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The forward scattering amplitude of a small dipole at high energies is given in the mean field
approximation by the Balitsky-Kovchegov (BK) evolution equation. It requires an initial conditionNðr; x0Þ
describing the scattering of a dipole with size r off the target that is probed at momentum fraction x0. Rather
than using ad hoc parametrizations tuned to high-energy data at x ≪ x0, here we attempt to construct an
initial scattering amplitude that is consistent with low-energy, large-x properties of the proton. We start
from a nonperturbative three quark light-cone model wave function from the literature. We add OðgÞ
corrections due to the emission of a gluon, and Oðg2Þ virtual corrections due to the exchange of a gluon,
computed in light-cone perturbation theory with exact kinematics. We provide numerical data as well as
analytic parametrizations of the resulting Nðr; x0Þ for x0 ¼ 0.01–0.05. Solving the BK equation in the
leading logarithmic approximation towards lower x, we obtain a fair description of the charm cross section
in deeply inelastic scattering measured at HERA by fitting one parameter, the coupling constant αs ≃ 0.2.
However, without the option to tune the initial amplitude at x0, the fit of the high precision data results in
χ2=Ndof ¼ 2.3 at Ndof ¼ 38, providing clear statistical evidence for the need of systematic improvement,
e.g., of the photon wave function, evolution equation, and initial condition.

DOI: 10.1103/PhysRevD.107.114024

I. INTRODUCTION

In deep inelastic scattering (DIS) a pointlike virtual
photon probes the rich QCD dynamics taking place inside
the proton or a nucleus. At high energies, where the small
Bjorken-x part of the target wave function is probed, one
observes very large gluon densities [1]. When the gluon
densities become of the same order as inverse coupling,
nonlinear QCD dynamics start to dominate and multiple
scattering effects are important [2]. In the high-energy

limit, the scattering process is most conveniently described
in the dipole picture in a frame where the virtual photon has
a large momentum [3], and its partonic Fock states, such as
jqq̄i at leading order (LO), have a long lifetime as they
scatter from the color field of the target.
Describing the QCD dynamics in this high-density

domain is natural in the color glass condensate
(CGC) [4] framework. Here the center-of-mass energy or
Bjorken-x dependence of various observables (and as such
the target structure) is described in the large-Nc limit by
the perturbative Balitsky-Kovchegov (BK) renormalization
group equation [5,6]. It describes how the dipole-target
scattering amplitude, which contains information about
the target structure, changes with increasing energy. The
dipole amplitude (a correlator of two Wilson lines) is
actually a convenient degree of freedom at high energies:
all cross sections computed at high energy in the CGC
framework are expressed in terms of the dipole amplitude
or higher-point correlators which can be written, in a
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Gaussian approximation, in terms of the two-point dipole
amplitude [7].
The initial condition for the dipole-proton scattering

amplitude depends on nonperturbative properties of the
proton. A typical approach in the field has been to assume
an intuitive functional form at an initial x0 ≪ 1 and fit
various unknown parameters to the HERA total cross
section data; see, e.g., Refs. [8–10] where a very good
description of small-x HERA data is obtained at leading
order, resumming powers of αs ln 1=x via BK evolution
with running coupling corrections [11]. Recent develop-
ments to full next-to-leading order (NLO) accuracy have
also allowed for a simultaneous description of total and
heavy quark production data [12,13]. The drawback of this
approach is that one is sensitive to the assumed functional
form of the initial dipole amplitude and that the model
parameters need to be refitted if the evolution is initialized
at different x0. Furthermore, there is no relation to the low
energy (or “large-x”) proton structure.
In this work, we take a complementary approach aiming

to compute the initial dipole-proton scattering amplitude at
moderate x0. As we will discuss in more detail next, the
necessary nonperturbative input consists in a proton
valence quark wave function that is constrained by low-
energy data. The x0-dependent initial condition is then
obtained by computing the dipole-target scattering ampli-
tude including one perturbative gluon emission in the
target, with the gluon longitudinal momentum fraction
regulated by x0 [14,15]. The advantages of this approach
are that we do not assume an ad hoc functional form of the
scattering amplitude and that the initial condition can be
computed and the BK evolution initialized at any (mod-
erate) x0 without a need to perform new fits. Also, this
approach largely eliminates the freedom of tuning initial
conditions in order to optimally match the evolution
equation to the small-x data. This may reveal quantitative
evidence for the need for improvements beyond leading
log, or even running coupling BK evolution.
Finally, we would like to point out that light-cone

Hamiltonian calculations of wave functions have been
employed previously to set initial conditions for QCD
scale evolution to high virtuality Q2, in order to describe
DIS in the “dipole approach” using correlators of eikonal
Wilson lines as degrees of freedom [16–19]. Our approach
is similar in spirit although here the goal is to determine
initial conditions for evolution to small x.

