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To understand, how the diversity and hence functioning of tundra ecosystems might 
respond to altering environmental conditions, fine-scale studies are needed as local 
conditions may buffer broad-scale environmental changes. Furthermore, species func-
tional traits and phylogeny may provide complementary insights to taxonomic diver-
sity patterns as they link plant communities to ecosystem processes often more closely 
than species count. Here, we examined taxonomic, functional and phylogenetic plant 
diversity in relation to fundamental environmental factors, namely, growing degree 
days, snow persistence, soil moisture, pH and fluvial disturbance in northern Norway. 
The relationships between eight diversity metrics and environmental predictors were 
investigated using hierarchical generalised additive models. Our results indicated 
that taxonomic, functional and phylogenetic plant diversity in tundra are all strongly 
linked to local snow and fluvial conditions, with average variable importance of 0.19 
and 0.14, respectively, whereas the importance of other predictors was low (average 
variable importance < 0.06). The average explained deviance by the models was 0.23. 
Predicted hotspots of different diversity metrics overlapped notably and were mostly 
located along the streams. However, when the effect of taxonomic richness was removed 
from the phylogenetic and functional diversities their connections with environmental 
predictors were weaker but indicated strongest relationships with snow and soil pH 
showing distinct diversity hotspots in areas with low species richness. Our study dem-
onstrates that investigating multiple facets of biodiversity enhances understanding on 
community patterns and their drivers. Furthermore, our results highlight the impor-
tance of addressing local hydrological conditions that represent both resources and 
disturbances for vegetation. As arctic and alpine areas are probably shifting from snow 
to rain dominated, incorporating snow and fluvial information into the models might 
be particularly important to better understand tundra ecosystems under global change.

Keywords: arctic-alpine vegetation, biodiversity, fluvial disturbance, snow cover, 
vascular plants
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Introduction

Ecosystems are facing drastic changes globally due to cli-
matic alterations and land-use changes caused by human 
actions leading to on-going biodiversity crisis (Steffen et al. 
2015). High latitude and altitude tundra environments are 
particularly under threat as they are expected to warm up to 
three times faster than the global average, even though direct 
human impacts are lesser than elsewhere (IPCC 2022). Land 
area available for cold-adapted arctic–alpine vegetation is 
constantly shrinking and the decrease of tundra region has 
been predicted to be vast especially in northern Fennoscandia 
(Barredo et al. 2020). Alterations in environmental condi-
tions trigger changes in species distributions (Felde et al. 
2012), community composition (Bjorkman et al. 2018a, 
Reichle et al. 2018) and diversity (Niittynen et al. 2020). 
Furthermore, changes in vegetation patterns have likely 
effects on the processes and functioning of the whole ecosys-
tems (Myers-Smith et al. 2011). Higher diversity increases 
ecosystem stability (Craven et al. 2018) and multifunctional-
ity (Le Bagousse-Pinguet et al. 2019), and therefore, inves-
tigating diversity patterns and their drivers enhances our 
understanding of the future of tundra ecosystems. 

Looking beyond taxonomic diversity, species functional 
traits as well as evolutionary history (phylogeny) might pro-
vide important insights into community assembly mecha-
nisms and biodiversity (Cadotte et al. 2013, DePauw et al. 
2021). Plant functional traits describe species size and struc-
ture as well as biogeochemistry concerning plant properties 
both above (e.g. height and leaf nutrient content) and below 
ground (e.g. rooting depth and root dry matter content) 
(Wright et al. 2004, Díaz et al. 2016). Importantly, they 
relate to key ecosystem processes such as carbon, water and 
nutrient cycling and productivity (Lavorel and Garnier 2002, 
Reich 2014). Functional diversity in turn describes the vari-
ability of traits in a community providing a more mechanistic 
approach to biodiversity research, since ecosystem processes 
are often more directly linked to functional diversity than to 
species richness (Díaz and Cabido 2001, Roscher et al. 2012). 
With higher functional diversity, a larger range of traits is 
present in a community due to niche complementarity lead-
ing to more efficient resource use (Díaz and Cabido 2001). 

Phylogenetic diversity, in turn, reflects the evolutionary 
distinctiveness among taxa but likely summarises informa-
tion on plant trait variability as well (Faith 1992, Tucker et al. 
2018). Moreover, phylogenetic diversity is often considered 
to represent the effect of phylogenetically conserved traits 
that are important for species survival and reproduction, 
but challenging to measure, such as traits mediating patho-
gen effects (Srivastava et al. 2012, Cadotte et al. 2013). 
Thus, these traits could not be captured in the calculations 
of functional diversity which usually depend on the eas-
ily measurable traits like height or leaf characteristics, for 
example. Additionally, phylogenetic diversity may also cap-
ture interspecific interactions due to the unmeasurable traits 
(Srivastava et al. 2012) and it does not depend on a priori 
selection of traits (Tucker et al. 2018). Therefore, considering 

species phylogeny may complement the information about 
the ecological differences of species by accounting for factors 
that could not be otherwise accounted for (Cadotte et al. 
2013). Together functional and phylogenetic diversity hence 
provide a complementary approach to investigate biodiver-
sity as they can combine information on species richness 
as well as on community composition but also offer a pos-
sibility to examine diversity unrelated to species richness 
(Villéger et al. 2008, Miller et al. 2016). However, it should 
be noted, that depending on the used metric, functional and 
phylogenetic diversity can be heavily influenced by species 
number (Tucker et al. 2016). Therefore, to disentangle the 
effect of species traits and phylogeny from richness effect, 
utilising null models, that control for species richness, might 
be particularly useful as well as considering different metrics 
(Miller et al. 2016, Palacio et al. 2022). 

