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Dimension reduction is one of the key data transformation techniques in machine learning and knowl-
edge discovery. It can be realized by using linear and nonlinear transformation techniques. An additive
autoencoder for dimension reduction, which is composed of a serially performed bias estimation, linear
trend estimation, and nonlinear residual estimation, is proposed and analyzed. Compared to the classical
model, adding an explicit linear operator to the overall transformation and considering the nonlinear
residual estimation in the original data dimension significantly improves the data reproduction capabil-
ities of the proposed model. The computational experiments confirm that an autoencoder of this form,
with only a shallow network to encapsulate the nonlinear behavior, is able to identify an intrinsic dimen-
sion of a dataset with low autoencoding error. This observation leads to an investigation in which shallow
and deep network structures, and how they are trained, are compared. We conclude that the deeper net-
work structures obtain lower autoencoding errors during the identification of the intrinsic dimension.
However, the detected dimension does not change compared to a shallow network. As far as we know,
this is the first experimental result concluding no benefit from a deep architecture compared to its shal-
low counterpart.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dimension reduction is one of the main tasks in unsupervised
learning [1]. Both linear and nonlinear techniques can be used to
transform a set of features into a smaller dimension [2]. A specific
and highly popular set of nonlinear methods are provided with
autoencoders, AE [3], which by using the original inputs as targets
integrate unsupervised and supervised learning for dimension
reduction. The main purpose of this paper is to propose and thor-
oughly test a new autoencoding model, which comprises an addi-
tive combination of linear and nonlinear dimension reduction
techniques through serially performed bias estimation, linear trend
estimation, and nonlinear residual estimation. Preliminary, limited
investigations of such a model structure have been reported in
[4,5].

With the proposed autoencoding model, we consider its ability
to estimate the intrinsic dimensionality of data [6–8]. According to
[9], the intrinsic dimension can be defined as the size of the lower-
dimension manifold where data lies without information loss. For
the most popular linear dimension reduction technique, the princi-
pal component analysis (PCA), the information loss can be mea-
sured with the explained variance which is provided by the
eigenvalues of the covariance matrix [10]. Indeed, the use of an
autoencoder to estimate the intrinsic dimension can be considered
a nonlinear extension of the projection method based on PCA [11].
However, in the nonlinear case measures for characterizing the
essential information and how this is used to reduce the dimen-
sionality vary [12,13].

With the intrinsic dimension, for instance the data reduction
step in the KDD process [14,15] would not loose information. In
[16] it was concluded that a shallow autoencoder shows the best
performance when the size of the squeezing dimension is approx-
imately around the intrinsic dimension. In this direction, tech-
niques that are closely related to our work were proposed in
[17], where the intrinsic dimension was estimated using an
autoencoder with sparsity-favoring l1 penalty and singular value
proxies of the squeezing layer’s encoding. In the experiments, the
superiority of the autoencoder compared to PCA was concluded.
This and the preliminary work by [18] applied a priori fixed archi-
tectures of the autoencoder and different autoencoding error measure
compared to our work. Here, multiple feedforward models are used
and compared, with a simple thresholding technique to detect the
intrinsic dimension based on the data reconstruction error.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126520&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2023.126520
http://creativecommons.org/licenses/by/4.0/
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https://doi.org/10.1016/j.neucom.2023.126520
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1.1. Motivation of the autoencoding model

The proposed model is formally derived in Section 3.1, but the
basic idea to apply sequentially linear and nonlinear transforma-
tion models for dimension reduction and estimation could be real-
ized in many ways. However, in order to reduce the reconstruction
error efficiently– and to reveal the instrinsic dimension– there is
one pivotal selection which is illustrated in Fig. 1: After the linear
transformation, residual for the nonlinear model’s encoding should
be treated in the original dimension!.

Interestingly, our experiments reveal that the intrinsic dimen-
sion can be identified by using only a shallow feedforward network
as the nonlinear residual operator in the additive autoencoding
model. This results exactly from the two essential choices: iÞ
to include the linear operator in the overall transformation and
iiÞ to consider the unexplained residual in the original data
dimension. This does not happen with the classical autoencoder
(without the linear term) or if the nonlinear autoencoding would
be applied in the reduced dimension after the linear transforma-
tion. These phenomena, with the models and techniques fully
specified in the subsequent sections, are illustrated in Fig. 1. There-
fore, in addition to exploring the capabilities of revealing the
intrinsic dimension we assess the advantages of applying deeper
networks as nonlinear operators.
Fig. 1. Top row: Residual errors with Wine dataset for the usual autoencoders with di
(right). Bottom row: Comparison of classical and proposed autoencoder with five-hidden
axis the autoencoding (reconstruction) error. Deeper models provide lower autoencoding
the intrinsic dimension is revealed on the top right and bottom figures. Improvement due
right, where all models are stricly better than the linear PCA alone. On the bottom, bet
compared to the classical approach is clearly visible.

2

1.2. Contributions and contents

The main contribution of the paper is the derivation and evalu-
ation of the additive autoencoding model. We provide an experi-
mental confirmation of the new autoencoder’s ability to reveal
the intrinsic dimension and study the effect of model depth. With
minor role, mostly covered in the Supplementary Material (SM),
we also discuss and provide an experimental illustration of the dif-
ficulties of currently popular deep learning techniques in realizing
the potential of deep network models. Apparently, our results
diversify views on the general superiority of deeper network archi-
tectures. They suggest that current and upcoming applications in
deep learning and in the use of autoencoders could be improved
by using an explicit separation of the linear and nonlinear aspects
of the data-driven model.

The remainder of the paper is organized in the following man-
ner: In Section 2, we provide a brief summary of the forms and
applications of autoencoders and provide a preliminary discussions
on certain aspects of deep learning. In Section 3, we discuss the for-
malization of the proposed method as a whole. In Section 4, we
describe the computational experiments and summarize the main
findings. In Section 5, we provide the overall conclusions and dis-
cussion. In the SI, we provide more background and preliminary
material and, especially, report the computational experiments as
fferent number of hidden layers (left) and for the proposed, additive autoencoders
-layers for the MNIST dataset. Here x-axis contains the squeezing dimension and y-
errors on the top left, but, only with the additional linear operator as proposed here,
to the depth of the model is significant on the top left but only moderate on the top
ter capability of the proposed autoencoder to encapsulate the variability of MNIST
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a whole. Main findings solely covered on SI confirm the quality of
the implementation of the methods and especially indicate that
different autoencoder models, as depicted in the previous section,
could be used for the nonlinear residual estimation.
2. Related work and preliminaries

In this section, we introduce the different variants of autoen-
coders, summarize their wide range of applications, and provide
some preliminaries on deep learning techniques.
2.1. On Autoencoders

Feedforward autoencoders have a versatile history, beginning
from [19,20]. Their development as part of the evolution from shal-
low network models into deep learning techniques with various
network architectures has been depicted in numerous large and
comprehensive reviews [3,21,22]. Therefore, we will not go into
details in what follows.

Deep feedforward autoencoding was highly influenced by the
seminal work of Hinton and Salakhutdinov [23]. In what follows,
we refer this approach, where the encoder was composed of mul-
tiple feedforward layers until the squeezing dimension and estima-
tion of the network weights was based on the least-squares
fidelity, possibly with a Tykhonov type of squared regularization
(penalization) term [24], as the classical autoencoder. The work in
[23] emphasized the importance of pretraining and the usability
of stacking (i.e., layer-by-layer construction of the deeper architec-
ture). Such techniques, by directing the determination of weights
to a potential region of the search space, particularly alleviate
the vanishing gradient problem (see Section 5.9 [3] and references
therein).

