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Abstract

Penttala, Jani
Diffractive Processes at Next-to-Leading Order in the Dipole Picture

Diffractive processes are very sensitive to the target’s gluon distribution in the high-
energy limit, making them a good candidate for probing the target in the nonlinear
region of quantum chromodynamics. The nonlinear effects are expected to eventu-
ally lead to gluon saturation which is naturally described in the color-glass conden-
sate (CGC) effective field theory. While there are strong hints of gluon saturation
in the currently available data, no unambiguous signal has been observed. It is then
important to improve the theoretical understanding of processes sensitive to satu-
ration to find a clear difference between predictions from the linear and nonlinear
regions of QCD. This includes calculating diffractive processes beyond the leading
order in perturbation theory.

In this thesis, we calculate diffractive processes at next-to-leading order (NLO)
in the high-energy limit, with an emphasis on exclusive vector meson production
and inclusive diffraction in deep inelastic scattering (DIS). Calculations in the high-
energy limit can be done using the dipole picture, the basics of which are briefly
reviewed. This includes using the CGC effective field theory to describe the nonper-
turbative dipole-target scattering amplitude which appears in practically all calcula-
tions in the dipole picture. The universality of the dipole-target scattering amplitude
at NLO is shown numerically, in the sense that the same dipole-target scattering
amplitude can be used to describe the data in both massless and massive quark
production in inclusive DIS, and also in diffractive processes where exclusive vector
meson production is considered. The analytical NLO calculations of exclusive vec-
tor meson production and inclusive diffraction in DIS are also explained. Exclusive
vector meson production is calculated in the nonrelativistic limit for heavy mesons
and the limit of large photon virtuality for light mesons. Also, the importance of in-
cluding relativistic corrections to the heavy vector meson wave function in exclusive
vector meson production is considered. For inclusive diffraction in DIS, we focus on
the NLO corrections to the final state and show how the divergences cancel.
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Tiivistelmä (Abstract in Finnish)

Penttala, Jani
Diffraktiiviset prosessit dipolikuvassa alinta seuraavassa kertaluvussa

Diffraktiiviset prosessit ovat korkean energian rajalla sensitiivisiä kohdehiukkasen
gluonijakaumalle, mistä johtuen niiden avulla voidaan tutkia kohdetta kvanttivä-
ridynamiikan epälineaarisessa alueessa. Näiden epälineaaristen ilmiöiden odotetaan
johtavan gluonisaturaatioon, jota voidaan kuvata luontevasti värilasikondensaatiksi
kutsutun efektiivisen kenttäteorian avulla. Vaikka saatavilla olevassa kokeellisessa
datassa onkin vahvoja viitteitä gluonisaturaatiosta, yksiselitteistä merkkiä saturaa-
tiosta ei ole havaittu. Tämän vuoksi on tärkeää parantaa saturaatiolle sensitiivisten
prosessien teoreettista ymmärrystä, jotta pystytään löytämään selkeitä eroja kvant-
tiväridynamiikan lineaarisen ja epälineaarisen alueen ennusteiden väillä. Diffraktii-
visten prosessien laskeminen korkeammille kertaluvuille häiriöteoriassa on osa tätä
kehitystä.

Tässä väitöskirjassa lasketaan diffraktiivisia prosesseja korkean energian rajalla
alinta seuraavassa kertaluvussa, ja näistä tarkastellaan erityisesti eksklusiivista vek-
torimesonituottoa sekä inklusiivista diffraktiota syvässä epäelastisessa sironnassa.
Korkean energian rajalla laskuissa voidaan käyttää niin sanottua dipolikuvaa, jon-
ka perusteet käydään lyhyesti läpi. Tähän kuuluu värilasikondensaattiteorian käyt-
täminen epäperturbatiivisen dipoliamplitudin kuvaamiseen, joka esiintyy oleellises-
ti kaikissa dipolikuvassa tehdyissä laskuissa. Dipoliamplitudin universaalius alinta
seuraavassa kertaluvussa näytetään numeerisesti siinä mielessä, että samaa dipo-
liamplitudia voidaan käyttää sekä massattomien ja massallisten kvarkkien tuoton
kuvaamiseen inklusiivisessa syvässä epäelastisessa sironnassa että diffraktiivisissa
prosesseissa, joista tarkastellaan eksklusiivista vektorimesonituottoa. Eksklusiivisen
vektorimesonituoton ja inklusiivisen diffraktion analyyttinen lasku alinta seuraa-
vassa kertaluvussa käydään myös läpi. Näistä eksklusiivinen vektorimesonituotto
lasketaan epärelativisella rajalla raskaiden mesonien tapauksessa ja suuren fotonin
virtualiteetin rajalla kevyiden mesonien tapauksessa. Tämän lisäksi tarkastellaan
relativististen korjausten tärkeyttä raskaiden mesonien aaltofunktioon tässä proses-
sissa. Inklusiivisen diffraktion tapauksessa keskitytään erityisesti alinta seuraavan
kertaluvun korjauksiin lopputilassa sekä osoitetaan divergenssien kumoutuminen.
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Preface

There is no magic.
There is only knowledge,
more or less hidden.

— Gene Wolfe, The Claw of the Conciliator

When I started studying physics everything seemed like magic, incomprehensible to
the untrained eye. Even after many years of studying in the field a lot of things still
do seem like that, but now I feel like I can see a glimpse of meaning behind it all.
This does not mean that the magic has faded away, but instead everything starts
to seem even more impressive. Of course, physics is still far from finished and there
are a lot of questions unanswered. While working on this thesis it has become clear
that there is still much work to be done.

As is common in modern research, this thesis has been done in collaboration
with many people. First of all, I would like to thank my supervisors for their
guidance along the journey. I have had the joy to work with Dr. Heikki Mäntysaari
on projects even before this thesis, and needless to say this work could not have
been done without him. His help has made the whole thesis project feel possible,
even more so than it probably should be. My thanks go also to Prof. Tuomas
Lappi for plentiful insights and for helping us find a way forward when stuck, often
giving us that small piece of information that was needed to solve everything. My
collaborators, Dr. Risto Paatelainen, Dr. Henri Hänninen, and Dr. Guillaume Beuf,
also have my gratitude for finding the time for the many meetings we have had, and
for many fruitful discussions which have deepened my understanding. I would like to
thank the reviewers Prof. Zhongbo Kang and Dr. Renaud Boussarie for their kind
comments on this thesis. Prof. Lech Szymanowski has my thanks for agreeing to be
my opponent for the public review of the thesis, and I look forward to our discussion
at the actual event. I would also like to thank the Finnish Cultural Foundation and
the Research Council of Finland (project 321840 and the Centre of Excellence in
Quark Matter, project 346324) for financial support while working on this thesis.

Throughout my studies, I have been inspired and helped by many people. I
am grateful to Prof. Kari J. Eskola and Dr. Hannu Paukkunen for their engaging
lectures which have taught me the basic tools needed in particle physics. I have
found myself returning to their lecture notes time after time, and they have turned
the field from undecipherable hieroglyphs to a delightful puzzle. Dr. DongJo Kim
has my thanks for giving me the introduction to experimental particle physics. I
would also like to thank Prof. Christophe Royon for inviting me to Kansas and
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for his kind hospitality there, along with many discussions that have helped me get
a better understanding of the experimental point of view. Finally, I would like to
thank Dr. Farid Salazar for numerous discussions and also for giving me essential
advice for surviving my next destination on this journey.

The long hours of work have been made much more pleasant by the whole
community in the physics department, which I am very grateful for. Special thanks
go to my office mates in Holvi: Lotta, Henri, Topi, Oskari, Mikko, Miha, Mikko,
Sami and Carlisle. Your presence has truly made the office a lively place without
a dull moment, and I will certainly miss the days spent there. The Holvi alumni
have my thanks for showing that there is also life outside academia. My thanks go
also outside the office to the whole Holvi extended universe™ that shows up to drag
me to eat at the grand canonical lunchtime. This lunch collaboration has had an
exponential growth in recent years, and it has become so big that it is impossible to
name everyone here. At this pace the cafeteria will soon be too small for us.

Of course, my days have not been spent purely writing this thesis. Jyväskylä
has become a really special place for me thanks to all of the wonderful people here.
I should especially thank Harri and Henry with whom I have spent countless days
and nights studying and not-studying. Working out the exercises with you has been
a lot of fun! I should also thank the rest of our group of friends, which has somewhat
changed over the years: Sami, Kasperi, Jouni, Joona and Tatu. Many wonderful
memories have been made, which I will carry on for the rest of my life.

Finally, I would like to express my thanks to my family. You have supported
me in everything throughout my life and have allowed me to keep on following this
path even further.

Kiitos.
In Jyväskylä, June 2023

Jani Penttala



List of Included Articles

I Tuomas Lappi, Heikki Mäntysaari, Jani Penttala. Relativistic corrections to
the vector meson light front wave function. Physical Review D, 102, 054020,
(2020).

II Heikki Mäntysaari, Jani Penttala. Exclusive heavy vector meson production
at next-to-leading order in the dipole picture. Physics Letters B, 823, 136723,
(2021).

III Heikki Mäntysaari, Jani Penttala. Exclusive production of light vector
mesons at next-to-leading order in the dipole picture. Physical Review D,
105, 114038, (2022).

IV Heikki Mäntysaari, Jani Penttala. Complete calculation of exclusive heavy
vector meson production at next-to-leading order in the dipole picture. Jour-
nal of High Energy Physics, 08, 247, (2022).

V Henri Hänninen, Heikki Mäntysaari, Risto Paatelainen, Jani Penttala. Pro-
ton structure functions at NLO in the dipole picture with massive quarks.
Physical Review Letters, 130, 192301, (2023).

The author performed all analytical and numerical calculations in Articles [I,
II, III, IV]. For Article [V], the author implemented the massive structure functions
into the existing code for the massless case. The author wrote the original drafts of
the manuscripts for Articles [III, IV], and participated in writing Articles [I, II] and
editing Article [V]. Chapter 5 contains discussion about an unpublished work with
Guillaume Beuf, Tuomas Lappi, Heikki Mäntysaari and Risto Paatelainen, where
the author has performed all analytical calculations.

xi





Contents

1 Introduction 1

2 Diffractive processes in the dipole picture 3
2.1 High-energy diffraction ............................................................. 3
2.2 Factorization in the high-energy limit .......................................... 5
2.3 Light-cone perturbation theory ................................................. 8
2.4 Eikonal approximation ............................................................. 13

3 Dipole-target scattering amplitude 19
3.1 Target as a classical color field ................................................... 19
3.2 High-energy evolution of the dipole amplitude ............................... 22
3.3 Numerical fits for the dipole amplitude ........................................ 26

3.3.1 Inclusive deep inelastic scattering ...................................... 27
3.3.2 Initial condition for the numerical fit ................................. 28
3.3.3 NLO fit with the massless structure function data ............... 29
3.3.4 Structure functions with massive quarks at NLO .................. 31

4 Exclusive vector meson production 37
4.1 Vector meson wave function....................................................... 41

4.1.1 Relativistic corrections to the heavy vector meson wave function 43
4.2 Exclusive vector meson production at next-to-leading order ............. 49

4.2.1 Heavy vector meson production in the nonrelativistic limit ..... 51
4.2.2 Light vector meson production at large photon virtualities ..... 55

5 Inclusive diffraction 59
5.1 Diffractive DIS at next-to-leading order ....................................... 62

5.1.1 Final-state corrections .................................................... 64
5.1.2 Cancellation of divergences .............................................. 68

6 Conclusions 71

References 73

Included Articles 91

xiii





1 INTRODUCTION

The recent century has brought us a vast amount of insight into the fine details
of the smallest particles in the world. Especially interesting are the particles that
form the atomic nuclei, protons and neutrons, as it turns out that their internal
structure is much more complicated than what was originally thought. The first
observations of this were found in the 1960s when it was realized that they are not
actually elementary particles but contain a sub-structure of smaller constituents.
These were later understood to be new particles called quarks, with protons and
neutrons both comprised of three quarks each.

When the internal structure of nucleons was studied at higher energies, it was
found that this simple quark model is not enough: a vast amount of gluons and
virtual quarks also populate the nucleons. These constituents of nucleons are col-
lectively called partons. At even higher energies, the inner structure is dominated
by gluons [1]. This can be understood by the partons emitting gluons, with gluon
emission becoming more likely with increasing energy. This makes the cross sections
rise very steeply in energy. However, this steep increase cannot go on indefinitely.
It was realized that this would eventually break the unitarity of quantum chromo-
dynamics (QCD), and subsequently gluon absorption also has to become important
at some point. Indeed, this was found to be a theoretical prediction of QCD, which
gave rise to saturation models [2].

While these saturation effects are theoretically well-motivated, current experi-
ments have not been able to distinguish between saturation and non-saturation mod-
els within the uncertainties of the theory and the experiment. However, there have
been hints of saturation in heavy-ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) [3–5] and the Large Hadron Collider (LHC) [6–9], and it is hoped that even
clearer signals will be found in electron-nucleus collisions at the future Electron-Ion
Collider (EIC) [10]. These experimental endeavors for precise data make studying
saturation effects very topical, and there has been a very active collaboration in the
high-energy physics community to improve the theoretical understanding of satu-
ration physics. This includes promoting calculations to the next-to-leading order
(NLO), and this thesis is a part of that process focusing on a subset of diffractive
processes. Diffractive processes are especially sensitive to the high-energy gluon dis-
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tribution of the target, making them a good candidate for trying to find the “smoking
gun” of saturation.

Diffraction in high-energy physics is briefly considered in Ch. 2, along with
the dipole picture which forms the basis of calculations in the high-energy limit.
Saturation physics is explained in Ch. 3 where the interaction of the probe with a
highly energetic target is considered. We also discuss Article [V] which highlights
the importance of including massive quarks for constraining the nonperturbative
interaction with the target. Chapter 4 discusses higher-order corrections to exclusive
vector meson production. We consider first relativistic effects to the heavy vector
meson wave function, which is the topic of Article [I], and then the next-to-leading
order corrections to exclusive vector meson production are discussed in detail. This
discussion is based on the work in Articles [II, III, IV] where the NLO correction to
the production of heavy vector mesons is considered in the nonrelativistic limit and
the production of light vector mesons in the limit of large photon virtuality. Finally,
inclusive diffraction is the topic of Sec. 3.3.1 where an unpublished NLO calculation
of diffractive structure functions is briefly discussed.



2 DIFFRACTIVE PROCESSES IN THE DIPOLE
PICTURE

2.1 High-energy diffraction

Interest in diffractive processes in high-energy physics began to rise in the 1990s when
the results from the HERA collider in DESY started to become available. At HERA,
it was found that in about 10% of Deep Inelastic Scattering (DIS) events there is a
large rapidity gap present in the distribution of the final-state particles [11, 12]. The
ratio of such events also remains roughly constant as a function of energy [13, 14].
This finding was largely surprising as one would expect the target to break up into a
shower of particles filling the rapidity gap, and while this was true for the majority of
events, events with a large rapidity gap were expected to get more suppressed with
higher energies. In fact, this is true if one expects an exchange of color between the
virtual photon and the target [15]. The large rapidity gap can then be understood
as a signature of diffractive events where the interaction between the photon and
the target is color neutral1. Especially, this means that the target and the projectile
remain in a color-singlet state which is essential for the large rapidity gap: as a
result of confinement, color-octet final states would start to radiate gluons as their
separation grows, and this would produce a plethora of soft particles that would fill
the whole rapidity spectrum.

The theory of high-energy diffraction dates back to 1960s when the Regge the-
ory [16–18] was developed to give a qualitative explanation of a diffractive process as
an exchange of the so-called pomeron2, shown in Fig. 2.1. A pomeron is a theoreti-
cal quasiparticle that has the quantum numbers of a vacuum, and thus this process

1 This definition of diffraction has an analog in optics where diffraction refers to light meeting
an obstacle that has a size comparable to the wavelength of the light. While this analogy
between high-energy physics and optics is far from perfect, diffractive processes in the two
fields have some properties in common. For example, diffractive cross sections tend to
decrease rapidly as a function of the momentum transfer, expressing also diffractive dips.

2 A pomeron exchange corresponds to the dominating C-parity even interaction. The C-parity
odd interactions corresponding to the so-called odderon exchange are more suppressed.

3



4

e−
e−

A

A′

X

γ∗

6

?

Ygap

FIGURE 2.1 Diffractive DIS depicted as an exchange of a color-neutral quasiparticle.
The large rapidity gap Ygap is an experimental sign of a diffractive process.

satisfies the theoretical definition of diffraction as a color-neutral interaction. Even
without understanding the whole structure of the pomeron, the Regge theory was
quite successful in describing the general energy and momentum transfer dependence
of the cross section [19]. While this explanation via a pomeron exchange is these
days mostly of historical interest, the vocabulary dating to the Regge theory is still
largely used also in modern literature.

After the discovery of QCD it was possible to give the pomeron a more rigorous
definition starting from the first principles. It was understood that at high energies
the gluon distribution starts to dominate in the nucleus, and thus the lowest-order
color-neutral interaction is an exchange of two gluons between the target and a
quark-antiquark pair [20, 21], shown in Fig. 2.2. This makes diffractive processes
highly sensitive to the gluon distribution of the target. The enhancement of gluon
emission at high energies also means that such a two-gluon exchange is not enough
to fully describe the process, but instead one has to resum these gluon exchanges
to all orders. This was first done by the Balitsky–Fadin–Kuraev–Lipatov (BFKL)
equation [22–24]. The resummation of gluon exchanges in the high-energy limit is
quite general and applies also to inclusive processes.

These theoretical endeavors to understand the interaction with the target run
into problems at even higher energies. They predict a rapid rise of the gluon distri-
bution which cannot go on indefinitely, as the power-like growth of the cross section
predicted by the BFKL equation would eventually break the so-called Froissart–
Martin bound [25, 26] for the energy dependence of the cross section. This is in
violation of the unitarity of the S-matrix and thus the probability conservation in
particle scattering. The enhancement of gluon radiation at high energies should
eventually be compensated by nonlinear gluon recombination effects such that the
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FIGURE 2.2 The leading-order picture for a color-neutral interaction with the target.

energy dependence of the cross section is tamed from power-like to logarithmic,
which also results in a slower growth of the target’s gluon distribution. This phe-
nomenon is called gluon saturation. Saturation can be taken into account quite
naturally by considering the interaction with the target in terms of nonperturbative
Wilson lines instead of gluon exchanges, which leads to the celebrated Balitsky–
Kovchegov (BK) [27, 28] and Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–
Kovner (JIMWLK) [29–35] evolution equations for the interaction with the target.
This is also the framework used in this thesis for describing the energy dependence
of the nonperturbative dipole-target scattering amplitude. It turns out that this non-
perturbative part can, in general, be treated separately from the rest of the process
in the so-called dipole picture [2, 36–39] which allows for perturbative calculations of
processes in the high-energy limit. The rest of this chapter is devoted to explaining
the basics of this approach.

2.2 Factorization in the high-energy limit

The class of processes we are interested in involves a photon interacting with a
target nucleus as shown in Fig. 2.3. This photon can be real, as in ultra-peripheral
collisions, or virtual, as in DIS. In general, the interaction with the target is highly
nonperturbative, but in the high-energy limit it can be written in a simplified form.
This can be seen by considering the interaction in the light-cone coordinates

p+ =
1√
2
(p0 + p3) p− =

1√
2
(p0 − p3) p = (p1, p2). (2.1)

It is also convenient to use light-cone quantization in the light-cone coordinates,
which essentially means that the role of the Hamiltonian is played by the minus
component of the momentum operator, P̂−, and the time is given by the light-cone
time x+. This also means that the components (p+,p) of the momenta are conserved
during the interactions but the minus component p− is not. Instead, it is determined
by the on-shell condition p− = m2+p2

2p+
.
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FIGURE 2.3 Diffractive interaction of a virtual photon with a target nucleus.

We will also choose a frame where the photon and the target are moving along
the x3-axis, with the photon going in the positive direction. For heavy nuclei, it is
customary to consider the average momentum of a nucleon instead of the nucleus,
which corresponds to dividing the momentum of the nucleus by its mass number.
This makes it easier to study nuclear effects that modify the simple assumption that
the nucleus consists of a number of free nucleons. The momenta of the photon and
the average nucleon are then given by

q = (q+, q−,q) =

(
q+,− Q2

2q+
,0

)

Pn = (P+
n , P

−
n ,Pn) =

(
m2

n

2P−n
, P−n ,0

) (2.2)

where Q2 = −q2 ≥ 0 is the photon virtuality and mn is the mass of the nucleon.
In the high-energy limit the center-of-mass energy is large, W 2 ≫ Q2,m2

n, and thus
the energy is given by

W 2 = (q + Pn)
2 = 2q+P−n − Q2m2

n

2q+P−n
−Q2 +m2

n ≈ 2q+P−n . (2.3)

The photon-target interaction is dominated by strong interactions. As the
photon is color neutral, it has to first fluctuate into a quark-antiquark pair which acts
as a color dipole, and it can be shown that in the high-energy limit this fluctuation
has to happen before the interaction. The reason for this is that the target gets
Lorentz-contracted so that the duration of the interaction in the light-cone time is

x+interaction ∼ 1

P−n
(2.4)

which is much smaller the lifetime of the virtual photon3

x+γ ∼ 1

|q−| =
2q+

Q2
. (2.5)

3 By the Heisenberg uncertainty principle deviations from the on-shell condition for the minus
momentum can live for a time x+

lifetime ∼ 1
|∆p−| where ∆p− = p− − p−on-shell.
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FIGURE 2.4 Factorization in the dipole picture at leading order. The blue rectangle
depicts the nonperturbative interaction with the target.

This means that fluctuations into other particles during the interaction are sup-
pressed by the factor x+interaction/x

+
γ ∼ Q2/(2q+P−n ) = Q2/W 2, and hence it is much

more likely that the photon has split before the interaction. This also holds in
general for other types of particles interacting with the target as long as the minus
momentum of the particle is not too large. Thus the probe, in this case a virtual
photon, sees the target as an instantaneous shock wave. This high-energy condition
is usually written in terms of the Bjorken x variable

x =
Q2

2Pn · q
=

Q2

W 2 +Q2 −m2
n

≈ Q2

W 2 +Q2
. (2.6)

We can see that the high-energy limit W 2 ≫ Q2 is equivalent to a small Bjorken x.
The suppression of the Fock state fluctuations during the interaction allows us

to factorize the process into three different parts [2, 36–39]:

1. The photon fluctuates into the Fock state n.

2. The Fock state n interacts with the target.

3. After the interaction, the Fock state n forms the final state X.

At leading order in perturbation theory, this happens by the photon going into the
quark-antiquark dipole which interacts with the target, shown in Fig. 2.4. This is
where the name dipole picture comes from. This factorization can be applied very
generally to processes in the high-energy limit, and it allows us to write matrix
elements as [40]

〈
X,A′(x+ = +∞)

∣∣ Ŝ − 1
∣∣γ∗, A(x+ = −∞)

〉

=
∑

n,n′

∫
d[PS]n d[PS]n′ ⟨X(+∞)|n′⟩ × ⟨n′A′|Ŝ − 1 |nA⟩ × ⟨n|γ∗(−∞)⟩ (2.7)

where Ŝ denotes the S-matrix, and n and n′ correspond to the same Fock state
but with possibly different momenta and quantum numbers. Here the phase space
integrals are defined as

d[PS]n =
∏

i∈n
dk̃i (2.8)
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where
dk̃ =

dk+ d2k

2k+(2π)3
θ(k+). (2.9)

From this factorization, we see that the nonperturbative interaction with the target
is simplified to ⟨n′A′|Ŝ−1 |nA⟩. This matrix element is universal in the sense that it
is independent from the rest of the process. The factors ⟨X(+∞)|n′⟩ , ⟨n|γ∗(−∞)⟩
are in contrast dependent on the initial and final states, and they are most conve-
niently given by light-cone wave functions which can be calculated using light-cone
perturbation theory discussed in Sec. 2.3.

The high-energy limit also simplifies the cross section. The differential element
of the cross section for the scattering process γ∗ + A→ X + A′ can be written as

dσγ∗A→XA′
=

1

2W 2
d[PS]X d[PS]A′ (2π)4δ4(q + pA − pX − pA′)

∣∣∣Mγ∗A→XA′
∣∣∣
2

. (2.10)

In practice, it can be hard to measure the outgoing nucleus A′. For this reason,
one usually considers quantities where the phase space of the nucleus A′ has been
integrated over. This leads to

dσγ∗A→XA′

d[PS]X
=

1

2W 2

1

2p−A′
(2π)δ(q+ − p+X)

∣∣∣Mγ∗A→XA′
∣∣∣
2

=
1

(2W 2)2
2q+δ(q+ − p+X)

∣∣∣Mγ∗A→XA′
∣∣∣
2

(2.11)

where the corrections to this equation are of the order O
(

1
W 2

)
. It is also customary

to redefine the invariant amplitude such that the factor 1/(2W 2) is included in the
amplitude. This will be discussed in more detail in Sec. 2.4.

2.3 Light-cone perturbation theory

Calculating the light-cone wave functions for the initial and final particles can be
done in the so-called light-cone perturbation theory [40, 41] which is similar to
canonical quantization in old-fashioned perturbation theory. The main idea is that
the fields are quantized at equal light-cone times x+ instead of the equal times t
used in the standard formulation of the canonical quantization. This means that
the fields satisfy commutation relations such as

[
ϕ̂(x+, x−,x), π̂(y+ = x+, y−,y)

]
= iδ2(x− y)δ(x− − y−) (2.12)

in the case of a scalar field ϕ̂(x) and its conjugate

π̂ =
∂L

∂
(
∂+ϕ̂

) . (2.13)

This is called the light-cone quantization of the fields. The role of the Hamiltonian
in this quantization procedure is then given by the operator

P̂− =

∫
d2x dx−

(
π̂∂+ϕ̂− L

)
(2.14)
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which corresponds to the minus component of the four-momentum. In general, this
leads to a Hamiltonian that has a similar form as in equal-time quantization in
the sense that we can divide the light-cone Hamiltonian P̂− = P̂−0 + V̂ into the
free-field part P̂−0 and the interaction term V̂ . Perturbation theory is then done in
the interaction picture where the free particles are eigenstates of the operator P̂−0
with the on-shell condition p− = m2+p2

2p+
. As a result of this quantization procedure,

light-cone 3-momentum (p+,p) is conserved in the interactions whereas the minus
component p− is not4. Deriving perturbation theory then follows in a similar way
to the old-fashioned perturbation theory. A priori, it is not clear that the physical
results of light-cone quantization should then equal with the equal-time quantization,
but considering the path integral formulation one can see that the quantization
procedure should not have an effect on physical quantities.