In tundra, taxonomic diversity is regionally low, but there 
can be much variation in the local diversity patterns both 
in terms of species number as well as community compo-
sition as species have adapted to different tundra habitats 
(Gough et al. 2000, Wilson et al. 2012). Together with 
heterogeneous local topography, the uneven distribution of 
snow determines both growing season and overwintering 
conditions (French 2013, Niittynen et al. 2020) creating 
microclimatically varying areas, which support different plant 
communities (Graae et al. 2018). The annual winter snow-
pack melting, and the subsequent meltwater runoff, redis-
tributes nutrients as well as affects the availability of moisture 
throughout summer (Westergaard-Nielsen et al. 2020). In 
addition, meltwater creates microhabitats and causes distur-
bance for vegetation. Both snow cover duration and fluvial 
conditions have shown to affect species distributions, rich-
ness, and community composition (Löffler and Pape 2008, le 
Roux and Luoto 2013, Kemppinen et al. 2022). Therefore, 
drastic effects on tundra biodiversity can be triggered, as cold 
regions shift from snow dominated towards rain dominated 
under warming climate (Bintanja and Andry 2017, IPCC 
2022). However, locally complex topography and variation 
in microclimate may buffer the effects of large-scale climatic 
change, thus increasing the resilience of tundra vegetation 
(Opedal et al. 2015, Graae et al. 2018). Hence, addressing 
microclimate in the investigations of tundra biodiversity 
might be particularly important. Furthermore, microcli-
mate describes the environment at scales more relevant to 
the plants than the measurements based on free atmosphere 
(Scherrer and Körner 2011, Lembrechts et al. 2019). 

Former studies in tundra ecosystems have investi-
gated taxonomic, functional and phylogenetic plant diver-
sity separately (Stewart et al. 2016, Niittynen et al. 2020, 
Scharn et al. 2021). However, to our best knowledge, 
there are no studies combining all three biodiversity facets 
(DePauw et al. 2021 for boreal forests and Chauvier et al. 
2022 for the Alps). Furthermore, most biodiversity stud-
ies still investigate species richness possibly due to its sim-
plicity but perhaps fail to reveal more mechanistic linkages 
between environmental conditions, biodiversity and ecosys-
tem functions (Cadotte et al. 2013, DePauw et al. 2021). 
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Addressing the different diversity facets together might be 
particularly important as plant communities can vary nota-
bly due to specialised species with distinct characteristics, 
such as snowbed species in tundra (Choler 2005). This could 
increase local functional and phylogenetic diversity, even 
though species number, i.e. taxonomic diversity, would be 
low (Wookey et al. 2009). Consequently, it could be that 
different environmental factors are more strongly related to 
a certain diversity facet. Therefore, utilising functional and 
phylogenetic diversity metrics could reveal variation in tun-
dra biodiversity that cannot be captured looking at variation 
in species richness. 

To address this issue, we examine taxonomic, functional, 
and phylogenetic vascular plant diversity in relation to funda-
mental environmental variables in a local scale study setting 
in northern Norway. By combining in situ species occurrence 
and microclimate data, accurate digital elevation model and 
global trait observations and vascular plant phylogeny we aim 
to answer to the following questions:

1) Do taxonomic, functional, and phylogenetic diver-
sity metrics correlate with each other in tundra plant 
communities?

2) How do different biodiversity metrics respond to the 
underlying environmental drivers including growing 
season warmth, snow persistence, soil moisture, soil pH 
and fluvial conditions? Do functional and phylogenetic 
biodiversity metrics respond to local environment more 
strongly than taxonomic biodiversity metrics?

3) Can functional and phylogenetic diversity metrics iden-
tify biodiversity hotspots in tundra that cannot be identi-
fied with taxonomic diversity metrics?

Material and methods

Study area

Our study is located in Finnmark, northern Norway 
(69°59'24"N, 26°18'36"E, Fig. 1a) at the south-eastern slope 
of Rásttigáisá mountain in an area 6 km2 of size (Fig. 1b). 
Lowest parts of the study area lie around 400 m a.s.l. and 
the highest slopes reach above 700 m. Local topography 
is highly heterogeneous with numerous ridges and depres-
sions that affect the amount of incoming solar radiation and 
snow cover distribution creating varying microclimate and 
hydrological conditions. In addition, river Dár (Dárjohka) 
runs through the north-eastern parts of the area. The average 
annual temperature varies from −4.5 to −2.5°C and average 
annual precipitation is 560 mm. During summer the aver-
age temperature is around 8.5°C, whereas the average win-
ter temperature is around −12.0°C (gridded climate dataset 
1981–2010, Aalto et al. 2017). The bedrock of the area is 
mainly acidic crystalline rocks, however, a thin layer of nutri-
ent richer shales occurs around the mountain massifs in the 
region. The bedrock is mostly covered by glacial till, but peat-
lands and fluvial deposits also occur (Ryvarden 1969).

The whole area is located above the forest line and the 
vegetation is dominated by tundra heath characterised by 
dwarf shrubs (e.g. Empetrum nigrum, Betula nana, Salix her-
bacea and Vaccinium spp.). Moreover, there are many small 
streams driven by several long-lasting snow patches (niva-
tions) around the area which create a mosaic of varying habi-
tats ranging from dry wind-blown ridges to dry and moist 
meadows and even small wetlands (Fig. 1d–i). Vegetation at 
the ridges consist of stress-tolerant species such as Juncus trifi-
dus or Kalmia procumbens, whereas meadows provide more 
favourable growing conditions supporting forbs and grami-
noids like Solidago virgaurea, Viola biflora and Deschampsia 
flexuosa. Species around nivations, such as Ranunculus glacia-
lis and Harrimanella hypnoides, are adapted to long snow per-
sistence. Streams habit disturbance-tolerant species, Oxyria 
digyna and Micranthes spp., for example, whereas wetlands 
are habited by Rubus chamaemorus and different willow and 
Carex species. There are also species that occur in several 
habitats around the area such as Carex bigelowii and Dryas 
octopetala, of which occurrence depends on the availability of 
calcareous substrates (Mossberg and Stenberg 2003). 

