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A B S T R A C T   

Objective: Cluster analysis of spatio-temporal event-related potential (ERP) data is a promising tool for exploring 
the measurement time window of ERPs. However, even after preprocessing, the remaining noise can result in 
uncertain cluster maps followed by unreliable time windows while clustering via conventional clustering 
methods. 
Methods: We designed an ensemble deep clustering pipeline to determine a reliable time window for the ERP of 
interest from temporal concatenated grand average ERP data. The proposed pipeline includes semi-supervised 
deep clustering methods initialized by consensus clustering and unsupervised deep clustering methods with 
end-to-end architectures. Ensemble clustering from those deep clusterings was used by the designed adaptive 
time window determination to estimate the time window. 
Results: After applying simulated and real ERP data, our method successfully obtained the time window for 
identifying the P3 components (as the interest of both ERP studies) while additional noise (e.g., adding 20 dB to 
− 5 dB white Gaussian noise) was added to the prepared data. 
Conclusion: Compared to the state-of-the-art clustering methods, a superior clustering performance was yielded 
from both ERP data. Furthermore, more stable and precise time windows were elicited as the noise increased. 
Significance: Our study provides a complementary understanding of identifying the cognitive process using deep 
clustering analysis to the existing studies. Our finding suggests that deep clustering can be used to identify the 
ERP of interest when the data is imperfect after preprocessing.   

1. Introduction 

Event-related potentials (ERPs) data is a rich source of information 
about the cognitive process in the human brain. Information processing 
units are known as ERP components (i.e., particularly emerge as the ERP 
peaks). Qualifying ERP of interest for measuring the cognitive process is 
the key element for reporting results of processing ERP data and testing 
the research hypothesis. The conventional method for identifying an 
ERP is to measure the ERP’s peak latency or the latency’s mean ampli
tude in the time window measurement interval [30]. The conventional 
method for selecting the time window is primarily performed via visual 

inspection for the prominent peak amplitude or obtaining significant 
differences between the conditions/groups [20,21]. Another popular 
method is moving time intervals commonly used in different resolutions 
to find a large effect size [41,50,64]. This method, however, can report 
the effect size obtained from high-frequency noise as a biased result. The 
problem with such measurements is that if the underlying assumption 
for selecting the time window is invalid, analyzing the peak latency, i.e., 
aiming to detect a larger effect size, can be misleading or result in a 
problematic estimation of the brain response. 

Regardless of the experiment design, various uncertainties can be 
investigated while processing ERP data. First, there is no available 
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standard aggregated parameter setting for preprocessing methods. For 
instance, artifact rejection via visual inspection [10] or artifact rejection 
employing independent component analysis (ICA) [34] and electroen
cephalography (EEG) referencing methods [66] are commonly uncer
tain. However, some advanced preprocessing methods implemented in 
popular software, e.g., FieldTrip [45] and systematic artifact removal 
methods [16], can somewhat improve data quality. Next, data incon
sistency can occur by EEG recording conditions and devices (if more 
than one), the participants’ cortical differences, and the response delay 
inconsistency in the trials and individual subjects. This can also be 
associated with the involved number of trials [7]. However, the ERP 
process (averaging the trials) by itself can somewhat reduce the issue of 
incoherency between the trials. Finally, new recording technology and 
devices may require new and more robust analysis method designs. 

In recent decades, cluster analysis has emerged as a technical solu
tion used in different aspects of EEG/ERP studies. For example, using 
fuzzy clustering for class discrimination of evoked potential (EP) 
waveforms [35] and clustering of principal component analysis (PCA) 
results [14] for decreasing the effect of noise in the ERP waveforms were 
introduced. The more conservative methods for ERP identification, 
reviewed by Kallionpää et al. [18], showed that the cluster-based non- 
parametric testing method (in the popular FieldTrip software) relies on 
the temporally adjacent time point (as a cluster) if a significant effect 
size is identified. Furthermore, spatial clustering, initially introduced by 
Pascual-Marqui [47], revealed that the brain state called a ’microstate’ 
can be explained as a quasi-stable spatial configuration [27]. Hence, the 
topographical configuration for a neural response does not change in 
milliseconds, e.g., 80–120 ms [68]. 

Two popular cluster analyzing approaches were used for processing 
spatio-temporal ERP data. First, microstate analysis that assigns the ERP 
microstates, i.e., represented by global field power (GFP) or GFP max
ima, to the template map obtained from clustering the grand average 
ERP [23,42,62]. The template maps are cluster maps with a high 
explained variance (e.g., 70% of variance). The post-hoc processing is 
required, such as smoothing and refining processes based on spatial 
correlation evaluation if the data is noisy [38]. This method, however, 
ignores the polarity of time points when assigning clusters. Despite using 
GFP and the winner-takes-all strategy in determining template maps in 
the microstates analysis, as argued in some research [11,55], the second 
group takes whole time points and polarity into account for clustering of 
spatio-temporal ERP. Recently, we discussed qualifying ERP of interest 
using consensus clustering as a reliable method for ERP data in different 
resolutions [31,32,33]. However, cluster analysis of noisy data can 
result in many noisy clusters and loss of the main components due to 
being sensitive to the data quality if inappropriate clustering is applied. 

Considering the uncertainty of the data, deep learning powered by 
deep neural networks (DNNs) achieved tremendous success using mul
tiple hidden layers, particularly for EEG data with different designs 
[3,9,56,67] and our previous work for sleep staging [28]. Roy et al. [52] 
reviewed a wide range of DNNs used to analyze EEG data. Deep clus
tering, by definition, is introduced as a method encouraging DNNs to 
learn cluster-oriented feature representation and clustering. Therefore, 
DNNs with an embedded clustering module are used with the aim of 
transforming data points into cluster-friendly representations [2,51]. 
Yet, two popular strategies have been introduced for deep clustering 
[2,39]. First, a two-step process in which the DNN is trained to learn 
initialized labels investigating non-clustering loss (i.e., only the DNN’s 
loss is considered). Then, a clustering method (e.g., k-means) is applied 
to the transformed data in the latent space (i.e., cluster-friendly repre
sentation). Another approach uses a jointly training DNN and clustering 
to optimize clustering and the DNN’s weights simultaneously, in which 
the deep clustering improves the labeling obtained from the clustering 
layer/module. Deep clustering for brain imaging has been used in some 
recent studies [49,56]. However, there is little discussion about unsu
pervised identifying ERP components in the literature. 

In this study, we investigate the determinants of the time window of 

the ERP of interest from spatio-temporal ERP data with various addi
tional noises. We design an ensemble clustering pipeline from two 
groups of deep clustering methods. Semi-supervised deep clustering 
methods have been used in which DNN models are trained to learn the 
labeling that is calculated by state-of-the-art consensus clustering. Un
supervised deep clustering methods are designed via end-to-end DNN 
architectures for learning the input signal (i.e., with a joint clustering, 
depending on design). A newly updated time window determination 
method has been used to qualify ERPs of interest from ensemble clus
tering results. On the other hand, DNNs are powerful tools for learning 
nonlinear properties of neuroimaging data and are tolerant to noise and 
fault [13,36]. This motivates us to apply DNN to learn the most efficient 
features compared to conventional handcrafted features (with extensive 
domain expertise). We applied our method to two different ERP data for 
qualifying P3 components. We demonstrate that the proposed pipeline 
reliably estimates the time window of the ERP of interest when there is 
noise in the data after preprocessing. 

2. Materials and methods 

This section describes the ERP datasets used for testing our method, 
the proposed method in detail, and the assessment performance metrics. 

2.1. ERP data 

In order to assess the proposed method, we employed two ERP data, 
simulated and real data. For the simulated data [31], we test the pro
posed method against our prior knowledge, i.e., about the spatial and 
temporal properties of pre-defined ERP components when more noise is 
added to the data. Likewise, for the real ERP data, we test our method for 
qualifying the ERP of interest in the prior study [19] when the existing 
noise in the data increases. 

2.1.1. Simulated ERP data 
The simulated data was conducted using the ‘DipoleSimulator 

3.3.0.2′ software from BESA Research (https://www.besa.de). To this 
end, first, we defined dipoles to generate six pre-defined components (i. 
e., P1, N1, P2, N2, P3, and N4) and the corresponding data from each 
component with a simulated scalp containing 65 electrodes for 20 
subjects (one group). Once data was generated, the sampling rate of 
generated ERP data was 214 Hz and epoched from 100 ms pre-stimulus 
onset to 600 ms post-stimulus via the software (i.e., the dataset size is 
65× 150). The signal was interpolated to 429 Hz (i.e., dataset size is 
65× 300) to increase the resolution of the data to provide potentially 
more isolation accuracy of ERP components. This was done via 
electrode-wise increasing the original sample rate to a higher rate by 
inserting zeros into the signal and applying a finite impulse response 
(FIR) digital interpolation low-pass filter [44,58] to expand the signal. 
We showed the simulated ERP components’ properties (spatial and 
temporal) and the combined waveform in Fig. 1 for reference. 

