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Abstract: The regiospecific S-benzylation/allylation of two 4-aryl-5-indolyl-1,2,4-triazole-3-thione
precursors was carried out using Et3N as a base. Allyl group migration from exocyclic sulfur to the
triazole nitrogen (N3) was successfully achieved in a short time via thermal fusion without the need
for any catalyst. The allylation of indole nitrogen, along with exocyclic sulfur or triazole nitrogen
(N3), was carried out using K2CO3 as stronger base. S,N-Diallylated products were converted to
N,N-diallylated analogues using a simple fusion approach. Structural analyses of the two newly
synthesized hybrids 2b and 5b investigated via the X-ray diffraction of a single crystal combined
with Hirshfeld calculations. The compound 5b was crystallized in a monoclinic crystal system and
the P21/c space group, whereas in compound 2b, the crystal system comprises the less symmetric
triclinic and P − 1 space group. The asymmetric unit contains one and two molecules of 5b and
2b, respectively, while the unit cell contains four molecules in both cases. Hirshfeld analysis was
performed in both systems to analyze the non-covalent interactions that control molecular packing.
For 5b, C . . . H, N . . . H, S . . . H, Cl . . . N and H . . . H interactions are the most significant. Their
percentages are 23.7, 8.8, 4.5, 1.2 and 48.2, respectively. In the case of 2b, the Cl . . . C, S . . . N, C . . .
H, H . . . H and N . . . H interactions have the upper hand in molecular packing. In one unit, the
percentages of these contacts are 2.3, 0.9, 26.8, 38.7 and 9.3%, while in the other unit, the corresponding
values are 4.4, 1.3, 22.1, 43.6 and 9.0%, respectively.

Keywords: allylation; 1,2,4-triazole-3-thione; thio-aza allyl rearrangement; X-ray single-crystal analysis

1. Introduction

Indole is a privileged structure and well known in the fields of chemistry and other
disciplines due to its various applications in medicine, agrochemicals, and the industry [1].
In drug discovery, this indole motif has shown a high efficacy against [2] several types
of cancers, including MCF-7 (breast cancer) [3], HepG-2 (human liver) and MOLT3 (T
lymphoblast) cancer cells [4]; MES-SA/DX5 (human uterine sarcoma) and HCT15/CL02
(human colorectal) as multidrug resistant cancer cells [5]; and many other cancer type
cell lines [6–8]. Enhanced biological activity has been reported in a combination of the
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indole scaffold and other pharmacophores, such as heterocycles [9,10] (e.g., thiazoles,
triazoles, oxadiazole, etc.) or a functional group of sulphonamides [11,12]. The indole
scaffold not only has a high efficacy against cancer but many other forms of biological
activity, such as anti-microbial [13], anti-malarial [14], anti-HIV [15], anti-convulsant [16],
anti-inflammatory [17], anti-vascular [18], anti-diabetes (as they are α-glucosidase inhibitor
agents) [19], etc. [20–24].

The combination of the triazole motif with the indole scaffold has recently received
great attention in drug discovery development due to the many important pharmacolog-
ical applications of the triazole unit [25–28], as well as recently discovered compounds.
Nowadays, drugs containing the triazole nucleus are available on the market, for exam-
ple, Fluconazole, Maraviroc, and Letrozole and others. These triazoles work as corrosion
inhibitors [29] and dentate ligands due to their coordination chemistry with fluorescent
applications [30].

Many examples regarding the attachment of the indole ring to triazoles have been
reported. This has been identified as an anti-cancer agent targeting pro-apoptotic Bcl-2-
inhibitory [31] or EGFR and Akt inhibitors [22], as well as a PARP-1 active agent [24]. To
synthesize a new material with divergent functionalities is an interesting challenge for
many chemists.

Based on these findings and the continuation of our research program [32], we syn-
thesized new S-alkylated products, as well as N-alkylated products derived from the
combination of the indole scaffold and triazole core structure. The explored and assigned
molecular structure is based on single-crystal X-ray diffraction analysis and Hirshfeld
analysis study.

In this study, we successfully achieved regiospecific mono-allylation and regiospecific
di-allylation. NMR and single-crystal X-ray diffraction analysis were efficiently used for
structural analysis.

2. Materials and Methods

Melting points were determined using melting-point apparatus (SMP10) in open
capillaries and remained uncorrected. Chemicals, reagents and solvents were purchased
from Alfa Aesar and Sigma-Merck. The progress of reactions and purity of products were
observed using thin-layer chromatography (TLC) on pre-coated plates with silica gel 60 F254
at a thickness of 0.25 mm (Merck). Nuclear magnetic resonance spectra (1H NMR and 13C
NMR) were determined in CDCl3 and DMSO-d6 and recorded using Bruker AC 400 MHz
spectrometers with TMS as an internal reference standard. δ (ppm) was used for chemical
shift description and values of coupling constants were given in Hz. HREI mass spectra
were recorded with a Finnigan MAT 95XP instrument. CHNS-microanalysis performed on
a Flash EA-1112 instrument.