As summarized– for example, by [25], many architectures and
training variants for deep autoencoders (AE) have been proposed
over the years. Summary of the main AE approaches is given in
Table 1, where ‘Architecture’ refers to the AE’s model structure,
‘Learning principle’ summarizes the essential basis of learning,
‘Evaluation’ contains the given information on the assessment of
quality, efficiency and complexity, and ‘Applications’ points to
the basic use cases within the cited papers.

In addition to the approaches given in Table 1, many other com-
binations and hybrid forms of AEs exist. Special AEs typically inte-
grate concepts and techniques from relevant areas, for instance,
autoencoder bottlenecks (AE-BN) that are based on Deep Belief
Networks [26] and rough autoencoders where the rough set based
neurons are used in the layers [27]. In Methodological combinations
with AEs, the base case is to use AE for dimension reduction before
supervised learning. Interesting unsupervised hybrids are provided
by clustering techniques that incorporate AEs for feature transfor-
mation [28,29] and unsupervised AE-based hashing methods that
can be used for large-scale information retrieval [30]. More
involved combinations include use of AE with unsupervised clus-
tering and generative models [31,32] and for representation learn-
ing of various learning tasks, e.g., low-dimensional visualization,
semantic compression, and data generation [33].

A wide variety of tasks and domains has been and can be
addressed with autoencoders. AEs are typically used in numerous
application domains in scenarios where transfer learning can be
utilized– for example, in speech processing [55], time series pre-
diction [56], fault diagnostics in condition monitoring [57–59],
and machine vision and imaging tasks [60,61,33,62,63,44,64–68].
Further, AEs have been used for the estimation of data distribution
[69]. Use of a variational AE for joint estimation of a normal latent
data distribution and the corresponding contributing dimensions
has been addressed in [70]. Yet another use case of autoencoders
3

is outlier or anomaly detection [71,33,72–74]. Also data imputa-
tion has been realized using a shallow autoencoder in [75], with
deeper models in [76–78], and especially for spatio-temporal data
in [79,76,80–83]. More exotic use cases include (but are not limited
to) use of AE to transfer domain knowledge in recommendation
systems [84] and to construct efficient surrogates in astronomy
[85].

2.2. Preliminaries on deep learning

Deep learning has been an extremely active field of research
and development in the twenty-first century [86]. These tech-
niques reveal repeatedly promising results in new application
areas [87]. On the other hand, deep networks might be overly com-
plex and equal performance could be reestablished after significant
pruning [88]. Deep neural networks are sensitive to small varia-
tions in training and architectural design parameters, thereby
requiring careful calibration [89] and meticulousness in analyzing
and comparing different models [90]. These factors have caused,
e.g., the emergence of automated neural architecture search tech-
niques [91]. Therefore, it is important to improve our basic under-
standing of both the empirical and theoretical bases of deep
learning [92]. Systematic methods and studies to analyze the
behavior of deep neural networks are needed [93].

Indeed, there exist some fundamental aspects of deep learning
in which theory and practice are not fully aligned. The first issue
is the universal approximation capability, whose main shallow
results are reviewed, for example, by Pinkus [94] and whose gen-
eral importance was excellently summarized in [95, p. 363]: ‘‘We
have thus established that such [feedforward] ‘mapping’ networks
are universal approximators. This implies that any lack of success
in applications must arise from inadequate learning, insufficient
numbers of hidden units or the lack of a deterministic relationship
between input and target.” To put it succinctly, a sufficiently large
width of one or at most two hidden layers is, according to the
approximation theory, enough for an accurate approximation of a
nonlinear function, which is implicitly represented by a discrete
set of examples in the training data.

Another aspect is the dominant approach to training a deep net-
work structure– that is, estimating unknown weights in different
layers. This is realized by applying a certain form of the steepest
gradient descent method with a rough approximation of the true
gradient, using one observation (online or stochastic gradient des-
cent) or a small subset of observations (minibatch). In classical
optimization, even the batch gradient descent using the complete
data is considered a slow algorithm but still a convergent one pro-
vided that the gradient of the minimized function is Lipschitz con-
tinuous and the line search– that is, the determination of the step
size (the learning rate in neural networks terminology) when mov-
ing to the search direction– satisfies specific decrease conditions as
given in Theorems 6.3.2 and 6.3.3 in [96] and Theorem 3.2 in [97].
In deep learning, step size may be fixed to a small positive constant
[98] or be based on monitoring the first- and second-order
moments of the gradient during the search with direct updates
[99]. Often restricted to a fixed number of iterations and not assur-
ing stopping criteria measuring fulfillment of the optimality condi-
tions (see Section 7.2 in [96]), this implies that the actual
optimization problem for determining the weights of a DNN might
be solved inaccurately [100].

In a genuine supervised learning for a regression model or a
classifier, inexact optimization can be tolerated when seeking the
best generalizing network. Then, the search of weights that provide
better minimizers for the cost/loss function is stopped prematurely
when the test or validation error of the model begins increasing as
an indication of overlearning. In such a case, we are not seeking the
most accurately optimized network but the best generalizing



Table 1
Summary of main forms of autoencoders.

Technique Architecture Learning principle Evaluation Applications

Denoising AE (DAE) [34–39] Classical Add noise to inputs [34] or pretraining
[34] or weight updates [35]

Linear complexity for Marginalized
Stacked Linear DAE [36];

Higher imputation accuracy [38]

Better higher-order representations [34];
Time series classification [37];

Generative models for genetic operators
[39];

Data imputation [38]
Sparse AE (SAE) [40] (see also Sec-

tion 5.6.4 [3])
Classical Introduce sparsity favoring regularization

and special solvers
Reduced models with less active weights High-dimensional regression and

classification problems, e.g., in
Chemometrics

Separable AE (SAE) [41]
(cf. Siamese neural networks that
do opposite and use shared
weights)

Classical Pretrain multilayer AE for speech and on-
the-fly multi-layer AE for residual noise
from Spectrogram with nonnegativity

constraint

Quality of enhanced speech, analysis of
noise distribution

Separate speech and noise

Graph AE (GAE) [42–47]
Variational GAE [48] (see VAE
next)

Schrinking and enlarging forward–
backward transformation of data graph
(GNN); Use AE to encode-decode Graph

layer Convolution Network [43];
Masked GAE [46];

Encode-decode both topology and node
attributes [47];

GNN encoder + separate feature&label
decoders [48]

Reconstruction of adjacency matrix in
least-squares sense [42] or cross-entropy

sense [43];
Apply weight-least-squares and graph

Laplacian regularization [44,48];
Regularize both topology and node attri-

bute proximity [47]

Use latent representation to test
preservation of topological features or

node or graph structure;
Classification and clustering quality;

Linear training scalability [48]

Suppressed graph encapsulation of linked
data representing citations, emails, flights,

species, social networks, blockchains,
collaborations, functional magnetic

resonance imaging (fMRI);
Estimation of missing feature information

on nodes for link prediction [48]

Variational AE (VAE) [49–52] Structurally classical, input and/or latent
distributions, generative use emphasized

[49,50]

Stochastic fitting to samples and
regularization of latent space, e.g., with
Kulback-Leibler divergence, non-convex

optimization problems [49,50]

Recovery of generated latent space [49],
size of latent space [49], quality of gener-

ated topics [50];
imbalanced classification quality [51,52];
Quality of density estimation and number

of active units [52]

Generation of topics [50],
Generation of samples for minority class

[51]

Regularized AE (RAE) [53] Any Combination of classical reconstruction
error and contractive regularizer

(encoder-decoder derivative with respect
to input)

Function approximation, recovery of
manifolds

Recovery of data-generation density

Multi-modal AE [54] Set autoencoder to process different data
modalities, recurrent units

Input–output order matching using sum
of reconstruction error and cross-entropy

loss between set memberships

Quality of set assignments and matching,
quality of kernel density estimation

Genes-to-proteins mapping
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model based on another error criterion at the meta-optimization
level. Theoretically, however, generalization and optimality can
be linked in certain respects: An outer-layer locally optimal net-
work, independently on the level of optimality of the hidden layers,
provides an unbiased estimate of the prediction error over the
training data in the sense of mean, median, or spatial median [101].