II. DIPOLE-PROTON SCATTERING
AT MODERATE x

We first provide an overview of our approach to the light-
cone structure of the proton. We employ a truncated Fock
space description which starts with a three quark state. The
corresponding Fock space amplitude (wave function) Ψqqq
corresponds to a nonperturbative solution of the QCD light-
front Hamiltonian. To date, exact solutions for the light-cone

wave functions are not available. In the future, lattice gauge
theory may provide numerical solutions for moderate parton
momentum fractions xi and transversemomenta k⃗i via a large
momentum expansion of equal-time Euclidean correlation
functions in instant quantization [20,21]; see Ref. [22] for a
recent lattice computation of thewave function of the leading
qq̄ state of the pion. Also, the MAP collaboration [23] has
recently extracted the wave functions of the first four Fock
states of the pion from fits to its parton distribution functions
and electromagnetic form factor.
Here, we rely on solutions of effective light-cone

Hamiltonians for guidance on the low-energy and low
virtuality Q2 structure of the proton. Specifically, we shall
employ the HO wave function of Refs. [24,25]. In these
references, the authors fixed the parameters of the three quark
wave function to the proton “radius,” or Dirac form factor at
Q2 → 0, to the anomalous magnetic moments of the proton
and neutron, and to the axial vector coupling gA. The wave
function also matches reasonably well the empirical knowl-
edge of the longitudinal and transverse momentum distri-
bution of single quarks in the valence quark regime. Finally,
the wave function of Refs. [24,25] also provides predictions
for quark momentum correlations.
At next-to-leading order (NLO) in the Fock expansion we

add the three quarks andonegluon statewith amplitudeΨqqqg,
aswell as thevirtual corrections toΨqqq due to the exchangeof
a gluon by two quarks in the proton. These corrections
are obtained via light-cone perturbation theory calcula-
tions [14,15]. The presence or exchange of the gluon extends
the rangeof parton light-conemomentumfractions to lower x,
and pushes their transverse momenta into the perturbative
regime. It also affects their momentum correlations.
The central element of our analysis is the (imaginary part

of the) eikonal scattering amplitude N of a small dipole of
transverse size r. The real part of N corresponds to two-
gluon exchange,

Nðr;bÞ ¼ −g4CF

Z
d2Kd2q
ð2πÞ4

cos ðb ·KÞ
ðq − 1

2
KÞ2ðqþ 1

2
KÞ2

×

�
cosðr · qÞ − cos

�
r ·K
2

��

×G2

�
q −

1

2
K;−q −

1

2
K

�
: ð1Þ

Here K is the momentum transfer which is Fourier
conjugate to the impact parameter b. As explained below,
we will eventually average Nðr;bÞ over a suitable range of
impact parameters. We emphasize that the expression
above accounts only for a single, perturbative two-gluon
exchange (see its derivation in Ref. [26]), it does not resum
the Glauber-Mueller multiple scattering series. This
restricts its applicability to the regime of weak scattering,
Nðr;bÞ ≪ 1. Furthermore, Nðr;bÞ actually acquires an
imaginary part due to the perturbative exchange of three
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gluons; its magnitude has been shown to be much smaller
than its real part [27,28], and in practice it is of interest only
for processes involving C-conjugation odd exchanges [29].
For the present purposes, it can be neglected.
The coupling of the two static gluons to the proton is

described in terms of the color charge density correlator,

hρaðq1Þρbðq2Þi≡ δabg2G2ðq1;q2Þ: ð2Þ

The color charge density operator corresponds to the light-
cone plus component of the color current on the xþ ¼ 0 light
front, integrated over x−, ρaðqÞ≡ JþaðqÞ, when the proton
carries positive Pz. Equations (1) and (2) correspond to the
leading twist contribution to the matrix element of the dipole
operator in the proton. Dozens of diagrams contribute to this
correlator at NLO, their explicit expressions are listed in
Ref. [14]. We point out that G2ðq1;q2Þ satisfies a Ward
identity due to the color neutrality of the proton; it vanishes
when either q21 or q

