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ABSTRACT

Jauhiainen, Susanne
Potential of Predictive Modeling Methods for Individual Response: Applications 
and Guidelines for Sports Sciences
Jyväskylä: University of Jyväskylä, 2023, 66 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 680)
ISBN 978-951-39-9697-0 (PDF)

The amount of data and consequently machine learning (ML) approaches are in-
creasing at a fast pace in sports sciences, opening many new possibilities but on 
the other hand, also challenges. Generally limited data together with attractive-
ness and accessibility of ML methods without proper knowledge lead to faulty 
models and results with improper interpretations. Therefore, it is critical that re-
searchers are aware of the risks related to the use of ML and that there are clear 
standards and robust procedures for how to perform and report ML studies. An-
swering the urgent need, the first aim of this thesis is to provide guidelines on 
how to properly perform and report (predictive) ML studies in the field of sports 
science. The second aim is to assess whether predictive modeling methods can be 
used for producing more individual information, compared to traditional statis-
tics, namely in sports injury prediction and talent identification.

This article-style dissertation consists of four published articles. Articles 
I, II, and III utilize predictive modeling methods for sports injury prediction or 
talent identification and especially highlight the proper use of methods and data. 
Article IV utilizes unsupervised machine learning to discover kinematic running 
patterns among healthy and injured runners.

As main results of this thesis, the predictive power of multiple contempo-
rary sports science datasets and ML approaches is assessed, and their potential 
for individual response discussed. Moreover, guidelines for utilizing predictive 
modeling are described and a framework for robust and generalizable results is 
introduced. Results from Article IV further confirm the need for individual ap-
proaches and provide useful information for future prediction studies. Through 
the included articles, advances are achieved for ACL injury prediction, recogniz-
ing predictive knee and ankle injury risk factors, utilizing ML for talent identi-
fication in soccer as well as discovering novel and useful information and pat-
terns from running injury data. Important information about potentially best 
data types and variables for sports injury prediction and talent identification is 
produced. The approaches developed and used in this research can be utilized 
similarly in many other tasks and domains as well.

Keywords: Predictive modeling, Individual response, Machine learning, Sports
injuries, Talent identification



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Jauhiainen, Susanne
Ennustavan mallintamisen potentiaali yksilölliselle vasteelle: Sovelluksia ja oh-
jeita liikuntatieteiden alalle
Jyväskylä: University of Jyväskylä, 2023, 66 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 680)
ISBN 978-951-39-9697-0 (PDF)

Datan määrä ja koneoppimissovellusten hyödyntäminen lisääntyvät liikuntatie-
teissä kovaa vauhtia, avaten monia uusia mahdollisuuksia, mutta toisaalta myös 
haasteita. Haastava ja rajallinen data yhdistettynä menetelmien houkuttelevuu-
teen ja saatavuuteen johtavat usein virheellisiin malleihin, tuloksiin ja johtopää-
töksiin jos näitä ei osata hyödyntää oikein. On erittäin tärkeää että tutkijat tunte-
vat koneoppimismenetelmien käyttöön liittyvät riskit ja että niiden hyödyntämi-
selle ja tulosten raportoinnille on selkeät ja robustit standardit. Tämän väitöskir-
jan ensimmäinen tavoite on vastata tähän tärkeään tarpeeseen ja esitellä ohjeet 
(ennustaville) koneoppimismenetelmätutkimuksille, erityisesti liikuntatieteisiin 
keskittyen. Väitöskirjan toinen tavoite on tutkia voidaanko ennustavan mallinta-
misen avulla tuottaa yksilöllisempää tietoa kuin perinteisillä tilastomenetelmillä 
urheiluvammojen ennustamisen ja lahjakkuuksien tunnistamisen sovellusalueil-
la.

Tämä artikkelityylinen väitöskirja koostuu neljästä julkaistusta artikkelis-
ta. Artikkelit I, II ja III hyödyntävät ennustusmenetelmiä ja korostavat erityisesti 
menetelmien ja datan oikeaoppista hyödyntämistä. Artikkelissa IV tutkitaan ter-
veiden ja loukkaantuneiden juoksijoiden juoksutyylejä ohjaamattoman koneop-
pimisen avulla.

Väitöskirjan tutkimuksessa arvioidaan useiden nykyaikaisten ja suurten lii-
kuntatieteen datojen ja koneoppimismenetelmien ennustusvoimaa ja pohditaan 
niiden potentiaalia yksilöllisemmän tiedon tuottamiseksi. Hyödyllistä tietoa tuo-
tetaan polven eturistisidevammojen ennustamiseen, polvi-ja nilkkavammoja en-
nustavien tekijöiden tunnistamiseen sekä lahjakkuuksien tunnistamiseen jalka-
pallossa. Artikkelin IV tulokset puolestaan vahvistavat yksilöllisten lähestymis-
tapojen tarvetta ja tarjoavat tärkeää tietoa ennustustutkimuksia varten. Lisäksi 
esitellään ohjeet ennustavan koneoppimisen hyödyntämiseen liikuntatieteissä ja 
tuotetaan lähestymistapa jonka avulla saadaan robusteja ja yleistyviä tuloksia. 
Tärkeää tietoa potentiaalisesti parhaista datalähteistä ja muuttujista urheiluvam-
mojen ennustamiseen ja lahjakkuuksien tunnistamiseen tuotetaan. Väitöskirjassa 
kehitettyjä lähestymistapoja ja ohjeita voidaan hyödyntää samoin myös monissa 
muissa aiheissa ja aloilla.

Avainsanat: Ennustusmenetelmät, Yksilöllinen vaste, Koneoppiminen, Urheilu-
vammat, Lahjakkuuksien tunnistaminen
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1 INTRODUCTION

This thesis focuses on the development and utilization of machine learning (ML)
methods and approaches to extract useful information from datasets in the field
of sports. The aim of this research is twofold. The first aim is to assess whether
ML methods can be used to produce more individual information compared to
traditional statistical methods for, for example, sports injury prediction and tal-
ent identification. The second aim is to describe ML analysis pitfalls common in
sports sciences and provide solutions to overcome those, answering an urgent
need in the field (Richter et al., 2021; Riley, 2019; Ley et al., 2022). To this end,
a framework for handling uncertainty in predictive ML and producing robust
predictive results is introduced. The main focus is especially on predictive ML
methods, but others, such as clustering are discussed and utilized as well.

1.1 Key concepts

First, important key concepts of this research are introduced, namely predictive
modeling and individual response.

1.1.1 Predictive modeling

Predictive modeling is used to make predictions (or classifications) based on
some historical data. In predictive modeling, the model should be tested on sepa-
rate and previously completely unseen data to test its generalization performance
and predictive power (Breiman, 2001b; Ramspek et al., 2021; Hastie et al., 2009).
There is a lot of confusion and contradictory definitions of prediction in the sports
science literature as well as online, leading to false interpretations and conclu-
sions and unjust comparison of different methods, approaches, or data. Terms
like statistical modeling, machine learning, predictive or explanatory modeling
are widely known and used but sometimes in conflicting or even incorrect ways.
The problem has been widely recognized and discussed in other fields, such as
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medicine (Ramspek et al., 2021; van Diepen et al., 2017; Waljee et al., 2014) and
this thesis aims to provide clear definitions and guidelines for future sports sci-
ence research.

Statistical modeling

Statistical modeling (also known as statistical learning) has been defined as "learn-
ing from data" (Hastie et al., 2009). A more precise definition by Dangeti (Dangeti,
2017) goes "Statistical modeling is applying statistics on data to find underly-
ing hidden relationships by analyzing the significance of the variables". Shmueli
(2010) divides statistical modeling to three categories, namely explanatory, pre-
dictive, and descriptive modeling. The former two are often thought as the most
common approaches in statistical modeling and are described in the following
subsection. Descriptive modeling on the other hand is "aimed at summarizing or
representing the data structure in a compact manner" (e.g., average, standard de-
viation) (Shmueli, 2010). It can be thought as learning the data, rather than trying
to learn from it through inference or prediction.

Predictive versus explanatory modeling

The two main approaches of statistical modeling are explanatory and predictive
modeling (Shmueli, 2010; Sainani, 2014). Explanatory modeling is the use of sta-
tistical methods to test causal hypotheses and detect variables that are associated
with the outcome (Shmueli, 2010; Sainani, 2014; Waljee et al., 2014). The focus
of explanatory modeling is on understanding and explaining the phenomena of
interest in the data sample. Predictive modeling, on the other hand is focused on
making predictions (for future or past data) and can create new information from
the data. It is defined as "the process of applying a statistical model or data min-
ing algorithm to data for the purpose of predicting new or future observations"
(Shmueli, 2010). In predictive modeling, the model should always be tested and
predictions made on separate, completely unseen by the model, data (Breiman,
2001b; Ramspek et al., 2021; Hastie et al., 2009).

While explanatory methods can only discover associations in the data, pre-
dictive modeling can be used to detect factors that can actually predict the event
of interest. An important point to realize and remember is that models with
high explanatory power do not necessarily have high predictive power (Shmueli,
2010). Therefore, even with a strong association between, for example, sports in-
jury risk and a certain variable, we can not draw conclusions about that variable
being predictive of injury. Predictive models with proper assessment (see Sec-
tion 3.5) are necessary to be able to make any conclusions about the predictive
ability. On the other hand, variables might be included in predictive models even
though not causally related to the outcome (Sainani, 2014; Moons et al., 2009). For
example, a variable might be correlated with the injury risk and thus included as
important in the prediction but correlation does not imply causation (Altman and
Krzywinski, 2015). Moreover, predictive modeling sometimes sacrifices model



15

interpretability against predictive accuracy (Kuhn et al., 2013) and in general, ex-
planatory methods are necessary along predictive research and should be used
to, for example, confirm the hypothesis discovered with predictive methods.

Machine learning versus statistical modeling

ML is a field of developing, understanding, and utilizing methods that learn from
data to solve or improve performance on different tasks (Mitchell and Mitchell,
1997; Grus, 2019). A common outlook of differences of ML and statistical mod-
eling is their purpose; statistical models focus on explaining the data and rela-
tionships between variables and drawing inferences from the sample while ML
is focused on making accurate predictions based on the data (Ij, 2018); In this def-
inition statistical modeling loosely corresponds to explanatory modeling and ML
to predictive modeling. The distinction between ML and predictive modeling is
ambiguous. One way to think about it is that predictive modeling is a subfield of
ML, focused on making predictions based on historical data, while ML in general
comprises of many other applications as well. Other than prediction applications
in ML include, for example, unsupervised tasks such as clustering. A limitation
of most explanatory modeling approaches is that they focus on a small number of
variables and their linear associations while predictive ML can be used for larger
data including nonlinear relationships (Ley et al., 2022). Moreover, explanatory
modeling is limited by prior assumptions and hypotheses while predictive ML
can be used for generating novel hypotheses in a data-driven manner. In gen-
eral, many methods can be used for both explanatory (statistical) modeling and
predictive ML (Shmueli, 2010; Ij, 2018). For example, linear regression in explana-
tory modeling models the relationship between the response and one or more ex-
planatory variables whereas in predictive ML a linear model trained on training
data can be used to make predictions on test data.

1.1.2 Individual response

Individual response refers to the unique way that each subject responds to certain
training or treatment and the importance has been recognized in sports (Bouchard
and Rankinen, 2001) as well as healthcare (Godman et al., 2013). Personalized
medicine (also known as precision medicine) is an approach where treatment is
tailored based on characteristics of an individual or a group of individuals for op-
timal response. Majority of existing research in training (Hecksteden et al., 2015)
as well as current exercise prescriptions and recommendations are derived based
on population averages, not considering individual differences and variation be-
tween people. These general prescriptions and recommendations will work well
in average but the response will vary between individuals and for some peo-
ple even adverse effects might occur following these general recommendations.
For example Bouchard et al. (2012) detected adverse metabolic effects to regular
exercise, where exercise-induced change worsened the assessed risk-factor mea-
surements. So, while on average the exercise might have improved participant’s
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measures a certain amount, some participants had way larger improvements than
the average while some ended up encountering negative effects.

Previously, differences in individual responses in sports have been recog-
nized in many studies. There is strong evidence to support that response to
regular physical activity is very heterogeneous and people response individu-
ally to excercise (de Lannoy et al., 2017; Bouchard and Rankinen, 2001; Ahtiainen
et al., 2020). Heterogeneous responses to physical activity have been observed
with, for example, the VO2max, heart rate, HDL-cholesterol levels, and systolic
blood pressure (Bouchard and Rankinen, 2001; Bouchard et al., 2012; Leon et al.,
2002). Therefore, considering individual response and providing more person-
alized training and treatment prescriptions would be highly important in order
to, for example, prevent unnecessary sports injuries, optimize performance, and
avoid negative health outcomes. ML can help move further from current aver-
age based practices and predictive ML in particular can be used for detection of
individual probabilities for, for example, sports injury risk or the most important
variables for each individual in a data-driven manner.

1.2 Background and research motivations

There is an increasing amount of data collected in sports (Brefeld and Zimmer-
mann, 2017) and health (Murdoch and Detsky, 2013) due to advances in data col-
lection technologies. For example, wearable devices (such as watches or clothing)
that include multiple sensors and global positioning system (GPS) have rapidly
advanced and become common among both recreational and elite athletes. Many
sports are also utilizing novel video analysis techniques to analyze team and
player tactics, passes, playing time, amount of movement, goals, or injuries et
cetera during games and practice (Herold et al., 2019; Chen et al., 2012; Dietrich
et al., 2014). Game score recording, prediction, and analysis have become very
common across different sports and offer new information to coaches, players,
viewers, and gamblers (Bunker and Thabtah, 2019). In addition, many advances
have risen with research data collections; motion analysis systems have become
more advanced and outside-the-lab solutions are increasing (Cuesta-Vargas et al.,
2010; Fong and Chan, 2010; Mousavi et al., 2020), and more accessible and easy-
to-use equipment and methods are constantly developed.

The increasing amount of versatile data has enabled the use of sophisti-
cated ML methods and Figure 1 demonstrates the rapid increase of publications
in sports and machine learning 1. These methods enable the use of a large number
or variables and accounts for their interactions and non-linear relationships as
well. Compared to more traditional statistical methods, i.e., explanatory model-
ing, ML often focuses less on assessing predefined hypothesis but rather tries to
find what novel, sometimes even surprising, information the collected data has

1 Retrieved from PubMed https://pubmed.ncbi.nlm.nih.gov with keywords sports and ma-
chine learning
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FIGURE 1 The yearly number of publications retrieved from PubMed with keywords
sports machine learning

to offer. Additionally, while explanatory approaches often provide information
about associations, correlations, or causalities on an population average level, ML
can be used for prediction and analysis on a more individual level. Moreover, the
data needs to be suitable for the given task as no method or approach can dis-
cover information that is not captured in the data to begin with (Riley, 2019).
Therefore, this thesis assesses the potential of ML and large and contemporary
sports science datasets for more individual information.

Furthermore, with the increase of ML research within sports sciences, there
are many pitfalls that have not been considered and as a result a risk of faulty
approaches and result interpretation. There is a need to educate scientist in ML
on the topic and disciplines need to develop clear standards for how to perform
and report on ML in their fields (Riley, 2019). Therefore, this thesis and included
research discusses common pitfalls providing examples from sports science liter-
ature and offers solutions and guidelines for future research.

1.2.1 Sports injuries

Despite the undeniable benefits of sports and physical activity, the more exercise
one does the higher the risk for suffering a sports injury gets. Many sports carry
a high injury incidence rate and the worldwide prevalence of sports injuries is
alarming (Hootman et al., 2007). For example, running, one of the most popu-
lar ways to increase and maintain fitness in many populations all over the world
(Van Middelkoop et al., 2008; Van Gent et al., 2007), has been observed to have
annual prevalence of lower extremity injuries between 19.4% to 79.3% (Van Gent
et al., 2007), with a widely accepted estimate of 50% of runners experiencing an
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running related injury annually (Fields et al., 2010). Moreover, in team and cut-
ting sports, anterior cruciate ligament (ACL) injuries are a major and growing
concern (Bahr and Holme, 2003).

Sports injuries can have significant effects on the health and performance
of a person and may even cause prolonged problems in persons life (Myklebust
et al., 2003). Sports injuries can lead to, for example, pain, loss of playing or work-
ing time, and decreased motility and stability (Myklebust et al., 2003). Prolonged
problems can eventually even lead to artificial joints surgeries, which cause finan-
cial burden to the society. Some other possible acute or prolonged outcomes are
back and joint pain, which are both major public health problems that cause huge
economic burdens to individuals, companies and social systems (Maniadakis and
Gray, 2000; Gaskin and Richard, 2012). In addition, there is a large variety of men-
tal issues that can often follow sports injuries, like depression, increased anger
and fatigue and cognitive impairment (Hutchison et al., 2009; Mainwaring et al.,
2010; Hutchison et al., 2011). All the above conditions can be largely prevented
if appropriate actions are taken in time. Sports injury prevention and treatment
should also consider individual response. For example, some athletes might re-
quire more rest or have genetic factors increasing injury risk and injury rehabilita-
tion should also be tailored individually. Predictive modeling can be used to, for
example, recognizing predictive injury risk factors or providing individual injury
risks based on athlete data. Furthermore, sports injuries are complex and multi-
factorial (Meeuwisse et al., 2007) and ML can utilize a large number of variables
including their linear and non-linear relationships in prediction.

1.2.2 Talent identification

In many sports as well as other areas in life, the detection of talented individuals
at early age can open better opportunities and possibilities and greater devel-
opment. In sports, detected talents can be offered higher quality training and
environments. Furthermore, considering individual response to training, more
emphasis can be put on planning and offering personalized training programs to
talents. With personalized, quality training, their performance development can
be optimized and further accelerated. In many fields, talent and future potential
is a sum of variety of different skills and qualities, making detection a compli-
cated and multifaceted task. Therefore ML, being able to account for a large set
of variables and their interactions, has potential for future talent identification
(i.e., prediction) or the detection of predictive variables.

1.3 Research questions

The main research questions are as follows:

RQ1 What is the potential of machine learning methods and current datasets for
individual injury prediction or talent identification in sports?
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RQ2 What are the most common pitfalls in predictive machine learning and data
in the field of sports science and how to tackle these?

1.4 Structure of the thesis

Chapter 2 introduces common ML pitfalls in sports science and an overview of
the current state of predictive modeling research in sports injury prediction and
talent identification. Chapter 3 focuses on the methodological background of the
thesis and introduces the approaches and guidelines to overcome analysis pitfalls
in predictive modeling. Chapter 4 includes an overview of the included pub-
lications and their most important results and Chapter 5 discusses the research
questions, conclusions and new implications to the fields.



2 PREDICTIVE MODELING AND MACHINE
LEARNING IN SPORTS SCIENCE – CURRENT
STATE

Traditionally, research in sports science has mainly been based on explanatory
modeling (Richter et al., 2021; Rossi et al., 2018) with a focus on explaining or un-
derstanding phenomena of interest in the data. Recently, the increasing amounts
of data and availability and recognizability of ML methods has lead to more stud-
ies utilizing predictive modeling. However, a big problem in the field is that the
difference between explanatory and predictive modeling is unclear, leading to
contradictory and misleading interpretations. The difference is described in de-
tail in Section 1.1.1, but shortly, in order to make any conclusions about the pre-
dictive ability of data or the model it has to be tested on completely unseen data.
A recent example of the issue is a sports injury prediction review Bullock et al.
(2022) that straightforwardly compares the performance metrics from studies us-
ing both explanatory or predictive modeling. The results in predictive studies
are calculated based on separate test data and can thus seem lower but are gen-
eralizable and opposite to explanatory studies, directly indicate something about
the predictive ability. This chapter presents the current state of predictive ML in
sports sciences and discusses most common pitfalls and challenges both in analy-
sis and the data, focusing on the applications in included research, namely sports
injuries and sports talent identification.

2.1 Common predictive machine learning pitfalls

The following terms are important to understand for predictive modeling re-
search and are all closely related and overlapping.

Model generalization performance refers to its ability to make accurate predic-
tions on independent (i.e., unseen) test data and should be assessed appropriately
(Hastie et al., 2001).
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Overfitting of a model refers to model fitting to correspond too closely the train-
ing data and as a consequence not being generalizable, i.e., not performing well
on unseen test data.

Chance result refers to a result where the predictive performance is obtained by
chance.

Uncertainty refers to the lack of generalizability, reliability (consistency), or va-
lidity (data and methods actually measuring what they are intended to measure)
of the model and its results.

With sufficient computational resources, many ML methods have unlimited
ability to fit to complex data, causing a great risk for overfitting. Therefore, the
model generalization performance needs to be assessed appropriately to avoid
overfitting and also to estimate the risk of chance results and uncertainty around
the results. Chance results are widely recognized in, for example, neuroscience
(Hosseini et al., 2020; Combrisson and Jerbi, 2015) and can happen, for exam-
ple, due to model learning some noise or unintentional variations in data (Riley,
2019) or by randomly having a favorable test dataset. The importance of con-
sidering uncertainty in prediction has been previously recognized, for example,
in healthcare (Chua et al., 2022). It can enter the analysis from different sources,
including the data (quality, noise, size), model (which methods and hyperparam-
eters to use), or sampling (variability from data splitting). In general, the more
uncertainty there is, the higher the risk of chance results and the less generaliz-
able results are. On the other hand, comprehensive assessment of generalization
performance and uncertainty will exclude the risk of overfitting and chance re-
sults.

Having separate test data is not enough to prevent overfitting, but it also
has to be treated properly to avoid data leakage, a common problem in sports
sciences. Data leakage refers to information in the test data somehow leaking
into training of the model which sacrifices the generalization performance of a
model through risk of overfitting. Data leakage can happen in many parts of
the ML process. For example, feature selection based on the whole data before
model training is a typical approach but often causes clear overfitting (Hastie
et al., 2001). Data leakage can also happen due to improper preprocessing (e.g.,
normalization or imputation) of the whole data at once (i.e., both test and train-
ing data) (Tampu et al., 2022; O’Neil and Schutt, 2013) as is common, for example,
in sports injury prediction studies (Van Eetvelde et al., 2021). Also, improper hy-
perparameter optimization (Kaufman et al., 2012) where the analysis is repeated
and hyperparameters (or any other part of the analysis) manually tuned based
on the results leads to test data not being completely unseen anymore. A good
example of a possible data leakage and a chance result is a recent ACL injury pre-
diction study (Tamimi et al., 2021). While the study does use separate test data to
assess model generalization performance, the high test accuracy (92%) compared
to clearly lower training accuracy (70%) suggests overfitting to test data either by
(unconsciously) repeatedly resampling the test dataset or purely by chance.
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Moreover, dividing data to training and testing at random brings uncer-
tainty to the analysis and results can vary largely based on the data split (For-
man and Scholz, 2010), leading to a risk of chance results due to favorable test
data. For example, this risk was highlighted in the results of a recent hamstring
injury prediction study (Ruddy et al., 2018) where results from different k-fold
cross-validation splits vary largely across repetitions with multiple methods (e.g.,
AUC from 0.37 to 0.65 with neural networks). Additionally, chance results due to
learning noise in data can happen especially when the true phenomena is weak
to begin with or when there is data leakage through which the noise is amplified.
Results with low predictive performance should be considered at a risk of being
due to noise in data and not true phenomena and therefore confirmatory analysis
should be used. The effect of chance results is even more important to consider
in the case of small and/or high-dimensional (i.e., large number of variables)
datasets as well as imbalanced data, which are common cases in sports sciences.
Thus, to reduce uncertainty, the data for assessing generalization performance
should be chosen appropriately and based on the task and data at hand (Riley,
2019).

2.2 Sports injury prediction

Sports injury prediction is an emerging area but the validity of many studies is
questionable and models are poorly developed (Van Eetvelde et al., 2021; Bul-
lock et al., 2022). A recent review by Bullock et al. (Bullock et al., 2022) conclude
that "Ninety-eight percent of sport musculoskeletal injury prediction models (and
79% of studies) were rated as high risk of bias." However, only fourteen out of the
thirty included studies (47%) used separate data to test the model predictive abil-
ity, meaning more than half of the studies are more explanatory by nature, despite
arguing about prediction. Another review by Eetvelde et al. (Van Eetvelde et al.,
2021) that focused only on predictive ML studies concludes that "although the
majority of the analyzed studies did apply ML methods properly to predict in-
juries, the methodological study quality was moderate to very low". Table 1 sum-
marizes current sports injury prediction studies. The studies are selected based
on the previous reviews (Van Eetvelde et al., 2021; Bullock et al., 2022), references
included in the thesis articles and prompt literature scoping. All data in the table
are collected from the original studies by the author of this thesis.
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TABLE 1 Summary of the sports injury studies. Results are mean (or median) of metrics over the folds and/or repetitions, except for (Thornton
et al., 2017) a mean over data representations. "Best" refers to best result across different methods, models, and/or data representa-
tions and preprocessing approaches, picked from the text by the author of this thesis (otherwise only single result was produced).