In a typical use case, the goal of a dimension reduction through
autoencoding is to obtain a reduced, compact representation that
encapsulates variation of data. Similar to linear dimension reduc-
tion techniques, when attempting to represent the given data accu-
rately in lower dimensions, we aim for the best possible
reconstruction accuracy. Then, the cost function that measures
the autoencoding error (such as the least-squares error function)
must be solved with sufficiently high optimization accuracy
because of the direct correlation: The smaller the cost function,
the better the autoencoder.
3. Methods

In this section, we describe the methods used here as part of the
autoencoding approach. In the following account, we assume that a
training set of N observations X ¼ xif gNi¼1, where xi 2 Rn, is given.

3.1. The autoencoding model

In mathematical modelling, linear and nonlinear models are
typically treated separately [102]. Following [5], according to Tay-
lor’s formula, in the neighborhood of a point x0 2 Rn, the value of a
sufficiently smooth real-valued function f xð Þ can be approximated
as

f xð Þ ¼ f x0ð Þ þ rf x0ð ÞT x� x0ð Þ þ 1
2

x� x0ð ÞTr2f x0ð Þ x� x0ð Þ þ . . . ;

where rf x0ð Þ denotes the gradient vector and r2f x0ð Þ the Hessian
matrix at x0. According to Lemma 4.1.5 [96], there exists
z 2 ls x; x0ð Þ; z 2 Rn, where ls refers to the line segment connecting
the two points x and x0, such that

f xð Þ ¼ f x0ð Þ þ rf x0ð ÞT x� x0ð Þ þ 1
2

x� x0ð ÞTr2f zð Þ x� x0ð Þ: ð1Þ

This formula yields the sufficient condition of x 2 Rn to be the local
minimizer of a convex f (whose Hessian is positive semidefinite)
Theorem 2.2 [97]: rf xð Þ ¼ 0. However, another interpretation of
the formula above is that we can locally approximate the value of
a smooth function as a sum of its bias (i.e., constant level), a linear
term, and a nonlinear higher-order residual operator. This observa-
tion is the starting point for proposing an autoencoder that has
exactly such an additive structure.

The bias estimation simply involves the elimination of its effect
through normalization by subtracting the data mean and scaling
each feature separately into the same range �1;1½ �with the scaling
factor 2

max xð Þ�min xð Þ. Thus, we combine the mean component from z-

scoring and the scaling component frommin–max scaling. The rea-
son for this is that the unit value of the standard deviation in z-
scoring does not guarantee equal ranges, and min–max scaling into
�1;1½ � does not preserve the zero mean.

In the second phase, we estimate the linear behavior of the nor-
malized data by using the classical principal component transfor-
mation [103]. For a zero-mean vector x 2 Rn, the transformation
to a smaller-dimensional spacem < n spanned bym principal com-
ponents (PCs) is given by y ¼ UTx, where U 2 Rn�m consists of the
m most significant (as measured by the sizes of the corresponding
eigenvalues) eigenvectors of the covariance matrix. Thus, because
of the orthonormality of U, the unexplained residual variance of
5

the PC coordinates (i.e., the linear trend in Rm) in the original space
(see SI, Section 7) can be estimated in the following manner:

~x ¼ x� Uy ¼ x� UUTx ¼ I� UUT
� �

x: ð2Þ

This transformation is referred to as PCA. With erroneous data or
data with missing values, mean and classical PCA can be replaced
with their statistically robust counterparts [104].

In the third, nonlinear phase, we apply the classical fully con-
nected feedforward autoencoder to the residual vectors in (2).
We note that structurally, in comparison with the classical autoen-
coding model [23] (see Section 2.1), the difference according to (2)
is the inclusion of the linear dimension reduction operator acting
on the original dimension. To use the same data dimension in
the linear approximation is suggested by the Taylorian analogy
according to Eq. (1). Furthermore, one needs to return to the orig-
inal dimension in the linear approximation, because otherwise (i.e.,
if we would consider the residual in the reduced dimension m) the
overall reconstruction error would be constrained by the accuracy
of the linear part. Here, instead, when the residual data is repre-
sented in the original dimension, both the linear and nonlinear
parts of the additive autoencoder contribute to the reduction of
the autoencoding error in the original data dimension.

As anticipated by the scaling, the tanh activation function
f xð Þ ¼ 2

1þexp �2xð Þ � 1 is used. This ensures the smoothness of the

entire transformation and the optimization problem of determin-
ing the weights. The currently popular rectified linear units are
nondifferentiable [101] and, therefore, are not theoretically com-
patible with the gradient-based methods Section 6.3.1 [98]. The
importance of differentiability was also noted in [105].

The formalism introduced by [24] is used for the compact
derivation of the optimality conditions. By representing the layer-
wise activation using diagonal function-matrix
F ¼ F �ð Þ ¼ Diag f i �ð Þf gmi¼1, where f i � f , the output of a feedforward
network with L layers and linear activation on the final layer reads
as

o ¼ oL ¼ N ~xð Þ ¼ WLo L�1ð Þ; ð3Þ

where o0 ¼ ~x for an input vector ~x 2 Rn0 , and

ol ¼ F Wlo l�1ð Þ
� �

forl ¼ 1; . . . ; L� 1. To allow the formal adjoint

transformation to be used as the decoder, we assume that L is even
and that the bias nodes are not included in (3). The dimensions of
the weight matrices are then given by

dim Wl
� �

¼ nl � nl�1; l ¼ 1; . . . ; L. In the autoencoding context,

nL ¼ n0 and nl;0 < l < L, define the sizes (the number of neurons)
of the hidden layers with the squeezing dimension nL=2 < n0.

To determine the weights in (3), we minimize the regularized
mean least-squares cost function of the form

J Wl
n oL

l¼1

� �
¼ 1

2N

XN
i¼1

WLo L�1ð Þ
i � ~xi

��� ���2

þ a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l¼1

# Wl
1

� �vuut
XL

l¼1

Wl �Wl
0

��� ���2
; ð4Þ

where k � k denotes the Frobenius norm and # Wl
1

� �
the number of

rows of Wl. Let a be fixed to 1e-6 throughout; to simplify the nota-

tions, we define b ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

l¼1jWl
1j

q
. The underlying idea in (4) is to

average in both terms: in the first, the data fidelity (least-squares
error, LSE) term, and in the second, the regularization term. Averag-
ing the first term with 1

N implies that the term scales automatically
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by the size of the data subset, for instance, in minibatching, thereby
providing an approximation of the entire LSE on a comparable scale.
In the second term, because a is fixed, the inverse scaling constant

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

l¼1jWl
1j

q
balances the effect of the regularization compared to

the data fidelity for networks with a different number of layers of
different sizes. Because (4) will be minimized with local optimizers,

we simply use the initial guesses Wl
0

n o
of the weight values in the

second term to improve the local coercivity of (4) and to restrict the
magnitude of the weights, thereby attempting to improve general-
ization [106]. Because of the residual approximation, the random
initialization of the weight matrices is generated from the uniform
distribution U �0:1; 0:1½ �ð Þ. s