2.1. General Procedures
2.1.1. Method a: Synthesis of the S-Alkylated Products

The selected 4-aryl-triazole-thiones 1a–b (1.0 mmol) and Et3N (1.1 mmol) in dry
acetone (10 mL) was stirred for one hour, benzyl bromide or allyl bromide (1.1 mmol)
was added portion-wise, and stirring was continued overnight. The solvent was removed
under vacuum, water was added, and the formed precipitates were collected, dried and
recrystallized from ethanol.

3-(Benzylsulfanyl)-4-phenyl-5-(1H-indol-2-yl)-1,2,4-triazole (2a)

Yield: 70%, m.p. 248–249 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 4.42 (s, 2H), 5.59 (d, 1H,
J = 1.3 Hz,), 6.95 (t, 1H, J = 7.4 Hz), 7.15 (t, 1H, J = 7.6 Hz), 7.27–7.45 (m, 9H), 7.61–7.70 (m,
3H), 11.97 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ 37.21, 101.89, 112.31, 120.20, 121.17,
123.60, 124.33, 127.65, 128.00, 128.39, 128.97, 129.45, 130.62, 131.10, 134.16, 137.00, 137.43,
149.67, 151.76; Elemental Analysis Calc. for [C23H18N4S]: C, 72.23; H, 4.74; N, 14.65; S, 8.38
found C, 72.35; H, 4.79; N, 14.53; S, 8.49.
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3-(Benzylsulfanyl)-4-(4-chlorophenyl)-5-(1H-indol-2-yl)-1,2,4-triazole (2b)

Yield: 65%, m.p. 242–243 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 4.42 (s, 2H), 5.70 (s,
1H), 6.97 (t, 1H, J = 7.1 Hz), 7.16 (t, 1H, J = 7.2 Hz), 7.21–7.56 (m, 9H), 7.62–7.81 (m, 2H),
11.97 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ 37.37, 101.04, 112.31, 120.24, 121.33, 123.68,
124.13, 127.67, 128.04, 128.99, 129.46, 130.38, 130.71, 133.04, 135.75, 137.01, 137.39, 149.59,
151.69; Elemental Analysis Calc. for [C23H17ClN4S]: C, 66.26; H, 4.11; Cl, 8.50; N, 13.44; S,
7.69 found C, 66.12; H, 4.28; Cl, 8.38; N, 13.48; S, 7.83.

3-(All-1-ylsulfanyl)-4-phenyl-5-(1H-indol-2-yl)-1,2,4-triazole (3a)

Yield: 81%, m.p. 218–219 ◦C [Lit. [24], 214–216 ◦C]. 1H NMR (400 MHz, CDCl3): δ 3.96
(d, H, J = 6.8 Hz), 5.20 (d, 1H, Jcis = 9.9 Hz), 5.34 (d, 1H, Jtrans = 16.9 Hz), 5.78 (s, 1H),
5.95–6.05 (m, 1H), 7.06 (dd, 1H, J = 7.7, J = 8.0 Hz), 7.25 (dd, 1H, J = 7.7, J = 8.0 Hz), 7.36–7.96
(m, 7H,), 11.05 (br.s, 1H); 13C NMR (CDCl3, 100 MHz) δ 35.48, 102.74, 112.49, 119.12, 120.14,
120.99, 123.73, 127.78, 127.97, 130.29, 130.73, 132.61, 133.94, 136.93, 149.89, 152.34; HRMS
(EI) calcd for C19H16N4S (M+): 332.1096. Found: 332.1090.

3-(All-1-ylsulfanyl)-4-(4-chlorophenyl)-5-(1H-indol-2-yl)-1,2,4-triazole (3b)

Yield: 79%, m.p. 229–230 ◦C. 1H NMR (400 MHz, CDCl3): δ 3.95 (d, 2H, J = 7.0 Hz),
5.20 (d, 1H, Jcis = 10.0 Hz), 5.34 (d, 1H, Jtrans = 16.9 Hz), 5.82 (s, 1H), 5.93–6.03 (m, 1H), 7.08
(t, 1H, J = 7.4 Hz), 7.26 (t, 1H, J = 7.6 Hz), 7.38 (d, 2H, J = 8.5 Hz), 7.47 (d, 1H, J = 8.0 Hz),
7.64 (d, 3H, J = 8.5 Hz), 10.64 (br.s, 1H); 13C NMR (CDCl3, 100 MHz) δ 35.53, 102.65, 112.08,
119.24, 120.32, 121.10, 123.38, 123.94, 127.70, 129.25, 130.58, 132.28, 132.36, 136.64, 136.87,
149.58, 152.27; HRMS (EI) calcd for [C19H15N4SCl]: 366.0706. Found: 366.0730.

