, Ĥ
rand
n,d

and the full estimator Ĥn. The distance between two matrices Σ1,Σ2 ∈ Rq×q
sym,+ is measured by

the so-called geodesic distance

D(Σ1,Σ2) :=
( q∑
j=1

log[λj(Σ
−1
1 Σ2)]

2
)
,

where λ1(·) ≥ · · · ≥ λq(·) are the ordered real eigenvalues of a matrix A ∈ Rq×q. On the other
hand, we look at the estimation errors, that is, the distances between the estimators Ĥn, Ĥn,d,

Ĥ
rand
n,d and the true shape matrix H .

We simulated 2000 times a data set of size n = 100 in dimension q = 10, where each observa-
tionXi had independent components with standard exponential distribution. The scatter functional
was the M -functional with ρ(s) = ρ1(s) = (q + 1) log(s+ 1) for s ≥ 0. In this particular exam-
ple, Σ(P ) is not a multiple of Iq, but the symmetrized distributions Q = Q(P ) yields H = Iq.
Figures 1 and 2 show box-and-whiskers plots of the resulting relative approximation errors

D(Ĥn,d, Ĥn)/D(Ĥn,H) and D(Ĥ
rand
n,d , Ĥn)/D(Ĥn,H),

respectively, for 1 ≤ d ≤ 49. Figure 3 shows these ratios in one plot for 1 ≤ d ≤ 15.

Figures 4, 5 and 6 are analogous, this time with the relative estimation errors

D(Ĥn,d,H)/D(Ĥn,H) and D(Ĥ
rand
n,d ,H)/D(Ĥn,H).
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Figure 2: (q, n) = (10, 100): Relative approximation errors D(Ĥ
rand
n,d , Ĥn)/D(Ĥn,H).
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Figure 3: (q, n) = (10, 100): Relative approximation errors D(Ĥn,d, Ĥn)/D(Ĥn,H) (blue)

and D(Ĥ
rand
n,d , Ĥn)/D(Ĥn,H) (green).
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Figure 4: (q, n) = (10, 100): Relative estimation errors D(Ĥn,d,H)/D(Ĥn,H).

The median of the estimation error D(Ĥn,H) in the simulations was equal to 1.1643. Interest-
ingly, the relative estimation errors approach 1 more quickly than the relative approximation arrors
approach 0. With respect to relative estimation error, a value d = 10, say, seems to be sufficient,
although the approximation errors for this value are still substantial.

We did the same simulations and calculations for sample size n = 400 instead of n = 100.
Figures 7 and 8 show the resulting relative approximation errors and relative estimation errors.
This time, the median of D(Ĥn,H) was only 0.5662. But note that the relative errors are sim-
ilarly distributed for both sample sizes. The main difference seems to be that with increasing
sample size the differences between Ĥn,d and Ĥ

rand
n,d become smaller.

The simulation results are coherent with the asymptotic theory and confirm our claim that
moderately large values of d yield already estimators with similar precision as the full symmetrized
M -estimators. Therefore for larger sample sizes, computational costs are no longer a hindrance to
apply symmetrized scatter matrices in practice.

5 Proofs

Proof of Proposition 1. Some of our arguments are similar to parts of Section 8.2 of Dümbgen
et al. (2015), but for the reader’s convenience, we present a complete and self-contained proof
here.
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Figure 5: (q, n) = (10, 100): Relative estimation errors D(Ĥ
rand
n,d ,H)/D(Ĥn,H).
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Figure 6: (q, n) = (10, 100): Relative estimation errors D(Ĥn,d,H) (blue) and D(Ĥ
rand
n,d ,H)

(green).
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Figure 7: (q, n) = (10, 400): Relative approximation errors D(Ĥn,d, Ĥn)/D(Ĥn,H) (blue)

and D(Ĥ
rand
n,d , Ĥn)/D(Ĥn,H) (green).
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Figure 8: (q, n) = (10, 400): Relative estimation errors D(Ĥn,d,H)/D(Ĥn,H) (blue) and

D(Ĥ
rand
n,d ,H)/D(Ĥn,H) (green).
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Step 0. For arbitrary different indices i, j ∈ {1, . . . , n}, the vectorXj−Xi ̸= 0 almost surely,
because IP(Xj −Xi = 0) = IE IP(Xj ∈ {Xi} |Xi) = 0. Hence, Q̂n({0}) = Q̂n,d({0}) = 0 for
1 ≤ d ≤ (n− 1)/2.

