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Abstract

Surveys, as well as ordinal variable analysis, are commonly used in the medical
field. The development of modern technology has also resulted in the develop-
ment of measurement techniques and the rise of functional data in medicine. It
means that functional data is becoming more often used in the analysis of ordinal
variables, such as modeling ordinal variables with functional covariates.

In this pro gradu -thesis, three strategies for modeling ordinal variables with
functional variables are compared. This is carried out by fitting the models to data
obtained from Tampere University Hospital’s haemodynamic research group and
modeling people’s self-assessed health state using functional and haemodynamic
variables.

Compared models will be he proportional odds model, partial proportional
odds model, and functional ordinal logistic regression model. With the first two
models, principal component analysis is applied to haemodynamic variables, and
their functionality is ignored. The R program is used for model fitting and analysis.

Based on the results, the partial proportional odds model appears to be best
fit for the data, because it does not have as strict assumptions as other models.
Worst fit seems to be functional ordinal logistic regression model, which is newer
model than others and it seems that it needs more developing, for example in the
case of choosing of covariates.

Keywords: ordinal logistic regression, functional data, principal component anal-
ysis, proportional odds model, partial proportional odds model, functional ordinal
logistic regression model
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Tiivistelmä

Lääketieteen parissa perinteiset kyselytutkimukset ovat yhä suosittuja, jonka
myötä myös järjestysasteikollisten muuttujien analyysia suoritetaan paljon. Mod-
ernin teknologian kehittyminen näkyy kuitenkin myös tällä tieteensaralla, kun
mittaustekniikoiden kehittyessä funktionaalisen datan määrä on kasvanut. Tämän
myötä järjestysasteikollisten muuttujienkin analyysissa yhä useammin hyödynnetään
funktionaalista dataa, mm. järjestysasteikollisen muuttujan mallintamisessa.

Tässä pro gradu-tutkielmassa halutaan vertailla kolmea erilaista menetelmää
järjestysasteikollisen muuttujan mallintamiseksi funktionaalisten muuttujien avulla.
Aineistona käytetään Tampereen yliopistollisen sairaalan hemodynamiikan tutkimus-
ryhmältä saatua aineistoa, josta halutaan mallintaa henkilön itse määrittelemä ter-
veydentila tutkimuksessa mitattujen hemodynaamisten ja funktionaalisten muut-
tujien avulla.

Sovitettaviksi malleiksi ollaan valittu kumulatiivinen logistinen regressiomalli
verrannollisuusoletuksella, osittainen kumulatiivinen logistinen regressiomalli ver-
rannollisuusoletuksella ja funktionaalinen ordinaalinen logistinen regressiomalli.
Kahden ensimmäisen mallin kohdalla kovariaattien funktionaalisuus sivuutetaan
suorittamalla funktionaalisille muuttujille pääkomponenttianalyysi. Mallien sovi-
tus ja analyysien toteutus tehdään R-ohjelmalla.

Saatujen tulosten perusteella parhaiten aineistoon sopii osittainen kumulati-
ivinen logistinen regressiomalli johtuen siitä, että sen sisältämät oletukset eivät
ole yhtä tiukat kuin kahdella muulla mallilla. Malleista huonoiten aineistoon tu-
losten perusteella istuu funktionaalinen ordinaalinen logistinen regressio, joka on
malleista tuorein ja näyttää vaativan vielä myös kehitystyötä, esim. kovariaattien
valinnan suhteen.

Avainsanat: ordinaalinen logistinen regressio, funktionaalinen data, pääkomponenttianalyysi,
kumulatiivinen logistinen regressiomalli verrannollisuusoletuksella, osittainen ku-
mulatiivinen logistinen regressiomalli verrannollisuusoletuksella, funktionaalinen
ordinaalinen logistinen regressiomalli
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1 Introduction

Ordinal variables are common in many fields of research, including health and
social science, where they are often used on surveys. Several methods to analyze
ordinal data have been created, and more are being developed. One area of de-
velopment is analyzing ordinal data when functional data is included. Functional
data, as the name implies, is data in the form of a continuous function that is often
defined across time. With the advancement of modern technology, functional data
has grown more prevalent, and functional data analysis has become a growing field
of modern statistics (Mateu and Giraldo, 2022).

In this thesis, the interest is in the case where functional covariates are used to
model ordinal variables. There are various approaches to this, including functional
and non-functional methods, and some of them have been chosen for comparisons
in this thesis. The first model chosen for this thesis is the proportional odds
model, in which principal component analysis is done on the functional variables
and the corresponding principal component scores are used as covariates in the
model instead of using original values.

The proportional odds model is one of the most well-known and widely used
ordinal logistic regression models, although it is not always the best fit because
it requires a fairly stringent proportional odds assumption to hold true, which
often does not with real-world data (Liu, 2022). This is why the second model
to be looked at is the partial proportional odds model, which is similar to the
proportional odds model but has more relaxed assumptions, and is usually used
when the proportional odds assumption does not hold given data.

The functionality of the haemodynamic variables is ignored by using principal
component analysis in these two models, but we wanted to present a model that
does pay attention to this functionality. Functional ordinal logistic regression, a
relatively new model, was chosen for this thesis. Because this model has the same
proportional odds assumption as the proportional odds model, the name functional
proportional odds model would be more appropriate. The only difference is that
this model uses functional variables as they are.

The three methods above are compared by fitting them to data collected by the
Tampere University Hospital’s haemodynamic research group, which includes the
results of various haemodynamic studies. The primary focus of this thesis is on the
initial survey question about the subjects’ health status and how they responded
to it. This ordinal variable will be modeled using functional and haemodynamic
variables. We will also examine if these covariates are required for the model, or
if BMI, age, and sex are sufficient.

The data used in this thesis are discussed in further depth in the following
chapter. Following that, the models to be compared are described in greater detail,
as are some of the goodness-of-fit tests that are used and principal component
analysis. The results of fitting the models, as well as comparisons between them,
are given in chapter 4. The thesis concludes with some discussion on the results.

It should be noted that AI writing tools Wordtune and Quillbot were used to
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help with the grammar and paraphrasing of the text.
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2 Data

In this section, we describe the data used in the thesis, the research hypothesis,
and the response variable and covariates used in the model in greater detail. Let
us begin by presenting the data obtained from the Tampere University Hospital’s
haemodynamics research group. Data were collected during several studies con-
ducted between 2006 and 2021. Only data of healthy participants (751, out of
which 353 were women and 368 men), who were in control groups, were chosen for
this thesis. The studies themselves included a pre-study doctor visit and successive
haemodynamic measurements. Values from 854 variables were collected from the
subjects, but only a small number of these were chosen for the thesis.

For this thesis, we chose the subject’s health status as the response variable.
This variable has four possible values: poor, moderate, good, and excellent. In this
thesis, we aim to use ordinal regression to model the probability of research subjects
belonging to these various groups. The research question is whether the probability
can be modeled using haemodynamic variables, or whether gender, age, and body
mass index (BMI) are sufficient covariates on their own. We intend to answer the
research question by using ordinal regression, specifically the proportional odds
model and various methods derived from it, as detailed in Chapter 3. Covariates
will be discussed further in the Section 2.2. But first, we introduce the response
variable in greater detail.

2.1 Response

Before taking the haemodynamic measurements, study subjects went through a
thorough medical examination. In addition to the basic measurements (weight,
blood pressure etc.), the participants had an electrocardiogram done and blood
and urine samples were taken. The subjects also completed an initial questionnaire
that inquired about their health and lifestyle. One of the initial survey questions
asked participants to describe their health status on a scale of poor, moderate,
good, and excellent. This variable will be used as a response variable in this
thesis.

Despite the fact that there were four possible answers to the question, the
subjects in this thesis were divided into three groups based on how they responded
to the initial questionnaire question about their subjective health. Because only 14
people considered their health status as poor, they were combined into one group
with those who answered “moderate” to the question. Otherwise, the groups
remained unchanged, and the groups and their sizes are listed in the Table 1.

As mentioned earlier in Section 2, the research question is whether we can
use haemodynamic variables too, or whether gender, age, and BMI are sufficient
covariates on their own. These three variables were chosen for comparisons because
they are thought to person’s self-assessed health status. Self-assessed health status
is plotted against the variables age and BMI in Figure 1. The image clearly shows
that increasing BMI and age have an effect on how a person answers the question.
In contrast to age and BMI for sex, no such correlation can be seen in Figure
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Table 1: Number of people in each health status group.

Group Size

Poor/moderate 173
Good 452
Excellent 138

2, where subjective health is plotted against sex. However, we are interested in
the interaction of sex with haemodynamic variables, which is why sex is included
in the model. The haemodynamic variables used in modeling will be discussed
further in the following section.
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Figure 1: Distributions of age and body mass index for each of the three health
status groups.

2.2 Haemodynamic measurements and covariates

Tampere University Hospital’s actual study consisted of haemodynamic measure-
ments performed on subjects, the main interest being, how subjects’ blood flow
was affected by elevation to the upright position. This section goes into greater
detail about these measurements as well as haemodynamic covariates used in the
model. Although the data come from several studies, the haemodynamic mea-
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Figure 2: Number of females and males in each of the three health status groups.

surements were all performed using the same protocol, which will be explained in
Tahvanainen (2011).

Prior to the measurements, subjects were instructed to refrain from consuming
caffeinated products, smoking, or eating a heavy meal for four hours. They also
had to abstain from alcohol for 24 hours prior to the experiment. The subjects
were placed on a tilt-table with various measuring instruments attached to them
for the duration of the study. The measurements were performed by a trained
research nurse, and all measurements were completed in a noninvasive manner.
The measurement itself took place over a 15-minute period, with the test subject
lying horizontally on the tilt-table for the first five minutes. The tilt-table was then
raised to a 60-degree angle for five minutes before being returned to a horizontal
position for the final five minutes. This was repeated once more to collect the values
for comparison. Measurements were taken over the course of several days. This
thesis only uses the results of the first ten minutes of the first measurement, i.e,
lying and tilted at an angle of 60 degrees.