2.1.2. Method b: Fusion of the Allyl-sulfanyl Isomers (Syhthesis of the N-Allylated 4a–b
and N-,N-Diallylated Compounds 6a–b)

Separately, the S-allylated compounds from 3a–b (1.0 mmol) and S,N-diallylated com-
pounds 5a–b (1.0 mmol) were fused at temperatures just higher than the respective melting
point for few minutes (about 5 min) until all S-allyl starting materials were converted to
N-allyl analogues as monitored by TLC. The products were purified by recrystallization
from EtOH.

2-(All-1-yl)-4-phenyl-5-(1H-indol-2-yl)-3-thioxo-1,2,4-triazole (4a)

Yield: 76%, m.p. 165–166 ◦C. 1H NMR (400 MHz, CDCl3): δ 5.00 (d, 2H, J = 6.0 Hz),
5.42 (d, 1H, Jcis = 10.2 Hz), 5.47 (d, 1H, Jtrans = 17.2 Hz), 5.77 (s, 1H), 6.05–6.24 (m, 1H),
7.09 (t, 1H, J = 7.4 Hz), 7.27 (t, 1H, J = 7.4 Hz), 7.32–7.53 (m, 4H), 7.67–7.68 (m, 3H), 8.94
(br.s, 1H); 13C NMR (CDCl3, 100 MHz) δ 51.94, 105.26, 111.23, 119.76, 120.85, 121.73, 122.05,
124.93, 127.54, 128.61, 130.24, 130.70, 134.97, 136.24, 144.04, 168.65; HRMS (EI) calcd for
[C19H16N4S]: 332.1096. Found: 332.1091.

2-(All-1-yl)-4-(4-chlorophenyl)-5-(1H-indol-2-yl)-3-thioxo-1,2,4-triazole (4b)

Yield: 74%, m.p. 187–188 ◦C. 1H NMR (400 MHz, CDCl3): δ 4.97 (d, 2H, J = 6.0 Hz),
5.41 (dd, 1H, Jcis = 10.0, Jgem = 0.8 Hz), 5.44 (dd, 1H, Jtrans = 17.2, Jgem = 0.8 Hz), 5.87 (d,
1H, J = 1.2 Hz), 6.10–6.18 (m, 1H), 7.07 (dd, 1H, J = 8.0, J = 7.2 Hz), 7.25 (dd, 1H, J = 7.2,
J = 8.0 Hz), 7.33–7.38 (m, 3H), 7.45 (d, 1H, J = 8.0 Hz), 7.59 (d, 2H, J = 8.4 Hz), 8.96 (br.s,
1H); 13C NMR (CDCl3, 100 MHz) δ 51.99, 105.26, 111.25, 119.90, 121.00, 121.82, 125.11,
127.50, 130.04, 130.56, 130.67, 133.38, 136.27, 136.79, 143.80, 168.66; HRMS (EI) calcd for
[C19H15N4SCl]: 366.0706. Found: 366.0716.

2.1.3. Method c: Synthesis of S,N-Diallylated Compounds 5a–b and N,N-Diallylated
Compounds 6a–b

Separately, (1.0 mmol) of the selected hit compounds 3-allylsulfanyl-4-aryl-triazole-
thiones 3a–b/2-(Allyl)-4-phenyl-5-indolyl-3-thioxo-1,2,4-triazoles 4a–b and anhydrous
K2CO3 (1.1 mmol) in dry acetone (10 mL) were stirred for one hour, allyl bromide (1.1 mmol)
was added portion-wise and all mixtures were stirred overnight (reaction progress was
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monitored using TLC). Acetone was removed under vacuum, water was added, and the
formed precipitates were collected, dried and recrystallized from ethanol.