Step 1. Let S be the set of all index sets {i, j}, 1 ≤ i < j ≤ n. Let Eo ⊂ S , and set Vo :=⋃
E∈Eo E. Suppose that the graph (Vo, Eo) is connected. That means, for arbitrary {i, j} ∈ E ,

there exist T ∈ N and indices i0, i1, . . . , iT in Vo such that i0 = i, iT = j, and {it−1, it} ∈ Eo for
1 ≤ t ≤ T . Then for any index io ∈ Vo, the following three linear spaces are identical:

W1 := span(Xi −Xio : i ∈ Vo),

W2 := span(Xj −Xi : {i, j} ∈ Eo),

W3 := span(Xj −Xi : i, j ∈ Vo).

The inclusions W1,W2 ⊂ W3 are obvious. On the other hand, for i, j ∈ Vo, the vectorXj−Xi =

(Xj − Xio) − (Xi − Xio) ∈ W1, whence W3 ⊂ W1. Finally, by connectednes of (Vo, Eo), for
arbitrary different indices i, j ∈ Vo, there exist T ∈ N and indices i0, i1, . . . , iT ∈ Vo such that
i0 = i, iT = j, and {it−1, it} ∈ Eo for 1 ≤ t ≤ T . Hence, Xj −Xi =

∑T
t=1(Xit −Xit−1) ∈ W2,

and this shows that W3 ⊂ W2.

Step 2. Let E be an arbitrary subset of S, and let V :=
⋃

E∈E E. Let V1, . . . , VM be the
M ≥ 1 maximal connected components of the graph (V, E). That means, E =

⋃M
m=1 Em with

sets Em ⊂ S such that the sets Vm :=
⋃

E∈Em E are disjoint, and each subgraph (Vm, Em) is
connected. Then, the linear space

W := span(Xi −Xj : {i, j} ∈ E)

has almost surely dimension

dim(W) = min(S, q) with S :=
M∑

m=1

(#Vm − 1).

To verify this, fix an arbitrary point im ∈ Vm for 1 ≤ m ≤M . Then Step 1 shows that

W =

M∑
m=1

span(Xj −Xim : j ∈ Vm \ {im}),

and it suffices to show that in case of S ≤ q, the vectors Xj − Xim , j ∈ Vm \ {im}, 1 ≤ m ≤
M , are almost surely linearly independent. But this can be shown by induction: Let

{
{im, j} :

1 ≤ m ≤ M, j ∈ Vm \ {im}
}
= {(k1, ℓ1), . . . , (kS , ℓS)} with k1, . . . , kS ∈ {i1, . . . , iM} and

ℓs ∈
⋃M

m=1 Vm \ {im}. Then, by Step 0, Xℓ1 −Xk1 ̸= 0 almost surely, and for 1 ≤ s < S and
Ws := span(Xℓr −Xkr : 1 ≤ r ≤ s),

IP(Xℓs+1 −Xks+1 ̸∈ Ws)

= IE IP
(
Xℓs+1 ̸∈ Xks+1 +Ws

∣∣Xi : i ∈ {i1, . . . , iM} ∪ {ℓ1, . . . , ℓs}
)
= 0.
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Step 3. With (V, E) and its subgraphs (Vm, Em), 1 ≤ m ≤M , as in Step 2,

#E ≤
M∑

m=1

(
#Vm
2

)
≤

(
S + 1

2

)
.

The first inequality is a consequence of #Em ≤
(
#Vm

2

)
for 1 ≤ m ≤ M . The second inequality

follows from the fact that the mapping

E ∋ {i, j} 7→

{
{i, j} for i, j ∈ Vm \ {im}, 1 ≤ m ≤M,

{0, j} for i = im, j ∈ Vm \ {im}, 1 ≤ m ≤M,

is injective, and the images are subsets of {0} ∪
⋃M

m=1 Vm \ {im} with two elements.