In Figure 3, there are plotted means of six haemodynamic variables grouped
by health status, and one can see how tilting the tilt-table to a 60-degree angle
affected them. For example, the average heart rate for all groups starts to rise
after the tilt. In the same graph, you can see that the group with health status
“good” had higher average value than “excellent”-group before the tilt. However,
averages are much closer to each other after the tilt. Group with health status
“poor/moderate” average value is higher than other groups both before and after
the tilt. Same kind of differences are shown in graphs of other haemodynamic
variables, and it seems haemodynamic variables seem to differ by group. However,
we cannot be sure that these effects are not just simply due to age and BMI, and
that is why we want to examine this more thoroughly.
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Table 2: haemodynamic variables that are included in the thesis (abbreviations)
and their explanations

Abbr. Explanation

AIX Augmentation index, which is defined as ratio between
augmentation pressure and pulse pressure

SVRI RAD Systemic vascular resistance from radial arterial pres-
sure. Defined as systemic mean arterial blood pressure
minus right arterial blood pressure divided by cardiac
output, which is still divided by body surface area

HR CM Heart rate from CircMon-device

PWV Pulse wave velocity. In practice, defined as a distance
between two measurement sites divided by the traveling
time of the pulsewave between them

RAD SAP Radial systolic arterial pressure

RAD DAP Radial diastolic arterial pressure

SEVR Subendocardial viability ratio, which is an index of my-
ocardial oxygen supply and demand

CI Cardiac index, which is defined as cardiac output di-
vided by body surface area

ECW Extracellular water volume

The variables’ values were continuously measured throughout the measure-
ment, meaning that they are functional variables. However, the values used in this
thesis are averages calculated for minute intervals. As a result, the majority of the
haemodynamic variables in the data have ten values, e.g, arterial pressures and
heart rate. In Figure 4 you can see radial systolic arterial pressure drawn for each
subject as continuous variable (line) and minute intervals are marked there with
dotten lines. Some variables were only measured when lying down, and the data
set contains five values for these variables, e.g, pulse wave velocity. In this thesis,
we did not include all measured variables, and the covariates chosen for the thesis
are listed in Table 2.
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Figure 3: Group-wise mean curves of cardiac index (CI), radial diastolics arterial
pressure (RAD DAP), radial systolic arterial pressure (RAD SAP), subendocar-
dial viability ratio (SEVR), heart rate (HR CM) and systemic vascular resistance
from radial arterial pressure (SVRI RAD). Black vertical line indicates the time
when the tilt-table was tilted to a 60 degrees angle.

3 Methods

3.1 Proportional odds model

In this thesis, we want to build a regression model for an ordinal response variable.
The regression models that are most frequently used, including linear and logistic
models, may only be used with response variables that are either continuous or
binary. For the case of ordinal responses, there is a family of ordinal regression
models, with the proportional odds model being the most well-known member.
The proportional odds model is an extension of binary logistic regression, as are
many other ordinal regression models. We use Agresti (2010) as the primary source
for this chapter, so the cumulative logit models are introduced first. Following that,
the assumptions underlying the proportional odds model are described.

3.1.1 Cumulative logit model

Earlier, we stated that the proportional odds model is an extension of binary
logistic regression, which is also the case with the cumulative logit model. Recall
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Figure 4: Values of radial systolic arterial pressure (RAD SAP) plotted for each
subject with group means of health status.

that the binary logit is defined as

logit[P (Yi = 1)] = log
P (Yi = 1)

1− P (Yi = 1)
,

where Yi is a random variable for subject i taking values either 0 or 1.
Assume now that we have n independent subjects and let Yi, i = 1, . . . , n.

Let us denote values of Yi as 1, . . . , k, where 1 is the lowest group and k is the
highest group. To determine cumulative logit for category j ∈ 1, . . . , k, we use
cumulative probabilities. In this instance, we have two possible outcomes: “Yi

belongs to group j or lower group” and “Yi belongs to a group that is higher than
j”. The binary variable we now have can be used to obtain binary logit. With the
exception of the highest group, we can repeat this process for each category of the
response variable. We thus obtain k− 1 cumulative logits and they are defined as

logit[P (Yi ≤ j)] = log
P (Yi ≤ j)

1− P (Yi ≤ j)
, (1)

where j = 1, . . . , k − 1. Let us now define a cumulative logit model. Let xi =
(xi1, . . . , xip)

′ denote a p-variate covariate vector for subject i. Then write cumu-
lative logit model as follows
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logit[P (Yi ≤ j | xi)] = αj + β′
jxi. (2)

In this model, βj = (βj1, . . . , βjp)
′ is p-vector which contains coefficients of covari-

ates for category j. Parameter αj is the intercept related to category j.
Another way to write this model is using probabilities, that is,

P (Yi ≤ j | xi) =
exp(αj + β′

jxi)

1 + exp(αj + β′
jxi)

. (3)

It is important to note that this model does not compare category j to other
categories, but rather compares category j and categories lower than j to categories
higher than j. For example, if we have a model with only an intercept αj, then
P (Yi ≤ j | xi)/(1 − P (Yi ≤ j | xi)) = exp(αj). In other words, the odds that
subject i belongs to a category equal to or lower than j are exp(αj)-times the odds
that subject i belongs to a category higher than j.

In case of interpreting of cumulative logit model’s odds ratios, assume we have
two subjects 1 and 2, who have two different sets of values of covariates, x

(1)
i and

x
(2)
i . Difference between their cumulative logits is

logitP (Yi ≤ j | x(1)
i = (x

(1)
1 , . . . , x(1)

p )′)− logitP (Yi ≤ j | x(2)
i = (x

(2)
1 , . . . , x(2)

p )′)

= (αj − β′
jx

(1)
i )− (αj − β′

jx
(2)
i )

= β′
j(x

(2)
i − x

(1)
i ).

Let us calculate the odds ratio from earlier equation:

log
P (Yi ≤ j | x(1)

i )

1− P (Yi ≤ j | x(1)
i )

− log
P (Y ≤ j | x(2)

i )

1− P (Y ≤ j | x(2)
i )

= β′
j(x

(2)
i − x

(1)
i )

This is same as

log
P (Yi ≤ j | x(1)

i )/(1− P (Yi ≤ j | x(1)
i ))

P (Yi ≤ j | x(2)
i )/(1− P (Yi ≤ j | x(2)

i ))
= β′

j(x
(2)
i − x

(1)
i )

Let us now remove the log from equation so we get odds ratio

P (Yi ≤ j | x(1)
i )/(1− P (Yi ≤ j | x(1)

i ))

P (Yi ≤ j | x(2)
i )/(1− P (Yi ≤ j | x(2)

i ))
= exp(β′

j(x
(2)
i − x

(1)
i )).

We can interpret odds ratio in this case the following way: The odds that
subject 1 belongs to a category equal or lower than j, is exp(β′

j(x
(2)
i −x

(1)
i ) times

the odds that subject 2 belongs to a category equal or lower than j.
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If we have two different sets of covariate values, x
(1)
i and x

(2)
i , and the only

difference between these two sets is one covariate xil. The value of x
(1)
i is denoted

as xil + 1 and differs by one from the value of x
(2)
i , which is denoted as xil. The

odds ratio is exp(βjl) .
If we want to predict probability that Yi belongs to specific category, cumulative

probabilities are used in this case to describe the probability of a single category
in the following manner

P (Yi = j | xi) = P (Yi ≤ j | xi)− P (Yi ≤ j − 1 | xi)

=
exp(αj + β′

jxi)

1 + exp(αj + β′
jxi)

−
exp(αj−1 + β′

j−1xi)

1 + exp(αj−1 + β′
j−1xi)

.

Above we defined a generalized cumulative logit model, where each category
has its own intercept and coefficient vector. However, a more simplified version
of this is usually used, where we assume that the different categories all have the
same coefficient vector β, i.e. β1 = . . . = βk−1. This model is known as the
proportional odds model and i is written as

logit[P (Yi ≤ j | xi)] = αj − β′xi. (4)

Like earlier mentioned, the only difference to model in (2) is β, which is the
same for each category’s model. The reason for this is better explained in the
next section. Because αj is the sole parameter that differs across the models
in each category, αj must be equal to or greater than αj−1, because the model
uses cumulative probability. It is also worth noting that β′x is subtracted from
the intercept αj, where as in (2) it was added.The differences between these two
different ways to define the model is that with subtraction, we can assume sign
meaning, where if Y is more likely to belong to higher group when xl, l ∈ {1, . . . p},
increases, then βl > 0. The same holds when the model is defined with P (Yi > j |
xi) instead of P (Yi ≤ j | xi). Although (4) is most commonly used to define the
proportional odds model, some people prefer defining the model with addition or
probability P (Yi > j | xi) (Harrell, 2001).

3.1.2 Assumptions of proportional odds model

As proportional odds model is a cumulative logit model, the same assumptions as
standard logistic regression hold (Harrell, 2001). This essentially means that the
covariates are related linearly to the log odds, but not to each other. Then there
are two assumptions that distinguish proportional odds models from general cumu-
lative logit models: proportional odds and parallel regression assumption (Long,
1997). These assumptions are frequently referred to as a single assumption, pro-
portionality assumption, which is discussed further at the end of the section. Prior
to that, these two assumptions are explained, beginning with the proportional odds
assumption.
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Let us consider two different sets of values of covariates, x
(1)
i and x

(2)
i . The

proportional odds model with those covariates must satisfy

P (Yi ≤ j | x(1)
i )/(1− P (Yi ≤ j | x(1)

i ))

P (Yi ≤ j | x(2)
i )/(1− P (Yi ≤ j | x(2)

i ))
= exp(β′(x

(2)
i − x

(1)
i )). (5)

In other words, the proportional odds models’ odds ratios are proportional to the
distance of x

(1)
i and x

(2)
i and the proportionality constant is the same for every

odds ratio of the model.
Assume now that the only difference between these two sets of values is one

covariate xil. The value of x
(1)
i is denoted as xil + 1 and differs by one from the

value of x
(2)
i , which is denoted as xil. Following equation (5) odds ratio now reduces

to exp(−βl).
Both of these equations are called proportional odds assumptions. You should

note that in the case of the latter, the answer is always exp(−βl) in every category
j = 1, 2, . . . , k− 1. We can lead from this second assumption of proportional odds
model, which is parallel regression assumption.

To summarize, the parallel regression assumption says that the only difference
between models for each category j = 1, 2, . . . , k − 1 is the intercept αj. The
model’s coefficients for covariates remain same for every category j. In other
words, we assume that the coefficients for covariates of the model are independent
of Yi’s category j. This assumption is also known as proportionality assumption,
and as previously stated, it is frequently mentioned as the only assumption of
the proportional odds model. This is due to the fact that proportional odds and
parallel regression assumption correspond to each other, and if parallel regression
assumption holds, so does the proportional odds assumption. This is also why it
is only necessary to test whether the parallel regression assumption is true for the
model.

There are numerous approaches to test the assumption. One popular way
is to do it graphically (Harrell, 2001), because if this assumption is correct, the
slopes of the model do not differ significantly between different groups. Score
test is also sometimes recommended, but this test is frequently criticized (Agresti,
2010; Harrell, 2001). The Brant-Wald-test (Brant, 1990) is currently the most
recommended test for proportional assumptions. It is also known as the Brant-
test, but we will refer to it as the Brant-Wald-test in this thesis because in older
literature this test has been referred to often as the Wald-test. The Brant-Wald-
test is explained in more detail in Section 3.1.5.

3.1.3 Fitting of proportional odds model

Maximum likelihood modeling is the most common method for fitting the pro-
portional odds model, and it is used by most statistical programs. To define the
likelihood function for the proportional odds model, let us define first a binary
indicator of the response. Let yij equal 1 if yi falls in category j, and 0 otherwise.
Now we can write the likelihood function for the proportional odds models as
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L(α,β | yij,xi) =
n∏

i=1

[ k∏
j=1

P (Yi = j | xi)
yij
]

=
n∏

i=1

[ k∏
j=1

(P (Yi ≤ j | xi)− P (Yi ≤ j − 1 | xi))
yij
]

(6)

=
n∏

i=1

[
k∏

j=1

[ exp(αj − β′xi)

1 + exp(αj − β′xi)
− exp(αj−1 + β′xi)

1 + exp(αj−1 − β′xi)

]yij]
,

where α = (α1, . . . , αk−1)
′. Note that in this equation j = 1, . . . , k, and when

j = k, P (Yi ≤ j | xi) = 1, and when j = 1, P (Yi ≤ j − 1 | xi) = 0. To obtain
maximum likelihood estimates α̂ and β̂ for parameters α and β, for example
Fisher scoring algorithms can be used. This method is covered in more detail in
McCullagh (1980) and Agresti (2010).