3-(All-1-ylsulfanyl)-5-((1-all-1-yl)-indol-2-yl)-4-phenyl-1,2,4-triazole (5a)

Yield: 51%, m.p. 116–117 ◦C [Lit. [24], 113–114 ◦C]. 1H NMR (400 MHz, CDCl3): δ
3.92 (d, 2H, J = 7.2 Hz), 4.84 (d, 1H, Jtrans = 17.2 Hz), 5.07 (d, 1H, Jcis = 10.4 Hz), 5.14 (d,
1H, Jcis = 10.0 Hz), 5.275–5.32 (m, 3H), 5.95–6.04 (m, 3H), 7.03 (dd, 1H, J = 8.0, J = 7.2 Hz),
7.19–7.24 (m, 3H), 7.33 (d, 1H, J = 8.4 Hz), 7.38 (d, 1H, J = 8.0 Hz), 7.47–7.52 (m, 3H); 13C
NMR (CDCl3, 100 MHz) δ 35.22, 47.10, 105.51, 110.44, 116.12, 119.10, 120.24, 121.36, 123.47,
124.59, 126.95, 127.65, 130.00, 130.20, 132.58, 134.14, 137.73, 149.05, 152.30; HRMS (EI) calcd
for [C22H20N4S]: 372.1409. Found: 372.1422.

3-(All-1-ylsulfanyl)-5-((1-all-1-yl)-indol-2-yl)-4-(4-chlorophenyl)-1,2,4-triazole (5b)

Yield: 47%, m.p. 160–161 ◦C. 1H NMR (400 MHz, CDCl3): δ 3.92 (d, 2H, J = 7.2 Hz),
4.82 (d, 1H, Jtrans = 17.2, Jgem = 0.8 Hz), 5.06 (d, 1H, Jcis = 10.0, Jgem = 0.8 Hz), 5.15 (d, 1H,
Jcis = 9.6 Hz), 5.28–5.33 (m, 3H), 5.95–6.04 (m, 3H), 7.06 (dd, 1H, J = 8.0, J = 7.2 Hz), 7.17 (d,
2H, J = 8.8 Hz), 7.23 (dd, 1H, J = 7.2, J 8.0 Hz), 7.34 (d, 1H, J = 8.0 Hz), 7.43 (d, 1H, J = 8.0 Hz),
7.47 (d, 2H, J = 8.4 Hz); 13C NMR (CDCl3, 100 MHz) δ 35.43, 47.04, 105.85, 110.46, 116.22,
119.22, 120.43, 121.45, 123.76, 124.01, 126.93, 128.95, 130.31, 132.31, 132.48, 134.06, 136.45,
137.89, 148.85, 152.25; HRMS (EI) calcd for C22H19N4SCl (M+): 406.1019. Found: 406.1022.

2-(All-1-yl)-5-((1-all-1-yl)-indol-2-yl)-4-phenyl-3-thioxo-1,2,4-triazole (6a)

Yield: 73method b, 55method c%, m.p. 145–146 ◦C. 1H NMR (400 MHz, CDCl3): δ 4.89
(d, 1H, Jtrans = 17.2 Hz), 5.02 (d, 2H, J = 6.0 Hz), 5.08–5.12 (m, 3H), 5.36 (d, 1H, Jcis = 10.4,
Jgem = 0.8 Hz), 5.42 (d, 1H, Jtrans = 17.2, Jgem = 0.8 Hz), 5.85–5.94 (m, 1H), 6.01 (s, 1H),
6.05–6.12 (m, 1H), 7.05 (dd, 1H, J = 8.0, J = 7.2 Hz), 7.23–7.32 (m, 4H), 7.40 (d, 1H, J = 0.8
Hz), 7.50–7.60 (m, 3H); 13C NMR (CDCl3, 100 MHz) δ 47.02, 51.92, 107.80, 110.34, 116.66,
119.74, 120.66, 121.78, 122.91, 124.29, 12670, 128.47, 129.85, 130.10, 130.80, 133.58, 135.28,
137.99, 143.63, 168.09; HRMS (EI) calcd for [C22H20N4S]: 372.1409. Found: 372.1390.

2-(All-1-yl)-5-((1-all-1-yl)-indol-2-yl)-4-(4-chlorophenyl)-3-thioxo-1,2,4-triazole (6b)

Yield: 69method b, 51method c%, m.p. 174–175 ◦C. 1H NMR (400 MHz, CDCl3): δ 4.88 (d,
1H, Jtrans = 17.1 Hz), 5.00 (d, 2H, J 5.9 Hz), 5.09–5.14 (m, 3H), 5.42 (d, 1H, Jcis = 10.4 Hz),
5.46 (d, 1H, Jtrans = 17.2 Hz), 5.90–5.97 (m, 1H), 6.11–6.18 (m, 2H), 7.13 (t, 1H, J = 7.4 Hz),
7.29–7.51 (m, 7H); 13C NMR (CDCl3, 100 MHz) δ 46.95, 51.92, 107.80, 110.31, 116.69, 119.85,
120.76, 121.81, 122.55, 124.42, 126.61, 129.76, 130.11, 130.59, 133.47, 133.64, 136.10, 137.97,
143.36, 168.03; HRMS (EI) calcd for C22H19N4SCl (M+): 406.1019. Found: 406.1023.