Study Results Repetitions Model Assessment Model selection Data leakage N Injuries

(Rossi et al.,
2018)

Best mean AUC
0.78

10 000
Stratified 2-fold CV
with 70% of data

30% for feature se-
lection and model
selection

26 (952 ses-
sions)

2 %

(Karuc et al.,
2021)

Best mean AUC
0.62

20 20-fold CV
Inner CV on training
data

556 16 %

(Oliver et al.,
2020)

Best (mean?) AUC
0.66

NR Stratified 5-fold CV NR 355 28 %

(Rommers et al.,
2020)

F1-score 85%, sen-
sitivity 85%, preci-
sion 85%

NR
80% for training,
20% for testing

Inner CV on training
data

734 50%

(Colby et al.,
2018)

Best (mean?) AUC
0.64

NR 10-fold CV NR
60 (7147 ses-
sions)

58 injuries in
total

(Carey et al.,
2018)

Best mean AUC
0.72

50
2 seasons for train-
ing, 1 season for
testing

Inner 10-fold CV on
training data

Unclear if PCA on
whole data

75 (13867
sessions)

3%

(López-
Valenciano
et al., 2018)

Best mean AUC
0.75

NR 5-fold CV NR
Imputation done to
whole data

122 22 %

(Ruddy et al.,
2018)

Best median AUC
0.58

10 000
70% for training,
30% for testing

Inner 10-fold CV on
training data

Normalization done
to whole data

362 15 %

(Ayala et al.,
2019)

Best mean AUC
0.84

NR Stratified 3-fold CV NR

Imputation done to
whole data, feature
discretization as
well as imbalance
handling (ratio)
selected based on
predictive perfor-
mance

86 21 %
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(Thornton et al.,
2017)

Best mean AUC
0.74

NR
70% for training
and 15% for testing

15% for validation
(unlear whether
used at all)

Feature selection
done based on
whole data

25 (Unclear
how many
days)

2,5% of days
unavailable
(i.e., injured)

(McCullagh
and Whitfort,
2013)

Mean accuracy
83%, sensitivity
95%, and speci-
ficity 81%

NR 10-fold CV

Hyperparameters
"were derived by
conducting a series
of trials involving
varying parameters
and assessing the
effect on the neural
network’s output"

Hyperparameters
tuned using test
data

39 (1210 ses-
sions)

13%

(Whiteside
et al., 2016)

Mean accuracy
75%, sensitivity
74%, and speci-
ficity 75%

NR Stratified 5-fold CV

"The optimized clas-
sifier was that which
produced the greatest
classification accu-
racy"

Feature and model
selection done based
on whole data

208 50%

(Feijen et al.,
2021)

(Mean?) AUC 0.71 250 Bootstrapping NR

Feature selection
done based on
whole data, imputa-
tion done to whole
data,

129 32%

(Luu et al.,
2020)

Best mean AUC
0.95

NR 10-fold CV Unclear
Feature selection
done based on
whole data

2322 (un-
clear how
many ses-
sions/
seasons)

6982 in total

(Tamimi et al.,
2021)

Best accuracy 92% NR
76% for training,
24% for testing

NR
Training accuracy
70% suggest overfit-
ting to test data

100 50%
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The achieved predictive performance are varying in accordance with the
ML analysis protocols. There is a risk of overfitting in majority of the sports injury
prediction studies through data leakage. Especially those where feature selection
or hyperparameter tuning (i.e., model selection) were done utilizing the whole
data (i.e., including test data) can be considered at high risk of overfitting. Only
five studies show no signs of data leakage and two of them also utilized repeti-
tions to account for variation in the data splitting (Karuc et al., 2021; Rossi et al.,
2018). Additionally, in (Carey et al., 2018) it was unclear whether preprocessing
was done on whole data or not. Importantly, many of these studies would bene-
fit from more detailed description on how preprocessing was implemented with
data splitting or mentioning if no preprocessing was done. In total, five stud-
ies used repetitions to assess the variability across different train/test data splits,
most demonstrating a large variation in results with almost all trained models.
This highlights how studies without repetitions include uncertainty and are at a
risk of change results. Five studies use inner cross-validation to avoid data leak-
age from hyperparameter tuning (Karuc et al., 2021; Ruddy et al., 2018; Rommers
et al., 2020; Rossi et al., 2018; Carey et al., 2018). Additionally, one study reports
dividing a separate training, validation and test data (Thornton et al., 2017) but
from the text it is unclear whether the validation data was used at all. Further-
more, only two studies report metrics for the training data (Tamimi et al., 2021;
Rommers et al., 2020) and for the first (Tamimi et al., 2021), the high test accuracy
(92%) compared to clearly lower training accuracy (70%) strongly suggests over-
fitting to test data. If model selection criteria are not clearly described, there is
a risk for (unconscious) overfitting through manual repetitions to tune hyperpa-
rameters to achieve higher performance and therefore it is important for future
studies to clearly describe how the final model was selected.

2.3 Talent identification

In sports, the concept of talent is very multifaceted and sport-specific (Baker et al.,
2019). In soccer, for example, talent identification requires a great variety of phys-
ical features and technical skills (Reilly et al., 2000; Baker et al., 2019), including
linear and non-linear relationships between those (Sarmento et al., 2018). More-
over, psychological skills and characteristics also play an important role at elite
level (Macnamara and Collins, 2011). Most sports talent identification research
have been done utilizing traditional statistical approaches (Reyaz et al., 2022).
ML, however, enables the consideration of large set of variables as well as their
linear and non-linear relationships. Furthermore, predictive ML can be used for
predicting potential future elite athletes or recognizing variables most predictive
of future success. While many previous talent identification studies report about
prediction or detecting predictive variables, only a handful of studies utilizing
predictive modeling exist to date.
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Taha et al. (2018) first cluster 50 youth archers into high and low perform-
ing clusters and then achieve a 97.5% accuracy for prediction. They split 80% of
data for training and 20% for testing and use inner 5-fold CV to optimize hyper-
parameters on the training data. Normalization was done to whole data, lead-
ing to data leakage. No repetitions or confirmatory analysis were utilized, but
could be beneficial considering the small sample size. Barron et al. (2018) predict
career development of 966 soccer players based on key performance indicators.
Their model achieves an accuracy between 61.5% and 78.8% for predicting play-
ers moving down to lower level, remaining in Football League Championship, or
moving up to the English Premier League. Feature selection is first done based
on the whole data which causes data leakage. For prediction, they divide 60%
of data for training, 20% for validation and 20% for testing. No repetitions or
confirmatory test were done. PECOTA (Player Empirical Comparison and Op-
timization Test Algorithm) is a famous commercial system for predicting player
performance in baseball based on player comparisons and their historical data
(Prospectus, 2003). The methodology is based on utilizing similarity scores and
projection but exact formulas are proprietary. While other similar systems have
been developed, PECOTA has been considered as one of the most accurate (Lyle,
2007).

2.4 Data characteristics and common challenges

Traditionally, many datasets in sports science can be considered relatively small
(Phinyomark et al., 2018), the main reason for this being the laboriousness of
data collection methods. This is a challenge for the utilization and testing of ML
methods (Richter et al., 2021), especially as for predictive modeling we should
have separate test data. In addition to proper sample sizes, the data itself and
features extracted from it need to be meaningful for the task (Richter et al., 2021).
For example, in sports injury prediction, while current research suggest some
variables that have (or do not have) predictive value, more research is still needed
to find best types of predictors in different populations and settings.

Additionally, in many sports and sports medicine datasets, classes are slightly
or even extremely imbalances. For example, the amount of healthy subjects in
data is often inevitable larger than the amount of those that have certain sports
injury, disease, symptom etc. and similarly in talent identification, the group of
"normal" players is without exception much larger than the group of those that
have the prerequisites to become elite athletes. Moreover, drop-outs are a com-
mon challenge in many longitudinal sports science studies, resulting into missing
data. Common challenges in data related to human movements are that they are
most often collected in a lab and the generalization to real world is unclear and
their reproducibility is weak as different marker placements affect results largely
(Gorton III et al., 2009). As solutions, recently there have been applications to uti-
lize more data from wearable devices to advance or replace more traditional mo-
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tion analysis data (Fong and Chan, 2010; Cuesta-Vargas et al., 2010) and sugges-
tion to combine datasets within sports science to achieve larger samples (Richter
et al., 2021; Ferber et al., 2016). Moreover, approaches to handle class imbalance
and missing data are common in ML and most suitable ones for sports science
tasks can be selected based on the task at hand as well as the (still limited) previ-
ous research.



3 FOUNDATIONS OF CONCEPTS AND METHODS

This chapter includes the methodological background for the included publica-
tions and introduces approaches and guidelines to overcome common analysis
pitfalls in sports sciences discussed in Chapter 2. Section 3.2 discusses prepro-
cessing of data and sections 3.3 and 3.4 shortly introduce the utilized ML meth-
ods. Sections 3.5 and 3.6 focus on introducing the approaches for overcoming the
pitfalls, including proper assessment of predictive models and confirmation of
results.

3.1 Mathematical definitions

Let us define a data with N observations and each having p attributes as a matrix

XXX =


xxx1,1 xxx1,2 · · · xxx1,p

xxx2,1
. . .

... . . .
xxxN,1 · · · · · · xxxN,p

 XXX ∈ RN×p (1)

Then the ith observation is a vector xxxi,: = (xi,j) with j = 1, . . . , p. The obser-
vations, i.e., rows of the matrix, can also be referred to as points or objects and
represent the amount of data. The attributes of the observation, i.e., columns of
the matrix, are also commonly known as variables, features or dimensions. The
jth variable in data is a vector xxx:,j = (xi,j) with i = 1, . . . , N. Additionally, in clas-
sification and regression we denote the observed response of each observation xxxi,:
with a yi. Moreover, T means the transpose of a vector or matrix. An indicator
function is denoted with I so that I(S) maps elements in (sub)set S to one and all
other elements to zero.
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3.2 Preprocessing

Preprocessing is a crucial initial step with any type of data analysis and can
largely affect obtained results (Kuhn et al., 2013). Preprocessing and reporting
practices in sports science are varying and partly incomplete and faulty (Van Eetvelde
et al., 2021; Bullock et al., 2022; Phatak et al., 2022). Future sports science ML stud-
ies should familiarize themselves with proper data preprocessing and report each
step in detail for reproducibility. This section shortly describes most common pre-
processing steps within the context of sports sciences. The steps and their order
will be chosen based on the data and study design at hand, considering that some
ML methods can inherently handle these data "problems" (e.g., missingness, out-
liers) differently. Proper preprocessing of separate training and test data to avoid
data leakage are described in Section 3.5.1.

3.2.1 Data selection and dimension reduction

After data collection, a target dataset for analysis is selected based on several
criteria. For example, exclusion of variables and subjects with mostly missing
data or excluding subjects with "uninteresting" or missing category (e.g., only in-
terested in predicting non-contact injuries so contact injuries are excluded) are
common steps. Further variable selection and dimension reduction can be done
based on prior literature or expert knowledge, by summarizing metrics from sig-
nal (e.g., maximum or mean of steps from motion analysis), or by data-driven
ML approaches such as principal component analysis (PCA). For achieving an
optimal and robust set of variables for ML in sports science, Richter et al. (2021)
suggest combining domain-specific knowledge-based and objective data-driven
approaches together.

3.2.2 Normalization

Commonly the purpose of normalization is to scale all variables to comparable
magnitudes or centering to a certain point, e.g., zero mean. Some ML methods
have strict assumptions and absolutely require scaling and centering of data but
even without such requirements, many methods benefit from unified data and
numerical stability of calculations can improve (Kuhn et al., 2013). Other normal-
ization techniques might include, for example, transforming skewed data to more
symmetric (Kuhn et al., 2013). Some sports domain specific normalization meth-
ods have also been developed, such as a recent normalization key performance
indicators to be used across a wide range of sports (Phatak et al., 2022).

A typical normalization is the z-score transformation where each variable
xxx:,j is transformed to follow the standard normal distribution with the following

xxx′:,j =
xxx:,j − µj

σj
, (2)

where µj is the mean and σj the standard deviation of the variable. Min-max scal-
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ing, on the other hand, transforms the variable to a given interval, for example,
between [0,1] with

xxx′:,j =
xxx:,j − minx:,j

maxx:,j −minx:,j

, (3)

where minx:,j and maxx:,j are the minimum and maximum values of the variable.
Moreover, normalization between any interval [a,b] is achieved by

xxx′:,j = (b − a)
xxx:,j − minx:,j

maxx:,j −minx:,j

+ a. (4)

3.2.3 Handling missing data

Missing data is an almost unavoidable issue with any real world data (Kotsiantis
et al., 2006) and common in sports science data. Missing values can occur as a
result of human or equipment errors, but often the values are simply unavailable
due to e.g., sensor has not been worn, athlete was injured during data collection,
or poor athlete and team adherence (Benson et al., 2021). (Little and Rubin, 2002)
divide missing data into three categories, namely:

MCAR: Missing completely at random - missingness is not depended on the data
values, either missing or observed. In practice, data is seldom MCAR but,
for example, athletes test data could be missing if someone forgot to save it
or deleted it by accident. Dealing with MCAR data will not introduce bias
to the data (Batista and Monard, 2003).

MAR: Missing at random - missingness depends only on the data that are ob-
served and not on that which are missing. For example, athletes in certain
teams (team information available for everyone) might have more missing
data due to poor team and coach attitude toward that data collection.

MNAR: Missing not at random - missingness is not MCAR or MAR and the value
of that variable is related to the reason why it is missing. For example,
a player has (unreported) pain and is therefore missing some data due to
not being able to participate the data collection. Dealing with MAR and
especially MNAR data can introduce bias in data.

The way to handle missing data will depend on, for example, the reasons why
they are missing (Little and Rubin, 2002), the amount of missing values and im-
portance of reserving certain data. Observations with missing data can be ex-
cluded completely or whole data used with methods that can handle missing
data (Little and Rubin, 2002). Alternatively, missing points can be imputed with
statistics (e.g. mean, median) or predictive modeling (Batista and Monard, 2003).

3.2.4 Data cleaning and outliers

Real world data can often include incorrect, corrupted, or even impossible data-
points, that can be caused by measurement errors (Hammer, 1976). Data points
with values that violate common sense (e.g., height 320cm) or seem to be out of
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scale compared to other data (e.g., immense force measurements) are called out-
liers. They can be detected automatically based on their difference or distance
from other datapoints and their center. For example, median absolute deviance
(MAD) is suggested as a robust measure for detecting outliers (Leys et al., 2013)
and for variable xxx:,j is defined as

MAD = median(|xi,j − median(xxx:,j)|) (5)

and values, e.g., 2.5 times away from MAD are outliers (Leys et al., 2013).
Outliers can be deleted (i.e., set to missing values) or replaced similarly as

missing values. The whole data can also be transformed to resolve outliers (Kuhn
et al., 2013). It is important to carefully consider the impacts of outlier handling
on further analysis (Bramer, 2007). In many sports science applications it can be
important to include outliers because, for example, an athlete producing distinct
forces can have a higher risk of injury or an athlete with anomalous data can be a
future talent to be identified.

Additionally, many of the data types in sports sciences can benefit from fil-
tering and it is a common method used in biomechanical data analysis (Campbell
et al., 2020). The purpose of filtering is to remove noise in data and, for example,
to separate different components such as the gravitational and body accelera-
tion components in accelerometer data (Yang and Hsu, 2010; Karantonis et al.,
2006). A recent study with a scope in gymnastics skills, suggests that excess noise
should be filtered out for research combining data from many participants but for
individual purposes, such as daily monitoring and injury risk screening, no filter
should be used to preserve extreme peak values (Campbell et al., 2020).

3.2.5 Imbalance handling

Class imbalance refers to data having clearly more observations from the other
class, called minority, than the other, called majority, see Figure 2. Imbalance han-
dling has become common in sports sciences and currently, for example, about
half of sports injury prediction studies utilize some type of imbalance handling
(Bullock et al., 2022; Van Eetvelde et al., 2021). Some common ways to deal
with class imbalance are random under- and oversampling, the Synthetic Mi-
nority Oversampling Technique (SMOTE), and cost-sensitive learning. Random
oversampling works by randomly duplicating observations in the minority class
(e.g., injured players) while random undersampling randomly deletes observa-
tions from the majority class (e.g., non-injured players).

Similarly to random oversampling, SMOTE (Chawla et al., 2002) augments
the minority class but instead of duplicating observations, it combines variables
based on the k-nearest neighbors algorithm to create new synthetic observations.
In cost-sensitive learning, misclassifying a minority observation has a higher cost
than misclassifying a majority example. For example, in sports injury prediction
or talent identification, not identifying potential injury or a talent is more harmful
than incorrectly identifying some healthy athletes as injured or "normal" players
as talents.
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FIGURE 2 An example of class imbalance and the random over- and undersampling
approaches

3.3 Supervised (predictive) machine learning

Supervised ML is based on labeled data with the goal of predicting or classifying
the value of an outcome measure based on a number of input measures (Hastie
et al., 2001).

3.3.1 Regression based methods

Linear regression is based on modeling the relationship between data observations
xxxi,: and a scalar response variable yi and, loosely following the notation in (Hastie
et al., 2001), the model can be written as

f (xxxi,:) = β0 +
p

∑
j=1

β jxij = βββTxxxi,:, (6)

where βββ includes the regression coefficients and β0 is called the intercept (or bias)
term, and in the latter form we assume the observation vector xxxi,: includes a con-
stant term 1 to accommodate the intercept. This is most commonly fit with the
least-squares methods (Hastie et al., 2001), where the coefficients are chosen by
minimizing the residual sum of squares (RSS)

RSS(βββ) =
N

∑
i=1

(yi − f (xxxi,:))
2. (7)

Logistic regression, on the other hand, includes a discrete response yi, where the
aim is to model the posterior probabilities of the classes with the logistic (or sig-
moid) function σ(z) that maps values to interval (0, 1)

σ(z) =
1

1 + e−z . (8)

In the classification task z = βββTxxxi,:. Research in this thesis focused on binary
logistic regression and for simplicity, the definitions for binary classification are
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introduced. Now the logistic regression can be written as

f (xxxi,:) =
1

1 + e−(βββTxxxi,:)
. (9)

In this case of two classes, namely c1 and c2, the probability of observation xxxi,:
belonging to c1 is p(xxxi,:; βββ) while the probability of belonging to class c2 is 1 −
p(xxxi,:; βββ). Futhermore, we can define that yi = 1 for class c1 and yi = 0 for class
c2. The usual way to fit logistic regression is with the maximum likelihood. For
the log-likelihood function

ℓ(βββ) =
N

∑
i=1

{yi log p(xxxi,:; βββ) + (1 − yi) log(1 − p(xxxi,:; βββ))} (10)

the goal is to find coefficients βββ that maximize the function value. The problem
can be transformed to minimization by multiplying with −1 and solved with,
for example, the coordinate-descent algorithm that is based on successively mini-
mizing each individual coordinate direction, i.e., dimension, while holding other
values fixed (Hastie et al., 2001).

Regularized regression is an extension based on shrinking the coefficients βββ by
imposing a penalty λ on their size. It can be utilized with any type of regression
and essentially just has an additional penalty term at the end of the optimization
problem. If the regularization is based on the L1 norm, we end up with the Least
Absolute Shrinkage and Selection Operator (LASSO) regression with the penalty
term as

λ
p

∑
j=1

|β j|, (11)

while for L2 norm we have the Ridge regression with the penalty term as

λ
p

∑
j=1

(β j)
2. (12)

The bigger the parameter λ is, the more coefficients are shrunk towards zero.
With LASSO regression and large enough λ, some coefficients are shrunk to ex-
actly zero, resulting into a sparse model with less variables. Therefore, regular-
ized regression provides more interpretable models and information about vari-
able importances.

3.3.2 Random forests

Random forest is a nonlinear classification and regression method that is very
common in different fields such as medicine and bioinformatics (Boulesteix et al.,
2012) and has been used widely in sports science studies as well, including sports
injury prediction (Bullock et al., 2022; Van Eetvelde et al., 2021). Random forests
are a combination of multiple decision tree predictors (Breiman, 2001a) that can
be used for both regression and classification. Each of the decision trees provides
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a separate prediction value and the final result of the forest is based on the aver-
age or major vote. Decision trees can capture complex relationships in data and
if sufficiently deep, have relatively low bias but also include lot of noise and for
these reasons, benefit from combining (Hastie et al., 2001). In a tree (see Figure 3),
the branches represent rules based on which separation to further nodes is made.
These rules are decided based on impurity measures. The nodes at the end of the
tree, called leaf nodes, represent the prediction (or classification) of that tree.

FIGURE 3 An example of a decision tree. At each step, the node is split based on a
variable (e.g., xxx:,1) and a rule (e.g., < t1), which are decided based on the
impurity measure. The final nodes represent the prediction.

Loosely following the notation in (Hastie et al., 2001), for a regression tree,
if we have a partition into M regions R1, . . . , RM, the response yi in region Rm is
modeled as

f (xxxi,:) =
M

∑
m=1

cm I(xxxi,: ∈ Rm), (13)

and cm is an average of yi in region Rm

cm =
1

Nm
∑

xxxi,:∈Rm

yi, (14)

where Nm is the number of observations in region Rm. For a regression tree, the
splitting of nodes is based on squared-error node impurity measure (Hastie et al.,
2009). For any subtree T ⊂ T0 that can be obtained by splitting T0, the impurity
measure is then defined as

Qm(T) =
1

Nm
∑

xxxi,:∈Rm

(yi − cm)
2. (15)

For a classification tree with classes k = 1, . . . , K, the impurity measure Qm(T)
needs to be changed. First, for node m, the proportion of class k observations pmk
is defined as

pmk =
1

Nm
∑

xxxi,:∈Rm

I(yi = k). (16)
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And the most common impurity measures for classification are the Gini index

Gini =
K

∑
k=1

pmk(1 − pmk), (17)

and cross-entropy

Cross-entropy = −
K

∑
k=1

pmk log(pmk). (18)

A tree in a random forest is grown in the following way (Hastie et al., 2001):

Algorithm 1 Growing a random forest tree

for each terminal node of the tree
while node_size > nmin

Step 1: From the p variables, randomly select m variables.
Step 2: Based on the impurity measure, pick the best variable, i.e., split-
point among the m.
Step 3: Split the node in two

end while
end for

The minimum node size (nmin) and number of variables to sample at each split
(m) are hyperparameters to be optimized.

Random forests provide inbuilt importance values for each variable, com-
monly with the out-of-bag estimates. In each tree, the values of jth variable are
randomly permuted in the out-of-bag samples. Then the decrease in prediction
ability of the whole forest is thought as the importance value of that variable. If
there is no (considerable) decrease in model performance when a variable is per-
muted, we can assume it is not important for the task and vice versa, for a large
decrease, the variable is considered important.

3.3.3 Support vector machines

Support vector Machines (SVMs) are commonly used for sports injury prediction
(Bullock et al., 2022; Van Eetvelde et al., 2021). They are powerful and flexible
classifiers (Kuhn et al., 2013) that work for linearly separable as well as overlap-
ping or non-linearly separable classes. SVMs can be adapted for regression as
well, but to support methodology in thesis articles and for simplicity, we focus
on the case of classifying two classes. The goal is to find a hyperplane that best
separates the classes from each other, or more technically maximizing the sepa-
ration, or margin, of classes (Cortes and Vapnik, 1995).

For a linear SVM, let us first define a hyperplane as

βββTxxxi,: + b = 0, (19)
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FIGURE 4 A soft margin SVM hyperplane in a linear, non-separable (class overlap)
case. Grey points correspond to the support vectors. The margin is 1/∥β∥,
and points with positive slack values are shown with black lines. Adapted
from (Zaki and Meira, 2014).

where βββ is a vector normal to hyperplane (scalars with at least one non-zero) and
b is a constant that determines the offset, the minimization problem of SVM can
be written as

min
βββ,b,ξξξ

1
2
∥βββ∥2 + C

N

∑
i=1

ξi s.t.

{
yi(βββ

Txxxi,: + b) ≥ 1 − ξi

ξi ≥ 0,
(20)

where C is a cost parameter (i.e., penalty for each misclassified observation) and
ξis are the slack variables that are introduced to allow some observations to be
on the wrong side of the margin. See Figure 4 for an illustration of a linear and
non-separable classification.

For non-linearity, SVMs use kernel functions to transform data into higher
dimension and make the classification more separable than in the lower dimen-
sion. We can map the features (i.e., variables) into higher dimensional space with
a feature map ϕ(xxxi) and then utilize these mapped features instead of the original
variables. Then a kernel function

K(xxxi,:, xxx′i,:) = ϕ(xxxi,:)ϕ(xxx′i,:), (21)

where xxxi,: and xxx′i,: are two observations, can be used to calculate the dot product in
the original lower dimensional space. For example, Radial Basis Function (RBF)
is a common kernel suited for many situations

K(xxxi,:, xxx′i,:) = e
−
∥xxxi,: − xxx′i,:∥2

2σ2 , (22)

where σ is a hyperparameter impacting the decision boundary.
One-class SVM (Schölkopf et al., 2001) on the other hand is an anomaly de-

tection method that first trains a SVM model on the observations from the normal
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i.e., majority class and then predicts whether new observations belong to this nor-
mal region or not. For example, in this research, one-class SVM was used for tal-
ent identification where training was first done with the majority of players (i.e.,
not the talent class) and talented players were then identified from a test data in-
cluding both talented and "normal" players. Following notation from (Schölkopf
et al., 2001), the one-class SVM minimization problem is defined as

min
βββ,ξξξ,p

1
2
∥βββ2∥ − p +

1
vN

N

∑
i=1

ξi s.t.

{
βββTϕ(xxxi,:) ≥ p − ξi

ξi ≥ 0,
(23)

where v is the upper bound of the fraction of outliers, p is an offset parameteriz-
ing the region, and ϕ is a feature map that transforms data points into a higher
dimension.

3.4 Unsupervised machine learning

Unsupervised learning methods do not use labeled data but the goal is to describe
the associations and patterns in a dataset (Hastie et al., 2001). There is no clear
outcome measure for assessing the results as in supervised ML.

3.4.1 Clustering

Clustering is the (unsupervised) division of observations into groups (called "clus-
ters") so that points in the same group are as similar to each other as possible and
points in different groups are as dissimilar to each other as possible (Jain et al.,
1999). Similarity of observations can be measured in many different ways and
therefore the concept of ’cluster’ is hard to define precisely (Estivill-Castro, 2002)
and. A common measure for similarity is distance, which can also be defined with
different measures, such as the Euclidean distance, correlation based distance or
Ward’s method.

A common way to divide clustering methods is into partitional and hierarchi-
cal where partitional clusters are non-overlapping and each observation belongs
to one cluster and hierachical clusters can nested, i.e., clusters can have subclus-
ters (Tan et al., 2007). Partitional clustering requires the user to define a number of
clusters and then form the clusters by iteratively minimizing the chosen criteria.
Clusters are represented by their prototypes (e.g., mean, median) and thus each
cluster can be interpret based on its most representative point (Saarela, 2017).
This research utilized hierarchical clustering, which in comparison to partitional
clustering does not need a predefined number of clusters but only the measure of
similarity. It is based on a hierarchy of representations where at the bottom each
observation is their own cluster and each step upwards merges the most simi-
lar clusters together. Hierarchical clustering can be done in agglomerative (from
bottom-up) or divisive matter (from top-down, starts with all observations in one
cluster).
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3.5 Model selection and assessment

Selecting and assessing predictive models is an important step that has to be done
carefully to avoid data leakage.

Model selection refers to estimating the performance of different models and
choosing the best one.

Model assessment refers to measuring the predictive ability (i.e., generalization
performance) of the final selected model on unseen test data.

An optimal approach would be to split data into training, validation, and
test data, where training data is used for fitting the model, validation data is used
for estimating the fitted models and model selection, and test data is used for as-
sessing the generalization performance of the final chosen model (Hastie et al.,
2001). However, in many real-world problems and especially in sports sciences,
data size is limited and other approaches more useful. Another approach is to
only split training and test data, commonly 70% for training and 30% for test-
ing (Vrigazova, 2021). Additionally, cross-validation (CV) is a standard approach
(Vrigazova, 2021) common in sports sciences as well (Richter et al., 2021) and
useful when data size is limited as the whole data can be utilized for training
the model. K-fold CV (see Algorithm 2), for example, splits the data into k sets
and trains k models using each sets as test data at a time. Stratified k-fold CV is a
modification where the distribution of samples from different classes is preserved
for both training and test data when data is split at step 1. It can be useful in the
case of imbalanced classes or unevenly distributed variables. For example, data
collected at different years or at different laboratories (with possible differences
or noise) can be divided evenly through the training and test datasets to avoid
under- or over-representation.