In order to provide individual ERP data of the subjects, a random 
resampling interpolation method was applied by increasing the duration 
of the component with a maximum of 11.5 ms (5 time points × 2.3 ms), 
resulting in a new signal (for each dipole). Then a further random shift 
was performed for each dataset within ± 4.6 ms. Finally, a combined 
ERP dataset from two conditions (i.e., ’Cond1′ and ’Cond2′) was pre
pared using MATLAB code. Noteworthy that an additional strength 
(subjectively) is applied to some of the components’ waveforms (e.g., N2 
and P3) to provide a significant difference between conditions. The P3 
component in this data refers to the positive response from 266 to 357 
ms post-stimulus. Statistical amplitude power differences were 
measured at CPz/Cz electrode sites. 

2.1.2. Real ERP data 
The proposed method was applied to the real ERP data, i.e., the 

active visual oddball task study published by Kappenman et al. [19], to 
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qualify the P3 component. The P3 component refers to the maximum 
positive peak around 300 to 600 ms (i.e., the rough time window for P3 
from the prior study). The EEG data was recorded from 40 participants 
(i.e., 25 females and 15 males with a mean year of age = 21.5) with 30 
scalp electrodes in the international 10/20 system from two conditions, 
‘Rare’ and ‘Frequent’ letters. The recorded signals were digitized at 
1024 Hz (sampling rate), downsampled to 256 Hz for faster processing, 
and referenced offline the average of P9 and P10. The location elec
trodes were excluded from processing (i.e., only 28 electrodes were 
considered). The signals were high-pass and low-pass filtered at 0.1 Hz 
and 20 Hz and epoched from 200 ms pre-stimulus onset to 800 ms post- 
stimulus onset by the experimenters. The experimenters extracted 
approximately 50 to 70 trials for each condition from each subject. The 
electrode Pz (state-of-the-art electrode) was considered for statistical 
power analysis following the prior research. 

2.2. Our proposed method 

Fig. 2 illustrates the proposed method in four steps, data preparation, 
consensus clustering, ensemble deep clustering, and time window 
determination. A more detailed explanation of each step and their cor
responding role are described as follows: 

2.2.1. Data preparation 
The temporal concatenation for ERP data [42] was applied to the 

ERP data from individual subjects. Concatenating was employed along 
with the conditions for each individual subject of the group. Hence, 
given N time points from each condition and F scalp electrode (i.e., each 
condition data size is F× N), the temporal concatenated data is the size 
of F × (N × C) for each individual where C denotes the number of con
ditions. Then group-wise averaging was performed to be used in clus
tering analysis. Thus, the temporal concatenated grand average ERP 

dataset (from two conditions) is the size of 65 × 600 for the real data, 
and for the simulated data (from two conditions) is the size of 28× 512. 
Fig. 2A demonstrates the temporal concatenating for subjects and the 
grand average calculation prepared for feeding individual clustering 
methods. Less formally, the samples for cluster analysis are the time 
points, and the primary features are the recorded voltage from the scalp 
electrodes. In order to assess the proposed method, an additional white 
Gaussian noise (e.g., 20, 10, 5, 0, − 5 dB) as a whole (all electrodes’ data) 
is applied to the prepared grand averaged ERP using the MATLAB 
function awgn. This will be in contrast to the assumption that averaging 
signal from trials/subjects removes noise from the signal for carrying the 
most powerful ERP responses. 

2.2.2. Consensus clustering 
The most popular clustering methods for neuroimaging were 

employed aimed to initialize consensus clustering, including polarity- 
independent, i.e., after a polarity adjustment to avoid the risk of putt
ing samples with different polarity in the same cluster, and polarity- 
invariant methods. The clustering methods for the generation phase 
were selected to provide an appropriate consensus clustering configu
ration from our toolbox [33], employing the M-N plot method [1]. This 
approach selects the clustering methods in which the inner-similarity 
and duration of the obtained time window for a given ERP are appro
priate from various clustering options (e.g., repetitive runs on 2 to 20 
clusters). Therefore, for the simulated data, k-means [48] and hierar
chical clustering [60] with correlation similarity function, spectral 
clustering [43] with k-means with Euclidean similarity, and modified k- 
means [46] were selected. Likewise, for the real data, k-means and hi
erarchical clustering with correlation similarity, fuzzy c-means (FCM) 
[6], self-organizing maps (SOM) [24], spectral clustering, and modified 
k-means were selected. 

Moreover, the optimal number of clusters was determined by the 

Fig. 1. Illustration of the simulated ERP components, corresponding topographical maps, and the combined waveform (in Cz electrode). The corresponding 
topographic maps of the pre-defined components are shown with the ERP waveform. 
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pipeline following our prior work [33] in which the independent re
petitive consensus clustering (e.g., up to 100 runs) is performed on the 
clustering options (e.g., from 2 to 15 clusters) and the inner-similarity of 
identified time windows is calculated. Then, the optimal number of 
clusters is estimated in a clustering option where the qualified time 
windows reach a high inner-similarity (e.g., > 0.95) and become stable. 
The inner-similarity of a cluster map can be defined as the mean of 
correlation coefficients between topographical maps for each of two 
different time points (except self-correlation). As a result, the optimal 
number of clusters for the simulated and real data were obtained in 6 
and 5 clusters, respectively. Hence, once the clustering results are ob
tained, we apply cluster-based similarity partitioning (CSPA) that is 
based on hypergraph clustering [57]to calculate the final clustering 
result. 

Mathematically, let us consider the clustering problem of N samples, 
X = {x1, x2, ..., xN} into K groups, where each group is represented by a 
centroid μk, k = {1,2,⋯,K} and xt ∈ RF, t = {1,2,⋯,N} and F denotes 
the number of features, i.e., the electrodes in the EEG scalp. A set of R 
clusterings L(1,2,⋯,R) is used for combining into a result clustering L. 
Therefore, the objective function for cluster ensemble from R cluster
ings, a consensus function Γ can be defined as: 

Γ :
{

L(i)
⃒
⃒i ∈ {1, 2,⋯,R}

}
→L (1)  

which is a function of NN×R→NN that maps clusterings to a final set of 
clusters. Given a set of clusterings {L(i)

⃒
⃒i ∈ {1, 2, ⋯, R}}, the goal is to 

explore the clustering result that shares the most information from all 
clusterings. The mutual information between two clustering results like 
Li, Lj is denoted by I(Li,Lj),and H(Li) denotes the entropy of Li. Hence, the 
normalized mutual information (NMI), i.e., in the range between 0 and 
1, between Li, Lj using geometric mean can be denoted by: 

NMI
(
Li,Lj

)
=

I
(
Li, Lj

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

H(Li)H
(
Lj
)√ (2)  

I
(
Li,Lj

)
≤ min

(
H(Li)H

(
Lj
) )

, (3)  

H(L̂) =
∑K

a=1
Nalog

Na

N
(4)  

where Na refers to the number of samples in the cluster Ca according to 
L̂. Thus, for two clustering results Li, Lj, the mutual information is 
calculated as: 

Γ(NMI)( Li, Lj
)
=

∑K
a=1

∑K
b=1Na,blog

(
N.Na,b
NaNb

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅( ∑K
a=1Nalog Na

N

)(∑K
b=1Nblog Nb

N

)√ (5)  

where Na, Nb present the number of samples in the clusters Ca, Cb ac
cording to Li, Lj, respectively. Na,b refers to the number of samples in 
cluster a according to Ca as well as in cluster b according to Cb. Thus, the 
mutual information between r clusterings (ʌ) can be defined as the 
average NMI (ANMI): 

Γ(ANMI)(Λ, L̂) =
1
R

∑R

l=1
Γ(NMI)(L̂, Ll) (6) 

Therefore, the optimal labeling from r clusterings can be simply 
defined as: 

L* = argmaxL∈L

∑R

l=1
Γ(NMI)(Ll) (7)  

where Γ denotes a similarity measurement (e.g., NMI), which measures 
mutual information between a set of R clusterings and L* is an optimal 

Fig. 2. Proposed pipeline for determining the time window (TW) of the event-related potential (ERP) of interest. A. Temporal concatenating data from the C 
conditions for S subjects and calculating grand average ERP dataset size of F × (N× C), where F is the number of electrodes and N denotes the number of time points 
for each condition dataset. B. Selection of the clustering algorithm and generation phase of consensus clustering to initialize semi-supervised deep clustering 
methods. C. Ensemble deep clustering from R1 semi-supervised and R2 supervised deep clusterings. D. Time window determination from the ensemble clustering 
result. Subj = subject and Cond = condition. 
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combined clustering with maximum average similarity to all other 
clusterings Ll. Note that the L* (consensus clustering labeling) has the 
same size with individual labelings Ll. Notably, the applied CSPA 
consensus function can calculate the clustering result from non- 
heterogeneous labeling (i.e., different number of clusters or including 
missing labels) [57]. As a result, once the clustering labels are assigned 
via clustering methods (generation phase), the consensus function ex
plores the maximum aggregation between the clusterings. 

2.2.3. Deep clustering 
Two groups of deep clustering methods were designed. First, the 

semi-supervised methods, i.e., initialized with a consensus clustering 
result, were applied to the prepared ERP data (i.e., including additional 
noise) to obtain cluster-friendly transformed data by learning the K class 
of clusters. The second group was designed based on the end-to-end 
autoencoder (AE)-based unsupervised deep clusterings to learn the 
most powerful features of the data for clustering into K groups. 
Depending on the deep clustering design, the clustering module was 
embedded as a layer or linked to be fed by the transformed dataset 
independently. The following describes general mathematical logic for 
both groups of designed deep clustering methods. 