The maximum likelihood method has some drawbacks, the most common of
which is that the estimate it provides for the coefficient can occasionally be infinite
(Agresti, 2010). This is usually due to a small sample size, unbalanced data, or a
large number of model parameters. One solution to this is to simplify the model
by removing a covariate. However, the model may no longer be as well-fitting as
the model with infinite coefficients. In this case, one should consider whether the
model with infinite coefficient fits and functions properly. But how to determine
how well the models fit? This is explained further in the next section.

3.1.4 Goodness-of-fit tests for proportional odds model

As previously stated in Section 3.1.1, the proportional odds model is an extension
of a logistic regression model. This means that the majority of the goodness-of-
fitness statistics for logistic regression model can be applied to the proportional
odds model (Harrell, 2001). In this thesis, we use pseudo-R2, which is further
explained below using Long (1997) as source.

Pseudo-R2 is based on the R2 statistic, which is used to assess the fit of the ordi-
nary least squares estimator for linear regression models. But unlike R2, pseudo-R2

cannot be used to estimate how much covariates explain the variation of the re-
sponse variable. They are instead used to demonstrate an improvement in model
likelihood over the null model. For other pseudo-R2 properties, a similar interpre-
tation as with R2 is sought. As a result, their range, like R2, is generally [0,1], and
their limits can be interpreted similarly - if the value obtained is close to zero, the
model is thought to be a poor fit, and if it is close to one, the model is thought to
be a good fit.

Because most pseudo-R2’s are similar and interpreted similarly, we will only
cover the ones used in this thesis, beginning with McFadden’s pseudo-R2 (McFad-
den, 1974). This is one of the earliest pseudo-R2’s and one of the most commonly
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used. Let L denote the likelihood-function from (6) for the model whose goodness-
of-fit we want to examine and L(null) for the model without any covariates and only
with the intercept. McFadden’s pseudo-R2 is now defined as

R2
MF = 1−

(
logL(null)(α̂)

logL(α̂, β̂)

)2/n

, (7)

where n denotes the sample size. Popularity of R2
MF is based on its similar proper-

ties with R2-statistics (Windmeijer, 1995). However, it has its own problems: the
upper limit of it is not precisely one and R2

MF increases when new variables are
included in the model. The latter problem is solved using the adjusted Mcfadden’s
pseudo-R2, which is defined as

R2
adjMF = 1−

(
logL(null)(α̂)− p

logL(α̂, β̂)

)2/n

,

where p is the number of covariates.
Another popular pseudo-R2 also used in this thesis is Cox’s and Snell’s pseudo-

R2. This statistic is defined as

R2
CS = 1−

(
L(null)(α̂)

L(α̂, β̂)

)2/n

,

where L and L(null) are defined the same way as in equation 7. R2
CS’s upper limit

is not precisely one either: rather it is 1−L(null)2/n (Hu et al., 2006). This issue is
resolved in Nagelkerke’s pseudo-R2 (Nagelkerke, 1991), which is defined as

R2
N =

1−
(

L(null)(α̂)

L(α̂,β̂)

)2/n
1− L(null)(α̂)

.

There is no particular rule for determining which pseudo-R2 to use, although
studies have been done to compare different pseudo-R2 indices (see e.g. Windmei-
jer, 1995). It is important to note that these goodness-of-fit statistics, like others
for logistic regression models, do not test the proportionality assumption of the
proportional odds model. This was mentioned earlier in the Section 3.1.2 and
the Brant-Wald-test, which is commonly used to test it, is explained in the next
subsection.

3.1.5 Brant-Wald test

The Brant-Wald test was first introduced by Brant (1990) in his article. This is
cited as the main source in this Section along with Long (1997).
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The Brant-Wald-test is an omnibus test, which means that it can be used to
test the proportionality assumption for the entire model. It can also be used to
test the proportional assumption for a single covariate’s coefficient, which is why
it is popular. Score test, for example, can only be used as an omnibus test for
proportional assumption.

Assume now that β̂j is the ML-estimate of βj of the generalized cumulative

logit model and write Ĉov(β̂j) for the estimate of its asymptotic covariance matrix.
Then write π̂j for P (Yi ≥ j | xi),

logit[π̂j] = −α̂j + β̂
′
jxi

to calculate and estimate it. Now we can estimate the asymptotic covariance
between β̂j and β̂i. To do this, we use formula

Ĉov(β̂j, β̂i) = (X ′W jjX)−1(X ′W jiX)(X ′W iiX)−1

where i, j = 1, 2, . . . , k − 1 and W ij is a n × n diagonal matrix with ith element
being π̂i − π̂jπ̂i. X is n × (p + 1) design matrix that contains ones in the first
column and covariates in the remaining columns.

After this we can define β̂∗ = (β̂
′
1, . . . , β̂

′
k−1)

′ and

Ĉov(β̂∗) =

 Ĉov(β̂1) . . . Ĉov(β̂1, β̂k−1)
...

. . .
...

Ĉov(β̂k−1, β̂1) . . . Ĉov(β̂k−1)


We can now construct the Wald test for the model with hypothesis H0 : β1 =

β2 = . . . = βk−1. Another way to write this hypothesis is H0 : Dβ∗ = 0 , where
D is a p(k − 2)× p(k − 1) contrast matrix and is defined as

D =


I −I 0 . . . 0
I 0 −I . . . 0
...

...
...

. . .
...

I 0 0 . . . −I

 ,

where I is p× p identity matrix and 0 is p× p matrix full of zeros. Now we have
defined everything needed for Wald test statistic written as

X2 = (Dβ∗)′(DĈov(β∗)D′)−1(Dβ∗). (8)

Under the null hypothesis X2 ∼ χ2
(k−2)p.
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We can do this test for single variables by selecting only rows and columns of
D, β̂∗ and Ĉov(β̂∗) that corresponds with the coefficients tested. In this case, if
xl is the covariate we want to test, then β̂∗ = (β̂1l, . . . , β̂(k−1)l)

′ and

Ĉov(β̂∗) =

 Ĉov(β̂1l) . . . Ĉov(β̂1l, β̂(k−1)l)
...

. . .
...

Ĉov(β̂(k−1)l, β̂1l) . . . Ĉov(β̂(k−1)l)


.

We define now a (k − 2)× (k − 1) contrast matrix D as

D =


1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1

 .

and we can calculate X2 statistics using (8). Now X2 ∼ χ2
(k−2)

Usually, the main focus of the test is the omnibus value. However, if the
model fails the omnibus test, examining single covariates with this test is a good
idea. In some cases, only a few covariates fail to satisfy the model’s proportional
assumption. If this occurs, one should think about using a different model, and
in the case mentioned earlier, a partial proportional odds model may be better
than a proportional odds model. This model is further explained in the following
section.

3.2 Partial proportional odds model

In this chapter, the partial proportional odds model is defined. Like its name
suggests, it is an extension of the proportional odds model which was introduced
in the previous chapter. It was first introduced by Peterson and Harrell (1990)
and this article will be used as the main source for this chapter. There are a
couple ways to write the partial proportional odds model and first we write it in a
way that fits equation (2). In this case, let us assume we have p covariates and q

(q < p) of them violates the proportional assumption. Now x
(1)
i is q-sized column

vector of values of the covariates violating the proportional assumption and x
(2)
i

is (p− q)-sized column vector of values of the covariates fulfilling the assumption.
The partial proportional odds model can be written as

logit[P (Y ≤ j | x)] = αj + β′
1jx

(1)
i + β′

2x
(2)
i , (9)

where β1j is q-sized vector of coefficients of x
(1)
i for category j and β2 is (p−q)-sized

vector of coefficients for x
(2)
i . In this case, the intercept αj and β1j are different
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for each category j, but β2 remains same. Another way to write this model is as
Peterson and Harrell (1990) do it, in which case the equation is written as

logit[P (Y ≤ j | x)] = αj + β′x+ γ ′
ju, (10)

where β is as in the case of the proportional odds model. Parameter u is q-
vector (q ≤ p) and is a subset of x, which contains covariates that do not follow
the proportional assumption. Vector γj is a q-vector which contains regression
coefficients associated with u for category j. In other words, γ ′

ju is an increment
for category j.

3.3 Principal component analysis

As described in Section 2.2, the haemodynamic variables used are functional vari-
ables, but the data contain averages of one-minute intervals that were either 5 or 10
pieces, depending on the variable. In this thesis we want to use these variables as
covariates for models of Sections 3.1 and 3.2, but in these models non-functional
covariates are used. Even though we ignore the functionality of covariates and
only use observed values of haemodynamic variables, it also would be problematic
because every haemodynamic variable contains 5 or 10 observations. We solve this
problem by using principal component analysis, which ignores the functionality of
the variable, but can be used to reduce the dimensions of multivariate variables. In
this case, we use principal component analysis to replace each individual haemo-
dynamic covariate with their principal component scores in the regression model.
The purpose of this chapter is to go through this method in greater detail, starting
with a definition and then going through how to select the main components. The
primary source here is Jolliffe (2002).

3.3.1 Definition

The idea of principal component analysis is that it reduces the dimension of the
multivariate dataset yielding a new set of variables known as the principal com-
ponents. The principal component scores are uncorrelated and arranged so that
the first components contain the majority of the variation in the original variables.
Next is explained how this will be done in practice.

Let x = (x1, . . . , xM)′ denote a random M -vector. We define linear combina-
tions for the vector as
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a′
1x = a11x1 + . . .+ a1MxM =

M∑
m=1

a1mxm

a′
2x = a21x1 + . . .+ a2MxM =

M∑
m=1

a2mxm

...

a′
Mx = aM1x1 + . . .+ aMMxM =

M∑
m=1

aMmxm,

where vector am = (am1, am2, . . . , amM)′ (m = 1, . . . ,M) contains M constants.
Let us define combinations so that they are uncorrelated and combinations’

variances V ar(a′
mx) = a′

mΣam, where Σ is the covariance matrix of x, are max-
imized under the normalization constraint a′

mam = 1. Now we have defined the
principal components for the dataset, where mth principal component is defined
as zm = a′

mx. The M -vector containing all principal components is denoted as
z = (z1, . . . , zM)′.

Coefficient matrixA = (a1, . . . ,aM)′, which is also called as the loading matrix,
can be solved using eigenvector-eigenvalue decomposition Σ = UΛU ′, where U is
an orthogonal matrix which contains eigenvectors of the covariance matrix Σ and
Λ is a diagonal matrix which contains eigenvalues of the covariance matrix. We
can now define the loading matrix as A = U ′.

Above we defined all possible principal components for variable with M obser-
vations, but to reduce dimension size, we want to find l (l ≤ M) first principal
components that contain the majority of the variation. The principal components
have been defined in such a way that the first main components explain the ma-
jority of the variation in the dataset, but it is up to the analyst to determine
how much variation is sufficient, i.e. how many of the first main components are
preferred to be used. The most common method of determining this is presented
next, by using cumulative percentages.