Algorithm 2 K-fold cross-validation
Step 1: Divide dataset into k parts
Step 2: Fit the model with k − 1 parts (training data) and leave one part out for
model assessment (test data)
Step 3: Repeat k times until each part has been used as test data and combine
estimates

It is beneficial to report metrics on both training and test data for assessment
of, e.g., over- or underfitting. Moreover, due to the considerable variability in
results with different test datasets (e.g., different folds), it is also important to
report this through, for example, standard deviation or standard error (Hastie
et al., 2001).
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3.5.1 Preventing data leakage to test data

To prevent data leakage from model selection (i.e., hyperparameter tuning), it
must be done without any guidance from the test data. Manual repetitions where
any part of the analysis or hyperparameters is modified after seeing the per-
formance on test data easily lead to data leakage and overfitting, often uncon-
sciously and without realizing. Additional validation data for model selection
solves the problem as test data is only used after model selection, but is unpracti-
cal with small data. In the absence of separate validation data, model selection is
done on training data, e.g., with an inner (nested) CV where the training data is
further split for training and validation. All suitable or interesting hyperparame-
ter options can be included from the beginning, and the method optimizes itself
inside the training phase.

Preprocessing of test and training data should also be done appropriately,
and it is important to distinct two types of preprocessing in this context:

Type 1: Approaches where values from other observations do not directly affect
the results, e.g., deleting observations with more than 50% of missing
values, exclusion of uninteresting categories, and feature selection based
on previous literature or expert-knowledge.

Type 2: Approaches where the data itself and values of other observations affect
the results, e.g., data transformation like normalization and imputation
or feature selection based on correlations or other metrics.

Type 1 preprocessing can be done before data splitting and does not cause data
leakage. Type 2 preprocessing opens a risk for overfitting as preprocessing the
whole data at once leads to data leakage. On the other hand, completely sepa-
rate type 2 preprocessing of training and test data can lead to lower predictive
performance due to different transformations (Van Eetvelde et al., 2021).

The proper way to handle preprocessing in prediction, is to think about the
test data as future data, unavailable at training (Van Eetvelde et al., 2021) and
use transformations calculated on training data to the test data. Similarly type 2
feature selection should be done on the training data alone. So for example with
K-fold CV, normalization and imputation would be done separately inside each
fold, first for the training data and then test data are normalized and imputed us-
ing coefficients and values estimated from the training data. Separate validation
data should be treated similarly to test data to maximize generalization perfor-
mance of the model.

3.5.2 Model assessment metrics

In addition, the model assessment metrics needs to be chosen carefully, especially
in case of imbalanced datasets. In classification there are variety of measures
that can be calculated based on the confusion matrix with some commonly used
measure in sports injury prediction and talent identification being accuracy, sen-
sitivity, specificity, precision and the F1-score (Van Eetvelde et al., 2021; Reyaz
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et al., 2022). Again, focusing on the binary classification task, a confusion matrix
(see Figure 5) visualizes a prediction result against the actual classes, where true
positives (TP) are those correctly classified as positive, true negatives (TN) those
correctly classified as negative, false positives (FP) those incorrectly classified as
positive and false negatives (FN) those incorrectly classified as negative. P’ refers
to the number of actual positive cases, N’ to actual negative cases while Ppred and
Npred refer to the number of predicted positive and negative cases.

Actual
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Positive Negative total
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True
Positive

False
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FIGURE 5 A confusion matrix of binary classification.

In the case of sports injury prediction, where injured players would be the
positive cases in data, accuracy is simply the proportion of correctly classified
players

Accuracy =
TP + TN

P + N
=

TP + TN
TP + FP + FN + TN

(24)

and would not work well with imbalanced classes as classifying everyone as non-
injured would yield high accuracy. Sensitivity (also known as recall or true pos-
itive rate) measures the proportion of correctly classified positive observations
(e.g., how many injured players are correctly classified as injured)

Sensitivity =
TP
P

=
TP

TP + FN
(25)

while specificity (also known as true negative rate) measures the proportion of
correctly classified negative (e.g., how many non-injured players are correctly
classified as healthy)

Specificity =
TN
N

=
TN

TN + FP
. (26)

Precision on the other hand measures the proportion of relevant observations
among those classified as positive (e.g., how many of the players classified as
injured are actually injured)

Precision =
TP

TP + FP
. (27)
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False positive rate (FPR) measures the ratio of false negatives and number of ac-
tually negative (e.g., how many of the healthy players were classified as injured)

FPR =
FP
N

=
FP

FP + TN
= 1 − Specificity (28)

and F1-score is the harmonic mean of sensitivity and precision

F1 =
Precision ∗ Sensitivity
Precision + Sensitivity

. (29)

Additionally, Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) is commonly used in sports injury prediction (Van Eetvelde et al., 2021),
including the studies in this thesis. The ROC-curve is based on plotting true pos-
itive rate (sensitivity) against the false positive rate and the area under provides
a summary metric of model performance. Area Under the Precision Recall curve
(AUC-PR), on the other hand, works similarly but the curve is plotted as preci-
sion against recall (sensitivity). For regression, measures like Mean Squared Error
(MSE)

MSE =
1
N

N

∑
i=1

(yi − ŷi), (30)

where ŷi is the predicted response, or Root Mean Squared Error (RMSE, square
root of MSE) can be used. With CV, it is important to choose how to combine met-
rics over different folds (Forman and Scholz, 2010). For example, for AUC an av-
erage over folds is recommended (over merging folds to a singe curve) while for
F1-score recording the total number of true positives and false positives over the
folds and then computing the final value is recommended (Forman and Scholz,
2010).

3.6 Confirmatory analysis

Confirmatory analysis is useful for handling uncertainty and avoiding chance
results in predictive modeling. For this purpose, this thesis utilizes permutation
tests (Combrisson and Jerbi, 2015) with repetitions as described in Algorithm 3.
In permutation tests, a random reference model is trained by randomly shuffling
the labels in the training phase and then the prediction performance is compared
with the true model trained with actual labels. Then if the performance of the
true model is (statistically significantly) better compared to the random model,
the results are confirmed not being chance results or due to some noise in the
data. Repetitions of the analyses assess the uncertainty and variation in results
from random data splits. By repeating analyses, for example, a hundred times, an
average of these represents a robust estimate of the true performance. For each
repeated run, the fold division is the same for random and true models to allow
fair pairwise comparison (e.g., by setting a seed number). Variation of results
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across repetitions can be assessed through, for example, the standard deviation
or range of results.

Algorithm 3 Confirmatory analysis with permutation tests and repetitions

Step 1: Set a seed number to initialize the (random) data split to training and
test data

TRUE MODEL
Step 2 –

Step 3: Train the true model with ac-
tual labels

RANDOM MODEL
Step 2: Randomly shuffle the class la-
bels
Step 3: Train a random model with
the shuffled labels

Step 4: Save model and related metrics
Step 5: Repeat the whole process from Step 1 multiple times
Step 6: Compare the results from true and random models over the repetitions

Figure 6 summarizes the suggested predictive framework for producing ro-
bust and generalizable results that consider uncertainty and risk of chance results.
Separate validation data is not included in the figure for simplicity but could be
used for model selection if split at the data splitting phase.
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FIGURE 6 The predictive modeling framework. Model selection (i.e., hyperparameter
tuning) is done at the training phase with, for example, inner CV with train-
ing data. Model deployment is discussed in Section 5.4 and a single trained
model needs to be chosen for deployment.



4 OVERVIEW OF THE INCLUDED ARTICLES

The aim of this thesis was to assess the potential of predictive modeling and
other ML methods for individual response within the area of sports science data.
Furhermore, most common challenges and pitfalls in predictive ML and data in
the field are considered as well as the use of these approaches for individualized
injury prediction and talent identification. This chapter provides an overview of
the included publications and their individual contribution to the research.

4.1 Article I: Talent identification in soccer using a one-class sup-
port vector machine

This article was published in 2019 in International Journal of Computer Science in
Sport, 18(3).

Objectives

The objective of this study was to assess the potential of ML for talent identifi-
cation in soccer. Moreover, the goal was to identify potential future elite players
from the majority based on their physical and psychological test information as
14-year-old juniors.

Methods

The data in this study is from 4991 junior soccer players (age 12.41±1.53 years,
range 8-18 year), collected for monitoring the development of young soccer play-
ers by The training and research centre for Finnish football. They performed physical
tests (e.g., technical, speed, and agility) and self-assessment tests (e.g., perceived
competence, tactical skills, and motivation) twice a year between 2011 and 2017.
Included teams were the best of their age group in Finland. Players who had al-
ready signed a contract with an international academy ("academy players") were
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labeled as talent category in the study. All of the academy players were boys and
had performed the tests at the age of 14 and therefore, 14-year-old Finnish boys
were selected for our analyses. Furthermore, as the age limit for signing a con-
tract to an academy is 16 years, players born in 2003 or later were dropped out of
the analysis as they might be future academy players but were too young to yet
have a contract. Due to a significant proportion of values not missing at random
(NMAR) in many variables, the data was further pruned into four separate rep-
resentations; 1)"phys large" with 16 physical variables and N=951) "phys+quest"
with 18 additional questionnaire variables and N=468 3) "phys" with the 16 phys-
ical variables and N=468 participants from "phys+quest", and 4) "quest" with the
18 questionnaire variables and N=468 participants from "phys+quest".

All datasets were extremely imbalanced with only 14 academy players in
representation "phys large" and 10 in the rest of data representations. Therefore
the problem was approached by anomaly detection with one-class support vec-
tor machine (SVM) that first models the normal region based on observations
from the majority class, i.e., the non-academy players and then predicts whether
new observations belong to this normal region or not. Sixteen different hyperpa-
rameter combinations were evaluated. To assess the generalization ability of our
model, 10-fold CV was used and mean (and standard deviation) of AUC-ROC,
AUC-PR, sensitivity and specificity values calculated for all data representations
separately. A mean over all hyperparameter combinations was chosen in order
to avoid chance findings.

Results and contribution to the whole

The highest mean AUC-ROC value was 0.763 for data representation "phys large".
For representations "phys", "phys+quest", and "quest", the mean AUC-ROC val-
ues were 0.665, 0.643, and 0.585, respectively. While the estimated sensitivity
of "phys large" representation was nearly 0.80, the estimated specificity of 0.614
shows that a large proportion of the players without an academy contract is "mis-
classified" into the class of potential academy players. So in a sense, the method
recognizes player potential but there can be many reasons why these players have
not (yet) signed an academy contract, such as young age, injury, choosing not to
continue playing et cetera.

Methodologically, the study presents a useful approach for extremely im-
balanced data (often the case in, e.g., talent identification) as well as for data with
a lot of NMAR values (as common with longitudinal data in sports). Domain-
wise it shows that players can already at the age of 14 show qualities in their
measurable test data that can predict future potential. Furthermore the model
provides an individual likelihood for elite potential that can be used to support
professionals in coaching and player management.
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Author’s contributions

The author of this thesis is the main and corresponding author of this journal
article. She preprocessed the data, run all analyses, produced the tables and wrote
the majority of the article. The analysis approach was invented by the co-authors
of the article and its design as well as interpretation of results was done together
by all authors.

4.2 Article II: New machine learning approach for detection of in-
jury risk factors in young team sport athletes

This article was published in 2021 in International Journal of Sports Medicine, 42(02),
175-182.

Objectives

The objective of this article was to present a framework for detecting variables
with predictive power on sports injuries in a data-driven manner. It also coher-
ently describes differences of predictive and explanatory methods within the field
of sports injuries and discusses common pitfalls in sports injury prediction and
how to tackle them. Interpretability and generalization ability of models and re-
sults is highlighted in order to produce trustworthy results that have practical
benefit. A secondary purpose was to assess differences between linear and non-
linear methods for the task.

Methods

The data was three-dimensional motion analysis and physical data from 314 young
basketball and floorball players (48.4% males, 15.72±1.79 years, 173.34±9.14cm,
64.65±10.4kg) collected at the UKK institute between 2011 and 2015. The focus
was on moderate to severe (unable to fully participate in training or match play
for at least 8 days ((Fuller et al., 2007)) acute non-contact knee and ankle injuries
(N=57). Altogether 54 variables were included in classification after careful se-
lection by a group of experts in sports medicine and exclusion of variables with
more than 50% of missing data.

Two commonly used ML methods that provide information about the vari-
able importance in prediction were selected, namely random forests and L1- regu-
larized logistic regression, were used to predict the injuries. Generalization abil-
ity of the models was assessed with 10-fold CV and test performance with the
Area Under the Receiver Operating Characteristics Curve (AUC-ROC). Due to
large variation in results from different K-fold splits, the analysis was repeated a
hundred times and results averaged over all data splits. Permutation tests were
used to confirm the significance of the results as well as to detect significantly
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consistent injury predictors. The class labels (injured/healthy) in training data
were randomly shuffled for training of a "random" reference model. Then by
comparing results of the true and random model, we can confirm the achieved
performance or important variable is significant and not observed by chance. Sig-
nificantly consistent injury predictors were identified by comparing the variable
importance values of the true and random model from the hundres repetitions
with Wilcoxon signed-rank test.

Results and contribution to the whole

Twelve and twenty consistent injury predictors were suggested by random forests
and the L1-regularized logistic regression, respectively. The following ten vari-
ables were suggested as consistent injury predictors (p<0.01) by both models: sex,
body mass index, hamstring flexibility (non-dominant leg), KT1000 (dominant
leg), hamstring flexibility (dominant leg), medial knee displacement (dominant
leg), height, ankle (plantar) flexion at IC (dominant leg), leg press one repeti-
tion maximum (1RM), and knee valgus at IC (dominant leg). Predictive accu-
racy of the models remained low and was similar between the linear (regression
AUC=0.65) and non-linear (random forests AUC=0.63) models.

Methodologically, this study offers an approach for finding new hypothe-
ses for injury risk factors and for confirming the predictive power of risk fac-
tors detected in previous explanatory studies, while taking into account the most
common pitfalls in predictive modeling. Great benefit of the presented approach
is that consistent injury predictors can be detected even from data with weak
phenomena. Therefore, it can be useful with small datasets (that do not neces-
sarily possess high predictive power or strong phenomena) as often is the case in
sports science and sports medicine. Domain-wise, the identified consistent injury
predictors can guide the planning of future (predictive and explanatory) sports
injury studies. Both, the information about these injury predictors as well as the
individual injury probabilities from the trained model can be used for more indi-
vidualized injury prevention and prediction in the future.

Author’s contributions

The author of this thesis is the main and corresponding author of this journal ar-
ticle. She preprocessed the data, run all analyses, produced all tables and figures
and wrote the majority of the article. The analysis approach was invented by the
co-authors of the article and its design as well as interpretation of results was
done together by all authors.
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4.3 Article III: Predicting ACL injury using machine learning on
data from an extensive screening test battery of 880 female elite
athletes

This article was published in 2022 in The American Journal of Sports Medicine,
50(11), 2917-2924.

Objective

The purpose of this article was to carefully investigate the predictive potential of
multiple predictive ML methods on a large set of risk factor data for anterior cru-
ciate ligament (ACL) injury. The approach is based on Article II and was extended
by increasing the hypothesis space with more ML methods as well as preprocess-
ing techniques for handling class imbalance in the data. Moreover, it follows up
the previous article on clarifying the distinction between predictive and explana-
tory approaches and how these have been confused in previous literature in the
field. Most common pitfalls in sports injury prediction with examples from the
literature are also further discussed and considered in the methodology.

Methods

The data consist of a comprehensive ACL injury screening test battery includ-
ing demographic, neuromuscular, biomechanical, anatomic, and genetic ACL in-
jury risk factors collected at the Norwegian School of Sport Sciences between the
years 2007 and 2015. Participants were elite female soccer (N=451) and handball
(N=429) players (21±4years, 170±6cm, 66±8kg), making it the largest ACL injury
data collected to date.

After preprocessing (e.g., players with more than 50% of missing data or
noncontact and indirect contact injuries excluded) the dataset used for injury
prediction had 791 players with 60 ACL injuries and 283 variables. Four com-
mon methods, random forest, L2-regularized logistic regression, and support
vector machines (SVMs) with both linear and nonlinear kernel, were chosen. Data
imbalance handling with random undersampling, The Synthetic Minority Over-
sampling Technique (SMOTE) as well as class weight vector in the training phase
were experimented. Generalization ability of the models was assessed with 5-fold
CV and test performance with the Area Under the Receiver Operating Character-
istics Curve (AUC-ROC). Permutation tests, a hundred repetitions and Wilcoxon
signed-rank test were used to confirm the significance of the results, similarly as
in the above study.

Results and contribution to the whole

Linear SVM without any imbalance handling achieved the highest mean AUC-
ROC value of 0.63. The predictive ability was relatively consistent between the
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methods and significantly higher (P< 0.001) with the real responses than with the
random models. With all of the classifiers, there was a large variation in perfor-
mance across the repetitions, highlighting the effect of data split and need for
repetitions. Additionally, class imbalance handling did not improve the predic-
tion results but they remained similar or even slightly worse.

Methodologically, this study presents how to avoid most common pitfalls in
predictive ML in sports sciences. Domain-wise it assesses the predictive potential
of a large ACL injury data and suggests that one single screening test dataset is
potentially not enough for ACL injury prediction. Moreover, individual injury
probabilities of the trained model can be used for more individualized injury
prevention and prediction in the future.

Author’s contributions

The author of this thesis is the main and corresponding author of this journal
article. She preprocessed the data, run all analyses, produced the tables and wrote
the majority of the article. The analysis approach idea was based on Article II and
its design as well as interpretation of results was done together by all authors.

4.4 Article IV: A hierarchical cluster analysis to determine whether
injured runners exhibit similar kinematic gait patterns

This article was published in 2020 in Scandinavian Journal of Medicine and Science
in Sports, 30(4), 732-740.

Objectives

The primary purpose of this article was to examine if unsupervised ML can be
used to discover similar gait patterns from 3D kinematic data of injured and
healthy runners. A secondary purpose was to analyze the 3D running kinematics
between the subgroups to better understand differences in running gait patterns.

Methods

The data in this study consisted of 3D running kinematics of 291 runners (255
injured, 146 females, 39.51±11.21 years). Injuries were grouped by location with:
72 knee, 58 ankle/foot, 51 hip/pelvis, 42 thigh, and 39 lower leg (shin) injuries
and twenty-five individuals were confirmed as injury free for at least six months
prior to data collection. Each subject’s running gait pattern was described by 62
extracted kinematic (e.g., peak knee flexion and adduction angles, heel strike an-
gle) and functional (e.g., step width, vertical oscillation, stride rate and length)
variables. A PCA was performed to reduce multi-collinearity between biome-
chanical variables and a subset of principal components (PCs) that explained 80%
of the total variance in the dataset were selected.
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Runners were clustered into subgroups of homogeneous gait patterns with
hierarchical cluster analysis (HCA). Number of clusters was determined by on a
stopping rule (a large percentage decrease in the coefficient followed by a plateau)
and confirmed by visual inspection of the dendrogram. Subgroups were com-
pared with univariate analysis of variance (ANOVA) and the injury distribution
of the formed subgroups was assessed with the adjusted Rand index, that mea-
sures the similarity between two different clusterings of the same data.

Results and contribution to the whole

The first 16 PCs, explaining 80.98% of the total variance, were used for clustering.
Five subgroups with specific gait patterns were discovered from the data but de-
spite being distinct, the population of injured and healthy runners was randomly
scattered among those. This was confirmed with the very low Rand index score
of r = 0.012 when comparing the cluster partition and the original injury groups.

Based on these results, the location of injury seems not to be related to spe-
cific running kinematic patterns. This suggest that the traditional method of cre-
ating and analyzing subgroups of subjects based on a pre-defined injury might
not consider variance of gait biomechanical patterns that exists independent of
the injury location. Additionally, prediction of injuries, (solely) based on specific
kinematic gait patterns, is not supported. Therefore, an initial additional step to
segment subjects according to gait patterns could be beneficial to future biome-
chanical investigations as well as ML approaches.
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5 DISCUSSION AND CONCLUSION

The use of ML methods has recently generalized in sports sciences but many com-
mon pitfalls lurk researchers (Richter et al., 2021; Riley, 2019). Generally small
sample sizes together with attractiveness and accessibility of ML methods with-
out proper knowledge lead to faulty models and results with improper interpre-
tations. For example, Table 1 summarizes how ML approaches in most existing
studies are flawed in sports injury prediction. It is critical that researchers are
aware of the risks related to the use of ML and that there are clear standards and
robust procedures for how to perform and report ML studies in sports sciences.
Answering the urgent need, this thesis provides guidelines on how to properly
perform and report predictive ML studies in the field of sports science and intro-
duces a framework for producing robust and trustworthy results.

Moreover, this thesis assesses the potential of ML for more individual in-
jury prediction and talent identification, utilizing large, contemporary datasets.
Through the included articles, advances are achieved for predicting ACL injuries,
recognizing predictive knee and ankle injury risk factors, assessing how to use
ML with talent identification in sports settings as well as utilizing unsupervised
methods to discover novel and useful information and patterns from running in-
jury data. The approaches developed and used in this research can be utilized
similarly in many other tasks and domains as well.

5.1 Relation to previous work

The results from the predictive studies in this thesis are among only a handful
of others in sports injury prediction and talent identification that utilize robust
approaches, i.e., no signs of data leakage and of these only a few also consider
uncertainty in results and the risk of chance results at least to some degree (see
Table 1). There seem to be no previous sports science studies that utilize confir-
matory analyses, such as permutation tests, to exclude the risk of chance results.
The other sports injury studies have achieved similar or slightly higher predictive
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ability as Articles II and III (Colby et al., 2018; Karuc et al., 2021; Carey et al., 2018;
Rossi et al., 2018; Whiteside et al., 2016). Rommers et al. (2020) achieved promis-
ing results (85% sensitivity and precision) predicting acute and overuse injuries
in 734 elite youth soccer players. Their study differs from the others in its age
range (11.7 ± 1.7 years) and they reported that the five most important variables
in prediction were anthropometric measures, indicating injuries might be easier
to predict among teenagers during the growth spurt. The results from Articles
II and III add important information to the body of knowledge about sports in-
jury prediction, such as assessing the sufficiency of two large and contemporary
datasets and importance of the variables in prediction. Moreover, Article II in-
troduces an approach that can be used for finding variables most predictive of
injury and thus for generating new hypotheses in a data-driven manner. In talent
identification, Article I is among the first studies utilizing predictive modeling.
Moreover, it is the first to predict future athlete performance based on data col-
lected at young age, an approach that can be very helpful for offering suitable re-
sources and training for performance development. It also provides information
about the most important variables and data properties for talent identification
in soccer.

Article IV is the first study to assess homogeneous gait patterns across a
population of runners with a wide variety of injuries and healthy runners. Previ-
ous studies have found similarities in kinematics across different running injuries
(Bramah et al., 2018), but Article IV suggests there are subgroups with similar
running patterns across both injured and healthy runners. Contrary to some pre-
vious results and practices, the results imply that certain running styles do not
increase risk of injury and that grouping based on injury location might not be
best practice, which can be important to consider in future predictive and unsu-
pervised ML studies.

5.2 Potential of machine learning and current datasets for individ-
ual response (RQ1)

All included articles provide some information in the individual response con-
text. The predictive models trained in Articles II and III can be utilized for calcu-
lating an individual sports injury risk based on the provided class probabilities
of the model. However, the low performance of these models (AUCs 0.65 and
0.63) suggest the current data is not suitable or sufficient enough for injury pre-
diction, at least by itself, and further research can utilize the approach with more
adequate data. In a similar fashion, the model trained in Article I could be used
to asses individual chances on future elite soccer career success. Based on the re-
sults, it is possible to predict and provide an individual probability of becoming
an academy player based on test data collected at already 14-years-old juniors
with an 80% sensitivity. A similar approach can be used for talent identification
in other sports and levels of play as well as other areas in life. Moreover, the re-
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sults show that larger data achieved higher predictive performance but utilizing
a more versatile set of variables (i.e., including both physical tests and question-
naire data) provided higher sensitivity.

Article IV, on the other hand, confirms that injury prevention and rehabili-
tation strategies should be individualized and not based on certain running pat-
terns. Among the large group of injured and healthy runners, no associations
between specific running patterns and injury locations were detected. Therefore,
the results contradict and dispute previous studies and assumptions that certain
running style would increase the risk of certain running injuries or that specific
changes in running style would prevent or help rehabilitate injuries.

5.3 Predictive machine learning pitfalls in sports sciences (RQ2)

All three articles utilizing predictive modeling methods (Articles I, II, and III)
clarify the distinction between predictive and explanatory analyses, including
examples from sports injury prediction and talent identification. Moreover, most
common pitfalls in predictive ML research in sports sciences were further dis-
cussed and solutions introduces in Articles II and III. In addition to selecting
separate and appropriate test data, the pitfalls to be avoided include: avoid-
ance of data leakage (e.g., feature selection, preprocessing, hyperparameter tun-
ing and model selection) and assessment of uncertainty and chance results (e.g.,
random test data, noise in data, weak phenomena, and small, imbalanced, or
high-dimensional data). Articles II and III utilize the presented framework with
permutation tests and repetitions to overcome these pitfalls and for robust, re-
producible results. Article III reports performance metrics for the training data
(and the trained random model as well), including variance across the repetitions.
Article II reports results for the training data and as the focus was on detecting
predictive variables, variance of results is assessed through the consistency of
variables selected as important by the models.

Article I did not include confirmatory analysis but the risk of chance results
is considerably lower with the one-class SVM model as it is trained only on the
majority class while all minority examples (i.e, academy players/talents) were
always included in the test data. Furthermore, the negligible variation reported
in results across the folds further confirms reliability of results and the relatively
high predictive performance suggest models learned true phenomena and not
only noise.

5.4 Model deployment

The studies in this thesis, as well as majority of (if not all) existing research, fo-
cuses on model assessment and development of accurate models. In practice,
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however, the final goal would be to be able to use a predictive model for a prac-
tical task. In the sports injury prediction context, for example, a clinician needs
a single ready-to-use trained model which would output individual probabilities
and information about important variables when given new athlete data. How-
ever, deployment can be very time-consuming and challenging (Baier et al., 2019).
While research studies should train multiple models (due to, e.g., repetitions or
CV data splits) a single model needs to be selected for deployment. So, from de-
ployment point of view, training a single model with randomly split train and
test data at once would be most simple but then the generalization performance
would be questionable due to lot of uncertainty. Larger data and established ML
practices are the first steps towards successful deployment, but more research is
still needed to decide the best deployment practices. Whichever way the model
for deployment is selected, it should not be blindly trusted in practical use, es-
pecially if trained on small data collected from a short period. Moreover, after
deployment, the model should be continually monitored and improved based on
user input and input data.