2
2 → 0 so thatNðr;bÞ in Eq. (1) is free of

IR divergences. However, G2 does exhibit a collinear
singularity which is regularized by assigning a mass to the
quarks in the light-cone energy denominators for the q → qg
and qg → q vertices; see Ref. [14] for details. All the results
presented here were obtained with mcoll ¼ 0.2 GeV. This is
consistent with the quark mass and transverse momentum
scales which appear in the nonperturbative three quark wave
function of Refs. [24,25]. The color charge correlator also
exhibits a soft singularity when the light-cone momentum
fractionxg of thegluongoes to zero. This is regularizedwith a
cutoff x on xg, and the resummation of yet softer gluons will
be performed through the BK equation. Note that at x ¼ 0.1
the NLO contribution toG2 truly is a reasonably smallOðg2Þ
perturbative correction [15]. However, by x ¼ 0.01 its
magnitude grows to essentially Oð1Þ, a leading-log correc-
tion. Hence, at such x resummation is required and it is
justified to use the computed dipole as an initial condition for
the leading order BK evolution.
We recall, also, that at the given order ultraviolet

divergences cancel [14], so that G2 is independent of the
renormalization scale, and that the coupling does not run.
Lastly, let us mention that the angular dependence of the
correlator G2, as well as the dependence of its Fourier
transform on impact parameter, has been analyzed numeri-
cally in detail in Ref. [15].

III. SMALL-x EVOLUTION OF THE PROTON
LIGHT-CONE WAVE FUNCTION

In order to obtain an initial condition for b-independent
BK evolution1 we average the dipole-target scattering ampli-
tude obtained from Eq. (1) over the impact parameter b,

Nðr; x0Þ ¼
1

ST

Z
bmax

d2bNðr;b; x0Þ: ð3Þ

Throughout this work, we denote the magnitudes of the
transverse vectors as b ¼ jbj and r ¼ jrj. The resulting
amplitude is dominated by perturbative contributions when
the dipole size r is small. In this region there is a small
cosð2ϕÞ dependence on the angle ϕ between r and b [15]
which vanishes when we integrate over b. Here ST is the
proton transverse area. Inclusive cross sections considered in
this work are not sensitive to the actual shape of the target but
only to the total transverse size. The proton geometry is most
directly probed in exclusivevectormesonproductionprocess
where the total momentum transfer K which is Fourier
conjugate to the impact parameter is measurable.
Parametrizing the J=ψ production cross section in HERA
kinematics as e−BDK2

, one obtains BD ¼ 4 GeV−2 [32].
Assuming a Gaussian impact parameter profile for the
proton, this corresponds to a two-dimensional root-mean-
square radius bGaussian ¼

ffiffiffiffiffiffi
2B

p
≈ 0.56 fm and a proton area

ST ¼ 2πB. On the other hand, if we assume a step function
(hard sphere) profile for the proton, the same diffractive
slope is obtained when the proton radius is bHard sphere ¼
2

ffiffiffiffi
B

p
≈ 0.79 fm, which corresponds to ST ¼ 4πB.

Although exclusive vector meson data favors the
Gaussian density profile over the hard sphere one (see
e.g. [33]), the current data does not constrain the proton
shape precisely. We also note that if the b-dependent dipole
amplitude from Eq. (1) is directly used to compute
exclusive J=ψ production cross section, the resulting
spectra differs from the Gaussian profile case only in the
region where there are no experimental constraints [34]. In
this work the results shown below by default correspond to
the Gaussian density profile (with bmax ¼ bGaussian) unless
otherwise stated, but we also study the dependence on the
bmax cut by using a step function profile with bmax ¼
bHard sphere ¼

ffiffiffi
2

p
bGaussian.

The proton transverse area ST has also been extracted by
fitting a parametrized initial condition for the BK evolution
equation to the HERA structure function data. Leading
order analyses [9,10] typically obtain ST ∼ 16 mb. In
recent fits at NLO accuracy [12,13] proton areas ST ∼
10–20 mb were obtained depending on the details of the
analysis setup. We test this uncertainty in the proton small-
x transverse profile by showing some results for both the
Gaussian and hard sphere profiles with transverse areas 9.8
and 19.6 mb, respectively.
Before performing the impact parameter average we first

study the impact parameter profile from the NLO light-
cone wave function seen by a perturbative probe:

TðbÞ ¼ C
Z

rmax

d2rNðr;b; xÞ: ð4Þ
1We limit ourselves to the b-independent evolution in order to

avoid the need to effectively model confinement scale effects
which has been attempted, e.g., in Refs. [30,31].
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The normalization condition
R
bmax d2bTðbÞ ¼ 1 is used to

fix the constant C. We will refer to TðbÞ as the transverse
“density” profile to match standard terminology from the
literature. As the dipole amplitude is a rapidly increasing
function of the dipole size r, this integral is dominated by
dipoles of size r ∼ rmax, as long as rmax is in the perturba-
tive domain.
The extracted density profiles up to bmax ¼ 0.8 fm for