The gradient matrices rWlJ Wl
n oL

l¼1

� �
; l ¼ L; . . . ;1, for (4) are

of the following form (see [24]):

rWlJ Wl
n o� �

¼ 1
N

XN
i¼1

dl
i o l�1ð Þ

i

� �T
þ b Wl �Wl

0

� �
; ð5Þ

where the layerwise error backpropagation reads as

dL
i ¼ ei ¼ WLo L�1ð Þ

i � ~xi; ð6Þ
dl
i ¼ Diag Fð Þ0 Wlo l�1ð Þ

i

� �n o
W lþ1ð Þ

� �T
d lþ1ð Þ
i : ð7Þ

The use of different weights in the encoding– that is, in the transfor-
mation until layer L=2– and decoding, from layer L=2 to L, implies
more flexibility in the residual autoencoder but also rougly doubles
the amount of weights to be determined. Therefore, it is common to
use the tight weights, which means that the formal adjoint

W1
� �T

F W2
� �T

F . . . WL=2
� �T

� �� �
of the encoder is used as the

decoder. Then, it is easy to see that the layerwise optimality condi-
tions for l ¼ 1; . . . ; L=2 read as

rWlJ ¼ 1
N

XN
i¼1

dl
i o l�1ð Þ

i

� �T
þ o

~l�1ð Þ
i d

~l
i

� �T
Þ þ b Wl �Wl

0

� �
; ð8Þ

where ~l ¼ L� l� 1ð Þ. For convenience, we define eL ¼ L=2– that is,
the number of layers to be optimized with the symmetric models.

We note that when the layerwise formulae above are used with
vector-based optimizers, we always need to reshape operations to
toggle between the weight matrices and a column vector of all
weights.

Remark 1. Let us briefly summarize the use of the additive
autoencoder for an unseen dataset after it has been estimated (and
the corresponding data structures have been stored) for the
training data through the three phases. First, data is normalized
through mean subtraction and feature scaling into the same range
Fig. 2. Layerwise pretraining from heads to inner layers. The most outer layer is
trained first and its residual is then fed as training data for the next hidden layer
until all layers have been sequentially pretrained.

6

�1;1½ �. Then, residuals according to formula (2) are computed and
this residual data is fed to the feedforward autoencoder. Again due
to (2), the reduced, m-dimensional representation of new data is
obtained as a sum of its PC projection and the output of the
autoencoder’s squeezing layer. Formula (2) shows that the explicit
formation of the residual data between linear and nonlinear

representations can be replaced by setting fW1 ¼ W1 I� UUT
� �

and using this as the first transformation layer of the autoencoder
for the normalized, unseen data.
3.2. Layerwise pretraining

We apply the classical stacking procedure depicted, e.g., in Sec-
tion 6.2 [107]. A similar idea appears with the deep residual net-
works (ResNets) in [108], where consecutive residuals are
stacked together using layer skips– for example, over two or three
layers with batch normalization. However, in ResNets, the layer
skips can introduce additional weight matrices whereas the
layer-by-layer pretraining follows the originally chosen network
architecture.

The stacking procedure is illustrated in Fig. 2. For three hidden
layers with two unknown weight matrices, W1 and W2, we first
estimate W1 with the given data ~xif g. Then, the output data of

the estimated layer W1~xi

n o
are used as the training data (the input

and the desired output) for the second layer W2. Thereafter, the
entire network is fine-tuned by optimizing over both weight matri-
ces. The process from the heads to the inner layers is naturally
enlarged for a larger number of hidden layers. We could then also
apply partial fine-tuning– for example, to fine-tune the three hid-
den layers during the process of constructing a five-hidden-layer
network. However, according to our tests and similar to [23], the
layerwise pretraining suffices before fine-tuning the entire net-
work. A special case of utilizing a simpler structure is the one-
hidden-layer case: The symmetric model 1SYM with one weight
matrix is first optimizer to obtain W1 and then used in the form

W1
� �T

;W1
� �

as the initial guess for optimizing the nonsymmetric

model 1HID with two weight matrices. Again such an approach
could be generalized to multiple hidden-layer case for the nonsym-
metric, deep autoencoding model.

Remark 2. As stated in Section 2.1, stacking attempts to mitigate
the vanishing gradient problem, which may prevent the adaptation
of the weights in deeper layers. We assessed the possibility of such
a phenomenon by studying the relative changes in the weight

matrix norms jkWl
0k � kWl

�kj=kWl
0k

� �
while fine-tuning the sym-

metric autoencoders with 3–7 layers (3SYM, 5SYM, and 7SYM; see
Section 4). The subscripts ‘0’ and ‘�’ refer to the initial and final
weight matrix values, respectively. This study revealed that the
relative changes in the weights in the deeper layers were not on a
smaller numerical scale compared to the other layers. Apparently,
the double role of the layers in the symmetric models as part of the
encoder and the decoder, with the corresponding effect on the
gradient as seen in formula (8), is also helpful in avoiding a
vanishing gradient.
3.3. Determination of intrinsic dimension

The basic procedure to determine the intrinsic dimension is to
gradually increase the size of the squeezing layer and to seek a
small value of the reconstruction error measuring autoencoding
error, with a knee point [109] indicating that the level of nondeter-



Fig. 3. Identification of the intrinsic dimension for the Glass dataset. The hidden dimension (plus one) on the left is captured by the sufficiently small error improvement on
the right.
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ministic residual noise has been reached in autoencoding. We
apply the mean root squared error (MRSE) to compute the autoen-
coding error:

e ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

jxi �N xið Þj2
vuut ; ð9Þ

where xif g is assumed to be normalized and N denotes the applica-
tion of the autoencoder. This choice was made because in [110],
MRSE correlated better with the independent validation error than
the usual root mean squared error RMSE, In practice, the difference
between the RMSE and the MRSE is only the scaling factor, 1=

ffiffiffiffi
N

p
vs.

1=N. After the linear PC trend estimation, the MRSE is obtained by
using (9) for the residual data defined in formula (2). Note that
the reconstruction error is a strict error measure and its use
requires higher accuracy from autoencoding compared to other
measures: with the Wine dataset in Fig. 1, the linear PCA needs
all dimensions of the rotated coordinate axis for the reconstruction
whereas already 10 principal components out of 13 would explain
over 96% of the data variance.

An example of determining the intrinsic dimension of the Glass
dataset (see the next section) is presented in Fig. 3. In the figure,
the x-axis ‘‘SqDim” presents the squeezing dimension and the y-
axis on the left the ‘‘MRSE” and on the right its change ‘‘D(MRSE)”
(i.e., backward difference) for the symmetric model with one hid-
den dimension (1SYM) and the corresponding nonsymmetric model
1HID. The intrinsic dimension of data is detected by first locating a
sufficiently small change in the autoencoding error (the right plot).
For this purpose, a user-defined threshold s = 4e-3 is applied. The
detected dimension 5 on the left, marked with a circle, is the
dimension below the threshold on the right minus one. The intrin-
sic dimension 5 is also characterized by a clear knee point in the
MRSE behavior.
4. Results

The main focus of the computational experiments, which are
fully reported in the Supplementary Material (SM), was to investi-
gate the ability of the proposed additive autoencoder model to rep-
resent a dataset in a lower-dimensional space. Therefore, we
confined ourselves to the use of Matlab as the platform (mimicking
the experiments in [23]) to have full control over the realization of
the methods in order to study the effects of different parameters
and configurations. Reference implementation of the proposed
method and its basic testing is available in GitHub1.