Let X be the prepared data, e.g., size of N × F from N time points and 
F electrodes, and Y = {y1, y2, ..., yN} denotes the labels obtained via 
consensus clustering in the dataset. The transforming function can be 
defined as S∅ : X→Y, which maps each time point xt = {e1, e2,⋯, eF} (i. 
e., a topography map) associated with a label yt, t ∈ 1,2,⋯,N, where ∅ 
are the learnable parameters by the network. The role of the deep 
clustering method is to assign the input space to K clusters L =

{C1,C2,⋯,CK}, where Ck =
{
xt |yt = k, ∀t ∈ 1,2,⋯,N

}
. Therefore, X 

and Y are defined as input and output spaces, in which input space is 
transformed with a nonlinear mapping fθ :X → Z where θ are learnable 
parameters and Z is embedded feature space, Z ∈ RK. Then a parame
trized classifier such as gω is used to predict the correct labels on top of 
the features fθ(xt), where the classifier and mapping parameters ω and θ 
are jointly learned by optimizing the following problem: 

minθ,ω
1
N

∑N

t=1
Lossnet(gω(fθ(xt)), yt ) (8)  

where Lossnet is the multinomial logistic loss, also known as the negative 
log-softmax function. 

Regardless of the type of applied layers in the semi-supervised 
methods, the DNN is encouraged to minimize Lossnet in order to opti
mize the prediction of labels (see Eq. (8)). Hence, the input for semi- 
supervised deep clustering methods is the prepared grand average ERP 
data order of RF×(N×C), and the output is the order of NK (K notes). Thus, 
the cluster-friendly transformed data (after training) is the size of (N ×

C)× K. Next, we apply a stabilized clustering [31] using k-means for 
fine-tuning and obtaining the clustering result. 

For unsupervised deep clustering methods, the DNN optimizes the 
network knowledge about input signal jointly with a clustering module, 
i.e., depending on the design, the clustering module can be connected to 
the bottleneck layer. The Loss function usually is the combination of the 
network and clustering losses, denoted as follow: 

Loss = Lossnet + γLosscl, (9)  

where Losscl denotes the clustering (embedded) loss. γ is a hyper- 
parameter, which is used to balance the two costs in jointly learning 
deep clustering method. Note that Lossnet for unsupervised methods is 
defined depending on the learning method and DNNs’ structure. 
Therefore, the reconstruction loss can be easily defined as: 

minθ1 ,ω1 Lrec = min
1
N

∑N

t=1
‖xt − gω1

(
fθ1 (xt)

)
‖

2 (10)  

where the network is composed of two groups of layers corresponding to 
the encoder fθ1 (.) and decoder gω1 () with a bottleneck layer(s). The input 
of the connected clustering module is the encoder’s output from the 
bottleneck layer as the cluster-friendly data. In this definition, the 
transformed data size for clustering is (N × C)× K. 

2.2.3.1. Design of studied deep clustering methods. The configuration 
problem of consensus clustering is considered as finding a balance be
tween the selected clustering methods (i.e., called exploration in ma
chine learning) to obtain optimal/sub-optimal combination (i.e., 
exploitation). In this study, we provided the M-N plot [1 33] to pre-test 
(see Fig. 3) the studied methods against the different datasets (regarding 
the noise levels) to avoid trivial results from the individual methods. As 
a result, the clustering method with a higher risk of obtaining worse 
candidate cluster maps (cluster maps in the critical area) with an 
insufficient number of time points and unstable (considering noise in the 
data) can be eliminated. Although some of the methods achieved less 

Fig. 3. Illustration of the M− N plot pre-test of the studied methods on the 
prepared simulated data (A) and the real data (B) with the additional noises. All 
the studied deep clustering designs identified cluster maps with high inner 
similarity (particularly noisy data resulted in lower inner similarity) from both 
ER data. MLP = fully connected multi-layer perceptron, CNN = one dimen
sional convolutional deep neural network, LSTM = long short-term memory, 
AE = autoencoder, VAE = variational autoencoder, DEC = deep embedded 
clustering, EnsDC = ensemble deep clustering, and CC = consensus clustering. 
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compact or even fewer samples in candidate cluster maps, i.e., in some 
of the tests, this does not affect the proposed method’s performance as 
there are no trivial results from the proposed method (Ens_DC) in Fig. 3A 
and Fig. 3B. This can also estimate whether those clustering methods are 
appropriate for given ERP data with additional noise. 

We designed six standard deep clustering models from the popular 
deep clustering designs for sequential data after evaluating them. 
Therefore, from the semi-supervised methods, we designed: a fully- 
connected multilevel perceptron (FC-MLP) [39] DNN to learn the 
essential features of ERP data; a one-dimensional convolutional neural 
network (1D CNN) [9] to learn complex features of the prepared ERP 
data; and long short-term memory (LSTM) [26] to learn sequential 
features of data. We employed a stabilized clustering module via 
consensus clustering [31] to cluster the transformed data from each 
DNN. 

For the unsupervised group, we designed: an end-to-end AE deep 
network [40] to use the capability of AE for learning ERP features; 
variational autoencoder (VAE) [22] for learning input space distribution 
(e.g., Gaussian distribution) in the latent space; and deep embedded 
clustering (DEC) [12] to simultaneously learn feature representations 
and optimize cluster assignments (soft assignment). Likewise, in the first 
group, a stabilized clustering module was used for clustering trans
formed data from the encoder’s output of AE and VAE based deep 
clustering methods. Table 1 illustrates the designed blocks of deep 
clustering models for prepared ERP datasets. 

For the DNNs’ hyperparameters, we have used the sparse categorical 
cross-entropy loss function as the net loss and a common adam optimizer 
for supervised and RMSProp optimizer for the semi-supervised group 
with default hyperparameters. Furthermore, the other hyperparameters 
of all the DNNs models, such as the number of units, the number of 
layers, the learning rate (e.g., 0.001), batch size (e.g., 150), and the 

number of iterations (e.g., 100 iterations) were determined by tuning 
the network using a coarse grid search [5]. Finally, 5-fold cross- 
validation with mentioned optimizers has been applied to 80 percent 
of the data for training and validation and 20 percent for the test eval
uation. All DNNs were built-in using Keras deep learning libraries. 

2.2.3.2. Ensemble deep clustering. Among different strategies for 
ensemble clustering [8,54], we combined the results of individual 
methods to calculate the ensemble result from non-heterogeneous ele
ments (i.e., various deep DNNs strategies). Once the results from deep 
clustering models are obtained, the deep clustering results are fed into 
consensus clustering (CSPA consensus function) for exploring the most 
aggregate clustering result. Hence, the consensus clustering at the deep 
clustering level combines the labeling results from semi-supervised deep 
clustering methods, AE and VAE from the supervised group, and the 
clustering result of labeling optimization from DEC (see Fig. 2C). 

Mathematically, following the same principle to calculate the mutual 
information in Eq. (7) (in Section 2.2.2), the ensemble clustering can be 
described as: 

L̂
*
= argmaxL∈L

∑R̂

l=1
Γ(L̂l) (11)  

where L̂
* 

is the result of consensus clustering from R̂ = R1+R2 deep 
clustering methods (i.e., including R1semi-supervised clustering and R2 
unsupervised deep clustering methods) and L̂l represents the results 
from all deep clustering methods. We used the CSPA consensus function, 
which has suitable tolerance for selecting the number of clusters and the 
combination of unstable clusters [57]. Therefore, the labeling result 
from the mentioned three semi-supervised and three unsupervised deep 
clusterings (i.e., size of 600 × 6 for the simulated data and 512 × 5 for 

Table 1 
Illustration of designed deep clustering models applied to ERP datasets where N is the number of time points, F is the number of electrodes, and C is the number of 
conditions. FC_MLP = fully connected multi-layer perceptron, 1D_CNN = one dimensional convolutional deep neural network, LSTM = long short-term memory, AE =
autoencoder, VAE = variational autoencoder, DEC = deep embedded clustering, Relu = rectified linear unit, tanh = hyperbolic tangent function, LB = consensus 
clustering results for feeding the semi-supervised methods. P = current estimation of clustering labels, Q = the previous estimation of the labels, and KL = Kullback- 
Leibler divergence.   