2.2. Crystal Structure Determination

The technical method for determining crystal structures for compounds 5b and 2b is
provided in supporting information [33–36], and crystal data are summarized in Table 1.

Table 1. Crystal data.

5b 2b

CCDC no. 2,264,129 2,264,130
empirical formula C22H19ClN4S C23H17ClN4S
fw 406.92 416.92
temp (K) 120 (2) 120 (2)
λ (Å) 0.71073 1.54184
cryst syst Monoclinic Triclinic
space group P21/c P

−
1

a (Å) 11.0242 (3) 12.1537 (5)
b (Å) 16.5074 (4) 12.8679 (5)
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Table 1. Cont.

5b 2b

c (Å) 11.0507 (2) 15.0994 (5)
α (deg) 90 70.272 (3)
β (deg) 97.688 (2) 69.417 (3)
γ (deg) 90 67.402 (4)
V (Å3) 1992.94(8) 1984.17 (15)
Z 4 4
ρcalc (mg/m3) 1.356 1.396
µ (Mo Kα) (mm−1) 0.312 2.818
No. reflns. 23,307 53,703
Completeness to theta = 25.242◦ 100%
Completeness to theta = 67.684◦ 100%
Unique reflns. 6619 8329
GOOF (F2) 1.037 1.034
Rint 0.0475 0.0342
R1

a (I ≥ 2σ) 0.0461 0.0296
wR2

b (I ≥ 2σ) 0.1106 0.0747
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]]1/2.

2.3. Hirshfeld Surface Analysis

Topology analyses were performed using Crystal Explorer 17.5 program [37].

3. Results and Discussion

The regiospecific S-benzylzation and S-allylation of 5-indolyl-4-phenyl-1,2,4-triazole-3-
thione 1a and its 4-(4-chlorophenyl) analogue 1b were successfully performed via reaction
with benzyl bromide and allyl bromide, respectively. This reaction was promoted by an
Et3N base, which was used as a catalyst in an acetone medium (Scheme 1). 1H NMR
and 13C NMR spectroscopy revealed the following characteristic signals that support
structural assignments: benzylated products 2a–b spectra contained methylene protons of
the benzyl group (-CH2Ph) (almost at 4.42 ppm), and the respective methylene carbons were
approximately at 37.30 ppm. The allylated compounds 3a–b had allylic protons (attached
to saturated sp3 carbon -S-CH2) as a doublet at 3.95 ppm, while the corresponding allylic
carbon appeared to be near 35.50 ppm. In addition, the 1H NMR of 3a–b displayed the
cis protons of the vinylic methylene group at 5.20 ppm with a coupling constant value
of 3J ≈ 10.0 Hz, whereas the trans proton was found at 5.34 ppm with 3J ≈ 16.9 Hz. The
remaining vinylic CH proton was found as multiplet in the region at 5.95–6.05 ppm. The
two triazole carbons in the four compounds 2a–b, 3a–b were detected near 149.00 and
152.00 ppm.

Moreover, a simple, efficient and catalyst-free thermal rearrangement of the allyl
moiety from exocyclic sulfur to N(2) of the triazole ring was successfully carried out via
the fusion of S-allylated compounds 3a–b on a hotplate for a few minutes at temperatures
just higher than their melting points to yield N-allylated compounds 4a–b. The S-allylated
triazoles 3a–b were further allylated in the presence of the K2CO3 base, which catalyzed
the allylation of indole nitrogen to afford the S,N-diallylated products 5a–b. To obtain
N,N-diallylated products 6a–b, the allylation of indole nitrogen and triazole nitrogen was
regiospecifically carried out either via the allylation of N-allylated precursors 4a–b or via
the thermal thio-aza allyl rearrangement of 5a–b (Scheme 2). The allyl group migration
from sulfur to nitrogen was supported by NMR spectra of 4a-b. The allylic methylene
protons experienced a downfield chemical shift, appearing near 5.00 ppm where, the
respective allylic methylene carbon shifted approximately to 51.90 ppm. In addition, one of
the triazole carbon signals was shifted to 168.65 ppm, supporting C=S formation caused by
allyl group migration.
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Sulfur and indole nitrogen allylation in the compounds 5a–b, was confirmed due
to the disappearance of indole NH and the appearance of new allyl group signals. The
S,N-diallylic methylene group protons signals were detected near 3.92 ppm (for SCH2) and
4.84 ppm (NCH2) and the respective carbons were detected at 35.22 ppm (for SCH2) and
47.10 ppm (for NCH2). The two triazole carbons were found near 149.00 and 152.00 ppm.