We apply and compare the following set of techniques to
approximate the nonlinear residual of the autoencoder, after nor-
1 https://github.com/TommiKark/AdditiveAutoencoder
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malization and identification of the linear trend: 1HID (model with
one hidden layer and separate weight matrices for the encoder and
the decoder), 1SYM (symmetric model with one hidden layer and a
shared weight matrix), 3SYM (three-hidden-layer symmetric model
with two shared weight matrices), 5SYM, and 7SYM. To systemati-
cally increase the flexibility and the approximation capability of

the deeper models, the sizes of the layers for l ¼ eL; . . . ;1 are given
below, where neL is the size of the squeezing layer:

3SYM:neL – 2neL – n,

5SYM:neL – 2neL – 4neL – n,

7SYM:neL – 2neL – 3neL – 4neL – n.

Note that for neL > n=2 the size of the second layer and, therefore,

the dimension of the first intermediate representation, is larger
than the input dimension for all these models.
4.1. Identification of the intrinsic dimension

The first purpose of the experiments was to search for the
intrinsic dimension of a dataset via autoencoding. This was done
using the shallow models 1SYM and 1HID. The optimization settings
and visualization of all results are given in the online SM.

The experiments were carried out for two groups of datasets,
one with small-dimension data (less than 100 features) and the
other with large-dimension data (up to 1024 features). The data-
sets were obtained from the UCI repository [111], except the Fas-
hMNIST, which was downloaded from GitHub2. For most of the
datasets, only the training data was used; however, with Madelon,
the given training, testing, and validation datasets were combined.
The datasets do not contain missing values. The constant features
were identified and eliminated according to whether the difference
between the maximum and minimum values of a feature was less
than

ffiffiffiffiffiffiffiffiffiffiffiffi
MEps

p
, whereMEps denotes machine epsilon (this is classically

used numerical proxy of zero, see [96, p. 12]). Because of this prepro-
cessing, the number of features n in Tables 2 and 3 is not necessarily
the same as that in the UCI repository.

During the search, the squeezing dimension for the small-
dimension datasets began from one and was incremented one by
one up to n� 1. For the large-dimension cases, we began from 10
and used increments of 10 until the maximum squeezing dimen-
sion b0:6� nc was reached (cf. the ‘‘Red” values in Tables 2 and
3). The experiments were run with Matlab on a Laptop with
2.3 GHz Intel i7 processor and 64 GB RAM and on a server with a
Xeon E5-2690 v4 CPU and 384 GB of memory.
2 https://github.com/zalandoresearch/fashion-mnist



Table 2
Results of the identification of the intrinsic dimension for small-dimension datasets. The intrinsic dimensions were identified with the reduction rates varying between 0.41–0.54.
The SteelPlates and COIL2000 (with the most discrete feature profile) have the best reduction rate. The residual errors are between 1.1e-2–4.3e-4.

Dataset N n ID Red MRSE FeatProf (%)

Glass 214 10 5 0.50 1.3e-3 10–40-50–0
Wine 178 13 7 0.54 1.2e-3 0–46-54–0
Letter 20 000 16 8 0.50 9.4e-4 0–100-0–0
SML2010 2 763 17 9 0.53 5.4e-4 0–12-18–71
FrogMFCC 7 195 22 11 0.50 1.1e-3 0–0-5–95
SteelPlates 1 941 27 11 0.41 4.3e-3 11–11-56–22
BreastCancerW 569 30 14 0.47 6.9e-3 0-0–100-0
Ionosphere 351 33 17 0.52 1.9e-3 3–0-97–0
SatImage 6 435 36 18 0.50 4.3e-4 0–75-25–0
SuperCond 21 263 82 37 0.45 1.1e-2 2–1-12–84
COIL2000 5 822 85 35 0.41 2.8e-2 99–1-0–0

Table 3
Results of the identification of the intrinsic dimension for large-dimension datasets. The intrinsic dimensions were identified with the reduction rates varying between 0.39–0.55.
The HumActRec dataset with a continuous feature profile has the best reduction rate. The residual errors are between 8.0e-2–2.9e-3.

Dataset N n ID Red MRSE FeatProf (%)

USPS 9 298 256 130 0.51 2.9e-3 0–0-0–100
BlogPosts 52 397 277 130 0.47 3.9e-3 79–8-12–1
CTSlices 53 500 379 180 0.47 6.3e-2 8–4-10–78
UJIIndoor 19 937 473 200 0.42 7.0e-2 26–73-1–0
Madelon 4 400 500 250 0.50 7.9e-2 2–31-67–0
HumActRec 7 351 561 220 0.39 8.0e-2 0–2-0–98
Isolet 7 797 617 310 0.50 9.4e-3 1–6-14–80
MNIST 60 000 717 350 0.49 9.3e-3 9–14-77–0
FashMNIST 60 000 784 380 0.48 5.0e-2 0–2-98–0
COIL100 7 200 1 024 560 0.55 6.4e-3 0–11-89–0

Fig. 4. Identification of the intrinsic dimension for the Letter dataset and SuperCond dataset. Left: Clearly identified knee-point in ID = 8 for Letter. Right: Gradual decrease of
MRSE with ID = 37 for SuperCond.

Fig. 5. Identification of the intrinsic dimension for the MNIST dataset. The hidden dimension (plus one) on the left is captured by the sufficiently small error improvement on
the right. Left: Gradual decrease of MRSE with ID = 350 for MNIST. Right: Zoom of MRSE improvement with the threshold s = 3e-3 confirms the detection.
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In Tables 2 and 3, we present the name of the dataset, the num-
ber of observations N, the number of features n, and the detected
intrinsic dimension ID. The autoencoding error trajectories and
8

thresholdings are illustrated for all datasets in the online SM. The
detection threshold for small-dimension datasets was fixed to s =
4e-3. The reduction rate ID=n for the intrinsic data dimension is



Fig. 6. Identification of the intrinsic dimension for the FashMNIST dataset and COIL100 dataset. Left: Clear knee-point of MRSE with ID = 380 for FashMNIST. Right: More
gradual decrease of MRSE with ID = 560 for COIL100.
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reported in the Red column, and the autoencoding error of 1HID for
ID according to (9) is included in the MRSE column. There is no
averaging over the data dimension n in (9), so that for higher-
dimension datasets this error is expected to remain larger. This
was probably one of the reasons why, for large-dimension datasets,
we needed to use two values of the threshold s (based on visual
inspection; see the zoomed illustrations in the SM): 3e-3 for USPS,
BlogPosts, HumActRec, MNIST, and COIL100, and 3e-2 for the
remaining five datasets.

For the analysis, we also included a depiction of how discrete or
continuous the set of features for a dataset is. We categorized the
features into four groups based on the number of unique values
(UV) each feature has: C1 = {UV 610}, C2 = {10 < UV 6100}, C3
= {100 < UV 61000}, and C4 = {1000 < UV}. The FeatProf column
in Tables 2 and 3 presents the proportions of C1–C4 in percentages.

4.1.1. Conclusions
Examples of the ID detection are given in Figs. 3 (Glass), 4 (Let-

ter on the left, SuperCond on the right), 5 (MNIST), and 6 (Fas-
hMNIST on the left, COIL100 on the right). Identifications in the
first two cases and for FashMNIST are characterized by clear
knee-points in IDs. For SuperCond, with gradual decrease of the
MRSE, determination of ID is based on the mutual threshold value
s = 4e-3 of small-dimension datasets. Also MNIST has such a
behavior and the zoom in Fig. 5 (right) illustrates the detection
decision with s = 3e-3.