5.5 Model interpretability

Most of the existing ML research uses the methods as black-boxes (Rudin, 2019;
Lipton, 2018). This means that even though the method is able to predict or
classify something well, the reasons behind how it does this are hidden. Inter-
pretability has been considered highly important especially in medicine (Bellazzi
and Zupan, 2008), with ethical reasons clearly essential as well. ML approaches
should only be used as support for human experts and therefore the more reason-
ing a method can provide behind its suggestions, the more beneficial it will be for
the end-users. In the sports injury prediction context, for example, in addition
to calculating a injury risk for an athlete, we might be interested in the variables
which are causing the injury risk. With this information a coach or a team physi-
cian can try to minimize the risk by focusing on these most important variables.
In this thesis, random forests and regularized logistic regression used in Articles
II and III, for example, are interpretable (at least to some degree) as they provide
information about the most important variables in prediction.

5.6 Limitations and future research

In ML, the amount of methodological approaches available is immense and nat-
urally only a limited portion of these can be utilized in this research. Further
research should assess potential of different methods as well as further tuning of
hyperparameters and the data preprocessing techniques. Moreover, the research
in this thesis was limited on previously collected data and variables. The 3D mo-
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tion analysis data, for example, despite being a gold standard in human move-
ment research, can have low reproducibility due to marker placements (Gorton III
et al., 2009) and low generalization to real world as it is collected in laboratory set-
tings. For example in sports injury prediction, future research is needed to detect
the most relevant data sources and variables for accurate prediction. Continu-
ous time-series data of, for example, training loads from GPS or accelerometers
could capture important information in the context of injury prevention or per-
formance development, as the results from few previous studies suggest (Carey
et al., 2018; Colby et al., 2018; Rossi et al., 2018; Thornton et al., 2017; McCullagh
and Whitfort, 2013). Larger datasets will benefit future ML research in sports
(Richter et al., 2021) and open new possibilities. It would allow training of mul-
tiple, more individual models based on subsamples as well as the usage of deep
learning. Moreover, continuous data that includes measurements of individual
response, such as training loads and HR, would also open new ML possibilities,
particularly for research on individual response. Additionally, a more balanced
class distribution, where possible, might improve the performance of predictive
models as some previous sports injury studies suggest (Rommers et al., 2020;
Tamimi et al., 2021; Whiteside et al., 2016).

Importantly, there should be clear standards for how to perform and report
ML studies in sports sciences (Riley, 2019; Richter et al., 2021) and the research in
this thesis provides fundamental guidelines to build on. Following the guidelines
and utilizing the introduced framework, more reliable, robust, and comparable
results can be achieved leading to more impactful research. Moreover, these mul-
tidisciplinary studies should always include experts from both fields (i.e., ML and
sports science) and the ML tools must be understood by those using them (Riley,
2019).



YHTEENVETO (SUMMARY IN FINNISH)

Liikuntatieteissä data on usein haastavaa ja määrältään rajallista, mikä yhdis-
tettynä koneoppimismenetelmien houkuttelevuuteen ja saatavuuteen johtaa hel-
posti virheellisiin ennustusmalleihin, tuloksiin ja johtopäätöksiin. On kriittisen
tärkeää, että tutkijat tuntevat koneoppimismenetelmien ja datan oikeaoppisen
käytön ja ovat tietoisia näihin liittyvistä riskeistä. Tämän tutkimuksen ensim-
mäinen tavoite on ohjeistaa ennustavan koneoppimisen oikeaoppista hyödyn-
tämistä ja raportoimista erityisesti liikuntatieteissä. Toisena tavoitteena on tutkia
voidaanko ennustavan koneoppimisen avulla tuottaa yksilöllisempää tietoa kuin
perinteisillä tilastomenetelmillä urheiluvammojen ennustamisen ja lahjakkuuk-
sien tunnistamisen sovellusalueilla.

Ennustava mallintaminen viittaa ennusteiden (tai luokitteluiden) tekemiseen
datan pohjalta ja sen riskit liittyvät muun muassa ennustusmallien yleistettävyy-
teen, ylioppimiseen sekä sattumatuloksiin. Mallin yleistettävyys viittaa sen en-
nustuskykyyn erillisellä (mallin aiemmin näkemättömällä) datalla ja sen asian-
mukainen mittaaminen on äärimmäisen tärkeää luotettavien tulosten saavuttami-
seksi. Ylioppiminen puolestaan tarkoittaa joko mallin liiallista sovittumista sen
opettamisessa käytettyyn dataan, jolloin sen yleistettävyys uudelle datalle kär-
sii tai liiallista sovittumista käytettyyn testidataan. Sattumatulos viittaa tulok-
siin jotka saavutetaan sattumalta, esimerkiksi suotuisan datajaon seurauksena tai
datassa olevan ylimääräisen kohinan oppimisen seurauksena. Yksi yleisimmistä
virheistä liikuntatieteissä on datan vuotaminen eli informaatiota testidatasta vuo-
taa mallin opettamiseen jostain kohtaa analyysiä. Esimerkiksi urheiluvammatutki-
muksessa suurimmassa osassa ennustustutkimuksista on selkeitä datavuodon
lähteitä ja seurauksena mallien yleistyvyys on kyseenalaista.

Artikkelit I, II ja III hyödyntävät ennustusmenetelmiä ja korostavat niihin li-
ittyviä riskejä sekä kuvaavat menetelmien ja datan oikeaoppista hyödyntämistä.
Artikkelissa I tunnistetaan lahjakkuuksia 14-vuotiaiden jalkapalloilijoiden testi-
datasta, saavuttaen noin 76% kokonaistarkkuus tulevaisuudessa akatemiaan peli-
sopimuksen sopineiden pelaajien tunnistamisessa. Tulosten perusteella tulevaisu-
uden eliittipelaajien tunnistaminen jo 14-vuotiaana kerätyn datan perusteella on
mahdollista jalkapallossa ja lähestymistapaa voidaan hyödyntää muun muassa
lahjakkuuksien tunnistamiseen muillakin sovellusaloilla.

Artikkelit II ja III keskittyvät urheiluvammojen ennustamiseen sekä ennus-
tusvoimaisten muuttujien tunnistamiseen joukkueurheilijoiden datasta. Ennus-
tusvoimaltaan tulokset (kokonaistarkkuus 65% ja 63%) ovat samaa luokkaa aiem-
pien oikeaoppisesti toteutettujen urheiluvammoja ennustavien tutkimusten kanssa
ja korostavat urheiluvammojen ennustamisen haastavuutta. Artikkelin II pää-
tavoitteena on tunnistaa ennustusvoimaisia muuttujia ja kehitettyä lähestymista-
paa voidaankin käyttää tarkoitukseen muissakin tutkimuksissa.

Artikkelissa IV tutkitaan terveiden ja loukkaantuneiden juoksijoiden juok-
sutyylejä ja niiden yhteyksiä vammojen sijaintiin ohjaamattoman koneoppimisen
avulla. Tulokset vahvistavat yksilöllisempien lähestymistapojen tarvetta ja ovat



57

tärkeää tietoa myös tuleville ennustustutkimuksille. Tietyt juoksutyylit eivät ole
tuloksissa yhteydessä tiettyihin vammoihin, joten vammojen ehkäisy sekä kuntout-
taminen tulisi suunnitella yksilöllisesti, eikä esimerkiksi juoksutyyliin tai vam-
man sijaintiin perustuen.

Tutkimuksen päätuloksena kehitetään lähestymistapa joka arvioi kattavasti
ja luotettavasti mallien yleistyvyyttä ja huomioi koneoppimiseen liittyvät riskit.
Väitöskirjassa esitellään kattavasti eri analyysin vaiheet ja datan oikeaoppinen
käsittely erityisesti liikuntatieteisiin keskittyen. Huomioimalla riskit ja huolelli-
nen raportointi voidaan varmistaa tulevien tutkimusten luotettavuus, robustisuus
ja vertailukelpoisuus ja saavuttaa vaikuttavampia tuloksia.

Lisäksi tutkimuksessa tuotetaan tärkeää tietoa yksilöllisemmän tiedon saavut-
tamiseksi koneoppimisen avulla. Kehitettyjä malleja voidaan hyödyntää esimerkiksi
yksilöllisen urheiluvammariskin tai jalkapallomenestyksen laskemiseksi. Urheilu-
vammojen tunnistamisessa nykyisten datojen ennustusvoima jäi kuitenkin käytän-
nön kannalta matalaksi, mutta hyödyllistä tietoa tulevia tutkimuksia varten tuote-
taan muun muuassa uusien hypoteesien muodostamiseksi sekä datan ja mit-
tausten uudelleen suuntaamiseksi tehtävän kannalta relevanttien tekijöiden löytämi-
seksi.
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Abstract 
Identifying potential future elite athletes is important in many sporting events. The 
successful identification of potential future elite athletes at an early age would help 
to provide high-quality coaching and training environments in which to optimize 
their development. However, a large variety of different skills and qualities are 
needed to succeed in elite sports, making talent identification generally a complex 
and multifaceted problem. Due to the rarity of elite athletes, datasets are inherently 
imbalanced, making classical statistical inference difficult. Therefore, we approach 
talent identification as an anomaly detection problem. We trained a nonlinear one-
class support vector machine (one-class SVM) on a dataset (N=951) collected from 
14-year-old junior soccer players to detect potential future elite players. The mean 
area under the receiver operating characteristic curve (AUC-ROC) over the tested 
hyperparameter combinations was 0.763 (std 0.007). The most accurate model was 
obtained when physical tests, measuring, for example, technical skills, speed, and 
agility, were used. According to our results, the proposed approach could be useful 
to support decision-makers in the process of talent identification.  

KEYWORDS: TALENT IDENTIFICATION, ANOMALY DETECTION, ONE-CLASS 
SVM 
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Introduction 

The amount of data in sports is rapidly increasing due to advances in data collection technologies 
(Brefeld & Zimmermann, 2017). This has opened many possibilities for data analysis and 
application development across all sports. Even though sports analytics is a relatively new field, 
a variety of different research questions, approaches and data sources are already documented in 
the literature (Brefeld & Zimmermann, 2017). For example, data analysis has been used for 
predicting outcome of a game (Aoki, Assuncao, & de Melo, 2017), decision support for passing 
in soccer (Power, Ruiz, Wei, & Lucey, 2017), and optimization of a training schedule (Knobbe, 
Orie, Hofman, van der Burgh, & Cachucho, 2017). Commonly used data analysis methods with 
examples from elite sports are introduced in (Ofoghi, Zeleznikow, MacMahon, & Raab, 2013). 
One example of data analysis utilized in talent identification is PECOTA (Player Empirical 
Comparison and Optimization Test Algorithm). It calculates different career paths for baseball 
players and forecasts player’s performance utilizing similarity scores and projection (Silver, 
2003). Another study, focusing on decision making in sport management, used the ordered 
weighted averaging (OWA) operator for selection of players (Merigó & Gil-Lafuente, 2011). In 
addition to talent identification, applications for suggesting the best sports in terms of athlete’s 
individual capabilities have been developed ština, 2009). 

The identification and selection of talented players at an early age is important in many sporting 
events. It will enable offering high-quality coaching and training environments for talented 
players and thereby accelerate their development (Williams & Reilly, 2000). However, the 
identification task, especially in team games, is a very complex process (Reilly, Williams, Nevill, 
& Franks, 2000). In soccer, for example, a great variety of physical features and technical skills 
are needed for success (Reilly et al., 2000). Moreover, psychological skills and characteristics 
also play an important role at elite level (Macnamara & Collins, 2011). Therefore, talent 
identification in sports should be based on a versatile set of variables. 

Furthermore, the datasets in talent identification are inherently imbalanced due to the rarity of 
elite athletes in sports. In practice, this means that there are typically significant differences in 
the number of observations available from different classes (Chawla, Japkowicz, & Kotcz, 
2004), which must be carefully taken into account when designing a machine learning method 
for the case at hand. Imbalanced datasets are common in many other real-life applications as 
well (He & Garcia, 2009). In this study only 14 observations were available for the minority 
class, whereas majority class consisted of almost thousand observations. 

The two main approaches in data analysis are explanatory and predictive modeling (Breiman, 
2001). Many previous studies on talent identification have concentrated on explanatory data 
analysis (Nieuwenhuis, Spamer, & Rossum, 2002; O’Connor, Larkin, & Mark Williams, 2016; 
Woods, Raynor, Bruce, McDonald, & Robertson, 2016). Although differences between talented 
and other players have been found, the predictive power of their models is unclear. Therefore, 
there is a need for models whose predictive power has been evaluated on independent test data. 
This need has also been noticed in other studies, such as the one by Smiths, Lipscomb, and 
Simkins (2007), where a predictive approach is applied on award prediction in baseball, a task 
that has been previously approached with explanatory methods. 

In this research, we studied the potential of machine learning in talent identification, using data 
containing a diverse set of variables. Our goal was to analyze whether potential future elite 
players can be distinguished from majority of the players based on their test information already 
as juniors. Because of the limited number of observations in the minority class, the use of 
supervised machine learning methods would easily lead to overfitting. Therefore, we used one-
class classification approach, where the training stage was completely unsupervised, and 
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information about the class labels was only used in model assessment (Goldstein & Uchida, 
2016).  

Methods 

The target data of this study were collected by The training and research centre for Finnish 
football for monitoring the development of young soccer players. A total of 4991 junior soccer 
players (age mean±std 12.41±1.53 year, range 8-18 year) participated in the specific test events 
organized by the centre between the years 2011 and 2017. Out of the 47 participating teams, 41 
were Finnish, but 293 players came from Sweden, Denmark, England, and the Netherlands. The 
participating Finnish teams are the best of their age group in Finland. 

Each player participated in the test events twice a year together with their team. During the 
events, the players performed physical tests including, e.g., technical, speed, and agility tests. 
Moreover, they completed a self-assessment test including, e.g., perceived competence, tactical 
skills, and motivation. Description of the test protocol can be found in Forsman et al. (2016). 
The physical tests were measured in a continuous scale (such as length of a 5-jump or time of a 
speed test). The questionnaire scale was a discrete 5-point Likert scale concerning sport 
performance, anchored with 1 (almost never) and 5 (almost always). 

Data selection 
Our goal was to investigate how accurately we can detect potential future elite players among 
the large pool of players based on the collected test information. Some of the tested Finnish 
players in our dataset are currently pursuing an international soccer career and have already 
signed a contract with an international academy. In the absence of senior players who have 
reached the absolute elite performance level by playing, e.g., for a national team, these 
international academy players (from now on called ”academy players”) were labelled as talent 
category for the present study. The player categorization was defined by an educated person in 
charge of player development at the training and research centre for Finnish football. The players 
representing other than Finnish teams were excluded from the further analysis due to the 
insufficient information of their current career development. 

All academy players were boys and all of them had performed the tests at the age of 14. For 
these reasons, 14-year-old Finnish boys were selected for our analyses. The age limit for signing 
a contract to an academy is 16 years. Therefore, we dropped out of the study those players born 
in 2003 or later as at the time of this study they could not have a signed contract even though 
they might be future academy players. In the whole dataset, the total number of academy players 
was 26. Twelve of these players were dropped out from the analysis due to the overly many 
missing test results. The final data set included 14 academy players. 

Further pruning of the data set was performed due to a large number of variables with a 
significant proportion of non-random missing values, i.e., they followed not missing at random 
(NMAR) pattern (Little & Rubin, 2002). These missing values were caused, for example, by 
adjustments to the test protocols and questionnaires or inability of a player to participate all the 
test events. 

Finally, the used data representation (called ”phys large”, N=951) consisted of 16 variables in 
which the test results were measured for at least half of the players (see Table 1). Since the 
questionnaire answers were missing from more than half of the players they were not included 
in “phys large”. In order to characterize univariate differences between the academy and 
nonacademy players two-sample t-tests were performed. Normality of the variables was tested 
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using Shapiro-Wilk test (if n < 50) or Kolmogorov-Smirnov test (otherwise). Homogeneity of 
the variances was tested with Levene test. When the assumption on normality failed Wilcoxon 
rank sum test was used. Significance level = 0.05 with Bonferroni correction was used and 
effect size Cohen’s d reported (Cohen, 1988). All test were performed using MATLAB version 
R2016b. 

Table 1: Mean/median and standard deviation of the variables in ”phys large” separately for the 14 academy 
players and 937 non-academy players. A statistically significant difference between the groups was 
found with 5-jump, height, and weight (*p < 0.05,d > 0.8; **p < 0.01,d >0.8). 

Countinous variables Mean (std) of non-
academy 

Mean (std) of academy 

 players players 
5 jump (m)** 10.90 (0.85) 11.69 (0.63) 
Agility (sec) 6.98 (0.58) 6.87 (0.26) 
Countermovement jump (cm) 29.87 (4.58) 32.54 (4.76) 
Driving and shooting (sec) 15.03 (4.19) 13.36 (4.18) 
Speed 10 meters (sec) 1.80 (0.09) 1.74 (0.06) 
Speed 20 meters (sec) 3.19 (0.16) 3.05 (0.10) 
Speed 30 meters (sec) 4.49 (0.25) 4.30 (0.14) 
Speed 5 meters (sec) 1.03 (0.05) 0.99 (0.04) 
Weight (kg)* 55.59 (9.48) 62.41 (5.65) 
Height (cm)** 167.75 (8.93) 176.33 (6.06) 
Juggling (sec) 24.63 (7.58) 22.34 (8.01) 
Dribbling (sec) 25.74 (2.78) 25.20 (1.92) 
Passing (sec) 37.15 (6.12) 34.94 (6.01) 
Gymnastics (points) 12.22 (1.96) 12.05 (2.47) 
Yo-Yo endurance (m) 2248.18 (319.00) 2480.00 (330.32) 
Discrete variable Median of non-academy Median of academy 
 Players Players 
Mobility (1-3) 3 3 

 

In order to investigate the predictive power of questionnaire data, another representation (called 
”phys+quest”) of the data with fewer players (N = 468), but a greater number of variables 
including all the 16 ”phys large” variables and additionally 18 variables from a specific 
questionnaire consisting of self-assessment of perceived competence, was defined (see Table 2). 
The questionnaire measures how the players rate their skills in offense, defense, and one versus 
one situations. Four out of the 14 academy players did not answer the questionnaire and they 
were dropped off. A detailed description of the questionnaire can be found in Forsman et al. 
(2016).  

Table 2: Questionnaire variables used in this study. 

M1. Mean of offensive skill questions 

M2. Mean of 1-on-1 skill questions 

M3. Mean of defensive skill questions 
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Q1. I can schedule my own movement correctly in offensive and defensive play 

Q2. I have clear solution models about how to win 1-on-1 situations 

Q3. I am usually the first player to reach the ball 

Q4. I can easily lose my opponent in different game situations 

Q5. I feel strong in match ups 

Q6. In 1-on-1 situations, I am stronger/faster than my opponent 

Q7. I can accomplish the typical play for my position in defensive play 

Q8. I can, if necessary, help/support my teammates in defensive situations 

Q9. I have a soft ”touch” on the ball 

Q10. I dare to keep the ball to myself even in tight spaces 

Q11. I have clear solution models about how I score in the different situations in the games 

Q12. I can move to the empty spaces on the field, so that my teammates can pass me the ball 

Q13. I can find my teammates with my sharp and accurate passes 

Q14. I can accomplish the typical play for my position in offensive play 

Q15. I know how my teammates are moving in attack situations and it is easy for me to pass   them 
the ball 

 

In order to analyze the predictive power of physical tests and perceived competence self-
assessment independently of each other, the variables in ”phys+quest” were further split into 
two smaller representations consisting of only either physical (called ”phys”, N =468) or 
questionnaire (called ”quest”, N = 468) variables. The number of academy players was ten in 
both presentations. A comparison between ”phys” and ”phys large” representations was 
performed in order to evaluate the effect of sample size to the predictive accuracy. The summary 
of the four data representations is shown in Table 3. 

Table 3: Different representations of the player data analyzed in this study. 

Data 
representation 

N Variables D 

Phys large 951 Physical variables 16 
Phys+quest 468 Physical variables + questionnaire 34 
Phys 468 Physical variables 16 
Quest 468 Questionnaire 18 

 

Data preprocessing 
Prior to model fitting all the physical variables were normalized and the Likert scale 
questionnaire variables were min-max scaled to range [ , ]. After removing observations and 
variables due to NMAR values, the remaining missing values were imputed using a self-
implemented k-nearest neighbor (knn) imputation algorithm on MATLAB (Bishop, 2006). The 
estimate for each missing value was computed as the sample mean of the ten nearest neighbours 
based on Euclidean distance. Although the standard MATLAB knn classier uses k = 1 as default, 
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larger values of k have been found to control noise and perform better. Several studies have 
found the method relatively insensitive to the exact value of k between 10-20 (Beretta & 
Santaniello, 2016; Troyanskaya et al., 2001). In addition, principal component analysis (PCA) 
(Jolliffe, 1986) was used to eliminate correlations from the data. The minimal number of PCs 
which explained at least 90% of the total variance of the data was chosen, as suggested by Jolliffe 
(1986). The number of chosen PCs was ten for ”phys large”, ”phys”, and ”quest”. In the case of 
”phys+quest”, PCs were calculated separately for physical and questionnaire variables yielding 
ten PCs for both subsets, and thereby altogether twenty PCs for ”phys+quest”. 

One-class support vector machine 
Because we only had 14 academy players available for our analysis, training a classifier with 
supervised methods can be highly sensitive to overfitting. For this reason, we trained one-class 
support vector machine (one-class SVM) (Chandola, Banerjee, & Kumar, 2009) to model the 
normal region of the data based only on the observations from the majority class, i.e., the non-
academy players. The trained model can then be used to predict whether new observations 
belong to this normal region or not. 

The primal problem of one-class SVM is (Chang & Lin, 2011): 

min, , 12 + 1
 (1) 

. . ( ) 0,  (2) 

where  is a feature map that transforms data point  into higher-dimensional space,  is a 
weight vector and  an offset parameterizing the region. s are slack variables,  is the number 
of observations, and  is an upper bound on the fraction of training errors. More detailed 
description can be found in (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001). We 
evaluated the performance of one-class SVM (Python’s scikit-learn library, version 0.20.0) using 
16 different combinations of hyperparameters  (0.1, 0.2, 0.3, and 0.4) and  (0.05, 0.1, 0.2, and 
0.4). Radial basis function (RBF) has been found to work best with one-class SVM (Bounsiar & 
Madden, 2014) and was chosen here as the kernel: , = || || , (3) 

where  is the kernel coefficient. To verify the need of non-linearity, a baseline classifier, where 
the RBF-kernel was replaced with the linear kernel, was trained. 

Performance evaluation 
The performance of the different one-class SVM models were assessed with 10-fold cross 
validation. The majority class was first divided into ten folds, one for testing and nine for 
training, and then the players of the minority class were added to each test fold. The learning 
process is unsupervised, because the information from the minority class is used only for 
performance evaluation and not for classifier training. Preprocessing, including normalization, 
knn-imputation and PCA, was performed separately in each fold, first for training data and then 
the obtained parameters were applied to the test cases before predicting the classes. 

As performance metrics, we used the mean area under the receiver operating characteristic curve 
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(AUC-ROC) and the mean area under the precision recall curve (AUC-PR). The mean value of 
the metrics were calculated across all the ten folds. Although AUC-ROC is a widely used 
performance measure in machine learning (Narasimhan & Agarwal, 2013), AUC-PR might be 
a better option for highly imbalanced datasets (Davis & Goadrich, 2006). For both AUC 
measures the ideal classifier would yield the maximum score of one. The AUC-ROC score of a 
completely random classifier is 0.5, whereas the baseline level of AUC-PR depends on the class 
ratio in the data. The per fold AUC-PR baseline values are 0.869 and 0.818 for ”phys+large” 
and the three other representations, respectively. Mean AUC-ROC values were compared with 
Kruskal Wallis test and in case of differences, Tukey’s post-hoc tests were performed. Limit of 
statistical significance was set to p=0.05 and Bonferroni corrected. Based on Kolmogorov-
Smirnov test, the values were not normally distributed.  

In addition, mean sensitivity and specificity values across the test folds were also calculated 
using the default decision threshold. Sensitivity measures the proportion of correctly detected 
academy players, and specificity measures the proportion of correctly detected non-academy 
players. 

Results 

One-class SVM results 
In Table 4, one-class SVM results in the talent identification task are summarized. The highest 
mean AUC-ROC value over the tested hyperparameters was 0.763 for data representation 
“phys large”. For representations ”phys”, ”phys+quest”, and ”quest”, the mean AUC-ROC 
values over the tested hyperparameters were 0.665, 0.643, and 0.585, respectively.  

Table 4: Talent identification results for the proposed one-class SVM classifier using the four different data 
representations. The mean values over hyperparameter combinations and the cross-validation folds are 
reported for each performance measure (AUC-ROC, AUC-PR, sensitivity, specificity). 

 “phys large” “phys” “phys+quest” “quest” 
Mean AUC-ROC 0.763(±0.007) 0.665(±0.016) 0.643(±0.013) 0.585(±0.062) 
Mean AUC-PR 0.960(±0.002) 0.913(±0.009) 0.880(±0.003) 0.313(±0.194) 
Mean sensitivity 0.795(±0.184) 0.732(±0.226) 0.838(±0.120) 0.313(±0.194) 
Mean specificity 0.614(±0.142) 0.520(±0.176) 0.355(±0.235) 0.789(±0.125) 

 

Differences in AUC-ROC values were significant between all data representation (p<0.001), 
except between ”phys” and ”phys+quest” (p=0.113). It can also be observed from the estimated 
accuracies of ”phys” and ”phys+quest” models, that the questionnaire variables did not improve 
the performance of the models. The results obtained with ”phys” and ”phys large” demonstrate, 
in line with the expectations, that the estimated classification performance tends to improve 
along with the number of available observations.  