The method of selecting the main components based on cumulative percentages
is quite simple: we define a cumulative percentage for the total variation that we
want the selected principal components to explain. In other words, we want to
know what percentage the variances of the selected principal components make up
of the total variance. The first l component explain

V ar(z1) + . . .+ V ar(zl)

V ar(z1) + . . .+ V ar(zM)
· 100%

of the total variance.
The method does not define any benchmark values for the total variance of the

selected principal components components, and it is up to the analyst to determine
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which percentage is acceptable. The selected value is usually between 70% and
90%, and the selection should take into account factors such as the number of all
principal components M . As the amount of M grows, the value of the chosen
cumulative percentage should decrease. In contrast, if the first couple of main
components account for the majority of the variation, the value can be defined
larger than 90 % .

Examining the scree plot of the principal components is another popular method.
The variances of the principal components are plotted against the corresponding
number of the component in the scree plot, and the plot can be used to esti-
mate which components contain enough of the variance. This is accomplished by
looking for the “elbow” in the scree plot, or looking for the principal component
after which the graph is deemed not “steep” enough. Based on this, the “elbow”
principal component and the principal components before it are selected for use.
There is an example of a screeplot and how to find “elbow” in Figure 5. It can be
seen from the screeplot thatt after the second principal component, the plots for
following principal components do not change much, meaning that the “elbow” of
the scree plot is the second principal component.

C/) 
Q) 
(.) 

C 
ro 
'-

� 

0 

0 
CO 

0 
0 
CD 

0 

0 
N 

0 

Screeplot of heart rate

....._ _ __, □ c::==:::::i === === --- --- --- --- ---

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9 

Figure 5: Screeplot of principal components of heart rate (HR).

3.3.2 Functional data and PCA

If the data are functional and can be graphed as a curve, we can use the reduced
rank model (James et al., 2000) written as

18



xi(t) = µ(t) + a1(t)ẑ1 + . . .+ al(t)ẑl + ϵi(t),

where i = 1, . . . , n, xi(t) is curve for the ith individual at the time t, µ(t) is a
mean curve, am(t) is curve defining the mth principal component and ẑm is the
mth principal component score (sample principal component) and in this model,
first l principal component scores are used.

To estimate curves for principal components, we first denote xi(t) as z˜ and
x = z˜ − E(z˜), with Cov(x) = UΛU ′. Now we want to denote x using principal
components. Because principal components analysis can be viewed as rotation of
the original data, in this case, we only have to rotate it back, meaning x = zA.
We can approximate this result by using first l principal components (l < m) as

x ≈ a1z1 + . . .+ alzl.

From this equation we can deduce that we can use loadings of the corresponding
principal components to estimate the curves for principal components. In Figures
6 and 7 there is an example of reconstructing the original curve of the original
variable for a random individual with corresponding principal component scores
and loadings of the principal components.

This kind of a reconstruction is used for example in the eigenface approach
(Turk and Pentland, 1991) used for face recognition. In this method, instead
of the original faces, one calculates with principal component analysis eigenfaces
which contain basis features of the original picture. These eigenfaces are then
used for face recognition instead of the original face. Similar way we also want to
replace original variables with corresponding principal components scores, which
contain basis features of the original variables, in the chosen models.

3.4 Functional ordinal logistic regression

The proportional odds model and partial proportional odds model use principal
components calculated from interval averages of haemodynamic variables as covari-
ates, but as stated earlier, these variables are actually functional. This cannot be
taken into account in previous models, but it is taken into account in the functional
ordinal logistics regression. However, before presenting the model, functional data
analysis will be presented briefly, which will serve as the model’s foundation in
addition to the proportional odds model.

3.4.1 Review of functional data analysis

As previously stated, in the functional data analysis data are primarily functional
(or the underlying process is assumed to be functional). This means that rather
than assuming that the data are made up of a finite set of observations that could
be represented as scalars or vectors, data observations are assumed to be functions
defined for a set of T . One of the most common types of functional data are data
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Figure 6: On the first row is the average curve for heart rate (HR). On the second
row is the first principle curve and on the third row is the second principal curve
for heart rate.

whose observations are assumed to be realizations of the L2 continuous stochastic
process X = {X(t), t ∈ [0, T ]}, which means that E(

∫
T
X2(t)dt) < ∞) has to hold

(Wang et al., 2016).
In practice, only a finite number of observation points can be detected from

these functions, so functional data analysis is used to approximate these functions.
Functional data analysis also seeks to address the challenges posed by functional
data’s infinite dimensional structure, which often includes in practice dimension
reduction like in multivariate analysis, because most often we have only have fi-
nite amount of observations from the functional data. One of the most well-known
functional data analysis methods is functional principal component analysis, which
non-functional version was introduced in Section 3.3. Many other methods are
included in functional data analysis, and new methods are constantly being devel-
oped. One of the most recent methods is functional ordinal logistics regression,
which is presented below.

3.4.2 Functional ordinal logistic regression model

Although both ordinal logistic regression models and functional models have been
extensively studied and developed, functional logistic regression models have only
been introduced recently. In this section, functional ordinal logistic regression is
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Figure 7: Reconstruction of the original curve of the random individuals’ heart
rate (HR) with average curve and first two principal curves.

presented using Jacques and Samardzic (2022) and Chiu et al. (2022) as main
sources. However, the model introduced in this thesis will be an extended version
of the model presented in literature as it includes both non-functional covariates
and more than one functional covariate.

Recall that Yi denotes a random variable for subject i, i = 1, . . . , n. Let us
denote values of Yi as 1, . . . , k, where 1 is the lowest group and k is the highest
group. Assume now that we have p covariates so that the first q ones are non-
functional random variables x = (x1, . . . , xq)

′, and rest of them are functional
random variables xj(t) (j = q+1, . . . , p) with values L2[0, T ], T > 0, where L2[0, T ]
is vector space of all functions X : (0, T ) → R satisfying E(

∫
T
X2(t)dt) < ∞. Let

xj(t) be an L2-continuous process. Now we can write functional logistic regression
as

logitP (Yi ≤ j|X = xi) = αj −
q∑

s=1

βsxsi −
p∑

s=q+1

∫ T

0

βs(t)xsi(t) dt. (11)

As mentioned earlier, most often we have only knowledge about a finite amount
of observed values of xi(t), which we want to use to approximate function xi(t). If
we assume that there are noise in observed value, one of the recommended methods
(Ramsay and Dalzell, 1991) for approximation is one where it is assumed that
function xi(t) can be decomposed into finite amount basis of functions following
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way

xi(t) ∝
R∑

r=1

airϕr(t) = a′
iϕ(t),

where vector ϕ(t) = (ϕ1(t), . . . , ϕR(t))
′ containsR basis functions, ai = (ai1, . . . , aiR)

′

contains basis expansion coefficients. In this instance, it is recommended (Ramsay
and Dalzell, 1991) to use either B-spline basis or Fourier basis as the basis function.

We use the B-spline basis here because the Fourier basis is recommended for
data with a repeated pattern and the B-spline basis for other cases. When creat-
ing B-spline basis functions (or any other spline function), which are polynomial
segments, we must define argument values called knots since we want to connect
these segments end-to-end at these knots. The segments are smoothed over the
breaks between the knots in a specific fashion for B-spline basis functions. The
number of knots used is determined on the shape of the functional data’s curve,
and usually the amount of knots cannot be higher than the amount of observation
points of the function. The number of basis functions to define spline function is
determined on the order of used basis functions, which is degrees of freedom + 1,
and amount of knots, and is written as order + number of knots - 2.

Usually knots are placed evenly and when using b-spline basis knots have to
be placed in the beginning and end of the interval of the function. It is however
recommended that if the curvature varies significantly, more knots are required
than if the curve does not change. And if the way the curve varies, more knots
are placed when the curve changes quickly and fewer knots when it changes slowly
(Ramsay and Dalzell, 1991). In Figure 8 is shown an example of choosing knots
for a functional variable with ten observation points while using cubic B-spline
basis functions with order 4.

B-spline basis function can be used in this case to decompose regression coef-
ficients β(t) of functions in a similar way into finite-amount of basis functions

β(t) ∝
R∑

r=1

brϕr(t) = b′ϕ(t).

After decomposing both xs(t) and βs(t), (11) can be written as

logitP (Y ≤ j|X = x) = αj −
q∑

s=1

βsxsi −
p∑

s=q+1

∫ T

0

R∑
r=1

bsrϕsr(t)
R∑

r′=1

asir′ϕsr′(t) dt

= αj −
q∑

s=1

βsxsi −
p∑

s=q+1

R∑
r=1

R∑
r′=1

bsrasir′

∫ T

0

ϕsr(t)ϕsr′(t) dt

= αj −
q∑

s=1

βsxsi −
p∑

s=q+1

b′sΨasi,
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Figure 8: Illustration of cubic B-spline basis functions (df = 3) with two boundary
knots placed at 0 and 1, and six interior knots placed at 0.2, 0.4, 0.5, 0.6, 0.7 and
0.8

where Ψ is the R × R matrix of inner products between basis functions. We
can estimate parameters b and α = (α1, . . . , αj−1)

′ from this function by using
maximum likelihood estimation. Because closed form solutions do not exist, an
iterative optimization algorithm is used.
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4 Results

In this chapter, the models presented in the previous chapter are fitted to data
introduced in Chapter 2, after which the results are discussed and a comparison
between the three models is made. Before this, principal component analysis
(Section 3.3) for haemodynamic variables must be conducted and after that has
been done, principal component scores to be used as covariates can be chosen.

4.1 Preparations

In this section, principal component analysis and choosing of haemodynamic co-
variates to use in model, is explained. This was done using R program, and R
code used can be found in Appendix A. It was explained in chapter 2 that haemo-
dynamic variables have ten (or five in the case of ECW and PWV) values. Prin-
cipal component analysis was used to reduce the dimensions of the mean centered
haemodynamic variables, and the corresponding principal component scores were
included in the model instead of the original variables. As a result, most of the
haemodynamic variables were replaced with their first two principal component
scores (and in the case of ECW and PWV, only the first one). This decision was
made using screeplots, which are shown in Figure 9.
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Figure 9: Screeplots of haemodynamic covariates (HR, SEVR, CI, PWP and ECW)
used in the model.

The haemodynamic variables used in the model were selected using forward
and backward stepwise regression to a proportional odds model that included
the principal component scores of all haemodynamic variables. Furthermore, the
model included variables such as age, gender, and BMI, and because potential
interactions between these variables and haemodynamic variables were suspected,
potential interactions were also included in the initial model. The model also
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contains the interactions betweeen sex and age, age and BMI, and sex and BMI.
The proportional odds model fitted as a result of this is introduced next.

4.2 Fitted proportional odds model

Based on the model with lowest AIC according to forward and backward step
regression, we ended up with a model similar to (12), but without 1. principal
component score of cardiac index or interaction terms between sex and 2. prin-
cipal component score of SEVR or age and 2. principal component score of HR.
These covariates were introduced to the model to make interpreting and comparing
haemodynamic variables easier. This model was fitted with the VGAM-package’s
vglm-function (Yee et al., 2015). R code used to fit models and comparing them
can be found in Appendix B.

logit[P (Yi ≤ j | xi)] =αj + β1sex+ β2BMI + β3age+ β4hr1

+ β5hr2 + β6sevr1 + β7sevr2 + β8ci1

+ β9ci2 + β10pwv + β11ecw + β12sex · sevr1 (12)

+ β13sex · sevr2 + β14BMI · pwv + β15BMI · ecw
+ β16age · hr1 + β17age · hr2.