Overall, the intrinsic dimensions were successfully identified
for all tested datasets. The use of a feedforward network to approx-
imate the nonlinear residual notably decreased the autoencoding
error of the linear PCA. The overall transformation summarizing
the essential behavior of data roughly halved the original dimen-
sion: The mean reduction rate over the 21 datasets was 0.48.

The reduction rate was independent of the form of the features–
that is, the best reduction rates for small-dimension datasets were
obtained with the very categorical COIL2000 and primarily contin-
uous SteelPlates datasets. This suggests further experiments on
how to treat different types and forms of features, for instance,
to address whether different loss functions should be applied
[76]. The best reduction rate, 0.39, was anyway obtained for
HumActRec, which is characterized by a continuous feature profile.
This indicates that we may obtain smaller reduction rates with
more continuous sets of features with the proposed approach.

4.2. Comparison of shallow and deep models

The second aim of the experiments was to examine whether
deeper network structures and deep learning techniques (the net-
work structure and optimization of the weights) can improve the
identification of the intrinsic dimension and the data restoration
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ability of the additive autoencoder. This aim is pursued as follows:
Here, we compare shallow and deep networks in cases where fine-
tuning is performed using a classical optimization approach, i.e.,
using the L-BFGS optimizer with the complete dataset. In the SM,
we report the results of using different minibatch-based
approaches. Also detailed depictions of the parameter choices
and visualization of the results for all datasets are included there.

In addition to visual assessment, we performed a quantitative
comparison between the deep and shallow models. First, the MRSE
values of all models were divided with the corresponding value of
the 1HID model’s error. This was done for the squeezing dimensions
from the first until next to last of ID, to cover the essential search
phase of the intrinsic dimension. To exemplify relative perfor-
mance, if the MRSE value of a model divided by the 1HID’s value
for a particular squeezing dimension would be 0.5, then such a
model would have half the error level and, conversely, twice the
efficiency compared to 1HID. Therefore, the model’s efficiency is
defined as the reciprocal of relative performance.

The relative performances are illustrated in Figs. 7 and 8.
Descriptive statistics of the efficiencies of symmetric models are
given in Tables 4 and 5. In each cell there, both the mean efficiency
and the maximal efficiency are provided. The latter includes, in
parentheses, the squeezing dimension where it was encountered.
4.2.1. Conclusions
During the early phases of searching the intrinsic dimension,

deep networks provide smaller autoecoding errors compared to
the shallow models. However, as exemplified in Fig. 7 (left) and
is evident from all illustrations in the SI, MRSE in ID is not better
for deeper models compared to 1HID. Therefore, the use of a deeper
model would not change the ID values and, in fact, fluctuation of
the error for the deeper models compared to 1HID may hinder
the detection of a knee-point and negatively affect the simple
thresholding.

Usually, the mean efficiency of the two deepest models, 5SYM
and 7SYM, is better than that of 1SYM or 3SYM, but for many datasets,
there is only a slight improvement. Overall, the plots for the rela-
tive efficiencies between different symmetric models and the
quantitative trends in the rows of Tables 4 and 5 include varying
patterns. The mean efficiency is highest for UJIIndoor, Ionosphere,
Madelon, and COIL100, where the last three datasets are character-
ized by high data dimension/number of observations, n=N, ratio
(0.09, 0.11, and 0.08, respectively). The following are the grand
means of the mean efficiencies over all 21 datasets for the symmet-
ric models: 1SYM 0.97, 3SYM 1.19, 5SYM 1.38, and 7SYM 1.44. This
concludes that deeper models improve the reduction of the
autoencoding error during the search of ID. However, the speed
of improvement decreases as a function of the number of layers.



Fig. 7. Left: Behavior of the MRSE with all residual models for Ionosphere. Right: Relative performance of the models with respect to 1HID. During the search of the ID the
deeper models show clear improvement but the detected ID is the same for all models.

Fig. 8. Left: Relative performance of the models for BreastCancerW. Right: Relative performance of the models for COIL100. The deeper models show clear improvement over
the shallow ones but the detected ID stays the same and near ID the improved efficiency may be completely lost.

Table 4
Efficiencies of symmetric models for small-dimension datasets.

1SYM 3SYM 5SYM 7SYM

Dataset mean max (dim) mean max (dim) mean max (dim) mean max (dim)

Glass 0.91 1.03 (2) 0.91 1.10 (3) 1.18 1.31 (3) 1.15 1.40 (3)
Wine 0.97 0.99 (1) 1.07 1.22 (6) 1.25 1.59 (6) 1.36 1.75 (6)
Letter 1.00 1.00 (1) 1.03 1.06 (6) 1.10 1.14 (6) 1.11 1.15 (6)
SML2010 0.94 0.99 (1) 0.95 1.07 (5) 1.12 1.23 (3) 1.15 1.32 (3)
FrogMFCCs 0.99 1.00 (7) 1.04 1.17 (8) 1.10 1.23 (8) 1.11 1.23 (8)
SteelPlates 0.94 0.99 (4) 0.94 1.09 (5) 1.04 1.22 (5) 1.04 1.27 (5)
BreastCancerW 0.98 0.99 (11) 1.10 1.29 (13) 1.22 1.42 (12) 1.24 1.41 (11)
Ionosphere 0.91 0.97 (3) 1.04 1.26 (15) 1.74 3.19 (14) 2.07 4.06 (15)
Satimage 0.99 1.00 (10) 1.02 1.07 (17) 1.05 1.09 (17) 1.06 1.12 (1)
SuperCond 1.00 1.00 (30) 1.10 1.18 (33) 1.20 1.30 (29) 1.23 1.34 (26)
COIL2000 0.99 1.02 (16) 1.24 1.85 (32) 1.49 2.89 (29) 1.48 2.62 (30)

Table 5
Efficiencies of symmetric models for large-dimension datasets.

1SYM 3SYM 5SYM 7SYM

Dataset mean max (dim) mean max (dim) mean max (dim) mean max (dim)

USPS 0.99 1.00 (90) 1.08 1.16 (90) 1.13 1.21 (70) 1.14 1.23 (60)
BlogPosts 0.95 1.00 (110) 1.18 1.39 (70) 1.28 1.56 (80) 1.23 1.53 (70)
CTSlices 0.99 1.00 (170) 1.17 1.51 (150) 1.30 1.76 (150) 1.32 1.74 (150)
UJIIndoor 0.99 0.99 (60) 1.69 2.46 (150) 2.15 3.11 (130) 2.24 3.51 (130)
Madelon 0.97 1.00 (30) 1.38 3.74 (240) 2.29 5.77 (220) 3.01 8.02 (220)
HumActRec 0.99 1.00 (160) 1.15 1.31 (160) 1.22 1.40 (130) 1.24 1.40 (130)
Isolet 0.99 1.00 (290) 1.22 2.16 (290) 1.44 2.89 (270) 1.55 2.65 (270)
MNIST 0.99 1.00 (200) 1.32 1.99 (260) 1.42 2.20 (250) 1.41 2.25 (240)
FashMNIST 0.99 1.00 (320) 1.15 1.63 (370) 1.22 1.59 (350) 1.23 1.53 (350)
COIL100 0.98 1.00 (310) 2.18 11.19 (520) 1.96 8.51 (530) 1.79 2.63 (430)
COIL100-Min 0.98 1.00 (310) 1.75 8.05 (510) 1.79 4.22 (510) 1.87 2.63 (430)
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Fig. 9. Left: Minimum autoencoding error of the all models for COIL100. Right: Reduced relative performance of the models for COIL100. For COIL100, use of minimum
autoencoding error to identify ID yielded more reasonable results.

