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Abstract: The two dinuclear Cd(II) complexes [Cd(BPMST)(SCN)]2 (1) and [Cd(BPMST)(N3)Cl]2 (2)
of a s-triazine/pyrazolo ligand (BPMST) were synthesized. The preparation of both complexes was
performed in a water–ethanol solvent mixture and involved the mixing of the functional ligand
BPMST with CdCl2 in the presence of thiocyanate or azide as linkers, respectively. The dinuclear
formula of both complexes and the involvement of the pesudohalide as a linker between the Cd(II)
centers were approved by single crystal X-ray structures. The Cd(II) was hexa-coordinated and the
CdN5S (1) and CdN5Cl (2) coordination environments had distorted octahedral geometry. In the
[Cd(BPMST)(SCN)]2 and [Cd(BPMST)(N3)Cl]2, the BPMST acted as a pincer tridentate N-chelate.
In the case of 1, the SCN¯ acted as a µ(1,3) bridging ligand between the Cd(II) centers, while the
N3¯ had a µ(1,1) bridging mode in 2. As a result, the Cd. . .Cd distance was significantly longer
in 1 (5.8033(5) Å) than in 2 (3.796(2) Å). In both complexes, the Cd(II) had distorted octahedral
coordination geometry. Hirshfeld surface analysis was performed to inspect the supramolecular
aspects of the two Cd(II) complexes. The C. . .H, N. . .H and S. . .H contacts were important in the case
of [Cd(BPMST)(SCN)]2 (1). Their percentages were calculated to be 14.7, 17.0 and 13.4%, respectively.
In the case of [Cd(BPMST)(N3)Cl]2 (2), the most significant contacts were the Cl. . .H, C. . .H and
N. . .H contacts. Their contributions in the molecular packing were 16.5, 9.7 and 25.3%, respectively.
The propensity of atom pairs of elements to form contacts in the crystal structure was analyzed using
enrichment ratio (EXY).

Keywords: cadmium; s-triazine; X-ray structure; supramolecular; Hirshfeld; dnorm

1. Introduction

Cadmium is an extremely poisonous heavy metal [1–4]. Despite this well-known
fact, Cd and its compounds are of great importance. Cd serves as a catalytic center in
carbonic anhydrase [5]. Also, it has interesting DNA binding abilities [6–8], antibacterial
activities [9,10] and antitumor properties [11,12] and is a known catalyst for organic trans-
formations [13–18]. Also, Cd(II) compounds have many applications in photoluminescence
and non-linear optics [19–22]. Cd(II) coordination compounds with N-donor ligands have
successful applications in ligand exchange chromatography [23–25]. Also, Cd(II) complexes
have interesting and versatile applications in nanoscience [26,27]. From an electronics point
of view, Cd(II) has high flexibility to form complexes with diverse coordination numbers
ranging from four to eight. In this regard, the self-assembly method is a very simple
technique used for the synthesis of coordination compounds with fascinating molecular
and supramolecular structures [28–37].
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s-triazines are attractive ligands for researchers interested in building interesting
coordination compounds due to their flexible coordination behavior [38–43] and brilliant
ability to construct metal complexes with fascinating supramolecular structures [44–46]. s-
triazine coordination compounds are stable compounds with fascinating properties [47–55].
In addition, the highly symmetric structure of s-triazine (s-Trz) moiety is an important
requirement in crystal engineering for the construction of interesting supramolecular
structures [56–66]. s-triazine derivatives with two pyrazolyl (Pyz) arms (Figure 1) are
considered tridentate chelates capable of binding metal ions in a pincer mode, leading to
fascinating and stable metal complexes [45,67–73].
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Figure 1. Structure of the BPMST.