Semi-supervised Unsupervised 

Deep 
clustering 

FC_MLP 1D_CNN LSTM AE VAE DEC 

Input (N × C) × F, LB (N × C) × F, LB (N × C) × F, LB (N × C) × F (N × C) × F (N × C) × F 

Layer 1 FC (64, Relu) 1D_Conv (64, Relu, input), kernel 
= 1 

Lstm (64, Relu) FC (256, tanh) FC (125, tanh) FC (64, Relu) 

Layer 2 Batch 
normalization 

1D_Conv (64, Relu), kernel = 1 Batch 
normalization 

Batch 
normalization 

Batch normalization Batch normalization 

Layer 3 Dropout 5% Max_Pooling_1D Dropout 5% Dropout 2% Dropout 5% Dropout 5% 
Layer 4 FC (512, Relu) Batch normalization Lstm (128, Relu) FC (512, tanh) FC (256, tanh) FC (256, Relu) 
Layer 5 Batch 

normalization 
Dropout 5% Batch 

normalization 
Batch 
normalization 

Batch normalization Batch normalization 

Layer 6 Dropout 5% 1D_Conv (256, Relu), kernel = 1 Dropout 5% Dropout 5% Dropout 5% Dropout 5% 
Layer 7 FC (256, Relu) 1D_Conv (256, Relu), kernel = 1 FC (128, Relu) FC (K, Softmax) FC (256, tanh) FC (256, tanh) 
Layer 8 Batch 

normalization 
Batch normalization Batch 

normalization 
Clustering Batch normalization Batch normalization 

Layer 9 Dropout 5% Dropout 5% Dropout 5% FC (512 tanh) Dropout 5% Dropout 5% 
Layer 10 FC (128, Relu) 1D_Conv (64, Relu), kernel = 1 FC (64, Relu) Batch 

normalization 
Z(z_mean(K), 
z_log_var(K)) 

Clustering Layer (KL- 
divergence (P,Q)) 

Layer 11 Batch 
normalization 

1D_Conv (64, Relu), kernel = 1 Batch 
normalization 

Dropout 5% Lambda (sampling) FC (256, Relu) 

Layer 12 Dropout 5% Global_average_pooling_1D Dropout 5% FC (256, tanh) Clustering Batch normalization 
Layer 13 FC (K, Softmax) Batch normalization FC (K, Softmax) Batch 

normalization 
FC (256, tanh) Dropout 5% 

Layer 14 Clustering FC (K, Softmax) Clustering Dropout 5% Batch normalization FC (256, Relu) 
Layer 15  Clustering   Dropout 5% Batch normalization 
Layer 16     FC (256, tanh) Dropout 5% 
Layer 17     Batch normalization FC (64, Relu) 
Layer 18     Dropout 5% Batch normalization 
Layer 19     FC (128, tanh) Dropout 5% 
Layer 20     Batch normalization  
Layer 21     Dropout 5%   
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the real data) was achieved in a firm aggregate labeling of 600 and 512 
time points in the concatenated simulated and the real ERP data, 
respectively. 

2.2.4. Time window determination 
We modified the previously designed time window determination 

method [31] to provide more flexibility in the inner similarity and 
duration thresholds of candidate cluster maps. It should be noted that 
the time window determination method requires experimental infor
mation about the ERP of interest. This means that considering the 
experimental design (e.g., visual and auditory) and participant group (e. 
g., age, sex, and health level), a rough expectation (at least based on 
stimulation) of some neurological brain response (e.g., attention, 
memory, and mismatch components) is approachable. Therefore, the 
stimulation onset/offset time, the target response, and the electrode site 
are expected. The adaptive time window adjusts the inner similarity 
threshold (e.g., 0.7 ≤ minimum inner-similarity ≤ 0.95) and the 
consecutive number of time points in the candidate cluster maps (e.g., 
30 ms ≤ minimum number of time points ≤ 50 ms) while needed. In 
other words, the time window determination method starts from the 
highest possible inner similarity with sufficient duration and applies a 
silent change (e.g., 0.003 for inner similarity and 2 ms for the duration of 
the map, which can be adjusted when needed) if no suitable represen
tative map is found. 

2.3. Performance analysis 

2.3.1. Evaluation metrics 
We applied the popular performance evaluation metrics, namely, 

accuracy (ACC) [65], NMI [57], and adjusted rand index (ARI) [37], to 
assess the performance of clustering methods. Hence, given the known 
clustering L (i.e., ground-truth) and the clustering result L’, the accuracy 
index can be defined as: 

ACC(L, L′) = max
∑N

i=11{L(i) = m(L′(i)) }
N

, (12)  

where m provides overall possible one-to-one mappings between clus
ters and labels using the Hungarian algorithm [25]. It is, however, not 
possible to get the same label for the given similar clusters from multiple 
clustering methods (i.e., different labels might be generated for the same 
cluster in multiple runs or various methods). Therefore, the Rand index 
(RI), as a suitable index to compare clustering results, can be defined as: 

R (L, L′) =
TP + TN

TP + TN + FP + FN
, (13)  

where TP, TN, FP, and FN signify true positive, true negative, false- 
positive, and false-negative rates, respectively. By calculating the 
expectation of R, i.e., E[R], the adjusted rand index (ARI) is calculated as: 

ARI(L, L′) =
R(L, L′) − E[R ]

1 − E[R ]
. (14) 

Besides, mutual information provides a suitable concept of the 
shared information between a pair of clusterings as an asymmetric 
measure to quantify the statistical information shared between two 
distributions [59], which we have defined in subsection 2.2.2. Another 
reasonable index called adjusted mutual information (AMI) for NMI 
[63] is used by calculating the NMI expectation as the following: 

AMI(L, L′) =
I(L, L′) − E{I(L,L′)}

max{H(L),H(L′)} − E{I(L,L′)}
(15) 

The ground truth clustering for the comparison using those metrics 
mentioned above is the clustering results on the prepared grand average 
ERP data using state-of-the-art consensus clustering when no additional 
noise is applied. The clustering performance of the studied clustering 
methods is assessed from the data of the different additional noise. 

2.3.2. Statistical analysis 
We provided a standard analysis of variances to determine whether 

the identified P3 effect (from each ERP data) is statistically significant. 
For the simulated data, statistical analysis was carried out via a repeated 
measures analysis of variance (rmANOVA) with a within-subject factor: 
Task (conditions: ’Cond1′ and ’Cond2′) in two pre-defined electrode sites 
CPz and Cz. This was performed by measuring the mean voltage of the 
P3 amplitude in the determined time window. The effect of the Task was 
tested against the null hypothesis of existing no significant difference 
between the conditions from those selected electrodes and the estimated 
time windows. Likewise, statistical power analysis for real data was 
carried out via a rmANOVA with a within-subject factor: Task (condi
tions: ’Rare’ and ’Frequent’) by measuring the mean amplitude of P3 on 
the priory selected electrode site over the parietal region (electrode: Pz). 
We tested the effect of the Task for the hypothesis that a significant 
difference exists between the ’Rare’ and ’Frequent’ conditions at the 
selected electrode site and time windows. Statistical comparisons were 
made at p-values of p < 0.05 for both data. 

3. Results and evaluations 

The summarized results of applying the proposed pipeline to two 
ERP data are illustrated, including the performance of each DNN, clus
tering results, estimated time windows, and statistical analysis results 
from different noise levels. Furthermore, we present the performance 
results based on the defined metrics. 

3.1. Performance of the studied DNNs 

Table 2 and Table 3 show the training performance of the studied 
DNNs on the test datasets from the simulated and real data, respectively. 
Observing the results in Table 2 and Table 3 discloses that for semi- 
supervised DNNs, the DNNs are able to learn the ERP data and the la
beling depending on the DNNs’ structures with high accuracy, even for 
noisy data. The unsupervised DNN models, on the other hand, have 
learned the input space properties with relatively worse Loss rates than 
the semi-supervised methods. Together, from the results of both data
sets, the designed DNNs successfully trained on the prepared ERP data 
from additional noises. 

3.2. Clustering results and time windows 

Fig. 4 shows the clustering results (randomly selected) from the 
proposed and state-of-the-art methods (consensus clustering) in the 
simulated data, i.e., when no additional noise exists and the maximum 
reasonable noise is added (e.g., − 5 dB). We excluded results from 
datasets with additive noise between them to keep the figure readable. 
The qualified cluster maps for identifying the interesting ERP were 
marked in gray color for both Fig. 4 and Fig. 5. Observing Fig. 4A, i.e., 
results of consensus clustering in the prepared simulated data without 
noise, shows that the time windows for the P3 component are isolated 
with cluster maps 5 (colored gray areas) from 268.67 to 355.00 ms for 
’Cond1′ and 268.67 to 362.00 ms (ground-truth) for ’Cond2′. Similarly, 
in Fig. 4B (i.e., the proposed method results), those time windows have 
been elicited by maps 4 in the identical time windows, i.e., in 268.67 to 
355.00 ms and 268.67 to 362.00 ms for ’Cond1′ and ’Cond2′, respec
tively. P3 was isolated for highly noisy simulated data by maps 6 from 
273.33 to 350.33 ms for ’Cond1′ and 271.00 to 355.00 ms for ’Cond2′ 
using consensus clustering (see Fig. 4C). The proposed method extracted 
P3 by maps 4 from 273.33 to 352.67 ms and 268.67 to 357.33 ms for 
’Cond1′ and ’Cond2′ (see Fig. 4D) for the noisy simulated data. Notice
ably, a larger peak was observed (in the determined time windows) in 
’Cond1′ than in ’Cond2′ when no noise was added and from the maxima 
noisy datasets, from the clustering results via two methods. 