The area holds 125 study sites (Fig. 1b) which were cho-
sen based on stratified sampling to cover main environmental 
gradients using elevation, potential incoming solar radiation, 
SAGA wetness index (SWI, Conrad et al. 2015), snow sea-
son length based on satellite images (Niittynen and Luoto 
2018) and soil type (peat, fluvial deposits, till, boulders and 
bare rock) which was digitised based on aerial images and a 
map of surface deposits (Geological Survey of Norway 2018) 
combined with field observations and expert knowledge from 
the area. Environmental variables used in the sampling were 
derived from raster surfaces at 10 m resolution (Supporting 
information). To maximally cover the environmental gra-
dients and to also include extreme conditions we weighted 
the used variables based on the relative frequencies of vari-
able values. First, we created a weighted sampling of 1000 
points from which we randomly selected 125 points so that 
35 points were considered as extreme points (i.e. having the 
highest weight) and the rest 90 points were chosen to pres-
ent average environmental conditions found within the study 
area. We repeated the sampling several times to find an opti-
mal sample in terms of spatial coverage and representative-
ness of the environmental gradients covered in the sampled 
points. Minimum distance of 50 m was considered between 
the chosen study points to avoid strong spatial clustering. 
The final pre-selected 125 study points were judged to cover 
the environmental and spatial space robustly. On average, 
the study design covered over 80% of the environmental 
gradients in the entire study area (based on the comparisons 
of the ranges of the four continuous variables, Supporting 
information).

From the 125 points, we chose 50 points to install micro-
climatic data loggers. Logger locations were chosen to repre-
sent both environmentally extreme (25 loggers) and average 
conditions (25 loggers) to cover microclimatic variation 
within the study area as thoroughly as possible while also 
considering representative spatial coverage. Multiple samples 
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of logger placement were evaluated using histograms of the 
environmental variables at the chosen study points to secure 
uniqueness and representativeness of the final logger sites. 
The pre-selected logger points covered almost entirely (98%) 
the environmental gradients across the 125 study points and 
over 80% of the gradients within the whole study area (based 
on the four continuous variables, Supporting information). 
Final judgement of the pre-selected study points, with and 
without loggers, was done in the field when founding the 
study sites in summer 2019 (i.e. changing site location from 
too hazardous a place, such as very steep slope where a logger 
would not have stayed in place, to a more secured one). Only 
a couple of sites out of the 125 had to be moved in the field 
and a suitable location was mostly found within a few meters. 
Therefore, we consider that the effect of changing site loca-
tion on collected vegetation and microclimate data is minor. 

Community data

Vascular plant species data was collected during summers 
2019–2021 by the authors. At each study site (n = 125) five 

study plots of 1 m2 were founded: one to the centre of the 
site (C plot) and one to each cardinal direction (N, E, S, W 
plots) with a 5-m radius resulting in 625 study plots (Fig. 1c). 
From each plot all vascular plant species were identified to 
species level and their coverage was estimated. Alchemilla and 
Taraxacum species with ambiguous taxonomy were identified 
to genus level, except Alchemilla alpina to species level. To uti-
lise the data as fully as possible and to characterise the observed 
plant communities accurately we included all species observa-
tions in the study plot communities. Observations of the two 
genus level taxa were included as well, as they are prevalent in 
arctic–alpine communities and trait and phylogeny data were 
possible to acquire at genus level. For the analyses only plots 
with at least three species were included resulting in 561 study 
plots and observations on 105 taxa (Supporting information). 

Trait and phylogeny data

Species phylogeny was derived from a global mega tree 
(GBOTB.extended.TPL) of V.PhyloMaker2 containing 74 

Figure 1. Study area location (a) and the study design (b–c). Yellow points show sites with a microclimatic logger and black points represent 
study sites without a logger (b). Each site holds five study plots (c) resulting in 561 plots used in the analyses (plots without species observa-
tions or with < 3 species were excluded). Main rivers and streams are shown in white (b). Photographs represent key habitats found in the 
study area: dry ridges (d), tundra heath (e), nivation (f ), wetland (g), meadow (h) and meltwater streams and stream banks (i). 
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529 vascular plant species (Jin and Qian 2022). From our 
species data 26 species and the two genus level taxa were not 
found in the mega tree. Hence, they were included in the 
phylogenetic sub tree created for our community data based 
on their closely related species or genera using scenario three 
following Jin and Qian (2019). Species-level phylogenies 
resolved at the genus-level have been shown to be appropri-
ate to examine phylogenetic structure in species communities 
(Qian and Jin 2021) and hence should not affect our results.

Trait observations for eight traits representing species size, 
structure and biogeochemical properties were derived from six 
international databases: Tundra Trait Team (Bjorkman et al. 
2018b), TRY Plant Trait Database (Kattge et al. 2011), 
Botanical Information and Ecology Network (Maitner et al. 
2018), Ecological indicator and traits values for Swedish vas-
cular plants database (Tyler et al. 2021), Fine-Root Ecology 
Database (Iversen et al. 2021) and Global root traits data-
base (Guerrero-Ramírez et al. 2020). Species names in the 
trait databases were harmonised to match the nomenclature 
of GBIF Backbone Taxonomy by the Global Biodiversity 
Information Facility with the ‘rgbif ’ R package (www.r-
project.org, Chamberlain et al. 2022). Chosen traits were 
plant height, seed mass, leaf nitrogen content, specific leaf 
area, root dry matter content, rooting depth, phenology type 
and pollinator dependence. The chosen traits represent dif-
ferent aspects of species growth, reproduction and disper-
sal, resource acquisition and competitive ability as well as 
tolerance for disturbances (Reich 2014, Iversen et al. 2015, 
Díaz et al. 2016). We calculated a median value (mode for 
categorical traits), instead of mean, of each trait for each spe-
cies to decrease the effect of possible outliers. Trait measure-
ments for all traits were not available for every species and the 
number of species lacking species-specific trait data depended 
on the trait in question. For example, height and specific 
leaf area measurements were lacking only from five species, 
whereas 54 species were lacking rooting depth measurement 
(Supporting information). However, all species had species-
specific trait measurements on some of the used traits (except 
Draba nivalis and Stellaria borealis) and on average species-
specific measurements were available for six out of eight traits 
per species (Supporting information). For the missing traits 
we imputed values based on traits and phylogeny of other 
species. We included all vascular plant species occurring in 
Norway, Finland and Sweden in the imputation. We used 
the ‘MissForest’ R package (www.r-project.org) which can 
efficiently handle big datasets including different types of 
variables with varying rates of missing values (Stekhoven and 
Bühlmann 2012). The dataset used in imputation included 
median trait values (or mode in case of categorical traits) 
for 6460 species considering 248 traits. A high number of 
species and traits was used to provide enough trait measure-
ments and evolutionary close species for enabling accurate 
estimation of trait–trait links and phylogenetic signal in the 
imputation process. This dataset was constructed similarly 
as the trait data covering the 105 taxa described above. We 
also used the same methods as described above to construct a 
phylogenetic tree from the global mega tree to cover the 6460 