Table 3 displays results of this model. It should be noted that (in all fitted
models) values of the regression coefficients are displayed in same manner that
odds ratios can be determined using the equation exp(βi) and they are interpreted
in the same way; for example, the odds ratio of sex is exp(−0.2579) ≈ 0.773,
which can be translated as “The odds that male answers lower health status is
0.773-times lower than the odds that female answers lower health status, when
both have the same values for other covariates and both principal component
scores of sevr are zero.” It should be noted that the majority of covariates are
also part of some interaction term, therefore interpreting odds ratios is not always
as simple. In the previous example, if both individuals have the same values but
both principal component scores of SEVR are zero, the interpreted odds ratio is
exp(−0.2579 + (−0.0045) + (−0.0056)) ≈ 0.765. In other words, higher values for
principle scores of SEVR reduce the odds that male responses lower health status.
It should also be noted when interpreting the results of the proportional odds
model that the odds ratios are the same for each model version, i.e. model for
the cumulative probability that the subject answers health status lower than good
and model for the cumulative probability that the subject answers health status
lower than excellent.

The interpretation of odds ratios for age and BMI is similar, especially when
interaction terms are excluded. When the data are otherwise the same and the
principal component scores for HR are zero, the odds that a one-year older person
answers lower health status are exp(0.0320) ≈ 1.032-times higher than the odds
that a younger person answers lower health status. When the values are otherwise
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Table 3: Results of the proportional odds model.

Coefficient Estimate z-value p-value

1. intercept -6.8775 -8.714 < 0.0001
2. intercept -3.4960 -4.698 < 0.0001
Sex (male) -0.2579 -1.065 0.2867
BMI 0.1485 6.282 < 0.0001
Age 0.0320 3.521 0.00043
1. PC score of HR 0.0315 2.755 0.0059
2. PC score of HR 0.0402 1.239 0.2152
1. PC score of SEVR 0.0064 2.816 0.0049
2. PC score of SEVR 0.0104 1.740 0.0818
1. PC score of CI 0.0182 0.202 0.8399
2. PC score of CI -0.5046 -2.230 0.0257
1. PC score of PWV 0.3492 2.595 0.0095
1. PC score of ECW -0.2874 -2.305 0.0212
Sex * 1. PC score of SEVR -0.0045 -2.225 0.0261
Sex * 2. PC score of SEVR -0.0056 -0.796 0.4263
BMI * 1. PC score of PWV -0.0126 -2.624 0.0087
BMI * 1. PC score of CI 0.0078 1.796 0.0726
Age * 1. PC score of HR -0.0004 -2.090 0.0366
Age * 2. PC score of HR -0.0002 -0.268 0.7129

the same and the principal component scores of PWV and ECW are zero, the
odds ratio of BMI can be interpreted as “The odds that person with one value
higher BMI answers lower health status is exp(0.1485) ≈ 1.160-times higher than
the odds that person with lower BMI answers lower health status”.

These interpretations are compatible with Figure 1, which shows that average
BMI and age values for health status groups decrease as health status gets higher.
Similarly, previous interpretations of sex support the assumption that males tend
to overestimate their health when compared to females.

Because original variables are not included in the model, interpreting the results
for haemodynamic variables is more difficult than for age, gender, and BMI. Curves
of the principal components are used to interpret the principal component scores
of the haemodynamic variables (they can be found in Appendix Figure 10). For
example, results of the first principal component score of SEVR are interpreted.
When two females with otherwise identical values are compared, the odds ratio
can be interpreted “The odds, that female with one value higher 1. principal
component score of SEVR answers lower health status, is exp(0.0064) ≈ 1.006-
times higher than the odds, that person with lower 1. principal component score
of SEVR answers lower health status”. What this means for the original variable
is determined from the curve of 1. principal component of SEVR (Figure 10).

Up until the midpoint of the curve, the 1. principal component of SEVR has
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values around 0.330; after that, values range from 0.300 to 0.315. That is why
when comparing females with otherwise identical values but different 1. principal
component scores of SEVR , the higher value female would have a higher SEVR
curve, especially at the beginning, but the difference between the beginning and
end values would be lesser. This corresponds to Figure ”ref”fig:femalesevr, which
displays mean SEVR curves for females grouped by health status. You can see
that the mean curve for the excellent-group has a lower starting value than that
of the other groups and the largest difference between its beginning and ending
values. It should be noted that the excellent-group curve is lowest just at the
beginning, which conflicts the interpretation. However, this is because of the fact
that we just focused on the SEVR’s 1. principal component score, and model also
includes 2. principal component score of SEVR.

Figure 12 shows model-predicted probabilities across the range for 1. principal
component score of SEVR for 30-year-old female who have BMI of 25 and average
values for principal component scores of haemodynamic variables. You can see
from this graph that if this person have low 1. principal component score of
SEVR, around -200, they are most likely to answer that their health status is
excellent with probability of 0.6 and least likely to answer that their health status
is poor or moderate with almost zero probability. Respectively when they have
high 1. principal component score of SEVR, around 300, they are about as likely
to answer for their health status poor or moderate than health status good. The
probability that they answer excellent for their health status is near zero.

Earlier results are consistent with the boxplot in Figure 13, which shows that
the excellent-group has a greater mean and minimum value of 1. principal com-
ponent score of SEVR when compared to the other groups.

Based on these results, it appears that the model seems to work well with data.
However, the proportional odds model has a strict proportional odds assumption
that should always be verified. This was done in this thesis by fitting the same
model with MASS-package (Venables and Ripley, 2002), so a Brant test could be
performed with brant-package (Brant, 1990). The results of this test are shown
in Table 4, where you can see that the proportional odds assumption holds with
the model’s omnibus-value. However, when the test is run on single covariates,
it appears that the assumption does not apply to the BMI variable. As a result,
we discard this assumption with BMI, while fitting the partial proportional odds
model. The next section introduces and discusses this model.

4.3 Fitted partial proportional odds model

Based on previous Brant test results for the fitted proportional odds model, we
chose to fit a partial proportional odds model to data where the proportional
odds assumption was abandoned with BMI. This model was also fitted with the
VGAM-package (Yee et al., 2015), and the model is shown in (13).
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Figure 10: Principal component curves corresponding with principal components
scores used in the proportional odds model and partial proportional odds model.
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logit[P (Yi ≤ j | xi)] =α + β1sex+ β2jBMI + β3age+ β4hr1

+ β5hr2 + β6sevr1 + β7sevr2 + β8ci1

+ β9ci2 + β10pwv + β11ecw + β12sex · sevr1 (13)

+ β13sex · sevr2 + β14BMI · pwv + β15BMI · ecw
+ β16age · hr1 + β17age · hr2.
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Figure 12: Plots of model-predicted probabilities across the range for 1. principal
component score of SEVR for 30-year-old female who have BMI of 25 and average
values for principal component scores of haemodynamic variables

Table 5 displays the results of the fitted partial proportional odds model. The
results are interpreted similarly to the proportional odds model, and there are not
any notable differences in the most of the odds ratios of these two models; for
example, the odds ratio of sex in this model is exp(−0.2788) ≈ 0.757, whereas in
the proportional odds model it was 0.773. This is why we are going to focus on
the most notable difference between these two models, the BMI coefficients.

In this model, BMI variable has two coefficients, both of which are statistically
significant. When comparing two people with otherwise same values and with
zero as values for 1. principal component scores of ECW and PWV, the odds
ratios can be interpreted as “The odds that person with one value higher BMI
answers health status lower than good is exp(0.1238) ≈ 1.132-times higher than
the odds that person with lower BMI answers health status lower than good” and
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Figure 13: Boxplots of principal component scores used in the proportional odds
model and partial proportional odds model grouped by health status.
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“The odds that person with lower BMI answers health status lower than good
is exp(0.2073) ≈ 1.230-times higher than the odds that person with lower BMI
answers health status lower than good” What this means in practice can be better
understood by comparing graphs of the partial proportional odds model and the
proportional odds model, as shown in Figure 14.

As seen in the graphs, higher BMI affects the probability that a person replies
poor or moderate rather than good or excellent less in the partial proportional
odds model than in the proportional odds model. In the partial proportional odds
model, BMI has a greater influence on the probability that a person responds
health status less than excellent than in the proportional odds model. It can
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Table 4: Brant test results of the proportional odds model.

Test for X2 df p-value

Omnibus 15.95 17 0.53

Sex (male) 0.37 1 0.54

BMI 5.67 1 0.02

Age 0.21 1 0.65

1. PC score of HR 0.07 1 0.79

2. PC score of HR 2.96 1 0.09

1. PC score of SEVR 0.27 1 0.60

2. PC score of SEVR 0.27 1 0.79

1. PC score of CI 0.07 1 0.91

2. PC score of CI 0.73 1 0.39

1. PC score of PWV 1.36 1 0.24

1. PC score of ECW 0.30 1 0.59

Sex * 1. PC score of SEVR 0.04 1 0.84

Sex * 2. PC score of SEVR 0.01 1 0.92

BMI * 1. PC score of PWV 1.37 1 0.24

BMI * 1. PC score of ECW 0.20 1 0.65

Age * 1. PC score of HR 0.18 1 0.67

Age * 2. PC score of HR 2.49 1 0.11

also be interpreted that a higher BMI makes it more probable that a person will
answer excellent in the proportional odds model than in the partial proportional
odds model.

4.4 Fitted functional ordinal logistic regression model

In addition to the previous models, a functional ordinal logistic regression model
was fitted to the data using the FREG-package (Samardzic, 2022). The haemody-
namic covariates are the same variables used in the proportional odds and partial
proportional odds models. The model in this case is shown in (14).

31



Table 5: Results of the partial proportional odds model.

Coefficient Estimate z-value p-value

1. intercept -6.1370 -7.248 < 0.0001
2. intercept -4.9600 -4.896 0.0001
Sex (male) -0.2788 -1.148 0.2511
BMI:1 0.1238 4.783 < 0.0001
BMI:2 0.2073 5.649 < 0.0001
Age 0.0314 3.463 0.0005
1. PC score of HR 0.0314 2.757 0.0058
2. PC score of HR 0.0373 1.153 0.2490
1. PC score of SEVR 0.0065 2.846 0.0044
2. PC score of SEVR 0.0101 1.695 0.0900
1. PC score of CI 0.0240 0.268 0.7888
2. PC score of CI -0.4814 -2.132 0.0330
1. PC score of PWV 0.2874 2.123 0.0338
1. PC score of ECW -0.3092 -2.490 0.0128
Sex * 1. PC score of SEVR -0.0046 -2.249 0.0245
Sex * 2. PC score of SEVR -0.0055 -0.779 0.4362
BMI* 1. PC score of PWV -0.0104 -2.156 0.0311
BMI * 1. PC score of ECW 0.0086 1.979 0.0478
Age * 1. PC score of HR -0.0004 -2.078 0.0377
Age * 2. PC score of HR -0.0002 -0.304 0.7614
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Figure 14: Plots of proportional and partial proportional odds model-predicted
cumulative probabilities across range of BMI for female aged 25 with average
principal component scores of haemodynamic variables.
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logit[P (Yi ≤ j | xi)] =αj + β1sex+ β2BMI + β3age+

∫ 1

0

β4(t)xhr(t) dt

+

∫ 1

0

β5(t)xsevr(t) dt+

∫ 1

0

β6(t)xci(t) dt+

∫ 1

0

β7(t)xpwv(t) dt

+

∫ 1

0

β8(t)xecw(t) dt+

∫ 1

0

β9(t)sex · xsevr(t) dt (14)

+

∫ 1

0

β10(t)BMI · xpwv(t) dt+

∫ 1

0

β11(t)BMI · xecw(t) dt

+

∫ 1

0

β12(t)age · xhr(t) dt.