For a fixed integer d ≥ 1 with d ≤ (n − 1)/2, let Sd be the subset of all {i, j} ∈ S such that
0 < j − i ≤ d or j − i ≥ n− d. That means, for any i ∈ {1, . . . , n} there are exactly 2d indices
j ∈ {1, . . . , n} such that {i, j} ∈ Sd. Then

#(E ∩ Sd) ≤ Sd unless M = 1 and V = {1, 2, . . . , n}.

To see this, note that in case of M > 1 or V ̸= {1, 2, . . . , n}, all sets Vm are different from
{1, . . . , n}. For a given m ∈ {1, . . . ,M}, let k ∈ {1, . . . , n} \ Vm. To get an upper bound for
#(Em∩Sd), we may assume without loss of generality that k = n. Otherwise, we could transform
{1, 2, . . . , n} with the permutation i 7→ T (i) := 1[i≤k](i+n−k)+1i>k(i−k), because {i, j} ∈ Sd

if and only if {T (i), T (j)} ∈ Sd. Now, if i0 < i1 < · · · < iqm < n are the elements of Vm, then

#(Em ∩ Sd) = #
{
{ia, ib} : 0 ≤ a < b ≤ qm, ib − ia ≤ d or ib − ia ≥ n− d

}
≤#

{
{a, b} : 0 ≤ a < b ≤ qm, b− a ≤ d

}
+ #

{
{i, j} : 1 ≤ i < j < n, j − i ≥ n− d

}
= #

{
{a, a+ c} : 1 ≤ c ≤ d, 0 ≤ a ≤ qm − c

}
+ #

{
{i, j} : 1 ≤ i < d, n− d+ i ≤ j < n

}
≤

d∑
c=1

(qm + 1− c) +
d−1∑
i=1

(d− i)

= qmd−
d−1∑
c′=0

c′ +

d−1∑
i′=1

i′ = qmd = (#Vm − 1)d.

Step 4. Since there are only finitely many nonempty subsets E of S, we may conclude from
Step 2 that for any nonempty set E ⊂ S , the dimension of span(Xj −Xi : {i, j} ∈ E) is given
by S = S(E) as defined in Step 2. Now we consider an arbitrary linear subspace W of Rq with
dimension q′ < q such that E = E(W) :=

{
{i, j} ∈ S : Xj − Xi ∈ W

}
is nonempty. Then

Step 3 implies that

Q̂n(W) ≤
(
n

2

)−1(q′ + 1

2

)
and Q̂n,d(W) ≤ q′

n
.
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But (
n

2

)−1(q′ + 1

2

)
=

q′

q

q(q′ + 1)

n(n− 1)
≤ q′

q

q2

n(n− 1)
and

q′

n
=

q′

q

q

n
.

Both factors q2/(n(n − 1)) and q/n are strictly smaller than 1 if and only if n > q. This proves
our claim about Q̂n and Q̂n,d.

Some facts about complete and balanced incomplete U -statistics. Let us first recollect some
well-known facts about U -statistics of order two (Serfling, 1980; Lee, 1990), with obvious adap-
tations to vector-valued kernels and the particular distributions Q̂n and Q̂n,d. For some integer
r ≥ 1, let f : Rq → Rr be measurable such that IE(∥f(X1−X2)∥2) <∞. With the symmetrized
function f s(x) := 2−1

(
f(x) + f(−x)

)
, define f0 := IE f(X1 −X2) = IE f s(X1 −X2) and

f1(x) := IE f s(x−X1)− f0, f2(x, y) := f s(x− y)− f0 − f1(x)− f1(y)

for x, y ∈ Rq. Then the covariance matrices Γ := Var(f(X1 −X2)), Γs := Var(f s(X1 −X2)),
Γ1 := Var(f1(X1)) and Γ2 := Var(f2(X1, X2)) satisfy the (in)equalities

Γ ≥ Γs = 2Γ1 + Γ2.