Observing Fig. 5 (a randomly selected result), for the real data with 
no additional noise, P3 was isolated by map 1 and map 2 from 303.90 to 

R. Mahini et al.                                                                                                                                                                                                                                 



Biomedical Signal Processing and Control 86 (2023) 105202

8

514.84 ms and 342.97 to 464.06 ms (ground-truth), in condition (1) and 
condition (2), respectively, using the consensus clustering (Fig. 5A). 
Those time windows for the P3 component were elicited by map 1 and 
map 2 (Fig. 5B), in 303.90 to 514.84 ms and 342.97 to 460.16 ms for 
conditions (1) and (2), respectively, using the proposed method. While a 
high noise (SNR = -5 dB) was added in the real data, P3 was isolated by 
maps 1 from 331.25 to 589.06 ms and 342.97 to 428.91 ms in conditions 
(1) and (2), respectively, using consensus clustering. Whereas those time 
windows were elicited by map 1 and map 2 (colored gray areas), from 
296.09 to 514.84 ms and 354.69 to 475.78 ms, respectively, using the 
proposed method. Together, the clustering results for both ERP data (the 
simulated and real) with different amounts of additive noise revealed 
that the clusterings include noisier clusters, particularly where no strong 
response exists (e.g., pre-stimulus onset). Observably, the proposed 
method seems to provide a more robust clustering result (Fig. 4D and 
Fig. 5D) than consensus clustering (Fig. 4C and Fig. 5C). 

We provided detailed results of the estimated time windows (start, 
end, and duration) of the P3 identification from the studied method in 
different noise levels in Table 4 and Table 5. For simulated data (see 
Table 4), all the studied methods identified P3 response with some de
gree of accuracy. However, consensus clustering obtained better time 
window accuracy, especially in real data when adding non-intensive 
noise. Semi-supervised deep clustering obtained suitable identification 
due to supervising by consensus clustering. The proposed method ob
tained more accurate and stable results among different methods. 
Likewise, for the real data (see Table 5), the time window of the P3 
response was identified from the clustering results of all the methods 
studied. Notably, the proposed method achieved more accuracy and 
stability than other studied methods. 

Furthermore, Table 6 illustrates the standard deviation error of the 
estimated time windows from the different clustering methods in the 
examined datasets with additional noises. Together, the time window 
determination and the stability evaluation results reveal that all the deep 
clustering methods successfully identified P3 from different datasets. 
Our method performed better in the real data than in the simulated data, 
which was relatively better than other methods. 

To provide more evidential results and test the spatial properties of 
qualifying the isolated ERPs of interest, we examined the spatial corre
lation between the mean topography maps in the ground-truth time 
window and the time windows from the studied methods. We included 
the spatial correlation test results in Table 7 and Table 8 in the simulated 

and the real data, respectively. The results showed a high spatial cor
relation between the identified ERP and the ground truth P3 topo
graphical map from the majority of the studied methods. However, a 
silently less correlation was obtained in low SNR due to the noise effect 
on topography configuration. 

3.3. Evaluation and statistical analysis results 

Fig. 6A and Fig. 6B show the clustering performance based on the 
performance metrics (ACC, ARI, and AMI) for simulated and real data, 
respectively. We have included the performance of the studied deep 
clustering methods for a better comparison and understanding of their 
role in the proposed clustering. Observing Fig. 6 exposes a suitable 
performance from the studied deep clustering methods and, conse
quently, the ensemble deep clustering (proposed method). On the other 
hand, consensus clustering results reveal a suitable performance with 
comparatively better stability while the noise ratio is changed. 
Observing Fig. 6A indicates that, except for the clean data, the proposed 
method provides a more confident performance than the studied clus
tering methods, especially consensus clustering in the simulated data. 
Likewise, Fig. 6B shows that the proposed method obtained remarkable 
and stable results while the data noise varied in the real data. Notice
ably, except for the ground truth in the simulated data and corre
sponding semi-supervised methods’ performance, the proposed method 
discloses a relatively superior and stable performance for both datasets. 

For the studied methods, the statistical analysis results of the elicited 
P3 effects from the estimated time windows (see Table 4 and Table 5) 
were illustrated in Table 9 and Table 10 for the simulated and real ERP 
data, respectively. For the simulated data, our results revealed a large P3 
effect and a significant difference between the conditions (F(1,19) =
81317, p -value < 0.0001, η2

p = 1.000) in the region of the interest (the 
central area) and the obtained time windows when no additional noise 
exists. However, the obtained large effect and calculated highly signif
icant difference between the conditions can be seen to be overestimated. 
This can be because of the occurred alignment in the subjects’ responses 
in the peak/mean amplitude (i.e., due to being calculated in the same 
ratio with silent changes) from the simulation mechanism when there is 
no additional noise. Hence, a larger response was identified in ’Cond1′ 
than in ’Cond2′, which was expected following the simulation mecha
nism. Observing Table 9 reveals a silent decrease in the obtained effect 
size while the data are noisier. Nevertheless, regardless of the noise 

Table 2 
The studied DNNs’ performances (on the test dataset) in the simulated data while additional noise is included on the original signal (i.e., from 20 dB to − 5 dB). acc =
accuracy, SNR = signal-to-noise ratio. The SNR value denotes the additive white Gaussian noise in the prepared ERP signal.  

Method No noise added SNR = 20 dB SNR = 10 dB SNR = 5 dB SNR = 0 dB SNR = -5 dB 

loss acc loss acc loss acc loss acc loss acc loss acc 

FC_MLP  0.002  1.000  0.000  1.000  0.000  1.000  0.000  1.000  0.000  1.000  0.000  1.000 
1D CNN  0.002  1.000  0.000  1.000  0.000  1.000  0.001  1.000  0.000  1.000  0.001  1.000 
LSTM  0.002  1.000  0.003  1.000  0.000  1.000  0.000  1.000  0.000  1.000  0.000  1.000 
AE  0.002  –  0.004  –  0.003  –  0.004  –  0.003  –  0.003  – 
VAE  0.016  –  0.011  –  0.032  –  0.037  –  0.040  –  0.042  – 
DEC  0.046  –  0.056  –  0.050  –  0.050  –  0.053  –  0.060  –  

Table 3 
The studied DNNs’ performances on the test dataset for the real data when the additive noise increases from 20 dB to − 5 dB.  

Method No noise added SNR = 20 dB SNR = 10 dB SNR = 5 dB SNR = 0 dB SNR = -5 dB 

loss acc loss acc loss acc loss acc loss acc loss acc 

FC_MLP  0.003  1.000  0.000  1.000  0.000  1.000  0.000  1.000  0.000  1.000  0.000  1.000 
1D CNN  0.001  1.000  0.000  1.000  0.000  1.000  0.000  1.000  0.000  1.000  0.000  1.000 
LSTM  0.004  1.000  0.001  1.000  0.000  1.000  0.000  1.000  0.000  1.000  0.000  1.000 
AE  0.012   0.015  –  0.016  –  0.021   0.026   0.029  – 
VAE  0.022  –  0.035  –  0.035  –  0.044   0.040   0.050  – 
DEC  0.016  –  0.024  –  0.019  –  0.034   0.042   0.040  –  
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level, a large effect size was obtained from the majority of the studied 
clustering methods in the estimated time windows. 

For real data, our results confirmed the previous findings on the main 
effect of the Task, indicating existing large effect size and significant 
difference (F(1,39) = 121.18, p-value < 0.0001, η2

p = 0.76) between 
conditions that was larger amplitude in the ‘Rare’ condition (target) 
than’Frequent’ condition (non-target) in the central lobe of the occipital 
region. Table 10 shows the results of the statistical power analysis from 
different noise levels for the studied methods. Similar to the simulated 
data, all the studied methods identified a significant effect of P3 in the 
estimated time windows. 

4. Discussion 

This study presents the ensemble deep clustering pipeline to reliably 
determine the time window of the ERP of interest when existing noise on 
the ERP data is unknown after preprocessing. To tackle the problem, we 
designed the ensemble clusterings from multiple deep clustering 

methods, including semi-supervised and unsupervised, to explore the 
most aggregated clusters in the data. To this end, we clustered the 
weighted data from the trained DNNs (in the latent space), namely, 
FC_MLP, LSTM, 1DCNN, AE, and VAE, for fine-tuning. Then, those 
clusterings and DEC’s results were combined using the consensus 
function to calculate the final clustering result. Finally, the modified 
time window determination was used for estimating the ERP of interest 
from the candidate cluster maps in each condition/group. The proposed 
pipeline was built on three methodologies, cluster analysis of spatio- 
temporal ERP, deep learning as a powerful and noise-tolerant tool, 
and ensemble learning. 

The idea of ensemble clustering in this study is that the scalp EEG 
data recorded from the same or different devices, multiple-subject (e.g., 
age, brain size, healthy level) from different conditions/groups carries 
various artifacts even after preprocessing affects the quality of data. On 
the other hand, considering the fact that even the popular clustering 
algorithms could fail spectacularly for certain datasets that do not match 
the corresponding modeling assumptions (Acharya and Ghosh, 2011), 

Fig. 4. Illustration of clustering results 
and selected time windows (colored gray 
areas), including the corresponding to
pographies and correlation between the 
time points for identifying the P3 compo
nent in the simulated data. A. Isolated 
time windows with maps 5 (cluster maps 
5) in Cond1 and Cond2 from consensus 
clustering result when no additional noise 
is added. B. Identified time windows by 
maps 4 in both conditions from the pro
posed method clustering result when no 
additional noise is added. C. Identified 
time windows with maps 6 (in both con
ditions) from consensus clustering in 
maximum additional noise of − 5 dB. D. 
Isolated time windows with maps 4 (in 
both conditions) of the proposed method 
when the additional noise is − 5 dB. The 
numbers for each segment present the 
associated cluster map’s number. Cond1 
= condition (1), Cond2 = condition (2).   