All the AUC-PR values were in line with the above-mentioned results. Note that in the case of 
AUC-PR, the baseline depends on the class ratio and therefore the results for ”phys” and ”phys 
large” are not directly comparable. When the non-linear kernel was replaced with the linear 
kernel in the one-class SVM classification model, the performance decreased notably for all the 
data representations. The mean of the AUC-ROC values in this case were: 0.548, 0.496, 0.612, 
and 0.582, for ”phys large”, ”phys”, ”phys+quest”, and ”quest”, respectively.  
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Discussion 

The aim of this study was to investigate whether potential future elite soccer players can be 
identified from a large group of players using machine learning and data collected by physical 
and psychological tests in their youth. Application of data-driven approaches to talent 
identification can be generally considered a cumbersome research problem due to the scarcity 
of childhood data from elite players. Previous research on talent identification has focused on 
explanatory methods, i.e., explaining relationships and dependencies between variables without 
assessing generalization abilities of the fitted models on independent observations (Nieuwenhuis 
et al., 2002; O’Connor et al., 2016; Woods et al., 2016). In this study we evaluated the predictive 
ability of the one-class SVM anomaly detection method when trained on four different 
representations of the soccer player test data set.  

The best classification performance (mean AUC-ROC value 0.763) was obtained with the set of 
variables representing physical tests and the greatest number of players (see Table 4). According 
to classification proposed by Youngstrom (2013), this result can be considered as "fair". In 
addition, one might argue that this result is satisfactory considering that the classification model 
has been fitted in an unsupervised manner using only cases from the category of non-academy 
players and tested using independent data (using CV) involving players from both categories. 
Besides, since the number of academy players was limited, one-class SVM hyperparameters  
and  were not optimized in this study, but the average results over multiple classification models 
(trained using several combinations of  and ) were reported. Once more data for classifier 
validation becomes available, model selection based on CV can be applied to improve the current 
results.  

While the estimated sensitivity of the ”phys large” representation in the identification task was 
nearly 0.80, the estimated specificity of 0.614 shows that yet a large proportion of the players 
without an academy contract will likely be misclassified into the class of potential academy 
players. The results prove that there is still a long way to go before talent identification can be 
made by data-driven machine learning tools independently of human expertise. Realistically, the 
goal should not be full automation of the selection process, but rather modeling of the talent 
detection expertise possessed by the best professionals in coaching and player management. 
These data-driven decision support tools may be able to transfer knowledge and enhance 
decision making in local and regional development organizations. 

Several studies have reported relatively high classification performance measures for various 
models, but the results can be optimistic from the predictive ability point of view, as their 
performances have not been tested on independent test observations. A multi-dimensional 
approach for talent identification among young soccer players with AUC-ROC value of 0.954 
was presented by Woods et al. (2016). In O’Connor et al. (2016), 93.7% of young soccer players 
were correctly classified based on selection or nonselection for a full-time elite player 
scholarship. Nieuwenhuis et al. (2002) reported accuracy of 90.5% when young female field 
hockey players were classified as successful or less successful. A web-oriented expert system 
for talent identification in soccer was developed by Louzada, Maiorano, and Ara (2016). It 
applies principal component and factor analysis to compute general scores for the players in real 
time. However, without estimation of the generalization ability on independent test observations, 
the results are not directly comparable to ones presented in this study. 

We also studied the relevance of two different types of tests for measuring players physical and 
psychological abilities by constructing four different representations of the data. The largest data 
representation, ”phys large”, produced the greatest overall classification performance. The 
highest sensitivity was achieved with the most versatile set of variables ”phys+quest”. The 
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representation ”quest” achieved the highest specifity, but the sensitivity was low. While some 
promising players may not become detected due to the low sensitivity, the higher specificity will 
lead to a lower number of false positives. This enables detection of a smaller group of players 
with potentially higher chances to succeed. In small countries, such as Finland, elite soccer 
players are a rarity and higher sensitivity should probably be preferred in order to prevent loss 
of unrecognized talents. Downsizing of the training group can be completed by coaches when 
necessary, and thereby ensure that all the talents receive special attention from their training 
organizations.  

It should be noted that without a doubt some of the players that were assigned in the minority 
class by the SVM model can be potential future elite players, but they have been still too young 
for signing a contract at the time of this study. In addition, even if a player shows exceptional 
potential at the age of 14, numerous factors, such as maturity, injuries, coaching/scouting, or 
decision about whether to stay in Finland to finish school, affects her/his future as an elite soccer 
player. This is a limitation of this study, and must be taken into account when interpreting the 
results. 

Another limitation of this study is the high number of missing values. Our results indicate that 
the performance of the model can be improved when more players will be available in both 
minority and majority classes. Thus, in the future, we can expect improvements due to the 
continuous accumulation of the data. In addition, some of the included players may sign a 
contract with a soccer academy after this study, which will enable further improvement to the 
current models. Moreover, increase in the size of the minority class would enable more thorough 
validation of the one-class model, or even use of supervised machine learning methods. Also, 
with larger data it can be possible to utilize different classifications as well, for example look at 
whether the player made it into the national team.  

Furthermore, many of the relevant observations were incomplete. For instance, the self-
assessment questionnaire measuring the player’s motivation could improve the classification 
performance, but in the present study these variables had to be discarded due to missing values. 
These missing values were caused by refinement and changes in the questionnaires and tests 
over the years as well as the fact not all questions were compulsory to answer. These issues have 
been considered and in the future, more complete data will be attained. Also, with more research, 
the most relevant features can be detected to improve the model. In the long-term perspective, it 
might become possible to include even more complex data types, such as player tracking or 
video data, to the machine learning process.  

In this study, the parameters of the missing value imputation and dimension reduction methods 
were fixed based on the existing literature. However, data-based optimization of the parameters 
might improve the performance of the models.  
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Conclusion 

Identifying talented athletes at young age is an interesting but difficult problem to be successfully 
solved by machine learning. Accurate identification may, however, enable better career 
development and level of performance for talented players. In this study, an unsupervised 
anomaly detection method, one-class SVM, was used to detect potential elite soccer players 
based on their test data in youth. The best results (mean AUC-ROC 0.763) were achieved when 
the largest dataset including physical test measurements was used. Considering the size and 
quality of the available data the present results are promising, but not yet able to provide practical 
tools to the field. The results also suggest that non-linear methods might be more efficient in the 
talent identification task than linear ones. Follow-up studies should focus on repeating the study 
with larger number of players and a more versatile set of variables.  
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New machine learning approach for detection of injury risk factors in 
young team sport athletes 

Abstract 

The purpose of this article is to present how predictive machine learning methods can be utilized for 

detecting sport injury risk factors in a data-driven manner. The approach can be used for finding new 

hypotheses for risk factors and confirming the predictive power of previously recognized ones. We 

used three-dimensional motion analysis and physical data from 314 young basketball and floorball 

players (48.4% males, 15.72±1.79yr, 173.34±9.14cm, 64.65±10.4kg). Both linear (L1-regularized 

logistic regression) and non-linear methods (random forest) were used to predict moderate and severe 

knee and ankle injuries (N=57) during three-year follow-up. Results were confirmed with permutation 

tests and predictive risk factors detected with Wilcoxon signed-rank-test (p<0.01). Random forest 

suggested twelve consistent injury predictors and logistic regression twenty. Ten of these were 

suggested in both models; sex, body mass index, hamstring flexibility, knee joint laxity, medial knee 

displacement, height, ankle plantar flexion at initial contact, leg press one-repetition max, and knee 

valgus at initial contact. Cross-validated areas under receiver operating characteristic curve were 0.65 

(logistic regression) and 0.63 (random forest). The results highlight the difficulty of predicting future 

injuries, but also show that even with models having relatively low predictive power, certain 

predictive injury risk factors can be consistently detected. 

Keywords: Sport medicine, Predictive methods, Machine learning, Knee injuries, Ankle injuries, 

Basketball and floorball  



1. Introduction 

Sport injuries are very common across different sports, among both elite and recreational athletes [1–

3]. They can have significant effects on the health and performance and may even cause prolonged 

problems in persons life [3]. Sport injuries can lead to, for example, pain, loss of playing or working 

time, and decreased motility and stability [3]. The incidence rate of some injuries, such as the anterior 

cruciate ligament (ACL) injury, is a growing case of concern [4]. Effective prevention of injuries 

presumes that the most relevant risk factors are found. Even though many intrinsic and extrinsic risk 

factor have been identified, there is no clear consensus with the findings [5]. 

A large majority of existing sport injury studies rely on explanatory analysis approach [6, 7]. 

Explanatory methods have played an important role in the development of sport injury research and 

will be needed in future research as well. They are used when the purpose is to explain or understand 

data or phenomena of interest. However, high explanatory power does not necessarily imply high 

predictive power [8]. Therefore, risk factors that are identified by explanatory methods only 

demonstrate a statistically significant association with injuries, but might not have predictive power 

on them [6, 7].  

Another limitation of explanatory analysis is that they often focus on a small number of variables and 

their linear associations with injuries in isolation. However, underlying causes behind sport injuries 

have been considered to be multifactorial, indicating that a high number of variables and their inter-

relationships should be considered [9, 10]. It has also been suggested that using cut-off values and 

studying only linear interactions between isolated variables can not successfully identify injury 

predictors, but more complex models should be applied [11]. To overcome these limitations, 

predictive analysis should be utilized alongside explanatory methods. This has been previously 

suggested specifically for sport injury research as well [12]. 

Predictive analysis focuses on predicting new or future observations from data [8]. By exploiting 

computational power, predictive methods are able to analyze a larger set of variables including their 

interactions and nonlinear relationships as well as to efficiently remove redundant variables from a 



model. Therefore, they can be used for generating new hypotheses for sport injury risk factors in a 

data-driven manner.  

In predictive analysis, the generalization ability of a model should always be assessed on independent 

test data, i.e., data that have not been used in the training phase. This measures how accurate the 

trained model will be on new unseen observations and only after this validation can any conclusions 

about the predictive power be drawn [8]. In addition, when constructing a predictive model it is 

necessary to confirm that the prediction results were significantly above the random chance level. 

This kind of confirmatory analysis is especially relevant with smaller sample sizes. If this issue is not 

considered, in the worst case it can lead to false interpretations and conclusions. For example, in 

neuroscience the problem has been widely recognize [13]. One way to confirm significance of the 

models and relevance of the chosen predictors are permutation tests [13]. 

Another important issue related to predictive analysis is the explainability of a model. Explainability 

means that the model somehow explains its predictions, for example, gives information on how 

individual variables contribute to the prediction outcome, and does not only predict as black box [14]. 

Explainable models and their predictions are more informative, easier to trust, and therefore can 

provide more practical benefits. A term widely used with sophisticated machine learning methods is 

Explainable Artificial Intelligence (XAI) [14]. In some domains, such as medicine, model 

explainability is considered highly important [15] and should be pursued in sport science and 

medicine as well. 

During the last couple of years, the first studies using predictive analysis in sport injury research have 

been conducted [6, 9, 16, 17]. The previous studies have, however, focused solely on the prediction 

task without paying attention to the explainability of the models. In addition, two of the studies also 

used a very low number of variables (from three to eleven), although a larger set might have increased 

the accuracy [9, 16]. The need and potential of predictive machine learning methods in sport injury 

prediction have been recognized but more research is needed [12, 17]. 



Therefore, the aim of this study is to utilize predictive machine learning methods to detect variables 

with predictive power on sport injuries. We present a framework that can be used to detect consistent 

injury predictors in a data-driven manner and validate their predictive power on independent test data. 

Consistent means that the variable is constantly chosen as an important predictor in the used model. 

Our framework utilizes both linear and non-linear classification methods, namely L1-regularized 

logistic regression and random forests, to predict moderate and severe knee and ankle injuries. 

Generalization ability of these models is assessed with 10-fold cross-validation. A reference model 

based on randomized labels is constructed to confirm that the observed prediction performance is not 

achieved by chance. Consistent injury predictors are detected with Wilcoxon signed-rank test. This 

approach can be used for finding new hypotheses for injury risk factors as well as confirming the 

predictive power of previously recognized risk factors. Our secondary aim is to compare linear and 

non-linear methods for the task.  

2. Methods 

2.1. Participants 

The data were collected in the Predictors of Lower Extremity Injuries in Team Sports (PROFITS) 

study [18]. The study was conducted in accordance with the Declaration of Helsinki and was 

approved by the Ethics Committee of the Pirkanmaa Hospital District, Tampere, Finland (ETL-code 

R10169). The authors declare that this study meets the ethical requirements of the journal [19]. 

Altogether 175 basketball and 139 floorball youth (12-21 years) players, including 162 females 

(15.44±1.95 years, 167.92±6.44 cm, 60.86±8.58 kg) and 152 males (16.03±1.59 years, 179.13±8.00 

cm, 68.68±10.76 kg) from the two highest junior league levels of the Tampere city district, Finland, 

were recruited. To be included they had to be official team members (i.e., have valid playing contract 

and licenses), 21 years old or younger at baseline, and free from injury at baseline. Information about 

previous injuries, their treatment, and whether the player was fully recovered were assessed with a 

baseline questionnaire. The players entered the study during the preseason in 2011, 2012, or 2013. 



They signed a written informed consent form before inclusion (including parental consent for players 

aged ≤18 years).  

2.2. Data collection 

At baseline, each player participated in physical tests including a vertical drop jump (VDJ) (3D 

motion analysis), height, weight, isokinetic concentric quadriceps and hamstring strength, isometric 

hip abductor strength, one repetition maximum (1RM) leg press, knee joint laxity (KT-1000), 

generalized joint laxity (Beighton scale), genu recurvatum, navicular drop, hip anteversion, and 

hamstring flexibility (for more details see Supplementary Table 1 and online supplementary 

appendices in [18]). 

The VDJ was performed from a 30-cm box. Players were instructed to drop off the box and perform a 

maximal jump upon landing with their feet on two separate force platforms (BP6001200; AMTI). The 

3D motion analysis was carried out using sixteen reflective markers placed over anatomic landmarks 

on the lower extremities according to the Plug-In Gait Marker set (Vicon Nexus v.i.7; Oxford 

Metrics) and eight highspeed cameras (Vicon T40). Kinetics and kinematics variables were extracted 

using the Vicon Nexus Plug-in Gait model. Medial knee displacements were extracted using a custom 

MATLAB script (MathWorks Inc). For more detailed description of the motion data collection and 

variable extraction see [18, 20].  

The injury definition was based on the time-loss definition by Fuller et al. [21]. We focused on 

moderate to severe acute non-contact knee and ankle injuries that resulted in an athlete being unable 

to fully participate in training or match play for at least 8 days. Non-contact injury was defined as an 

injury which occurred without direct contact to the injured body part. Injuries were recorded by a 

team coach or another designated team member. For injury registration, the study physicians 

contacted the team coach or designate on a weekly basis by phone or email. Designate was someone 

who was always present at practice and matches, e.g., head, assistant, or strength and conditioning 

coach, team manager, or physiotherapist. The study physicians contacted the athlete after each injury 

and collected information about the injury time, place, cause, type, location, and the time-loss due to 



the injury in a standardized phone interview. For exposure registration, the team coaches recorded 

player participation in team practice and game play and emailed the records to the study group at the 

end of each month. 

2.3. Data preprocessing 

All data analysis was performed with MATLAB R2016b (MathWorks Inc) and classification methods 

run with the Statistics and machine learning toolbox 11.0. For classification, the players with 

moderate and severe acute ankle and knee injuries formed the first group (group A, n=57) and players 

with no injuries formed the other (group B, n=257). Athletes with mild injuries (time-loss ≤7days, 

n=21) were excluded from the analysis. Altogether 58 variables were chosen for further analysis by a 

group of experts in sport medicine, including a sports medicine researcher and four clinical 

researchers (one physiotherapist and three physicians). Four variables had more than 50% of missing 

values (iliopsoas and quadriceps extensibility from both legs) as they were added to the test patterns 

only in the second year of testing and these were excluded from the analysis, resulting into 54 

variables. The chosen variables are described in the Supplementary Table 1. 

After dropping out irrelevant and sparse variables, 22 variables with missing data remained and were 

imputed with K-nearest neighbour imputation with k value of 10. On average, each of these 22 

variables had five missing values (1.6% of the 314 observations). Data was normalized to have mean 

of zero and standard deviation of one for each column. The variables that had been measured 

separately for both right and left legs were transformed to dominant (leg used for kicking a ball) and 

non-dominant leg variables. 

2.4. Choice of classification methods 

Two commonly used methods, random forest and L1-regularized logistic regression, were chosen for 

the binary classification task in our framework. These methods were selected because of their inbuilt 

variable importance features. Random forest is a nonlinear classification and regression method that 

has become a standard data analysis tool in different fields such as medicine and bioinformatics [22] 

and has been used in sport injury research as well [23]. It is based on building an ensemble of multiple 



decision trees [24]. The model was trained with a hundred trees [24] and the minimum number of 

observations per tree leaf and the number of predictors to sample at each split were chosen with 

Bayesian optimization. To estimate the predictive power of the variables, we recorded and analyzed 

the out-of-bag estimates of variable importance [24].  

L1-regularized logistic regression, in turn, is a linear classification method that has been used to 

model sport injury outcomes [23]. A benefit of this method is that it is capable of automatically 

discarding redundant and/or irrelevant variables from the model. This is done by penalizing the model 

with the L1 norm and as a result, some of the variable coefficients tend to shrink to exactly zero. The 

optimal amount of penalization was estimated with stratified 10-fold cross-validation.  

Variable importance for logistic regression was based on the variable coefficient values. We analyzed 

whether a variable was chosen as a predictor in the model, i.e., the variable coefficient was not shrunk 

to zero. Variable importance was then the number of times the variable was chosen over the ten CV 

folds (a value between zero and ten). The sign of each variable coefficient was also assessed in order 

to perceive whether the variable decreased or increased the injury risk.  

2.5. Validation 

Generalization ability of our models was assessed with 10-fold cross-validation (CV). K-fold CV is 

based on randomly splitting the data into K sets and leaving each set at a time for testing while the 

rest of the sets are used to train a model. Test performance was assessed with Area Under the 

Receiver Operating Characteristics Curve AUC-ROC [25]. It is based on both true positive and false 

positive rates and it can be used with imbalanced class distributions which is the case in our data. 

AUC-ROC provides a value 1.0 for perfect prediction and 0.5 for purely random prediction.  

AUC-ROC and variable importance values were estimated by ten-fold cross-validation. 

Normalization and imputation of the training data were done separately inside each fold and the test 

data were then normalized using coefficients estimated from the training data. Because K-fold CV is 

based on random splitting of the data, there is variation in the K-fold validation estimates [26]. 



Therefore, the analysis was repeated a hundred times and results were averaged over the runs to 

obtain a more reliable estimate for the generalization ability. 

2.6. Confirmatory data analysis 

To confirm the significance of our results, permutation tests were used [13]. A reference model was 

constructed by randomly shuffling the class labels in the training data. By comparing the outcome of 

the true models to the distribution of values from the random models we confirmed that the 

performance was not observed by chance. In addition, we can detect significantly consistent injury 

predictors by comparing the variable importance of the true and the random reference models. If a 

variable is consistently important in the true model, but not in the reference model, that confirms its 

significance in the prediction.  

To confirm the significance of obtained performance, a paired comparison between AUC-ROC values 

of the true and random model from a hundred repeated 10-fold CV runs was conducted based on a 

Wilcoxon signed-rank test. In each CV run, the fold divisions were kept the same for random and true 

models to allow fair pairwise comparison.  

To detect significantly consistent injury predictors, we compared the variable importance values. 

Again, the values from the hundred repetitions were compared between the random and true models 

but with Wilcoxon signed-rank test. The limit of significance was set to α=0.01 and corrected with 

Bonferroni correction. The used framework is summarized in Figure 1. 



 
Figure 1. Framework of the proposed predictive analysis approach. 

3. Results 

3.1. Random forest 

Random forest suggested twelve consistent injury predictors (p < 0.01). The variable importance 

values averaged over the CV folds and hundred repeated runs can be seen in Figure 2. The larger the 

importance value, the greater the importance of the variable is for the prediction task. By comparing 

the values between true and randomized results, variables with true predictive power can be detected. 

If the value of true model is significantly larger than the value of random model, its predictive power 

is not likely result of chance or noise in data. Negative values indicate the variable was not important 

in prediction. 

As seen in the figure, sex, hamstring flexibility (both dominant and non-dominant legs), body mass 

index (BMI), KT1000 (dominant leg), and height show the highest random forest importance values. 

Other suggested predictors include leg press 1RM, knee valgus at IC (dominant leg), knee flexion 

peak (non-dominant leg), medial knee displacement (dominant leg), ankle flexion at IC (dominant 

leg), and navicular drop (non-dominant leg).  



The mean AUC-ROC value for random forest was 0.63 (0.94 for the training data). The AUC-ROC 

values were higher (p<0.001) with real responses than the randomized ones (mean AUC-ROC 0.48), 

which confirms the significance of the random forest models.  

 

Figure 2. Variable importance values from random forest. Blue bars correspond to the results with real 
response, red ones with randomized response. 

 

 



3.2. Logistic regression 

Figure 3 shows the variables chosen most frequently as predictors in the L1-regularized logistic 

regression. The bars represent the number of CV folds where a variable was chosen for the predictive 

model (i.e., its coefficient was not shrunk to zero). As can be seen in the figure, a part of variables 

were chosen for prediction in almost every CV split , whereas the others were regarded as not 

important and their coefficients shrunk to exactly zero. Twenty variables were suggested as consistent 

injury predictors (p<0.01) with the logistic regression model. 

The suggested variables were sex, BMI, hamstring flexibility (both legs), KT1000 (dominant leg), hip 

flexion peak (dominant leg), medial knee displacement (both legs), vertical ground reaction force 

(vGRF) (both legs), height, knee flexion at IC (non-dominant leg), ankle flexion at IC (both legs), leg 

press 1RM, hip flexion moment peak (non-dominant leg), previous injuries of non-dominant knee, 

knee valgus at IC (dominant leg), knee valgus peak (non-dominant leg), and knee flexion moment 

peak (non-dominant leg). In the figure, these are the twenty variables with the highest frequency 

value. 

The mean AUC-ROC value for logistic regression models was 0.65 (0.76 for the training data). The 

AUC-ROC values were higher (p<0.001) with real responses than the randomized ones (mean AUC-

ROC 0.50). 



Figure 3.Variable importances for L1-regularized logistic regression. Measured as the number of times 
each variable was chosen over the ten CV folds. Blue bars correspond to the results with real 
response, red to the randomized response 

3.3. Logistic regression coefficients 

Whenever a variable was chosen to the logistic regression model, the direction of the coefficient was 

extremely consistent, always either positive or negative. Therefore, over all the folds and a hundred 

runs, the variable always had a similar effect on the prediction, i.e., it either increased or decreased the 

risk of injury. Directions of variable coefficients for the ten most often selected variables, as well as 

those that were found by both models, can be seen in Table 1.  



Based on the coefficients, female sex contributes to bigger risk than male (male=1, female=2 in data) 

as well as larger BMI, lower height, and higher leg press 1RM result. Higher hamstring flexibility and 

vGRF of both legs increase the risk of injury. The higher value of KT1000 of dominant leg as well as 

higher hip flexion peak and knee flexion at IC of non-dominant leg also contribute to the injury risk. 

Less ankle plantar flexion (negative values) and larger knee valgus angle (negative values) of the 

dominant leg contribute to the higher risk. Interestingly for medial knee displacement, the direction 

was different between the legs. For non-dominant leg, higher medial knee displacement increased the 

risk but for dominant leg, a lower value increased it. 

Table 1. The number of coefficients with positive, negative and zero values over the ten folds and 
hundred runs. 

Variable Positive Negative Zero 

Sex 0 999 1 

Body mass index 968 0 32 

Hamstring flexion non-dominant 957 0 43 

KT1000 dominant 911 0 89 

Hamstring flexion dominant 831 0 169 

Hip flexion peak dominant 648 0 352 

Medial knee displacement non-dominant 552 0 448 

Vertical ground reaction force non-dominant 539 0 461 

Medial knee displacement dominant 0 494 506 

Height 0 485 515 

Knee flexion IC non-dominant 375 0 625 

Ankle flexion IC dominant 318 0 682 

Leg press one repetition maximum 230 0 770 

Knee valgus IC dominant 0 169 831 

Vertical ground reaction force dominant 126 0 874 

3.4. Consistent injury predictors chosen by both methods 

The following ten variables were suggested as consistent injury predictors (p<0.01) by both models: 

sex, body mass index, hamstring flexibility (non-dominant leg), KT1000 (dominant leg), hamstring 

flexibility (dominant leg), medial knee displacement (dominant leg), height, ankle (plantar) flexion at 

IC (dominant leg), leg press one repetition maximum (1RM), and knee valgus at IC (dominant leg). 



4. Discussion 

The purpose of this study was to utilize predictive machine learning methods to detect variables with 

predictive power on sport injuries. Multiple injury risk factors have been recognized in previous 

explanatory studies, but the predictive power of these variables remains unclear until tested on 

independent data. We presented a framework that detects consistent injury predictors in a data-driven 

manner and validates their predictive power on independent test data. This approach can be used for 

finding new hypotheses for injury risk factors as well as confirming the predictive power of 

previously recognized risk factors. Any new hypotheses should then be confirmed by domain experts 

in future studies, utilizing explanatory methods as well. 

Despite the low predictive accuracy (AUC=0.65), a set of ten consistent injury predictor variables was 

detected by both models. The obtained AUC score is in line with the previous studies [6, 9, 16, 17] 

and confirms the difficulty of predicting sport injuries. A recently published predictive analysis study 

that compared different methods and their injury prediction accuracies, obtained an AUC score of 

0.747 when predicting lower extremity muscle injuries in 132 male professional soccer and 

handball players [9]. A paper by Dower and colleagues [17] utilized time series data and artificial 

neural networks, achieving AUC scores between 0.75 and 0.80 on average when predicting soft tissue 

injuries in Australian football players. 

Another study found that previously detected risk factors with explanatory power had a very poor 

predictive performance (median AUC scores 0.57 and 0.52) on hamstring strain injuries in 362 elite 

Australian footballers [16]. However, this study used a small number of variables in the prediction 

(three and eight). In addition, previous studies have focused solely on the prediction task, without 

considering the explainability of the predictive model. Explainable models, assessing, for example, 

the effect of each variable in prediction, are easier to trust and provide more practical information to 

the domain experts.  

Most of the injury predictor variables suggested in our study are supported by previous research. Our 

results suggest that female sex, larger BMI, and lower height increased the risk of acute non-contact 



knee and ankle injury. Previous explanatory research has detected similar associations with lower 

extremity sport injuries [2, 5, 27, 28]. For muscle flexibility, there are contradicting findings [5, 29]. 

Our results propose that increased hamstring flexibility of both dominant and non-dominant leg 

contribute to larger risk of acute non-contact knee and ankle injury. 

Concerning the association between muscle strength and sport injury risk, the findings are conflicting 

[30, 31]. Our study found higher leg press 1RM to be associated with higher injury risk. This could 

be, for example, because stronger athletes exert greater forces and moments to the joints and muscles 

during activity; are more mature; and tend to train more and perform at higher levels. Also, our 

findings that increased knee laxity (KT-1000) and less ankle plantar flexion at IC of the dominant leg 

contribute to higher injury risk have been previously recognized [32, 33].  