The allylation of indole nitrogen, along with triazole nitrogen 6a–b, established based
on NMR, which displayed the signals of the two allylic methylene groups near 4.89 ppm
and 5.02 ppm and the respective allylic carbons found near 47.00 ppm and 52.00 ppm.
Moreover, the appearance of a 13C NMR signal at 168.00 ppm strongly supports the
thiocarbony group (C=S).

3.1. Crystal Structure Description

The structure of 5b is shown in Figure 1, which is found to have a good agreement with
the proposed structure based on the spectral characterizations. Selected bond distances
are shown in Table 2, while selected bond angles are depicted in Table S1 (Supplementary
Data). The structure solution of compound 5b has unit cell parameters of a = 11.0242 (3) Å,
b = 16.5074 (4) Å, c = 11.0507 (2), and β =97.688 (2)◦. Hence, the crystal system is monoclinic,
while the space group is P21/c. The asymmetric formula is one unit, while z = 4. The crystal
density is 1.356 Mg/m3, and the unit cell volume is 1992.94 (8) Å3. There are a number of
aromatic ring systems in which the three planar ring systems are not coplanar with one
another. The mean plane of the triazole moiety, and the phenyl moiety has an angle of
77.36 (12)◦. Additionally, the mean plane of the indole and triazole moieties is also twisted,
and the twist angle in this case is less than 35.98 (11)◦.
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Table 2. Bond lengths (Å) for 5b and 2b. a.

Bond Length/Å Bond Length/Å

5b 2b

Cl(1)-C(16) 1.7389 (13) Cl(1)-C(13) 1.7325 (13)
S(1)-C(19) 1.7418 (16) S(1)-C(16) 1.7460 (14)
S(1)-C(20B) 1.8204 (16) S(1)-C(17) 1.8318 (14)
S(1)-C(20A) 1.8204 (16) N(1)-C(1) 1.3716 (18)
N(1)-C(7) 1.386 (2) N(1)-C(8) 1.3788 (17)
N(1)-C(11) 1.3938 (19) N(2)-C(16) 1.3740 (17)
N(1)-C(8) 1.457 (2) N(2)-C(9) 1.3755 (17)
N(2)-C(19) 1.3732 (18) N(2)-C(10) 1.4372 (16)
N(2)-C(12) 1.3802 (18) N(3)-C(16) 1.3096 (17)
N(2)-C(13) 1.4364 (17) N(3)-N(4) 1.3989 (16)
N(3)-C(19) 1.3124 (18) N(4)-C(9) 1.3131 (17)
N(3)-N(4) 1.4027 (18) Cl(1B)-C(13B) 1.7373 (13)
N(4)-C(12) 1.3190 (17)

a List of bond angles are given in Table S1 (Supplementary Materials).

The molecular units of 5b are connected with each other via the N . . . H and S . . .
H non-covalent contacts shown in Figure 2A. A list of the H-bond parameters is shown
in Table 3. The donor–acceptor distances of these interactions are 3.456 (2) and 3.741 (6)
Å for C14-H14 . . . N4 and C22A-H22B . . . S1, respectively. The packing scheme for the
molecular units along the ab plane is shown in Figure 2B.

Crystals 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 2. The N…H/S…H contacts (A) and packing view via N…H/S…H contacts (B) for 5b. 

Table 3. Hydrogen bonds for 2b and 5b [Å and °]. 

D-H…A d(D-H) d(H…A) d(D…A) <(DHA) Symm. Code 
5b 

C14-H14…N4 0.95 2.58 3.456 (2) 154 1 − x, 1 − y, 1 − z 
C22A-H22B…S1 0.95 2.87 3.741 (6)  153 2 − x, 1 − y, 1 − z 

2b 
C17-H17B…N3 0.99 2.55 3.025 (2)  109  
C19-H19…N3 0.95 2.6 3.388 (2) 140  
N1-H1…N4B 0.86 (2)  2.08 (2) 2.913 (2) 164.1 (18)  
N1B-H1B…N4 0.88 (2) 0.88 (2) 2.920 (2)  163.1 (18)  
C11-H11…N3 0.95 2.59 3.440 (2) 149 1 − x, 1 − y, 1 − z 
C15B--H15B…N1B  0.95 2.53 3.396 (2)  152 −x, 2 − y, 1 − z 