R. Mahini et al.                                                                                                                                                                                                                                 



Biomedical Signal Processing and Control 86 (2023) 105202

10

using a more reliable clustering method is suggested. In addition, clus
tering noisy or unbalanced EEG/ERP tensors considering the only spatial 
properties can result in unreliable cluster maps (i.e., for qualifying the 
ERP components) since numerous small peaks can be recognized as 
brain responses [38]. As a result, although available clustering tech
niques besides ICA/PCA provided a more reliable decomposition of ERP 
of interest, more challenging data can lead to a problematic result (e.g., 
determination of divided component, missing ERP). These problems can 
be more severe if inappropriate preprocessing is performed. 

One important issue with ensemble learning methods is the config
uration consistency for such a combination. Although this mechanism 
eliminates the contribution of trivial results, it cannot guarantee the 
optimization of ensemble clustering. Considering the fact that there is no 
straightforward solution for the configuration of ensemble clustering 
[61] and existing a large variety of deep clustering designs [51], we 
provided an M-N plot pre-test of the studied methods against the 
different datasets (in terms of noise level) to avoid using deep clustering 
methods with trivial results. Noting that we avoided testing 

sophisticated deep clustering designs to keep our design implementable 
and understandable at this stage. Our early findings revealed three 
important characteristics of using DNNs for training ERP data. First, the 
studied DNNs are powerful learners in learning ERP data even when 
data is considerably noisy. Next, the studied individual deep clustering 
methods result in clustering in which the interesting components in two 
datasets and other few components (e.g., N4 in the simulated data) can 
be identified using the time window determination method. Finally, the 
ensemble deep clustering provides stable performance compared to 
other methods associated with the proposed ensemble deep clustering 
tolerance to artifacts (particularly with noise) without compromising 
the performance. 

The advantages of the proposed method compared to conventional 
methods are: i) using the minimum amount of knowledge in the 
designed deep clustering methods; ii) exploring a firm clustering model 
for spatio-temporal ERP data by ensemble deep clustering results; iii) 
designing the adaptive time window determination, considering the 
spatial and temporal properties, from noisy data; iv) obtaining the 

Fig. 5. Illustration of clustering results 
and selected time windows (colored gray 
areas) from the proposed and consensus 
clustering methods for identifying the P3 
component in the real data. The results of 
each condition include the corresponding 
topographies and the correlation between 
the time points for the determined time 
window. A. Isolated time windows by 
maps 1 and 2 for Cond1 and Cond2, 
respectively, using consensus clustering 
when no additional noise is applied. B. 
Identified time windows by maps 1 and 2 
in Cond1 and Cond2, respectively, using 
the proposed method when no additional 
noise is applied. C. Identified time win
dows with maps 1 (in both conditions) by 
consensus clustering in maximum addi
tional noise of − 5 dB. D. Isolated time 
windows with maps 1 and 2 Cond1 and 
Cond2 by the proposed method when the 
additional noise is − 5 dB, respectively.   
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relatively stable clustering accuracy and time windows testing on the 
different intensities of additive noise. Our method, however, is limited in 
some aspects: the highly overlapped components are challenging to the 
proposed method as it is for newly developed methods and previously 
developed approaches. Together, our results show that the proposed 
method provides a new approach to improve our understanding of the 
discoverable nature of ERP from noisy data and determine a more reli
able time window of ERP. 

Another issue with the deep clustering methods is initializing DNN 
with no ground-truth classification/labeling exists. Commonly, k-means 

[17] is used for initializing and tuning of deep clusterings [2]. However, 
the random optimized results of the k-means-based tuning can affect the 
learning in the DNNs. A similar issue occurs when initializing the un
supervised deep clustering with a trivial clustering such as k-means, the 
Gaussian mixture model (GMM) [29], and hierarchical clustering [15]. 
To tackle this issue, we fed the semi-supervised methods and DEC with 
consensus clustering. The drawback to semi-supervised is that this 
initialization cannot guarantee to obtain the best labeling results. 
However, it encourages the network to learn the most powerful features 
of ERP data. Unsupervised methods can appropriately learn the 

Table 4 
The temporal properties of the estimated time windows (start, end, and duration) through the proposed method, the consensus clustering, and the studied deep 
clustering methods to qualify the P3 component in the prepared simulated data with different additive noises. The bold marks represent the significant results. Ens_DC 
= ensemble deep clustering (proposed method), CC = consensus clustering, Cond1 = condition (1), and Cond2 = condition (2).  

Method Properties(ms) No noise SNR = 20 dB SNR = 10 dB SNR = 5 dB SNR = 0 dB SNR = -5dB 

Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 

Ens_DC Start  268.67  268.67  268.67  268.67  268.67  268.67  268.67  268.67  273.33  268.67  273.33  268.67 
End  355.00  362.00  355.00  362.00  355.00  362.00  355.00  359.67  352.67  362.00  352.67  357.33 
Duration  86.33  93.33  86.33  93.33  86.33  93.33  86.33  91.00  79.33  93.33  79.33  88.67 

CC Start  268.67  268.67  268.67  268.67  268.67  268.67  273.33  268.67  273.33  271.00  273.33  268.67 
End  355.00  362.00  355.00  362.00  355.00  362.00  355.00  359.67  352.67  357.33  350.33  357.33 
Duration  86.33  93.33  86.33  93.33  86.33  93.33  81.67  91.00  79.33  86.33  77.00  88.67 

MLP_FC Start  266.33  268.67  268.67  268.67  268.67  268.67  273.33  268.67  273.33  268.67  273.33  268.67 
End  352.67  357.33  355.00  362.00  355.00  362.00  355.00  359.67  352.67  359.67  357.33  357.33 
Duration  86.33  88.67  86.33  93.33  86.33  93.33  81.67  91.00  79.33  91.00  84.00  88.67 

1DCNN Start  266.33  268.67  268.67  268.67  268.67  268.67  273.33  268.67  273.33  268.67  280.33  268.67 
End  352.67  357.33  355.00  362.00  355.00  362.00  352.67  359.67  352.67  359.67  357.33  357.33 
Duration  86.33  88.67  86.33  93.33  86.33  93.33  79.33  91.00  79.33  91.00  77.00  88.67 

LSTM Start  266.33  268.67  268.67  268.67  268.67  268.67  273.33  268.67  275.67  268.67  273.33  268.67 
End  352.67  357.33  355.00  362.00  355.00  362.00  352.67  359.67  352.67  359.67  357.33  357.33 
Duration  86.33  88.67  86.33  93.33  86.33  93.33  79.33  91.00  77.00  91.00  84.00  88.67 

AE Start  273.33  287.33  273.33  271.00  282.67  268.67  273.33  271.00  273.33  268.67  273.33  268.67 
End  350.33  341.00  348.00  357.33  343.33  352.67  348.00  355.00  348.00  357.33  345.67  357.33 
Duration  77.00  53.67  74.67  86.33  60.67  84.00  74.67  84.00  74.67  88.67  72.33  88.67 

VAE Start  280.33  273.33  275.67  273.33  285.00  271.00  278.00  266.33  280.33  273.33  275.67  266.33 
End  343.33  350.33  345.67  352.67  341.00  352.67  345.67  357.33  343.33  352.67  352.67  357.33 
Duration  63.00  77.00  70.00  79.33  56.00  81.67  67.67  91.00  63.00  79.33  77.00  91.00 

DEC Start  287.33  275.67  280.33  273.33  287.33  275.67  278.00  268.67  290.00  273.33  294.33  278.00 
End  341.00  352.67  343.33  352.67  338.67  350.33  345.67  357.33  341.00  350.33  329.33  350.33 
Duration  53.67  77.00  63.00  79.33  51.33  74.67  67.67  88.67  51.00  77.00  35.00  72.33  

Table 5 
The temporal properties of estimated time windows via the proposed method, consensus clustering, and the studied deep clustering methods in the real data to qualify 
the P3 component for different additional noise. The bold marks are the significant results.  