Fennoscandian species. Next, we used the resulting subtree to 
calculate 10 first phylogenetic Eigenvectors with PVRdecomp 
function from ‘PVR’ R package (www.r-project.org, Santos 
2018) that describe the phylogenetic relationships across the 
Fennoscandian species pool. These Eigenvectors were then 
included as predictors in the imputation algorithm alongside 
the species level trait values. Average amount of imputed data 
over the eight traits used here was 25.4% (root traits lacking 
more measurements than the other traits). To the two genus 
level taxa (Alchemilla sp. and Taraxacum sp.) we calculated 
median (and mode) traits based on species-level traits using 
species that have arctic-alpine distribution in Fennoscandia 
(16 Alchemilla species and 13 Taraxacum species). 

Diversity metrics

The three facets of local plant diversity were addressed by cal-
culating eight diversity metrics describing taxonomic, func-
tional and phylogenetic variability. Regarding taxonomy, we 
calculated species richness (SpRich) i.e. species number per 
plot, and to take species abundance into account we calculated 
Shannon diversity index (Shan; Shannon 1948) using ‘vegan’ 
R package (ver. 2.5-7, www.r-project.org, Oksanen et al. 
2020). For functional and phylogenetic diversity, we calcu-
lated three metrics for each. First, we calculated functional 
richness (FRic; Villéger et al. 2008) and Faith's phylogenetic 
diversity (PD; Faith 1992) which both take species number 
into account (Tucker et al. 2018). FRic represents the con-
vex hull volume i.e. the functional space filled by the spe-
cies and PD represents the total sum of branch lengths on a 
community´s phylogenetic tree. Secondly, to disentangle the 
effect of traits and phylogeny from species richness we used a 
null model to calculate standardised effect size (SES) of FRic 
and PD (FRicSES and PDSES). In the null model, species rich-
ness is kept constant while phylogenetic and functional rela-
tionships are randomised (Xu et al. 2021, Qian et al. 2022). 
FRicSES and PDSES were calculated as:

Metric Metric.obs mean(Metric.null) /sd(Metric.null)SES = -( ) ,

where Metric.obs is the observed value of FRic or PD cal-
culated from the original community data, mean(Metric.
null) is the average value for randomised assemblages and 
sd(Metric.null) is the standard deviation of metric value 
among the randomised assemblages (Xu et al. 2021). Null 
metrics were calculated 1000 times from community data 
which was randomised with 999 iterations using indepen-
dent swap algorithm which maintains sample species richness 
and species occurrence frequency (Gotelli 2000). Positive 
SES values indicate that species within assemblages are less 
closely related or functionally less similar than expected for a 
random draw from the species pool (Qian et al. 2022). Lastly, 
we calculated functional dispersion (FDis) and phylogenetic 
species variability (PSV) to include another approach to 
examine functional and phylogenetic diversity patterns unre-
lated to species richness. FDis represents dispersion of species 
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in trait space considering species abundances (Laliberté and 
Legendre 2010) whereas PSV describes mean relatedness 
of species in a community (Helmus 2007). All functional 
diversity calculations were done utilising package ‘FD’ (ver. 
1.0-2.1; Laliberté et al. 2022) and phylogenetic diversity cal-
culations were performed using package ‘picante’ (ver. 1.8.2, 
Kembel et al. 2020). Summary statistics and pairwise correla-
tions of the metrics are presented in Fig. 2.

Environmental data

Environmental data used in our study is based on in situ 
measurements and high-resolution remote sensing products 
to produce spatially continuous surfaces utilising spatiotem-
porally accurate data (Lembrechts et al. 2019). All environ-
mental variables were derived to study plots from spatially 
modelled raster layers (descriptions of each variable below). 
Raster layers (except fluvial disturbance) were produced 
utilising three different modelling methods to increase the 
robustness of the predictions and to decrease the effects of 
a single method (Araújo and New 2007). Spatial predic-
tions were based on generalised additive models (gam, Hastie 
and Tibshirani 1986), generalised boosted regression (gbm, 
Ridgeway 1999) and random forest (rf, Breiman 2001). All 
raster layers were produced at 2-m resolution. Summary sta-
tistics of the environmental predictors are presented in Fig. 2.