It should be noted that all functions have intervals of [0,1] rather than [1,10] or
[1,5], which has no effect on the model.

The FDA-package (Ramsay et al., 2022) was used to define the model’s B-spline
basis functions. To accomplish this, model knots had to be specified. Because the
ECW- and PWV-variables had 5 observation points and the rest of the variables
had 10, the maximum number of knots was 5 for ECW and PWV and 10 for the
rest of them, when the B-spline basis function used was cubic functions with 3
degrees of freedom, so the maximum number of chosen basis function was 3 and 8.
Figure 15 shows that the smoothed means for the ECW and PWV variables are
straight, which is why the knots were positioned evenly at the beginning, middle,
and finish. Smoothed means for CI, HR, and SEVR appear to be the most “lively”
after the fifth observation point, which is why the majority of knots were put in
the center and after that. Placements for knots and accompanying B-spline basis
functions are shown in Figure 16.
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Figure 15: Plots of smoothed means of haemodynamic covariates.

Because coefficients in the functional ordinal logistic regression model are in the
form of functions, interpreting beta coefficients of variables is more difficult than
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Figure 16: Cubic B-spline basis functions (df=3) used with functional ordinal
logistic regression model. In upper plot, the knots used with basis functions are
placed at 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8 and 1.0. In lower plot, the knots are placed
at 0.0, 0.5 and 1.0.

in the proportional odds and partial proportional odds models. Even though their
coefficients are single numbers, interpreting age, BMI, and sex is also difficult since
the model includes interaction terms between them and haemodynamic variables.
Interpretation is hard in this case also because, unlike principal component scores
of haemodynamic variables, we cannot assume for interpretation that haemody-
namic variables have a value of zero (for most of the haemodynamic variables, this
means that the subject’s heart is not beating). That is why it is easier to plot
them and make interpretations about these graphs, which are shown in Figure 17.

According to the graphs, most regression coefficients signs alter fairly evenly
between positive and negative (most of the graphs tend to change around the
middle, where the tilt happened), meaning that the average effect is low in the
case of the majority of haemodynamic variables. This makes determining whether
the overall effect is positive or negative for the majority of them difficult. We will
interpret the HR’s regression coefficient’s graph as an example. The effect of HR
seems to be positive in overall, but when the table is tilted, the effect briefly turns
negative. Therefore, it appears that people who have higher HR at the start and
end of the test have a higher odds of answering lower health status than people
with lower HR. However, the odds of answering lower health status are lower for
person whose HR is higher at the time of the tilt than for person whose HR is
lower.

4.5 Model comparisons

We can now assess and compare how well the models fit the data after specifying
the models to be fitted. Because there was some discussion about whether haemo-
dynamic variables could be used to predict a health measure, or whether age,
gender, and BMI were sufficient predictors of that variable alone, a comparison
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Table 6: Coefficients of the sex, BMI and age in functional ordinal logistic regres-
sion model.

Covariate Coefficient

Sex (male) -0.1790
BMI 0.1548
Age 0.0393
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Figure 17: Graphs of the functional ordinal logistic regression model’s regression
coefficients. From top to bottom on left: HR, CI, ECW, BMI · PWV, age · HR.
And on right: SEVR, PWV, sex · SEVR, BMI · ECW

was made with reduced models of earlier models that only included age, gender,
and BMI as covariates.

Because the comparison in this situation was between a nested model and a
reduced model, the pseudo-R2 values of the models could be compared. Table
7 compares the proportional odds model to and the comparisons of the partial
proportional odds models are shown in Table 8. In both situations, the full model
gives higher pseudo-R2 values, indicating that models with selected haemodynamic
variables outperform those without. The same conclusion could be made with
model AIC-values, which can be found in Table 9. At least with the proportional
odds model and the partial proportional odds model, the full model has lower
AIC-values than those without haemodynamic variables.

Because the function used with this model requires at least one functional vari-
able, we could not compare the full functional ordinal logistic regression model to
the corresponding model without haemodynamic variables. Instead, we compared
the full model to the corresponding model with only one haemodynamic variable,
heart rate. In this case, the full model had higher AIC-value than the reduced
model, meaning that the chosen model might not be a good fit.
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Earlier results seem to indicate that fitted functional ordinal logistic regression
model might not be as good fit as proportional odds model and partial proportional
odds model. Comparing AIC-values of these three models support this, because
functional ordinal logistic regression model has the highest value. Best fit based
on AIC-values seems to be the partial proportional odds model.

Table 7: Pseudo-R2s of the proportional odds models (full model and reduced
model with only sex, age and BMI as covariates).

Pseudo-R2 Full model Reduced model

McFadden 0.1201 0.0825
Cox & Snell 0.2024 0.1440
Nagelkerke 0.2387 0.1698

Table 8: Pseudo-R2s of the partial proportional odds models (full model and
reduced model with only sex, age and BMI as covariates).

Pseudo-R2 Full model Reduced model

McFadden 0.1241 0.0888
Cox & Snell 0.2084 0.1540
Nagelkerke 0.2457 0.1816

Table 9: AIC-values of proportional odds model (PO), partial proportional odds
model (PPO), and functional ordinal logistic regression model (FOLR) and re-
duced models with only BMI, age and sex (and HR in case of functional ordinal
logistic regression model) as covariates.

Model AIC (Full) AIC (Reduced)

PO 1134.77 1153.59
PPO 1131.814 1147.77
FOLR 1191.21 1150.64
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5 Conclusions

Based on the results, it appears that the partial proportional odds model gives
the best fit for this data while the functional ordinal logistic regression model
gives the worst one. In the proportional odds model and partial proportional
odds model, including haemodynamic covariates HR, SEVR, CI, ECW, PWV,
and interactions between sex and SEVR, BMI and ECW/PWV, and age and HR
gave better results than reduced models with only age, sex, and BMI as covariates.
So using haemodynamic variables to model self-assessed health status instead of
using only age, BMI and sex, seems to be advisable. However, it should be noted
that this kind of comparison could not be done with functional ordinal logistic
regression model. Instead the full model was compared to reduced model with
age, BMI, sex and HR. The full model gave higher AIC than the reduced model
meaning that it gives worse fit than the reduced model.

It should be pointed out, however, that the haemodynamic variables used in
the models were chosen using a forward backward step regression done on a pro-
portional odds model that contained principal component scores of haemodynamic
variables rather than the original values. In other words, the covariates may have
been chosen differently, for example, by selecting haemodynamic variables with
the lowest AIC for the functional ordinal logistic regression model and using them
in all of the models, or by comparing models with the best fit and with different
haemodynamic variables. This is howerer more difficult to do because there are
no tools available for this in R. This is also why, unlike other models, AIC-values
of functional ordinal logistic regression were simply compared, while with oth-
ers the pseudo-R2s were also compared. While doing this thesis it became obvious
that the functional ordinal logistic regression model is a fresh model with many
development opportunities.

It should be noted that, based on the AIC partial and proportional odds model
does not seems to differ much with their fit. However, based on the Brant test
results of the proportional odds model and partial proportional odds model’s re-
sults it seems that proportional odds assumption does not hold true for BMI. As
previously stated, the proportional odds model does not frequently hold with real-
world data, hence the partial proportional odds model having the best fit came as
no surprise. Because of this, one obvious area of development for the functional
ordinal logistic regression model would be to create a more extended version of it
that allows you to relax the proportional odds assumption with single variables
(or all of them).

One way to do this comparison differently is to use different goodness-of-fit
tests. In this thesis, we use AIC and pseudo-R2s, however BIC might also have
been used. We may have also used a different method than forward backward step
regression to select principal component scores for the proportional odds model.
For example, Wenbin and Zhang (2007) in their article have recommended using
ALASSO penalty.
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A R code for forward backward step regression

and choosing haemodynamic covariates for mod-

els

# Data

library(foreign)

data <- read.spss("2022 -02 -11_Data_n751.sav",

to.data.frame=TRUE)

#Subset with variables chosen for thesis

data1 <- data[,c(2 ,3,6 ,57,374:393, 504:513 , 534:543 ,

624:628 ,639:643 , 699:708 ,679:688 , 584:603 ,

614:623 , 1)]

health <- as.factor(data1$SUBJ_HEALTH)

#omitting rows with missing data

df1 <- na.omit(data1)

# combining poor and moderate groups

levels(df1$SUBJ_HEALTH) <- c("poor/moderate",

"poor/moderate","good",

"excellent")

# Principal component analysis for haemodynamic variables

# RAD_SAP

#calculating means for 1.-10. measurements of RAD_SAP

keskiarvot <- aggregate(df1[, 5:14] , list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(5:14)]

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveSAP <- colMeans(X1)

#mean centering

Xc <- sweep(X1 ,2,AveSAP ,"-")

#Principal component analysis

SAPPCA <- princomp(Xc)

summary(SAPPCA)
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screeplot(SAPPCA)

pairs(SAPPCA$scores [,1:2], col=df1$SUBJ_HEALTH)

#Seperating principal component scores as their own variable

vpca1 <-SAPPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

#Mean values for health groups were removed , so subset

#would include only principal component scores for

# subjects

SAPPCAscores <- SAPPCA$scores[-c(637:639) , ]

#Code is similar with prinicipal component analysis performed

# for other haemodynamic variables , so comments are not

#included with them.