2,4-Bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-diethylamino-1,3,5-triazine is a structurally
related pincer ligand analog for the BPMST ligand. The crystal structures of the pesudo-
halide complexes of 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-diethylamino -1,3,5-triazine
with the d7–d10 metal ion were reported. It was found that the Co(II) and Cu(II) metal
ions formed mononuclear pesudohalide complexes. In the case of Ni(II), dinuclear pesudo-
halide complexes were obtained. The surface photovoltage (SPV) response suggested these
complexes to extend to semiconductor materials [67]. Recently, a number of mononuclear
complexes of the BPMST ligand were presented by our research group [45,68–74]. In order
to increase the nuclearity of the complex, a linker such as azide or thiocyanate could be
used to achieve this target. In this work, the reaction products of the self-assembly of CdCl2
with BPMST in the presence of azide or thiocyanate as linkers were presented. Their X-ray
structures were presented for the first time. In addition, their supramolecular structures
were investigated using Hirshfeld analysis.

2. Materials and Methods

All details for chemicals and solvents are mentioned in the Supplementary Data.

2.1. Syntheses

The ligand BPMST was prepared according to the described method by our research
team [44,45].

Synthesis of the Cd(II) Complexes[Cd(BPMST)(SCN)]2 (1) and [Cd(BPMST)(N3)Cl]2 (2)

A total of 10 mL of BPMST (0.06 g, 0.2 mmol) in EtOH was mixed with CdCl2 (0.037 g,
0.2 mmol) in 5 mL of distilled H2O in the presence of 0.5 mL of a saturated aqueous KSCN
or NaN3 solution. The complexes [Cd(BPMST)(SCN)]2 (1) and [Cd(BPMST)(N3)Cl]2 (2)
were assembled from the solution as colorless crystals after 8 and 10 days, respectively.

The yields were as follows: C16H17CdN9OS2 (1): 89.1%. Anal. Calc. N, 23.88; H, 3.25;
C, 36.4; Cd, 21.29%. Found: N, 23.67; H, 3.16; C, 36.14; Cd, 21.11%. IR (KBr, cm−1): 3103,
2137, 2033, 1606, 1541; Figure S1 (Supplementary Data). C14H17CdClN10O (2): 82.1%. Anal.
Calc. N, 28.63; H, 3.50; C, 34.37; Cd, 22.98. Found: N, 28.40; H, 3.39; C, 34.05; Cd, 22.77%.
FTIR (KBr, cm−1): 3115, 3022, 2959, 2048, 1596, 1572, 1538; Figure S2 (Supplementary Data).
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2.2. Crystal Structure Determination

The single crystal structure of complexes 1 and 2 was determined using a Bruker D8
Quest diffractometer. The experimental details are provided in Method S1 (Supplementary
Data) [75]. Crystal data are depicted in Table S1.

2.3. Hirshfeld Surface Analysis

The Crystal Explorer [76] program was used to generate the 2D fingerprint plots and
study the Hirshfeld surfaces.

3. Results and Discussion
3.1. Synthesis and Characterizations

In previous studies, the pincer ligand, 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-diethyla
mino-1,3,5-triazine, gave mononuclear pseudohalide complexes with Cu(II) and Co(II)
ions. On the other hand, the dinuclear pesudohalide complexes that are not commonly
reported in the literature on this class of ligand were obtained in the case of Ni(II) [74].
In the current study, the two dinuclear Cd(II) complexes, [Cd(BPMST)(SCN)]2 (1) and
[Cd(BPMST)(N3)Cl]2 (2), were synthesized by mixing equimolar amounts of BPMST with
CdCl2 in the presence of thiocyanate or azide as a linker in a water–ethanol solvent mixture.
The two products were isolated in a highly crystalline form and in good yields. Solving the
structure with the aid of single-crystal X-ray diffraction confirmed the dinuclear formula of
the Cd(II) complexes and the involvement of the pesudohalide as a linker connecting the
two Cd(II) ions (Scheme 1). In addition, FTIR spectra showed two sharp bands characteristic
of the bridged SCN¯ at 2137 and 2033 cm−1 in the case of complex 1. The sharp band
at 2048 cm−1 in the FTIR spectra of complex 2 confirmed the presence of the bridged
azide. In the FTIR spectra of complexes 1 and 2, the vibrational characteristics of the
BPMST were detected with some variation compared to those of the free BPMST. While
the υC=C and υC=N modes of the free BPMST were observed at 1555 and 1593 cm−1,
respectively (), the corresponding values in the case of complex 1 were detected at 1606
and 1541 cm−1, respectively. For 2, the υC=N modes were detected as a doubly split band
at 1596 and 1572 cm−1, while the υC=C mode was detected at 1538 cm−1 (Figures S1–S3,
Supplementary Data).
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3.2. Crystal Structure Description