Microclimatic data were recorded every 15 min (July 
2019–July 2021) using TMS-four-loggers (Wild et al. 2019) 
located at the centre plot (C in Fig. 1c) of a logger site (n = 50). 
TMS-four-loggers measure soil temperature in 6 cm depth 
(T1 sensor), air temperature at ground level (2 cm, T2 sensor) 
and 15 cm above ground (T3 sensor). Additionally, soil mois-
ture is measured down to 11 cm depth. One of the loggers 
broke during the first summer and hence microclimatic data 
is based on the measurements from 49 sites. Furthermore, 

there were measurement gaps (i.e. missing measurements 
or unusable data) in the microclimatic measurements e.g., 
due to a detached radiation shield or if a logger was detached 
from the ground, which caused missing values when aggre-
gating the measurement data to calculate the temperature 
and moisture variables. These gaps in the temperature and 
moisture variable values were imputed using predictive mean 
matching and imputations were done separately for each 
month (van Buuren and Groothuis-Oudshoorn 2011). To 
investigate relationships between vascular plant diversity and 
environmental conditions five ecologically relevant variables 
were chosen to represent known physiological limitations for 
vegetation (Mod et al. 2016). 

Growing degree day (GDD3, Supporting information) 
was chosen to represent the overall summer thermal condi-
tions in our models and was calculated as an average annual 
temperature sum over the three measurement years. GDD3 
was calculated monthly from the days when the daily mean 
temperature has been > 3°C (Karlsen et al. 2006). Daily 
mean temperature was based on the measurements of the T3 
sensor. Due to the gaps in the temperature measurements, 
there were 32 gaps in the monthly GDD3 data that were 
imputed. GDD3 was modelled to the study area using the 
logger based GDD3, elevation, annual average temperature, 
incoming solar radiation, slope, TPI10 (topographic position 
index at 10 m radius) and SWI. Final GDD3 value extracted 
to the study plots was the mean of the three model predic-
tions (gam, gbm and rf ). 

Snow cover and its uneven distribution are fundamental 
components of cold environments creating a range of habi-
tats with different growing season lengths (French 2013). 
Snow persistence (Snow, Supporting information), defined 
using day of year (DOY) of average snow melt, was chosen 
to describe the length of snow period. Snow persistence was 
calculated based on surface temperature measurements (T2 

Figure 2. Summary statistics of the investigated diversity metrics and the used environmental predictors as well as their pairwise correlations 
using Spearman correlation coefficient. The size and colour of the dots show the magnitude and the direction of the pairwise correlation. 
Bigger dot size indicates a higher correlation, and the colour shows whether the correlation is positive (light) or negative (dark). To save 
space, the correlation coefficients and their statistical significance are presented in the Supporting information. DOY = day of year, 
VWC% = volumetric water content.
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sensor) from the two winters during the measurement period 
(2019–2020 and 2020–2021). The snow melting DOY was 
determined based on the days when the maximum T2 tem-
perature remained < 1°C and the diurnal temperature range 
(calculated with a 10 day moving average) was below 10°C. 
Final DOY of snow melt at the logger sites was averaged over 
the two hydrological years and used to model spatially con-
tinuous snow persistence. To model snow persistence within 
the study area, we used the three modelling methods and geo-
graphical location, remotely sensed snow information based 
on PlanetScope satellite images, elevation, TPI10 and wind 
index as predictors (Rissanen et al. 2023a). The final snow 
persistence was the mean of gam, gbm and rf predictions. 

Soil moisture (Moist, Supporting information) presents 
water available for plants and was transformed from raw log-
ger data into volumetric water content (VWC%) with the 
transformation function adopted from Kopecky et al. (2021). 
Moist was calculated as a mean soil moisture during the 
snowless period when soil temperature (T1 sensor) at the site 
has been > 1°C as measurements from frozen ground cannot 
be considered reliable (Wild et al. 2019). Hence, only records 
from June to September were used. Mean soil moisture was 
based on the aggregated monthly values (114 gaps that were 
imputed) and averaged over the snow free periods of the three 
measurement years. Soil moisture was modelled based on key 
environmental predictors affecting spatial variation in soil 
moisture (Kemppinen et al. 2018). We used elevation, slope, 
incoming solar radiation, SWI, soil type and TPI10 and 
the three presented modelling methods. Final predicted soil 
moisture value was the mean of the three models' predictions.

Soil pH (Supporting information) was used in our 
study to represent soil nutrient status (Gough et al. 2000, 
Hobara et al. 2016). Additionally, as pH was detected from 
topsoil, which often include both organic and mineral mate-
rial, the values reflect the organic versus mineral origins of 
the soil. pH was determined from soil samples collected at 
the centre plot of each study site (n = 125) at 5–10 cm of 
depth during the vegetation surveys in summers 2019 and 
2020. The soil samples were freeze dried and pH was then 
analysed using water as a solution liquid following the stan-
dard International Organization for Standardization 10 390 
protocol. Based on in situ measurements pH was modelled 
using geographic location, elevation, slope, water balance, 
SWI, edaphic index (Niittynen et al. 2020) and soil type 
(Rissanen et al. 2023a). Final pH was the median of the three 
modelling methods. 

Fluvial processes create varying habitats, redistribute water 
and nutrients as well as generate disturbance for vegetation 
affecting both species richness and community composition 
(le Roux and Luoto 2013, Kemppinen et al. 2022). Fluvial dis-
turbance (Fluvial, Supporting information) was incorporated 
in our models by calculating distance to running waters using 
digitised stream network and digital elevation model at 2-m 
resolution. Stream network was digitised using WorldView 
satellite images and complemented based on authors´ expert 
knowledge about the study area to include the most impor-
tant streams within the area. Fluvial effect was calculated as 

accumulated cost distance to rivers and streams penalised 
with slope (i.e. the local slope as the cost surface in the least 
cost distance calculations). Slope was included in the calcula-
tions because the fluvial effect likely reaches further from the 
stream network over flat terrain and the effect disappears with 
distance fast when the slope is steep. Furthermore, we set all 
cost distance values over 100 to 100 and then reversed the 
index so that pixels just next to the streams get a value 100 
and pixels far away a value zero. Calculations were performed 
in R (ver. 4.0.4, www.r-project.org) utilising SAGA-GIS with 
package ‘Rsagacmd’ (ver. 0.1.2, Pawley 2021).