The X-ray structure of 2b is shown in Figure 3. Crystal  data and a list of the geometric 
parameters are depicted in Tables 1 and 2, respectively. In this case, the crystal system is 
triclinic and the space group is P-1. The lattice parameters are a = 12.1537 (5) Å, b = 12.8679 
(5) Å, c = 15.0994 (5) Å, α = 70.272 (3)°, β = 69.417 (3)°, and γ = 67.402 (4)°. The asymmetric 
unit is two molecules of 2b, while z = 4. The crystal density is 1.396 Mg/m3, and the unit 
cell volume is 1984.17 (15) Å3. In 2b, the twist angles between the triazole ring and the Cl-
phenyl or indole rings are smaller than in 5b. For one molecule, the twist angles are 65.79 
(10)° and 18.94 (12)°, respectively. The molecule with letter B in the atom numbering has 
twist angles of 75.34 (10)° and 21.40 (11)°, respectively. 

Figure 2. The N . . . H/S . . . H contacts (A) and packing view via N . . . H/S . . . H contacts (B) for 5b.



Crystals 2023, 13, 992 9 of 17

Table 3. Hydrogen bonds for 2b and 5b [Å and ◦].

D-H . . . A d(D-H) d(H . . . A) d(D . . . A) <(DHA) Symm. Code

5b

C14-H14 . . . N4 0.95 2.58 3.456 (2) 154 1 − x, 1 − y, 1 − z
C22A-H22B . . . S1 0.95 2.87 3.741 (6) 153 2 − x, 1 − y, 1 − z

2b

C17-H17B . . . N3 0.99 2.55 3.025 (2) 109
C19-H19 . . . N3 0.95 2.6 3.388 (2) 140
N1-H1 . . . N4B 0.86 (2) 2.08 (2) 2.913 (2) 164.1 (18)
N1B-H1B . . . N4 0.88 (2) 0.88 (2) 2.920 (2) 163.1 (18)
C11-H11 . . . N3 0.95 2.59 3.440 (2) 149 1 − x, 1 − y, 1 − z
C15B--H15B . . . N1B 0.95 2.53 3.396 (2) 152 −x, 2 − y, 1 − z

The X-ray structure of 2b is shown in Figure 3. Crystal data and a list of the geometric
parameters are depicted in Tables 1 and 2, respectively. In this case, the crystal system is tri-
clinic and the space group is P-1. The lattice parameters are a = 12.1537 (5) Å, b = 12.8679 (5)
Å, c = 15.0994 (5) Å, α = 70.272 (3)◦, β = 69.417 (3)◦, and γ = 67.402 (4)◦. The asymmetric
unit is two molecules of 2b, while z = 4. The crystal density is 1.396 Mg/m3, and the unit
cell volume is 1984.17 (15) Å3. In 2b, the twist angles between the triazole ring and the
Cl-phenyl or indole rings are smaller than in 5b. For one molecule, the twist angles are
65.79 (10)◦ and 18.94 (12)◦, respectively. The molecule with letter B in the atom numbering
has twist angles of 75.34 (10)◦ and 21.40 (11)◦, respectively.
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The molecules of 2b are interconnected in the crystal via the N . . . H contacts, as
depicted in Table 3 and Figure 4A. There are two types of non-covalent interactions: polar
N-H . . . N and non-polar C-H . . . N. The polar hydrogen bonds, such as the N1-H1 . . .
N4B and N1B-H1B . . . N4 have donor–acceptor distances of 2.913 (2) and 2.920 (2) Å,
respectively. On the other hand, the C-H . . . N interaction distances occurred at longer
distances (3.025 (2)–3.440 (2) Å). The packing scheme for the molecular units of 2b is shown
in Figure 4B.
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3.2. Hirshfeld Surface Analysis

The analysis of intermolecular interactions in the crystal of 5b is presented in Figure 5.
The most dominant contacts are the H . . . H (48.2%), C . . . H (23.7%), Cl . . . H (11.0%), N
. . . H (8.8%) and S . . . H (4.5%). Other minor interactions such as Cl . . . N (1.2%) and C . . .
N (1.1%) contacts were detected.

There are three important surfaces in the Hirshfeld analysis, which are shown in
Figure 6. In the dnorm surface, the most important short contacts appeared as red spots.
These red spots are related to C . . . H, N . . . H, S . . . H, Cl . . . N and H . . . H interactions.
A list of the shortest intermolecular contacts detected in the crystal of 5b is shown in Table 4.
The other two surfaces (shape index and curvedness maps) are important for inspecting
the possibility of π–π stacking interactions. The absence of red and blue triangles in the
shape index and flat areas of the curvedness map indicates the absence of π–π stacking
interactions. In accordance with this observation, the %C . . . C and %C . . . N values are
0.7 and 1.1, respectively.
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Table 4. Short contacts in 5b.