Our results suggest that larger knee valgus and medial knee displacement of non-dominant leg 

increase the risk of acute non-contact knee and ankle injury. Associations between knee valgus 

loading and risk of lower extremity injuries have been found previously [34]. However, our results 

also suggested that smaller medial knee displacement of the dominant leg increased the risk, which is 

contradictory to the results of the non-dominant leg. In the group of non-injures athletes, the medial 

knee displacement of dominant leg is notably larger than with the non-dominant leg. In the injured 

group, there is no such difference (see Supplementary Table 1). This side difference is causing the 

conflicting regression coefficients inside the framework. However, such side differences were not 

observed in the knee valgus angles. This might be due to the medial knee displacement being more 

sensitive towards the athlete rotating during landing. In our data, approximately 74% of the athletes 

rotated towards the side of their dominant leg during VDJ. Another possible explanation might simply 

be differences in the use of dominant and non-dominant leg.  

Our secondary aim was to assess differences between linear and non-linear methods. In our prediction 

task, the predictive accuracy of the linear L1-regularized logistic regression was slightly better 

(AUC=0.65) than the accuracy of the non-linear random forest model (AUC=0.63). The difference is, 

however, negligible for drawing conclusion of their mutual superiority. The suggested injury risk 



factors were largely the same for both models, but logistic regression suggested a larger set of 

predictors. Generally, we believe it can be beneficial to utilize a combination of methods to detect the 

most relevant injury risk factors.  

The strength of our approach is that with predictive methods and confirmatory analysis, consistent 

injury predictors can be detected even from data with weak phenomena. For example, with small 

datasets the approach can help to avoid findings by chance. Thus, it can be useful in other sport 

science and medicine studies as well, even though the used data does not necessarily possess high 

predictive power or strong phenomena itself. Another strength is the prospective data collection of a 

large number of variables from a large cohort of athletes. Predictive methods utilize computational 

power and thus enable analysis of all relevant data and do not require exclusion based on prior 

assumptions. In addition, our study uses a well defined prediction outcome of moderate and severe 

knee and ankle injuries which risk factors have been established in explanatory research previously. 

However, there are also limitations related to the used data. After baseline data was collected, the 

injury follow-up lasted for 12 months. Many of the collected variables might, however, change 

notably during this period, especially in young athletes [10]. In the future, more comprehensive data 

that observes short-term changes in variables should be collected as there can be changes, for 

example, based on the time in season and weekly training and game loads. Wearable technologies, for 

example, allow continuous monitoring of athletes. It can be expected that time series data from 

wearable devices combined with applicable predictive methods will increase the prediction accuracy 

as the study by Dower et al. indicated [17]. 

To conclude, in order to have practical value in the clinical assessment of injury risk, the predictive 

accuracy of the presented models that were trained on the prospective data should be improved. The 

models were, however, able to detect a set of consistent injury predictors. Thus, the approach can be 

useful for finding new hypotheses for injury risk factors as well as confirming the predictive power of 

risk factors found in previous explanatory studies. While the achieved predictive accuracy of our 

study remained relatively low (AUC=0.65), a set of ten consistent injury predictor variables was 



detected by both models (sex, body mass index, hamstring flexibility, knee joint laxity, medial knee 

displacement, height, ankle plantar flexion at initial contact, leg press one-repetition max, and knee 

valgus at initial contact). The obtained accuracy is in line with previous studies and confirms that 

predicting sport injuries is a cumbersome task. More research is required to find risk factors that best 

predict injury and to include more comprehensive data. The obtained performance was similar 

between the linear and non-linear methods. Future research is needed to assess the suitability and 

performance of linear versus non-linear methods in sport injury prediction tasks. 
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Supplementary table: Variables used in this study. For more detailed description see (1) and supplementary material therein. VDJ stands for the 3D motion analysis for vertical drop jump. 

Variable name (unit) Test  Mean non-
injured 

Mean injured Description 

Height (cm) Anthropometric 174.05±9.22 170.15±8.12 Height 

Weight (kg) Anthropometric 64.63±10.77 64.72±8.90 Weight 

BMI (kg/ ) Anthropometric 21.26±2.62 22.31±2.15 Body mass index 

Anteversion dominant (deg) Joint anatomy 9.05±6.08 9.06±5.61 Femoral anteversion. Measured with Craig’s test (2). The 
athlete lies in prone position while physiotherapist passively 
flexes the knee to 90°. The hip is passively rotated internally 
and externally until the most lateral portion of the greater 
trochanter is palpable. In this position, the angle between the 
true vertical and the shaft of the tibia is measured to the 
nearest degree with a universal goniometer (Absolute+Axis™ 
Baseline® Evaluation Instruments, White Plains, NY, USA). 
Dominant leg. 

Anteversion non-dominant (deg) Joint anatomy 9.28±6.24 8.81±5.83 Femoral anteversion (see the description above). Non-
dominant leg 

Knee valgus IC dominant (deg) VDJ  6.65±8.66 3.39±7.92 Knee valgus at initial contact (negative value refers to valgus 
alignment and positive value to varus alignment). Dominant 
leg. 

Knee valgus IC non-dominant (deg) VDJ 7.61±9.09 3.80±7.55 Knee valgus at initial contact (negative value refers to valgus 
alignment and positive value to varus alignment). Non-
dominant leg. 

Knee valgus peak dominant (deg) VDJ -4.49±8.29 -6.84±8.71 Peak knee valgus during contact (negative value refers to 
valgus alignment and positive value to varus alignment). 
Dominant Leg. 

Knee valgus peak non-dominant (deg) VDJ -3.98±7.85 -5.33±8.23 Peak knee valgus during contact (negative value refers to 
valgus alignment and positive value to varus alignment). 
Nondominant. 

Knee flexion IC dominant (deg) VDJ 28.71±9.82 29.84±9.22 Knee flexion at initial contact. Dominant leg 

Knee flexion IC non-dominant (deg) VDJ 28.52±10.59 30.60±10.98 Knee flexion at initial contact. Non-dominant leg 

Knee flexion peak dominant (deg) VDJ 84.19±10.15 85.13±10.44 Peak knee flexion during contact. Dominant leg 

Knee flexion peak non-dominant (deg) VDJ 84.24±10.41 85.38±9.84 Peak knee flexion during contact. Non-dominant leg 



Vertical ground reaction force dominant (N) VDJ 1182.39±330.66 1251.04±384.07 Peak vertical ground reaction force during contact. Dominant 
leg 

Vertical ground reaction force non-dominant 
(N) 

VDJ 1139.01±311.46 1210.93±342.44 Peak vertical ground reaction force during contact. Non-
dominant leg 

Knee abduction moment peak dominant (N·m) VDJ -32.76±20.63 -34.27±21.87 Peak knee abduction moment during contact. Dominant leg 

Knee abduct moment peak non-dominant (N·m) VDJ -31.06±17.88 -33.29±19.83 Peak knee abduction moment during contact. Non-dominant 
leg 

Medial knee displacement dominant (mm) VDJ 24.57±20.93 21.93±18.36 Medial knee displacement during contact. Dominant leg 

Medial knee displacement non-dominant (mm) VDJ 17.74±18.73 22.80±20.88 Medial knee displacement during contact. Non-dominant leg 

Hip flexion peak dominant (deg) VDJ 65.50±11.66 69.12±12.52 Peak hip flexion during contact. Dominant leg 

Hip flexion peak non-dominant (deg) VDJ 65.77±11.75 68.77±12.97 Peak hip flexion during contact. Non-dominant leg 

Ankle dorsiflexion dominant (deg) VDJ 43.32±7.07 41.81±7.30 Peak ankle dorsiflexion during contact. Dominant leg 

Ankle dorsiflexion non-dominant (deg) VDJ 42.30±6.82 41.41 ±7.90 Peak ankle dorsiflexion during contact. Non-dominant leg 

Ankle flexion IC dominant (deg) VDJ -8.53±10.10 -6.96±11.32 Ankle flexion at initial contact (negative value refers to 
plantar flexion and positive value to dorsiflexion) 

Ankle flexion IC non-dominant (deg) VDJ -8.63±9.51 -7.59±9.97 Ankle flexion at initial contact (negative value refers to 
plantar flexion and positive value to dorsiflexion). Non-
dominant leg 

Hip flexion IC dominant (deg) VDJ 43.35±10.83 45.70±10.89 Hip flexion at initial contact. Dominant leg 

Hip flexion IC non-dominant (deg) VDJ 43.50±11.42 46.00±10.62 Hip flexion at initial contact. Non-dominant leg 

Knee flexion moment peak dominant (N·m) VDJ 135.95±44.84 140.36±37.29 Peak knee flexion moment during contact. Dominant leg 

Knee flexion moment peak non-dominant 
(N·m) 

VDJ 127.40±45.18 134.01±39.59 Peak knee flexion moment during contact. Non-dominant leg 

Hip flexion moment dominant (N·m) VDJ 205.41±76.08 219.07±84.29 Peak hip flexion moment during contact. Dominant leg 

Hip flexion moment non-dominant (N·m) VDJ 205.77±70.05 219.65±72.86 Peak hip flexion moment during contact.Non-dominant leg 

Hamstring flexion dominant (degree) Muscle 
extensibility 

136.45±15.75 146.35±14.91 Hamstring flexibility. The athlete is lying in supine position, 
while the hip of the testing leg is fixed at 120° flexion. Three 
landmarks are placed on the leg: lateral fibular malleolus, 
lateral femoral epicondyle and the greater trochanter of femur. 
The knee is extended passively with an 8kg load (a fish scale, 
Salter Super Samson, Taylor Precision Products, Inc., Illinois, 



USA). A goniometer (HiRes, Baseline® Evaluation 
Instruments, White Plains, NY, USA) is placed to point of 
knee joint line and flexibility is measured as static range of 
motion. Dominat leg 

Hamstring flexion non-dominant (degree) Muscle 
extensibility 

136.85±15.57 146.51±14.29 Hamstring flexibility (see the description above). Non-
dominant leg 

Hip strength dominant (kg) Strength 13.00±3.49 12.35±2.74 Maximum isometric hip abductor strength, tested with a hand-
held dynamometer (Hydraulic Push-Pull Dynamometer, 
Baseline® Evaluation Instruments, White Plains, NY, USA). 
Dominant leg 

Hip strength non-dominant (kg) Strength 12.74±3.56 12.23±3.30 Maximum isometric hip abductor strength (see the description 
above). Non-dominant leg 

Isokinetic extension dominant (kg) Strength 162.71±38.81 158.44±32.88 Maximum isokinetic strength, tested with Biodex Multi-Joint 
System Pro dynamometer (Biodex System 4, Biodex Medical 
Systems, Inc., Shirley, NY, USA), extension of dominant leg 

Isokinetic extension non-dominant (kg) Strength 156.94±36.71 156.91±30.60 Maximum isokinetic strength (see the description above), 
extension of non-dominant leg  

Isokinetic flexion dominant (kg) Strength 98.01±23.15 97.52±20.09 Maximum isokinetic strength (see the description above), 
flexion of dominant leg 

Isokinetic flexion non-dominant (kg) Strength 96.05±22.66 97.37±20.16 Maximum isokinetic strength (see the description above), 
flexion of non-dominant leg 

Leg press one repetition maximum (kg) Strength 170.82±50.49 174.52±45.99 One repetition maximum leg press 

Navicular drop dominant (mm)  0.69±0.43 0.65±0.38 Navicular drop of dominant leg 

Navicular drop non-dominant (mm)  0.71±0.45 0.66±0.36 Navicular drop of non-dominant leg 

Exposure (h) Team diary 202.53±96.88 188.08±85.26 Total exposure time from practices and games (practice and 
game hours). Collected individually for each participant. 

Age (yr) Baseline 
Questionnaire 

15.68±0.50 15.93±1.99 Age 

Genu recurvatum dominant (deg) Anatomical 
characteristics 

4.93±4.24 5.58±3.41 Genu regurvatum/knee hyperextension, dominant leg. The 
athlete lies in supine position and a small bolster is placed 
under the distal aspect of the tibia. The anterior and posterior 
portions of the lateral knee joint line are palpated and a mark 
placed at the midpoint in the sagittal plane. The most 
prominent aspect of the lateral malleolus and the greater 
trochanter are palpated and marked. A goniometer (HiRes 
goniometer, Baseline® Evaluation Instruments, White Plains, 
NY, USA) is used for measurement. The axis of the 



goniometer is positioned over the mark on the joint line, and 
the angle formed by a line from the lateral joint line to the 
greater trochanter. A line from the lateral joint line to the 
lateral malleolus is measured to the nearest degree with a 
goniometer. 

Genu recurvatum non-dominant (deg) Joint anatomy 5.17±4.08 5.33±3.56 Genu regurvatum (see the description above). Non-dominant 
leg 

KT1000 dominant (mm) Joint laxity 6.70±2.04 7.35±2.28 Knee joint laxity, dominant leg. The KT-1000 arthrometer 
(MEDmetric Corp, San Diego, California) is used to measure 
anterior-posterior (A-P) knee laxity (A-P displacement of the 
tibia relative to the femur). The athlete is in a supine position 
and the knee joint space line is marked medially with the knee 
in slightly flexed position (25° ± 5°). First, posterior-directed 
forces are applied to the tibia to establish a zero reference 
point, followed by anterior-directed forces (134 N) to measure 
anterior knee joint laxity (mm). 

KT1000 non dominant (mm) Joint laxity 6.75±2.12 7.04±2.30 Knee joint laxity (see the description above). Non-dominant 
leg 

  Median non-
injured 

Median injured  

Generalized joint laxity (points) Joint laxity 1 2 Generalized joint laxity, measured using the Beighton scale 
(3). The athlete is measured for excessive joint laxity at the 
trunk, the fifth fingers, thumbs, elbows, and knees. The score 
of four points or more on a scale of 0- 9 indicates generalized 
joint laxity. Two goniometers (HiRes, Baseline® Evaluation 
Instruments, White Plains, NY, USA) are used to measure the 
fifth fingers, elbows, and knees. 

Dominant knee previous injuries Baseline 
Questionnaire 

0 0 Number of previous knee injuries in dominant leg 

Non-dominant knee previous injuries Baseline 
Questionnaire 

0 0 Number of previous knee injuries in non-dominant leg 

Dominant ankle previous injuries Baseline 
Questionnaire 

0 1 Number of previous ankle injuries in dominant leg 

Non-dominant ankle previous injuries Baseline 
Questionnaire 

0 0 Number of previous ankle injuries in non-dominant leg 

  Non-injured Injured  

Sex (male-female) Baseline 
Questionnaire 

138-119 14-43 Sex 
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Predicting ACL Injury Using Machine
Learning on Data From an Extensive
Screening Test Battery of 880 Female
Elite Athletes

Susanne Jauhiainen,*y MSc, Jukka-Pekka Kauppi,y PhD, Tron Krosshaug,z PhD,
Roald Bahr,z PhD, Julia Bartsch,z BSc, and Sami Äyrämö,y PhD
Investigation performed at University of Jyväskylä, Jyväskylä, Finland

Background: Injury risk prediction is an emerging field in which more research is needed to recognize the best practices for accu-
rate injury risk assessment. Important issues related to predictive machine learning need to be considered, for example, to avoid
overinterpreting the observed prediction performance.

Purpose: To carefully investigate the predictive potential of multiple predictive machine learning methods on a large set of risk
factor data for anterior cruciate ligament (ACL) injury; the proposed approach takes into account the effect of chance and random
variations in prediction performance.

Study Design: Case-control study; Level of evidence, 3.

Methods: The authors used 3-dimensional motion analysis and physical data collected from 791 female elite handball and soccer
players. Four common classifiers were used to predict ACL injuries (n = 60). Area under the receiver operating characteristic curve
(AUC-ROC) averaged across 100 cross-validation runs (mean AUC-ROC) was used as a performance metric. Results were con-
firmed with repeated permutation tests (paired Wilcoxon signed-rank-test; P\ .05). Additionally, the effect of the most common
class imbalance handling techniques was evaluated.

Results: For the best classifier (linear support vector machine), the mean AUC-ROC was 0.63. Regardless of the classifier, the
results were significantly better than chance, confirming the predictive ability of the data and methods used. AUC-ROC values
varied substantially across repetitions and methods (0.51-0.69). Class imbalance handling did not improve the results.

Conclusion: The authors’ approach and data showed statistically significant predictive ability, indicating that there exists infor-
mation in this prospective data set that may be valuable for understanding injury causation. However, the predictive ability
remained low from the perspective of clinical assessment, suggesting that included variables cannot be used for ACL prediction
in practice.

Keywords: predictive methods; machine learning; prediction significance; cross-validation; motion analysis; ACL injury; team
sports

Anterior cruciate ligament (ACL) injuries are a major con-
cern in team and cutting sports, making injury prevention
essential and prediction alluring.33,38 However, while mul-
tiple potential risk factors have been suggested in the liter-
ature, whether a future ACL injury can be predicted is still
a matter of controversy. Advances in data collection and
storage, as well as computational power, have opened
new possibilities, but there are several potential pitfalls
and, consequently, also a number of important guidelines
to consider to obtain reliable and valid results. The main
pitfall is confusion around what is actually considered

prediction in sports injury research and the difference
between explanatory and predictive analyses.

Sports injury research has mainly been based on tradi-
tional statistical inference43 with a focus on explaining or
understanding phenomena of interest in the data sample
at hand. This approach is also referred to as explanatory
analysis.5,45 The boundary between explanatory analysis
and machine learning (ML) is not at all unambiguous, but
in ML, the generalizability of a model usually takes prece-
dence over its explainability. Generalizability means the
ability to make accurate predictions on new unseen observa-
tions, and this approach is also referred to as predictive
analysis.4,45 Predictive analysis requires testing generaliz-
ability on carefully selected independent (test) data (ie,
examples not involved in model fitting or selection).

Several injury prediction studies have been conducted
in the past using biomechanical data in combination
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with, for example, anthropometrics and strength measure-
ments.17,33,34 However, these studies have several limitations,
making their validity questionable. First, they predict knee
abduction moments as a surrogate for injury based on the
assumption that high knee abduction moments predict ACL
injury risk. This assumption, however, is based on explana-
tory analyses of data from a pilot study with \10 injury
cases,16 which is inadequate. Risk factors recognized in
explanatory studies only demonstrate a statistical association
with injuries but offer no evidence that they have predictive
ability.1,43,45 Moreover, the biomechanical data that these
models are based on originate from a vertical drop jump
(VDJ) task. Other, much larger studies have shown small
or no associations between biomechanics (including knee
abduction moments) and injury risk in the VDJ task.21,47

Another important pitfall in prediction is inadequate
assessment of the generalizability of the predictive models.
Many ML methods have practically infinite ability to fit in
complex phenomena present in the data, given sufficient
computational resources. On the other hand, this high
learning capacity risks overfitting, and therefore it is criti-
cal to test the generalizability of a predictive model properly
before it is implemented into practice.22 Importantly, the
role of chance results should be considered, ensuring that
the predictive performance is better than chance and not
just a singular random result.18 This is essential with small
and/or high-dimensional (ie, large number of variables) data
sets as well as imbalanced data, which often is the case in
sports injury prediction. For example, in neuroscience the
problem of chance findings has been widely recognized
and permutation tests have been suggested for confirming
findings.8 Moreover, the use of cross-validation, the most
popular way to estimate model generalization ability in
many fields, introduces randomness to the analysis and
results can vary widely based on the fold division,12 as
was apparent in a recent hamstring injury prediction
study.44 An example in which these pitfalls were not consid-
ered is a recent ACL injury prediction study that did not
exclude the possibility of a chance result.52 While their
study uses predictive analysis (ie, independent test data to
assess generalizability), the high test accuracy (92%)
against notably lower validation accuracy (70%) strongly
suggests overfitting to test data either by (unconsciously)
repeatedly resampling the test data set or purely by chance.

Obviously, it is also important to consider what types of
data are best for injury prediction use.19 No matter how
appropriately the ML process is planned, no method is
able to describe phenomena that are not captured in the
data in the first place. Sports injury causation is

multifactorial, indicating that a large number of variables,
covering different properties and their interrelationships,
should be considered.25,28 With modern computational
power, ML enables efficient analysis of a large amount of
data and variables, including their interactions and nonlin-
ear relationships, and is therefore thought to have potential
in most fields, including sports injury research.40,41 The pre-
dictive ability of previously recognized factors needs to be
assessed in different settings and populations. However,
periodic screening tests might not be sufficient for sports
injury prediction,1 and thus far only a few studies exist
and results are variable.19,25,42,44

Therefore, the purpose of this study was to investigate
the predictive ability of data from a large prospective
ACL injury screening study, taking into account the effect
of chance results and randomness from cross-validation.
We applied a recently published ML approach19 and
extended the ML hypothesis space by applying different
methods and preprocessing techniques for handling class
imbalance in the data.

METHODS

Participants

The data used in this study were originally collected for
a cohort study designed to examine risk factors for noncon-
tact ACL injuries in female elite handball and soccer play-
ers.21,32,35,38,46,49,50 A total of 451 soccer and 429 handball
players (age, 21 6 4 years; height, 170 6 6 cm, weight, 66
6 8 kg) were tested between the years 2007 and 2015. For
the 2007 season, handball players with a first-team contract
who were expected to play in the premier league were eligi-
ble for participation. Additionally, new players were invited
for preseason testing when new teams advanced to the pre-
mier league between 2008 and 2014. From 2009, soccer
players from the female premier league were also included.
The study was approved by the regional committee for med-
ical research ethics, the South-Eastern Norway Regional
Health Authority, and the Norwegian Social Science Data
Services, Norway. Players signed a written informed con-
sent form before inclusion (including parental consent for
players aged\18 years).

Data Collection

At baseline, each player participated in a comprehensive
set of screening tests designed to assess potential
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demographic, neuromuscular, biomechanical, anatomic,
and genetic ACL injury risk factors. The screening tests
were conducted at the Norwegian School of Sport Sciences
in the preseason, June through August for handball and
February through March for soccer. A baseline question-
naire was completed on player characteristics, elite playing
experience, and history of any previous injuries to the
ACL. Additionally, a variety of tests measuring anthropo-
metrics, strength, flexibility, and balance were conducted
(Figure 1). Included variables are described in Appendix
Table A1 (available in the online version of this article),
and for a more detailed description of the tests see Mok
et al31 and Pasanen et al.37

Three-dimensional motion analysis was carried out on
VDJ and cutting tasks. The VDJ was performed from
a 30-cm box. Players were instructed to drop off the box
and perform a maximal jump upon landing with their
feet on 2 separate force platforms (LG6-4-1; Advanced
Mechanical Technology Inc). For more details on the VDJ
protocol and setup see Krosshaug et al.21 The sidestep cut-
ting task was sport specific (Figure 2); the handball players
performed a handball-specific faking maneuver involving
a static human defender, while the soccer players per-
formed a sidestep cutting task with a soccer through-
pass. For a more detailed description of the cutting proto-
cols see Mok et al.31 Full-body kinematics were captured
with 35 reflective markers attached over anatomic land-
marks on the legs, arms, and torso.20 From 2008 to 2011,
2 additional markers (left and right iliac crest) were used
for those players whose markers on the left and right ante-
rior superior iliac spine were occluded. From 2012 and
onward, the crest markers were included for all players
but only used in cases in which the anterior superior iliac

spine markers were occluded. Between 2007 and 2012,
eight 240-Hz infrared cameras (ProReflex; Qualisys) were
used together with 2 force platforms collecting at 960 Hz.
From 2012, an upgraded 16,480-Hz camera system (Oqus
4; Qualisys) was used. Marker trajectories were calculated
and tracked with the Qualisys Track Manager. For a more
detailed description of the motion data collection and vari-
able extraction, see Krosshaug et al.

We recorded all complete ACL injuries among the tested
players through May 2015, primarily through semiannual
contact with the participating teams (manager, coach,
medical staff). If any acute knee injuries occurring during
regular team training or competition were reported, we
contacted the injured player by telephone to obtain
detailed medical data and a description of the injury situa-
tion. All ACL injuries were verified by magnetic resonance
imaging and/or arthroscopy. The injury mechanisms were
self-reported as contact (ie, direct contact to the lower
extremity), indirect contact (ie, contact with other body
parts), or noncontact, and these were categorized into 2
groups: noncontact/indirect contact or contact.36

Data Preprocessing

All data analyses were performed with MATLAB R2018b
(MathWorks Inc) and classifiers run with the Statistics
and Machine Learning Toolbox 11.0. For the 3-dimensional
motion analysis data as well as other variables with multi-
ple trials or measurements (star excursion, hip abduction,
navicular drop), a mean of trials was calculated for analy-
ses. For generalized joint laxity, the sum of the 9 tests
included was calculated. The variables that had been

Figure 1. Examples of the conducted tests (hip anteversion, knee joint laxity [KT-1000], hip abductor isometric strength, quad-
riceps/hamstrings isokinetic strength, leg press, marker-based static anthropometric measures, knee recurvatum, single-leg bal-
ance, navicular drop/pronation, vertical drop jump, single-leg squat, star excursion test, single-leg drop stabilization).

AJSM Vol. 50, No. 11, 2022 Predicting ACL Injury Using Machine Learning 2919



measured separately for the right and left legs were trans-
formed to dominant (leg used for kicking a ball) and non-
dominant leg variables, and participants with missing
dominance information were dropped (n = 14; 0 injured).
Participants with a contact ACL injury were excluded (n
= 9) to focus prediction on noncontact and indirect contact.
Additionally, players with more than 50% of missing data
(n = 66; 5 injured) were excluded, and finally, the data
set used for analyses included 791 players with 60 ACL
injuries and 283 variables.

To ensure validity of measurements, the most obvious
outliers were identified with MATLAB’s isOutlier function,
as those that were >2 scaled median absolute deviations
from the variable median (see function documentation for
definition). If the function indicated possible outliers,
visual confirmation was done to decide whether a value
was a clear mistake or measurement error in data. In
this case, only that 1 value from the particular participant
was discarded. Visual analysis is a common preprocessing
approach, and here it ensures as little data as possible are
excluded in the cleaning process. Altogether, 47 values
(0.0001%) from 16 players were discarded, with only 4 val-
ues being from injured players.

After discarding outliers, 9029 missing values (4.01% of
total) existed across 478 players. These were imputed with
the k-nearest-neighbor (knn) imputation with a k value of
10. Knn imputation works by finding the k most similar
(measured with Euclidean distance in this study) observa-
tions and imputing the missing value with a summary
metric (mean used in this study) from these k similar play-
ers. For weight and height, if a measured value was miss-
ing, a linear regression approach was used to impute
a value based on the self-reported values.