Statistical analyses

All statistical analyses were performed in R (ver. 4.0.4, www.r-
project.org) and the analyses codes are available in Zenodo open 
data repository (https://doi.org/10.5281/zenodo.7548065). 
Prior to model fitting, possible collinearity between the vari-
ables was investigated by examining pairwise Spearman cor-
relations. The correlation coefficient did not exceed |0.7| 
(Dormann et al. 2013, Brun et al. 2019) for any predictor 
variable combination and hence all five candidate predictors 
were included in the models (Fig. 2, Supporting information). 
The relationship between local vascular plant diversity and 
environmental variables was investigated using generalised 
additive models utilising package ‘mgcv’ (ver. 1.8-33, Wood 
2011). To consider the possible effect of plot membership 
within the same study site, we included site as a random factor 
(random intercept) into our models to produce hierarchical 
generalised additive models (HGAMS, Pedersen et al. 2019). 
HGAMs were fitted using restricted maximum likelihood 
(REML) with smooth parameters using the maximum of 
three degrees of freedom (k = 3) to enable curvilinear relation-
ships but to avoid over-fitting. SpRich was modelled using 
Poisson distribution and the other metrics using Gaussian dis-
tribution. Shan was square root-transformed and PD, PDSES 
and PSV log-transformed prior to modelling. When predict-
ing (variable importance calculations and spatial predictions), 
the random factor was excluded. 

HGAMs were fitted separately for each diversity metric 
and model fit, relative variable importance, response curves 
and spatial predictions were derived. To examine model fit 
and the importance of each environmental predictor we 
fitted HGAMs using bootstrapping i.e. the model was fit-
ted hundred times using randomly sampled data. Model fit 
was expressed as a mean explained deviance (R2) over the 
bootstrapping rounds. To focus on the explanatory power 
of the environmental predictors R2 was calculated excluding 
the random effect. Importance of the predictor variables was 
calculated as follows. At each round we first made a pre-
diction using original data (i.e. the bootstrapped sample). 
Then we shuffled each predictor at a time and made a new 
prediction using this data with a shuffled variable. Final 
variable importance was calculated 1 – corr(Predictionoriginal, 
Predictionshuffled) (Thuiller et al. 2009). Hence variable impor-
tance varies from 0 to 1 and the higher the number the more 
important the predictor. 
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To visualise the relationship shape between a diversity 
metric and an environmental variable we plotted response 
curves from the HGAMs fitted without bootstrapping (i.e. 
using the full original data that were not randomly sam-
pled). Furthermore, to investigate the response shapes of 
the diversity metrics in relation to two environmental gra-
dients at a time we plotted simulated surfaces of the met-
rics in relationship to all possible pairs of the two predictor 
variables (here Snow and Fluvial). The surfaces were pro-
duced by predicting HGAMs to an artificial dataset that 
ranged across all possible pairwise combinations of Snow 
and Fluvial while the other predictors were set to their 
median values in the original data. HGAMs used to predict 
the diversity indices to artificial data were fitted similarly as 
described earlier. Spatial variation in the diversity metrics 
was visualised producing spatial predictions using the same 
HGAMs as for response curves and a raster stack of predic-
tor variables at 2 m resolution. From the spatial predictions 
we then derived the hotspots of each diversity metric by 
taking the richest or most diverse 5% of cells (n = 75035 for 
each metric) (Niskanen et al. 2017).

Finally, we evaluated the predictive power of HGAMs 
using leave-one-out cross validation (LOOC) in which the 
value of each diversity metric at each study plot is predicted 
once using all other data to calibrate the model. From the 
LOOC models we derived model fit (R2) again excluding 
the random factor to focus on the predictive performance 
of the environmental variables. Furthermore, the consis-
tency between the observed and predicted metric values was 
inspected visually with scatterplots and calculating Spearman 
correlation coefficient (r) and root mean squared error. 

Results

Data exploration revealed that Shannon diversity index 
(Shan), Faith´s phylogenetic diversity (PD) and functional 
richness (FRic) had high correlations with species richness 
(SpRich) (r = 0.84–0.92) whereas null model-based metrics 
were scarcely related to SpRich (r ≤ 0.12) (Fig. 2, Supporting 
information). Functional dispersion (FDis) showed quite 
high correlation with the taxonomic diversity indices (r= 
0.66–0.79) and PSV was highly correlated with the stan-
dardised effect size of PD (PDSES), hence, their results are pre-
sented in the appendices to have two metrics of each diversity 
group in the main results. 

Model fit was best for PD and SpRich (mean R2= 0.37 
and R2= 0.35 respectively) followed by Shan (mean R2= 0.30) 
(Supporting information). The same metrics had also the best 
predictive performance with a correlation coefficient varying 
from ~0.55 to 0.60 between the observed and predicted val-
ues and a R2 ranging 0.30–0.37 (Supporting information). 
Overall HGAMs performed better for the metrics related to 
species richness than to the null models (FRicSES and PDSES). 
Model fit and predictive performance of FDis was similar 
with FRic whereas results of PSV were more alike with PDSES 
than PD (Supporting information). To address the effect of 

site random factor on the model fit we derived R2 also from 
the models with a random effect (Supporting information). 

The modelling results showed that snow persistence and 
fluvial disturbance were the most important predictors of 
taxonomic, functional, and phylogenetic diversity (mean 
variable importance 0.19 and 0.14 over all eight variables 
respectively) (Fig. 3, Supporting information). Fluvial distur-
bance was important especially for taxonomic diversity and 
FRic causing almost a linearly increasing response whereas 
snow was a major driver for phylogenetic indices. Diversity 
metrics showed mostly a unimodal response to increasing 
snow persistence, however for PDSES and PSV the effect was 
positive (Fig. 3a–-b, Supporting information). FRicSES dif-
fered from the other metrics as it was mostly affected by varia-
tion in soil pH (mean variable importance 0.35). To explore 
more closely, how vascular plant diversity varies depending 
on the two most important predictors, we plotted surfaces 
of simulated diversity indices in relation to Snow and Fluvial 
(Fig. 3c, Supporting information). The contour plots showed 
that diversity metrics related to species richness gain their 
highest values in areas with high fluvial disturbance and 
average snow length duration. Leaving out the effect of pH, 
FRicSES seems to be mostly driven by Snow whereas PDSES, as 
well as PSV, benefit from both high fluvial disturbance and 
long snow persistence (Fig. 3c, Supporting information).