Contact Distance Contact Distance

H8B . . . H22D 2.084 H20A . . . C1 2.599
H22D . . . C8 2.696 H17 . . . C19 2.657
H22D . . . C10 2.607 H21B . . . C5 2.747
H5 . . . C17 2.762 H14 . . . N4 2.458
H20C . . . C2 2.580 S1 . . . H22B 2.754
H20C . . . C1 2.531 Cl1 . . . N3 3.149

In Figure 7, the fingerprint plots of the C . . . H, N . . . H, S . . . H, Cl . . . N and H . . .
H contacts are shown. The blue area in the fingerprint plot gave the percentage of each of
these contacts, as shown in Figure 5. Additionally, the pattern of the fingerprint plot sheds
light on the importance of intermolecular interactions. All contacts presented in Figure 7
appear as sharp spikes, indicating that these interactions have short interaction distances,
mostly shorter than total vdWs radii of the interacting atoms.
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In the case of the crystal structure of 2b, the results indicate the presence of two molecules
as asymmetric formula. Hence, two surfaces for each molecule are presented in Figure 8.
Analysis of the different intermolecular interactions in this crystal structure is presented in
Table 5.
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Figure 8. Hirshfeld surfaces of 2b.

Table 5. The non-covalent interactions and their percentages in 2b.

Contact A B

Cl . . . S 0.0 0.3
Cl . . . N 0.3 0.4
Cl . . . C 4.4 2.3
Cl . . . H 8.5 10.6
S . . . N 1.3 0.9
S . . . C 0.5 1.8
S . . . H 5.8 3.2
N . . . N 0.2 0.0
C . . . N 1.7 1.5
N . . . H 9.0 9.3
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Table 5. Cont.

Contact A B

C . . . C 2.7 4.2
C . . . H 22.1 26.8
H . . . H 43.6 38.7

It is clear from Table 5 that there are some differences in the intermolecular interactions
that occurred in units A and B. In both units, H . . . H, C . . . H, Cl . . . H and N . . . H are the
most dominant interactions. Further inspection of the dnorm map indicated the importance
of Cl . . . C, S . . . N, C . . . H, H . . . H and N . . . H interactions in the molecular packing of
unit A, where all these interactions have the characteristics of short-distance interactions
(Figure 9). The same is true for unit B, but Cl . . . C interactions are less important in this
case, constituting a major difference between the two units. All short interactions and their
distances are listed in Table 6.
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Table 6. Short contacts in 2b.

Contact Distance Contact Distance

S1 . . . N4B 3.289 H23 . . . H17C 2.121
N4B . . . H1 1.933 H19 . . . H2B 2.075
N3 . . . H11 2.479 C14 . . . H11B 2.762
Cl1 . . . C21 3.246 C19 . . . H12B 2.756

H23 . . . H17C 2.121 C19B . . . H5 2.776
H19 . . . H2B 2.075 C11B . . . H15 2.567
H21 . . . H5B 2.122

Additionally, the presence of some C . . . C and C . . . N interactions of up to 4.2% and
1.7%, respectively, might indicate the presence of π–π stacking interactions. Actually, all
C . . . C and C . . . N contacts have significantly longer interaction distances than the total
vdWs radii of the interacting atoms. Additionally, the absence of π–π stacking interactions
is evident from the curvedness and shape index maps.

4. Conclusions

The base used in the alkylation of 4-aryl-5-indolyl-1,2,4-triazole-3-thione precursors af-
fects the structure of the final product. The regiospecific S-benzylation/ allylation occurred
when Et3N used. Thio-aza allyl rearrangement was successfully achieved via thermal
fusion of S-allylated scaffolds. The indole nitrogen was allylated along with exocyclic
sulfur or triazole nitrogen (N3) using K2CO3. S,N-diallylated products were transformed
into N,N-diallylated analogues via thermal fusion. The structure of the two compounds
was confirmed via the X-ray diffraction of a single crystal. Their supramolecular structures
were calculated based on Hirshfeld calculations. The molecular packing of 5b was found to
be controlled by short C . . . H (23.7%), N . . . H (8.8%), S . . . H (4.5%), Cl . . . N (1.2%) and
H . . . H (48.2%) contacts. On the other hand, the supramolecular structure of 2b depended
on Cl . . . C, S . . . N, C . . . H, H . . . H and N . . . H interactions. Their percentages are
calculated to be 2.3–4.4, 0.9–1.3, 26.8–22.1, 38.7–43.6, 9.3–9.0, respectively.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13070992/s1, X-ray structure determinations; Table S1: Bond
angles (◦) for 2b and 5b.
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