Continuous variables were normalized to have a mean
of 0 and SD of 1 for each column, while discrete variables
were centered around 0. In addition, variations in data
between sport (ie, different cut test in soccer vs handball)
as well as different test years, to account for potential
minor differences in testing procedures, were considered

in normalization by including sport and test year in addi-
tion to labels in the stratified cross-validation split and
normalizing each test group separately.

Choice of Classifiers

Four commonly used methods, random forest, L2-regular-
ized logistic regression, and support vector machines
(SVMs) with both linear and nonlinear kernel, were chosen
as binary classifiers in our analyses. Random forest is
a nonlinear classification and regression method that has
become a standard data analysis tool in different fields
such as medicine and bioinformatics3 and has been used
in sports injury research as well.6,19,25,44 It is based on
building an ensemble of multiple decision trees.4 The
model (TreeBagger MATLAB function) was trained with
a hundred trees,4 and Bayesian optimization48 with baye-
sopt function was used to select the minimum number of
observations per tree leaf (from 50 to 150) and the number
of predictors to sample at each split (from 1 to 100). L2-
regularized logistic regression, in turn, is a linear classifier
that shrinks regression coefficients by penalizing the
model with the L2 norm.13 Regularization can discard
irrelevant variables and possibly increase predictive per-
formance and decrease overfitting of a model.13 It also
works well with highly correlated variables.27 The model
was trained with MATLAB’s fitclinear function, and the
optimal amount of penalization was estimated with Bayes-
ian optimization from the default values.

SVMs are powerful and flexible classifiers22 trying to
find a hyperplane that best separates the classes from
each other. They have previously been used to model non-
linear patterns and interactions in sports injury
research.6,44 In this study, we trained the SVM models
with the fitcsvm function with both linear and nonlinear
(rbf) kernel to assess both interactions. Hyperparameters
for kernel scale (as default values from 0.001 to 1000) as
well as box constraint (as default values from 0.001 to
1000) were selected with Bayesian optimization.

Figure 2. The testing situation of (A) the handball-specific sidestep cutting task and (B) the soccer-specific sidestep cutting task.
Reprinted from Mok KM, Bahr R, Krosshaug T. Reliability of lower limb biomechanics in two sport-specific sidestep cutting tasks.
Sport Biomech. 2017;17(2):157-167.31 Reprinted with permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com).
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Data Imbalance Handling

Data imbalance means that there are clearly more observa-
tions from 1 (or more) class (majority class) than the other(s)
(minority class). It is a very common and troublesome issue
in the ML field,23 and multiple different approaches to han-
dle data imbalance have been developed and applied, includ-
ing in the sports injury prediction field recently.10,25,43,44

Random undersampling simply means that the majority
class is limited by randomly deleting observations from it,
resulting in a balanced but smaller data set. Random over-
sampling works similarly but instead increases the observa-
tions in the minority class by randomly duplicating them,
thus making the data set larger. The Synthetic Minority
Oversampling Technique (SMOTE) can be used to increase
the minority class observations in a balanced way.7 It works
by utilizing the existing minority examples as input and cre-
ates new observations by combining variables based on the
knn algorithm. In cost-sensitive learning, the cost of mis-
classifying a minority observation is set higher than the
cost of misclassifying a majority example. For example, in
sports injury prediction (or medicine in general), not identi-
fying an injury can be considered more harmful than incor-
rectly predicting some healthy athletes as injured. In
practice, this is often achieved by providing the trained
model a weight vector,24 in which a higher value is set for
observations corresponding to the minority class.

In this study, we experimented with the effect of ran-
dom undersampling, SMOTE, as well as class weight vec-
tor in the training phase on the injury prediction task.
For SMOTE, a MATLAB implementation from the MAT-
LAB Central File Exchange26 based on the original paper
by Chawla et al7 was used. For training class weights,
each of the used methods contains an inbuilt hyperpara-
meter option Weights, and a 10 times higher cost was set
for the minority class.

Validation

In predictive analysis, a model’s generalizability to new
data has to be assessed with independent test data, that
is, data that have not been used in the training of the
model.22 The most common way to do this is by splitting
data into separate training and testing data or by cross-
validation. K-fold cross-validation is based on randomly
splitting the data into K sets and leaving each set at
a time for testing while the rest of the sets are used to train
a model. In general, k-fold is a common approach when
data size is limited, as the complete data can be utilized
for training the model.13 In this study, we used 5-fold
cross-validation.13 Normalization and imputation of the
training data were done separately inside each fold, and
the test data were then normalized using coefficients esti-
mated from the training data.

In addition, the model performance metric needs to be
chosen carefully, especially with imbalanced data sets,
which is often the case in sports injury prediction. Accuracy,
for example, is not suitable with a class imbalance, as sim-
ply assigning all observations to the major class will yield
high results. We assessed test performance with area under

the receiver operating characteristic curve (AUC-ROC).11 It
is based on both true-positive and false-positive rates, and it
can be used with imbalanced class distributions,11,22 which
was the case in our data. The value can be defined as excel-
lent (0.90-1), good (0.80-0.89), fair (0.70-0.79), poor (0.60-
0.69), or fail (0.50-0.59).21,29

Confirmatory Data Analysis

To avoid singular chance findings and ensure that the
achieved results are not just due to some noise or fluctua-
tions in data but actually present patterns significantly
above a chance level, permutation tests with multiple repe-
titions can be utilized.8 By repeating the analyses, the var-
iation in results by cross-validation can be assessed. In
practice, permutation tests are done by training a reference
model, randomly shuffling the labels in the training phase,
and then comparing it with the actual model trained with
true labels. If the true models are consistently better than
the random models across repetitions, the results are con-
firmed not to be observed by chance or just due to some
noise in the data. In this study, the analysis was repeated
a hundred times for both true and random models, and Wil-
coxon signed-rank tests were used for a paired comparison
to confirm the significance of achieved predictive perfor-
mance.19 The limit of significance was set to a = .05, and
in each cross-validation run, the fold divisions were kept
the same for random and true models to allow fair pairwise
comparison. Permutation tests were not run for the data
imbalance handling analyses.

RESULTS

The mean AUC-ROC predictive ability was relatively con-
sistent between the various ML methods (Table 1). Linear
SVM without any imbalance handling achieved the highest
mean AUC-ROC value of 0.63. For all methods, the AUC-
ROC values were higher (P\ .001) with the real responses
than with the random models. With all 4 classifiers, there
was a notable difference between the minimum and maxi-
mum AUC-ROC values achieved across repetitions, caused
by the random cross-validation splits.

The training AUC-ROC values were very high with the
random forest and SVMs, but with logistic regression, reg-
ularization seemed to control overfitting better. The test
AUC-ROC values were, however, relatively similar despite
differences in the training AUC-ROC. Additionally, prepro-
cessing to handle class imbalances, that is, using SMOTE,
class weight, and random undersampling, did not improve
the prediction results, but results seemed similar or even
slightly worse depending on the technique.

DISCUSSION

Main Findings and Clinical Relevance

This study investigated the predictive ability of a large pro-
spective ACL injury screening data set with 60 injury
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cases, using 4 common ML algorithms, repeated cross-
validation runs, and permutation tests that will ensure
reliable, consistent, and confirmed results. The results
demonstrate that, even with an extensive data set, includ-
ing anthropometric, clinical, neuromuscular, genetic, and
sophisticated 3-dimensional biomechanical measurements,
ACL injury prediction was poor (mean AUC-ROC, 0.63 for
the best method). Thus, while statistically significant pre-
dictive ability was discovered, it remained too low for use
in clinical risk assessment. Importantly, our results indi-
cate that the included variables, even those identified as
risk factors in previous explanatory studies, are not able
to predict ACL injuries in practice. Nevertheless, associa-
tions in this prospective data set may still be valuable for
understanding injury causation, but further analysis on
variables is outside the scope of this paper.

Methodological Considerations

The wide range of AUC-ROC values across repetitions is
notable (Table 1) and demonstrates that the use of a single
random cross-validation split can lead to highly varying
interpretations based on the same data and analyses,
even with the current data set, which is by far the largest
prospective cohort study for ACL injury in a team/ball
sport. This variability was clearly visible in the results of
Ruddy et al44 as well. As cross-validation is based on ran-
domly splitting the data into k sets, each model is trained
on a different, random subsample of data and results vary.
Repeated analysis can be used to handle and investigate
the variation in results and reach more robust and reliable
estimates for the data. Utilizing a sufficient number of rep-
etitions is essential for obtaining a reliable estimate (eg,
average AUC-ROC) for the predictive performance. Addi-
tionally, noise in data introduces randomness in results
as methods might capture the noise in prediction. Noise
is inevitable in any real-world data,15 and assessing the
significance of results is especially important with small
data sets or with lower-performance results8 to make
sure they reflect a truly present phenomenon. Our results
were confirmed with permutation tests as suggested in
Combrisson and Jerbi8 and Jauhiainen et al,19 and despite
relatively low predictive performance, there was predictive
ability since the results were significantly above chance

level. This confirms the presence of true phenomena, and
since these relationships were captured by all models, we
can be relatively confident in these results.

Importantly, studies should also report predictive perfor-
mance estimates for test and/or validation data to make reli-
able interpretations and rule out chance results. In our study,
for 3 of the methods—namely, random forest and SVMs—the
training AUC-ROC was noticeably higher than the test AUC-
ROC. In general, random forests should be resilient to overfit-
ting, as the combination of multiple decision trees reduces the
variance of individual trees.4 With a hundred trained trees
and the minimum leaf size of 50, this training AUC-ROC
was surprisingly high, as more trees as well as larger mini-
mum leaf size values should reduce overfitting.4,14 With the
SVMs, the box constraint parameter can be used to control
overfitting in MATLAB so that larger values lead to fewer
support vectors. Looking at the parameter values chosen by
optimization, the values seem relatively high (in the level of
hundreds from 0.001 to 1000) for both SVMs, meaning the
separation between classes remains simpler and smoother
instead of overfitting. Thus, parameter selection for all meth-
ods seems appropriate despite high training AUC-ROCs. Pre-
vious studies show that high or near-perfect training AUC-
ROC values do not cause a generalization problem with clas-
sifiers used in the current study, that is, random forest and
SVM.2,9 Additionally, regularization seems to acceptably con-
trol overfitting of the logistic regression in our results, while
the test AUC-ROC values are very similar compared with
the other methods. This indicates that the predictive perfor-
mance of our models was likely not largely affected by the
high training AUC-ROC values.

The use of imbalance handling techniques before predic-
tion did not improve the predictive performance. This could
possibly be because of existing samples not being separable
to begin with, in which case any resampling techniques
would naturally not improve prediction. However, our
AUC-ROC values were significantly higher than chance,
indicating that some class separation is present in the
data. In the studies by Ruddy et al44 and López-Valenciano
et al,25 the use of SMOTE did not improve injury predic-
tion, but random undersampling yielded slightly better
results in the study by López-Valenciano et al. It seems
that more studies are needed to assess the effect and neces-
sity of imbalance handling in sport injury prediction.

TABLE 1
AUC-ROC Values Over the 100 Repetitionsa

Logistic Regression Random Forest Linear SVM Nonlinear SVM

Test 0.61 6 0.02 0.57 6 0.02 0.63 6 0.02 0.61 6 0.03
Min-max, range 0.57-0.65 0.51-0.63 0.55-0.67 0.53-0.69
Permuted 0.58 6 0.03 0.52 6 0.04 0.50 6 0.04 0.49 6 0.04
Training 0.86 6 0.01 0.98 6 0.01 0.96 6 0.01 0.98 6 0.02
SMOTE 0.60 6 0.02 0.56 6 0.02 0.58 6 0.02 0.59 6 0.02
Weighted 0.61 6 0.02 0.58 6 0.03 0.59 6 0.02 0.60 6 0.02
Undersampling 0.57 6 0.03 0.50 6 0.00 0.57 6 0.03 0.58 6 0.03

aData are presented as mean 6 SD area under the receiver operating characteristic curve (AUC-ROC), unless otherwise indicated. Per-
muted row correspond to the values for the random model and training row to the values for the training data. SMOTE, Synthetic Minority
Oversampling Technique; SVM, support vector machine.
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Using ML for Predicting Sport Injuries: Current Status

Recently, there have been a few examples of using ML
approaches to predict sports injuries from data. Ruddy
et al44 tested the predictive ability of previously recognized
hamstring strain injury risk factors in 2 data sets with 186
and 176 elite Australian footballers and found them to
have a failed predictive power (median AUC-ROCs, 0.58
and 0.52). Jauhiainen et al19 predicted knee and ankle
injuries from a data set with 314 young basketball and
floorball players and obtained an AUC-ROC value of
0.65. López-Valenciano et al25 used screening data with
personal, psychological, and neuromuscular measures to
predict muscle injuries in 122 male professional soccer
and handball players and found AUC-ROC values up to
0.747. Their study, however, did not assess the stability
of random k-fold division and only reported results from
a singular repetition. Considering the randomness from
cross-validation, class imbalance (23.7% injured), and
extensive testing of different approaches, the possibility
of chance findings would be important to consider in their
results.18 Rommers et al42 achieved both precision (fraction
of true injuries among those predicted as injuries) and
recall (fraction of injuries that were correctly predicted)
of 0.85 when predicting acute and overuse injuries in 734
elite youth soccer players with 20% holdout test data.
This study was different from all previous studies in its
age range (11.76 1.7 years) as well as the fact that no class
imbalance existed with 368 injured players (50.1% of play-
ers). They reported that the 5 most important variables
that predict injury were anthropometric measures. The
results indicate that injuries are possibly easier to predict
accurately among teenagers during the growth spurt as
well as if a more balanced data set can be collected. Taborri
et al51 predicted ‘‘ACL injury risk’’ (Landing Error Scoring
System [LESS] score, .5)30 with data from inertial sensors
and optoelectronic bars and obtained an accuracy and F1
score of 0.96 and 95%, respectively. However, the LESS
score has been shown to have no association with ACL
injury with biomechanical data,47 and its validity with
wearable data has not been investigated previously. In
addition, their study had a small sample size (N = 39)
and did not assess the stability of random k-fold division
and the possibility of chance results.

Using ML for Predicting Sports Injuries: Future
Considerations and Conclusions

Considering the scale of different classification and prepro-
cessing methods investigated in our analyses, it is possible
that other tests or variables than the ones we have mea-
sured would be better for predicting ACL injuries. It has
been suggested that the VDJ test is not a suitable screen-
ing test for ACL injury in female soccer and handball play-
ers.21,32,38,49 Additionally, training and match loads were
not recorded in our data. It is also possible that 1 single
screening test is not suitable for injury prediction, as base-
line variables might change during follow-up.28 However,
in the current data set it has previously been reported
that changes in landing biomechanics were minor and

that the consistency was high 2 years apart.21,49 It has
been suggested that future studies exploit more continuous
monitoring of athletes and consider short-term changes in
physical variables and training loads.19 Recent studies
indicate that wearable sensors and smartphone applica-
tions could be used to replace traditional laboratory motion
data collection.39 Additionally, there are predictive studies
showing potential in continuous monitoring and wearable
sensors in injury prediction.10,43 Rossi et al43 predicted
noncontact injuries in the next training session or game
based on recent training load measured by wearable sen-
sors in 26 professional male soccer players. They repeated
the analysis 10,000 times to assess the stability with
respect to fold divisions and achieved an AUC-ROC value
of 0.78 6 0.12. While their results are promising, the study
is limited by a relatively small sample size and large class
imbalance (in training data, 279 noninjury examples vs 7
injury examples). Dower et al10 predicted risk of soft tissue
injuries in Australian rules football with GPS data. They
achieved AUC-ROC values between 0.75 and 0.80 with
repeated tests to ensure the stability of k-fold results.

CONCLUSION

Despite analyzing a large prospective data set with extensive
anthropometric, clinical, genetic, neuromuscular, and biome-
chanical measurements, using a variety of ML methods, the
predictive ability was too low for ACL injury risk assessment
in clinical practice. Therefore, further studies are needed to
investigate what type of data and ML approaches should
be used for more accurate injury prediction.
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A hierarchical cluster analysis to determine whether injured runners exhibit 

similar kinematic gait patterns.

Abstract

Previous studies have suggested that runners can be subgrouped based on homogeneous gait 

patterns, however, no previous study has assessed the presence of such subgroups in a 

population of individuals across a wide variety of injuries. Therefore, the purpose of this 

study was to assess whether distinct subgroups with homogeneous running patterns can be 

identified among a large group of injured and healthy runners and whether identified 

subgroups are associated with specific injury location. Three-dimensional kinematic data 

from 291 injured and healthy runners, representing both sexes and a wide range of ages (10-

66 years) was clustered using hierarchical cluster analysis. Cluster analysis revealed five 

distinct subgroups from the data. Kinematic differences between the subgroups were 

compared using one-way analysis of variance (ANOVA). Against our hypothesis, runners 

with the same injury types did not cluster together, but the distribution of different injuries 

within subgroups was similar across the entire sample. These results suggest that 

homogeneous gait patterns exist independent of injury location and that it is important to 

consider these underlying patterns when planning injury prevention or rehabilitation 

strategies. 

Keywords: Running, Injury, Kinematics, Unsupervised machine learning 
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Introduction

Running is a popular sport for developing and maintaining cardiovascular fitness1,2, despite 

a relatively high injury rate. Estimates of the annual prevalence of lower extremity running related 

injuries (RRI) vary between 19.4% to 79.3%3, while a widely accepted estimate is that 50% of 

runners experience an RRI annually1. Naturally, with such a high injury rate, the etiology of RRIs 

has received much attention within the gait analysis community to determine injury etiology for 

specific RRIs. 

Multiple studies have suggested that there are similar kinematic gait patterns for runners 

with similar injury locations. For example, studies involving common knee RRIs, such as 

patellofemoral pain (PFP)4–7 and iliotibial band syndrome (ITBS)8,9 have reported that runners 

exhibit increased peak hip adduction and peak knee internal rotation. As well, similarities in 

ankle-related RRIs have been reported in individuals with Achilles tendinopathy (AT)10 and those 

with posterior tibial tendon dysfunction7 suggesting these injured runners exhibit increased time to 

peak pronation10. However, a recent study by Bramah et al.11 investigated 72 injured runners, with 

PFP, ITBS, AT, and medial tibial stress syndrome (MTSS), and 36 healthy runners and reported 

that all injured runners exhibited greater contralateral pelvic drop and forward trunk lean as well 

as more knee extension and ankle dorsiflexion at initial contact irrespective of injury location. 

Therefore, further research is necessary to determine if common kinematic gait patterns exist for 

specific injuries and/or anatomical location of injuries.

One method in which to gain some understanding as to the etiology of RRIs may be to 

examine whether unsupervised machine learning techniques can identify homogenous subgroups 

within a large population of injured runners and healthy individuals. Unsupervised machine 

learning works by discovering underlying patterns and associations in datasets without any a priori 

information aside from a set of input variables12. These statistical methods have demonstrated 

success in uncovering underlying structure within datasets in previous sport science research13–17. 

For example, race patterns in elite swimmers13, different golf swing patterns14, and different gait 

patters in injured and healthy runners15–17, have all been successfully identified using unsupervised 

machine learning methods. Another study used unsupervised machine learning to create a 

movement profile for healthy controls walking and assessed the deviation of patients with gait 

problems from this profile18. However, to our knowledge very few studies have utilized this 

approach for a large population of injured and healthy runners. Recognition of distinct gait A
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patterns can be utilized in injury rehabilitation protocols and in future biomechanical 

investigations seeking to better understand injury etiology.

Thus, the main purpose of this exploratory study was to investigate whether a large group 

of injured and healthy runners can be clustered into subgroups of homogeneous gait patterns based 

on 3D kinematic data. We hypothesized that runners with injuries at similar locations would 

exhibit similarities in gait patterns and consequently be identified within the same homogenous 

subgroups. Similarly, we assumed the gait pattern of healthy runners would be distinct from those 

identified within injured homogenous subgroups. A secondary purpose was to analyze differences 

in 3D kinematics between the formed subgroups to better understand differences in running 

kinematics between the subgroups.

Materials and methods

Participants

A sample of 291injured and healthy runners were queried from an existing database of running 

kinematics19,20. Participants were recruited through standard advertisements (e.g., posters, 

facebook posts) approved by the Ethics Board. In this study, runners were identified for inclusion 

provided they: (i) had 3D gait analysis performed by the same experienced clinician using the 

same motion capture system, (ii) were known to be injury free for the 6 months preceding data 

collection (25 runners) or were suffering some form of lower body injury at the time of data 

collection (266 runners) and (iii) contained complete kinematic data with no missing values. A 

standard approach to define RRI based on Yamato et al. was used “Running-related 

musculoskeletal pain in the lower limbs that causes a restriction on or stoppage of running 

(distance, speed, duration, or training) for at least 7 days or 3 consecutive scheduled training 

sessions, or that requires the runner to consult a physician or other health professional."23. 

The runners (146 females, age 39.51±11.21 years) were defined either as competitive (n=57) or 

recreational (n=234)22 based on age, sex, and most recent race performance (10 km, half-

marathon, or marathon) and the World Masters Association Age Grading Performance Tables1. 

Injuries were diagnosed and injury history was collated by a licensed health professional (e.g., 

physiotherapist, medical doctor, athletic therapist). Injuries were grouped by location with: 72 

1 http://www.usatf.org/Resources-for---/Masters/LDR/Age-Grading.aspx. Accessed May 21, 2019.A
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knee, 58 ankle/foot, 51 hip/pelvis, 42 thigh, 39 lower leg (shin) identified. Across the 266 injured 

runners, a wide variety of RRI were reported. However, the main injuries included patellofemoral 

pain (n=44), iliotibial band syndrome (n=29), achilles tendinopathy (n=15), plantar fasciitis 

(n=14), and medical tibial stress syndrome (n=12). The occurrence and distribution of these main 

injuries were consistent with previously reported epidemiological investigations24. Other injuries 

included specific muscle strains (e.g. gastrocnemius, hamstring, hip flexor), tendinopathies (e.g. 

tibialis posterior tendinopathy, patellar tendinopathy), as well as generalized joint pain. None of 

the injured participants described any pain during the treadmill running procedure. 

Twenty-five individuals were confirmed as injury free for at least six months prior to data 

collection. Participant characteristics are summarized by injury location in Table 1. Data 

collection was approved by the University of Calgary’s Conjoint Health Research Ethics Board 

(CHREB: REB15- 0557). Before data collection, all participants provided a written informed 

consent to participate.

[Table 1 somewhere here]

Data collection

Three-dimensional (3D) marker trajectory data were captured via an 8-camera VICON 

motion capture system (MX3+, Vicon Motion Systems Oxford, UK) at 200 Hz while participants 

ran on a treadmill (Bertec Corporation, Columbus, OH). Spherical retro-reflective markers were 

placed on anatomical landmarks and rigid plates with clusters of 3-4 markers were placed on each 

of seven lower body segments as per Pohl et al.25. Anatomical markers and segmental clusters 

were placed by a single examiner with over twenty years’ experience in clinical gait analysis and 

physical therapy26,27. This marker-set consisted of seven rigid segments and has been reported to 

produce reliable kinematic waveforms25. To allow for unobstructed movement during running, 

anatomical markers were removed following a one second static trial where subjects stood upon a 

template with their feet positioned straight ahead and 0.3m apart with arms crossed over their 

chest. 

Following a warmup period of 2-5 minutes, kinematic data were collected for 

approximately 60 seconds while participants ran at a constant self-selected speed between 1.84 

and 3.37 m/s. In order to standardize the footwear condition, each participant wore the same shoes 

(Pegasus, Nike, Beaverton, USA). It should be noted that while the use of standardized shoes has A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

advantages, it might also alter running patterns as it is possible that some participants may not be 

accustomed to the shoes.

Data processing

Key gait events, foot strike and toe off were identified using a Principal Component 

Analysis (PCA) approach as described elsewhere28,29. Joint angles within each movement plane 

were extracted using 3D GAIT custom software (Running Injury Clinic Inc., Calgary, Alberta, 

Canada), and time normalized to 100 data points per gait cycle: 35 data points for stance and 65 

data points for the swing phase.

Each subject’s running pattern was described by the median for each of 62 kinematic (e.g., 

peak knee flexion and adduction angles, heel strike angle) and functional variables (e.g., step 

width, vertical oscillation, stride rate and length) extracted from each gait cycle. A minimum of 

ten gait cycles were included but generally approximately 30–40 consecutive running strides were 

collected for processing and analysis. All variables were extracted from frontal and sagittal plane 

motion given the limited reliability of transverse plane angles during motion capture 

analysis27,30,31. A full description of these variables is provided in Table A1 found in the 

appendices. 

A matrix (291 subjects x 62 variables) was created with each column normalized to have a 

mean of zero and standard deviation of one. A PCA was performed on the data to reduce multi-

collinearity between biomechanical variables. A subset of principal components (PCs) were 

chosen so that 80% of the total variance in the dataset was explained by the selected PCs32. 

Cluster analysis

A hierarchical cluster analysis (HCA) was used to identify subgroups with homogeneous 

gait patterns. A hierarchical cluster tree, a dendrogram, was formed with the linkage-function in 

Statistics and machine learning toolbox 11.0 of MATLAB. The function was used with the 

Ward’s linkage method and Euclidean distance. The subgroups were formed in an agglomerative 

manner, i.e. starting with each observation as their own subgroup and at every step pairing the two 

closest subgroups together until only one group remains. The final number of subgroups was 

chosen based on a stopping rule (a large percentage decrease in the coefficient followed by a 

plateau)33,34. The number of subgroups was also confirmed by visual inspection of the A
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dendrogram16,17.

Interpretation and comparison of subgroups

After forming the subgroups, a univariate analysis of variance (ANOVA) was used to 

determine which PCs separated each subgroup from the others17. The PCs were then interpreted by 

calculating the loadings of variables to determine which variables comprised the PCs35. 

Demographic information (height, weight, age, and running speed) of the subgroups were also 

compared using ANOVA. Normality of variables was tested via a Shaphiro-Wilk test and equal 

variances with Levene’s test and in the cases where assumptions were not met, non-parametric 

Kruskal Wallis tests were used instead. When significant differences occurred, post-hoc tests were 

performed using Tukey’s test. The proportion of injuries and males/females in subgroups were 

compared using Chi-squared test. For all tests, a significance limit of α=0.05 was chosen and 

adjusted with Bonferroni's correction and Cohen’s effect size d was calculated where 

appropriate36.