While the results of light-cone perturbation theory agree with the equal-time
quantization, the Feynman rules are quite different. First of all, light-cone pertur-
bation theory is time-ordered. This means that Feynman diagrams with different
time-orderings have to be calculated separately, which is more in line with the old-
fashioned perturbation theory that was used in equal-time quantization until the
1960s [43]. Modern Feynman diagram calculations tend to calculate different time-
ordered diagrams simultaneously using the covariant perturbation theory. Doing this
for light-cone perturbation theory Feynman rules would result in the same covariant
expressions, but this would defeat the advantages we get by light-cone quantization.
For example, the time-ordering allows one to track the Fock states at each part
of the process, and different parts of the process can also be combined using the
light-cone wave functions. That being said, light-cone perturbation theory also has
the major disadvantages of having to calculate much more Feynman diagrams for
a single process and losing the explicit Lorentz invariance [44]. These are the main
reasons why covariant perturbation theory is preferred in almost all calculations.

The main reason for doing light-cone perturbation theory in the high-energy
limit is simple: as the interaction with the target is instantaneous in the light-cone
time x+, it is independent of the minus momenta p−. The integrals over the minus
components of the momenta in covariant perturbation theory can then be done using
the residue theorem, with the different residues corresponding to the time-ordered
Feynman diagrams in light-cone perturbation theory [45]. This leads to describing
the initial and final states in terms of the light-cone wave functions as in Eq. (2.7).
Thus, starting directly from light-cone perturbation theory one avoids the necessary
step of using the residue theorem to calculate the integrals over the minus momenta.

To give the reader a concrete idea of light-cone perturbation theory, we provide
a short derivation of the light-cone Feynman rules for calculating light-cone wave
functions following Ref. [42]. To start, consider the following matrix element

〈
f(x+f )

∣∣i(x+i )
〉
=
〈
f
∣∣U(x+f , x+i )

∣∣i
〉

(2.15)

where the states are in the interaction picture and at the light-cone time x+0 they
match the states in the Heisenberg picture:

∣∣n(x+0 )
〉
≡ |n⟩. The time-evolution

4 For a more detailed analysis of the dynamics in the light cone the reader is referred to
Ref. [42].
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operator in the interaction picture for light-cone quantization is then given by

U(x+f , x
+
i ) = eiP̂

−
0 x+

f e−iP̂
−(x+

f −x
+
i )e−iP̂

−
0 x+

i , (2.16)

analogously to equal-time quantization. The light-cone Hamiltonian P̂− has been
divided into the free and interaction parts P̂− = P̂−0 + V̂ , and we write the free
states as eigenstates of the free part of the Hamiltonian, P̂−0 |n⟩ = p−n |n⟩. These
states are normalized as

〈
n(p+,p)

∣∣n(k+,k)
〉
= 2p+(2π)3δ(p+ − k+)δ2(p− k). (2.17)

The separation of the Hamiltonian into free and interaction parts allows us to
write

〈
f(x+f )

∣∣i(x+i )
〉
= eip

−
f x+

f −ip
−
i x+

i

〈
f
∣∣∣e−iP̂−(x+

f −x
+
i )
∣∣∣i
〉
. (2.18)

As P− ≥ 0 for all Fock states, the operator P̂− is positive and we can use the residue
theorem to rewrite

e−iP̂
−∆x+

=

∫ ∞

−∞

dϵ

2π

i

ϵ− P̂− + iδ
e−iϵ∆x+

(2.19)

where δ > 0 is an infinitesimal number taken to zero after the integration. Here we
have assumed ∆x+ > 0; in the case ∆x+ < 0 we would have −i

ϵ−P̂−−iδ instead.
We will then expand 1

ϵ−P̂−
0 −V̂+iδ

as powers of V̂ in order to do perturbation
theory, which leads to the expression
〈
f

∣∣∣∣
1

ϵ− P̂− + iδ

∣∣∣∣i
〉

=

〈
f

∣∣∣∣∣
1

ϵ− P̂−0 + iδ
+

1

ϵ− P̂−0 + iδ
V̂

1

ϵ− P̂−0 + iδ
+ . . .

∣∣∣∣∣i
〉

=
1

ϵ− p−i + iδ

〈
f

∣∣∣∣∣1 +
1

ϵ− P̂−0 + iδ
V̂ + . . .

∣∣∣∣∣i
〉
.

(2.20)

The remaining operators 1
ϵ−P−

0 +iδ
can be written in terms of their spectral represen-

tation
1

ϵ− P̂−0 + iδ
=
∑

n

∫
d[PS]n |n⟩

1

ϵ− p−n + iδ
⟨n| (2.21)

so that the original inner product becomes

〈
f(x+f )

∣∣i(x+i )
〉
=

∫ ∞

−∞

dϵ

2π

i

ϵ− p−i + iδ
eip

−
f x+

f −ip
−
i x+

i e−iϵ(x
+
f −x

+
i )

×
[
⟨f |i⟩+ 1

ϵ− p−f + iδ
⟨f |V̂ |i⟩

+
∑

n

∫
d[PS]n

1

ϵ− p−f + iδ
⟨f |V̂ |n⟩ 1

ϵ− p−n + iδ
⟨n|V̂ |i⟩+ . . .

]
.

(2.22)
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At this point, we note that we are usually interested in inner products where
x+i → −∞. Using the identity

lim
T→∞

e−iTp

p+ iδ
= −2iπδ(p) (2.23)

we can write
〈
f(x+f )

∣∣i(−∞)
〉
=ei(p

−
f −p

−
i )x+

f

×
[
⟨f |i⟩+ 1

p−i − p−f + iδ
⟨f |V̂ |i⟩+ . . .

]

≡ei(p−f −p−i )x+
f
[
⟨f |i⟩+ 2p+i (2π)

3δ(p+f − p+i )δ
2(pf − pi)Ψ

i→f
]

(2.24)

where

2p+i (2π)
3δ(p+f − p+i )δ

2(pf − pi)Ψ
i→f

=
1

p−i − p−f + iδ

[
⟨f |V̂ |i⟩+

∑

n

∫
d[PS]n ⟨f |V̂ |n⟩ 1

p−i − p−n + iδ
⟨n|V̂ |i⟩+ . . .

]

(2.25)

and Ψi→f is the light-cone wave function for the process i→ f . Note that we leave
the non-interacting case ⟨f |i⟩ out of the definition of the wave function. The delta
functions come from the conservation of the light-cone 3-momentum (p+,p), and by
definition they are not part of the light-cone wave function Ψi→f .

As a side note, when calculating elements of the scattering matrix we also take
the final state to be asymptotic so that x+f = +∞. Using the identity (2.23) again,
this leads to

⟨f |Ŝ|i⟩ = ⟨f(+∞)|i(−∞)⟩ = ⟨f |i⟩

+ 2πiδ(p−i − p−f )

[
⟨f |V̂ |i⟩+

∑

n

∫
d[PS]n ⟨f |V̂ |n⟩ 1

p−i − p−n + iδ
⟨n|V̂ |i⟩+ . . .

]

≡⟨f |i⟩+ (2π)4δ4(pi − pf )iMi→f

(2.26)

where Ŝ = 1̂ + iT̂ is the S-matrix and Mi→f is the scattering amplitude for the
process i→ f .

From this derivation of the light-cone perturbation theory we can read the
corresponding Feynman rules. There are some minor variations of the rules corre-
sponding to a different metric and normalization of the light-cone wave function in
the literature [41, 42, 45, 46]. With the conventions of this work, we end up with
the following set of rules:

1. Draw all of the possible x+-ordered Feynman diagrams corresponding to the
process i→ f .

2. Assign an on-shell momentum for each line from left to right such that the
light-cone 3-momentum (p+,p) is conserved.
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3. For each vertex, assign a matrix element

⟨out|V̂ |in⟩ = (2π)3δ(p+out − p+in)δ
2(pout − pin)Γ

in→out (2.27)

where pin is the sum of momenta flowing into the vertex and pout out of the
vertex, and Γin→out is the Feynman rule for the vertex.

4. For each intermediate state, assign an energy denominator

1

p−i − p−intermediate + iδ
(2.28)

where p−i is the sum of minus components for the initial state and p−intermediate
for the intermediate state. The final state is considered to be an intermediate
state.

5. For each internal line, i.e. lines that are not part of the initial or final state,
sum over the helicities and integrate over the momenta p with the phase factors
dp̃ from Eq. (2.9).

6. Include the required symmetry factors for identical particles and the additional
factor (−1) for fermion loops and fermion lines beginning and ending in the
initial state.

This gives us the expression 2p+i (2π)
3δ(p+i −p+f )δ2(pi−pf )Ψ

i→f from which one can
read the light-cone wave function. Scattering amplitudes are calculated analogously:
leaving out the energy denominator for the final state in Rule 4 and setting p−f = p−i ,
one gets the expression (2π)3δ(p+i − p+f )δ

2(pi − pf )Mi→f .
The vertices Γin→out for QCD are listed in Refs. [45, 46]. This also includes

instantaneous interactions which can be thought of as additional 4-point interac-
tions between quarks and gluons that appear in the light-cone quantization. These
Feynman rules use the light-cone gauge for gluons,

A+ = 0, (2.29)

which is a convenient gauge in light-cone perturbation theory. One advantage of
this gauge is that it decouples the ghosts from the other particles, meaning that the
ghosts can be integrated out trivially.

These rules for calculating the light-cone wave function assume that the initial
state is asymptotic at x+i = −∞ and the final state is not an observed state but
rather a state that will take part in further scattering processes, such as the interac-
tion with the target in Eq. (2.7). These are the standard light-cone wave functions
that are usually considered and we will denote them by Ψin to emphasize that they
correspond to the asymptotic incoming particle. In practice, we also need the wave
function for the actual observed outgoing state at x+f = +∞, in which case the initial
state is not asymptotic but instead a part of a scattering process. To calculate this
final-state wave function corresponding to the matrix element

〈
i(x+i )

∣∣f(+∞)
〉
, we

note that we can repeat our previous derivation for the incoming-state wave function



13

such that the only difference is in Eq. (2.19) where the sign of iδ is now different.
This leads to
〈
i(x+i )

∣∣f(+∞)
〉
=ei(p

−
i −p

−
f )x+

i

×
[
⟨i|f⟩+ 1

p−f − p−i − iδ
⟨i|V̂ |f⟩+ . . .

]

≡ei(p−i −p−f )x+
i

[
⟨i|f⟩+ 2p+f (2π)

3δ(p+f − p+i )δ
2(pf − pi)Ψ

f→i
out

]
(2.30)

where

2p+f (2π)
3δ(p+f − p+i )δ

2(pf − pi)Ψ
f→i
out

=
1

p−f − p−i − iδ

[
⟨i|V̂ |f⟩+

∑

n

∫
d[PS]n ⟨i|V̂ |n⟩ 1

p−f − p−i − iδ
⟨f |V̂ |i⟩+ . . .

]
.

(2.31)

From this one can read the Feynman rules for calculating the outgoing-state wave
function Ψf→i

out . The only difference to the incoming state is in Rule 4 where we have
now −iδ instead of +iδ. The wave function for the matrix element

〈
f(+∞)

∣∣i(x+i )
〉

is then given by the complex conjugate
(
Ψf→i

out

)∗
.

One modification of the above rules concerns self-energy corrections to the
asymptotic state. The LSZ reduction formula states that the self-energy corrections
should be amputated from the light-cone wave function, and instead they introduce
factors

√
Zn for the asymptotic state [40]. This means that the asymptotic state

can be written as, in the case of the incoming state,

|i(−∞)⟩ =
√
Zi

[
|i⟩+

∑

n

∫
d[PS]n 2p+i (2π)

3δ(p+i − p+n )δ(pi − pn)Ψ
i→n
in |n⟩

]
.

(2.32)
Similar factors appear for the outgoing state.

Finally, we would like to mention that there are several different normalization
conventions for the light-cone wave functions which correspond to different phase
space integration measures. In this thesis, we use the conventions of Eqs. (2.8)
and (2.9). These differ from Articles [I, II, III, IV] which follow the notation from
Ref. [47]. There the integration measure for the plus momenta was defined as dzi

4π

instead of dzi
4πzi

=
dk+i
4πk+i

, where zi = k+i /q
+ are the plus-momentum fractions of the

particles. This introduces an additional factor
∏

i∈n
1√
zi

into the wave functions.

2.4 Eikonal approximation

The high-energy limit can be used to also simplify the interaction with the target.
To understand this, consider a quark-quark scattering process where the “probe”
quark has a momentum q and the “target” quark has a momentum P as shown in
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q, hq, cq q′, hq′ , cq′

P, hP , cP P ′, hP ′ , cP ′
?

k

FIGURE 2.5 t-channel for the quark-quark scattering.

Fig. 2.55. The two quarks collide with a high longitudinal momentum such that
the center-of-mass energy s = (q + P )2 ≈ 2q+P− ≫ m2

q,m
2
P ,q

2,P2 is large. This
also means that the interaction happens mainly through the t-channel in Fig. 2.5 as
the s-channel is suppressed by 1/s. Demanding that the initial and final particles
are on-shell one can show that the plus and minus momentum exchange is small
compared to the transverse momentum exchange:

k+ = (q − q′)+ = (P ′ − P )+ ≈ q+

s
(k2 + 2k ·P),

k− = (q − q′)− = (P ′ − P )− ≈ P−

s
(−k2 + 2k · q).

(2.33)

We can then assume that q′+ = q+ and P ′− = P− as the corrections are suppressed
by k2/s≪ 1.

Using the Feynman rules from covariant perturbation theory, the scattering
amplitude is given by

iM = g2st
a
cq′cq

tahP hP ′

1

k2
ūh′

q
(q′)γµuhq(q)ūh′

P
(P ′)γνuhP

(P )Dµν(k) (2.34)

where Dµν(k) is the gluon propagator. To stay consistent with the rest of this thesis,
we consider the gluon propagator in the light-cone gauge where

Dµν(k) = gµν − nµkν + nνkµ

n · k = −




0 0 0 0

0 2k−

k+
k1

k+
k2

k+

0 k1

k+
1 0

0 k2

k+
0 1


 (2.35)

with nµ = δµ−.
To calculate the scattering amplitude (2.34) we also need to specify a basis

for the spinors. It turns out that in light-cone perturbation theory calculations

5 This example can be found in Ref. [45]. However, we do not assume that the individual
components q+ and P− are large as we wish to present a boost-invariant motivation for the
eikonal approximation. We also allow for non-zero transverse components q and P which is
generally the case if one considers multiple gluon exchanges.
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it is convenient to use a basis where quantities are boost invariant, and with this
motivation in mind we choose to use Lepage–Brodsky basis [48]:

u+(k⃗) =
1√

2(E + k3)




E + k3 +m

kR
E + k3 −m

kR


 u−(k⃗) =

1√
2(E + k3)




−kL
E + k3 +m

kL
−(E + k3 −m)




v+(k⃗) =
1√

2(E + k3)




−kL
E + k3 −m

kL
−(E + k3 +m)


 v−(k⃗) =

1√
2(E + k3)




E + k3 −m

kR
E + k3 +m

kR




(2.36)
where kL = k1− ik2 = |k|e−iφk and kR = k1+ ik2 = |k|eiφk . Longitudinal boosts on
these spinors do not mix the helicity states but only change the momenta so that

S(Λ)uh(k⃗) = uh(Λk⃗) (2.37)

where S(Λ) is the action of the longitudinal boost Λ in the spinor representation
of the Lorentz group. This is the main reason why this basis is ubiquitously used
in the light-cone formalism. The spinors (2.36) are also the eigenstates of the so-
called light-cone helicity which corresponds to the helicity in the “infinite-momentum
frame” [49].

With the basis (2.36) one can find the following scaling relations for the spinor
elements:

ū(q′)γ+u(q) ∼ q+

ū(q′)γ−u(q) ∼ q−

ū(q′)γiu(q) ∼ qi

(2.38)

and similarly for ū(P ′)γνu(P ). This allows us to find the dominating terms in the
high-energy limit so that Eq. (2.33) becomes

iM ≈ −g2stacq′cqt
a
hP hP ′

1

k2
ūh′

q
(q′)γ+uhq(q)ūh′

P
(P ′)γiuhP

(P )D−i(k) (2.39)

where the other terms are suppressed by 1/s. Explicitly evaluating the terms re-
maining terms this leads to6

iM = 2sδhqh′
q
δhP h′

P
g2st

a
cq′cq

tahP hP ′

1

k2
. (2.40)

We can now read several things from this expression for the scattering amplitude
that apply very generally to particle scattering in the high-energy limit:

1. The invariant amplitude is proportional to the center-of-mass energy s.

2. The helicities of the target and the probe are conserved.
6 Strictly speaking, for the “target” one has to use a different basis of spinors so that the sign

of k3 in Eq. (2.36) is swapped. This is allowed as one can use different spinors bases for
different spinors in the process.
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3. The momentum transfer is dominated by the transverse component of the 4-
momentum. From Eq. (2.33) we see especially that the plus momentum of the
probe is conserved up to corrections in 1/s, i.e. q+ ≈ q′+.

4. The invariant amplitude depends only on the transverse momentum exchange
k2.

In practice, the interaction with the target is not this simple. However, the properties
noted above are quite general, and it can be shown that they are also satisfied for
gluon targets. These properties then form the basis of the eikonal approximation7

in the high-energy limit which states that the interaction with the target can be
written as

iMn+A→n′+A′ ≈ 2s× 2p+n (2π)δ(p
+
n − p′+n )δhnh′

n
δhAh′

A
S(k) (2.41)

where n can be a quark, an antiquark or a gluon, and S(k) is a color matrix that
depends only on the transverse momentum transfer k = p′n − pn. The fact that
S(k) depends only on the momentum transfer and not on the individual momenta
pn and p′n suggests that we should take a Fourier transform in the transverse plane.
Writing

∫
d2pn d

2p′n
(2π)4

eipn·xne−ip
′
n·x′

nS(k) = δ2(xn − x′n)

∫
d2k

(2π)2
e−ik·xnS(k) (2.42)

we see that in the position space the transverse coordinates do not change during
the interaction. This can be understood by noting that the interaction with the
target is instantaneous and thus the change in the transverse coordinate has to be
very small.

Combining the eikonal approximation (2.41) with the factorization in Eq. (2.7),
we can write the invariant amplitude as

iMγ∗A→XA′
=
∑

n

∫
d[P̃S]n 2q+(2π)δ(q+−p+X)e−ibn·∆Ψ̃γ∗→n

in

(
Ψ̃X→n

out

)∗ (
1−S(n)

A (xi)
)

(2.43)
where Ψ̃ denotes the Fourier transform of the light-cone wave function, S(n)

A (xi) the
eikonal approximation for the interaction of the Fock state n with the target A, and
the integration measure in the mixed space is given by

d[P̃S]n =
∏

i∈n

(
d2xi

dk+i
(2π)2k+i

)
. (2.44)

7 Similarly to diffraction, the term “eikonal” also has its origin in optics. From Greek εἰκών
(“image”), the eikonal approximation refers to the assumption that light encountering an
object travels in a straight line, forming the “image” of the object. This is generally valid as
long as the wavelength of the light is much smaller than the object, and an analogous thing
is true in high-energy physics: a photon with a “wavelength” x−

γ ∼ 1/q+ much smaller than
the size of the target x−

A ∼ 1/P+
N = 2P−

N /m2
N scatters eikonally.
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The Fourier-transformed wave functions are defined by

eibn·
∑

i∈n piΨ̃n→m(pi, zin;xi, zim)

=

∫ ∏

i∈m

(
d2ki

(2π)2

)
(2π)2δ2

(∑

i∈m
ki −

∑

i∈n
pi

)
e
∑

i∈m iki·xiΨn→m(pi, zin;ki, zim)

(2.45)

where bn =
∑

i∈m zimxi is the impact parameter. Here we have denoted the mo-
menta for the state n by pi and p+

i = zinq
+, and for the state m by ki and

k+
i = zimq

+. Using the momentum fractions z instead of the plus momenta p+

makes the boost invariance of the wave functions more explicit. It should be noted
that this mixed space of coordinates (xi, zi) is very convenient for the eikonal ap-
proximation as these do not change during the interaction with the target. Also,
here we have taken the factor e−ib·

∑
pi out from the Fourier-transformed wave func-

tion as it turns out that with this definition the wave function Ψ̃ depends only on
the dipole sizes xij = xi − xj and the relative momenta Pij ≡ zjnpi − zinpj but not
on the impact parameter b or the total transverse momentum

∑
i pi. This makes

the dependence on the transverse momentum transfer ∆ =
∑

i∈X pi in Eq. (2.43)
explicit, and thus the dependence on the Mandelstam variable t ≈ −∆2 is simple
to calculate.

We have also rescaled the amplitude by the common factor 2s = 2W 2 in
Eq. (2.41). With the rescaled invariant amplitude from Eq. (2.43), the cross section
now reads

dσγ∗A→XA′

d[PS]X
=2q+(2π)δ(q+ − p+X)

∣∣∣Mγ∗A→XA′
∣∣∣
2

. (2.46)

Eqs. (2.43) and (2.46) hold in general in the high-energy limit, with the possible
modification that in Eq. (2.43) we left out the non-interaction matrix element ⟨n|X⟩
for the case X = n out for simplicity (see Eq. (2.30)). These equations will be used
to calculate exclusive vector meson production in Ch. 4 and inclusive diffraction in
DIS in Ch. 5.





3 DIPOLE-TARGET SCATTERING
AMPLITUDE

To calculate any production amplitude for the process γ∗+A→ X+A′ in the dipole
picture one still needs to understand the nonperturbative interaction with the target.
At leading order, this interaction happens with the quark-antiquark dipole and the
target, and it is described by the dipole-target scattering amplitude or the dipole
amplitude for short. It turns out that interactions with even higher-order Fock states
consisting of quarks and gluons can be given in terms of the dipole amplitude at
certain limits, which will be discussed in Sec. 3.2 in more detail. Thus, a thorough
understanding of the dipole amplitude is important for an accurate description of
processes in the dipole picture.

3.1 Target as a classical color field

While the eikonal limit (2.41) significantly simplifies the interaction with the target,
it is too general to give an actual model for the dipole amplitude. For this we need
to consider the actual physical situation of the scattering and take input from QCD.
The main idea is that at high energies the gluon distribution starts to dominate in
the target and we can thus neglect the quark contribution. The second idea is to
note that when the target is moving at a high velocity, it gets Lorentz-contracted
such that the gluon field density µ2 is very high, µ2 ≫ Λ2

QCD. This means that one
is generally in the weak-coupling region αs(µ

2) ≪ 1 which allows us to treat the
gluons as classical color fields. This is the basic starting point in the McLerran–
Venugopalan model for high-energy scattering [50–52]. We can then model the target
as a color field Acl that is solved from the classical Yang-Mills equation

[Dµ, F
µν
cl ] = Jν (3.1)

whereDµ = ∂µ−igAcl
µ is the covariant derivative, F µν

cl = [Dµ, Dν ] is the field strength
tensor and Jν(x) is the color current. As the target is moving in the minus direction
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with a large momentum, we can model the current as

Jν(x) = δ−νρ(x+,x) (3.2)

so that only the minus component of the current is relevant. Here ρ(x+,x) =

taρa(x+,x) is the color charge density of the target, and the high-energy limit ensures
that it is independent of the coordinate x− and sharply peaked for the time of the
interaction in x+. These assumptions allow us to solve the field Aµ

cl from Eq. (3.1),
with the solution

∇2A−cl(x
+,x) = −ρ(x+,x)

A+
cl(x

+,x) = Ai
cl(x

+,x) = 0
(3.3)

in the light-cone gauge A+ = 0. We note that this solution is not unique as there is
still some gauge freedom left. Often it is more convenient to write a solution such
that only the more physical transverse components of the gluon field remain, as the
minus component A− is not actually a dynamical field but a boundary condition for
the gluon field [51]. However, for the purpose of this section it is simpler to work
with the solution in Eq. (3.3).

The solution (3.3) for the target color field allows us to calculate the interaction
with the target. This is done with the equations of motion in the background field
Acl. For a quark field ψ this is given by

(i /D −m)ψ = 0. (3.4)

Note that the high-energy limit guarantees that during the interaction with the
target the coordinates (x−,x) are roughly constant, and we are only interested in
the change in the plus direction. Neglecting the other derivative terms and also the
mass of the quark, this leads to the equation

γ+∂+ψ = igA−clγ
+ψ. (3.5)

The solution for this equation is given in terms of a Wilson line

ψ(x+f ,x) = V (x+f , x
+
i ,x)ψ(x

+
i ,x), (3.6)

V (x+f , x
+
i ,x) = P exp

(
ig

∫ x+
f

x+
i

dy+Aa−
cl (y

+,x)ta

)
(3.7)

where P denotes path-ordering for the integral and ta are the color matrices in the
fundamental representation. Similarly, for conjugate fields ψ one gets the Hermitean
conjugate V †(x+f , x

+
i x), and for gluon fields an adjoint Wilson line

U(x+f , x
+
i ,x) = P exp

(
ig

∫ x+
f

x+
i

dy+Aa−
cl (y

+,x)T a

)
(3.8)

where the color matrices T a are now in the adjoint representation.
The connection to the dipole amplitude is that the eikonal interaction between

a quark-antiquark pair and the target is given in terms of the Wilson lines as
〈
qa(x

+
f ,x

′
0)q̄b(x

+
f ,x

′
1)
∣∣ŜA

∣∣qc(x+i ,x0)q̄d(x
+
i ,x1)

〉

= δ2(x′0 − x0)δ
2(x′1 − x1)Vac(x

+
f , x

+
i ,x0)V

†
db(x

+
f , x

+
i ,x1)

(3.9)
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where the subscripts refer to the color indices of the particles. This means that the
particles only get color-rotated during the interaction with the target. In diffractive
scattering the initial and final states are color singlets, so that in total the expression
for the dipole amplitude leads to

δab√
Nc

δcd√
Nc

⟨qa(x′0)q̄b(x′1)|1− ŜA|qc(x0)q̄d(x1)⟩

= δ2(x0 − x′0)δ
2(x1 − x′1)

{
1− 1

Nc

Tr
[
V (x0)V

†(x1)
]}

.

(3.10)

Here we have also taken x+f → +∞, x+i → −∞ as the dependence of the Wilson
lines on the light-cone times x+f , x+i is very slow, arising from the fact that A−cl(x

+)

is highly suppressed for times x+ ̸= 0. A similar equation can be derived for any
Fock state interacting with the target.

Using Eq. (3.10) still requires that we know the target color density ρ to solve
for the field Acl. This is, however, a nonperturbative quantity and needs to be
modeled. One very successful model is the Gaussian approximation [50–52] which
assumes that the target is a linear combination of all possible color configurations
with a Gaussian weight. This corresponds to taking an average of expressions like
Eq. (3.10) with
〈
1− 1

Nc

Tr
[
V (x0)V

†(x1)
]〉

=

∫
DρW [ρ]

{
1− 1

Nc

Tr
[
V (x0)V

†(x1)
]}

(3.11)

where
W [ρ] = exp

(
−
∫ ∞

−∞
dx+

∫
d2x

Tr[ρ(x+,x)2]

µ2(x+,x)

)
(3.12)

is the weight for the color density ρ, and µ2 is the average color charge squared
per unit volume in dx+ d2x and unit color. The motivation for such a model is the
central limit theorem which states that averages from probability distributions with
a finite variance tend to a Gaussian distribution. It is also useful to note that the
Gaussian approximation leads to the following correlator for the color densities ρ:

⟨ρa(x+,x)ρb(y+,y)⟩ = δabµ2(x+,x)δ(x+ − y+)δ2(x− y). (3.13)

This states that the color densities at different light-cone times and transverse coor-
dinates are not correlated, which is a natural assumption if one considers the target
as a collection of point-like color charges.