Method Properties(ms) No noise SNR = 20 dB SNR = 10 dB SNR = 5 dB SNR = 0 dB SNR = -5dB 

Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 

Ens_DC Start  303.91  342.97  303.91  339.06  300.00  342.97  300.00  346.88  303.91  342.97  296.09  354.69 
End  514.84  460.16  514.84  460.16  514.84  464.06  518.75  467.97  522.66  464.06  514.84  475.78 
Duration  210.94  117.19  210.94  121.09  214.84  121.09  218.75  121.09  218.75  121.09  218.75  121.09 

CC Start  303.91  342.97  303.91  342.97  303.91  342.97  315.63  346.88  303.91  342.97  331.25  342.97 
End  514.84  464.06  514.84  491.41  592.97  464.06  592.97  467.97  600.78  479.69  589.06  428.91 
Duration  211.94  122.09  210.94  148.44  289.06  121.09  277.34  121.09  296.88  136.72  257.81  85.94 

MLP_FC Start  292.19  335.16  303.91  342.97  303.91  342.97  311.72  346.88  331.25  342.97  307.81  346.88 
End  596.88  460.16  565.63  444.53  604.69  503.13  581.25  467.97  608.59  456.25  510.94  440.63 
Duration  304.69  125.00  261.72  101.56  300.78  160.16  269.53  121.09  277.34  113.28  203.13  93.75 

1D CNN Start  292.19  335.16  303.91  335.16  303.91  339.06  300.00  335.16  315.63  342.97  288.28  342.97 
End  592.97  460.16  565.63  432.81  592.97  464.06  592.97  467.97  600.78  483.59  510.94  440.63 
Duration  300.78  125.00  261.72  97.66  289.06  125.00  292.97  132.81  285.16  140.63  222.66  97.66 

LSTM Start  296.09  335.16  303.91  342.97  292.19  339.06  300.00  339.06  315.63  342.97  307.81  342.97 
End  592.97  460.16  596.88  460.16  592.97  464.06  577.34  467.97  608.59  479.69  510.94  440.63 
Duration  296.88  125.00  292.97  117.19  300.78  125.00  277.34  128.91  292.97  136.72  203.13  97.66 

AE Start  307.81  346.88  311.72  342.97  300.00  335.16  300.00  339.06  303.91  339.06  307.81  346.88 
End  503.13  487.50  503.13  526.56  514.84  510.94  518.75  503.13  526.56  460.16  507.03  507.03 
Duration  195.31  140.63  191.41  183.59  214.84  175.78  218.75  164.06  222.66  121.09  199.22  160.16 

VAE Start  284.38  335.16  311.72  331.25  300.00  342.97  300.00  346.88  303.91  342.97  303.91  350.78 
End  538.28  514.84  612.50  514.84  596.88  518.75  518.75  518.75  542.19  514.84  600.78  440.63 
Duration  253.91  179.69  300.78  183.59  296.88  175.78  218.75  175.78  238.28  171.88  296.88  89.84 

DEC Start  303.91  346.88  307.81  346.88  303.91  342.97  315.63  331.25  311.72  401.56  311.72  311.72 
End  522.66  456.25  518.75  452.34  530.47  464.06  495.31  514.84  514.84  491.20  507.03  510.94 
Duration  218.75  109.38  210.94  105.47  226.56  121.09  179.69  183.59  203.13  89.64  195.31  199.22  
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important features of the data with roughly less accuracy than semi- 
supervised methods. 

From the cognitive process perspective, the proposed method 
resulted in interpretable and reasonable findings based on prior studies. 
Notably, the statistical analysis results on the artificial data or real data 
can be crucial when there is a large effect of ERP component(s) due to 
obtaining uninterpretable statistical differences (e.g., obtaining 

extremely significant p-value between the parameters). Although this 
might be considered a better performance of the new methods, further 
sophisticated statistical analysis of temporal and sensory parameters can 
provide more information on the effect of interesting ERP. In the 
simulated data, the determined time windows from the cluster maps 
(even noisy conditions) were qualified by our previous findings [31] and 
the pre-defined components’ properties. Additionally, the P3 compo
nent was reliably identified in both target and non-target conditions, 
which is interpretable with the purpose of the experiment and findings 
from the prior study [19]. Noteworthy, the generated responses from 
different groups and conditions could differ according to the neurolog
ical and experimental mechanisms [4,53]. Therefore, the cluster maps 
from the same potential can emerge in different temporal and spatial 
properties, e.g., in the ERP study by Koenig et al. [23]. The reason to 
study the P3 components is that the results are comparable with the 
ground truth results (in the simulated data) and interpretable for the real 
data. Therefore, the proposed method is not limited to identifying P3; it 
can be applied to identifying some other ERP components, such as N2, 
P2, and N4, in the simulated data. N4, for example, is identified by maps 
3 (for ‘Cond1′ and ‘Cond2′) in Fig. 4B and maps 5 in Fig. 4D. Similarly, in 
real data, the identification of the P1 component by maps 4 in Fig. 5B 
and Fig. 5D can be discussed using the proposed method. 

Considering the likelihood of obtaining imperfect clustering results, 
even using state-of-the-art clustering methods (including deep clus
tering), our method provides a confident result and time window 
determination for testing the researchers’ hypotheses. Our early findings 
showed that combining different deep clustering methods can be useful 
for processing ERP data. One important advantage of ensemble learning 
is that different combinations of clustering methods, including deep 
clustering, are possible in our pipeline even with an unknown number of 
clusters. This study provides a positive message about using deep clus
tering methods for processing ERP data. We have provided a GitHub 
repository (https://github.com/remahini/Deep-Clustering) for the deep 
clustering methods used in this study, which can be used as a toolbox by 
changing the input and initializing parameters to be used by the 
researchers. 

Table 6 
Standard deviation error (SD) between the estimated time windows by the 
proposed method, consensus clustering, and the studied deep clustering methods 
in both ERP data when the different noise strengths are added. The proposed 
method (Ens_DC) has achieved better stability in estimating the time window, 
especially in the real data.  

Method Properties (ms) Simulated data Real data 

Cond1 Cond2 Cond1 Cond2 

Ens_DC Start  2.41  0.00  3.19  5.38 
End  1.20  1.95  3.27  5.88 
Duration  3.61  1.95  3.84  1.59 

CC Start  2.56  0.95  11.23  1.59 
End  1.95  2.29  41.02  21.07 
Duration  4.11  2.95  37.91  21.05 

MLP_FC Start  3.10  0.00  12.94  4.28 
End  1.76  2.09  36.51  22.47 
Duration  2.95  2.09  36.73  23.27 

1D CNN Start  5.04  0.00  9.70  3.84 
End  1.91  2.09  34.11  18.61 
Duration  4.34  2.09  29.00  18.10 

LSTM Start  3.61  0.00  8.44  3.19 
End  1.91  2.09  35.26  12.78 
Duration  4.09  2.09  37.22  13.40 

AE Start  3.81  7.33  4.73  4.73 
End  2.41  6.38  9.46  22.91 
Duration  5.90  13.50  13.30  23.13 

VAE Start  3.54  3.43  9.05  7.27 
End  4.02  2.86  39.66  31.00 
Duration  7.18  6.20  35.35  35.94 

DEC Start  6.08  3.19  4.73  29.95 
End  5.67  2.73  12.35  27.80 
Duration  11.35  5.67  16.88  45.31  

Table 7 
Spatial correlation between the mean topography map in the ground truth time windows of P3 and the mean topography maps in the obtained time windows acquired 
by the proposed method, consensus clustering, and the studied deep clustering methods in the simulated data with different additional noises.  

Method No noise SNR = 20 dB SNR = 10 dB SNR = 5 dB SNR = 0 dB SNR = -5dB 

Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 

Ens_DC  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.998  0.999  0.998  0.997  0.982 
CC  1.000  1.000  1.000  0.998  0.995  1.000  0.994  0.998  0.994  0.998  0.994  0.982 
FC_MLP  0.996  0.999  0.998  0.999  0.994  0.996  0.995  0.998  0.986  0.996  0.998  0.986 
1D CNN  0.997  0.999  0.998  0.995  0.995  0.999  0.996  0.998  0.991  0.998  0.996  0.987 
LSTM  0.997  0.999  0.995  1.000  0.997  0.999  0.997  0.998  0.990  0.998  0.998  0.987 
AE  1.000  0.998  1.000  0.991  1.000  0.997  1.000  0.997  0.999  0.996  0.998  0.979 
VAE  1.000  0.996  0.991  0.997  0.995  0.993  1.000  0.993  0.998  0.993  0.995  0.989 
DEC  1.000  1.000  1.000  1.000  1.000  1.000  0.999  0.997  0.999  0.949  0.998  0.992  

Table 8 
Spatial correlation of mean topography map in the ground-truth time window and mean topography maps in the identified time windows of the studied methods for P3 
in the real data with different additional noises.  

Method No noise SNR = 20 dB SNR = 10 dB SNR = 5 dB SNR = 0 dB SNR = -5 dB 

Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 Cond1 Cond2 

Ens_DC  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.987  0.995  0.998  0.999 
CC  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.987  0.995  0.959  0.992 
MLP_FC  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.999  1.000  0.998  0.999 
1dCNN  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.999  1.000  0.998  0.999 
LSTM  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.999  1.000  0.998  0.999 
AE  0.999  1.000  1.000  1.000  0.999  1.000  1.000  1.000  0.999  1.000  0.997  0.999 
VAE  0.999  1.000  0.999  1.000  0.999  1.000  0.999  1.000  0.999  0.999  0.998  0.999 
DEC  0.999  0.999  0.999  1.000  0.999  0.999  0.999  1.000  0.998  0.999  0.995  0.999  
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Fig. 6. The performance assessment results, in comparison to the ground truth clustering, for the studied clustering methods from the simulated (left panel) and the 
real ERP (right panel) data with different additive noise levels. A. the accuracy (ACC), adjusted rand index (ARI), and normalized mutual information (NMI) 
comparison results for clustering results in the simulated data. B. the performance metrics (ACC, ARI, and NMI) assessment results for the real data. Noticeably, the 
proposed clustering provides relatively stable and superior results (except when no noise is added) from both applied data. 