Scrutinising the spatial predictions of the investigated 
metrics, taxonomic and functional diversity (excluding 
FRicSES) as well as PD, indeed peak around streams (Fig. 4a, 
Supporting information). The effect of snow is inevitable in 
the spatial variation of PDSES and PSV when the predictions 
are compared with Snow raster (Supporting information) 
as well as the effect of pH for FRicSES (Supporting informa-
tion). Hotspots of SpRich, Shan, FRic and PD overlapped 
heavily, sharing around 80% of the cells with highest diver-
sity (Fig. 4b). In the studied landscape, these areas are often 
characterised by stream bank meadows like site RL 121 and 
wetlands like site RL 99 (Fig. 4c). However, functional, 
and phylogenetic diversity do not always overlap with the 
hotspots of taxonomic diversity. Hotspots of PDSES and PSV 
were distinct from those of taxonomic and functional met-
rics with less than 10% of shared area on average (Fig. 4a, 
Supporting information). In the case of FRicSES the hotspots 
were even more distinct from any other metric and the high-
est shared area was 2% with PSV. In the studied landscape, 
areas with high phylogenetic and functional diversity (unre-
lated to SpRich) can be found for example near long lying 
snow patches (RL11) or ridges (RL2) (Fig. 4b).

Discussion

Here we showed that vascular plant diversity patterns in tun-
dra are strongly linked to local snow and fluvial conditions. 
Our results showed that taxonomic, functional and phyloge-
netic diversity metrics may provide both congruent as well 
as contrasting insights to plant diversity patterns depending 
on the used metric. Functional and phylogenetic diversity 
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metrics that account for species number in a site produced 
highly similar results with the taxonomic metrics indicating 
the strong effect of species richness on the tundra biodiversity 
patterns. However, when the effect of taxonomic richness was 
controlled for, functional and phylogenetic diversity metrics 
can reveal biodiversity patterns along environmental gradients 
that would have remained otherwise hidden. Nevertheless, 
regardless of the investigated metric, the same key environ-
mental factors shaped plant diversity. Former studies have 
shown the importance of snow persistence when examining 
taxonomic (Löffler and Pape 2008, Niittynen et al. 2018) and 
functional (Niittynen et al. 2020) vascular plant diversity. 
Likewise, fluvial conditions and other geomorphological fea-
tures are known to be fundamental predictors of species rich-
ness (le Roux and Luoto 2013) and community functional 

composition in tundra (Kemppinen et al. 2022). Our study 
corroborates these findings and highlights the importance 
of snow persistence and fluvial disturbance on phylogenetic 
diversity as well. 

The significance of snow and fluvial conditions for tundra 
plant diversity can rise from several mechanisms causing them 
to override the effect of temperature, moisture, and soil pH, 
which are often found to be significant explanatory variables 
for tundra diversity (Gough et al. 2000, Nabe-Nielsen et al. 
2017, Giaccone et al. 2019). Driven by local topography, 
uneven distribution of snow cover and stream network, which 
depends on meltwater, create a mosaic of varying habitats 
ranging from dry windblown ridges to moist depressions sup-
porting occurrence of different species (Billings and Mooney 
1968, French 2013). Various microhabitats can occur even 

Figure 3. Response curves of the diversity metrics (a) and relative importance of the predictor variables (b) derived from the HGAMs. 
Response curves are based on HGAMs fitted with non-sampled data. Boxplots show variable importance based on 100 bootstrapping 
rounds. Box edges show 1st and 3rd quartile, and the thick line shows the median and whiskers extend to 1.5 interquartile range. The lowest 
panel (c) shows simulated diversity indices in relation to Snow and Fluvial.
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very locally along the streambanks, facilitating different plant 
communities that may host functionally and/or phylogeneti-
cally distinct species, which can increase both local species 
richness as well as the other aspects of diversity. Furthermore, 
spatiotemporal variation in snow and meltwater runoff pro-
vides resources for plants by redistributing nutrients and 
increasing the amount of plant available water (Westergaard-
Nielsen 2020), hence capturing some of the effect of soil 
moisture and probably also that of pH. Moreover, snow 
and soil moisture dampen temperature extremes, which are 
shown to be of high importance in determining plant occur-
rence (Bokhorst et al. 2009), therefore possibly decreasing 
the importance of temperature in the models. Furthermore, 
growing degree day that was used to represent thermal con-
ditions averages the effect of extreme temperatures as well. 
Additionally, it may be that snow and fluvial conditions can 
better account for temporal variation in plant available water 
as well as the extreme dry or wet conditions, which can be 
decisive for plant species persistence in addition to the aver-
age soil moisture (Kemppinen et al. 2019). 