Fig. 10. Left: RMSEs for BreastCancerW with the original 2–3-4 pattern for the hidden layers. Right: RMSEs for BreastCancerW with 3–5-7 pattern for the hidden layers.
Slighly smaller errors were encountered during the early search phase of the larger model on the right but the detected ID and the overall behavior remained the same.
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Actually, close to the intrinsic dimension, the benefits of deeper
models may be completely lost. This is illustrated in Fig. 8 (right)
and in Table 5 for COIL100 (see also, for example, plots of BlogPosts
and MNIST in the SI). The reason for such a behavior with COIL100
is the value of ID, 560, which was obtained with the smaller
threshold s = 3e-3 for large-dimension datasets. Therefore, with
COIL100, we also tested an alternative approach to the identifica-
tion of ID, where we apply the same thresholding technique (and
the same s) to the minimum autoencoding error of the all models.
This error plot, the identified ID = 520 (for which the reduction
rate would be 0.51), and the corresponding reduced set of relative
efficiencies are illustrated in Fig. 9. The summary of the efficiencies
for this modified way to identify ID are given in the last line
‘‘COIL100-Min” in Table 5. It can be concluded that for the largest
dimensional dataset COIL100, the use of the minimum autoencod-
ing error of the models yielded more reasonable results.

We used a fixed pattern for the sizes of the hidden layers in dee-
per models: 2–3-4 times the squeezing dimension for 7SYM, the
first and last of these coefficients for 5SYM, and the first one for
3SYM. As reported in Section 4.1, the mean reduction rate over
the 21 datasets was close to 0.5. Therefore, one may wonder
whether this behavior is due to the fact that from this case
onwards all the hidden dimensions are larger than the number of
features so that a kind of nonlinear kernel trick occurs. In other
words, would a different pattern of the hidden dimensions change
the results and conclusions here? This consideration was tested by
considering a 3–5-7 pattern providing much more flexibility for
the nonlinear operator compared to the used pattern. These tests
are not reported as a whole, because the clearly identified trend
of the results is readily exemplified in Fig. 10: Increase of the sizes
of the hidden layers slightly improve the reduction rate during
early phase of the search but does not change the value of the ID.
11
4.3. Comparison of classical and additive autoencoder

As depicted in Section 3, the basic structural difference between
the classical and the additive autoencoder is the inclusion of the
PCA based linear dimension reduction operator, and transforma-
tion back to the original dimension, in the latter model. One recov-
ers the classical autoencoding model from the additive one by
simply setting U ¼ 0 in (2). Next, we study how this affects the
autoencoding error and the training time. In order to solely com-
pare the two model structures, we performed experiments for all
datasets using the 5SYM architecture and exactly the same training
(i.e., optimization) settings (see SM) either with U ¼ 0 (‘ClasAE’) or
in the proposed form (‘PropAE’). As before, the tests were carried
out over an increasing set of dimensions of the squeezing layer
nL, which started from one and were incremented one by one for
the small-dimension datasets. For the large-dimension datasets, a
data-specific increment of the order 10–40 starting from the
squeezing layer’s size 10–40 were used, so that altogether 10–15
squeezing layers were tested in all of these cases (exact specifica-
tions of the tested dimensions are given in the SM). The intrinsic
dimension ID identified and reported in Tables 2 and 3 was used
as the size of the last squeezing layer for all datasets.

Results of the comparison are summarized in Table 6 and illus-
trated, for the two large-dimension dataset, in Fig. 11 (all figures
comparing RMSEs are given in the SM). In Table 6, for the com-
pared models, the CPU time is reported in minutes and it includes
the whole training time over all tested levels (for the proposed AE,
also time to compute U using PCA is included). For the latter CPU
value in the fifth column, the CPU ratio ‘rat’ of column five to col-
umn two is reported in parenthesis. For both models, the column
‘RMSE’ provides the final reconstruction error and the column
‘J 0’ includes the first value of the cost function (4) when training



Table 6
Comparison of classical and additive autoencoder.

Classic AE Proposed AE

Data CPU J 0 RMSE CPU (rat) J 0 RMSE

Glass 4.6e-1 1.1e-1 1.62e-1 5.0e-1 (1.09) 9.0e-4 6.69e-3
Wine 7.1e-1 1.5e-1 2.77e-1 6.8e-1 (0.96) 2.7e-4 1.13e-2
Letter 9.7e0 1.1e-1 3.33e-1 9.7e0 (1.0) 2.5e-4 1.39e-2
SML2010 2.3e0 1.2e-1 1.67e-1 2.1e0 (0.91) 2.1e-4 9.65e-3
FrogMFCC 5.1e0 3.5e-2 1.70e-1 5.0e+0 (0.98) 1.3e-4 6.71e-3
SteelPlates 2.9e0 1.8e-1 2.25e-1 3.0e0 (1.03) 1.4e-3 8.78e-3
BreastCancerW 2.7e+0 7.8e-2 1.65e-1 2.7e+0 (1.0) 6.0e-5 5.71e-3
Ionosphere 2.9e+0 9.2e-1 2.98e-1 2.9e+0 (1.0) 1.5e-2 1.94e-2
SatImage 1.7e+1 1.1e-1 2.25e-1 1.7e+1 (1.0) 7.6e-7 7.21e-4
SuperCond 2.0e+2 1.6e-1 1.85e-1 1.9e+2 (0.95) 1.0e-4 9.92e-3
COIL2000 5.6e+1 3.2e-1 4.47e-1 5.7e+1 (1.02) 4.8e-3 1.90e-2
USPS 1.7e+2 1,4e0 6.27e-1 1.6e+2 (0.94) 9.6e-6 2.01e-4
BlogPosts 8.8e+2 9.0e-1 2.99e-1 8.0e+2 (0.91) 1.4e-4 4.82e-3
CTSlices 1.3e+3 6.8e0 1.51e+0 1.0e+3 (0.77) 7.5e-3 7.42e-2
UJIIndoor 5.7e+2 1.5e0 5.81e-1 5.2e+2 (0.91) 8.1e-3 7.50e-2
Madelon 1.8e+2 6.3e0 1.06e+0 1.7e+2 (0.94) 1.2e-2 3.88e-2
HumActRec 3.2e+2 7.2e-1 4.50e-1 2.9e+2 (0.91) 4.0e-5 5.58e-3
Isolet 7.0e+2 2.9e0 1.59e+0 5.7e+2 (0.81) 6.2e-4 8.34e-3
MNIST 3.1e+3 4.2e0 1.17e+0 2.4e+3 (0.77) 1.1e-3 1.27e-2
FashMNIST 3.7e+3 8.2e0 2.30e+0 2.9e+3 (0.78) 1.0e-2 5.35e-2
COIL100 1.4e+3 2.8e0 1.43e+0 1.1e+3 (0.79) 3.8e-3 9.06e-3

Fig. 11. 5SYM for CTSlices (left) and FashMNIST (righ): behavior of autoencoding error for the classical and additive autoencoder (left y-axis) and the training time (right y-
axis) over a set of squeezing layer dimensions. Both reconstruction errors and CPU times are strictly smaller for the additive autoencoder compared to the classical one.
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the models in the last tested dimension ID. The latter allows one to
compare the effect of the layerwise pretraining through stacking as
depicted in Section 3.2.