different rmax are shown in Fig. 1 For reference, a Gaussian
profile, as used e.g. in the popular IPsat parametrization [35]
for the dipole amplitudewith the slopeB ¼ 4 GeV−2, is also
shown. We observe a similar transverse profile except for
very central b ≲ 0.2 fm where the computed profile is more
steeply falling. This region can only be probed at high
momentum transfer jtj≳ 1 GeV2 [34], which is not covered
in the currently available coherent vector meson production
data. The high-b tails of TðbÞ resulting from the light cone
perturbation theory (LCPT) one gluon emission corrections
are exponential rather than Gaussian. However, in all we
conclude that for the present purposes the Gaussian profile
used to match ST to bmax is a reasonable approximation.
The b-averaged dipole amplitudes (using a Gaussian

profile) are shown in Fig. 2 (linear scale) and Fig. 3
(logarithmic scale) at x0¼0.05, x0 ¼ 0.025 and x0 ¼ 0.01.
Here we also show the dependence on the diffractive slope
B: the bands correspond to varying B by �10% which
changes both ST and bmax. The results depend weakly on
this cut especially in the perturbative small-r domain. The
dipole amplitude increases with r, approximately propor-
tional to r2, as expected. For r≳ 0.4 fm the color neutrality
of the proton, and the fact that the dipole scatters from a
target of finite transverse extent, begin to slow the growth of
NðrÞ; a model that does not account for the finite size of the
proton in impact parameter space would attribute this to
power corrections. Finally, when the size of the dipole
becomes comparable to that of the target the amplitude is
found to decrease again (not shown) as the end points of the

dipole essentially “miss” the target. However, we empha-
size that this behavior occurs at large r ∼ few fm where in
any case the perturbative calculation of the scattering
amplitude is not valid.
Figures 2 and 3 confirm that down to x ¼ 0.01 scattering

of small dipoles with r significantly less than 1 fm remains
quite weak, at least for αs ¼ 0.2 which we determine below
from a fit to the charm cross section in DIS. Therefore, it
appears reasonable to start small-x evolution with this
initial condition at x in the range 0.01–0.05.
To obtain analytic parametrizations of the dipole ampli-

tude we fit our numerical data for the b-averaged scattering
amplitude to the following expression which is inspired by
the McLerran-Venugopalan (MV) model [36]:

NðrÞ ¼ 1 − exp

�
−
ðr2Q2

s;0Þγ
4

ln

�
1

rΛ
þ ec · e

��
; ð5Þ

FIG. 1. Effective normalized proton density profiles at x ¼ 0.01
extracted from Nðr;bÞ with bmax ¼ 0.8 fm up to NLO in the
Fock expansion of the light-cone wave function.

FIG. 2. Impact-parameter averaged dipole as a function of
dipole size r at two different momentum fractions x. The bands
correspond to varying the proton shape parameter B by 10%. The
dotted lines show best fits to the central values with the modified
McLerran-Venugopalan (MV) model parametrization of Eq. (5).

FIG. 3. Same as Fig. 2 but on a double logarithmic scale in
order to better exhibit the behavior at small r.
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where Λ ¼ 0.241 GeV is a fixed infrared scale. Such a
parametrization has been used previously, e.g., in
Refs. [9,10,12] to fit the initial condition for BK evolution
to the HERA data. While our fit is restricted to r < 0.5 fm,
the parametrization forcesNðrÞ → 1 in the large-r region. Of
course, the behavior at large r cannot be trusted, and other
extrapolations would be possible. It is important, however,
that the large-r extrapolation is such that the Fourier trans-
form of 1 − NðrÞ at high k (and, consequently, the forward
particle production cross section, for example) will be
insensitive to the assumed form. We will also demonstrate
below that perturbative observables, in our case the charm
production cross section, are only sensitive to the perturba-
tive regime of small dipoles where our calculation should
apply, and not to the extrapolation to large r.
The free parameters in Eq. (5), Q2

s;0; γ and ec, are fit to
the calculated dipole amplitude in the region 0.01 fm <
r < 0.5 fm (we actually fit the logarithm of the dipole in
order to give equal weight to small and intermediate r).
The upper limit restricts to the perturbative domain, and the
lower limit is imposed in order to give some weight to the
region of intermediate r as well. The resulting dipole
amplitudes are shown in Figs. 2 and 3 as dotted lines.
The fit parameters are listed in Table I. In the fit we require
that ec > e−1 in order to enforce positivity of the logarithm
in Eq. (5), and all fit results give ec ¼ e−1 within numerical
accuracy, i.e. they require as small an infrared cutoff as
allowed. The MV-model inspired parametrization is found
to describe the dipole-proton scattering amplitude quite
well, for all dipole sizes in the perturbative r≲ 0.5 fm
region. Here, of course, the linearized version of Eq. (5) is
sufficient, as it should be: recall that Eq. (1) does not resum
multiple scattering.
The momentum scale Q2