The injury distribution of the formed subgroups was assessed with the adjusted Rand 

index37. The Rand index objectively measures the similarity between two different clusterings of 

the same data. If  is the set of observations and  and 𝑋 = {𝑥1,𝑥2,…, 𝑥𝑛} 𝑃 = {𝑃1,𝑃2,…,𝑃𝐾1
} 𝑃′ =

 are two different partitions of , where  is the number of observations in data and {𝑃′1,𝑃′2,…,𝑃′𝐾2}  𝑋 𝑛

 and  are the number of subgroups in partitions  and  respectively, the Rand Index is 𝐾1 𝐾2 𝑃 𝑃’

calculated by using all possible pairs of observations in . Defining  as the number of pairs that 𝑋 𝑠

are clustered to the same subgroup in both  and , and as the number of pairs that are not 𝑃 𝑃’ 𝑑 

clustered to the same subgroup in either  or , finally the Rand Index can be written as , 𝑃 𝑃’ 𝑅 =  
𝑠 + 𝑑

(𝑛
2)

where the denominator is the total number of pairs. Simply put, the index measures the proportion 

of similar pairings, over all possible pairs of observations. The index receives a value between 1 

and 0, with 1 indicating the clusterings are exactly the same while 0 indicates that clustering do 

not agree on any parts. The adjusted version works similarly but is corrected for chance. The index 

was calculated between the clustering labels and the injury class labels with a custom Matlab 

script2. All data processing and analysis were performed on MATLAB R2016b (MathWorks Inc).

2 https://se.mathworks.com/matlabcentral/fileexchange/49908-adjusted-rand-index. Accessed May 21, 2019.A
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Results

The first 16 PCs, explaining 80.98% of the total variance, were chosen as input for the 

HCA method. The dendrogram for the clustering results is outlined in Figure 1. Between four and 

five subgroups, there was a large decrease in the agglomeration coefficients (21.0% based on min–

max normalized linkage distances), followed by a plateau between five and six (6.0%). Therefore, 

the number of subgroups was set to five and the result was also confirmed by visual inspection of 

the dendrogram.

[Figure 1 somewhere here]

Despite five distinct subgroups being identified (average linkage distance of 39.32 between 

subgroups), the population of injured and healthy runners was randomly dispersed amongst the 

subgroups and this was confirmed with the very low Rand index score of r=0.012 when the cluster 

partition and the original injury classification were compared. The proportion of injured and 

healthy runners was not different between the subgroups ( =0.53, p=0.99) and similarly there 𝑋2

was no evidence to suggest a difference in any of the injury types/locations between the subgroups 

( =20.20, p=0.251). 𝑋2

The demographics of the subgroups are described in Table 2. The proportion of males and 

females was different between the subgroups ( =53.85, p<0.01) with the proportion of males in 𝑋2

S1 (73.7%) being higher ( =35.00, p<0.01, d=0.80) compared to other subgroups and similarly, 𝑋2

the proportion of females in S5 (63.3%) was higher ( =31.03, p<0.01, d= 0.81). There was 𝑋2

evidence to suggest differences in weight ( =61.80, p<0.01), height ( =22.30, p<0.01), and 𝑋2 𝑋2

running speed ( =56.18, p<0.01), but not in age (F=2.47, p=0.18).𝑋2

[Table 2 somewhere here]

There were differences between the subgroups in the five first PCs. The amount of 

variance explained by the individual PCs was 13.44, 12.34, 10.01, 6.53, and 6.06 percent for the 

first five PCs respectively. PC1 was primarily loaded on frontal plane hip variables and stride rate, 

vertical oscillation, and swing time. PC2 consisted of frontal plane knee variables, stride length, 

vertical oscillation, and swing time. PC3 was comprised of ankle and foot frontal plane variables. A
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PC4 consisted of variables describing ankle eversion, excursion and peak eversion velocity. PC5 

consisted of heel strike angle and knee adduction excursion. Clear differences in running 

biomechanics between the subgroups were found.

Subgroup 1

S1 was separated from the other subgroups by PC2 (p<0.001, F=135.13, d=2.08) 

Compared to the other four subgroups, S1 had the largest peak knee adduction (-3.16±4.08 deg), 

the least knee abduction (-8.60±4.32 deg), and exhibited greater knee flexion (-49.01±4.03 deg). 

S1 also exhibited the second largest stride length (1.97±0.17 m), vertical oscillation (89±14.32 m), 

and swing time (0.45±0.03 s) compared to the other subgroups. Also, 73.68% of runners in S1 

were males.

Subgroup 2

Subgroup S2 was separated from the other subgroups by PC1 (p<0.001, F=109.69, d=2.05) 

and PC2 (p<0.001, F=33.72, d=1.16). S2 exhibited the smallest knee flexion peak (-44±5.47 deg), 

second smallest hip adduction (8.87±3.95 deg) and knee abduction (-11.79±4.00 deg). The S2 

subgroup also exhibited the highest stride rate (87.12±4.42 strikes/min) as well as the lowest 

swing time (0.40±0.03 s), stride length (1.66±0.16 m), and vertical oscillation (72.04±10.10 m) 

compared to the other subgroups.

Subgroup 3

S3 was separated from the other subgroups by PC1 (p<0.001, F=92.27, d=2.12). The S3 

subgroup exhibited the second highest hip adduction peak (12.07±4.00 deg), hip adduction 

excursion (10.13±2.79 mm), and hip abduction velocity peak (160.76±44.96 deg). They also had 

the lowest stride rate (77.12±3.25 strikes/min), highest swing time (0.47±0.03 s), and the most 

vertical oscillation (104±13.10 m) compared to the other four subgroups.

Subgroup 4

S4 was separated from the others by PC3 (p<0.001, F=25.44, d=1.20), PC4 (p<0.001, F= 

32.53, d=1.30), and PC5 (p<0.001, F= 20.14, d=1.04). Compared to the other four subgroups, S4 

had the largest heel strike angle (17.10±4.90 deg) and largest foot progression angle (-15±4.96 

deg) along with the second largest offset (42.27±8.40 % of gait cycle) and onset (13.96±2.67 % of 

gait cycle) rearfoot eversion. A
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Subgroup 5

Subgroup S5 was separated by PC1 (p<0.001, F= 30.65, d=1.10), PC2 (p<0.001, F=36.05, 

d=1.17), and PC3 (p<0.001, F=103.80, d=1.75). S5 exhibited the highest offset (54.95±17.13 % of 

gait cycle) and onset (15.66±3.86 % of gait cycle) rearfoot eversion, longest time to peak 

pronation (0.29±0.13 % of gait cycle) as well as the smallest foot progression angle (-8.45±4.54 

deg) compared to the other four subgroups. S5 also demonstrated the largest hip adduction 

velocity peak (173.87±52.67 deg /s), hip adduction excursion (10.61±3.16 mm), and hip adduction 

peak (13.03±4.28 deg). Also, 78.95% of the runners in S5 were females.

[Figure 2 somewhere here]

Discussion

The primary purpose of our study was to investigate whether distinct subgroups with 

homogeneous running gait patterns could be identified from a large group of injured and healthy 

runners using an unsupervised hierarchical cluster analysis. Five subgroups were identified, 

however, contrary to our initial hypothesis, individuals with similar injuries (or no injury) did not 

cluster together. Instead, different types of injuries, and healthy control subjects, were evenly 

distributed across the five subgroups. 

These results support previous research that has shown that there are similarities in 

kinematics between individuals with different injuries11 and refutes the premise that injury 

location is related to similarities in gait kinematic patterns. Moreover, the gait pattern of healthy 

runners was not distinct of that of the injured and suggests that there is not a single ’protective gait 

pattern’ reducing the likelihood of developing RRI. However, future prospective studies are 

necessary to support or refute this premise. Regardless, our results also show that in a large group 

of runners with different injuries, representing both sexes and a wide distribution of ages, exhibit 

biomechanical running patterns that can be subgrouped into five distinct patterns.

Specific gait patterns can be observed within each subgroup. Specifically, S1 consisted of 

mostly male runners whose knee collapsed and flexed the most during running and ran at the 

fastest pace. Runners in S2 exhibited overall limb stiffness, observed as the least amount of peak 

knee flexion as well as second least amount of hip adduction and knee abduction. Runners in S3 

had the second largest hip adduction peak angle, hip adduction excursion and hip abduction peak A
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velocity. S4 consisted of runners that exhibited a pronounced heelstrike and a large foot 

progression angle during running. Runners in S5 had the highest hip adduction peak and hip 

adduction excursion as well as the smallest foot progression angle, as well as the most rearfoot 

eversion and time to peak pronation. S5 also had a high ratio of females and they ran at the 

slowest pace.

The results of the current study suggest that it is possible that the traditional method of 

creating a “cluster” of subjects based on a pre-defined injury does not consider that variance of 

gait biomechanical patterns exists independent of the injury location/category. Thus, we propose 

that in order to discover these inter-relationships between movement patterns and injuries better, it 

is necessary to segment, or sub-type, according to gait patterns as an initial step in developing 

rehabilitation protocols and with respect to future biomechanical investigations seeking to better 

understand injury etiology. We also suggest that future prospective studies should employ PCA 

and HCA approaches for large cohorts of injured and pain-free runners in order to determine 

whether biomechanical sub-types, or unique homogeneous clusters, are potentially related to 

higher rates of injury. 

Previous studies have suggested that atypical biomechanical patterns can lead to injuries 

by causing excessive repetitive tissue loading during running10,38. In addition, associations 

between certain injuries and kinematic gait patterns have been detected in multiple studies4,6,10. In 

support of this premise, a study by Braham et al.11 reported that runners with different injuries all 

exhibited similar patterns among each other. However, this study11 only involved 72 injured 

runners and 36 healthy controls and a simple logistic regression model to determine which 

kinematic parameters could best separate the two groups. In contrast, the results of the current 

study used a much larger cohort and employed an unsupervised machine learning approach to 

reveal that certain running patterns cannot be conclusively linked to injury location and that 

homogeneous kinematic subgroups exist regardless of injury location. 

Our study benefits from a large cohort of injured and healthy runners along with robust 

data collection procedures. Moreover, all data were collected by a single examiner with over 20 

years’ experience. This is an especially important point when using unsupervised machine 

learning methods to identify subgroups, as these methods might pick up patterns originating from 

subtly different marker placements resulting from different examiners39,40. Specifically, Osis et 

al.26 reported that a novice examiner, with 6-years of experience and trained by the same expert 

examiner used in the current study, made improvements in their consistency over the course of A
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one-year of training. However, systematic differences were apparent in data collected during the 

end of the year. Thus, future research involving a large cohort should take into consideration the 

number of people collecting the data and/or use appropriate feedback methods40,41 to minimize 

marker placement error.

Limitations in the current study are acknowledged. First, given our data source was created 

by amalgamating data collected for specific purposes, running speed was not uniformly controlled 

within this study. Deviations from preferred or self-selected speed have been shown to result in 

deviations from typical gait patterns in walking42 and future research should consider this factor. 

Second, the variables were averaged over the gait cycles, while variability in movement patterns 

has been associated with injuries in previous studies43–45. Future studies could benefit from 

considering the variability across gait cycles. Second, the current study was retrospective in nature 

and future research should prospectively follow runners to determine whether similar subgroups 

exist prior to injury development. In addition, each injury group included several types of injuries, 

that might have different effects on gait. Lastly, the data for the present study were collected in a 

laboratory setting whilst running on a treadmill. Previous studies46,47 have suggested that a 

laboratory-based setting limits our ability to study the multifactorial nature of RRIs. Therefore, 

future studies should utilise inertial measurement units (IMUs) to quantify running gait patterns in 

real-world environments and determine whether these homogenous subgroups exist.

Perspective

This study showed that among a large population of runners with different injuries, representing 

both sexes and a wide distribution of ages, distinct subgroups exist with homogeneous running 

gait patterns. Interestingly, these patterns were not related to injury location, but different type of 

injuries were randomly distributed throughout the subgroups, together with healthy individuals. 

These results suggest that the location of injury is not related to specific gait kinematic patterns 

and this should be considered when planning future research studies or when developing 

rehabilitation and injury prevention strategies.  Therefore, we recommend that when performing a 

clinical examination of an injured runner, individual presentation plays a larger role than 

attempting to determine whether they are exhibiting a gait pattern previously associated with a 

specific injury. Finally, based on the results of this study, prediction of injuries, based on whether 

or not an individual exhibits specific kinematic gait patterns, is not supported.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

References

1. Fields KB, Sykes JC, Walker KM, Jackson JC. Prevention of running injuries. Curr Sports 

Med Rep. 2010;9(3):176-182.

2. Van Middelkoop M, Kolkman J, Van Ochten J, Bierma-Zeinstra SMA, Koes BW. Risk 

factors for lower extremity injuries among male marathon runners. Scand J Med Sci Sports. 

2008;18(6):691-697.

3. Van Gent RN, Siem D, van Middelkoop M, Van Os AG, Bierma-Zeinstra SMA, Koes BW. 

Incidence and determinants of lower extremity running injuries in long distance runners: a 

systematic review. Br J Sports Med. 2007;41(8):469-480.

4. Luz BC, dos Santos AF, de Souza MC, de Oliveira Sato T, Nawoczenski DA, Serrão FV. 

Relationship between rearfoot, tibia and femur kinematics in runners with and without 

patellofemoral pain. Gait Posture. 2018;61:416-422.

5. Watari R, Kobsar D, Phinyomark A, Osis S, Ferber R. Determination of patellofemoral pain 

sub-groups and development of a method for predicting treatment outcome using running 

gait kinematics. Clin Biomech. 2016;38:13-21.

6. Noehren B, Hamill J, Davis I. Prospective evidence for a hip etiology in patellofemoral 

pain. Med Sci Sports Exerc. 2013;45(6):1120-1124.

7. Rabbito M, Pohl MB, Humble N, Ferber R. Biomechanical and clinical factors related to 

stage I posterior tibial tendon dysfunction. J Orthop Sport Phys Ther. 2011;41(10):776-784.

8. Ferber R, Noehren B, Hamill J, Davis I. Competitive female runners with a history of 

iliotibial band syndrome demonstrate atypical hip and knee kinematics. J Orthop Sport 

Phys Ther. 2010;40(2):52-58.

9. Miller RH, Lowry JL, Meardon SA, Gillette JC. Lower extremity mechanics of iliotibial 

band syndrome during an exhaustive run. Gait Posture. 2007;26(3):407-413.

10. Ogbonmwan I, Kumar BD, Paton B. New lower-limb gait biomechanical characteristics in 

individuals with Achilles tendinopathy: A systematic review update. Gait Posture. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

2018;62:146-156.

11. Bramah C, Preece SJ, Gill N, Herrington L. Is there a pathological gait associated with 

common soft tissue running injuries? Am J Sports Med. 2018;46(12):3023-3031.

12. Friedman J, Hastie T, Tibshirani R. The Elements of Statistical Learning. Vol 1. Springer 

series in statistics New York; 2001.

13. Chen I, Homma H, Jin C, Yan H. Identification of elite swimmers’ race patterns using 

cluster analysis. Int J Sports Sci Coach. 2007;2(3):293-303.

14. Ball KA, Best RJ. Different centre of pressure patterns within the golf stroke I: Cluster 

analysis. J Sports Sci. 2007;25(7):757-770.

15. Kulmala J-P, Äyrämö S, Avela J. Knee extensor and flexor dominant gait patterns increase 

the knee frontal plane moment during walking. J Orthop Res. 2013;31(7):1013-1019.

16. Watari R, Osis ST, Phinyomark A, Ferber R. Runners with patellofemoral pain demonstrate 

sub-groups of pelvic acceleration profiles using hierarchical cluster analysis: an exploratory 

cross-sectional study. BMC Musculoskelet Disord. 2018;19(1):120.

17. Phinyomark A, Osis S, Hettinga BA, Ferber R. Kinematic gait patterns in healthy runners: 

A hierarchical cluster analysis. J Biomech. 2015;48(14):3897-3904.

18. Barton GJ, Hawken MB, Scott MA, Schwartz MH. Movement Deviation Profile: A 

measure of distance from normality using a self-organizing neural network. Hum Mov Sci. 

2012;31(2):284-294.

19. Phinyomark A, Petri G, Ibáñez-Marcelo E, Osis ST, Ferber R. Analysis of big data in gait 

biomechanics: Current trends and future directions. J Med Biol Eng. 2018;38(2):244-260.

20. Ferber R, Osis ST, Hicks JL, Delp SL. Gait biomechanics in the era of data science. J 

Biomech. 2016;49(16):3759-3761.

21. Phinyomark A, Hettinga BA, Osis ST, Ferber R. Gender and age-related differences in 

bilateral lower extremity mechanics during treadmill running. PLoS One. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

2014;9(8):e105246.

22. Clermont CA, Osis ST, Phinyomark A, Ferber R. Kinematic gait patterns in competitive 

and recreational runners. J Appl Biomech. 2017;33(4):268-276.

23. Yamato TP, Saragiotto BT, Lopes AD. A consensus definition of running-related injury in 

recreational runners: a modified Delphi approach. J Orthop Sport Phys Ther. 

2015;45(5):375-380.

24. Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A 

retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 

2002;36(2):95-101.

25. Pohl MB, Lloyd C, Ferber R. Can the reliability of three-dimensional running kinematics be 

improved using functional joint methodology? Gait Posture. 2010;32(4):559-563.

26. Osis ST, Hettinga BA, Macdonald SL, Ferber R. A novel method to evaluate error in 

anatomical marker placement using a modified generalized Procrustes analysis. Comput 

Methods Biomech Biomed Engin. 2015;18(10):1108-1116.

27. Osis ST, Hettinga BA, Macdonald S, Ferber R. Effects of simulated marker placement 

deviations on running kinematics and evaluation of a morphometric-based placement 

feedback method. PLoS One. 2016;11(1):e0147111.

28. Osis ST, Hettinga BA, Leitch J, Ferber R. Predicting timing of foot strike during running, 

independent of striking technique, using principal component analysis of joint angles. J 

Biomech. 2014;47(11):2786-2789.

29. Osis ST, Hettinga BA, Ferber R. Predicting ground contact events for a continuum of gait 

types: an application of targeted machine learning using principal component analysis. Gait 

Posture. 2016;46:86-90.

30. Reinschmidt C, Van Den Bogert AJ, Nigg BM, Lundberg A, Murphy N. Effect of skin 

movement on the analysis of skeletal knee joint motion during running. J Biomech. 

1997;30(7):729-732.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

31. Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GVB. 

Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J 

Orthop Res. 1989;7(6):849-860.

32. Jolliffe I. Principal Component Analysis. Springer; 1986.

33. Hair JF, Anderson Jr RE, Tatham RL, Black WC. Multivariate data analysis 7th Ed.(Global 

Edition). 2009.

34. Kinsella S, Moran K. Gait pattern categorization of stroke participants with equinus 

deformity of the foot. Gait Posture. 2008;27(1):144-151.

35. Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 

2010;2(4):433-459.

36. Cohen J. Statistical power analysis for the behavioural sciences. 1988.

37. Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 

1971;66(336):846-850.

38. Mousavi SH, Hijmans JM, Rajabi R, Diercks R, Zwerver J, van der Worp H. Kinematic risk 

factors for lower limb tendinopathy in distance runners: A systematic review and meta-

analysis. Gait Posture. 2019.

39. Gorton III GE, Hebert DA, Gannotti ME. Assessment of the kinematic variability among 12 

motion analysis laboratories. Gait Posture. 2009;29(3):398-402.

40. Osis ST, Kobsar D, Leigh RJ, Macaulay CAJ, Ferber R. An expert system feedback tool 

improves the reliability of clinical gait kinematics for older adults with lower limb 

osteoarthritis. Gait Posture. 2017;58:261-267.

41. Macaulay CAJ, Osis ST, Clermont C, Ferber R. The use of real-time feedback to improve 

kinematic marker placement consistency among novice examiners. Gait Posture. 

2017;58:440-445.

42. Chung M-J, Wang M-JJ. The change of gait parameters during walking at different A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

percentage of preferred walking speed for healthy adults aged 20--60 years. Gait Posture. 

2010;31(1):131-135.

43. Brown C, Bowser B, Simpson KJ. Movement variability during single leg jump landings in 

individuals with and without chronic ankle instability. Clin Biomech. 2012;27(1):52-63.

44. Hamill J, Palmer C, Van Emmerik REA. Coordinative variability and overuse injury. Sport 

Med Arthrosc Rehabil Ther Technol. 2012;4(1):45.

45. Stergiou N, Decker LM. Human movement variability, nonlinear dynamics, and pathology: 

is there a connection? Hum Mov Sci. 2011;30(5):869-888.

46. Ahamed NU, Kobsar D, Benson LC, Clermont CA, Osis ST, Ferber R. Subject-specific and 

group-based running pattern classification using a single wearable sensor. J Biomech. 

2019;84:227-233.

47. Benson LC, Clermont CA, Bošnjak E, Ferber R. The use of wearable devices for walking 

and running gait analysis outside of the lab: A systematic review. Gait Posture. 

2018;63:124-138.

Tables

Table 1: Characteristics of participants in each injury group. 

Knee Ankle/foot Hip/Pelvis Thigh Lower leg Healthy Other injuries

Male-

female

38-34 24-34 20-31 24-18 21-18 14-11 4-0

Age 

(years)

37.06±12.95 41.10±11.74 40.00±10.42 39.83±8.98 39.46±9.67 40.52±11.94 45.25±8.85

Height 

(cm)

173.53±9.31 170.35±9.70 171.07±13.34 172.95±7.78 171.54±9.58 172.87±9.14 178.08±10.23

Weight 

(kg)

69.80±12.27 71.78±17.12 70.53±13.32 71.00±13.23 71.24±11.46 70.81±10.68 78.15±11.22

Running 

speed 

(m/s)

2.49±0.26 2.46±0.31 2.49±0.31 2.55±0.24 2.52±0.28 2.59±0.25 2.67±0.22
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Table 2: Characteristics of the five identified subgroups. Significant differences identified: * p<0.05, **p<0.01. Mean standard ±

deviation for continuous variables, count (portion in that cluster) for the injury locations.

Subgroup S1 S2 S3 S4 S5

Size 95 60 32 28 76

Male/Female 70-25** 22-38 21-11 15-13 16-60**

Age (years) 40.01±10.29 42.48±13.11 37.03±10.93 40.72±9.15 37.14±11.06

Height (cm) 176.45±7.74** 166.17±12.36** 177.32±8.14** 171.84±7.54 169.29±8.70**

Weight (kg) 73.13±12.17** 65.29±11.58** 74.67±12.37** 74.75±13.45 69.50±15.09

Speed (m/s) 2.65±0.25** 2.41±0.26** 2.63±0.23** 2.50±0.27 2.37±0.25**

Healthy 11 (11.6%) 6 (10.0%) 0 (0.0%) 3 (10.7%) 5 (6.6%)

Knee 25 (26.3%) 10 (16.7%) 14 (43.8%) 4 (14.3%) 17 (22.4%)

Ankle/foot 16 (16.8%) 18 (30.0%) 3 (9.4%) 7 (25.0%) 16 (21.1%)

Hip/pelvis 12 (12.6%) 10 (16.7%) 8 (25.0%) 7 (25.0%) 13 (17.1%)

Thigh 18 (19.0%) 7 (11.7%) 4 (12.5%) 4 (14.3%) 10 (13.1%)

Lower leg 12 (12.6%) 7 (11.7%) 3 (9.4%) 3 (10.7%) 14 (18.4%)
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Figure legends

Figure 1: Dendrogram of the hierarchical cluster analysis. Linkage distance on the y-axis and 

individual runners on the x-axis. The five identified subgroups are identified by color. For clarity, 

not all runners are plotted on the dendrogram and the x-axis labels are omitted.

Figure 2: Boxplots highlighting the kinematics for subgroup 1 (left) to subgroup 5 (right). The 

vertical dashed line corresponds to the average of the study population and values have been 

normalized to have a mean of zero and standard deviation 1.
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Appendices  

Table A1: Kinematic and functional variables used to describe each subject’s running pattern:  
 Joint Variable Description 

F
u

n
ct

io
n

al
 

Left/Right 

Side 

Step Width Side-to-side distance between left and right footsteps (m) 

Stride Rate Number of foot strikes per minute (strikes per min) 

Stride Length For-aft distance between left and right footfalls (m) 

Swing Time Length of time (s) subject spent during the swing phase of gait. 

Stance Time Length of time (s) subject spent during the stance phase of gait. 

Maximum Heel Whip  Difference between foot external rotation (deg) from toe-off to the point of maximal external rotation during swing phase. 

Vertical Oscilliation Vertical oscillation of the center of mass (m) during complete gait cycle. 

K
in

em
at

ic
 

Left/Right 

Foot 

Progression Angle Angle of foot relative to direction of movement (deg) during stance phase of gait cycle. 

Heel Strike angle Sagittal plane angle of foot at heel strike (deg). 

Left/Right 

Ankle 

Peak Dorsiflexion Maximum dorsiflexion angle (deg) experienced during complete gait cycle. 

Peak Eversion Maximum eversion angle (deg) experienced during complete gait cycle. 

Time to peak pronation The amount of time (% gait cycle) to reach peak pronation 

Eversion excursion Difference between eversion angle at toe-off to peak eversion angle (deg). 

Peak eversion velocity Maximum eversion angle (deg/s) subject experienced during complete gait cycle. 

Onset of Pronation Point at which the foot reaches a pronated position (% of gait cycle) 

Offset of pronation Point at which the foot leaves a pronated position (% of gait cycle) 

Left/Right 

Knee 

Peak flexion Angle Maximum knee flexion angle (deg) experienced during complete gait cycle. 

Peak adduction angle Maximum knee adduction angle (deg) experienced during complete gait cycle. 

Adduction excursion Distance (mm) of knee adduction excursion. 

Peak adduction velocity Maximum knee adduction velocity (deg/s) experienced during complete gait cycle. 

Peak Abduction angle Maximum knee abduction angle (deg) experienced during complete gait cycle. 

Abduction excursion Difference between minimum and maximum knee abduction during stance (deg). 

Peak abduction velocity Maximum knee abduction angle (deg) experienced during complete gait cycle. 

Left/Right Hip 

Peak extension angle Maximum hip extension angle (deg) experienced during complete gait cycle. 

Peak adduction angle Maximum hip adduction angle (deg) experienced during complete gait cycle. 

Adduction excursion Distance (mm) of hip adduction during gait cycle. 
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Peak abduction velocity Maximum hip adduction velocity (deg/s) experienced during complete gait cycle. 

Peak adduction velocity Maximum hip adduction velocity (deg/s) experienced during complete gait cycle. 

Left/Right 

Pelvis 

Peak Pelvic Drop Maximum frontal plane angle of pelvis segment relative to horizontal (deg) experienced during complete gait cycle. 

Pelvic Drop Excursion Difference between minimum and maximum pelvic drop during stance phase (deg). 

Peak Pelvic Drop Velocity Maximum pelvic drop angle velocity (deg/s) experienced during stance. 
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