Here and subsequently, inequalities between symmetric matrices refer to the Loewner partial order
on Rq×q

sym. The random vectors f1(Xi), 1 ≤ i ≤ n, and f2(Xi, Xj), 1 ≤ i < j ≤ n, are centered
and uncorrelated, and

Un :=

∫
Rq

f dQ̂n = f0 + 2

∫
Rq

f1 dP̂n +Mn,

Un,d :=

∫
Rq

f dQ̂n,d = f0 + 2

∫
Rq

f1 dP̂n +Mn,d,

where

Mn :=

(
n

2

)−1 ∑
1≤i<j≤n

f2(Xi, Xj), Mn,d := (nd)−1
n∑

i=1

i+d∑
j=i+1

f2(Xi, Xj).

Moreover, IE(Un) = IE(Un,d) = f0, and

nVar(Un) = 4Γ1 + nVar(Mn) = 4Γ1 + 2(n− 1)−1Γ2

nVar(Un,d) = 4Γ1 + nVar(Mn,d) = 4Γ1 + d−1Γ2

}
≤ 2Γ. (6)

The final ingredient for the proof of Theorem 2 is a result about the asymptotic joint distribu-
tion of

∫
Rq f1 dP̂n and Mn,d.

Proposition 4. For any fixed d ≥ 1, the random pair
(√
n
∫
Rq f1 dP̂n,

√
ndMn,d

)
converges in

distribution to Nr(0,Γ1)⊗Nr(0,Γ2).
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Proof of Proposition 4. The proof of this result uses a standard trick for sequences of m-depen-
dent random variables, in our case, m = d+ 1. For a fixed number k ≥ d, let

Sn := n−1/2
n∑

i=1

f1(Xi) =
√
n

∫
Rq

f1 dP̂n,

Sk
n := n−1/2

⌊n/k⌋∑
ℓ=1

Y k
ℓ with Y k

ℓ :=

ℓk∑
i=ℓk−k+1

f1(Xi),

Tn := (nd)−1/2
n∑

i=1

i+d∑
j=i+1

f2(Xi, Xj) =
√
ndMn,d,

T k
n := (nd)−1/2

⌊n/k⌋∑
ℓ=1

Zk
ℓ with Zk

ℓ :=

ℓk∑
i=ℓk−k+1

min(i+d,ℓk)∑
j=i+1

f2(Xi, Xj).

The random pairs (Y k
ℓ , Z

k
ℓ ), ℓ ≥ 1, are independent and identically distributed with IE(Y k

ℓ ) =

IE(Zk
ℓ ) = 0 and

Var(Y k
ℓ ) = k Γ1, Var(Zk

ℓ ) =
(
k − d− 1

2

)
dΓ2, Cov(Y k

ℓ , Z
k
ℓ ) = 0.

Consequently, it follows from the multivariate central limit theorem and Slutzky’s lemma that

(Sk
n, T

k
n ) →L Nr(0,Γ1)⊗Nr

(
0,
(
1− d− 1

2k

)
Γ2

)
,

and the distribution on the right hand side converges weakly to Nr(0,Γ1)⊗Nr(0,Γ2) as k → ∞.
Moreover,

IE(∥Sn − Sk
n∥2) ≤ k − 1

n
trace(Γ1) → 0,

IE(∥Tn − T k
n∥2) ≤

(d− 1

2k
+
k − 1

nd

)
trace(Γ2) → d− 1

2k
trace(Γ2),

and the right hand side converges to 0 as k → ∞. This implies that (Sn, Tn) converges in distri-
bution to Nr(0,Γ1)⊗Nr(0,Γ2).

Proof of Theorem 2. Let Q̌n stand for Q̂n, Q̂n,d(n) with (n − 1)/2 ≥ d(n) → ∞, or Q̂n,d with
fixed d ≥ 1. For any bounded, continuous function f : Rq → R,

IE
∣∣∣∫

Rq

f dQ̌n −
∫
Rq

f dQ
∣∣∣ ≤ (2/n)1/2∥f∥∞.