s;0 remains nonperturbative
down to x ¼ 0.01; see below for an extraction of a
“saturation scale” at lower x. However, it increases approx-
imately as Q2

s;0 ∼ 1=x0.47. The “anomalous dimension” of
the dipole amplitude is γ ¼ 1 within numerical accuracy. It
appears reasonable to us that the initial condition for the
evolution equation admits a power series expansion in r2,
starting at its first power. On the other hand, leading order
fits to HERA total cross section data [9,10] require γ ∼
1.1–1.2 in order to obtain as slow a Q2 dependence of the
cross section as required by the HERA data [1,37]; recent
fits at next-to-leading order accuracy performed in
Refs. [12,13] also prefer γ ≳ 1 when the heavy quark
production data is included. A problem with γ > 1 is that it
renders the (dipole) unintegrated gluon distribution func-
tion [7,38,39] and the forward particle production cross
section negative [10,40] in some range of transverse
momentum kT . The dipole amplitude obtained here does
not display this issue.
Next we solve the leading order BK equation with fixed

coupling, using the numerical data for Nðr; x0Þ as an initial
condition at x0 ¼ 0.01. Note that at this order in αs the

coupling constant does not run in theLCPTcalculation of the
initial condition, and consequently we also limit ourselves to
the fixed coupling case here. Evolution over six units of
rapidity is shown in Fig. 4. For comparison, we also solve the
BK equation using the modified MV-model initial condition
with parameters as shown inTable I. This parametrized initial
condition has a completely different behavior in the infrared
region with NðrÞ → 1 at large r whereas the numerical data
gives a decreasingNðrÞwhen r exceeds a few fm, as already
mentioned above. However, as can be seen in Fig. 4 the
resulting BK-evolved dipole amplitudes are basically iden-
tical in the perturbative r≲ 0.5 fm domain. In fact, due to the
approach to the fixed point of the BK equation [41–43], at
high rapidity the difference between the scattering ampli-
tudes evolvedwith the two initial conditions diminishes. This
demonstrates that the BK-evolved amplitude at small r is not
affected by the uncontrolled large-r extrapolation of the
initial condition.
One may define a saturation radius rs, and a correspond-

ing saturation momentum Qs ¼
ffiffiffi
2

p
=rs from the condition

that NðrsÞ ¼ 1 − expð− 1
2
Þ ≃ 0.4. For this to be a perturba-

tive scale requires about six units of rapidity evolution, as
can also be seen from Fig. 4. This corresponds to
x ≃ 2.5 × 10−5, where rs ≃ 0.3 fm, and Qs ≃ 1 GeV.
These values are not very far from the first “saturation
model” fit to HERA DIS data by Golec-Biernat and
Wüsthoff [44] from 25 years ago. Many more recent fits
mentioned above have since confirmed that reaching the
strong scattering regime with a small dipole and a proton
target requires deep evolution to rather small x. Also, some
studies [17] of diffractive small-x scattering of a qq̄ − g
state from the proton have indicated that the regime of
“color transparency” sets in when the typical transverse
distance of the gluon from the qq̄ is around 0.2 fm.

FIG. 4. Leading-log BK evolution at αs ¼ 0.2 starting at
x0 ¼ 0.01. From bottom to top, the lines correspond to evolution
rapidity 0, 2, 4, and 6. The dashed lines are obtained with the
fitted MV-model like parametrization from Table I as an initial
condition; the solid lines evolve the actual numerical data
for Nðjrj; x0Þ.
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Since scattering at x ¼ 0.01 is fairly weak we have also
evolved our initial condition with the linear Balitsky-Fadin-
Kuraev-Lipatov (BFKL) equation [45–47], see Fig. 5. After
a few units of rapidity evolution, the linear equation begins
to violate unitarity, NðrÞ ≤ 1, at large r. However, this
regime of large dipoles is not under control in any case.
More importantly though, at y ¼ 2–4 the absence of the
nonlinear correction begins to affect the solution signifi-
cantly even at r substantially less than 1 fm. With BFKL we
also noticed a greater difference between evolving the
actual numerical data vs the analytic modified MV-model
parametrization (not shown), which differ in their large-r
extrapolation. Therefore, for accurate results it appears to
be rather important to evolve with the nonlinear BK
equation even if one restricts to r < 1 fm.
Let us finally study how the x dependence obtained from

the direct, fixed order NLO LCPT calculation differs to the
one obtained by solving the BK equation. We note that in
the LCPT calculation x is an explicit cutoff for the
longitudinal momentum of the emitted gluon, and this
gluon emission is calculated in exact kinematics. On the
other hand, in BK evolution multiple soft gluon emissions
are resummed. This comparison is done by calculating the
dipole amplitude at x ¼ 0.01 directly from the LCPT using
Eq. (1), and comparing that to the dipole amplitude
obtained by solving the BK equation with the initial