The X-ray structure of the [Cd(BPMST)(SCN)]2 complex is shown in Figure 2. The
results indicated a dinuclear structure in which there is one [Cd(BPMST)(SCN)] as an asym-
metric formula where two of these units were connected by the bridged µ(1,3) thiocyanate
groups. The complex crystallized in the orthorhombic crystal system and space group Pbca
with the unit cell parameters were determined to be a = 14.6614(5) Å, b = 15.9147(6) Å and
c = 18.0194(7) Å. The unit cell volume was 4204.5(3) Å3 and the calculated crystal density
was 1.668 g/cm3.
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Figure 2. X-ray structure of [Cd(BPMST)(SCN)]2 complex (1). Symmetry code #: 1 − x, 1 − y, −z.

In this dinuclear complex, the Cd(II) had a CdN5S hexa-coordination environment.
There were three short Cd1-N4 (2.402(3) Å), Cd1-N6 (2.454(3) Å) and Cd1-N1 (2.348(3) Å)
bonds with the BPMST ligand. Hence, the BPMST ligand acted as tridentate N-chelate via
two N-atoms (N4 and N6) from the Pyz moieties and another N-atom (N1) from the s-Trz
core. The bite angles N6-Cd1-N1 (66.06(9)◦) and N1-Cd1-N4 (66.63(10)◦) of the BPMST
ligand were almost the same, while the trans-N4-Cd1-N6 was almost twice this value
(131.93(10)◦). In addition, the Cd(II) was coordinated with three SCN¯ groups. Two of the
SCN¯ groups were bridged ligands connecting the two crystallographically dependent
Cd(II) centers via Cd1-N9 (2.6170(11) Å) and Cd1-S1 (2.258(3) Å) bonds where the N9-Cd1-
S1 angle was 92.07(8)◦. The third SCN¯ group was terminal and coordinated with the
Cd(II) center via N8, where the respective Cd1-N8 bond distance was 2.287(3) Å, which
was shorter than the corresponding Cd1-N9 bond of the bridged thiocyanate. The trans
N9-Cd1-N8 angle was 171.72(12)◦, while the cis S1-Cd1-N8 angle was 84.40(9)◦. Details of
the geometric parameters for the coordination sphere are listed in Table 1. It was clear that
the CdN5S coordination sphere had a distorted octahedral configuration. Due to the µ(1,3)
bridging mode of the thiocyanate group, the distance between the crystallographically
related Cd sites was quite large. The Cd1. . .Cd1 distance was determined to be 5.8033(5) Å.

The supramolecular structure of the [Cd(BPMST)(SCN)]2 complex was dominated by
a weak C12-H12A. . .N8 interaction. The acceptor N8 to donor C12 distance was 3.454(4) Å,
while the hydrogen H12A to acceptor N8 distance was 2.660 Å. Views of the C12-H12A. . .N8
contacts and packing scheme are shown in Figures 3 and 4, respectively.
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Table 1. Bond lengths (Å) and angles (◦) for the [Cd(BPMST)(SCN)]2 complex (1).

Bond Length/Å Bond Length/Å

Bond distances
Cd1-N9 # 2.258(3) Cd1-N4 2.402(3)
Cd1-N8 2.287(3) Cd1-N6 2.454(3)
Cd1-N1 2.348(3) Cd1-S1 2.6170(11)

Bond angles
N9 #-Cd1-N8 171.72(12) N1-Cd1-N6 66.06(9)
N9 #-Cd1-N1 99.30(10) N4-Cd1-N6 131.93(10)
N8-Cd1-N1 84.99(11) N9 #-Cd1-S1 92.07(8)

N9 #-Cd1-N4 87.14(11) N8-Cd1-S1 84.40(9)
N8-Cd1-N4 101.09(12) N1-Cd1-S1 167.45(7)
N1-Cd1-N4 66.63(10) N4-Cd1-S1 108.99(8)