With the Gaussian approximation Eq. (3.12), the path integral in Eq. (3.11)
can be evaluated to give the dipole amplitude an expression in terms of the density
µ2(x+,x). Assuming that the density µ2(x+,x) varies very slowly in terms of the
transverse coordinate x, this can be written as [53]

N01 ≡
〈
1− 1

Nc

Tr
[
V (x0)V

†(x1)
]〉

≈ 1− exp

(
−x2

01Q
2
s

4
ln

1

Λ2x2
01

)
. (3.14)

Here Λ is an infrared regulator and Q2
s = αsCF

∫
dx+ µ2(x+,b′) is the so-called

saturation scale. The variable b′ = 1
2
(x0 + x1) is the average of the quark and
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antiquark coordinates, and hence the saturation scale depends on the transverse
density profile of the target. This also means that the saturation scale is enhanced
by the mass number of the target, as the density has only a slight dependence on
the mass number but the radius behaves like R ∼ A1/3. This suggests that the
saturation scale is enhanced by Q2

s ∼ A1/3 for heavy nuclei.
Several things can be noted from the form of the dipole amplitude (3.14). For

small dipole sizes x2
01 the dipole amplitude behaves like N01 ≈ 1

4
x2
01Q

2
s , but for large

dipoles the saturation scale tames the growth to the black-disk limit N01 → 1. This
behavior is important for the unitarity of the process: if the black-disk limit were
violated, the unitarity of the S-matrix would be broken [53]. It is also useful to
note that the dipole amplitude from the MV model satisfies the form of the eikonal
approximation in Eq. (2.41): it depends only on the transverse coordinates and color
indices of the scattering particles, and the mixed-space coordinates (xi, zi) and the
helicities are conserved in the interaction.

3.2 High-energy evolution of the dipole amplitude

So far, the dependence on the center-of-mass energy W 2 has actually dropped out
of Eqs. (2.43) and (2.46). This is a little bit puzzling, as generally cross sections
tend to increase with energy. It turns out that indeed the dipole amplitude should
have an energy dependence, and this will be important for higher-order equations
to be finite. This energy dependence is related to the larger phase space available
for gluon emission. This can be seen explicitly in next-to-leading order calculations
where the emission of slow gluons with zg ≪ 1 starts to dominate. Resumming
these gluon emissions leads to the JIMWLK equation for the energy dependence of
the dipole amplitude.

The JIMWLK equation can be derived by considering the weight W [ρ] of the
target’s color configuration at some rapidity Y which is related to the energy of the
system, W 2 ∼ eY . Considering then a Fock state n interacting with the target, we
can write the interaction using Eq. (3.11) as

⟨Ô⟩ =
∫

DρW [ρ]O[ρ] (3.15)

where the operator Ô consists of the Wilson lines for the interacting Fock state
n. The Fock state n may emit gluons with a momentum fraction zg. It turns out
that the gluon emission is enhanced by 1/zg for gluons with a small momentum
fraction, with the integral over zg diverging at zg → 0. However, at small zg the
assumptions for the validity of the eikonal approximation break down as at some
point the invariant mass of this n+ g state becomes comparable with the energy:

M2
n+g ≈

k2
g

zg
≳ W 2. (3.16)

We should then limit the zg-integral by some cut-off zmin ∼ 1/W 2 ∼ e−Y so that we
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Y + δY − Y

= + + + +

+ + + +

+ + + + +

FIGURE 3.1 JIMWLK equation for a quark-antiquark dipole shown schematically in
terms of the Feynman diagrams involving a slow gluon with zg ≪ 1. Here
Y + δY and Y refer to the rapidity at which the target probed.

are only working in a region where the eikonal approximation is valid. The idea is
that the slow gluons with zg < zmin are then defined as a part of the target.

Demanding that the physical cross sections do not depend on the exact value
of the cut-off zmin means that the weight W [ρ] has to have a dependence on the
cut-off and thus also on the rapidity Y . This rapidity dependence can be calculated
perturbatively by considering the difference between W [ρ] at rapidities Y and Y +δY

where δY is small. For a quark-antiquark pair this then leads to an equation like
shown in Fig. 3.1, but this can be generalized to more general Fock states. Taking
δY → 0 one ends up with the JIMWLK equation [29–35]

∂YWY [α] = −HJIMWLKWY [α] (3.17)

where the color field has been written in terms of ∂2α = ρ. The JIMWLK Hamilto-
nian HJIMWLK is defined as

HJIMWLK = −αs

2

∫
d2x d2y

∂

∂αa(x)
ηabxy

∂

∂αb(y)
(3.18)

where

ηabxy =
4

g2π2

∫
d2zK(x,y, z)

[(
1− U(z)U †(x)

)(
1− U(y)U †(z)

)]ab (3.19)

and U is the adjoint Wilson lines from Eq. (3.8). The kernel K in ηabxy can be written
as

K(x,y, z) =
(z− x) · (z− y)

(z− x)2(z− y)2
(3.20)
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and it is related to the probability of an emission of a gluon with a coordinate z

from a color dipole with coordinates x and y. Rapidity evolution for the expectation
value of the operator Ô can then be written as

∂Y ⟨Ô⟩ = −
〈
HJIMWLKÔ

〉
(3.21)

which follows from the hermiticity of HJIMWLK.
An important special case of Eq. (3.21) is the case of a quark-antiquark dipole

scattering off the target, which corresponds to

Ô = Ŝ01 =
1

Nc

Tr
[
V (x0)V

†(x1)
]
. (3.22)

The JIMWLK equation (3.21) in this case reads

∂Y ⟨Ŝ01⟩ =
αsCF

π2

∫
d2x2

x2
10

x2
20x

2
21

〈
Ŝ012 − Ŝ01

〉
(3.23)

where
Ŝ012 =

1

NcCF

Tr
[
V (x0)t

aV †(x1)t
b
]
[U(x2)]

ba (3.24)

is the Wilson line operator for a qq̄g Fock state. Using Fierz identities for the Wilson
lines it is possible to write this as

Ŝ012 =
Nc

2CF

(
Ŝ02Ŝ12 −

1

N2
c

Ŝ01

)
(3.25)

so that Eq. (3.23) becomes

∂Y ⟨Ŝ01⟩ =
αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

〈
Ŝ02Ŝ12 − Ŝ01

〉
. (3.26)

This differential equation alone does not form a closed system as one then needs
to know how the product of two dipole operators ⟨ŜŜ⟩ evolves. This can also be
calculated using the JIMWLK equation, but its evolution equation will then contain
operators with even more Wilson lines. This leads to an infinite system of coupled
differential equations called the Balitsky hierarchy [27]. In practice, this infinite
set of differential equations has to be truncated at some point. One way to do
this is to use the Gaussian approximation (3.12) for the distribution of the target
color field configurations, which allows higher-order Wilson line operators to be
written in terms of the dipole operator [54]. Another way is to use the mean-field
approximation ⟨ŜŜ⟩ ≈ ⟨Ŝ⟩⟨Ŝ⟩, which is valid for example in the large-Nc limit.
Using the mean-field approximation to Eq. (3.26) leads to

∂Y ⟨Ŝ01⟩ =
αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

(
⟨Ŝ02⟩⟨Ŝ12⟩ − ⟨Ŝ01⟩

)
(3.27)

which is the famous BK equation [27, 28]. It is the differential equation for the
rapidity evolution of the dipole amplitude N01 = 1− ⟨Ŝ01⟩. No analytical solutions
of the BK exist because of its nonlinear nature, but it can be solved numerically if
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FIGURE 3.2 The BK-evolved dipole amplitude for different values of the rapidity Y as
a function of the dipole size rT , with the MV model (3.14) as the initial
condition. Rapidity increases from right to left. Figure from Ref. [56].
Reprinted with permission from H. Mäntysaari.

the dipole amplitude at some initial rapidity Y0,BK is given. While the JIMWLK
equation (3.26) is formally the correct evolution equation for the dipole amplitude,
usually the simpler BK equation (3.27) is used in numerical calculations. This is
because the differences between the JIMWLK and BK equations are numerically
small, much less than the simple estimate 1/N2

c ≈ 10% from the large-Nc approxi-
mation [54, 55].

The BK equation depends on both the dipole sizes xij and the impact param-
eter b′ = 1

2
(xi + xj). This impact parameter dependence of the BK equation is

problematic as it makes the evolution very sensitive to the infrared region, which
has to be remedied by including confinement effects [57–60]. For this reason, one
usually neglects the impact parameter dependence in the BK evolution such that
the dipole amplitudes Nij = 1 − ⟨Ŝij⟩ are evaluated at the same impact parameter
and only the dependence on the dipole sizes remains. While this assumption should
be valid for heavy nuclei where the color density varies only slowly in b′, for protons
this is less justified. However, for the time being it is not known how to implement
the impact parameter dependence of the evolution rigorously and thus it is neglected
for the dipole amplitudes considered in this thesis.

The nonlinearity of the BK equation (3.27) is crucial: without nonlinear effects
it reduces to the BFKL equation. The nonlinear effects ensure that, with the fixed
impact parameter, the black-disk limit N01 ≤ 1 is satisfied which is important for
the unitarity of the S-matrix. In Fig. 3.2, we show how the BK evolution changes
the dipole amplitude: essentially, the dipole amplitude increases in rapidity, and for
large dipole sizes x01 it saturates to one. This saturation region of the target has
gained the name color-glass condensate, and it is a prediction of the BK equation
that it will be eventually reached at sufficiently high energies. However, direct
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evidence of saturation has not been found at the energies available at the current
experimental facilities. It is expected that the enhancement of saturation effects in
heavy nuclei will allow us to probe the saturation region in the future [10]. The
general framework of treating the target as a mixture of classical color fields that
evolve with the JIMWLK equation (3.17) is usually referred to as the color-glass
condensate effective field theory, and this is very commonly used for calculations in
the dipole picture.

3.3 Numerical fits for the dipole amplitude

For an actual calculation in the dipole picture, one needs a specific model for the
dipole amplitude N01 = 1 − S01 that is suitable for numerics. The general way to
do this is to take some simple model for the dipole amplitude with free parameters
that are fitted to the data.

Several models exist in the literature, some of which are more physically mo-
tivated than others. One of the first models used for the dipole amplitude is the
Golec-Biernat–Wüsthoff model [61, 62]

S01(r, Y = log 1/x) = σ0 exp

(
−(r× 1GeV)2

4

(x0
x

)λ/2
)

(3.28)

which has been integrated over the impact parameter b′, and the constants σ0, x0
and λ are free parameters. This is purely a phenomenological model inspired by
saturation and geometric scaling at HERA, but it is quite successful in describing
the data [61, 62]. It essentially introduces the energy dependence of the saturation
scale Q2

s ∼
(
x0

x

)λ/2 as a power, which for small dipoles matches the power-like
energy dependence of the cross section in the region where saturation effects are not
relevant.

Another widely used model is the impact parameter saturation (IPsat)
model [47, 63]

S01(r,b
′, Y = ln 1/x) = exp

(
− π

2Nc

r2αs(µ
2)xg(x, µ2)T (b′)

)
(3.29)

which depends on the gluon parton distribution function (PDF) xg(x, µ2) and the
transverse profile of the target T (b′). The form of the gluon PDF is fitted to
the data, and it satisfies the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
evolution [64–66] for the dependence on the factorization scale µ2 ∼ 1/r2. This
model relates the dipole amplitude directly to the gluon PDF, motivated by the
idea of the interaction as a two-gluon exchange in Fig. 2.2. However, it is not
clear how the dipole amplitude and the gluon PDF are related exactly beyond this
leading-order picture.

A drawback of the two models mentioned above is that they do not satisfy
the correct high-energy evolution given by the JIMWLK or BK equations. A more
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FIGURE 3.3 Inclusive deep inelastic scattering. The final states X are summed over.

physically motivated model is to fit the initial condition of the dipole amplitude to
the data at some initial rapidity Y0,BK and then evolve the dipole amplitude to higher
rapidities [67–69]. This “initial condition fit + rapidity evolution” is also the only
one of these models that can be consistently used at NLO calculations where the
large logarithms of the BK equation start to appear, and therefore we will mainly
focus on this model in this thesis. It is interesting to note that the IPsat model is
essentially orthogonal to this approach: there the dependence on the Bjorken x, and
thus energy, is fitted to the data and the dependence on the dipole sizes is predicted
by the DGLAP evolution. The BK-evolved approach instead fits the dependence on
the dipole sizes at the initial rapidity to the data, and the dependence on the energy
is then a prediction from the BK evolution.

All of these models have some freedom in the parametrization of the dipole
amplitude. This freedom has to be constrained by the data, which is usually done
by fitting the parameters to the HERA structure function data [70–73] because of its
high precision. The high-energy factorization then guarantees that this same dipole
amplitude can be used also in other calculations. Because the fitting procedure to
the structure function data is so important for numerical calculations, we will briefly
consider how the structure functions can be calculated in the dipole picture.

3.3.1 Inclusive deep inelastic scattering

In inclusive DIS we allow any final state in the γ∗ +A process as shown in Fig. 3.3.
This can be calculated in the dipole picture using the framework we have presented
in Sec. 2, and the optical theorem allows us to relate the inclusive cross section to
the forward elastic scattering amplitude as

σγ∗A = 2 ImMγ∗A→γ∗A (3.30)

with the scattering amplitude given by Eq. (2.43). This process is very inviting for
measuring the dipole amplitude as everything else in the process is fully perturbative,
and as an inclusive process the corresponding cross section is very large.



28

The cross section for inclusive DIS can be divided into longitudinal and trans-
verse productions based on the photon polarization. These are, however, not directly
measurable as the photon polarization itself is not observable. Instead, it is more
useful to define the structure functions

Fλ(x,Q
2) =

Q2

4π2αem

σγ∗
λA, (3.31)

F2(x,Q
2) = FL(x,Q

2) + FT (x,Q
2), (3.32)

which allow us to define the experimentally measured reduced cross section

σr(y, x,Q
2) = F2(x,Q

2)− y2

1 + (1− y)2
FL(x,Q

2). (3.33)

The reduced cross section depends on the photon virtuality Q2, the Bjorken x (2.6),
and the inelasticity y defined as

y =
2Pn · q
2Pn · k

=
W 2 +Q2 −m2

n

s−m2
e −m2

n

≈ W 2 +Q2

s
(3.34)

where s is the center-of-mass energy of the lepton-nucleus system and the momenta
are shown in Fig. 3.3. The structure functions only depend on the Bjorken x and
the photon virtuality Q2 but not on the inelasticity y. In principle, the structure
functions F2 and FL could be determined from the reduced cross section by measur-
ing it for different lepton-nucleus energies s and thus for different inelasticities y. In
practice, this leads to less accurate data [74] and thus it is easier to simply calculate
the reduced cross section from the structure functions for data comparisons.

3.3.2 Initial condition for the numerical fit

The BK equation needs a nonperturbative initial condition for the rapidity evolution.
A common ansatz is the MV model in Eq. (3.14) which has a physical motivation
for the general form of the dipole. This initial condition at Y = Y0,BK is often
generalized to

S01(r,b
′, Y0,BK) = exp

[
−1

4

(
r2Q2

s,0(b
′)
)γ

ln

(
1

|r|ΛQCD

+ e

)]
(3.35)

where the anomalous dimension γ is also introduced. The MV model predicts γ = 1

but in actual fits it may be taken as a parameter of the initial condition fitted to the
data. This form is still quite general, and for the fits one needs to specify some form
for the impact parameter dependence of the saturation scale Q2

s,0(b
′). The dipole

amplitude is usually fitted to the structure function data which only depends on the
impact-parameter integrated dipole amplitude, and then the simplest assumption is
to consider the integration as an overall factor to the dipole amplitude,

∫
d2b′ S01(r,b

′, Y ) =
σ0
2
S01(r, Y ), (3.36)
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which corresponds to assuming that the impact parameter dependence is given by
a step function

Q2
s,0(b

′) = θ(R− |b′|)Q2
s,0 (3.37)

where R is the transverse radius of the target. With such a model, there are then
three constants to fit for the initial condition: the anomalous dimensions γ, the
saturation scale at the initial rapidity Q2

s,0, and the target transverse area σ0/2.
Such models (with some modifications) have been widely used to fit the dipole

amplitude. For proton targets, there exist several fits for these parameters at LO [67–
69] and also at NLO [75] by fitting the initial condition to the HERA structure
function data. At LO, however, these fits suffer from the fact that it is not possible
to describe simultaneously massless and massive quark production with the same
parameters when using the BK equation to describe the target’s evolution in en-
ergy [68]. It is not physical for the dipole amplitude to depend on the quark masses
as they should be negligible in the high-energy interaction with the target, and thus
one would expect that the massless and massive structure functions are given by
the same dipole amplitude. This is one of the other reasons why it is important to
go beyond the leading order in the dipole picture to check if this problem persists
at higher orders. Indeed, the situation at NLO is already quite different as will be
discussed in Sec. 3.3.4.

3.3.3 NLO fit with the massless structure function data

At the time of writing this thesis, the only dipole amplitude fits done at the full NLO
are the ones in Ref. [75] which have been fitted to the HERA inclusive DIS data [70,
72] using NLO equations for the structure functions (3.31) with massless quarks.
For this reason, these are the dipole amplitudes also used in Articles [II, III, IV]
when predicting exclusive vector meson production from protons at NLO. There is
some more freedom in the fitting procedure at NLO compared to the leading order,
and as such we will go through the most important details of the fits in order to
clarify the differences between them.

1. Two different data sets were used for the fitting. The first is the full HERA
data set, and the second one is pseudodata consisting only of the light-quark
contribution where the massive quark contribution was subtracted from the full
HERA data using a prediction with the IPsat parametrization from Ref. [76].
The light-quark pseudodata is physically better motivated as the calculation
of the structure functions in Ref. [75] uses only light quarks.

2. Three different versions of the BK evolution are used for the energy evolu-
tion of the dipole amplitude. These are called kinematically constrained BK
(KCBK) [77], resummed BK (ResumBK) [78, 79], and target rapidity BK
(TBK) [80]. The main reason for the different forms of the BK evolution is
that they are different approximations of the full NLO BK evolution. To be
completely consistent with the perturbation theory one should use the NLO
BK equation in the NLO calculation, but because of its numerical complexity
this is not really feasible in an already demanding numerical fit. The three
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different BK evolutions used give in general a good approximation for the NLO
BK equation [81]. In KCBK, a kinematical constraint is introduced that forces
an explicit time ordering between subsequent gluon emissions. In ResumBK,
large single and double transverse logarithms that occur at higher orders are
resummed into the kernel of the BK equation. In TBK, one uses the target
rapidity instead of the projectile rapidity in the evolution. The target rapidity
is calculated from the projectile rapidity Y with the transformation

η = Y −max

{
0, ln

(
1

r2Q2
0

)}
(3.38)

where Q2
0 ≡ 1GeV2 is the transverse scale of the target that is used to regulate

large dipole sizes.

3. Two different schemes for the running of the coupling constant αs are used. In
both cases the dependence on the dipole size is given by

αs(r
2) =

4π

β0 ln

[(
µ2
0

Λ2
QCD

)1/c
+
(

4C2

r2Λ2
QCD

)1/c]c (3.39)

where β0 = (11Nc − 2NF )/3, NF = 3 and ΛQCD = 0.241GeV. The constants
µ0 = 2.5ΛQCD and c = 0.2 regulate the running of the coupling in the infrared
region. The constant C2 is a free parameter determined from the fit and it
controls how coordinate scales are related to momentum scales. From Fourier
analysis its predicted value is C2 = e−2γE [82], but keeping it as a free param-
eter allows for absorbing some nonperturbative or higher-order contributions.
The two different schemes for the running of the coupling are then related to
what dipole sizes r are used in the coupling constant (3.39) for the qq̄g state.
In the parent dipole scheme the choice is r2 = x2

01 which corresponds to the
transverse size of the quark-antiquark dipole. The other scheme is called Balit-
sky+smallest dipole, and in this scheme one uses the Balitsky prescription [83]
for the running of the coupling when evolving the dipole amplitude. For the
impact factor the smallest dipole r2 = min{x2

01,x
2
20,x

2
21} is used instead. The

reason for this is that it is not clear how to use the Balitsky prescription in gen-
eral kinematics, and the smallest dipole can be thought of as an approximation
of the Balitsky prescription.

4. Two different starting points for the BK evolution of the dipole amplitude are
used, namely Y0,BK = 0 and Y0,BK = ln 1/0.01. The later starting point for the
BK evolution, Y0,BK = ln 1/0.01, is typically more used in fitting the dipole
amplitude as it is not clear if the assumptions for deriving the MV model or
the BK evolution are valid for larger values of x (and hence smaller values of
Y ).

These different setups have four free parameters. Three of them are related
to the MV model: the saturation scale at the initial rapidity Q2

s,0, the anomalous
dimension γ, and the transverse area of the proton σ0/2. The final fit parameter
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is the constant C2 controlling the running of the coupling constant. With this
fitting procedure, one finds a set of these parameters for each of the different setups,
resulting in 2× 2× 3× 2 = 24 different fits. All of these fits describe the structure
function data used in the fit extremely well, and as such one cannot distinguish
between the fits based on this data alone. This changes, however, when one also
takes into account the massive quark structure function data.

3.3.4 Structure functions with massive quarks at NLO

With the expressions for the massive quark structure functions at NLO now avail-
able [84–86], we can study how including the quark mass affects predictions for
structure functions at NLO. It is especially important to see if both the total and
charm production cross sections can be described by the same dipole amplitude,
which was not possible at leading order if the evolution of the dipole amplitude is
given by the BK equation [68]. This was the main motivation for Article [V] where
the massive quark structure functions were calculated at NLO using the dipole am-
plitude fits described in Sec. 3.3.3.

Some words should be said about the numerical evaluation of the massive quark
structure functions as the NLO equations including the quark mass are numerically
quite demanding. They involve multi-dimensional integrals with a high number
of dimensions, and getting these integrals to converge with a reasonable amount of
integration points is quite tricky. To do this one has to be especially careful with the
cancellation of possible numerical singularities. For example, numerical integration
of the generalized Bessel functions

G(a;b)
(x) =

∫ ∞

0

du

ua
exp

(
−u
[
Q

2

(x) +m2
]
− |x3;(x)|2

4u

)

×
∫ u/ω(x)

0

dt

tb
exp

(
−tω(x)λ(x)m

2 − |x2;(x)|2
4t

) (3.40)

introduced in Refs. [84–86] is demanding in the limit
∣∣x2;(x)

∣∣2 → 0, as the t-integral
develops a singularity at t → 0 if

∣∣x2;(x)
∣∣2 = 0. This problem is not severe if b = 1,

as then the divergence is only logarithmic, but the power-like divergence in the
case b = 2 leads to numerical instabilities. The convergence can be improved by
subtracting the singular part in such a way that the remaining integral can be done
analytically. A suitable subtraction is using the limit λ(x) → 0 as then the integrand
has the same behavior at t→ 0, and we can calculate the integral analytically:

G(a;2)
(x) (λ(x) → 0) =

22+a

|x2;(x)|2

(
Q

2

(x) +m2

|x3;(x)|2 + ω(x)|x2;(x)|2

)a−1
2

×Ka−1

(√(
Q

2

(x) +m2
) (

|x3;(x)|2 + ω(x)|x2;(x)|2
)
)
.

(3.41)

Such a subtraction leads to a much better convergence of the integrals which is
crucial for a numerical implementation of the structure functions. Additionally, one
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# Data BK
equation

αs Y0,BK
mc

[GeV]
χ2
c/N

mb

[GeV]
χ2
b/N χ2

tot/N

1 Light-q ResumBK PD 0 1.42 1.86 4.83 1.37 1.25
2 Light-q KCBK PD 0 1.49 2.55 4.96 1.58 1.23
3 Light-q TBK BSD 0 1.29 1.02 5.04 1.12 1.83

TABLE 3.1 Dipole amplitude fits from Ref. [75] that were found to be compatible with
the massive quark structure function data from HERA. Here “light-q” refers
to only using the light-quark pseudodata to fit the dipole amplitudes, and
“PD” and “BSD” are the parent dipole and Balitsky+smallest dipole running
coupling schemes for αs. The optimal masses for the charm and bottom
quarks are shown along with the χ2/N values obtained with the optimal
mass for the corresponding heavy quark production data. The values χ2

tot/N

refer to the total structure functions which contain both the light and heavy
quarks. Table from Article [V].

can reduce the integration dimension by noting that with the change of variables
t→ y = tω(x)/u the u-integral can be done analytically, leading to the expression

G(a;b)
(x) =

∫ 1

0

dy

y
1
2
(2−a+b)

2a+b−1ωb−1
(x)

(
yλ(x)m

2 +Q
2

(x) +m2

y|x3;(x)|2 + ω(x)|x2;(x)|2

) 1
2
(a+b−2)

×Ka+b−2

(√
1

y

(
yλ(x)m2 +Q

2

(x) +m2
) (
y|x3;(x)|2 + ω(x)|x2;(x)|2

))
.

(3.42)

The subtraction in the numerical implementation is then done by subtracting
Eq. (3.42) for b = 2 at the integral level, and adding the integrated result Eq. (3.41)
to the rest of the calculation where the additional t- and u-integrals are not present.

Even after this, the remaining expressions are still numerically demanding.
For this reason, instead of trying to perform fits to the charm data and inclusive
data with quark masses included it was more feasible to first see if the fits to the
massless quark structure function data can also be used to describe the massive data.
This was the motivation for Article [V] where we calculated the total and charm
quark structure functions at NLO with the NLO dipole amplitude fits described in
Sec. 3.3.3. Out of the 24 fits only three were found to be compatible with both the
charm quark and inclusive reduced cross section data from HERA [70, 72, 73], listed
in Table 3.1. Results were also compared to the bottom quark production data from
HERA [73] but due to the large data uncertainties this does not provide further
constraints for the fits. The masses of the charm and bottom quarks were allowed
to vary within reasonable limits, and the χ2/N values are listed for the optimal
mass. Results with these three dipole amplitude fits are shown in Fig. 3.4 where a
good agreement with the data is found. It should be emphasized that, apart from
varying the charm quark mass, these dipole amplitudes are not fitted to the charm
quark data and thus these are genuine predictions using the previously obtained
dipole amplitude fits.