This follows from inequality (6) applied to real-valued functions. This implies that dL(Q̌n, Q) →p

0. In particular,

Σ(Q̌n) = Σ(Q) +

∫
Rq

J dQ̌n + o
(∥∥∥∫

Rq

J dQ̌n

∥∥∥).
We may identify Rq×q

sym with Rr, where r = q(q + 1)/2. Then
∫
Rq J dQ̌n is a (complete or bal-

anced incomplete) U -statistic with vector-valued kernel function, and it follows from boundedness
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of J(·) with
∫
Rq J dQ = 0 and the general considerations about U -statistics that

∫
Rq J dQ̌n =

Op(n
−1/2). Consequently,

Σ(Q̌n) = Σ(Q) +

∫
Rq

J dQ̌n + op(n
−1/2),

so we may replace Σ(Q̌n) − Σ(Q) with the matrix-valued U -statistic
∫
Rq J dQ̌n. But then the

assertions of Theorem 2 are direct consequences of the general considerations about U -statistics
and Proposition 4.

For the proof of Theorem 3 we need a variation of Proposition 4 for the random vectors

M̃n,1 := n−1
n∑

i=1

f2(XΠ(i), XΠ(i+1)),

where Π is uniformly distributed on the set of all permutations of {1, 2, . . . , n}, independent from
(Xi)

n
i=1, and Π(n+ 1) := Π(1).

Proposition 5. Let dL(·, ·) be a metric on the space of probability distributions on Rr which
metrizes weak convergence. Then,

dL

(
L
(√
n M̃n,1

∣∣ (Xi)
n
i=1

)
,Nr(0,Γ2)

)
→p 0.

Proof of Proposition 5. By means of the Cramér–Wold device, it suffices to consider the case
r = 1. Then the random variable

√
n M̃n,1 can be written as

∑n
i=1AΠ(i),Π(i+1) with the random

matrix
A = A(X1, . . . , Xn) :=

(
n−1/21[i ̸=j]f2(Xi, Xj)

)n
i,j=1

∈ Rn×n
sym .

As explained in the appendix, there exist permutations B = B(· |Π) and B∗ = B∗(· |Π) such
that

n∑
i=1

AΠ(i),Π(i+1) =

n∑
i=1

Ai,B∗(i),

while B is uniformly distributed on the set of all permutations of {1, . . . , n}, and

IE
(
#
{
i ∈ {1, . . . , n} : B(i) ̸= B∗(i)

})
≤ 1 + log(n).

Consequently,
√
nM̃n,1 =

n∑
i=1

Ai,B(i) +Rn,

where Rn :=
∑n

i=1(Ai,B∗(i) −Ai,B(i)) satisfies

IE |Rn| ≤ 2(1 + log(n))n−1/2 IE |f2(X1, X2)| → 0.

Hence, it suffices to show that the conditional distribution of
∑n

i=1Ai,B(i), given (Xi)
n
i=1, con-

verges weakly in probability to N (0,Γ2). Distributions of this type have been investigated by
Hoeffding (1951). It follows from Hoeffding’s results and elementary inequalities presented in
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Section A.2 that it suffices to verify the following three properties of the random symmetric ma-
trices A = A(X1, . . . , Xn):

IE
∣∣∣n−1

n∑
i,j=1

A2
i,j − Γ2

∣∣∣ → 0, (7)

IE
( n∑
i=1

Ā2
i

)
→ 0, (8)

IE
(
n−1

n∑
i,j=1

A2
i,j min(|Ai,j |, 1)

)
→ 0, (9)

where Āi := n−1
∑n

j=1Ai,j .