N9 #-Cd1-N6 92.31(11) N6-Cd1-S1 119.06(7)
N8-Cd1-N6 82.93(12)

# 1 − x, 1 − y, −z.
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In addition, the terminal thiocyanate group with the free S2 atom that did not partic-
ipate in a coordination interaction with the Cd(II) ion was involved in anion-π stacking
interactions with the coordinated s-triazine group. The S2. . .C3 contact distance was
3.497(3) Å and a presentation for this anion-π stacking interaction is shown in Figure 5.
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Figure 5. The anion-π stacking interactions in the [Cd(BPMST)(SCN)]2 complex (1).

The structure analysis for the single crystal of the [Cd(BPMST)(N3)Cl]2 complex
is depicted in Table S1. The formula [Cd(BPMST)(N3)Cl] represents the asymmetric
unit of the dinuclear complex. The two [Cd(BPMST)(N3)Cl] units were connected by
the bridged azide groups. In this case, the crystal system was triclinic and the space
group was P-1. The triclinic crystal parameters were a = 9.323(4) Å, b = 10.936(5) Å,
c = 11.312(5) Å, α = 112.637(10)◦, β = 104.547(11)◦ and γ = 105.133(10)◦. The unit cell vol-
ume was 944.2(12) Å3 and the calculated crystal density was 1.721 g/cm3. The structure of
the [Cd(BPMST)(N3)Cl]2 complex is shown in Figure 6.
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Figure 6. X-ray structure of [Cd(BPMST)(N3)Cl]2 (2). Symmetry code #: 1 − x, 2 − y, 1 − z.

The structure of the dinuclear azido complex [Cd(BPMST)(N3)Cl]2 was quite different.
In this case, the Cd(II) ion was coordinated to one BPMST ligand unit also as a tridentate
pincer ligand. The Cd1-N1, Cd1-N4 and Cd1-N6 distances were determined to be 2.411(2),
2.409(2) and 2.451(2) Å, respectively. In this case, the distance between the Cd1 site and
the N1-atom of the s-triazine core was not the shortest, while the Cd1-N4 with one of
the pyrazolyl moieties was the shortest. Also, the bite angles N1-Cd1-N6 (64.57(7)◦) and
N1-Cd1-N4 (65.64(7)◦) of the BPMST ligand were almost the same, but both were slightly
less than those found in the [Cd(BPMST)(SCN)]2 complex. The trans-N4-Cd1-N6 was
130.14(7)◦, which was also twice the bite angle values. The coordination sphere of the



Crystals 2023, 13, 1198 7 of 16

Cd(II) was accomplished by two µ(1,1) bridged azide ions and one terminal chloride
ion (Figure 6). The Cd1-N8 and Cd1-N8# distances were determined to be 2.415(3) and
2.322(3) Å, respectively. In this case, the distance between the crystallographically related
Cd sites was significantly small (3.796(2) Å) compared to the corresponding Cd. . .Cd
distance in the [Cd(BPMST)(SCN)]2 complex. The Cd1-Cl1 distance was 2.4700(13) Å, and a
list of the angles around the coordination environment is depicted in Table 2. It is clear that
all bond angle values deviated significantly from the ideal values of the perfect octahedron.
Hence, the CdN5Cl coordination sphere had a distorted octahedral configuration.

Table 2. Bond lengths (Å) and angles (◦) for the [Cd(BPMST)(N3)Cl]2 complex (2).

Bond Length/Å Bond Length/Å

Bond distances
Cd1-Cl1 2.4700(13) Cd1-N8 # 2.322(3)
Cd1-N4 2.409(2) Cd1-N1 2.411(2)
Cd1-N8 2.415(3) Cd1-N6 2.451(2)

Bond angles
N8 #-Cd1-N4 109.11(10) N8 #-Cd1-N1 154.32(9)
N4-Cd1-N1 65.64(7) N8-Cd1-N8 # 73.49(12)
N4-Cd1-N8 90.55(10) N1-Cd1-N8 81.31(8)