Some comments can be made about these three fits. First, they have all been
fitted to the light-quark pseudodata. This is expected as in the fitting procedure
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FIGURE 3.4 Reduced cross section with massive quarks using the three dipole amplitude
fits found to be compatible with the HERA data [70–73]. The reduced cross
sections are plotted as a function of Bjorken x for various values of the
photon virtuality. Note that the jumps in the lines for the total reduced
cross section are not a result of numerical uncertainty, but rather they are a
consequence of depicting points for different values of inelasticity y. Figures
from Article [V], reproduced under the license CC BY 4.0.

only the massless quark structure functions were calculated, and thus fitting to the
total reduced cross section which also includes the heavy quark contribution would
overestimate the results. Second, these fits start the BK evolution at the earlier
rapidity Y0,BK = 0. This can also be understood from the fitting procedure, as
for both values of the initial rapidity Y0,BK the dipole amplitude in the structure
function is calculated down to the factorization rapidity Y0,if = 0, and the evolution
of the dipole amplitude is frozen for values Y0,if < Y < Y0,BK. This is not entirely
consistent as it leads to double counting in the rapidity region Y0,if < Y < Y0,BK.
The contribution from this region, however, should be small, but it is important to
remember that this procedure leads to a slight overestimation of the cross section.
It would be more consistent to set Y0,if = Y0,BK in which case no such ambiguity
arrives.

The charm quark data seems to naturally disqualify the fits that are not con-
sistent based on these two conditions. We are then still left with 6 = 3 × 2 fits
with three different forms for the BK evolution and two different running coupling
schemes. It is interesting to note that of these six fits only three are compatible with
the charm quark production data, and these three fits all correspond to the different
BK evolutions. Also, both of the running coupling schemes are present in this set
of fits, with different BK evolutions seeming to prefer different schemes. While we
do not have a clear reason for the different schemes preferred, we note that massive
quark production data probes the dipole amplitude more in the perturbative region
r2Λ2

QCD ≪ 1 compared to the light quark production. This explains why the heavy
quark data provides more constraints for the dipole amplitude.

These fits show that it is possible to describe both inclusive and charm pro-
duction data simultaneously with the same dipole amplitudes at NLO even when
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(a) HERA kinematics.
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FIGURE 3.5 Longitudinal structure function FL as a function of the photon virtuality
Q2 using the three dipole amplitude fits found to be compatible with the
HERA data [70–73].
Left: Comparison to the HERA data [74]. The different values of Bjorken
x for the data points are shown.
Right: Predictions for the EIC with a constant Bjorken x. The inclusive
case is shown along with the charm and bottom quark structure functions
multiplied by factors of 2 and 30 for visibility. Figure from Article [V],
reproduced under the license CC BY 4.0.

using a BK evolution for the energy dependence of the dipole amplitude. This is not
possible at leading order [68], even with an approximative NLO BK evolution [87],
showing the importance of the full NLO calculation including the mass effects also
in the impact factor. The NLO corrections modify both the evolution of the dipole
amplitude and the mass dependence of the impact factor in such a way that to-
gether these effects allow for a precise description of both the charm quark and
inclusive production data simultaneously. This is important for the consistency of
calculations in the dipole picture, as the dipole amplitude should be universal and
independent of the quark mass in the high-energy limit.

With just the charm and inclusive reduced cross section data it is not possible
to distinguish between the three remaining fits, and thus data comparisons for other
processes are required to show differences between the fits. For example, while the
longitudinal structure function FL is not completely independent from the reduced
cross section, it is generally more sensitive to the saturation region and can therefore
give additional constraints for the dipole amplitude. As shown in Fig. 3.5, the
current HERA data [74] for FL is not enough to show differences between the three
dipole amplitude fits, but in the EIC kinematics Fit 3 with the TBK evolution leads
to different predictions. Diffractive processes are also more sensitive to the nuclear
structure, and hence they are good candidates for a more precise determination of the
dipole amplitude. In the future, one should do a global fit for the dipole amplitude
using all of the available data for different processes to determine precisely the fit
parameters with uncertainty estimates. In addition to the proton dipole amplitude,
it would be interesting to fit also the nuclear dipole amplitude directly to the data,
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which is not possible with the HERA data that is only for proton targets. With the
EIC data in the future it will be possible to fit the dipole amplitude for heavy nuclei
independently from protons [10].





4 EXCLUSIVE VECTOR MESON
PRODUCTION

In an exclusive scattering process all of the produced particles are measured, and in
a photon-nucleus scattering this means that the photon is essentially transformed
into the produced particles. For single-particle final states, most likely particles
produced in this way are vector mesons as they have the same quantum numbers
JPC = 1−− as the photon, corresponding to a pomeron exchange in the terminology
of the Regge theory. Exclusive vector meson production amounts to a significant
amount, about 10%, of all diffractive processes [12].

At leading order in the dipole picture, exclusive vector meson production can
be described by the Feynman diagram in Fig. 4.1, and the corresponding invariant
amplitude reads

iMλγλV
=

∫
d2x01 d

2b

∫ 1

0

dz0 dz1
(4π)2z0z1

(4π)δ(1− z0 − z1)

× e−ib·∆Ψ̃γ∗→qq̄
λγ

(x01, zi)
(
Ψ̃V→qq̄

λV
(x01, zi)

)∗ (
1− Ŝ01

) (4.1)

where the notations for the wave functions and the variables are explained in Sec. 2.4.
The dipole amplitude depends on the rapidity variable in the process according to
the JIMWLK equation in Sec. 3.2, and usually in the leading-order calculations the
rapidity is chosen as Y = ln(1/xP) where

xP =
q · (Pn − P ′n)

q · Pn

=
Q2 +M2

V − t

W 2 +Q2 −m2
n

(4.2)

is the momentum fraction carried by the pomeron in the high-energy limit, and the
momentum-transfer squared is given by t = (Pn − P ′n)

2 ≈ −∆2. Note that here the
impact parameter b = z0x0 + z1x1 is defined as the center-of-mass position in the
transverse plane, which is the Fourier conjugate of the momentum transfer ∆. In
the literature, it is common to write the amplitude in terms of the average of the
transverse coordinates, b′ = 1

2
(x0 + x1) = b +

(
1
2
− z0

)
x01, and assume that the

dipole amplitude N (x01,b
′) =

〈
1− Ŝ01

〉
does not depend on the angle between x01

and b′. This simplifies numerical calculations and was also done in Article [I].
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FIGURE 4.1 Exclusive vector meson production at leading order in the dipole picture.
The blue rectangle depicts the instantaneous interaction with the target.

Experimentally, exclusive vector meson production is a very clean event, as
the vector meson is the only particle produced. Then only the decay products of the
vector meson need to be measured, which can be done very accurately by measuring
the decay to a muon pair for example. For sufficiently high energies, xP ≲ 0.01, there
exists data from electron-proton collisions at HERA [88–93] and nuclear collisions
at LHC [7, 8, 94–98]. The HERA data has been measured for various different
center-of-mass energies W and photon virtualities Q2, providing accurate data for
both light and heavy vector mesons. At the LHC, the measurements have been done
in nucleus-nucleus collisions where one of the nuclei emits the photon. In practice,
measuring exclusive vector meson production in nuclear collisions requires a high
impact parameter between the nuclei, which renders the photons to be quasi-real
with a virtuality Q2 ≈ 01. This has consequences for the perturbativity of the
process, as the perturbative scale for exclusive vector meson production is given
by Q2 +M2

V . Thus, for light vector mesons one cannot expect the process to be
perturbative for small photon virtualities, whereas for heavy mesons the meson
mass provides a perturbative scale. This allows us to compute exclusive heavy
vector meson production also in the LHC kinematics, but for light vector mesons
we have only the HERA data to compare to. In the future, more data will be
expected to come from the future EIC where exclusive vector meson production
will be measured in electron-nucleus collisions [10, 99, 100]. This will also allow
measurements of production from heavy nuclei for non-zero photon virtualities.

In addition to measuring the dependence on the energy and the photon vir-
tuality, exclusive vector meson production also allows for the measurement of the
momentum transfer t = −∆2. Measuring the momentum transfer dependence gives
us information about the impact parameter dependence of the interaction with the
target, as is shown explicitly in Eq. (4.1) by the Fourier term e−ib·∆. Measuring
the momentum-transfer dependent cross section also allows us to consider coherent
and incoherent vector meson production separately. In the Good-Walker approach

1 Virtual photons have a lifetime ∼ 1/Q, which means that for impact parameters higher than
the nuclear radii only photons with Q2 ≈ 0 contribute.
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FIGURE 4.2 HERA data [93] for coherent and incoherent J/Ψ production with pre-
dictions from a CGC model. Note that including shape fluctuations (in
black solid line) is important for incoherent production as it measures tar-
get fluctuations. Figure from Ref. [102]: H. Mäntysaari, F. Salazar and
B. Schenke, Nuclear geometry at high energy from exclusive vector meson
production, Phys. Rev. D 106 (2022) no. 7 074019, DOI: 10.1103/Phys-
RevD.106.074019. Reproduced under the license CC BY 4.0.

to diffraction [101], these are defined as:

dσ

d|t| =
1

4π
⟨|M|2⟩ =

(
dσ

d|t|

)

coherent
+

(
dσ

d|t|

)

incoherent
(4.3)

(
dσ

d|t|

)

coherent
=

1

4π
|⟨M⟩|2 (4.4)

(
dσ

d|t|

)

incoherent
=

1

4π

(
⟨|M|2⟩ − |⟨M⟩|2

)
. (4.5)

Note that the factor 1/(4π) in Eq. (4.3) is a convention that depends on the defini-
tion of the amplitude, and a different convention was used in Articles [I, II, III, IV].
Here ⟨· · · ⟩ denotes the average over the target configurations described in Sec. 3.1,
and thus the difference between the coherent and the total cross section is in the final
configuration of the nucleus: total production allows any color neutral configuration
of the target, whereas in coherent production the final state is in the same configu-
ration as the initial state. Incoherent production then corresponds to a “variance”
of the amplitude and it measures fluctuations in the target configuration.

Coherent and incoherent production are relevant at different scales for the
momentum exchange t as shown in Fig. 4.2. In general, coherent production is
more important for low values of |t| where the data is also the most accurate. The
t-dependence of the coherent cross section has been experimentally found to be well
described by

dσ

d|t| ≈ e−beff|t|
dσ

d|t|(t = 0) (4.6)

https://doi.org/10.1103/PhysRevD.106.074019
https://doi.org/10.1103/PhysRevD.106.074019
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where beff is a parameter that should be fitted to the experimental data [88, 89,
92, 103]. It can be understood as the effective transverse area of the meson-target
system. This phenomenological model for the t-dependence of coherent production
allows one to estimate the t-integrated coherent cross section from the differential
cross section at t = 0, as was done in Articles [II, III, IV] to avoid additional
modeling for the impact parameter dependence of the dipole amplitude. Coherent
production also allows one to use the target-averaged dipole amplitude that also ap-
pears in inclusive DIS. For this reason, only the coherent production was considered
in Articles [I, II, III, IV].

Some notes should also be made about the difference in the dipole amplitude
used in exclusive vector meson production and inclusive DIS. First of all, also the
real part of the invariant amplitude (i.e. the imaginary part of the dipole amplitude)
contributes to exclusive vector meson production as opposed to inclusive DIS which
depends only on the imaginary part of the invariant amplitude (i.e. the real part of
the dipole amplitude) by the optical theorem. Thus, if one wishes to use the dipole
amplitude determined from inclusive DIS, one has to account for the real part of
the production amplitude by other means. This contribution can be estimated to
be small in the high-energy limit, and using Regge theory it is possible to write it
as [104, 105]

ReM = ImM× tan
(π
2
δ
)

(4.7)

where
δ =

∂

∂(1/xP)
ImM. (4.8)

Another difference between the dipole amplitude in exclusive vector meson
production and inclusive DIS is that the dipole amplitude may depend on the minus-
momentum exchange in the process. This means that when taking the average
⟨· · · ⟩ over the target configurations in exclusive vector meson production, the initial
state A and the final state A′ for the target have different momenta. This is in
contrast to inclusive DIS where using the optical theorem to calculate the cross
section corresponds to forward elastic scattering where the initial and final states
have exactly the same momenta. While the plus-momentum is conserved in the
interaction with the target, the transverse and minus components might differ for
vector meson production, with the transverse-momentum exchange t = −∆2 and
the minus-momentum exchange

P−n − P ′−n
P−n

≈ Q2 +M2
V − t

W 2 +Q2 −m2
n

= xP. (4.9)

While the t-dependence can be understood from the Fourier transform of the dipole
amplitude, ∫

d2b e−ib·∆N(x01,b), (4.10)

the minus-momentum exchange is more complicated. In terms of collinear factoriza-
tion, this non-zero minus-momentum exchange is related to the fact that structure
functions can be written in terms of the standard parton distribution functions
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while exclusive vector meson production requires generalized parton distributions
(GPDs) [106]. The difference coming from the minus-momentum exchange can be
estimated in certain limits using collinear factorization where it is related to the
skewness of the GPDs. In Ref. [107], the difference between maximally skewed
GPDs and standard PDFs was calculated, and assuming that the interaction be-
tween the quark-antiquark dipole and the target happens through an exchange of
two gluons one can estimate how this correction should appear in exclusive vec-
tor meson production. While this derivation of the skewness correction does not
directly apply to the dipole picture, this skewness correction is often included in
phenomenological data comparisons by multiplying the production amplitude by
the factor [47, 108]

Rg =
22δ+3

√
π

Γ
(
δ + 5

2

)

Γ(δ + 4)
. (4.11)

These corrections appear as a general overall factor that increases the cross sec-
tion. The real-part correction is generally smaller, less than 20%, but the skewness
correction can vary between 20% and 60% [109, 110]. The corrections also depend
on the energy W and the photon virtuality Q2, decreasing for higher energies and
lower photon virtualities, i.e. the corrections become numerically less important for
smaller xP. The real-part and skewness corrections were included for comparisons
with the data in Article [I] but were left out of Articles [II, III, IV] where the main
focus was on the calculation and not on data comparisons.

4.1 Vector meson wave function

The dependence on the produced vector meson is completely determined by the me-
son wave function. As a nonperturbative quantity, the vector meson wave function
is also a major source of theoretical uncertainty for the process. The uncertainty
can be somewhat reduced by considering symmetry relations for the meson wave
function. In equal-time quantization, one could use the SO(3) rotational symmetry
and spin-parity conservation to write the wave function for the qq̄ state in the rest
frame as

Ψλ
ss̄(r⃗) =

∑

LmLms

〈
1

2
s,
1

2
s̄

∣∣∣∣∣1ms

〉
⟨1ms, LmL|1λ⟩Y mL

L (Ωr)ϕ
L(|r⃗|) (4.12)

where ⟨· · · , · · · | · · · ⟩ are the Clebsch-Gordan coefficients, Y mL
L spherical harmonics,

Ωr is the angular part of the 3-vector r⃗ and ϕL is the radial part of the wave function
corresponding to the orbital angular momentum L. For vector mesons, the only
possible values for the orbital angular momentum are L = 0, 2 which correspond to
the S- and D-waves in the spectroscopic notation. In light-cone perturbation theory,
one cannot write the light-cone wave function in this form. This follows from the
fact that the SO(3) symmetry is broken by the light-cone quantization such that
only the SO(2) rotation symmetry of the transverse plane remains. This means that
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the total angular momentum is not explicitly conserved, but the magnetic quantum
numbers, λ, ms, mL, corresponding to the angular momentum in the transverse
plane are conserved. This can be used to factorize the dependence on the transverse
angle φ out of the wave function by

Ψλ
ss̄(r, z) = eiφmLϕλ

ss̄(|r|, z) (4.13)

where mL = λ − (s + s̄) is the orbital magnetic quantum number and ϕλ
ss̄(|r|, z) is

the part of the wave function that is independent of the transverse angle.
Parity is not a symmetry in light-cone perturbation theory as it requires also

changing the sign of the x3-axis, which corresponds to interchanging x+ ↔ x−.
Instead, one can consider the mirror parity defined as P̂x = R̂x(π)P̂ , where P̂ is the
standard parity operator and R̂x(ϕ) corresponds to a rotation around the x1-axis by
the angle ϕ. This definition of the mirror parity corresponds to changing the sign
of the x1-axis [49, 111].

To see how the mirror parity and C-parity act on a meson, consider an eigen-
state of the spin-parity JPC with a definite polarization λ. We can write this as

∣∣JPC , λ
〉
=

∫
d2x0 d

2x1

∫ 1

0

dz

z(1− z)

∑

ss̄

Ψλ
ss̄(x01, z) |qs(x0, z)q̄s̄(x1, 1− z)⟩ (4.14)

at leading order. Charge conjugation interchanges the quark and antiquark such
that

Ĉ
∣∣JPC , λ

〉
=

∫
d2x0 d

2x1

∫ 1

0

dz

z(1− z)

∑

ss̄

Ψλ
ss̄(x01, z) |q̄s(x0, z)qs̄(x1, 1− z)⟩

=−
∫

d2x0 d
2x1

∫ 1

0

dz

z(1− z)

∑

ss̄

Ψλ
s̄s(−x01, 1− z) |qs(x0, z)q̄s̄(x1, 1− z)⟩

=

∫
d2x0 d

2x1

∫ 1

0

dz

z(1− z)
(−1)1+mLΨλ

s̄s(x01, 1− z) |qs(x0, z)q̄s̄(x1, 1− z)⟩
(4.15)

which leads to the identity

CΨλ
ss̄(x01, z) = (−1)1+mLΨλ

s̄s(x01, 1− z). (4.16)

Similarly, for mirror parity we get

P̂x

∣∣JPC , λ
〉
=

∫
d2x0 d

2x1

∫ 1

0

dz

z(1− z)

∑

ss̄

Ψλ
ss̄(x01, z) |q−s(Pxx0, z)q̄−s̄(Pxx1, 1− z)⟩

=

∫
d2x0 d

2x1

∫ 1

0

dz

z(1− z)

∑

ss̄

Ψλ
−s,−s̄(Pxx01, z) |qs(x0, z)q̄s̄(x1, 1− z)⟩

=

∫
d2x0 d

2x1

∫ 1

0

dz

z(1− z)

×
∑

ss̄

(−1)mLe−2imLφΨλ
−s,−s̄(x01, z) |qs(x0, z)q̄s̄(x1, 1− z)⟩

(4.17)
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where Pxr corresponds to mirroring the vector r around the x2-axis so that its
x1-component is flipped. Noting that mirror parity acts as [111]

P̂x

∣∣JPC , λ
〉
= (−1)JP

∣∣JPC ,−λ
〉
, (4.18)

this leads to

(−1)JPΨ−λss̄ (x01, z) = (−1)mLe−2imLφΨλ
−s,−s̄(x01, z). (4.19)

Substituting the spin-parity JPC = 1−− of the vector meson in Eqs. (4.16)
and (4.19) leads to a set of relations between different components of the light-
cone wave function which somewhat restricts the degrees of freedom. It should be
mentioned that these relations assume the sign convention ελ = 1√

2
(−λ,−i) for the

polarization vectors which is consistent with the Condon-Shortley convention for
spherical harmonics. Also, it is assumed that the spinors are eigenstates of the x3-
component of the total angular momentum operator Ĵ3 = L̂3 + Ŝ3, and the quark
and antiquark spinors are related by charge conjugation, vs(k⃗) = −iγ2us(k⃗). These
assumptions about the spinors are true for most spinor bases used in the literature,
and especially the Lepage–Brodsky basis (2.36) satisfies these.

Using the angular dependence of the meson wave function (4.13), it is possible
to show that vector meson production is highly suppressed unless the polarizations
of the photon and meson are the same [112]. In fact, if one assumes that the
dipole amplitude N(x01,b) does not depend on the angle between x01 and b, the
leading-order production amplitude for differing polarizations vanishes. Therefore
the contribution from polarization-changing components is usually ignored, and one
considers only the case λγ = λV .

4.1.1 Relativistic corrections to the heavy vector meson wave function

When talking about heavy vector mesons, one usually means heavy quarkonia states
such as J/Ψ or Υ. The main advantage of these particles is that they can be
treated as nonrelativistic states such that the relative velocity v of the quark and
antiquark is small, v ≪ 1. There are multiple ways to describe a nonrelativistic state
mathematically. For example, potential models using the Schrödinger equation have
been quite successful in explaining qualitatively the existing quarkonium states [113–
116], and by solving the Schrödinger equation one can obtain a rest-frame wave
function that can be used for other calculations.

Another possibility is to use the effective field theory of nonrelativistic quantum
chromodynamics (NRQCD) which has been developed for describing quarkonium
states [117]. The main idea of NRQCD is to expand quantities as a power series of
the velocity of the heavy quark v, such that the nonperturbative physics is described
by universal long-distance matrix elements (LDMEs) that appear both in the decay
and production of quarkonia. The LDMEs can then be related to the rest-frame wave
function and its derivatives at the origin. The leading-order approach in NRQCD
is to treat the quark-antiquark pair moving at zero velocity, meaning that the rest-
frame wave function is a delta function in momentum space, Ψ(k⃗) ∼ (2π)3δ3(k⃗),
or equivalently a constant in position space, Ψ̃(r⃗) ∼ 1. These wave functions are
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proportional to the LDME ⟨O1⟩ which can be determined e.g. from the leptonic
width of the corresponding quarkonium state.

Higher-order terms in NRQCD can be included order by order in terms of the
heavy quark velocity, which can also be used to add relativistic corrections to the
vector meson wave function. Assuming that the meson wave function is peaked
around k⃗ = 0, the standard expectation value

∫
d3k

(2π)3
k2n
∣∣∣Ψ(k⃗)

∣∣∣
2

= ⟨k2n⟩ (4.20)

also suggests that ∫
d3k

(2π)3
k2nΨ(k⃗) ∼ ⟨k2n⟩

∫
d3k

(2π)3
Ψ(k⃗) (4.21)

which in the position space corresponds to

∇2nΨ̃(0) ∼ ⟨k2n⟩Ψ̃(0). (4.22)

Writing then the wave function Ψ̃(r⃗) as a Taylor series, we can note that each term
in the series is suppressed by the velocity v as

Ψ̃(r⃗) = Ψ̃(0)︸︷︷︸
O(v0)

+ ri∂iΨ̃(0)︸ ︷︷ ︸
O(v1)

+
1

2
rirj∂i∂jΨ̃(0)
︸ ︷︷ ︸

O(v2)

+O(v3). (4.23)

This series can then be truncated at the desired point to include corrections of the
order O(vn), and after this the wave function uncertainty is reduced to a finite
number of unknown constants corresponding to derivatives of the wave function at
the origin ∂nΨ̃(0). These unknown constants can then be written in terms of the
universal LDMEs of NRQCD [118].

In addition to the suppression of higher orders in the expansion (4.23), the non-
dominant orbital angular momentum and spin components are velocity-suppressed.
For example, for the lowest-energy heavy vector mesons J/Ψ and Υ the dominant
spin component is the S-wave, and correspondingly the D-wave is suppressed by
v2 [117]. The D-wave is suppressed even further in the decay and production of these
particles, as the D-wave component has to be combined with terms proportional to
k⃗2 to give a non-zero result. This means that the D-wave component is in total
suppressed by v4 in the production of J/Ψ and Υ. The situation is similar for non-
dominant spin components which are proportional to eiφmL according to Eq. (4.13).
These have to be combined similarly with terms proportional to k|mL|e−iφmL to yield
a non-zero contribution, which brings an additional suppression of v|mL|.

These ideas of using NRQCD to add relativistic corrections were used in Arti-
cle [I] where we considered the order v2 correction to the rest-frame wave function.
At this order, we can neglect the D-wave such that we only have the S-wave contri-
bution, and by rotational symmetry only the first and third terms in Eq. (4.23) are
non-zero, which corresponds to having two unknown constants in the wave function.
Numerical values for these constants have been determined in Ref. [118] for J/Ψ and
in Ref. [119] for Υ by considering electromagnetic decays of quarkonia.
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The potential models and the NRQCD approach give us the rest-frame wave
function which is not the same thing as the light-cone wave function required for
calculating processes in light-cone perturbation theory. The exact relation between
the two wave functions is not known as it is highly nontrivial because of the different
quantizations leading to the wave functions. Discarding the differences in the Fock
state expansions of the states corresponding to different quantization schemes, one
can treat the differences between the two wave functions arising from the differences
in the spinors and the variables.

For the rest-frame wave function, it is more convenient to use the standard
3-momentum or -position coordinates as variables. The standard spinor basis for
the rest frame is the Bjorken–Drell basis [120]:

us =
√
E +m

(
ξs

σ⃗·⃗k
E+m

ξs

)
vs =

√
E +m

(
σ⃗·⃗k

E+m
χs

χs

)
(4.24)

where

ξ↑ =

(
1

0

)
ξ↓ =

(
0

1

)
χ↑ =

(
0

−1

)
χ↓ =

(
1

0

)
. (4.25)

Here E is the energy of the particle and σi are the Pauli matrices. They satisfy
the relations vs(k⃗) = −iγ2us(k⃗)∗ and χs = iσ2ξ

∗
s which are useful when considering

the conservation of C-parity. These spinors are also the eigenstates of the spin-
operator Ŝ3 boosted to the particle’s rest frame [121]. This is the reason why the
Bjorken–Drell basis is sometimes called the spin basis, and it also allows us to use the
conservation of angular momentum to describe the wave function as a combination
of eigenstates of the operators L̂3 and Ŝ3. This leads to the decomposition of the
wave function in terms of components with specific L and S quantum numbers in
Eq. (4.12).

As described in Sec. 2.4, in light-cone perturbation theory the convenient basis
for the spinors is the Lepage–Brodsky basis (2.36). This is the reason why this choice
for the spinors is usually also made for describing the light-cone wave function.
To describe the light-cone wave function in terms of the rest-frame wave function
correctly, one needs to correct for this difference in the spinor basis. This can be
done by a simple change of the basis in the vector space of the spinors. Note that we
can write the Lepage–Brodsky spinors in the form of Eq. (4.24) using the following
2-spinors2:

ξ+(k⃗) =N

(
E + k3 +m

kR

)
ξ−(k⃗) =N

(
−kL

E + k3 +m

)
(4.26)

χ+(k⃗) =N

(
kL

−(E + k3 +m)

)
χ−(k⃗) =N

(
E + k3 +m

kR

)
(4.27)

2 In fact, it is possible to write any choice of the spinors in the Bjorken–Drell form with suitably
chosen 2-spinors. This follows from the fact that the solutions for the Dirac equations
(/k −m)u(k) = 0 and (/k +m)v(k) = 0 form 2-dimensional vector spaces.
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where N = 1√
2(E+m)(E+k3)

is a normalization factor. The change for the spinor basis

can then be written as
Ψhh̄ =

∑

s=↑,↓

∑

s̄=↑,↓
ξ†hξsχ

†
s̄χh̄Ψss̄. (4.28)

This procedure is also called the Melosh rotation [122]. It should be noted that
the Melosh rotation preserves the symmetry relations (4.13), (4.16), (4.19) between
the different components of the wave functions as both the Lepage–Brodsky and
Bjorken–Drell bases satisfy the assumptions required for these relations.