For an arbitrary threshold c > 0, we split f2(x, y)2 into the bounded function gc(x, y) :=

f2(x, y)
21[f2(x,y)2≤c] and the remainder hc(x, y) := f2(x, y)

21[f2(x,y)2>c]. Then the left-hand
side of (7) equals

IE
∣∣∣n−2

n∑
i,j=1

1[i ̸=j]f2(Xi, Xj)
2 − Γ2

∣∣∣
≤ n−1Γ2 + 2 IEhc(X1, X2) + n−2 IE

∣∣∣ n∑
i,j=1

(
gc(Xi, Xj)− IE gc(X1, X2)

)∣∣∣
≤ n−1Γ2 + 2 IEhc(X1, X2) + n−2Var

( n∑
i,j=1

gc(Xi, Xj)
)1/2

≤ n−1Γ2 + 2 IEhc(X1, X2) + cn−1/2

→ 2 IEhc(X1, X2).

The last inequality follows from the facts that

Cov
(
gc(Xi, Xj), gc(Xk, Xℓ)

) {
= 0 if {i, j} ∩ {k, ℓ} = ∅,
≤ c2/4 else,

and that the number of quadruples (i, j, k, ℓ) with {i, j} ∩ {k, ℓ} ≠ ∅ is smaller than 4n3. Since
by dominated convergence, IEhc(X1, X2) → 0 as c→ ∞, Condition (7) is satisfied.

The left-hand side of (8) equals n IE(Ā2
1), and Ā1 is the sum of the uncorrelated, centered

random variables f2(X1, Xj), 2 ≤ j ≤ n, times n−3/2. Consequently,

n IE(Ā2
1) ≤ n−1 IE

(
f2(X1, X2)

2
)
→ 0.

Finally, the left-hand side of (9) is not larger than

IE
(
f2(X1, X2)

2min{n−1/2|f2(X1, X2)|, 1}
)
→ 0

by dominated convergence.
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Proof of Theorem 3. Since (P̂n, Q̂
(ℓ)
n,1,M

(ℓ)
n,1) has the same distribution as (P̂n, Q̂n,1,Mn,1), the

first assertion is a direct consequence of Theorem 2 with d = 1. The second part is a consequence
of the central limit theorem, applied to

∫
Rq H1 dP̂n, and Proposition 5, applied to

√
nM

(ℓ)
n,1. The

final statement is a consequence of the first and second part and the continuous mapping theorem.

A Auxiliary results

A.1 A particular coupling of random permutations

Preparations. For an integer n ≥ 1, let Sn be the set of all permutations of ⟨n⟩ := {1, 2, . . . , n}.
A cycle in Sn is a permutation σ ∈ Sn such that for m ≥ 1 pairwise different points a1, . . . , am ∈
⟨n⟩,

a1 7→ a2 7→ · · · 7→ am 7→ a1,

while σ(i) = i for i ∈ ⟨n⟩ \ {a1, . . . , am}. (In case of m = 1, σ(i) = i for all i ∈ ⟨n⟩.) We write

σ = (a1, . . . , am)c

for this mapping and note that it has m equivalent representations

σ = (a1, . . . , am)c = (a2, . . . , am, a1)c = · · · = (am, a1, . . . , am−1)c.

Any permutation σ ∈ Sn can be written as

σ = (a11, . . . , a1m(1))c ◦ · · · ◦ (ak1, . . . , akm(k))c,

where the sets {aj1, . . . , ajm(j)}, 1 ≤ j ≤ k, form a partition of ⟨n⟩. Note that the cycles
(aj1, . . . , ajm(j))c, 1 ≤ j ≤ m, commute. This representation of σ as a combination of cycles is
unique if we require, for instance, that

ajm(j) = min{aj1, . . . , ajm(j)} for 1 ≤ j ≤ k

and

a1m(1) < · · · < akm(k).

In what follows, let S∗
n be the set of all permutations σ ∈ Sn consisting of just one cycle, i.e.