condition computed at x0 ¼ 0.05. The resulting dipole
amplitudes are shown in Fig. 6. The most significant
difference between the fixed order Oðg2Þ LCPT amplitude
and the BK evolved dipole is that the evolution equation
decreases the anomalous dimension γ towards the asymp-
totic value γ ∼ 0.6. On the other hand, the emission of one
gluon in the direct LCPT calculation does not modify the
extracted anomalous dimension, as can also be seen from
Table. I. This is, of course, the expected behavior. As
already mentioned above, DIS phenomenology does not
appear to support γ < 1 at x ¼ 0.01 or greater, so it seems
reasonable to treat at least the emission of the first gluon
with xg > 0.01 explicitly in fixed order light-cone pertur-
bation theory with exact kinematics.2

IV. TOTAL CROSS SECTION AT SMALL x

Next, we consider the DIS structure functions at small
Bjorken-x. The overall normalization of the dipole ampli-
tude depends on the strong coupling constant αs¼g2=ð4πÞ,
see Eq. (1). The same coupling constant also affects the
Bjorken-x dependence of the dipole amplitude via the BK
evolution. In this work, our strategy is to fix the value of αs
by calculating the total charm production cross section, and
comparing it to the HERA reduced cross section data from
Ref. [48]. We set the initial condition for the BK evolution
at x0 ¼ 0.01, and compare it to the HERA data in the region
x < 0.01; Q2 < 100 GeV2 (note that the smallest Q2 bin in
the data is Q2 ¼ 2.5 GeV2). In this region, there are
N ¼ 39 data points. The experimental data is reported as
reduced cross section

FIG. 5. Leading-log BK (solid lines) vs BFKL (dotted lines)
evolution starting at x0 ¼ 0.01.

FIG. 6. The dipole scattering amplitude at x ¼ 0.01 with and
without prior BK evolution. The parameter γ denotes the resulting
anomalous dimension fitted in the region 0.01 fm < r < 0.5 fm.

TABLE I. Best fit parameters to the modified MV model
parametrization, Eq. (5), for a fit over 0.01 fm < r < 0.5 fm.
The upper and lower limits are obtained by varying the proton
shape parameter B by �10%. All fit results give ec ¼ e−1 within
numerical accuracy.

x Q2
s;0 ½GeV2� γ ec

0.01 0.100þ0.004
−0.004 1.001þ0.001

−0.001 e−1

0.025 0.066þ0.003
−0.003 0.998þ0.001

−0.001 e−1

0.05 0.047þ0.002
−0.002 0.997þ0.001

−0.001 e−1

2Also, the emission of the first gluon actually increases the
imaginary part due to C-odd three gluon exchange [28], which
provides another indication that small-x evolution should not be
started much before x0 ≃ 0.01.
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σrðx; y;Q2Þ ¼ F2ðx;Q2Þ − y2

1þ ð1 − yÞ2 FLðx;Q2Þ: ð6Þ

Here y ¼ Q2=ðsxÞ is the inelasticity variable, not to be
confused with the evolution rapidity. The proton structure
functions F2 and FL are expressed in terms of the total
cross section for the virtual photon-proton cross section
σγ

�p:

F2ðx;Q2Þ ¼ Q2

4παem
ðσγ�AT þ σγ

�A
L Þ; ð7Þ

FLðx;Q2Þ ¼ Q2

4παem
σγ

�A
L : ð8Þ

In the dipole picture, the total cross section for the virtual
photon-proton scattering can be expressed as a convolution
of the photon wave function and the dipole amplitude as [2]

σγ
�A
T;L ¼ 2

X
f

Z
d2bd2rdzjΨγ�→qq̄ðr;z;Q2Þj2Nðr;b; x̄Þ: ð9Þ

Here f is the quark flavor, Q2 the photon virtuality and
Ψγ�→qq̄ is the leading order wave function for the qq̄ Fock
state of the virtual photon. In this equation we replace
Nðr;b; x̄Þ by the impact parameter averaged dipole ampli-
tude Nðr; x̄Þ, as described above, and