N8 #-Cd1-N6 116.69(10) N4-Cd1-N6 130.14(7)
N1-Cd1-N6 64.57(7) N8-Cd1-N6 84.58(10)

N8 #-Cd1-Cl1 95.60(8) N4-Cd1-Cl1 95.94(6)
N1-Cd1-Cl1 109.80(6) N8-Cd1-Cl1 168.70(7)
N6-Cd1-Cl1 98.15(7)

# 1 − x, 1 − y, −z.

The packing of the [Cd(BPMST)(N3)Cl]2 complex was controlled by a weak C12-
H12C. . .N10 interaction. The donor C12 to acceptor N10 distance was 3.547(6) Å, while
the hydrogen H12C to acceptor N10 distance was 2.61 Å. Views of the C12-H12C. . .N10
contacts and packing scheme are shown in Figure 7.
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In addition, the [Cd(BPMST)(N3)Cl]2 units were connected by some Cl. . .H interac-
tions between the coordinated chloride ion as an H-bond acceptor with C14-H14A as an
H-bond donor (Figure 8). The acceptor Cl1 to donor C14 distance was 3.638(4) Å.
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3.3. Analysis of Molecular Packing

The crystalline materials were characterized by a well-organized arrangement, which
kept the crystal stable via a complicated set of non-covalent interactions involving hydrogen
bonds, C-H. . .π, anion-π interactions, etc. Hirshfeld topology analysis is a lead method
for detecting all possible non-covalent interactions that control the stability of a crystal
structure. The different Hirshfeld surfaces for the complex [Cd(BPMST)(SCN)]2(1) are
shown in Figure 9. It is clear that the dnorm map showed some red spots. These red
spots are related to regions involved in short non-covalent interactions with neighboring
molecules. The most important non-covalent interactions were the C. . .H, N. . .H and S. . .H
contacts, which are labeled as A, B and C, respectively. C14. . .H16C, N8. . .H12A and
S2. . .H5 were the shortest interactions, where the corresponding contact distances were
2.627, 2.567 and 2.881 Å, respectively.
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In addition, Figure 10 shows the characteristic fingerprint plots of the C. . .H, N. . .H
and S. . .H interactions. The appearance of these contacts as spikes in the corresponding fin-
gerprint plots indicated their relevance in the molecular packing of the [Cd(BPMST)(SCN)]2
complex. In addition, the area of the colored region of each plot gave an indication of the
percentages of these intermolecular contacts. The percentages of the C. . .H, N. . .H and
S. . .H interactions were calculated to be 14.7, 17.0 and 13.4%, respectively.
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Figure 10. Fingerprint plots for the C. . .H, N. . .H and S. . .H interactions in the complex
[Cd(BPMST)(SCN)]2 (1).

In addition, there were many other weak interactions that affected the supramolecular
structure of the [Cd(BPMST)(SCN)]2 complex. A summary of all interactions and their
contributions to the molecular packing are shown in Figure 11. The most common inter-
action was hydrogenic H. . .H contacts (35.7%). In addition, there was a small number of
weak S. . .C contacts that contributed 3.4% of all interactions. This interaction appears as
a white region in the dnorm map, indicating equal interaction distance to the vdWs radii
sum of the S and C atoms. Hence, the anion-π interaction in this complex was considered
relatively weak.
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Figure 11. Intermolecular interactions in [Cd(BPMST)(SCN)]2 (1).

For the [Cd(BPMST)(N3)Cl]2 complex (2), the different Hirshfeld maps are presented
in Figure 12. In this case, the red spots in the dnorm map correspond to the Cl. . .H, C. . .H,
N. . .H and H. . .H interactions. These contacts are labeled as letters A to D, respectively.
Cl1. . .H14A, N10. . .H12C, C5. . .H11B and H13A. . .H13C were the shortest interactions.
Their respective contact distances were 2.770, 2.485, 2.657 and 2.515 Å, respectively. Similar
to the observation detected in the fingerprint plots of the [Cd(BPMST)(SCN)]2 complex,
the decomposed fingerprint plots of Cl. . .H, C. . .H and N. . .H appeared as sharp spikes
(Figure 13). This was considered further evidence of the significance of these interactions in
the molecular packing of the [Cd(BPMST)(N3)Cl]2 complex (2).
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N. . .H (C) and H. . .H (D) contacts are shown in the dnorm map for clarity.
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Figure 13. Fingerprint plots for the Cl. . .H, C. . .H, N. . .H and H. . .H interactions in the
[Cd(BPMST)(N3)Cl]2 complex (2).