Table 9 
Illustration of the statistical analysis results of the identifying P3 effect from the measured mean amplitude in the estimated time windows and the Cz and CPz electrode 
sites from the studied clustering methods on the simulated ERP data at different noise levels.η2

p = Partial Eta Squared.  

Noise Method Ens_DC CC FC_MLP 1D CNN LSTM AE VAE DEC 

No noise F(1,19) 81,317 81,317 199,263 199,263 199,263 235,023 135,063 80,934 
p-value 5.72E-36 5.72E-36 1.15E-39 1.15E-39 1.15E-39 2.39E-40 4.62E-38 5.98E-36 
η2

p 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
SNR = 20 dB F(1,19) 68,237 68,237 68,237 68,237 68,237 62,941 118,338 75,717 

p-value 3.02E-35 3.02E-35 3.02E-35 3.02E-35 3.02E-35 6.52E-35 1.62E-37 1.13E-35 
η2

p 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
SNR = 10 dB F(1,19) 27,965 27,965 27,965 27,965 27,965 15,805 15,532 22,446 

p-value 1.44E-31 1.44E-31 1.44E-31 1.44E-31 1.44E-31 3.25E-29 3.83E-29 1.16E-30 
η2

p 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
SNR = 5 dB F(1,19) 16,285 14,151 14,151 12,442 12,442 13,330 9748 10,789 

p-value 2.45E-29 9.27E-29 9.27E-29 3.15E-28 3.15E-28 1.64E-28 3.18E-27 1.22E-27 
η2

p 0.999 0.999 0.999 0.998 0.998 0.999 0.998 0.998 
SNR = 0 dB F(1,19) 1975 2784 2268 2268 2121 2339 2924 2892 

p-value 1.15E-20 4.50E-22 3.11E-21 3.11E-21 5.86E-21 2.33E-21 2.83E-22 3.15E-22 
η2

p 0.990 0.993 0.992 0.992 0.991 0.992 0.994 0.993 
SNR = -5dB F(1,19) 883 856 989 1001 989 753 832 608 

p-value 2.15E-17 2.89E-17 7.51E-18 6.73E-18 7.51E-18 9.50E-17 3.74E-17 6.92E-16 
η2

p 0.979 0.978 0.981 0.981 0.981 0.975 0.978 0.970  
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5. Conclusions 

This research proposed an ensemble deep clustering methodology for 
qualifying ERP of interest from grand averaged spatio-temporal ERP 
data. The proposed method has been successfully applied to the simu
lated ERP and the real ERP data to assess and compare previous findings. 
Our findings suggested that the time window of ERP can be identified 
using ensemble deep clustering while a considerable amount of noise 
exists after preprocessing. Compared to the state-of-the-art clustering 
methods, the proposed method obtained superior results in terms of the 
temporal properties of the time windows and clustering performance. 
The robust clustering performance of the proposed method discloses its 
confidential properties for use in ERP data. Yet, studying the ensemble 
deep clustering in the subject, single-trial, and electrode resolution is an 
open question. Our further outline is to modify the current design to 
more sophisticated data, e.g., single-trial EEG data. 
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p  0.76  0.76  0.70  0.71  0.71  0.77  0.76  0.75 
SNR = 20 dB F(1,39)  121.02  127.47  100.69  98.39  92.41  134.86  106.20  120.56 

p-value  1.61E-13  7.38E-14  2.32E-12  3.22E-12  7.73E-12  3.15E-14  1.08E-12  1.70E-13 
η2

p  0.76  0.77  0.72  0.72  0.70  0.78  0.73  0.76 
SNR = 10 dB F(1,39)  120.12  95.17  103.72  96.16  94.90  128.98  111.35  117.88 

p-value  1.79E-13  5.13E-12  1.52E-12  4.44E-12  5.34E-12  6.18E-14  5.46E-13  2.37E-13 
η2

p  0.75  0.71  0.73  0.71  0.71  0.77  0.74  0.75 
SNR = 5 dB F(1,39)  121.73  99.19  104.64  98.46  105.05  128.78  130.45  135.42 

p-value  1.47E-13  2.87E-12  1.34E-12  3.19E-12  1.27E-12  6.33E-14  5.21E-14  2.95E-14 
η2

p  0.76  0.72  0.73  0.72  0.73  0.77  0.77  0.78 
SNR = 0 dB F(1,39)  121.20  98.54  80.31  102.62  93.91  118.44  128.88  122.95 

p-value  1.57E-13  3.15E-12  5.19E-11  1.77E-12  6.18E-12  2.21E-13  6.26E-14  1.27E-13 
η2

p  0.76  0.72  0.67  0.72  0.71  0.75  0.77  0.76 
SNR = -5dB F(1,39)  124.33  82.42  122.85  114.88  121.12  132.33  88.62  132.81 

p-value  1.07E-13  3.67E-11  1.28E-13  3.46E-13  1.59E-13  4.19E-14  1.38E-11  3.97E-14 
η2

p  0.76  0.68  0.76  0.75  0.76  0.77  0.69  0.77  

R. Mahini et al.                                                                                                                                                                                                                                 

https://doi.org/10.1109/ICASSP.2014.6854902
https://doi.org/10.1016/j.pscychresns.2019.07.007
https://doi.org/10.1016/j.pscychresns.2019.07.007
http://refhub.elsevier.com/S1746-8094(23)00635-3/h0025
http://refhub.elsevier.com/S1746-8094(23)00635-3/h0025
https://doi.org/10.1007/978-1-4757-0450-1
https://doi.org/10.1111/psyp.13049
https://doi.org/10.1111/psyp.13049
https://doi.org/10.1038/s42256-020-0217-y
https://doi.org/10.1038/s42256-020-0217-y
https://doi.org/10.1109/TPAMI.2010.125
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.3389/fnhum.2017.00534
https://doi.org/10.3389/fnhum.2017.00534
https://doi.org/10.1109/ICCV.2017.612
https://doi.org/10.1109/ICCV.2017.612
https://doi.org/10.3233/jifs-179677
https://doi.org/10.3233/jifs-179677
https://doi.org/10.1007/BF02515313
https://doi.org/10.1007/BF02515313
https://doi.org/10.1109/tkde.2019.2911833
https://doi.org/10.1016/j.neucli.2016.07.002
https://doi.org/10.1016/j.neucli.2016.07.002
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1016/j.ijpsycho.2019.06.012
https://doi.org/10.1016/j.neuroimage.2020.117465
https://doi.org/10.1016/j.neuroimage.2020.117465


Biomedical Signal Processing and Control 86 (2023) 105202

15

methods. 45(2) (2008) 250-274. https://doi.org/10.1111/j.1469- 
8986.2007.00618.x. 

[22] D. Kingma, M. Welling. Auto-encoding variational bayes, ArXiv: 13126114. The 
2nd International Conference on Learning Representations, 2013. https://doi. 
org/10.48550/arXiv.1312.6114. 

[23] T. Koenig, M. Stein, M. Grieder, M. Kottlow, A tutorial on data-driven methods for 
statistically assessing ERP topographies, Brain Topography 27 (1) (2014) 72–83, 
https://doi.org/10.1007/s10548-013-0310-1. 

[24] T. Kohonen, THE SELF-ORGANIZING MAP, Proc IEEE 78 (9) (1990) 1464–1480, 
https://doi.org/10.1109/5.58325. 

[25] H.W.J.N.r.l.q. Kuhn, The Hungarian method for the assignment problem. 2(1-2) 
(1955) 83-97. 

[26] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444. 
https://www.nature.com/articles/nature14539.pdf. 

[27] D. Lehmann, Brain Electric Microstates and Cognition: The Atoms of Thought. In: 
E. R. John, T. Harmony, L. S. Prichep, M. Valdés-Sosa, & P. A. Valdés-Sosa (Eds.), 
Machinery of the Mind: Data, Theory, and Speculations About Higher Brain 
Function (pp. 209-224). Birkhäuser Boston, 1990. https://doi.org/10.1007/978-1- 
4757-1083-0_10. 

[28] F. Li, R. Yan, R. Mahini, L. Wei, Z. Wang, K. Mathiak, R. Liu, F. Cong, End-to-end 
sleep staging using convolutional neural network in raw single-channel EEG, 
Biomed. Signal Process. Control 63 (2021), 102203, https://doi.org/10.1016/j. 
bspc.2020.102203. 

[29] K.L. Lim, X. Jiang, C. Yi, Deep clustering with variational autoencoder, IEEE Signal 
Process. Lett. 27 (2020) 231–235, https://doi.org/10.1109/LSP.2020.2965328. 

[30] S.J. Luck, An introduction to the event-related potential technique, (Second edition 
ed.)., MIT press. (MIT press), 2014. 

[31] R. Mahini, Y. Li, W. Ding, R. Fu, T. Ristaniemi, A.K. Nandi, G. Chen, F. Cong, 
Determination of the time window of event-related potential using multiple-set 
consensus clustering [Methods], 2020-October-21, Front. Neurosci. 14 (1047) 
(2020), https://doi.org/10.3389/fnins.2020.521595. 

[32] R. Mahini, P. Xu, G. Chen, Y. Li, W. Ding, L. Zhang, N.K. Qureshi, T. Hämäläinen, 
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