# RAD_DAP

keskiarvot <- aggregate(df1[, 15:24] , list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(15:24)]

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveDAP <- colMeans(X1)

Xc <- sweep(X1 ,2,AveDAP ,"-")

DAPPCA <- princomp(Xc)

summary(DAPPCA)

screeplot(DAPPCA)

pairs(DAPPCA$scores [,1:2], col=df1$SUBJ_HEALTH)

vpca1 <-DAPPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

DAPPCAscores <- DAPPCA$scores[-c(637:639) , ]

# SVRI_RAD

keskiarvot <- aggregate(df1[, 65:74] , list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(65:74)]

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveSVRI <- colMeans(X1)

Xc <- sweep(X1 ,2,AveSVRI ,"-")

SVRIPCA <- princomp(Xc)
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summary(SVRIPCA)

screeplot(SVRIPCA)

pairs(SVRIPCA$scores [,1:2], col=data1$SUBJ_HEALTH)

vpca1 <-SVRIPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

cor(X, SVRIPCA$scores)

SVRIPCAscores <- SVRIPCA$scores[-c(637:639) , ]

# PWV

keskiarvot <- aggregate(df1[, 45:49] , list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [,2:6]

keskiarvot

X <- df1 [ ,(45:49)]

X

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AvePWV <- colMeans(X1)

Xc <- sweep(X1 ,2,AvePWV ,"-")

PWVPCA <- princomp(Xc)

summary(PWVPCA)

screeplot(PWVPCA)

pairs(PWVPCA$scores [,1:2], col=data1$SUBJ_HEALTH)

vpca1 <-PWVPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

cor(X, PWVPCA$scores)

PWVPCAscores <- PWVPCA$scores[-c(637:639) , ]

# HR_CM

keskiarvot <- aggregate(df1[, 35:44] , list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(35:44)]

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveHR <- colMeans(X1)

Xc <- sweep(X1 ,2,AveHR ,"-")

HRPCA <- princomp(Xc)

summary(HRPCA)

screeplot(HRPCA)

variance = HRPCA$sdev^2 / sum(HRPCA$sdev ^2)

variance
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pairs(HRPCA$scores [,1:2], col=data1$SUBJ_HEALTH)

vpca1 <-HRPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

HRPCAscores <- HRPCA$scores[-c(637:639) , ]

# SEVR

keskiarvot <- aggregate(df1[, 25:34] , list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(25:34)]

X

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveSEVR <- colMeans(X1)

Xc <- sweep(X1 ,2,AveSEVR ,"-")

SEVRPCA <- princomp(Xc)

summary(SEVRPCA)

screeplot(SEVRPCA)

pairs(SEVRPCA$scores [,1:2], col=data1$SUBJ_HEALTH)

vpca1 <-SEVRPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

SEVRPCAscores <- SEVRPCA$scores[-c(637:639) , ]

# CI

keskiarvot <- aggregate(df1[ ,75:84], list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(75:84)]

X

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveCI <- colMeans(X1)

Xc <- sweep(X1 ,2,AveCI ,"-")

CIPCA <- princomp(Xc)

summary(CIPCA)

screeplot(CIPCA)

pairs(CIPCA$scores [,1:2], col=data1$SUBJ_HEALTH)

vpca1 <-CIPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

CIPCAscores <- CIPCA$scores[-c(637:639) , ]
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# ECW

keskiarvot <- aggregate(df1[, 50:54] , list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [,2:6]

keskiarvot

X <- df1 [ ,(50:54)]

X

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveECW <- colMeans(X1)

Xc <- sweep(X1 ,2,AveECW ,"-")

ECWPCA <- princomp(Xc)

summary(ECWPCA)

screeplot(ECWPCA)

pairs(ECWPCA$scores [,1:2], col=data1$SUBJ_HEALTH)

vpca1 <-ECWPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

ECWPCAscores <- ECWPCA$scores[-c(637:639) , ]

# AIX

keskiarvot <- aggregate(df1[, 55:64] , list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(55:64)]

X

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveAIX <- colMeans(X1)

Xc <- sweep(X1 ,2,AveAIX ,"-")

AIXPCA <- princomp(Xc)

summary(AIXPCA)

screeplot(AIXPCA)

pairs(AIXPCA$scores [,1:2], col=data1$SUBJ_HEALTH)

vpca1 <-AIXPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

AIXPCAscores <- AIXPCA$scores[-c(637:639) , ]

# Combining principal component scores and health ,

# age , sex and BMI as one data.frame

health <- df1$SUBJ_HEALTH

age <- df1$AGE_CALCULATED

sex <- df1$SEX_01

BMI <-df1$BMI
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BMIgroup <- df1$BMIgroup

agegroup <- df1$agegroup

aix1 <- AIXPCAscores [,1]

aix2 <- AIXPCAscores [,2]

svri1 <- SVRIPCAscores [,1]

svri2 <- SVRIPCAscores [,2]

hr1 <- HRPCAscores [,1]

hr2 <- HRPCAscores [,2]

radsap1 <- SAPPCAscores [,1]

radsap2 <- SAPPCAscores [,2]

raddap1 <- DAPPCAscores [,1]

raddap2 <- DAPPCAscores [,2]

sevr1 <- SEVRPCAscores [,1]

sevr2 <- SEVRPCAscores [,2]

ci1 <- CIPCAscores [,1]

ci2 <- CIPCAscores [,2]

ecw <- ECWPCAscores [,1]

pwv <- PWVPCAscores [,1]

tdata <- data.frame(health , age , sex , BMI , aix1 , aix2 , svri1 ,

svri2 , radsap1 , radsap2 , raddap1 ,

raddap2 , hr1 , hr2 , sevr1 , sevr2 ,

ci1 , ci2 , ecw , pwv)

#removing missing values (in this case , does not remove

#anything

tdata <- na.omit(tdata)

#Choosing of the haemodynamic covariates

library(MASS)

# Model with all variables and interactions and forward backward

# step regression performed to it

modt1 <- polr(formula = health ~ (sex + BMI + age)*(aix1+

hr1 + hr2 + raddap1 + + sevr1 + sevr2 + ci1 +

ci2 + pwv + ecw) + sex:BMI + sex:age +

age:BMI , data = tdata , Hess = T)

step(modt1 , direction = "both")

# Comparing model chosen with step to similar model ,

# where all chosen haemodynamic variables have all
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# principal component scores in the model

#Models

vs1 <- polr(formula = health ~ sex + BMI + age + hr1 +

hr2 + sevr1 + sevr2 + ci1 + ci2 + pwv +

ecw + sex:sevr1 + sex:sevr2 + BMI:pwv +

BMI:ecw + age:hr1 + age:hr2 , data = tdata ,

Hess = TRUE)

vs2 <- polr(formula = health ~ sex + BMI + age + hr1 +

hr2 + sevr1 + sevr2 + ci2 + pwv + ecw +

sex:sevr1 + BMI:pwv + BMI:ecw + age:hr1 ,

data = tdata , Hess = TRUE)

#Comparing pseudo -R^2 and AIC values

DescTools :: PseudoR2(vs1 , which = c("McFadden", "CoxSnell",

"Nagelkerke", "AIC"))

DescTools :: PseudoR2(vs2 , which = c("McFadden", "CoxSnell",

"Nagelkerke", "AIC"))

B R code used to fit models and compare them

# Models are fitted with subset of data

# including only variables used in the models

library(foreign)

data <- read.spss("2022 -02 -11_Data_n751.sav",

to.data.frame=TRUE)

data1 <- data[,c(2,3,6,57, 504:513 , 534:543 , 584:593 ,

624:628 , 639:644 )]

health <- as.factor(data1$SUBJ_HEALTH)

#removing missing data

df1 <- na.omit(data1)

#combining poor and moderate to one group

levels(df1$SUBJ_HEALTH) <- c("poor/moderate",

"poor/moderate","good",

"excellent")

#Principal component analysis
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# SEVR

keskiarvot <- aggregate(df1[, 5:14] ,

list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(5:14)]

X

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveSEVR <- colMeans(X1)

Xc <- sweep(X1 ,2,AveSEVR ,"-")

SEVRPCA <- princomp(Xc)

summary(SEVRPCA)

screeplot(SEVRPCA)

pairs(SEVRPCA$scores [,1:2],

col=data1$SUBJ_HEALTH)

vpca1 <-SEVRPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

sevrvpca <- vpca3

SEVRPCAscores <- SEVRPCA$scores[-c(663:665) , ]

# HR_CM

keskiarvot <- aggregate(df1[, 15:24] ,

list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(15:24)]

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveHR <- colMeans(X1)

Xc <- sweep(X1 ,2,AveHR ,"-")

HRPCA <- princomp(Xc)

summary(HRPCA)

screeplot(HRPCA)

variance = HRPCA$sdev^2 / sum(HRPCA$sdev ^2)

variance

pairs(HRPCA$scores [,1:2], col=data1$SUBJ_HEALTH)

vpca1 <-HRPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

hrvpca <- vpca3

HRPCAscores <- HRPCA$scores[-c(663:665) , ]
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# CI

keskiarvot <- aggregate(df1[ ,25:34],

list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [ ,2:11]

keskiarvot

X <- df1 [ ,(25:34)]

X

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveCI <- colMeans(X1)

Xc <- sweep(X1 ,2,AveCI ,"-")

CIPCA <- princomp(Xc)

summary(CIPCA)

screeplot(CIPCA)

pairs(CIPCA$scores [,1:2],

col=data1$SUBJ_HEALTH)

vpca1 <-CIPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

civpca <- vpca3

CIPCAscores <- CIPCA$scores[-c(663:665) , ]

# PWV

keskiarvot <- aggregate(df1[, 35:39] ,

list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [,2:6]

keskiarvot

X <- df1 [ ,(35:39)]

X

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AvePWV <- colMeans(X1)

Xc <- sweep(X1 ,2,AvePWV ,"-")

PWVPCA <- princomp(Xc)

summary(PWVPCA)

screeplot(PWVPCA)

pairs(PWVPCA$scores [,1:2],

col=data1$SUBJ_HEALTH)

vpca1 <-PWVPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

pwvvpca <- vpca3

PWVPCAscores <- PWVPCA$scores[-c(663:665) , ]
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# ECW

keskiarvot <- aggregate(df1[, 40:44] ,

list(df1$SUBJ_HEALTH), mean)

keskiarvot <- keskiarvot [,2:6]

keskiarvot

X <- df1 [ ,(40:44)]

X

X <- rbind(X, keskiarvot)

X1 <- na.omit(X)

AveECW <- colMeans(X1)

Xc <- sweep(X1 ,2,AveECW ,"-")

ECWPCA <- princomp(Xc)

summary(ECWPCA)

screeplot(ECWPCA)

pairs(ECWPCA$scores [,1:2],

col=data1$SUBJ_HEALTH)

vpca1 <-ECWPCA$loadings

vpca2 <- unclass(vpca1)

vpca3 <- solve(t(vpca2))

ecwvpca <- vpca3

ECWPCAscores <- ECWPCA$scores[-c(663:665) , ]

par(mfrow=c(3 ,2))

screeplot(HRPCA)

screeplot(SEVRPCA)

screeplot(CIPCA)

screeplot(PWVPCA)

screeplot(ECWPCA)

# Combining health , age , sex and BMI columns

# with principal component score of haemodynamic

# variables

health <- df1$SUBJ_HEALTH

age <- df1$AGE_CALCULATED

sex <- df1$SEX_01

BMI <-df1$BMI

hr1 <- HRPCAscores [,1]

hr2 <- HRPCAscores [,2]

sevr1 <- SEVRPCAscores [,1]

sevr2 <- SEVRPCAscores [,2]

ci1 <- CIPCAscores [,1]

ci2 <- CIPCAscores [,2]
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ecw <- ECWPCAscores [,1]

pwv <- PWVPCAscores [,1]

tdata <- data.frame(health , age , sex , BMI ,

hr1 , hr2 , sevr1 , sevr2 , ci1 , ci2 , ecw , pwv)

#removing missing values

tdata <- na.omit(tdata)

# PO-model fitted with polr -function and performing

# Brant -test

library(MASS)

polrmod <- polr(formula = health ~ sex + BMI + age + hr1 +

hr2 + sevr1 + sevr2 + ci1 + ci2 + pwv +

ecw + sex:sevr1 + sex:sevr2 + BMI:pwv +

BMI:ecw + age:hr1 + age:hr2 , data = tdata ,

Hess = TRUE)

library(brant)

brant(polrmod)