Higher soil water content has been shown to increase spe-
cies richness (Nabe-Nielsen et al. 2017) and our results sup-
port this both in terms of diversity responses to soil moisture 

and specially to increasing fluvial disturbance. It should be 
noted, however, that the observed almost linearly increasing 
response to fluvial disturbance does not indicate that e.g. the 
highest species number would occur in running water or in 
waterlogged areas as the streams are seasonal and cause tem-
poral variation in ground water content. In the beginning of 
the growing season strong runoff may occur at a site but later 
in summer the meltwater decreases, and streams can even dry 
out. Yet, soil moisture in these sites often remains higher dur-
ing the whole growing season supporting more diverse vegeta-
tion. Additionally, observed responses need to be interpreted 
in the context of the study setting. Linear trends might relate 
to the length of the environmental gradients in the studied 
data as none of the sites is in the middle of a stream and there 
are only a few wetland sites none of which are on actual wet 
swamps. Overall, fluvial disturbance seems to drive especially 
diversity patterns related to species richness (SpRich, Shan, 
FRic and PD), supporting former studies (le Roux and Luoto 
2013, Kemppinen et al. 2019), whereas snow persistence links 
more strongly to species phylogenetic diversity. Phylogenetic 
diversity metrics peaked towards increasing snow persistence 
at areas with low species richness suggesting the presence of 
a few tolerant, and functionally specialised, species that can 

Figure 4. Spatial predictions (a) and hotspots (b) of taxonomic, functional and phylogenetic diversity. Spatial predictions are based on 
HGAMs fitted with non-sampled data and hotspots are defined as the 5% of cells with the highest metric value. Hotspots of SpRich, Shan, 
FRic and PD largely overlap especially within the two areas that are circled in white. Photographs show examples of study sites with high 
vascular plant diversity (RL2–RL121).
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cope with short growing season, thin soil and disturbances 
caused by long-lasting snow patches (Walker et al. 1993, 
Komac et al. 2015). However, it is somewhat unclear why 
snow was particularly related to phylogenetic diversity and 
not to functional diversity. It could be that in the snowy areas, 
there are some evolutionary distinct species, which still might 
have similar trait values in terms of the traits we used. This 
would then increase the phylogenetic diversity but not func-
tional diversity at these sites. Additionally, it is plausible that 
phylogenetic information can represent variation in some 
unmeasurable traits, which cannot be accounted for by the 
chosen functional traits (Srivastava et al. 2012). Altogether, 
snow and fluvial conditions might capture small-scale hetero-
geneity more dynamically than other predictors representing 
both resources as well as disturbances for vegetation. 

Although our study indicated that local snow and fluvial 
conditions are major drivers of tundra vegetation diversity, 
partly contrasting patterns and responses of the different 
metrics highlight the significance of considering multiple 
aspects of diversity to thoroughly understand tundra eco-
systems. Looking beyond species richness is imperative, 
because even though species number would increase, the 
functionality of plant communities may be under a threat 
if co-occurring species are functionally redundant or close 
relatives, thus lowering functional and phylogenetic diver-
sity (Cadotte et al. 2013, Li et al. 2020). In the light of our 
results and findings of former research, decrease in biodiver-
sity in tundra would be linked to alterations in the hydrologi-
cal conditions as high-latitude areas are predicted to change 
from snow dominated towards rain dominated (Bintanja and 
Andry 2017). Shorter snow cover duration and decrease in 
meltwater leading to drier soils, in addition to warming tem-
peratures, poses a great extinction threat to snow dependent 
and stress-tolerant arctic–alpine species, whereas more gener-
alist boreal species may expand their distribution leading to 
heathification and shrubification of tundra (Niittynen et al. 
2020, Scharn et al. 2021). However, together with complex 
local topography snow patches and meltwater streams can 
also sustain arctic diversity by creating varying microhabi-
tats with distinct microclimate conditions that can buffer the 
effects of large-scale climate change and offer possible refugia 
for tundra species (Opedal et al. 2015, Graae et al. 2018). 

We acknowledge that even though our models seemed 
to capture variation in investigated diversity metrics quite 
robustly some uncertainties remain. Firstly, although model 
fit was reasonable for all three diversity facets it was notable 
that the study site random effect had a role in explaining the 
observed patterns. This was clear especially in the results con-
cerning the null model of functional richness which had a par-
ticularly poor model fit without the random factor. This might 
indicate that some relevant environmental predictors explain-
ing variation in functional traits were lacking from the mod-
els. A negative response with pH was observed, which could 
represent the effect of thin, mixed, and resource-poor topsoils 
hosting only functionally specialised and stress tolerant species, 
however due to a weak model fit no robust conclusions can be 
made. Additionally, examinations of functional diversity always 

depend on a-priori selection of traits used to calculate the differ-
ent metrics. This may lead to a weaker performance compared 
to the models of phylogenetic diversity, which can capture trait 
variation without subjective choices as well as include informa-
tion on unmeasurable traits (Tucker et al. 2018). Furthermore, 
relationships with environmental predictors can alter depend-
ing on the used traits affecting the predicted spatial variation in 
diversity and its hotspots (Díaz and Cabido 2001). Secondly, 
metrics related to functional traits depend on the type of the 
used trait values. Here, we used global trait observations, which 
were considered representative for the studied species as most 
data were derived from databases of tundra species and the data 
were inspected for any suspicious values. However, the num-
ber of imputed trait values, especially in the root traits, might 
have affected the results. Additionally, to further increase data 
accuracy, field-based measurements would be beneficial to 
account for intraspecific trait variation (Palacio et al. 2022). 
Lastly, biotic interactions can also be important drivers of 
biodiversity patterns (Choler et al. 2001, Lortie et al. 2004), 
especially at fine spatial scales, but are also hard to measure 
and thus challenging to incorporate realistically into statistical 
modelling frameworks (Dormann et al. 2018). Therefore, it 
remains unclear how our results would have altered or refined 
if biotic elements could have accounted for alongside the abi-
otic predictors.

To conclude, species richness is unarguably a key compo-
nent of vascular plant diversity patterns in tundra, however, 
to sustain the ecosystem functionality, trait and phylogenetic 
diversity are essential as well, due to possible functional redun-
dancy and species` close kinship. Utilising several approaches 
in defining and examining diversity can be of high importance 
for example when targeting conservation efforts. In the con-
text of ongoing environmental change, addressing local snow 
and fluvial conditions using in situ or other high accuracy data 
are needed in the predictions of tundra diversity patterns. 
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