The Melosh rotation is sometimes thought of as a boost to the “infinite-
momentum frame” [123, 124]. To see this, note that a longitudinal boost with a
rapidity Y acts on the Bjorken–Drell spinors as

exp

(
1

4
[γ0, γ3]Y

)
us(k⃗) =

√
E ′ +m

(
ξ′s

σ⃗·⃗k′
E′+m

ξ′s

)
(4.29)

where

E ′ =E coshY + k3 sinhY, k3′ =E coshY + k3 sinhY, k′ =k, (4.30)

correspond to the boosted energy and momenta and the 2-spinor is transformed into

ξ′s =
1√

(E +m)(E ′ +m)

[
cosh

(
Y

2

)
(E ′ +m)− sinh

(
Y

2

)
σ · k⃗′σ3

]
ξs. (4.31)

We can now consider the quark to be moving with a very high momentum k3, and
we wish to boost it closer to the rest frame. This corresponds to taking Y → −∞
which then changes the form of the 2-spinors to match the Lepage–Brodsky basis
by ξ′↑ → ξ+(k⃗

′) and ξ′↓ → ξ−(k⃗′). This means that the spinors in the Lepage–
Brodsky basis can be thought of as the Bjorken–Drell spinors boosted to the “infinite-
momentum frame”. It should be stressed, however, that such an infinite boost
is not required for the Melosh rotation. Instead, we view it as a mathematical
transformation between the two different spinor bases without any physical meaning.
One is free to choose the spinor basis as one wishes, and in this case the convenient
bases for the rest frame and the light cone simply happen to be different.

The other correction one has to make when going from the rest-frame wave
function to the light-cone wave function is the change in the variables. Essentially,
one has to change k3 → k+, which is nontrivial as in the rest-frame the total energy
is not conserved and in the light cone it is the minus component of the momentum
that is not conserved. A common approach is to assume the conservation of the
plus-momentum, which in the rest frame of the quark-antiquark pair leads to the
expression

k3 =Mqq̄

(
z − 1

2

)
(4.32)

where

M2
qq̄ =

k2 +m2

z(1− z)
(4.33)
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10−1 100 101 102

Q2 [GeV2]

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

σ
γ
∗ A
→

J
/ψ
A
/(

1 2
A

4/
3
σ
γ
∗ p
→

J
/
ψ
p
)

Nuclear suppression, W = 90 GeV

NRQCD expansion

Delta

Boosted gaussian

BLFQ

(b) Nuclear suppression for J/Ψ production.

FIGURE 4.3 Exclusive J/Ψ production as a function of the photon virtuality Q2 com-
pared to the HERA data [90, 91] for different wave functions. Delta is the
fully nonrelativistic limit for the wave function and NRQCD expansion in-
cludes the v2 relativistic corrections. Boosted gaussian [47] and BLFQ [132]
are phenomenological wave functions fitted to the leptonic width of J/Ψ and
the charmonium mass spectrum, respectively. The IPsat parametrization
from Ref. [76] was used for the dipole amplitude. Figures from Article [I],
reproduced under the license CC BY 4.0.

is the invariant mass of the quark-antiquark pair. This change of variables is also
known as the Terentev substitution [125]. The main problem with this is that it
is impossible to conserve both the energy and the plus momentum in the wave
function, or in other words the center-of-mass energy of the quark-antiquark pair
Mqq̄ does not agree with the mass of the meson MV , and thus this relation cannot be
truly exact. In Article [I], this appears through the fact that the leptonic widths for
longitudinal and transverse modes differ depending on whether it is the Mqq̄ or MV

that appears in the equations. The difference between the two masses can be seen as
corrections from higher-order Fock states, related to the fact that the vector meson
is the (approximate) eigenstate of the full Hamiltonian and the quark-antiquark
pair only of the free Hamiltonian. Thus, we can treat the ambiguity in changing the
variables as a higher-order correction that would need to be remedied if one were to
consider corrections higher order in both velocity and αs.

This combination of the Melosh rotation and the Terentev substitution is a
common way to get a light-cone wave function from the rest-frame wave function.
In Refs. [126–131] it has been used for a potential-model wave function, and in
Article [I] we used it for the NRQCD-based wave function to include the relativistic
v2 corrections. From the explicit form of this NRQCD expansion wave function one
can note several things as a consistency check. First, the symmetry relations (4.13),
(4.16) and (4.19) are satisfied without imposing them directly. Second, the non-
dominant spin components have the additional suppression of v|mL| as explained
previously.

The results of including these v2 corrections in NRQCD to J/Ψ production at
leading order in αs are shown in Fig. 4.3a. The agreement with the HERA data
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is extremely good, although the error band coming from the uncertainties of the
LDMEs is quite large. Nevertheless, comparing the results to the fully nonrela-
tivistic case we see that these relativistic corrections are important for small photon
virtualities near Q2 = 0. For large photon virtualities the relativistic corrections lose
their importance, in agreement with explicit calculations in the limit Q2 → ∞ [133].
The dependence of relativistic effects on the photon virtuality can be understood by
noting that the dipole sizes probed in the process are roughly r2 ∼ 1/(Q2 +M2

V ),
which means that for small virtualities larger dipoles become important. It is this
dependence on large dipoles in the meson wave function that is modified by the
relativistic corrections as can be seen from the expansion in Eq. (4.23). It should
be noted that for the Υ particle the relativistic corrections are not expected to be
important even for low photon virtualities, as the estimates for the average heavy
quark velocity are very low [119].

In Fig. 4.3b, we show estimates for nuclear suppression of J/Ψ production in
the EIC kinematics. Nuclear suppression is defined as the ratio

RA =
σγ∗+A→J/Ψ+A

cA4/3σγ∗+p→J/Ψ+p
(4.34)

which can be used as a measure of nonlinear effects in the nucleus. The nuclear dipole
amplitude NA(r,b

′, Y ) = 1− SA(r,b
′, Y ) has been approximated from the proton’s

dipole amplitude Np(r,b
′, Y ) = 1−Sp(r,b

′, Y ), Sp(r,b
′, Y ) = exp(−Tp(b′)f(r, Y )),

by writing [63]

SA(r,b
′) = exp(−ATA(b′)f(r, Y )) (4.35)

where Tp(b′), TA(b′) are the transverse density profiles of the proton and the nucleus,
and f(r, Y ) is a function describing the dependence on the dipole size and rapidity
Y = ln 1/xP. Noting that f(r, Y ) → 0 when r → 0, we can see that in the limit
Q2 → ∞ the ratio (4.34) becomes

RA(Q
2 → ∞) =

1

c

A2
∫
d2b′ TA(b′)2

A4/3
∫
d2b′ Tp(b′)2

≡ 1 (4.36)

which defines the normalization constant c. The factor A4/3 in Eq. (4.34) has been
chosen to minimize the dependence of the constant c on the mass number A. Note
that the effects of the wave function cancel in this limit. The estimates for nuclear
suppression in Fig. 4.3b indicate that while this cancellation of the wave function
is true in the asymptotic limit, for values Q2 ≲ M2

V the wave function effects start
to become visible. Thus, the form of the wave function does not cancel in this
ratio, and a naïve nonrelativistic approximation does not give a realistic picture of
the saturation effects. In general, relativistic corrections suppress the contribution
from large dipoles, which results in a smaller sensitivity to nonlinear effects. This
is especially visible for smaller photon virtualities where the production is more
sensitive to larger dipole sizes. It is thus important to use a realistic wave function
for J/Ψ when looking for saturation in heavy nuclei.
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4.2 Exclusive vector meson production at next-to-leading or-
der

At next-to-leading order, there are essentially two modifications that we need to
make to the leading-order amplitude Eq. (4.1). First, we need to also include the
case where the photon fluctuates into a qq̄g state that interacts with the target.
This can be included in the production amplitude by writing

iM =

∫
d2x0 d

2x1

∫ 1

0

dz0 dz1
(4π)2z0z1

(4π)δ(1− z0 − z1)

× e−ib·∆Ψ̃γ→qq̄(x01, zi)
(
Ψ̃V→qq̄(x01, zi)

)∗ (
1− Ŝ01

)

+

∫
d2x0 d

2x1 d
2x2

∫ 1

0

dz0 dz1 dz2
(4π)3z0z1z2

(4π)δ(1− z0 − z1 − z2)

× e−ib·∆Ψ̃γ→qq̄g(xi, zi)
(
Ψ̃V→qq̄g(xi, zi)

)∗ (
1− Ŝ012

)
.

(4.37)

Note that here we also include the dependence on the total momentum transfer
∆ that was missing from Articles [II, III, IV] where only the case t = −∆2 = 0

was considered. Second, the wave functions Ψ̃γ→qq̄, Ψ̃V→qq̄ need to be calculated
at next-to-leading order. The photon wave functions are perturbative also at NLO
and have been calculated in Refs. [134–136] for massless quarks and in Refs. [84–
86] for massive quarks. For the meson, we need to calculate Feynman diagrams
in Figs. 4.4 and 4.5 where the V → qq̄ vertex is given by the leading-order wave
function. The self-energy diagrams 4.4a and 4.4b contribute to the renormalization
factor

√
ZV of the meson, and the gluon exchange diagrams 4.4c, 4.4d and 4.4e are

then genuine NLO corrections to the wave function. For the Fock state qq̄g, the
perturbative contribution to the meson wave function ΨV→qq̄g can be calculated in
a similar manner using Diagrams 4.5a and 4.5b. Diagram 4.5c corresponds to a
nonperturbative contribution to the ΨV→qq̄g wave function. In principle, it should
be included in the calculation, but it turns out that in the limits considered in
Articles [II, III, IV] this nonperturbative contribution can be neglected. The required
meson wave functions at NLO have been calculated in Ref. [137] for heavy vector
mesons and in Article [III] for light vector mesons and will be explained briefly in
Secs. 4.2.1 and 4.2.2.

The next-to-leading order calculation also requires that we are careful with the
regularization of loop integrals. As light-cone perturbation theory breaks the explicit
Lorentz symmetry, a Lorentz invariant regularization scheme such as dimensional
regularization cannot be used. Instead, a common regularization scheme suitable
for light-cone calculations is to consider longitudinal and transverse directions sep-
arately. In the transverse direction, one uses dimensional regularization so that the
integrals are done in D − 2 = 2 − 2ε transverse dimensions. For the longitudinal
direction, one introduces a cut-off for gluons’ plus-momenta such that k+2 > αq+

where α > 0. This means that we encounter two different kinds of divergences: in-
frared (IR) or ultraviolet (UV) divergences of the transverse momenta when ε→ 0,
and divergences in the gluon’s plus momentum when α → 0.
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(a) (b)

(c) (d)

(e)

FIGURE 4.4 The NLO corrections to the meson wave function ΨV→qq̄.

(a) (b)

(c)

FIGURE 4.5 Contributions to the meson wave function ΨV→qq̄g at NLO.
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Several things need to be considered when summing different NLO contribu-
tions to get a finite result in the end. First of all, the two different parts in the
production amplitude, Eq. (4.37), are separately divergent but many of the diver-
gences cancel in their sum. This is because the qq̄g-contribution contains divergent
gluon loops similar to Diagrams 4.4a and 4.4b, with the exception that the gluon also
crosses the shock wave describing the interaction with the target. In addition to this
the nonperturbative parts of the calculation, i.e. the dipole amplitude and the vector
meson wave function, need to be renormalized. The renormalization of the dipole
amplitude is done by the BK equation, which leads to the rapidity dependence of
the dipole amplitude. The NLO calculations in Articles [II, III, IV] suggest that this
rapidity scale should be chosen as Ydip = Y0+ln

(
(1− z0)

W 2+Q2−m2
n

Q2
0

)
in the leading-

order part, where Q2
0 is the transverse scale of the target and Y0,if is the factorization

rapidity scale discussed in Sec. 3.3.3. This differs somewhat from the common choice
YP = ln 1/xP = ln

(
W 2+Q2−m2

n

Q2+M2
V −t

)
used in the leading-order calculations. For the meson

wave function, only the leading-order wave function corresponding to the V → qq̄

vertex needs to be renormalized. This is done differently for heavy and light vector
mesons and will be discussed in more detail in Secs. 4.2.1 and 4.2.2.

4.2.1 Heavy vector meson production in the nonrelativistic limit

A framework to include higher-order corrections systematically in αs and heavy
quark velocity v has been developed in Ref. [137], where the meson wave functions
are expanded as a power series of corrections in the heavy quark velocity v and the
coupling constant αs as

Ψ̃n
V =

∑

k,l

Ck
n←l

∫ 1

0

dz′

4π

(
1

m
∇̃
)k

ϕl(r = 0, z′). (4.38)

This equation describes how the light-cone wave function ΨV for a Fock state n
can be written in terms of the leading-order wave function ϕ for the Fock state
l. The coefficients Ck

n←l can be calculated perturbatively, and they contain the
αs corrections from Feynman diagrams. The derivatives ∇̃ =

(
∇r, 2mi

[
z′ − 1

2

])

correspond to relativistic corrections where the order of the term is given by the
power k, with the exception that non-dominant spin components have additional
relativistic suppression as explained in Sec. 4.1.1. This allows one to expand the
wave function as a power series in both αs and v, and in a sense it is a generalization
of Eq. (4.23) to the mixed space including also corrections in αs. The NRQCD
estimate for the velocity of the heavy quark is v ≳ αs [117], and numerical estimates
confirm that for J/Ψ we have roughly v2 ∼ αs [118]. This leads to the estimate
1 ≫ αs ≳ v2 ≫ αsv

2 for different terms in the expansion, which suggests that
the most important correction to the leading order is the NLO correction in the
nonrelativistic limit. This is also the limit where the coefficients Ck

n←l have been
calculated in Ref. [137]. Note, however, that the importance of the relativistic
corrections depends on the kinematical region as discussed in Sec. 4.1.1.

Taking the nonrelativistic limit for the NLO calculation leads to a significant
simplification of the calculation. For example, the only nonperturbative part of the
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vector meson wave function is then the leading-order wave function for the qq̄ state,
as the wave functions for the other states are suppressed by v or αs. For example,
the leading-order wave function for the qq̄g state corresponding to Diagram 4.5c is
suppressed by αsv

2 in the production amplitude. Also, in the nonrelativistic limit
only the integrated leading-order wave function

∫ 1

0

dz′

4π
ϕqq̄(r = 0, z′) (4.39)

survives, meaning that the nonperturbative physics of vector meson formation is
given by a single constant. It should be mentioned that this is in agreement with
the approach where one starts from the nonrelativistic limit in the rest frame as
described in Sec. 4.1.1.

This nonperturbative constant still needs to be renormalized, which in a gen-
eral scheme can be written as [137]

∫ 1

0

dz′

4π
ϕqq̄(0, z′) =

∫ 1

0

dz′

4π
ϕqq̄

renorm(0, z
′)

[
1− αsCF

2π

(
1

α
+ fscheme

)]
. (4.40)

Choosing the finite part fscheme can be done in several different ways. The simplest
way is to choose fscheme = 0 as then it turns out that ϕqq̄

renorm corresponds to using
dimensional regularization in all space-time dimensions [137]. This regularization
scheme for the wave function has been used in Refs. [118, 119] to determine non-
perturbative LDMEs for J/Ψ and Υ, and as such using this scheme allows one to
use those results without additional scheme matching. This is especially useful if
one wants to consider relativistic corrections at leading order on top of the NLO
corrections.

Another choice for the scheme is to consider the leptonic width of the meson
at NLO [137]

Γ
(
V → e−e+

)
=

2Nce
2
fe

4

3πMV

∣∣∣∣
∫

dz′

4π
ϕqq̄(0, z′)

∣∣∣∣
2 [

1 +
αsCF

π

(
1

α
− 4

)]
(4.41)

and solve the leading-order wave function from this equation. This corresponds to
the choice fscheme = −4. While this is simpler as it directly relates the nonperturba-
tive leading-order wave function to the physical leptonic width, it is not as convenient
in actual calculations. For example, when taking into account the running of the
coupling it is not clear if the running is the same in the leptonic width and the
production amplitude. For these reasons, in Article [IV] we recommend using the
scheme with fscheme = 0 for calculating vector meson production. The dependence
of the production on the renormalization scheme is mostly mild at high energies,
but in certain kinematical regions it can have a significant numerical contribution
to the production cross section [IV].

In addition to the leading-order wave function, one also needs to renormalize
the mass of the heavy quark. This was done in the pole mass scheme which is set by
demanding that the mass of the quark agrees with the pole of the quark propagator.
The mass renormalization is more complicated in the light-cone quantization com-
pared to the covariant formalism, as the breaking of the Lorentz symmetry brings
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FIGURE 4.6 Tranverse J/Ψ production at next-to-leading order as a function of the
center-of-mass energy W . Figures from Article [III], reproduced under the
license CC BY 4.0.

additional complications. This is discussed in detail in Ref. [86] where the effect
of using the pole mass scheme in the photon wave function is calculated using the
Lorentz invariance of the photon form factors. A different approach for mass renor-
malization is described in Ref. [137] where the mass renormalization for the meson
wave function is calculated using an approach closer to the covariant formalism. We
have checked that these two approaches for the pole mass scheme agree, meaning
that no additional scheme matching has to be done to use the two wave functions.

After these renormalizations and absorbing the remaining rapidity divergence
lnα to the BK evolution of the dipole amplitude, the invariant amplitude for the
vector meson production is finite and can be calculated. The final result is compli-
cated and contains high-dimensional integrals, but it is possible to evaluate these
expressions numerically. The NLO expressions and their numerical solutions were
computed in Article [II] for longitudinal production and Article [IV] for transverse
production. The main results of these articles are summarized in Fig. 4.6. The NLO
results are shown using the NLO dipole amplitude fits discussed in Sec. 3.3.3 that
were fitted to the full HERA structure function data with the Balitsky+smallest
dipole running coupling scheme. In general, the NLO results are fairly close to the
LO result, although there is some dependence on the dipole amplitude used. This
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FIGURE 4.7 Total coherent J/Ψ production as a function of the photon virtuality Q2

compared to the HERA data [89–91, 93]. Figures from Article [IV], repro-
duced under the license CC BY 4.0.

is especially visible at lower energies, W ≲ 100GeV, where the BK evolution is not
as dominant.

Remembering that the dipole amplitudes were fitted to the same HERA struc-
ture function data, it is interesting to see differences in vector meson production
between the results corresponding to different fits. One reason for this is that vec-
tor meson production probes the dipole amplitude at length scales 1/(Q2 +M2

V ) as
opposed to 1/Q2 in inclusive DIS, making vector meson production more sensitive
to the behavior of the dipole amplitude at smaller dipoles. Another reason for the
differences between the different dipole amplitudes is that when calculating the cross
section we choose to drop terms of the order O(α2

s ) for consistency with the power
counting. To do this, we need to determine the LO part from the result which is not
unique. Our choice for this is the LO amplitude calculated with the rapidity Ydip

that is motivated by the NLO part of the calculation. This choice corresponds to
resumming large logarithms ∼ αs ln 1/x with the BK equation and including them
as a part of the LO result. The caveat with this approach is that the resulting O(α2

s )

terms may be quite large, which can be seen in Fig. 4.6a as the difference between
the “NLO” and “LO(Ydip)” results. The effect of dropping the O(α2

s ) contributions
is especially large at lower energies where dropping these contributions may result
in negative cross sections. One does not need to do this division of the LO result
and the genuine NLO corrections when calculating the inclusive DIS cross section
and fitting the dipole amplitude, and dependence on this choice is an additional
uncertainty to exclusive vector meson production. If one does not drop the O(α2

s )

higher-order terms, one will get results that are closer to each other and more in line
with the fitting procedure. This approach, however, is not consistent with the per-
turbative expansion and for this reason we did not choose to do so in Articles [II, IV].
It is left for future work to better understand the division between the LO and NLO
terms.

In addition to the NLO corrections in the nonrelativistic limit, we also included
the relativistic corrections O(v2) at leading order. Their contribution is shown
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in Fig. 4.7 as a function of the photon virtuality, where it can be seen that the
relativistic corrections are important even at NLO when considering J/Ψ production
at small photon virtualities. In fact, in photoproduction the relativistic corrections
seem to be even more important than the NLO corrections. For Υ production, the
relativistic effects are estimated to be so small that they can be neglected for all
photon virtualities, and the NLO effects are more important [IV].

Finally, we would like to highlight that the main purpose of Articles [II, IV]
was to calculate the NLO expression for heavy vector meson production in the
nonrelativistic limit, and thorough phenomenological analyses are left for future
work. For example, varying the heavy quark mass m within the uncertainties of the
experimentally measured value has a large effect for small Q2 [47], which needs to be
taken into account when comparing against the data. Also, there exists data for t-
differential J/Ψ production, which can be used to gain information about the impact
parameter dependence of the dipole amplitude. Another interesting prospect is to
consider heavy vector meson production from heavy nuclei which is more sensitive to
saturation. There is already a reasonable amount of data for J/Ψ production from
Pb-Pb collisions measured in the ultra-peripheral collisions at the LHC [7, 8, 94–98],
with similar data for Υ expected to come soon. Calculating this requires modeling
the nuclear dipole amplitude in terms of the proton dipole amplitude using a relation
such as Eq. (4.35), which is yet to be done with the NLO dipole amplitude fits.

4.2.2 Light vector meson production at large photon virtualities

For light vector meson production to be perturbative one has to have a high enough
photon virtuality. An additional simplification of the process can be done by assum-
ing that the photon virtuality is higher than any momentum scale on the meson side,
meaning that we can essentially neglect the meson mass and the transverse momenta
of the quark and antiquark in the meson. This can be given a precise mathematical
formulation in the mixed space by noting that in the high-photon virtuality limit
only dipoles of the size 1/Q2 contribute. We can then write the leading-order wave
function as a Taylor series in the transverse dipole sizes,

Ψ̃qq̄(r, z) = Ψ̃qq̄(0, z) +O
(
r2
)
, (4.42)

and in the limit Q2 → ∞ only the first term contributes to light vector meson
production. This r-independent term can be written in terms of the leading-twist
distribution amplitude of the meson ϕ(z) which for longitudinal polarization has
twist 2 [106, 138]. For transverse polarization, the leading term is proportional to
r ·ελ, corresponding to a twist-3 term [138]. The expansion (4.42) can be considered
as a twist expansion where higher-twist terms are suppressed by powers of Q, which
also allows us to neglect transverse production in comparison to the longitudinal one
as the transverse production is then suppressed by |r · ελ|2 ∼ 1/Q2. Such an expan-
sion also shows that the leading-order wave function for the Fock state qq̄g has twist
3, meaning that the nonperturbative diagram 4.5c can be neglected [139, 140]. Thus,
the leading-twist contribution to light vector meson production at NLO can be writ-
ten in terms of the twist-2 distribution amplitude for longitudinal polarization. This
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leads to a simplification of the calculation as the first term in the expansion (4.42)
corresponds to a delta function δ2(k) in momentum space. Also, all of the nonper-
turbative physics on the meson side is included in the twist-2 distribution amplitude
ϕ(z).

The distribution amplitude ϕ(z) still needs to be renormalized in the calcu-
lation. This is done with the well-known Efremov–Radyushkin–Brodsky–Lepage
(ERBL) equation [48, 141] which corresponds to a resummation of gluon exchanges
between the quark and antiquark with transverse momenta k2 < Q2. In general,
the renormalized distribution amplitude ϕ(z, µF ) can be written in terms of the bare
distribution amplitude ϕ0(z) as

ϕ(z, µF ) = ϕ0(z)

+
αsCF

2π

∫ 1

0

dz′ ϕ0(z
′)

[
K(z, z′)

(
2

D − 4
+ γE − ln(4π) + ln

(
µ2
F

µ2

))
+ fscheme

]

(4.43)

where K(z, z′) is the ERBL kernel

K(z, z′) =
z

z′

(
1 +

1

z′ − z

)
θ(z′ − z − α) +

1− z

1− z′

(
1 +

1

z − z′

)
θ(z − z′ − α)

+

(
3

2
+ ln

α2

z(1− z)

)
δ(z′ − z),

(4.44)

µ is the scale from dimensional regularization and fscheme is a finite scheme-dependent
term. This introduces a dependence on the factorization scale µF to the distribution
amplitude, which is given by the ERBL equation

∂

∂lnµ2
F

ϕ(z, µF ) =
αsCF

2π

∫ 1

0

dz′K(z, z′)ϕ(z′, µF ). (4.45)

The ERBL equation can be solved exactly by

ϕ(z, µF ) =
∞∑

n=0

an(µF )fn(z) (4.46)

where the dependence on the factorization scale is contained in the coefficients an,
and the eigenfunctions fn of the ERBL equation can be written in terms of the

Gegenbauer polynomials C(
3
2)

n as

fn(z) = 6z(1− z)C
( 3
2)

n (2z − 1). (4.47)

It is interesting to note that in the limit µF → ∞ the solutions of the ERBL equation
are driven towards the asymptotic limit ϕ(z, µF = ∞) = 6z(1− z)a0.

In Article [III], we choose fscheme = 0 in accordance with the MS scheme. We
note, however, that a regularization-scheme dependent choice might also be suit-
able. We do the NLO calculation in a formalism that allows one to use two different
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FIGURE 4.8 Exclusive light vector meson at next-to-leading order as a function of the
photon virtuality Q2. Figures from Article [III], reproduced under the li-
cense CC BY 4.0.

regularization schemes for gluon polarization vectors, the so-called “conventional
dimensional regularization” and the “four-dimensional helicity” schemes [142, 143].
With the MS scheme, the resulting equations still contain a constant dependent
on the regularization scheme which could be included in the renormalization of the
distribution amplitude. This scheme dependence arises because the distribution am-
plitude is a nonperturbative quantity, and a similar scheme-dependent part should
appear in other processes involving the distribution amplitude as well. In the case
of exclusive light vector meson production this scheme-dependent constant has an
extremely small contribution [III], and it vanishes if one takes the asymptotic form
of the distribution amplitude.

The factorization scale µF should be chosen as the relevant scale of the pro-
cess. The NLO calculation suggests the choice µ2

F = 4e−2γE/r2 which is also in line
with the Fourier transform estimates for the running of the coupling constant [82].
Another possible choice is µ2

F = Q2 which has the attractive property that the fac-
torization scale is constant in the calculation. The differences between these two
choices are fairly small for reasonable forms of the distribution amplitude, less than
5% [III].

The resulting expression for the longitudinal production amplitude is finite and
can be numerically evaluated. It has been calculated before in a different framework
in Ref. [144] where the resulting expressions are presented in momentum space. This
makes comparisons between the two calculations difficult, as one has to perform
complicated Fourier transforms from the momentum space to the coordinate space.
So far, only parts of the calculation have been compared with agreeing results.

The main numerical results for ρ and ϕ meson production from Article [III]
are shown in Fig. 4.8. These calculations use a distribution amplitude that is close
to the asymptotic form, including also the n = 2 correction in Eq. (4.46) using
numerical estimates from Refs. [145, 146]. The contributions from this correction
to the asymptotic form are almost negligible in these figures, less than 10%. In
general, we find a very good agreement with the NLO results to the longitudinal
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production data. Note that the total production, longitudinal + transverse, should
be dominated by the longitudinal production in the Q2 → ∞ limit, and thus it is
consistent to compare to the total production data also. Only for smaller photon
virtualities our results seem to overestimate the longitudinal production data, and
it is expected that there the higher-twist effects should also contribute. Here the
agreement between the different dipole amplitude fits is better than in the case of
heavy vector meson production. This can be understood by the fact that in inclusive
DIS, where the dipole amplitude fit is done, the same dipole sizes 1/Q2 are probed
as in light vector meson production. In contrast, for heavy vector meson production
the probed dipole sizes are modified by the heavy meson mass as 1/(Q2 +M2

V ).