Additionally, the percentages of all possible non-covalent interactions that occurred
in the [Cd(BPMST)(N3)Cl]2 complex (2) are shown in Figure 14. The percentages of the
Cl. . .H, C. . .H, N. . .H and H. . .H contacts were 16.5, 9.7, 25.3 and 37.1%, respectively. In
addition, there was a small contribution from the polar O. . .H interaction (6.4%), which
appeared to be weak and had less important molecular packing compared to the Cl. . .H,
C. . .H and N. . .H interactions.
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In addition, the intermolecular interactions were further analyzed based on the enrich-
ment ratio (EXY) parameter [77]. The enrichment ratio (EXY) of a pair of elements (X,Y) gave
an indication of their propensity to form contacts in crystals. It is defined by the ratio of the
proportion of the contact (CXY) to the theoretical proportion of random contact (RXY) [77].
The enrichment ratio is greater than 1 for atom pairs with a high propensity to form contacts.
In contrast, the atom pairs that avoid contacts have an enrichment ratio lower than 1. The
enrichment ratio EXY of complexes 1 and 2 was calculated and the results are depicted in
Table 3. In the case of the azido complex 2, the enrichment ratio was greater than that for
the Cl. . .H, O. . .H and N. . .H contacts and equal to one for the C. . .H interaction. On the
other hand, EXY > 1 for the O. . .H, N. . .H, N. . .S, C. . .N and C. . .S contacts, while EXY = 1
for the C. . .H, S. . .H and H. . .H interactions. These results indicate that the atom pairs had
a high propensity to form contacts. In contrast, the rest of the intermolecular contacts listed
in the table showed a lower propensity to form contacts in the crystal structure.

Table 3. Enrichment ratio EXY of the different inter-contacts in complexes [Cd(BPMST)(SCN)]2 (1)
and [Cd(BPMST)(N3)Cl]2 (2).

Enrichment Ratio (EXY)

[Cd(BPMST)(SCN)]2 (1) [Cd(BPMST)(N3)Cl]2 (2)

O. . .H 1.4 O. . .H 1.4
H. . .H 1.0 H. . .H 0.8
N. . .H 1.1 N. . .H 1.3
C. . .H 1.0 C. . .H 1.0
S. . .S 0.3 N. . .O 0.1
N. . .S 1.6 N. . .N 0.5
C. . .N 1.3 C. . .N 0.8
C. . .S 1.2 Cl. . .H 1.5
C. . .C 0.7
S. . .H 1.0

4. Conclusions

The self-assembly of the functional ligand BPMST with CdCl2 in the presence of
a linker such as thiocyanate or azide in a water–ethanol solution gave the dinuclear
Cd(II) complexes [Cd(BPMST)(SCN)]2 (1) and [Cd(BPMST)(N3)Cl]2 (2), respectively. The
s-triazine/pyrazolo ligand (BPMST) acted as a pincer tridentate N-chelator. The pesudo-
halides SCN¯ and N3¯ acted as linkers between the two Cd(II) centers in µ(1,3) and µ(1,1)
bridging modes, respectively. Analysis of the non-covalent interactions with the aid of
Hirshfeld topology calculations indicated the importance of the C. . .H (14.7%), N. . .H (17.0)
and S. . .H (13.4%) contacts in the molecular packaging of [Cd(BPMST)(SCN)]2 (1). On the
other hand, the Cl. . .H (16.5%), C. . .H (9.7%) and N. . .H (25.3%) interactions were the most
significant in the supramolecular structure of [Cd(BPMST)(N3)Cl]2 (2). Enrichment ratio
(EXY) calculations were used to inspect the propensity of atom pairs of elements (X,Y) to
form contacts in crystals.
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