#Fitting of the po-model and ppo-model with vglm -function

library(VGAM)

pomod <- vglm(formula = ordered(health) ~ sex + BMI + age +

hr1 + hr2 + sevr1 + sevr2 + ci1 + ci2 +

pwv + ecw + sex:sevr1 + sex:sevr2 +

BMI:pwv + BMI:ecw + age:hr1 + age:hr2 ,

family = cumulative(parallel = TRUE ,

reverse = FALSE))

ppomod <- vglm(formula = ordered(health) ~ sex + BMI + age +

hr1 + hr2 + sevr1 + sevr2 + ci1 + ci2 +

pwv + ecw + sex:sevr1 + sex:sevr2 +

BMI:pwv + BMI:ecw + age:hr1 + age:hr2 ,

family = cumulative(parallel = FALSE ~ BMI ,

reverse = FALSE))

# Reduced models for comparison

povs <- vglm(formula = ordered(health) ~ sex + BMI + age ,

family = cumulative(parallel = TRUE ,

reverse = FALSE))

ppovs <- vglm(formula = ordered(health) ~ sex + BMI + age ,

family = cumulative(parallel = FALSE ~ BMI ,

reverse = FALSE))
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# Results of full models

summary(pomod)

summary(ppomod)

#Comparing pseudo -R^2s and AIC values of full models and reduced models

library(rcompanion)

nagelkerke(pomod)

nagelkerke(povs)

nagelkerke(ppomod)

nagelkerke(ppovs)

AIC(pomod)

AIC(ppomod)

AIC(povs)

AIC(ppovs)

#Fitting of the FOLR -model

# Basis functions

library(fda)

#Time range for basis functions

times_basis = seq (0.0 ,1 ,0.1)

# Location of knots

knots1 = c(0.0, 0.2,0.4, 0.5, 0.6, 0.7, 0.8, 1)

knots2 = c(0,0.5,1)

#Number of knots

n_knots1 = length(knots1)

n_knots2 = length(knots2)

# order of basis functions: cubic bspline: order = 3 + 1

n_order = 4

#Creating the basis functions

n_basis1 = n_knots1 + n_order - 2;

n_basis2 = n_knots2 + n_order - 2;

xbasis = create.bspline.basis(c(min(times_basis),

max(times_basis)),n_basis1 ,n_order ,knots1)

xbasis2 = create.bspline.basis(c(min(times_basis),

max(times_basis)),n_basis2 ,n_order ,knots2)

time <- sort(runif (636 ,0.1 ,1))
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# Functions of haemodynamic variables used in the model

HR_CM <- t(df1 [ ,15:24])

HR_CM.fd = smooth.basis(c(seq(0,1,length =10)),

HR_CM,xbasis)$fd

SEVR <- t(df1 [ ,5:14])

SEVR.fd <- smooth.basis(c(seq(0,1,length =10)),

SEVR ,xbasis)$fd

CI <- t(df1 [ ,25:34])

CI.fd <- smooth.basis(c(seq(0,1,length =10)),

CI ,xbasis)$fd

ECW <- t(df1 [ ,40:44])

ECW.fd <- smooth.basis(c(seq(0,1,length = 5)),

ECW ,xbasis2)$fd

PWV <- t(df1 [ ,35:39])

PWV.fd <- smooth.basis(c(seq(0,1, length = 5)),

PWV ,xbasis2)$fd

# Other covariates

health <- as.factor(df1$SUBJ_HEALTH)

health <- factor(health , levels=rev(levels(health )))

levels(ordered(health ))

levels(as.matrix(health ))

length(levels(health ))

age <- df1$AGE_CALCULATED

sex <- df1$SEX_01

levels(sex) <- c(0,1)

sex <- as.numeric(sex)

BMI <- df1$BMI

SEVRSEX <- SEVR.fd*sex

PWVBMI <- PWV.fd*BMI

ECWBMI <- ECW.fd*BMI

HRAGE <- HR_CM.fd*age

# Fitting and the result

library(FREG)

# olfreg -function of FREG -package , but with a fix

#so the model uses right order of the categories

olfregfix = function(formula , betalist = NULL){

call = match.call()
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# extract y from formula

y.name = formula [[2]]

# y = get(as.character(y.name)) # search y by name

y = ordered(health)

# easy fix so the model uses order poor/moderate < good <

# excellent instead of the other way around

y.len = length(y)

if(inherits(y, c("numeric", "matrix", "array"), FALSE))

stop("Y has to be factor")

# extract independent variables from formula

x.var = all.vars(formula )[-1]

x.count = length(x.var)

xfdlist = vector(’list’, length = x.count)

# stock them in the list

names(xfdlist) = x.var

type = c()

nbasis = c()

df = lapply(x.var , get)

no = which(lapply(df, class )=="fd")

if(length(no)>1){

range = get(x.var[no[1]])$basis$range

# take range from the first fd

}else range = get(x.var[no])$basis$range

# if (inherits(get(x.var), what = "fd")){

# x.fun = get(x.var)

# range = x.fun$basis$rangeval

# }else stop("Please enter a functional covariate")

bbasis.names = vector(’list’, length = x.count)

# to stock beta basis names

betalist = vector(’list’, length = x.count)

for(i in 1:x.count){

x = get(x.var[i])

if(inherits(x, what = "fd")){
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type[i] = x$basis$type

nbasis[i] = x$basis$nbasis

x.len = dim(x$coefs )[2]

#range = x$basis$rangeval

}else if(inherits(x, what = "numeric")){

cbasis = create.constant.basis(rangeval = range)

x.len = length(x)

x = fd(matrix(x,1,y.len),cbasis)

}

if(x.len != y.len)

stop(’The number of observations of ’,x.var[i],

’ is ’, x.len ,

’ and is not equal to the number of observations of y ’,

y.len)

if(!class(x) %in% c("fd", "numeric"))

stop(’Variable ’, x.var[i],

’ has to be either fd or numeric ’)

xfdlist [[i]] = x

# create betalist

if(is.null(betalist )){

betalist = vector(’list’, length = x.count)

}

if(is.null(betalist [[i]])){

if(class(x) %in% "fd"){

bbasis = with(x, fd(basis = basis ,

fdnames = fdnames ))$basis

}else if(class(x) %in% "numeric"){

bbasis = create.constant.basis(rangeval = range)

}

betalist [[i]] = bbasis

}else if(length(betalist) != length(xfdlist )){

stop(’length(betalist) is ’, length(betalist),

’ but it must be equal to the number of independent variables ’,

length(xfdlist ))

betaclass = sapply(betalist , class)
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wrong = which(betaclass != ’basisfd ’)

if(length(wrong) > 0)

stop(’All components of betalist must have class basisfd ’)

}

bbasis.names[[i]] = betalist [[i]]$names

}

# estimation

p = length(xfdlist)

# constant and independent functional variables

y = as.matrix(y)

#N = dim(y)[1]

# number of observations

Z = NULL

# for any number of covariates

for (i in 1:p) {

xfdi = xfdlist [[i]]

xcoef = xfdi$coefs

xbasis = xfdi$basis

bbasis = betalist [[i]]

basis.prod = romberg_alg(xbasis ,bbasis)

Z = cbind(Z,

crossprod(xcoef , basis.prod))

}

x = Z

n = nrow(x)

xc = ncol(x)

wt = rep(1, n) # weights

ind_xc = seq_len(xc)

if(!is.factor(y)) y = ordered(y,

levels = c("poor/moderate",

"good", "excellent"))

# as.factor(y)

ylev = levels(y)

lylev = length(ylev)

q = length(ylev)-1L

ind_q = seq_len(lylev -1L)

y = unclass(y)
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coefs = rep(0, xc)

logit = function(p) log(p/(1 - p))

# qlogis for quantiles

taby = tabulate(y)

alphas = cumsum(taby)[-length(taby)]/n

# space

initial = logit(alphas)

start = c(coefs , initial)

res = optimization(x, y, start , loglik , gradient ,

Hessian)$beta

beta = res[seq_len(xc)]

alpha = res[xc + ind_q]

names(alpha) = paste("y <=",

ylev [1: length(ylev )-1])

names(beta) = paste("X", unlist(bbasis.names),

sep = ".")

# fitted values

eta = as.vector(x %*% beta)

cumprob = plogis(matrix(alpha , n, q, byrow = TRUE) - eta)

fitted.values = as.matrix(t(apply(cumprob , 1,

function(x) diff(c(0, x, 1)))))

colnames(fitted.values) = ylev

# additional output

loglik = optimization(x, y, start , loglik , gradient ,

Hessian)$ll

grd = optimization(x, y, start , loglik , gradient ,

Hessian)$grd

hessian = optimization(x, y, start , loglik , gradient ,

Hessian)$hessian

iteration = optimization(x, y, start , loglik , gradient ,

Hessian)$iter

# calculate degrees of freedom and AIC

loglik = -loglik

# return the actual value of log-likelihood and not

# the negative one

df = length(alpha) + length(beta)

AIC = -2*loglik + 2*df

instance = list()
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instance$call = call

instance$no.var = x.count

instance$xfdlist = xfdlist

instance$betalist = betalist

instance$coefficients = beta

instance$alpha = alpha

instance$ylev = ylev

instance$fitted.values = fitted.values

instance$loglik = loglik

instance$grd = grd

instance$hessian = hessian

instance$df = df

instance$AIC = AIC

instance$iteration = iteration

class(instance) = "olfreg"

instance

return(instance)

}

#Fitting of the folr -model

folrmod <- olfregfix(health ~ sex + BMI + age + HR_CM.fd +

SEVR.fd + CI.fd + PWV.fd + ECW.fd +

SEVRSEX + PWVBMI + ECWBMI + HRAGE)

#Summary and AIC value of the folr -model

folrmod$AIC

summary(folrmod)

#you should note that in this model when calculating odds ratios ,

# minus sign should be added to value of coefficients , so they

# can be interpreted same way as in po- and ppo -model

exp(-folrmod$coefficients [1:3])

# FREG -packages plot_olfreg -function with fix, so functions of

# coefficients can be interpreted similar way as earlier models

# coefficients

plot_olfregfix = function(object ){

if(inherits(object , "olfreg")){
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betacoeff = list()

p = length(object$xfdlist)

beta = -object$coefficients

alphas = -object$alpha

nalphas = length(object$alpha)

#fix done to the original function ,

#marginals were changed so figure

#would not be too big

par(mar = c(4,4,1,1))

par(mfrow = c(5,2))

j = 1

for (i in 4:p){

betafd = fdPar(object$betalist [[i]],0,0)$fd

# create and extract fd object of each variable and store it

nbeta = betafd$basis$nbasis

# extract the number of basis aka coeffs

m = j

j = j + nbeta -1

betacoef = beta[m:j]

betafd$coefs = as.matrix(betacoef)

betacoeff [[i]] = betafd

plt = plot(betacoeff [[i]],

xlab = "Time", ylab = "Value")

}

return(plt)

}else stop(’Model has to be of the class olfreg ’)

}

#Plotting the regression coefficients of folr -model (Figure 16)

plot_olfregfix(folrmod)
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