5 INCLUSIVE DIFFRACTION

Exclusive vector meson production is an example of an exclusive process where all of
the produced particles are explicitly measured. The opposite of this is an inclusive
process where the final states are summed over. We have already briefly considered
total inclusive particle production in Sec. 3.3.1 where the final state is not restricted.
In addition to this, we can consider inclusive diffraction where the interaction with
the target is color neutral, resulting in final states that are in a color singlet. This
corresponds to the process in Fig. 2.1 with a sum over the final states X.

Inclusive diffraction has several advantages compared to exclusive vector me-
son production. First, we are not as restricted in our final state, leading to a higher
cross section. Second, the only nonperturbative part of the process is the interaction
with the target, making inclusive diffraction a very clean probe of the target struc-
ture. When compared to the total inclusive production, the advantage of inclusive
diffraction is its higher sensitivity to the small-x gluon distribution, enhancing the
nonlinear effects. Also, more differential quantities can be measured, such as the
dependence on the momentum transfer t and the invariant mass of the final state
M2

X = P 2
X . The momentum-transfer dependence gives us information about the ge-

ometry of the target in the transverse plane, similarly as in exclusive vector meson
production in Ch. 4. The dependence on the invariant mass is related to the relevant
Fock states in the process as will be explained shortly.

Inclusive diffraction can be naturally calculated using Eqs. (2.43) and (2.46)
from Sec. 2.4. This leads to the cross section

dσD
γ∗
λ+A

d|t| dM2
X

=
∑

color-singlet
states n

∫
d[PS]n 2q+(2π)δ(q+−q+n )

∣∣Mγ∗
λ→n

∣∣2δ(M2
X−M2

n)δ
(
|t| −∆2

)

(5.1)
where the delta functions specify the given momentum transfer t and invariant mass
M2

X of the final state. At leading order, only the final state X = qq̄ contributes,
and calculating the cross section corresponds to evaluating the Feynman diagram in

59
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FIGURE 5.1 Inclusive diffractive DIS at leading order in the dipole picture. The blue
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responds to the final state which is set to have an invariant mass M2

X .

Fig. 5.1. The leading-order cross section evaluates to [147, 148]

dσD
γ∗
λ+A

d|t| dM2
X

= 2παemNcQ
2
∑

f

e2f

∫
d2x0 d

2x1 d
2x0 d

2x1

(2π)4

∫ 1

0

dz0 dz1 δ(1− z0 − z1)

× 1

4π
J0
(
|t|
∣∣b− b

∣∣)J0
(
|x01 − x01|MX

√
z0z1

)
Fλ

〈
1− Ŝ01

〉〈
1− Ŝ01

〉∗

(5.2)

where

Fλ =




4z30z

3
1K0(|x01|Q

√
z0z1)K0(|x01|Q

√
z0z1) λ = L

z20z
2
1(z

2
0 + z21)K1(|x01|Q

√
z0z1)K1(|x01|Q

√
z0z1)

x01·x01

|x01||x01| λ = T
(5.3)

depends on the photon polarization λ. It should be mentioned that this is the
coherent production cross section, in line with the notation used in Ch. 4. Total
(i.e. coherent+incoherent) cross section corresponds to Eq. (5.2) with the average

over the target fluctuations taken as
〈(

1− Ŝ01

)(
1− Ŝ01

)†〉
instead.

The inclusive diffractive cross section can be related to the diffractive structure
functions, defined as

xPF
D(4)
λ (β,Q2, xP, t) =

Q2

(2π)2αem

Q2

β

dσD
γ∗
λ+A

d|t| dM2
X

. (5.4)

The superscript indicates how many variables the structure function xPF
D(4)
λ de-

pends on. The variables β and xP are defined for inclusive diffraction as

β =
Q2

2q · (Pn − P ′n)
=

Q2

Q2 +M2
X − t

≈ Q2

Q2 +M2
X

, (5.5)

xP =
q · (Pn − P ′n)

q · Pn

=
Q2 +M2

X − t

W 2 +Q2 −m2
n

≈ Q2 +M2
X

W 2 +Q2
. (5.6)
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Other interesting observables are the t-integrated diffractive structure functions

F
D(3)
λ (β,Q2, xP) =

∫ ∞

0

d|t|FD(4)
λ (β,Q2, xP, t), (5.7)

F
D(3)
2 (β,Q2, xP) = F

D(3)
L (β,Q2, xP) + F

D(3)
T (β,Q2, xP), (5.8)

and the most precise data is given in terms of the diffractive reduced cross section

σD(3)
r (β,Q2, xP) = F

D(3)
2 (β,Q2, xP)−

y2

1 + (1− y)2
F

D(3)
L (β,Q2, xP) (5.9)

analogously to the inclusive case (3.33).
Experimental measurements of inclusive diffraction at DIS have been done at

HERA [13, 14, 149–160] where it has been measured in p+e− collisions. Comparisons
of the data and theory then showed that the leading-order picture is not enough to
describe diffractive DIS at low values of β [149]. This is shown in Fig. 5.2 where it can
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be seen that the leading-order results (5.2) fall to zero when β → 0, in contradiction
with the measured data. This started calculations of the process at next-to-leading
order, as it was found that gluon emission starts to dominate in the limit β → 0,
which was first calculated in Refs. [62, 161–163] in the large-Q2 limit. Including
these gluonic contributions to the cross section results in a very good agreement
with the data as can be seen in Fig. 5.2. The more natural large-M2

X limit has later
been calculated by several authors in Refs. [164–169], and it has been connected to
the large-Q2 result in Ref. [147].

The reason for the importance of the gluonic contribution to the cross section
stems from large logarithms ln 1/β that start to appear at NLO. These logarithms
are related to the rapidity interval YX = ln 1/β between the electron and the par-
ton shower X, and they can be resummed with the Kovchegov–Levin evolution
equation [164] for the diffractive dipole amplitude. In practice, the rapidity gap
Ygap = ln 1/xP between the parton shower X and the target has to be large enough
to be detectable, which means that ln 1/β = lnxP/x is not too large in the HERA
(or EIC) kinematics [148]. Thus, it is expected that keeping only the first large
logarithm ln 1/β of the gluonic contribution at NLO is enough for comparisons to
the currently available data.

The above-mentioned calculations contained only a part of the full NLO calcu-
lation in certain limits. They were brought into a more systematic NLO framework
in the dipole picture in Ref. [170] where it was shown they can be obtained from the
part of the NLO calculation where a gluon emission happens before the shock wave
in the amplitude and its complex conjugate1. That article started the more sys-
tematic calculation of the full NLO equation for inclusive diffraction, which is being
completed in an ongoing work of the author where the rest of the NLO diagrams are
computed. That work will present the full NLO cross section for inclusive diffraction
for the first time, and the purpose of this chapter is to give a rough outline of the
full calculation.

5.1 Diffractive DIS at next-to-leading order

The full NLO calculation contains a lot of different diagrams that need to be ac-
counted for. Perhaps the most simple classification of the calculation can be done
by considering different Fock states at the shock wave and at the final state. At
NLO, this results in dividing the calculation into four terms shown in Fig. 5.3. The
full cross section can then be written as

dσD
γ∗
λ+A

d|t| dM2
X

=

[
dσD

γ∗
λ+A

d|t| dM2
X

]

qq̄

+

[
dσD

γ∗
λ+A

d|t| dM2
X

]

qq̄g

(5.10)

1 The large-M2
X limit in Ref. [168] also requires an additional contribution from gluon emission

after the shock wave.
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(a) (b)

(c) (d)

FIGURE 5.3 Contributions to the NLO invariant amplitude in diffractive DIS. The blue
rectangle represents the interaction with the target, and the black ellipse
effectively represents the wave function Ψn→m including the non-interacting
case (see Eq. (2.30)). Note that the black blob for the γ∗ → m vertex corre-
sponds to the photon wave function Ψγ∗→m where also the NLO corrections
are included.

where[
dσD

γ∗
λ+A

d|t| dM2
X

]

qq̄

=

∫
d[PS]qq̄ 2q+(2π)δ(q+ − q+qq̄)|Mqq̄|2δ(M2

X −M2
qq̄)δ

(
|t| −∆2

)
,

(5.11)[
dσD

γ∗
λ+A

d|t| dM2
X

]

qq̄g

=

∫
d[PS]qq̄g 2q+(2π)δ(q+ − q+qq̄g)|Mqq̄g|2δ(M2

X −M2
qq̄g)δ

(
|t| −∆2

)
,

(5.12)

and the corresponding invariant amplitudes are

Mqq̄ =M(a)
qq̄ +M(b)

qq̄ , (5.13)

Mqq̄g =M(c)
qq̄g +M(d)

qq̄g. (5.14)

Squaring the amplitudes, we end up with the following terms in the cross
section:

dσD
γ∗
λ+A

d2∆ dM2
X

=

[
dσD

γ∗
λ+A

d2∆ dM2
X

]

|(a)|2
+

[
dσD

γ∗
λ+A

d2∆ dM2
X

]

|(b)|2

+

[
dσD

γ∗
λ+A

d2∆ dM2
X

]

|(c)|2
+

[
dσD

γ∗
λ+A

d2∆ dM2
X

]

|(d)|2

+2Re

[
dσD

γ∗
λ+A

d2∆ dM2
X

]

(a)×(b)∗
+ 2Re

[
dσD

γ∗
λ+A

d2∆ dM2
X

]

(c)×(d)∗

(5.15)
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where the subscript i × j∗ refers to the product of invariant amplitudes Mi ×M∗
j

in the cross section. The different contributions can be understood as follows:

• |(a)|2: Contains the leading-order part, the NLO corrections to the photon
wave function, the self-energy correction

√
Zqq̄ of the quark-antiquark pair,

and a part of the final-state corrections corresponding to a gluon exchange
between the quark-antiquark pair.

• |(b)|2: A gluon is emitted and absorbed before the final state in both the
amplitude and the complex conjugate. This contribution comes at the order
O(α2

s ) and can be neglected at NLO.

• |(c)|2: A gluon is emitted before the shock wave in both the amplitude and
its complex conjugate, and it is not absorbed in the final state. This is a
finite contribution to the NLO cross section and has already been calculated
in Ref. [170].

• |(d)|2: Contains the final-state corrections where a gluon is emitted after the
shock wave in both the production amplitude and its complex conjugate.

• (a)×(b)∗: Contains the NLO corrections where a gluon crosses the shock wave
and is absorbed in the final state.

• (c)×(d)∗: Contains the cross-terms where the gluon is emitted before the shock
wave in the amplitude and after the shock wave in the complex conjugate, or
vice versa. This contribution is finite.

To calculate these different terms, the wave functions Ψγ∗→qq̄
in and Ψqq̄→qq̄

out are
needed at the order O(g2s ), and the wave functions Ψγ∗→qq̄g

in , Ψqq̄→qq̄g
out and Ψqq̄g→qq̄

out at
the order O(gs). The wave functions with the photon have already been calculated
in Refs. [134–136], but the rest of the wave functions are new and have not been
calculated before. Feynman diagrams containing these wave functions, however,
have already been calculated in Ref. [171], so that the expressions for the wave
functions can be compared to some extent to the results presented there.

With these wave functions, one can then calculate each term in Eq. (5.15)
separately. However, contributions related to the final-state corrections in |(a)|2 and
|(d)|2 turn out to be especially difficult to calculate, as we need to Fourier transform
the wave function Ψqq̄→qq̄

out to the mixed space used in the rest of the calculation. It is
not known how to do this Fourier transform analytically, and thus one is left with an
additional integral which makes showing the cancellation of divergences in the full
cross section highly nontrivial. The purpose of the next section is to demonstrate
how to deal with the final-state corrections in a more clever way.

5.1.1 Final-state corrections

The final-state corrections can be factorized out of the rest of the calculation. This
is shown in Fig. 5.4a where

F =
∑

i∈ diagrams

Fi (5.16)
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F
6

?

K01

6

?

K01

z0

z1

z0

z1

(a) Factorization of the final-state corrections.

(b) Diagram A0 (c) Diagram A1 (d) Diagram A2

(e) Diagram B0 (f) Diagram B1 (g) Diagram B2

(h) Diagram C0 (i) Diagram C2

(j) Diagram D1 (k) Diagram E1

FIGURE 5.4 Feynman diagrams contributing to the final-state corrections at NLO.
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denotes the sum of the diagrams in Fig. 5.4. As the final-state corrections, and thus
their divergences, are deeply related to each other it is more natural to first sum
them together in the momentum space and only then take the transverse Fourier
transforms to the mixed space. This is most convenient to do by grouping the
different diagrams corresponding to the rows in Fig. 5.4.

Let us first consider the first row with the diagrams labeled as Ai. The corre-
sponding contributions can be written as

FAi ∝
∫

d2K01 d
2K01

(2π)4
eiK01·x01−iK01·x01

1

(z0 − z0)
3
(z0K01 − z0K01) · (z1K01 − z1K01)

× δ(M2
X −M2

Ai)

[M2
Ai −M2

Aj ± iδ][M2
Ai −M2

Ak ± iδ]

(5.17)

where M2
Ai are the invariant masses at different parts of the Feynman diagrams,

which come from the energy denominators in the light-cone perturbation theory. The
signs of the infinitesimals ±iδ are determined by whether the energy denominator
is in the amplitude or the complex conjugate. The contributions FA0, FA1 and FA2

differ only in the invariant masses and the signs of the infinitesimals, and thus they
can be easily summed to obtain

FA0 + FA1 + FA2 ∝
∫

d2K01 d
2K01

(2π)4
eiK01·x01−iK01·x01

1

(z0 − z0)
3

× (z0K01 − z0K01) · (z1K01 − z1K01)

{
δ(M2

A0 −M2
X)

(M2
A0 −M2

A1 − iδ)(M2
A0 −M2

A2 − iδ)

+
δ(M2

A1 −M2
X)

(M2
A1 −M2

A0 + iδ)(M2
A1 −M2

A2 − iδ)
+

δ(M2
A2 −M2

X)

(M2
A2 −M2

A0 + iδ)(M2
A2 −M2

A1 + iδ)

}
.

(5.18)

We can get rid of the delta functions by writing

δ(x) =
1

2πi

[
1

x− iδ
− 1

x+ iδ

]
. (5.19)

This is especially useful as there are cancellations between the three terms in
Eq. (5.18), resulting in

δ(M2
A0 −M2

X)

(M2
A0 −M2

A1 − iδ)(M2
A0 −M2

A2 − iδ)
+

δ(M2
A1 −M2

X)

(M2
A1 −M2

A0 + iδ)(M2
A1 −M2

A2 − iδ)

+
δ(M2

A2 −M2
X)

(M2
A2 −M2

A0 + iδ)(M2
A2 −M2

A1 + iδ)

=
1

2πi

[
1

(M2
X −M2

A0 − iδ)(M2
X −M2

A1 − iδ)(M2
X −M2

A2 − iδ)

− 1

(M2
X −M2

A0 + iδ)(M2
X −M2

A1 + iδ)(M2
X −M2

A2 + iδ)

]
.

(5.20)
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Note that the correct signs for the infinitesimals ±iδ, discussed in Sec. 2.3, are
crucial for this trick. While it is now easier to perform the Fourier transform without
the delta function, Fourier transforms with three different denominators are still in
general quite complicated. This can be simplified by noting that

(z0K01 − z0K01) · (z1K01 − z1K01)

=
1

2
(z0 − z0)

[
z0z1(M

2
X −M2

A0) + z0z1(M
2
X −M2

A2)

−(z0z1 + z0z1)(M
2
X −M2

A1)− (z0 − z0)M
2
X

] (5.21)

which allows us to cancel some of the denominators. This leads to

FA0 + FA1 + FA2 ∝
∫

d2K01 d
2K01

(2π)4
eiK01·x01−iK01·x01

1

(z0 − z0)
2

×
[
z0z1DA01 + z0z1DA12 − (z0z1 + z0z1)DA02 − (z0 − z0)M

2
XDA012

]

(5.22)

where we have denoted

DAij =
1

π
Im

{
1

[M2
X −M2

Ai − iδ][M2
X −M2

Aj − iδ]

}
,

DAijk =
1

π
Im

{
1

[M2
X −M2

Ai − iδ][M2
X −M2

Aj − iδ][M2
X −M2

Ak − iδ]

}
.

(5.23)

The crucial simplification here is that different terms in Eq. (5.22) correspond to
different divergences in terms of the gluon’s plus-momentum cut-off α. The diver-
gences come from the gluon’s plus momentum going to zero, which corresponds to
z2 = z0 − z0 → 0, and we can see that Eq. (5.22) is divergent in this limit. Note
that the energy denominators also depend on z0 − z0 so that we have roughly

1

M2
X −M2

A1 − iδ
∼ (z0 − z0) ln(z0 − z0) (5.24)

after the Fourier integrals, which alleviates the divergence for terms with this de-
nominator. Other energy denominators do not have such a dependence on z0 − z0.
This allows us to read the divergences of the different terms as follows:

1. DA01 and DA12: a logarithmic divergence ln2 α

2. DA02: a power divergence 1/α

3. DA012: no divergences

Especially, the term DA012 with three denominators is free of divergences. The other
terms with divergences contain only two denominators and are thus simpler to study.

Similarly to Diagrams Ai, the second row in Fig. 5.4 corresponding to Diagrams
Bi can be shown to simplify in this way. For the third row with the instantaneous
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gluon exchange, Diagrams Ci, we get a slightly different combination of denomina-
tors. The contributions of Diagrams C0 and C2 read:

FC0 ∝
∫

d2K01 d
2K01

(2π)4
eiK01·x01−iK01·x01

1

(z0 − z0)
2
× δ(M2

X −M2
A2)

M2
A0 −M2

A2 − iδ
, (5.25)

FC2 ∝
∫

d2K01 d
2K01

(2π)4
eiK01·x01−iK01·x01

1

(z0 − z0)
2
× δ(M2

X −M2
A0)

M2
A2 −M2

A0 + iδ
. (5.26)

These can be summed together using the identity

δ(M2
X −M2

A2)

M2
A0 −M2

A2 − iδ
+

δ(M2
X −M2

A0)

M2
A2 −M2

A0 + iδ
= −DC02 (5.27)

which gives us

FC0 + FC2 ∝−
∫

d2K01 d
2K01

(2π)4
eiK01·x01−iK01·x01

1

(z0 − z0)
2
DC02. (5.28)

It turns out that we can combine the terms with the similar denominator structure
DA02, DB02 and DC02 as we have

DC02 =

{
DA02 if z0 − z0 > 0

DB02 if z0 − z0 < 0.
(5.29)

While the coefficients in Eqs. (5.22) and (5.28) differ, one can show that the diver-
gences 1/(z0 − z0)

2 and 1/(z0 − z0) cancel in their sum so that the end result is
finite.

This means that after summing together Diagrams Ai, Bi and Ci in the first
three rows of Fig. 5.4 the only divergences left come from terms with the energy
denominator structure DA01, DA12, DB01 and DB12. The corresponding divergences
are ln2 α in terms of the gluon’s plus-momentum regulator α. The remaining diver-
gences are then simpler to handle and can be shown to cancel with the rest of the
calculation. This concludes the handling of final-state corrections that have a form
of a gluon exchange between the quark and the antiquark, i.e. Diagrams Ai, Bi and
Ci.

One still needs to evaluate Diagrams D1 and E1 that are similar to the self-
energy corrections of the quark and the antiquark. For these diagrams, the Fourier
integrals can be done analytically without any additional left-over integrals which
makes treating the divergences simpler. Thus, no tricks are needed for calculat-
ing Diagrams D1 and E1. These diagrams contain both IR divergences in ε and
plus-momentum divergences of the form ln2 α. It turns out that this ln2 α cancels
exactly with the other final-state corrections so that the remaining plus-momentum
divergences have only a lnα dependence on the cut-off.

5.1.2 Cancellation of divergences

It is important to highlight the nontrivial cancellation of different kinds of diver-
gences appearing in the calculation. The appearing divergences can be classified
into the following categories based on the Feynman diagrams of their origin:
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1. |(a)|2: Self-energy corrections to the final qq̄ state. These contain both IR
and UV divergences in terms of the ε of dimensional regularization. These
divergences cancel each other when using the same ε for both IR and UV
divergences, and actually the self-energy corrections are identically zero in
dimensional regularization.

2. |(a)|2: NLO corrections to the γ∗ → qq̄ wave function. These bring UV
divergences in ε and plus-momentum divergences of the form lnα.

3. (b)× (a)∗: Gluons crossing the shock wave that are emitted and absorbed by
the same particle. These are related to the self-energy corrections, except now
the IR region is made finite by the different energy denominator structure on
the photon side. Hence, these only contain UV divergences that do not cancel
as in Point 1. Also, plus-momentum divergences of the form lnα are present.

4. (b)×(a)∗: Gluons crossing the shock wave that correspond to a gluon exchange
between the quark and the antiquark. These only bring a plus-momentum
divergence lnα.

5. |(d)|2: Final-state corrections where the gluon is emitted by the same particle
both in the amplitude and its complex conjugate, i.e. Diagrams D1 and E1 in
Fig. 5.4. In terms of Feynman diagrams, these can be related to the self-energy
corrections with a delta function setting the invariant mass of the intermediate
qq̄g state to be M2

X . This delta function regulates the UV region, and thus
these only contain IR divergences in ε. Also, plus-momentum divergences ln2 α

are present.

6. |(a)|2 and |(d)|2: Final-state corrections that diagrammatically correspond to
a gluon exchange between the quark and the antiquark, i.e. Diagrams Ai, Bi
and Ci in Fig. 5.4. As described in Sec. 5.1.1, these contain ln2 α divergences
when summed together.

As the cancellation of these divergences is in general quite involved, we will
not go through it here in its full complexity. However, some general comments
can be said about the cancellation. First of all, the final-state IR divergences in
Point 5 are directly related to the IR divergences in the self-energy corrections. The
overall effect of the self-energy corrections can be thought of as converting the IR
divergences to UV divergences which then cancel with the rest of the calculation.
With this in mind, the combined divergence structure of the final-state corrections
in Points 5 and 6 is the same as the photon wave function γ∗ → qq̄ in Point 2. This
can be understood by noting that the difference to the forward elastic scattering
amplitude in inclusive DIS, Eq. 3.30, is in the final state and thus for both processes
to be finite the divergence structure of the final state has to be the same. Combining
the final-state divergences with the rest of the calculation, the UV divergences cancel
but there are still some logarithmic lnα divergences left. These are related to the
JIMWLK evolution of the dipole amplitudes in the production amplitude and its
complex conjugate. Absorbing this lnα divergence to the evolution of the dipole
amplitudes then cancels the final divergence, rendering the NLO cross section finite.
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After canceling the divergences, the resulting expressions can be numerically
evaluated for comparisons to the HERA data and predictions for the EIC [10, 99,
100]. It will be especially interesting to compare diffractive structure functions for
protons and heavy nuclei at the NLO accuracy to see the effects of saturation. The
numerical computations for these predictions are left for future work.



6 CONCLUSIONS

The focus of this thesis has been on diffractive processes in the high-energy limit
where the nonlinear effects of QCD start to become relevant. To probe this nonlinear
region of QCD, it is crucial to get a better understanding of processes sensitive to
saturation, which includes diffractive processes. Calculations in the high-energy
limit can be done in the dipole picture with the color-glass condensate effective field
theory, outlined in Chs. 2 and 3. The NLO calculations considered in this thesis are
state-of-the-art in the dipole picture.

In Ch. 4, we discuss higher-order corrections to exclusive vector meson produc-
tion. This includes relativistic corrections to heavy vector meson production, and
NLO corrections to both heavy and light vector meson production. In Article [I], it
was shown that the relativistic corrections can be numerically important for small
photon virtualities in heavy vector meson production. The NLO corrections to heavy
vector meson production in the nonrelativistic limit were calculated in Articles [II]
and [IV], where it was found that the NLO corrections are numerically moderate
when also using a dipole amplitude fitted at NLO. In general, a good agreement with
the experimental data was found if also the relativistic corrections at leading order
were included. The NLO corrections to light vector meson production in the limit
of large photon virtuality calculated in Article [III] were also considered. Similarly
to the heavy vector meson case, the NLO results were found to be comparable to
the leading-order results, with an excellent agreement with the experimental data
for values Q2 ≫M2

V where the calculations are valid.
In phenomenological applications, an important part of calculations in the

dipole picture is the dipole amplitude discussed in Ch. 3. Constraints for the
dipole amplitude from massive quarks were considered in Article [V] where heavy
quark production was calculated numerically. It was then shown that with properly
parametrized initial conditions the dipole amplitude is universal in the sense that
the same dipole amplitude can be used to calculate both total and charm quark
production in DIS. This was not possible at leading order when using a BK-evolved
dipole amplitude, and thus the NLO corrections were found to be crucial for preci-
sion computations in the dipole picture.

Some discussion about an unpublished work on NLO corrections to inclusive
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diffraction in DIS was included in Ch. 5. The main difference to exclusive vector
meson production is in the final state, where in inclusive diffraction the final state is
defined to be any multiparticle state with a definite invariant mass M2

X . This means
that calculating the NLO corrections to the final state is more complicated than
in exclusive vector meson production and includes more Feynman diagrams, shown
in Fig. 5.4. The general strategy for dealing with these diagrams is discussed in
Sec. 5.1.1. Including all of the NLO corrections, along with the JIMWLK evolution
of the dipole amplitude, one can then show that the end result is finite and suitable
for numerical calculations. While the NLO corrections have not been implemented
numerically yet, it will be interesting to see if they will modify the behavior of the
diffractive structure functions.

This thesis is a part of a bigger picture of striving for precise predictions using
the dipole picture. We note that other NLO calculations using the framework of
this work also exist, some of which we have already addressed: single inclusive
hadron production [172–185], total structure functions with massless [134–136] and
massive quarks [84–86], the dominating gluonic contribution to diffractive structure
functions [170], exclusive production of light vector mesons [144], diffractive jet
production [186, 187], inclusive dijet production in DIS [171, 188, 189], diffractive
dihadron production [190], and inclusive dihadron production in DIS [191, 192].
Also, NLO corrections to the rapidity evolution of the dipole amplitude have been
calculated, namely the NLO BK [193] and NLO JIMWLK [194–196] equations.
Analytical calculations in the high-energy limit have thus been largely promoted to
the NLO precision era, with numerical implementations on the way.

Other interesting calculations in the dipole picture involve going beyond the
eikonal approximation and including the so-called sub-eikonal effects [197–206].
While no numerical estimates of these sub-eikonal corrections exist at the moment of
writing this thesis, it is expected that they will become important for lower energies.
Computing these will give us guidelines for the accuracy of the eikonal approxima-
tion and the validity of the high-energy factorization.