This comparison summarizes the additional benefits, in addi-
tion to the possibility to identify the intrinsic dimension, of having
the explicit linear operator in the autoencoder. The autoencoding
error is always smaller, for all tested dimensions, for the proposed,
additive model. It reaches much smaller reconstruction error in ID
and, for the large-dimension datasets with more computational
efforts needed, decreases the training time (the larger the overall
CPU time the larger the benefit as shown, e.g., by ‘rat’ in the last
three datasets). As exemplified in Fig. 11 (right y-axis) and con-
firmed by comparing the columns three and six of J 0s in Table 6,
both the better quality and the reduced CPU of the additive AE are
especially due to improvements in the quality of stacking during
the shallow pretraining phase. This underlines the usefulness of
the original idea to construct a serial approximation of data in
the reduced dimension using an explicit separation of linear and
nonlinear operators acting both on the original dimension, as moti-
vated in the beginning of Section 3.1.

Finally, in Section 4.2 of the SM, results from a second compar-
ison that studied further the effect of the autoencoding model’s
structure and assessed our reference implementation are given.
More precisely, with the nonsymmetric one-hidden-layer 1HID

model and utilizing Matlab’s own ‘trainAutoencoder’-method that
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uses a sparsity regularizer based on the Kullback–Leibler diver-
gence (cf. Table 1), we tested three different autoencoding pipeli-
nes: 1Þ Apply Matlab’s own AE routine in the reduced dimension
after PCA and compute the reconstruction error with the inverse
PCA; 2Þ Apply Matlab’s own AE according to our proposition to
data obtained after the linear trend estimation in the original data
dimension; 3Þ Use our own implementation of the suggested
method. These tests were concluded as follows: In cases 2Þ and
3Þ, both Matlab’s AE and our AE worked similarly and retrieved
the intrinsic dimension. This indicates that different autoencoding
models, as depicted in Section 3.1, could be used for the nonlinear
residual estimation in the additive model. As expected, large
reconstruction errors without recovery of the intrinsic dimension
were obtained if the nonlinear autoencoding model was operating
directly on the reduced dimension after the linear transformation
(case 1). Our implementation (which can be applied with any num-
ber and size of layers differently from the Matlab routine) was typ-
ically many times faster than the Matlab’s AE and completely
stable, which was not the case with the proprietary routine.

4.4. Generalization of the autoencoder

In the last experiments, we demonstrate and evaluate the gen-
eralization of the additive 5SYM autoencoder. Search over squeez-
ing dimensions is performed in a similar manner as that done in



Fig. 12. Agreements of training and validation set MRSE values for UJIIndoor (left) and MNIST (right). Large deviation between training-validation errors on the left but
perfect match on the right. In ID, similar autoencoding error level is reached with both datasets.
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Section 4.2. We apply a small sample of datasets, for which a sep-
arate validation data was given in the UCI repository. More pre-
cisely, we use Letter (size of training data N ¼ 16000, size of
validation data Nv ¼ 4000, i.e., 80%–20% portions with respect to
the entire data; number of nonconstant featureas n ¼ 16), UJIIn-
door (N ¼ 19937; Nv ¼ 1111, 95%–5% portions; n ¼ 473), HumAc-
tRecog (N ¼ 7351; Nv ¼ 2946, 71%–29% portions; n ¼ 561), and
MNIST (N ¼ 60000; Nv ¼ 10000, 86%–14% portions; n ¼ 666).
Note that because all data are used as is, we have no information
or guarantees on how well the data distributions in the training
and validation sets actually match each other.

As anticipated, both training-validation portions and the data
dimension affected the generalization results. For Letter, with
80%-20% division between training-validation sizes and small
number of features, we witnessed a perfect match between the
training and validation MRSE values. The same held true for MNIST,
which is illustrated in Fig. 12 (right). The largest discrepancy
between the training and validation errors, depicted in Fig. 12
(left), was obtained for UJIIndoor, which has the most deviating
95%-5% portions with almost 500 features. This dataset also had
one of the largest efficiencies (i.e., reduction potential) in Table 5.
HumActRec was somewhere in the middle in its behavior, with
clearly visible deviation. Because of the data portions (�70%-
30%), the difference raises doubts regarding the quality of the val-
idation set. Note that these considerations provide examples of the
possibilities of autoencoders to assess the quality of data.

The visual inspection was augmented by computing the corre-
lation coefficient between the MRSE values in the training and val-
idation sets. The following values confirmed the conclusions of the
visual inspection: Letter 1.0000, UJIIndoor 0.9766, HumActRecog
0.9939, and MNIST 0.9999. Finally, an important observation from
Fig. 12 is that when the squeezing dimension is increased up to the
intrinsic dimension, then the validation error tends to the same
error level than the training error. Therefore, the additive autoen-
coder determined using the training data was always able to
explain the variability of the validation data with a compatible
accuracy.

5. Conclusions

This study illustrated a case where all main concerns with feed-
forward mappings, as quoted in Section 2.2 from [95, p. 363], were
solved: learning was successful, the size and the number of hidden
layers were identified, and the deterministic relationship within a
dataset was found. Similar to [23], stacking was found to be an
essential building block for estimating the weights of deep autoen-
coders. Learning and dimension estimation were based on a simply
weighted, automatically scalable cost function with compact layer-
wise weight calculus and a straighforward heuristic for determin-
ing the intrinsic data dimension. Intrinsic dimensions for all tested
datasets with a low autoencoding error were revealed. A similar
13
autoencoding error, and the corresponding intrinsic dimension,
was obtained independently on the depth of the network. This
was not obtained with the classical autoencoding model, without
the linear operator, or if the residual after the linear dimension
reduction was processed further in the reduced dimensional space.
However, the experiments clearly indicated that other autoencod-
ing techniques could be used for the nonlinear residual estimation
in the additive form.

One clear advantage of the proposed methodology is the lack of
meta-level parameters (e.g., number and form of layers, selection
of activation function, detection of the learning rate) that are usu-
ally tuned or grid-searched when DNNs are applied. The only
parameter that may need adjustment based on visual assessment
is s– that is, the threshold for identifying the hidden dimension.
Moreover, because of the observed smoothly decreasing behavior
of the autoencoding error, the intrinsic dimension could be
searched for more efficiently than just incrementally: One could
attempt to utilize one-dimensional optimization techniques like
a golden-section search and/or polynomial and spline interpolation
to more quickly identify the beginning of the error plateau.

These results challenge the common beliefs and currently pop-
ular traditions with deep learning techniques. The experiments
summarized here and given in the SM suggest that many existing
deep learning results could be improved by using a clear separa-
tion of linear and nonlinear data-driven modelling. Also use of
more accurate optimization techniques to determine the weights
of such models may be advantageous.

We can use the additive transformation to the intrinsic dimen-
sion as a pretrained part for transfer learning with any prediction
or classification model [105]. It would be interesting to test in
the future whether one should use this as is or would a transforma-
tion into a smaller squeezing dimension than the intrinsic one gen-
eralize better in prediction and classification tasks? Another
detectable dimension of the squeezing layer worth investigating,
as illustrated in the relative MRSE plots (see also the SM) and in
Tables 4 and 5, could be the one with the largest nonlinear gain–
that is, with the maximum difference between the PCA error and
the autoencoder error or between the shallow and deep results.
Moreover, we used global techniques in every part of the autoen-
coder. The technique might benefit from encoding locally esti-
mated behavior– for example, using convolutional layers for
local-level estimation [112]. Similarly, other linear transformation
techniques and modifications of PCA might provide better perfor-
mance [2,113,114], although in the proposed form, we also need
the inverse of the linear mapping to be able to estimate the resid-
ual error in the original vector space.
Data availability

Data and codes are available in public repositories.
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