σ = (a1, a2, . . . , an)c

with pairwise different numbers a1, a2, . . . , an ∈ ⟨n⟩.
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The coupling. The standardized cycle representation of σ ∈ Sn gives rise to a particular map-
ping Sn ∋ π 7→ (σ, σ∗) ∈ Sn × S∗

n such that π 7→ σ is bijective. For fixed π ∈ Sn and any index
i ∈ ⟨n⟩ let

Mi := ⟨n⟩ \ {π(s) : 1 ≤ s < i},

i.e. ⟨n⟩ =M1 ⊃M2 ⊃ · · · ⊃Mn = {π(n)}, and #M(i) = n+ 1− i. Let 1 ≤ t1 < t2 < · · · <
tk = n be those indices i such that π(i) = min(Mi). Then

σ :=
(
π(1), . . . , π(t1)

)
c
◦
(
π(t1 + 1), . . . , π(t2)

)
c
◦ · · · ◦

(
π(tk−1 + 1), . . . , π(tk)

)
c

defines a permutation of ⟨n⟩ with standardized cycle representation. This is essentially the con-
struction used by Feller (1945) to investigate the number of cycles of a random permuation. More-
over,

σ∗ :=
(
π(1), π(2), . . . , π(n)

)
c

defines a permutation in S∗
n such that

{
i ∈ ⟨n⟩ : σ(i) ̸= σ∗(i)

}
=

{
∅ if k = 1,

{t1, . . . , tk} if k ≥ 2.

Suppose that π is a random permutation with uniform distribution on Sn. Then σ is a ran-
dom permutation with uniform distribution on Sn too, because π 7→ σ is a bijection. Since the
conditional distribution of π(i), given (π(s))1≤s<i, is the uniform distribution on Mi, the random
variables

Yi := 1[π(i)=min(Mi)], i ∈ ⟨n⟩,

are stochastically independent Bernoulli random variables with IP(Yi = 1) = (n + 1 − i)−1 =

1− IP(Yi = 0). Consequently,

IE
(
#
{
i ∈ ⟨n⟩ : σ(i) ̸= σ∗(i)

})
≤

n∑
i=1

(n+ 1− i)−1 = 1 +

n∑
j=2

j−1 ≤ 1 + log(n),

because j−1 ≤
∫ j
j−1 x

−1 dx = log(j)− log(j − 1) for 2 ≤ j ≤ n.

A.2 Some inequalities related to Lindeberg type conditions

In connection with Gaussian approximations and Stein’s method, see Stein (1986) or Barbour and
Chen (2005), the quantity

L(X) := IE
(
X2min(|X|, 1)

)
for a square-integrable random variable X plays an important role. Elementary considerations
show that

h(x) ≤ x2min(|x|, 1) ≤
√
2h(x) with h(x) :=

|x|3√
1 + x2
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for arbitrary x ∈ R. Moreover, h : R → [0,∞) is an even, convex function such that h(2x) ≤
8h(x). Consequently, for arbitrary x, y ∈ R, Jensen’s inequality implies that

(x+ y)2min(|x+ y|, 1) ≤
√
2 IEh(x+ y)

≤ 2−1/2
(
h(2x) + h(2y)

)
≤

√
32 IEh(x) +

√
32 IEh(y)

≤ 6x2min(|x|, 1) + 6y2min(|y|, 1) ≤ 6x2min(|x|, 1) + 6y2.

For a symmetric matrix A ∈ Rn×n, we define its row means Āi := n−1
∑n

j=1Aij and its
overall mean Ā := n−2

∑n
i,j=1Aij . Let Ã := (Aij − Āi − Āj + Ā)ni,j=1. Then elementary

calculations and the previous inequalities reveal that

0 ≤ n−1
n∑

i,j=1

A2
ij − n−1

n∑
i,j=1

Ã2
ij ≤ 2

n∑
i=1

Ā2
i

and

n−1
n∑

i,j=1

Ã2
ij min(|Ãij |, 1) ≤ 6n−1

n∑
i,j=1

A2
ij min(|Aij |, 1) + 12

n∑
i=1

Ā2
i .
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SIRKIÄ, S., TASKINEN, S. and OJA, H. (2007). Symmetrised M -estimators of multivariate
scatter. J. Multivar. Anal. 98 1611–1629.

STEIN, C. (1986). Approximate computation of expectations, vol. 7 of Institute of Mathematical
Statistics Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hayward,
CA.

23



TYLER, D. E. (1987). A distribution-free M -estimator of multivariate scatter. Ann. Statist. 15
234–251.
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