With these higher-order calculations in the dipole picture becoming available,
it will be very interesting to implement them numerically and see if the results
obtained at leading order are modified. It will also be very important to compare
results from saturation models to calculations that do not involve saturation to see
which observables can be used to search for saturation from the experimental data.
Non-saturation calculations of these processes involve calculations in the BFKL
framework and also the collinear framework: see for example Refs. [207–209] for
NLO exclusive heavy vector meson production in collinear factorization. Numerical
comparisons to these results will be crucial for distinguishing between saturation
and non-saturation effects.
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We compute a light front wave function for heavy vector mesons based on long-distance matrix elements
constrained by decay width analyses in the nonrelativistic QCD framework. Our approach provides a
systematic expansion of the wave function in quark velocity. The first relativistic correction included in our
calculation is found to be significant and crucial for a good description of the HERA exclusive J=ψ
production data. When looking at cross section ratios between nuclear and proton targets, the wave function
dependence does not cancel out exactly. In particular the fully nonrelativistic limit is found not to be a
reliable approximation even in this ratio. The important role of the Melosh rotation to express the rest frame
wave function on the light front is illustrated.
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I. INTRODUCTION

At large densities or small Bjorken-x, nonlinear QCD
dynamics is expected to manifest itself in nuclear structure.
To describe the QCD matter in this nonlinear regime, an
effective field theory known as the color glass condensate
has been developed; see e.g., [1,2]. Diffractive scattering
processes at high energies are especially powerful probes of
this region of phase space. The advantage in diffractive,
with respect to inclusive, scattering is that since no color
charge transfer is allowed, even at leading order in
perturbative QCD at least two gluons have to be exchanged
with the target. Consequently, the cross sections approx-
imatively probe the square of the gluon density [3] and can
be expected to be highly sensitive to nonlinear dynamics.
An especially interesting diffractive process is exclusive

vector meson production in collisions of real or virtual
photons with the target, where only one meson with the
same quantum numbers as the photon is produced. In these
processes only vacuum quantum numbers are exchanged
between the target and the diffractive system. Thus the
target can remain intact, and the transverse momentum
transfer can be used to probe the spatial structure of the
target. This momentum transfer is by definition the Fourier
conjugate to the impact parameter. As such, it becomes
possible to study the target structure differentially in the
transverse plane. A particularly important channel is the
production of J=ψ mesons. The charm quark is heavy

enough to enable a weak coupling description of its
elementary interactions. Nevertheless the quark mass is
not large enough to make the process insensitive to
saturation effects. Also experimentally the J=ψ is relatively
easily identifiable and produced with large enough cross
sections to be seen.
Exclusive J=ψ production in electron-proton deep inelas-

tic scattering has been studied in detail at HERA by the H1
and ZEUS experiments [4–9]. Additionally, lighter ρ and ϕ
[10–12] and heavier ϒ states [13,14] have been measured.
Recently, it has also become possible to measure exclusive
vector meson production at the RHIC and at the LHC in
ultraperipheral collisions [15,16] where the impact param-
eter between the two hadrons is large enough such that the
scattering is mediated by quasireal photons; see Refs.
[17–26] for recent measurements. These developments
have also enabled vector meson photoproduction studies
with nuclear targets, which are more sensitive to gluon
saturation. Indeed signatures of strong nuclear effects (e.g.,
saturation, or gluon shadowing) are seen in J=ψ photo-
production (see e.g., Refs. [27–29]). The effects seen in
these exclusive processes are consistent with inclusive
measurements such as particle spectra in proton-nucleus
collisions (see e.g., [30–35]). However, in exclusive scat-
tering the nonlinear effects are larger, since inclusive cross
sections at leading order are only sensitive to the first power
of the gluon density.
One major source of model uncertainties in the theo-

retical description of vector meson production follows from
the nonperturbative vector meson wave function. For the
J=ψ , a natural first approximation is to treat it as a fully
nonrelativistic bound charm-anticharm state, which is the
limit taken in the seminal work in Ref. [3]. The calculation
of Ref. [36] recovers the same nonrelativistic result in the
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dipole picture (see also Ref. [37]). Already early on, it has
been argued that this nonrelativistic approximation obtains
important corrections from the motion of the charm quark
pair in the bound state [38,39]. More recently, much of the
phenomenological literature on J=ψ photoproduction has
used phenomenological light cone wave functions to
describe the meson bound state. This has the advantage
that the light cone wave function is invariant under boosts
in the longitudinal direction and is thus naturally more
suited to high-energy collision phenomena. A disadvantage
of some recent phenomenological parametrizations has
been that they do not fully use the information on the
nonperturbative bound state physics, most importantly
decay widths, of quarkonium states that are usually
analyzed in terms of nonrelativistic wave functions.
In recent literature, the applied different phenomenologi-

cal wave functions result in e.g., J=ψ production cross
sections that differ up to ∼30% from each other
[27,40,41]. This is a large model uncertainty, compared to
the precise data that is already available from HERA and the
LHC and especially given that the Electron Ion Collider
(EIC) [42,43] is in the horizon (and similar plans exist at
CERN [44] and in China [45]). The EIC will perform vast
amounts of precise deep inelastic scattering (DIS) measure-
ments over a wide kinematical range, which calls for robust
theoretical predictions.
To reduce the model uncertainty related to the vector

meson wave function, we propose in this work a new
method to constrain the wave function for heavy mesons
based on input from the nonrelativistic QCD (NRQCD)
matrix elements. These matrix elements capture nonper-
turbative long-distance physics and can be obtained by
computing the vector meson decay widths in different
channels as a systematic expansion in both the coupling
constant αs and the quark velocity v. As we will demon-
strate, these matrix elements can be used to determine the
value and the derivative of the vector meson wave function
at the origin. As such, this approach provides more
constraints than the phenomenological parametrizations
widely used in the literature. In particular, starting from
manifestly rotationally invariant rest frame wave functions,
one by construction obtains consistent parametrizations of
longitudinally and tranversally polarized vector mesons
simultaneously, which is not obvious in many light cone
approaches.
This manuscript is organized as follows. First, in Sec. II

we review how vector meson production is computed in the
dipole picture within the color glass condensate framework
and how the cross section depends on the vector meson
light front wave function. In Sec. III we first present how to
obtain the rest frame wave function in terms of the NRQCD
matrix elements and then show how this is transformed to
the light cone by applying the Melosh rotation [46,47]. We
compare the obtained NRQCD-based wave function to
other widely used wave functions that are reviewed in

Sec. IV. The numerical analysis including vector meson-
photon overlaps and J=ψ production cross sections is
presented in Sec. V.

II. VECTOR MESON PRODUCTION IN THE
DIPOLE PICTURE

A. Exclusive scattering

At high energies exclusive vector meson production in
virtual photon-proton (or nucleus) scattering can be
described in a factorized form. The necessary ingredients
are the virtual photon wave functionΨλ

γ describing the γ� →
qq̄ splitting, the dipole-target scattering amplitude N and
the vector meson wave function ΨV describing the tran-
sition qq̄ → V. The scattering amplitude reads [48] (note
that the correct phase factor coupling the dipole size r to the
transverse momentum transferΔ is determined in Ref. [49])

Aλ ¼ 2i
Z

d2bd2r
dz
4π

e−iðbþð1
2
−zÞrÞ·Δ

×Ψλ�
γ ðr; Q2; zÞΨVðr; zÞNðr;b; xPÞ: ð1Þ

Here Q2 is the photon virtuality, r the transverse size of the
dipole, b the impact parameter and z the fraction of the
photon light cone plus momentum carried by the quark.
The photon polarization is λ, with λ ¼ �1 referring to the
transverse polarization and λ ¼ 0 to the longitudinal one.
In this work will study coherent vector meson V

production. The coherent cross section refers to the
scattering process where the target proton (or nucleus)
remains intact. In this case, the cross section as a function
of squared momentum transfer t ≈ −Δ2 can be written as

dσγ
�p→Vp

dt
¼ R2

gð1þ β2Þ 1

16π
jAT;Lj2: ð2Þ

The dipole amplitude N depends on the longitudinal
momentum fraction xP the target loses in the scattering
process, which reads

xP ¼ M2
V þQ2 − t

W2 þQ2 −m2
N
: ð3Þ

Here MV is the mass of the vector meson V and mN is the
proton mass. The scattering amplitude AT;L is obtained
from Eq. (1) by summing over the quark helicities and, in
the case of transverse (T) polarization, averaging over the
photon polarization states λ ¼ �1.
In Eq. (2) two phenomenological corrections are

included following Ref. [48]. First, β ¼ tanðπδ
2
Þ is the ratio

between the real and imaginary parts of the scattering
amplitude. It can be obtained from an analyticity argument
as

T. LAPPI, H. MÄNTYSAARI, and J. PENTTALA PHYS. REV. D 102, 054020 (2020)

054020-2



δ ¼ ∂ lnAT;L

∂ lnð1=xPÞ : ð4Þ

The so-called skewedness correction is included in terms
of the factor Rg, which reads

Rg ¼
22δþ3ffiffiffi

π
p Γðδþ 5=2Þ

Γðδþ 4Þ : ð5Þ

This correction can be derived by considering the vector
meson production in the two-gluon exchange limit, assum-
ing that the two gluons carry very different fractions of the
target longitudinal momentum [50]. In this case, the cross
section can be related to the collinearly factorized parton
distribution functions scaled by the factor Rg. In the dipole
picture applied here, where the two quarks are color rotated
in the target color field and undergo multiple scattering, this
limit is not reached. In this work we include both of the real
part and skewedness corrections widely used in the
previous literature but emphasize that these numerically
large corrections should be used with caution when
predicting absolute normalizations for the cross sections.
In addition to coherent scattering, one can study inco-

herent diffraction where the target breaks up, but there is
still no exchange of color charge between the produced
vector meson and the target remnants. These processes are
recently studied extensively in the literature as they probe,
in addition to saturation effects [41], also the event-by-
event fluctuations of the scattering amplitude resulting from
the target structure fluctuations; see e.g., Refs. [51–54] or
Ref. [55] for a review. As the focus in this work is on the
vector meson wave function which enters in calculations of
both incoherent and coherent cross sections similarly, from
now on we only consider coherent scattering here.

B. Virtual photon wave function

The virtual photon splitting to a cc̄ dipole is a simple
QED process, and the photon wave function Ψγ can be
computed directly by applying the light cone perturbation
theory (see e.g., [56,57]). Using the diagrammatic rules of
light front perturbation theory and the conventions used in
Refs. [58,59], the wave function can be written as

Ψλ
γ;hh̄

ðkÞ ¼ efe
ffiffiffiffiffiffi
Nc

p
q− − k− − k0−

ūhðkÞ=ελðqÞvh̄ðk0Þ
4

ffiffiffi
π

p
kþk0þqþ

: ð6Þ

Here ef is the fractional charge of the quark (in this work
we consider only charm quarks with ef ¼ 2=3), k, k0 and q
are the quark, antiquark and photon momenta, respectively,
e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

and h and h̄ refer to the quark and antiquark
light front helicities [60]. The factor

ffiffiffiffiffiffi
Nc

p
is included to

obtain a squared wave function proportional to the number
of colors Nc. The spinors which are the eigenstates of light
front helicity read, in the Lepage-Brodsky convention,

uhðkÞ ¼
1

21=4
ffiffiffiffiffiffi
pþp ð

ffiffiffi
2

p
pþ þ γ0mþ αT · kÞχ̄h; ð7Þ

vhðkÞ ¼
1

21=4
ffiffiffiffiffiffi
pþp ð

ffiffiffi
2

p
pþ − γ0mþ αT · kÞχ̄−h; ð8Þ

where the four-component helicity spinors read χ̄h¼þ1 ¼
1ffiffi
2

p ð1; 0; 1; 0ÞT and χ̄h¼−1 ¼ 1ffiffi
2

p ð0; 1; 0;−1ÞT , and αT ¼
ðγ0γ1; γ0γ2Þ. We use the light cone variables defined as
p� ¼ 1ffiffi

2
p ðp0 � p3Þ. The spinor normalization convention

is ūhuh̄ ¼ −v̄hvh̄ ¼ 2mδhh̄, where m is the quark mass.
In the light cone gauge, in which εþ ¼ 0, the photon

polarization vectors read

ελ¼0ðqÞ ¼
�
0; 0; 0;

Q
qþ

�
; ð9Þ

ελ¼�1 ¼
�
0; ελT;

q · ελT
qþ

�
; ð10Þ

where

ελ¼�1
T ¼ ð∓ 1;−iÞ=

ffiffiffi
2

p
ð11Þ

and Q2 ¼ −q2.
The wave function can be evaluated by substituting the

polarization vectors and explicit expressions for the spinors
in Eq. (6) and setting the photon transverse momentum q to
zero. It is convenient here to define a wave function in
terms of the momentum fraction z and pull out a factor 4π.
This should be done so that probability is conserved:Z

dkþjΨλ
γ;hh̄

ðkþ;kÞj2 ¼
Z

dz
4π

jΨλ
γ;hh̄

ðz;kÞj2; ð12Þ

so that we can write Ψλ
γ;hh̄

ðz;kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4πqþ

p
Ψλ

γ;hh̄
ðkþ;kÞ. In

momentum space, the wave functions read

Ψλ¼0
γ;hh̄

ðz;kÞ ¼ −efe
ffiffiffiffiffiffi
Nc

p 2Qzð1 − zÞ
ðk2 þ ϵ2Þ δh;−h̄; ð13Þ

Ψλ¼þ1
γ;hh̄

ðz;kÞ ¼ −
efe

ffiffiffiffiffiffiffiffi
2Nc

p

ðk2 þ ϵ2Þ ½ke
iθkðzδhþδh̄−

−ð1 − zÞδh−δh̄þÞ þmδhþδh̄þ�; ð14Þ

Ψλ¼−1
γ;hh̄

ðz;kÞ ¼ −
efe

ffiffiffiffiffiffiffiffi
2Nc

p

ðk2 þ ϵ2Þ ½ke
−iθkðð1 − zÞδhþδh̄−

−zδh−δh̄þÞ þmδh−δh̄−�; ð15Þ

where ϵ2 ¼ Q2zð1 − zÞ þm2 and keiθk ¼ kx þ iky. The
wave function in the mixed transverse coordinate, longi-
tudinal momentum fraction space entering in the vector
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meson production cross section (1) is then obtained by
performing a Fourier transform:

Ψλ
γ;hh̄

ðz; rÞ ¼
Z

d2k
ð2πÞ2 e

ik·rΨλ
γ;hh̄

ðz;kÞ: ð16Þ

The mixed space wave function for the longitudinal
polarization is

Ψλ¼0
γ;hh̄

ðz; rÞ ¼ −efe
ffiffiffiffiffiffi
Nc

p
δh;−h̄2Qzð1 − zÞK0ðϵrÞ

2π
: ð17Þ

Similarly, for the transverse photon with λ ¼ �1 the wave
function reads

Ψλ¼þ1
γ;hh̄

ðz; rÞ ¼ −efe
ffiffiffiffiffiffiffiffi
2Nc

p �
ieiθr

ϵK1ðϵrÞ
2π

ðzδhþδh̄−

−ð1 − zÞδh−δh̄þÞ þm
K0ðϵrÞ
2π

δhþδh̄þ

�
;

Ψλ¼−1
γ;hh̄

ðz; rÞ ¼ −efe
ffiffiffiffiffiffiffiffi
2Nc

p �
ie−iθr

ϵK1ðϵrÞ
2π

ðð1 − zÞδhþδh̄−

−zδh−δh̄þÞ þm
K0ðϵrÞ
2π

δh−δh̄−

�
: ð18Þ

We note that the these wave functions agree with those
derived in Ref. [59] using the same convention, except for
the overall sign in case of transverse polarizations which
does not affect any of our results. On the other hand, when
compared to the widely used wave functions reported in
Ref. [48], the relative sign between the mass term and z
terms in the λ ¼ þ1 case is different.
We emphasize that the quark light cone helicity structure

above does not exactly correspond to the spin structure in
the rest frame of the meson (there is no rest frame for the
spacelike photon). In particular, when transformed to the
meson rest frame, there are both S- and D-wave contribu-
tions in both longitudinally and transversely polarized
photons. The transformation between the light front wave
function expressed in terms of the quark light front
helicities and the rest frame wave function in terms of
the quark spins is discussed in Sec. III B. We will discuss
the decomposition of light cone wave functions, including
the virtual photon one, into the S- and D-wave components
in more detail in Appendix A.

C. Dipole-target scattering

The dipole-target scattering amplitude N in Eq. (1) is a
correlator of Wilson lines, corresponding to the eikonal
propagation of the quarks in the target color field. In
principle, it satisfies perturbative evolution equations
describing the dependence on momentum fraction xP,
the so-called Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner equation (JIMWLK) equation [61–67],
or the BK equation [68,69] that is obtained in the large-Nc

limit. These perturbative evolution equations, combined
with a nonperturbative input obtained by fitting some
experimental data, can in principle be used to evaluate
the dipole amplitude at any (small) xP. This has been a
successful approach when considering structure functions
in DIS or inclusive particle production in hadronic colli-
sions; see e.g., Refs. [31–35,70,71].
In diffractive scattering considered here one explicitly

measures the transverse momentum transfer Δ, which is the
Fourier conjugate to the impact parameter. Consequently,
the dependence on the transverse geometry needs to be
included accurately in the calculation. However, perturba-
tive evolution equations generate long-distance Coulomb
tails that should be regulated by some nonperturbative
physics in order to avoid unphysical growth of the cross
section [72]. There have been attempts to include effective
confinement scale contributions in the BK and JIMWLK
evolutions and use the obtained dipole amplitudes in
phenomenological calculations of e.g., vector meson pro-
duction [73–76] (see also [77]). As the main focus of this
work is in vector meson wave functions, we apply a simpler
approach and use the so called IPsat parametrization to
describe the dipole-proton scattering amplitude.
The IPsat parametrization [78] consists of an eikonalized

Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equation
(DGLAP)-evolved [79–82] gluon distribution, combined
with an impact parameter b dependent transverse density
profile. The advantage of this parametrization is that it
matches perturbative QCD result in the dilute (small dipole
size jrj) limit and respects unitary in the saturation regime.
The dipole amplitude in the IPsat parametrization reads

Nðr;b; xÞ ¼ 1 − exp

�
−

π2

2Nc
r2αsðμ2Þxgðx; μ2ÞTpðbÞ

�
;

ð19Þ

where the proton transverse density profile is assumed to be
Gaussian:

TpðbÞ ¼
1

2πBp
e−b

2=ð2BpÞ ð20Þ

with B ¼ 4 GeV−2. The initial condition for the DGLAP
evolution is obtained by fitting the HERA structure
function data [83–86], and the fit results in an excellent
description of the total reduced cross section and the charm
contribution [87]. The scale choice is μ2 ¼ C=r2 þ μ20, with
the parameters C and μ0, among with the DGLAP initial
condition, are determined in the fit performed in Ref. [87]
(see also [88]).
Following Ref. [78] (see also [87]), the dipole-proton

scattering amplitude can be generalized to coherent scatter-
ing in the dipole-nucleus case as

T. LAPPI, H. MÄNTYSAARI, and J. PENTTALA PHYS. REV. D 102, 054020 (2020)

054020-4



NAðr;b; xÞ ¼ 1 − exp

�
−

π2

2Nc
r2αsðμ2Þxgðx; μ2ÞATAðbÞ

�
:

ð21Þ

This estimate is valid in case of large nuclei, assuming that
the dipole size jrj is not very large, which is the case in heavy
vector meson production. Here TAðbÞ is the Woods-Saxon
distribution integrated over the longitudinal coordinate, with
the normalization

R
d2bTAðbÞ ¼ 1. The nuclear radius used

here is RA ¼ ð1.13A1=3 − 0.86A−1=3Þ fm.
In order to calculate vector meson production, it is still

necessary to determine the vector meson wave function. It
cannot be computed perturbatively, and consequently there
are many phenomenological parametrizations used in the
literature. The main goal of this paper is to obtain the meson
wave function in a systematic expansion in quark velocities
given by the NRQCD approach. We will also discuss, for
comparison, some other wave function parametrizations
in Sec. IV.

III. LIGHT CONE WAVE FUNCTION FROM
NRQCD

NRQCD is an effective field theory describing QCD in
the limit where quark masses are large, or v ¼ p=m is
small, where p is e.g., quark momentum andm is the quark
mass. In this approach, it becomes possible to factorize
cross sections into universal long-distance matrix elements
and perturbatively calculated process-dependent hard
factors.

A. Vector meson wave function in the rest frame

The J=ψ decay width in the NRQCD approach is written
as an expansion in the quark velocity v [89]. At lowest
order in v, the decay width is only sensitive to the long-
distance matrix element hO1iJ=ψ , which itself is determined
by the value of the (renormalized) wave function at the
origin. At next order, one finds a contribution proportional
to the long-distance matrix element hq⃗2iJ=ψ which is
suppressed by a relative v2. This matrix element is sensitive
to the derivative of the wave function at the origin (see also
Refs. [90,91] for a discussion of the velocity suppressed
contributions to the distribution amplitude).
In this work we follow Ref. [92], where these matrix

elements are determined. There, a subset of higher order (in
v) contributions to the decay width including higher powers
of ∇2 are resummed to all orders following Ref. [93]. As a
result, the J=ψ decay width in the leptonic channel can be
written as

ΓðJ=ψ → e−eþÞ

¼ 8πe2qα2em
3M2

V

�
1 − f

�hq⃗2iJ=ψ
m2

c;NR

�
− 2CF

αs
π

�
2

hO1iJ=ψ ð22Þ

with

fðxÞ ¼ x

3ð1þ xþ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p Þ : ð23Þ

Here, eq ¼ 2=3 is the fractional charge of the charm quark
andMV is the J=ψ mass. At this order in v, the J=ψ is a pure
S-wave state, and its wave function can be factorized into a
spin part and a scalar part. We will discuss the spin and
angular momentum structure in more detail later.
The extraction of the matrix elements that we use [92]

has been done in a calculation that includes both velocity
and αs corrections, such as in (22). Here, on the other hand,
we will be using the light cone wave functions in a leading
order calculation of cross sections, including only velocity
corrections to the wave function. In a strict NRQCD power
counting sense in αs, the αs corrections could be considered
more important. Although steps have been taken to take
them into account in the dipole picture exclusive cross
section calculations [94] (see also recent work in a different
formalism [95]), fully including them in the cross section is
not yet possible at this point since the full photon to heavy
quark pair wave function is not known to one-loop
accuracy. Thus we will leave a computation that includes
also the perturbative αs calculations to future work and
continue with our focus on the velocity corrections to the
wave function here.
Since our cross section calculation does not include pure

αs corrections, taking the wave function to be given by just
the operator hO1iJ=ψ in (22) would lead to an inconsistent
treatment of the αs corrections between the decay width and
the cross section. Even in a more general sense, the αs
contributions that appear as corrections to the decay widths
or cross sections expressed in terms of nonrelativistic wave
functions should, in light cone perturbation theory, be
thought of as perturbative corrections to the light cone wave
function itself [39,94]. This can be understood in the sense
that the degrees of freedom in the nonrelativistic wave
function are constituent quarks as opposed to bare quarks in
the light cone wave function; see the discussion in [39]. To
obtain a consistent picture here, we will absorb the αs
correction to the scalar part of the wave function ϕðrÞ,
which is then transformed to the light cone wave function.
We thus relate the value and derivative at the origin of ϕðrÞ
to the long-distance matrix elements as�

1 − 2CF
αs
π

�
2

hO1iJ=ψ ¼ 2Ncjϕð0Þj2 þOðv4Þ; ð24Þ

hq⃗2iJ=ψ ¼ −
∇2ϕð0Þ
ϕð0Þ þOðv2Þ: ð25Þ

The nonperturbative long-distance matrix elements have
been determined in Ref. [92] by considering simultane-
ously the J=ψ → eþe− and ηc → 2γ decays. As a result of
this analysis, the matrix elements for J=ψ read
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hO1iJ=ψ ¼ 0.440þ0.067
−0.055 GeV3; ð26Þ

hq⃗2iJ=ψ ¼ 0.441þ0.140
−0.140 GeV2: ð27Þ

The analysis in Ref. [92] is done by using the charm quark
mass mc;NR ¼ 1.4 GeV. In general, the charm quark mass
in NRQCD can differ from the charm quark mass used in
the IPsat fits discussed in Sec. II. In our numerical analysis,
we will use the NRQCD value for the charm quark mass in
both the meson and photon wave functions when using the
NRQCD results. Everywhere else in this work we use the
charm mass mc ¼ 1.3528 GeV obtained in the IPsat fit to
the HERA structure function data.
The uncertainties quoted above for the long-distance

matrix elements are not independent, and the correlation
matrix is also provided in Ref. [92]. To implement these
correlated uncertainties, we use a Monte Carlo method and
sample parameter values from the Gaussian distribution
taking into account the full covariance matrix. The uncer-
tainty is then obtained by calculating the one standard
deviation band with respect to the result obtained by using
the best fit values.
To construct the meson wave function, we start from the

meson rest frame where we can use the NRQCD matrix
elements to constrain the wave function as discussed above.
In the rest frame, we require that the quark spins are
coupled into a triplet state and the total spin and angular
momentum to a J ¼ 1 vector state. Thus we can in general
write the spin structure of the wave function in the
following form:

ψλ
ss̄ðr⃗Þ ¼

X
L;mL;mS

hLmL 1mSj1 λi

×

�
1

2
s
1

2
s̄

����1mS

	
YmL
L ðθ;ϕÞψLðrÞ: ð28Þ

Here YmL
L are the spherical harmonics, ψL is the radial wave

function corresponding to the orbital angular momentum L
and hj1mj1j2mj2 jJmJi are Clebsch-Gordan coefficients. In
general, the conservation of spin parity tells us that for
J=ψ the orbital angular momentum can only take values
L ¼ S, D. Since J=ψ should be dominated by the S-wave
contribution, we will from now on consider the case where
only the S-wave component is nonzero. We note that in
principle in the NRQCD approach one finds the D-wave
contribution to the vector meson wave function to be
suppressed by v2 compared to the S wave, and this is of
the same order as the first relativistic correction included in
terms of the wave function derivative above. However, the
D-wave contribution to the decay width is suppressed by an
additional v2 and as such the D-wave contribution is not
constrained by the decay widths at this order. Thus it is most
consistent to set it to zero. In this case the wave function
simplifies to

ψλ
ss̄ðr⃗Þ ¼

�
1

2
s
1

2
s̄

����1 λ
	
ϕðrÞ; ð29Þ

where ϕðrÞ is the scalar part of the wave function and
related to the long-distance matrix elements as shown in
Eqs. (24) and (25). Using the three-dimensional polarization
vectors in Eq. (11) we can also write this as

ψλ
ss̄ðr⃗Þ ¼ Uλ

ss̄ϕðrÞ; ð30Þ

where

Uλ
ss̄ ¼

1ffiffiffi
2

p ξ†s ϵ⃗λ · σ⃗ξ̃s̄ ð31Þ

in the case of transverse polarization and

Uλ¼0
ss̄ ¼ 1ffiffiffi

2
p ξ†sσ3ξ̃s̄ ð32Þ

when the vector meson is longitudinally polarized. Here
ξþ ¼ ð1; 0Þ and ξ− ¼ ð0; 1Þ are the two-component spinors
describing spin-up and spin-down states and ξ̃s̄ ¼ iσ2ξ�s is
the antiquark spinor.
The behavior of the quarkonium wave function at long

distances is determined by nonperturbative physics. This
long-distance physics affects short distances through the
requirement of the normalization of the wave function. The
NRQCD approach broadly speaking consists of parame-
trizing the nonperturbative long-distance physics by
measurable coefficients that serve as coefficients in the
short-distance expansion, which is used to calculate a
physical process happening at short-distance scales. In
practice this amounts to expressing the wave function as a
Taylor expansion around the origin:

ϕðr⃗Þ ¼ Aþ Br⃗2: ð33Þ

The linear term does not appear to ensure that the Laplacian
of the wave function is finite at the origin. The coefficients
can also be written as A ¼ ϕð0Þ and B ¼ 1

6
∇2ϕð0Þ, and

using Eqs. (24) and (25) we get the values

A ¼
�
1 − 2CF

αs
π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Nc
hO1iJ=ψ

s
¼ 0.213 GeV3=2; ð34Þ

B ¼ −
1

6
Ahq⃗2iJ=ψ ¼ −0.0157 GeV7=2: ð35Þ

The uncertainties in the long-distance matrix elements are
correlated as discussed above, and in our numerical
calculations this correlated uncertainty is propagated to
the coefficients A and B.
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We then want to write our wave function ansatz (33) in
light cone coordinates ðk; zÞ. We do this by first going to
momentum space:

ψλ
ss̄ðk⃗Þ ¼

Z
d3r⃗e−ik⃗·r⃗ψλ

ss̄ðr⃗Þ ¼ Uλ
ss̄ϕðkÞ

¼ Uλ
ss̄ð2πÞ3ðAδ3ðk⃗Þ − B∇2

kδ
3ðk⃗ÞÞ; ð36Þ

where k⃗ ¼ ðk; k3Þ. We then want to change the longitudinal
momentum variable from k3 to the plus momentum fraction
carried by the quark: z. Unfortunately there is no unique
way to do this, due to the different nature of instant form
and light cone quantization. In principle we would want to
define z as the ratio of the quark kþ to the meson
Pþ ¼ MV=

ffiffiffi
2

p
, working in the rest frame of the meson.