R
d2b → ST . We fix

the mass of the c quark to 1.4 GeV. The dipole amplitude in
Eq. (9) is evaluated at x̄ ¼ xð1þ 4m2

q=Q2Þ, wheremq is the
quark mass which enforces a smooth approach to the
photoproduction limit [9,44].
In order to confirm that the charm production cross

section is not sensitive to nonperturbatively large dipoles,
we show in Fig. 7 the fraction of the total cross section at
x ¼ 0.0056,Q2 ¼ 10 GeV2 as a function of the upper limit
rmax for the r integral in Eq. (9). It is evident that the charm
cross section is saturated by small dipoles whereas the
inclusive cross section (calculated using mq ¼ 0.14 GeV
for the light quarks) at Q2 ¼ 10 GeV2 is sensitive to larger
dipoles beyond sizes where we may trust our calculation.
When using a modified MV-model parametrization as an
initial condition for the evolution with different extrapo-
lation in the infrared region, one needs to integrate up to
even larger r in order to recover the full result for F2. The
charm production cross section is not affected by the
different large-r extrapolation (not shown). Qualitatively
similar results have been obtained with the commonly used
IPsat parametrization for the dipole-proton amplitude
where, typically, even larger dipole sizes contribute as
compared to the setup with factorized impact parameter
dependence applied here [35,49]. For these reasons we
shall focus on charm production. In the future, our
approach could be applied to other hard, perturbative

processes such as, for example, single-inclusive particle
production at high enough transverse momentum.
Considering only the strong coupling constant αs as a

free parameter, we obtain a reasonably good description of
the charm production data. The value of χ2=ðN − 1Þ as a
function of αs is shown in Fig. 8 using two different density
profiles (Gaussian and hard sphere) for the proton. These
two setups have different upper limits for the impact
parameter b and correspondingly different transverse areas
for the proton. The extracted optimal values for the strong
coupling constant are αs ¼ 0.200 for the Gaussian proton

FIG. 7. The fraction of the charm and inclusive DIS structure
functions at x ¼ 0.0056, Q2 ¼ 10 GeV2 (corresponding to x̄ ¼
0.01 in the case of charm production) as a function of the cutoff
on the dipole size imposed in Eq. (9). The total cross section is the
sum of light quark (mass 0.14 GeV) and charm quark (mass
1.4 GeV) production contributions.

FIG. 8. Determining the strong coupling constant by fitting the
HERA charm production data in the region Q2 < 100 GeV2,
x < 0.01, with leading-log BK evolution started at x0 ¼ 0.01.
The solid lines are polynomial fits to the computed values used to
extract the optimal values for αs. The optimal values are
αs ¼ 0.200, χ2=ðN − 1Þ ¼ 2.27 for the Gaussian proton and
αs ¼ 0.181, χ2=ðN − 1Þ ¼ 2.28 for the hard sphere proton.
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and αs ¼ 0.181 for the hard sphere profile. These values are
used throughout this paper. We note that fits of the total
(rather than charm) cross section with tuned initial con-
ditions [9,10] and running coupling corrections to the BK
equation have achieved lower χ2=N ≈ 1, without being able
to simultaneously describe the charm data [9]. However,
with our calculated initial condition there is room for the
expected improvements of the photon wave function,
evolution equation, and, of course, of the initial condition.
In this analysis, we have fixed the collinear regulator to

mcoll ¼ 0.2 GeV in the LCPT calculation of the initial
condition. As the charm cross section is dominated by
small dipoles, our results are not highly sensitive to the
actual value of this regulator: changingmcoll by a factor of 2
changes χ2=ðN − 1Þ to HERA data by only 2%–5% when
using the optimal αs. We also keep the charm mass fixed to
1.4 GeV. The optimal value for αs and the achieved
χ2=ðN − 1Þ naturally will depend on this choice. We
choose to work with fixed quark mass and collinear
regulator and do not attempt to fit these simultaneously
with αs, as the purpose of this work is to demonstrate the
feasibility of computing the initial condition for the BK
equation, and we emphasize that numerically potentially
important higher order effects such as running coupling are
still missing from the setup.
A comparison to the HERA charm production data in

different Bjorken-x bins is shown in Fig. 9 as a function of
the photon virtuality. We have checked that these results
remain the same if we use the analytic parametrization (5),
with parameters from Table I, as the initial condition; this
confirms the insensitivity of the charm cross section to the
large-r extrapolation of the scattering amplitude.
At x ¼ 0.008 there is only very little (≤0.2 units of

rapidity when x0 ¼ 0.01) evolution, so the dipole ampli-
tude is almost completely determined by our initial con-
dition. On the other hand, we also show results at lower x
which is dominated by the BK evolution. In addition to our
standard setup where the initial condition for the BK
evolution is set at x0 ¼ 0.01, we also show results using
an initial condition computed at larger x0 ¼ 0.05. Note the
weak dependence of this observable, at least, on where
the “hand-off” from the x-dependent initial condition to the

evolution equation occurs. In contrast, ad hoc initial
condition parametrizations have to be retuned when x0 is
changed.
Figure 9 shows a fair agreement of the reduced cross

section obtained from our light-cone wave function with
the HERA charm data. Close to the initial condition we
obtain a slightly slower Q2 dependence than seen in the
data. As a result of the evolution this changes into faster
virtuality dependence at very small x. This is because the
BK evolution at fixed coupling develops a small anomalous
dimension γ ≈ 0.6 for the dipole amplitude and a smaller
anomalous dimension results in faster Q2 dependence.
Lastly, in Fig. 10 we study how sensitive the charm

production cross section is on the chosen proton density
profile, and as such on the maximum impact parameter
bmax used in Eq. (3). The cross section is calculated at
x ¼ 0.008 which is close to the initial condition for the BK
evolution, again set at x0 ¼ 0.01. In both cases, we use the
optimal value for the strong coupling constant extracted
above. The cross section increases only slightly when the
hard sphere profile with larger bmax is used, but the
dependence on the virtuality is not affected. This weak
dependence on the selected proton profile confirms that our

FIG. 9. Charm production reduced cross section at
ffiffiffi
s

p ¼ 318 GeV compared to the HERA data. Results are shown in the region
where x̄ ≤ 0.01.

FIG. 10. Reduced cross section at
ffiffiffi
s

p ¼ 318 GeV calculated
close to the initial condition using the Gaussian and Hard sphere
density profiles, respectively.
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results are not sensitive to nonperturbatively large impact
parameters.

V. SUMMARY AND DISCUSSION

The present work represents a first attempt at relating the
short-distance structure of the proton at high energies to its
low-energy properties, covering several orders of magni-
tude in energy. We start from an effective three quark light-
cone wave function which models the nonperturbative
longitudinal and transverse momentum distributions of
quarks at x≳ 0.1 as well as some of their correlations.
The next step involves the computation, using exact
kinematics, in light-cone perturbation theory of the OðgÞ
correction to the light-cone wave function due to the
emission of a gluon, and the Oðg2Þ virtual corrections
due to the exchange of a gluon by two quarks. This
provides a leading twist contribution to the dipole
scattering amplitude, NðrÞ ∼ r2γ with γ ¼ 1 at small r.
Optimistically, the LCPT correction extends the validity of
the resulting light-cone wave function into the regime of
perturbative transverse momenta, and parton momentum
fractions x≳ 0.01. The corresponding dipole scattering
amplitude is then evolved to yet higher energies (lower x)
by solving the BK equation, which resums emissions of
additional soft gluons, and generates power corrections and
an anomalous dimension.
The convolution of the LO photon light-cone wave

function with the impact parameter averaged BK dipole
scattering amplitude at leading logarithmic accuracy pro-
vides a fair description of the reduced DIS charm cross
section measured at HERA, for αs ≃ 0.2. This value of the
strong coupling was obtained from a fit to the charm cross
section at Q2 < 100 GeV2 and x < 0.01. None of the
parameters of the low-energy three-quark model wave
function were re-tuned to the high-energy data. Despite
the fair description of the highly accurate data, the resulting
χ2=Ndof ≈ 2.27 with Ndof ¼ 38 implies a very low stat-
istical significance, i.e. a very low probability that the
data represents statistical fluctuations about the model
predictions: the integral over the χ2 distribution from χ2 ¼
2.27 × 38 to infinity, commonly denoted as the “p value,” is
1.3 × 10−5. However, the very low statistical significance
of the fit should not be confused with a need for large
corrections; Fig. 9 shows that this is clearly not the case.
This is entirely expected since there are multiple known
sources of corrections such as, for example, of the photon
wave function [50–52], of the evolution equation [53–57],
and, of course, of the initial condition for the evolution

equation (our proton light-cone wave function) which, e.g.,
may be improved with running coupling corrections. The
data requires fairly moderate but systematic improvements
of the model predictions across the relevant ranges of x
and Q2.
We have also provided analytic parametrizations of the

impact parameter averaged dipole scattering amplitude for
x ¼ 0.01–0.05 which accurately fit the numerical data in
the regime of perturbative dipoles, r≲ 0.5 fm. These
parametrizations can be used in practice to estimate the
corrections predicted by more accurate evolution equations.
In the Supplemental Material [58] we also provide the
tabulated numerical data for Nðr; xÞ. Their large-r extrapo-
lation differs from that of the analytic parametrizations
which allows for tests of the (in)sensitivity to the uncon-
trolled nonperturbative regime of large dipoles. The quest
for more accurate theoretical predictions at high energy for
the upcoming electron-ion collider at Brookhaven National
Laboratory [59] and the proposed LHeC/FCC-he at
CERN [60] requires initial conditions for the evolution
equations which do not absorb theoretical improvements
into a retune of their parameters.
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