However, a quark inside a bound state described as a
superposition of different k⃗ modes is not exactly on shell,
its energy being affected by the binding potential. Thus we
do not precisely know the k0 required to calculate kþ from
k3. The rest frame wave function also includes values of k3

that are very large, leading to values of kþ that are larger
than MV=

ffiffiffi
2

p
. This is perfectly possible in instant form

quantization with the time variable t. However, in light
cone quantization kþ is a conserved momentum variable
and has to satisfy 0 < kþ < Pþ. The procedure that we
adopt here is (similarly to e.g., [96]) to define the
momentum fraction in practice as z ¼ kþq =ðkþq þ kþq̄ Þ,
where kq and kq̄ are the quark and antiquark momenta,

with kþ calculated assuming k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c;NR þ k⃗2
q

. In other
words, we normalize by the total plus momentum of the
quark-antiquark pair, instead of the meson plus momentum,
and assume an on-shell dispersion relation. This choice has
the advantage that it leads to 0 < z < 1 by construction.
This leads us to the expression for the longitudinal
momentum in the meson rest frame k3 as

k3 ¼ M

�
z −

1

2

�
; ð37Þ

where

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

c;NR

zð1 − zÞ

s
ð38Þ

is the invariant mass of the quark-antiquark pair. We
emphasize that since this choice is not unique, we might
expect corrections or ambiguities proportional to powers of
the difference between the meson mass and the quark-
antiquark pair invariant mass M2

V −M2 to appear. Such
corrections are, however, higher order corrections in the
nonrelativistic limit and also numerically very small for
J=ψ for the values of mc;NR and hq⃗2i used here. We could
also hope that since the invariant mass is a rotationally
invariant quantity, these ambiguities would not lead to
serious violations of rotational invariance (which expresses
itself here as the equality of physical properties such as
decay widths of transverse and longitudinal polarization
states). We will see an example of such a correction
explicitly in Appendix B.
To change the variables in our wave function, one needs

to be careful with the delta functions and their derivatives.
We therefore make the change by requiring that the overlap

Z
d3k⃗
ð2πÞ3 ψ

λ
ss̄ðk⃗Þφðk⃗Þ ¼

Z
d2k
ð2πÞ2

dz
4π

ψλ
ss̄ðk; zÞφðk; zÞ; ð39Þ

where φ is an arbitrary wave function, does not change
under the change of variables. This requirement tells us that
the scalar part ϕðk⃗Þ changes to

ϕðk; zÞ ¼ ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffi
2
∂z
∂k3

r �
Aδ

�
z −

1

2

�
δ2ðkÞ − B

�
∂z

� ∂z
∂k3 ∂z

� ∂z
∂k3 δ

�
z −

1

2

���
δ2ðkÞ þ δ

�
z −

1

2

�
∇2

kδ
2ðkÞ

��
; ð40Þ

where

∂z
∂k3 ¼

4zð1 − zÞ
M

: ð41Þ

Equation (40) is the scalar part of the NRQCD-based
vector meson wave function in the meson rest frame,
expressed in momentum space. We note that this wave
function is not normalizable due to the presence of the delta
functions. However, as the NRQCD approach can only be
used to constrain the coordinate space wave function and its
derivative at the origin, we are forced to use the expansion

of Eq. (33) which cannot result in a normalizable wave
function. However, for the purposes of this work this is not
a problem, as the vector meson production is sensitive to
the vector meson wave function overlap with the virtual
photon wave function, and the photon wave function is
heavily suppressed at long distances where the expansion
(33) is not reliable.

B. Wave function on the light front

The NRQCD wave function obtained in the previous
section is written in the vector meson rest frame in terms of
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the quark and antiquark spin states s and s̄. In order to
calculate overlaps with the virtual photon wave function
(17) and (18), we need to express it in terms of the light
cone helicities h and h̄. The transformation between these
two bases, usually expressed in terms of the 2-spinors, is
known as the “Melosh rotation” [46,47].
The Dirac spinors that are used to factorize the non-

relativistic wave function into a spin and scalar part are
eigenstates of the spin-z operator in the zero transverse
momentum limit. In terms of the two-component spin
vectors ξ defined above in Eqs. (31) and (32) they read

usðpÞ ¼
1ffiffiffiffi
N

p
� ξs

σ⃗·p⃗
Epþm ξs

�
; ð42Þ

vsðpÞ ¼
1ffiffiffiffi
N

p
� σ⃗·p⃗

Epþm ξ̃s

ξ̃s

�
: ð43Þ

The normalization factor N is determined from the con-
dition ūsus̄ ¼ −v̄svs̄ ¼ 2mδs;s̄.
Both the Dirac spinors in terms of the spin-z component

us and the helicity spinors uh [see Eqs. (7) and (8)] are
solutions to the Dirac equation and as such can be obtained
as linear combinations of each other. This mapping is the
Melosh rotation Rsh. It can be computed from the spinor
inner products (see also Ref. [97]) as

Rshðk; zÞ ¼ 1

2m
ūsðk; zÞuhðk; zÞ; ð44Þ

where kþ ¼ zqþ and qþ is the meson plus momentum and
s and h refer to the spin and light front helicity, respectively.
The helicity spinors uh and vh can also be written in a

similar form as the spinors in the spin basis, Eqs. (42) and
(43), by introducing the two-component helicity spinors χh.
To do this wewrite the helicity spinors (7) and (8) in the form

uhðpÞ ¼
1ffiffiffiffi
N

p
� χh

σ⃗·p⃗
Epþm χh

�
; ð45Þ

vhðpÞ ¼
1ffiffiffiffi
N

p
� σ⃗·p⃗

Epþm χ̃h

χ̃h

�
; ð46Þ

where N is again determined by the normalization require-
ment and χ̃h ¼ iσ2χ�h. Using this form one can check that the
Melosh rotation also connects the two-component spin and
helicity spinors as

Rshðk; zÞ ¼ ξ†sχh: ð47Þ
The coefficients Rsh can also be expressed as a 2 × 2

matrix rotating the 2-spinors

Rðk; zÞ ¼ mc;NR þ zM − iðσ⃗ × n⃗Þ · ðk; k3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc;NR þ zMÞ2 þ k2

q : ð48Þ

HereM is the invariant mass of the qq̄ system from Eq. (38)
and n ¼ ð0; 0; 1Þ is the unit vector in the longitudinal
direction. In terms of this matrix the 2-spinors ξs and χh are
related by

χ� ¼ Rðk; zÞξ�: ð49Þ
Using Eq. (47) we can now express the NRQCD wave

function in the light front helicity basis. We write

Ψλ
hh̄
ðk; zÞ ¼ Uλ

h;h̄
ϕðk; zÞ; ð50Þ

where the scalar part is given in Eq. (40). The helicity
structure Uλ

hh̄
is obtained by applying the transform (47) in

Eqs. (31) and (32), i.e.,

Uλ
hh̄

¼
X
ss̄

R�shðk; zÞR�s̄ h̄ð−k; 1 − zÞUλ
ss̄: ð51Þ

After the Melosh rotation, we compute the Fourier
transform to obtain the light front wave function in the
mixed transverse coordinate–longitudinal momentum frac-
tion space as

Ψλ
hh̄
ðr; zÞ ¼

Z
d2k
ð2πÞ2 e

ik·rΨλ
hh̄
ðk; zÞ

¼
Z

d2k
ð2πÞ2 e

ik·rUλ
h;h̄
ðk; zÞϕðk; zÞ: ð52Þ

The different helicity components of the final light front
wave function resulting from this procedure are

Ψλ¼0þ− ðr; zÞ ¼ Ψλ¼0
−þ ðr; zÞ ¼ π

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
mc;NR

p
�
Aδðz − 1=2Þ þ B

m2
c;NR

��
5

2
þ r2m2

c;NR

�
δðz − 1=2Þ − 1

4
∂2
zδðz − 1=2Þ

��
;

Ψλ¼1þþ ðr; zÞ ¼ Ψλ¼−1
−− ðr; zÞ ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffi

mc;NR
p

�
Aδðz − 1=2Þ þ B

m2
c;NR

��
7

2
þ r2m2

c;NR

�
δðz − 1=2Þ − 1

4
∂2
zδðz − 1=2Þ

��
;

Ψλ¼1þ− ðr; zÞ ¼ −Ψλ¼1
−þ ðr; zÞ ¼ ðΨλ¼−1

−þ ðr; zÞÞ� ¼ ð−Ψλ¼−1þ− ðr; zÞÞ� ¼ −
2πi

m3=2
c;NR

Bδðz − 1=2Þðr1 þ ir2Þ;

Ψλ¼1
−− ðr; zÞ ¼ Ψλ¼−1þþ ðr; zÞ ¼ Ψλ¼0þþ ðr; zÞ ¼ Ψλ¼0

−− ðr; zÞ ¼ 0: ð53Þ

T. LAPPI, H. MÄNTYSAARI, and J. PENTTALA PHYS. REV. D 102, 054020 (2020)

054020-8



The first relativistic correction to the wave function,
proportional to B or the wave function derivative, mixes the
helicity and spin states. In particular, in the case of
transverse polarization the h; h̄ ¼ � ∓ terms are non-
vanishing when the relativistic correction is included.
These terms also bring a nonzero contribution to photon-
vector meson overlaps. In general, we expect that if higher
order corrections in v were included in the wave function
parametrization, we would also find other components to
be nonvanishing.
The Melosh rotation is crucial here, as it generates

helicity structures that are not visible in the spin basis.
This is in contrast to some early attempts to transform the
wave functions obtained by solving the potential models to
the light front as done e.g., in Ref. [78]. The role of the
Melosh rotation in the context of vector meson light front
wave functions and exclusive scattering was first empha-
sized in Ref. [47]. More recently it was applied to J=ψ
production in the dipole picture in Ref. [98], and in [99]
different quark-antiquark potentials were studied in this
context. In the case of excited states such as ψð2SÞ the role
of the Melosh rotation is expected to be even more
significant [100].
Let us in passing briefly compare our approach to the one

in the recent work of Krelina, Nemchik, and Pasechnik in
Ref. [98]. In our approach, we take the NRQCD wave
function which only includes the S-wave contribution (D-
wave part is suppressed by v2). The quark spin dependence
is now trivial, as the total angular momentum must be
provided by the quark spins which gives us the structure of
Eq. (30). In Ref. [98], the authors assume, unlike we do
here, that the spin structure of the vector meson wave
function in the rest frame has the same form as the light
cone helicity structure of the photon light cone wave
function, Eqs. (17) and (18). This structure is then
supplemented by a wave function obtained from the
potential model, and a Melosh rotation to the light front
is applied at the end. Such a procedure leads to a large D-
wave contribution in the wave function, which we do not
have. We discuss the structure of the wave functions in
terms of S and D waves in more detail in Appendix A.
To determine the role of the relativistic corrections in the

vector meson wave function, we will also study for
comparison the fully nonrelativistic wave function where
our starting point for the scalar part is

ϕðr⃗Þ ¼ A0: ð54Þ

Following the previous procedure, the final result for the
light cone wave function can be read from Eq. (53) with the
substitutions A ¼ A0 and B ¼ 0. One notices that this can
now be written as

Ψλ
J=ψ ;hh̄

ðr; zÞ ¼ π
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
mc;NR

p Uλ
hh̄
A0δ

�
z −

1

2

�
: ð55Þ

In this extreme nonrelativistic limit ðk ¼ 0; z ¼ 1=2Þ the
Melosh rotation simply corresponds to an identity matrix so
that the spin and helicity bases are interchangeable here.
The normalization A0 is obtained from the van Royen–
Weisskopf equation for the leptonic width [101], which is
also obtained from Eq. (22) by neglecting the relativistic
correction proportional to hq2iJ=ψ=m2

c;NR, and the higher
order QCD correction ∼αs (note that parametrically
αs ∼ v):

ΓðJ=ψ → e−eþÞ ¼ 16πe2fαem
M2

J=ψ

jϕð0Þj2: ð56Þ

By using the experimental value for leptonic width [102],
we can calculate the coefficient A0 to be

A0 ¼ ϕð0Þ ¼ 0.211 GeV3=2: ð57Þ

C. Overlap with photon

Using the obtained J=ψ wave function on the light front,
Eq. (53), we can directly compute overlaps with the virtual
photon, Eqs. (17) and (18). In these overlaps, we also
include the phase factor exp ðiðz − 1

2
Þr · ΔÞ present in the

vector meson production amplitude in Eq. (1). We also
assume that the dipole amplitude does not depend on the
orientation θr of r as is the case in the IPsat parametrization
and integrate over θr. The overlaps summed over the quark
helicities read

r
X
hh̄

Z
2π

0

dθr

Z
1

0

dz
4π

ðΨL
J=ψÞ�ΨL

γ eiðz−1=2Þr·Δ ¼ reefQ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

2mc;NR

s �
AK0ðrϵ̄Þ

þ B
m2

c;NR

�
9

2
K0ðrϵ̄Þ þm2

c;NRr
2K0ðrϵ̄Þ−

Q2r
4ϵ̄

K1ðrϵ̄Þ þ
1

4
Δ2r2K0ðrϵ̄Þ

��
ð58Þ

and
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r
X
hh̄

Z
2π

0

dθr

Z
1

0

dz
4π

ðΨT
J=ψ Þ�ΨT

γ eiðz−1=2Þr·Δ ¼ reef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ncmc;NR

2

r �
AK0ðrϵ̄Þ

þ B
m2

c;NR

�
7

2
K0ðrϵ̄Þ þm2

c;NRr
2K0ðrϵ̄Þ −

r
2ϵ̄

ðQ2 þ 2m2
c;NRÞK1ðrϵ̄Þ þ

1

4
Δ2r2K0ðrϵ̄Þ

��
; ð59Þ

where ϵ̄2 ¼ Q2=4þm2
c;NR, Δ ¼ jΔj, and r ¼ jrj. In the

case of transverse polarization, the result is identical in
cases with λ ¼ þ1 and λ ¼ −1. We will study these
overlaps numerically in Sec. VA. We note that thanks to
the delta function structure in z in our wave function (53),
many phenomenological applications become numerically
more straightforward as the z integral can be performed
analytically.

IV. PHENOMENOLOGICAL WAVE FUNCTIONS

To provide a quantitative point of comparison for the
effect of the relativistic corrections, we want to compare the
light cone wave functions obtained in Sec. III to other
parametrizations used in the literature. For this purpose, let
us now discuss two specific alternative approaches used for
phenomenological applications in the literature.

A. Boosted Gaussian

A commonly used phenomenological approach to con-
struct the vector meson wave function is to assume that it
has the same polarization and helicity structure as the
virtual photon. This can be done by replacing the scalar part
of the photon wave functions (17) and (18) by an unknown
function as [48]

efezð1 − zÞK0ðϵrÞ
2π

→ ϕT;Lðr; zÞ; ð60Þ

with the explicit factor Q in the longitudinal wave function
replaced by the meson mass as 2Q → MV . The scalar
function ϕðr; zÞ is then parametrized, and the parameters
can be determined by requiring that the resulting wave
function is normalized to unity and reproduces the exper-
imental leptonic decay width. As we will discuss in more
detail in Appendix B, this procedure does not correspond to
the most general possible helicity structure. Nevertheless,
our result at this order in the nonrelativistic expansion can
in fact also be written in terms of the “scalar part of light
cone wave functions.” However, at higher orders in v
different a different structure could appear.
In the boosted Gaussian parametrization, the qq̄ invariant

mass distribution is assumed to be Gaussian, with the width
of the distribution R and the normalization factors NT;L

being free parameters. In mixed space, the parametrization
reads

ϕT;Lðr; zÞ ¼ N T;Lzð1 − zÞ

× exp

�
−

m2
cR2

8zð1 − zÞ −
2zð1 − zÞr2

R2
þm2

cR2

2

�
:

ð61Þ

In thisworkweuse theparameters constrained inRef. [87] by
using the same charm quark mass mc ¼ 1.3528 GeV as is
used when fitting the IPsat dipole amplitude to the HERA
data. The parameters are determined by requiring that the
longitudinal polarization can be used to reproduce the
experimental decay width. The obtained parameters
are R ¼ 1.507 GeV−1, NT ¼ 0.589 and NL ¼ 0.586 with
MV ¼ 3.097 GeV.
The specific functional form and helicity structure of the

boosted Gaussian parametrization imply that in the vector
meson rest frame there are both S- and D-wave contribu-
tions. This is demonstrated explicitly in Appendix A by
performing a Melosh rotation from the light front back to
the J=ψ rest frame. This feature is hard to describe in
potential model calculations, and our NRQCD-based wave
function in particular has only the S-wave component in the
rest frame. The D-wave contribution in the boosted
Gaussian wave function is, however, quite small.

B. Basis light-front quantization (BLFQ)

The second wave function we study here for comparisons
is based on explicit calculations on the light front. In this
approach, one constructs a light front Hamiltonian Heff ,
which consists of a one-gluon exchange interaction and a
nonperturbative confining potential inspired by light-front
holography. The formalism is developed in Refs. [103–109].
The quarkonium states are obtained by solving the

eigenvalue problem

Heff jψJPC
mJ

i ¼ M2
V jψJPC

mJ
i: ð62Þ

As a solution, one obtains the invariant mass M2
V spectrum

and the light front wave functions in momentum space

ψJPC
mJ

ðk; z; h; h̄Þ ¼ hk; z; h; h̄jψJPC
mJ

i: ð63Þ

Here J, P, C and mJ are the total angular momentum,
parity, C parity and the magnetic quantum number of the
state, respectively. The free parameters, value of the
coupling constant, strength of the confining potential,
quark mass and the effective gluon mass, can be
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constrained by the charmonium and bottomonium mass
spectra [110,111]. In this work, we use the most up-to-date
parametrizations from Ref. [111].
The obtained BLFQ wave functions have been applied in

studies of the J=ψ production in the dipole picture at HERA
[112] and in the context of exclusive J=ψ production in
ultraperipheral heavy ion collisions at the LHC in Ref. [113].
Following the prescription used in Refs. [112,113], we
consider the fitted quark mass mBLFQ

c ¼ 1.603 GeV in
the “BLFQ wave function” to be an effective mass of the
quarks in the confining potential, including some nonper-
turbative contributions. Consequently, when calculating the
overlaps we use, as in [112,113], mc ¼ 1.3528 GeV for the
charm mass in the photon wave function, as constrained by
the charm structure function data in the IPsat fit [87].

V. VECTOR MESON PRODUCTION

A. Photon overlap

The exclusive vector meson production cross section
depends on the overlap between the cc̄ component of the
virtual photon wave function with the vector meson wave

function; see Eq. (1). In Fig. 1 these overlaps for Δ ¼ 0 are
shown as a function of the transverse size r ¼ jrj of the
intermediate dipole, using four vectormesonwave functions:

1. NRQCD expansion, which is constructed by para-
metrizing the wave function and its derivative at the
origin based on NRQCD matrix elements including
corrections ∼v2 and performing the Melosh rotation
to the light front. This is our result from Sec. III.

2. Delta, which is the fully nonrelativistic limit
[Eq. (55)] of the above wave function, without
any information about the wave function derivative.

3. Boosted Gaussian, the phenomenological paramet-
rization discussed in Sec. IVA.

4. BLFQ wave function based on basis light-front
quantization, discussed in Sec. IV B.

In Fig. 2 we show the same overlaps plotted as ratios to the
fully nonrelativistic limit, i.e., theDelta parametrization. For
the NRQCD expansion-based wave function, we also show
themodel uncertainty related to theNRQCDmatrix elements
that control thevalue of thewave function and its derivative at
the origin. The uncertainty band is in this case computed as
discussed in Sec. III.

FIG. 1. Forward (Δ ¼ 0) virtual photon-J=ψ wave function overlaps computed using the different vector meson wave functions as a
function of the dipole size r at different photon virtualities.
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The effect of the first relativistic correction can be
determined by comparing theDelta andNRQCD expansion
wave functions. At large dipoles the negative velocity
suppressed ∼r2 contribution suppresses the vector meson
wave function1 compared to the fully nonrelativistic form.
This is especially visible at small Q2. At larger photon
virtualities, the exponential suppression in the photon wave
function becomes dominant before the relativistic −r2
correction becomes numerically important. Thus, while
the effect of the relativistic correction is dramatic in the
ratio in Fig. 2, at large Q2 it is insignificant for the actual
overlap, as is seen in Fig. 1.
For small dipoles the wave functions are most strictly

constrained by the quarkonium decay widths. The NRQCD
parametrization does not, however, reduce exactly to the
fully nonrelativistic Delta parametrization in the small r

FIG. 2. Ratios of the forward (Δ ¼ 0) virtual photon-J=ψ wave function overlaps computed using the different vector meson wave
functions to the fully nonrelativistic Delta parametrization as a function of the dipole size r at different photon virtualities.

FIG. 3. Total J=ψ production cross section as a function of
virtuality computed using different vector meson wave functions
compared with H1 [4] and ZEUS [8] data.

1The wave function would change sign at r0 ¼ 0.73 fm. As
there should be no node in the J=ψ wave function, we set the
wave function to zero at r > r0. We have checked that this cutoff
has a negligible effect on our numerical results.
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limit. This can be traced back to the fact that the gradient
correction also affects the decay width, as seen in Eq. (22)
[and from the fact that the constants A in (34) and A0 in (57)
are different]. A part of the three-dimensional gradient
correction becomes a correction to the functional form in z
even at r ¼ 0. This leads to the overlaps at small r being
slightly different, even though the same decay width data
are used to obtain the parameters of the rest frame wave
functions.
Both the boosted Gaussian and BLFQ wave functions

are even more suppressed at large dipole sizes than the
NRQCD parametrization. This is most clearly seen on the
ratio plot, Fig. 2. This is a straightforward consequence of
the fact that in these parametrizations the wave function
normalization imposes an additional suppression at large r.
For the boosted Gaussian parametrization this additional
suppression happens at such a large r that the overlap is
already very small and thus has a negligible effect on the
overall overlap in Fig. 1. The boosted Gaussian para-
metrization is very close to our NRQCD also for small
dipoles. The BLFQ parametrization yields a somewhat
larger wave function overlap at small r than our NRQCD
one or the boosted Gaussian.2

The suppression with respect to the nonrelativistic limit
is larger for the longitudinal polarization state than for the
transverse one. This can be understood as follows. The
longitudinal virtual photon wave function depends on the
quark momentum fraction as ∼zð1 − zÞ [see Eq. (17)] and
as such is peaked at z ¼ 1=2. The z structure of the fully
nonrelativistic wave function is δðz − 1=2Þ, and when the
first relativistic corrections are included, the z ¼ 1=2 region
still dominates the overlap. On the other hand, the trans-
verse photon wave function is not peaked at z ¼ 1=2; see
Eq. (18). Thus, the suppression from the ∂2

zδðz − 1=2Þ term
in the relativistic correction is smaller for the transverse
polarization.

B. J=ψ production

The total exclusive DIS J=ψ production cross section for
a proton target at W ¼ 90 GeV is shown in Fig. 3,
compared with the H1 [4] and ZEUS [8] data. The overall
normalization of the cross section has a relatively large
theoretical uncertainty. We note that the two corrections
discussed in Sec. II, the real part and especially the
skewedness correction are numerically significant, up to
∼50% (see e.g., Ref. [40]). As discussed in Sec. II,
especially the skewedness correction is not very robust
and its applicability in the dipole picture used here is not

clear. In addition to the possibly problematic skewedness
corrections, the fact that our NRQCD-based wave functions
are not normalized affects the absolute normalization of the
vector meson production cross sections. Thus our focus
here is rather on the relative effects of different meson wave
functions and the dependence on Q2.
The vector meson cross section is dominated by dipole

sizes of the order of 1=ðQ2 þM2
VÞ as can be seen3 from

Fig. 1. Consequently, it is more instructive to look at the
dependence of the J=ψ cross section on Q2 than the overall
normalization. From Fig. 3 one sees that the fully non-
relativistic wave function results in a too steep Q2 depend-
ence compared to the HERA data. The first relativistic
correction slows down the Q2 evolution close to the
photoproduction region and leads to a better agreement
with the experimental data. This is a consequence of the
basic behavior of the relativistic correction as a ∼ − r2

modification that suppresses the vector meson wave func-
tion strongly at large dipoles. Thus the reduction from the
relativistic correction is larger for smaller Q2. At large Q2

the exponential suppression from the photon wave function
starts to dominate at smaller dipole sizes, and the relativistic
−r2 correction becomes negligible. However, the relativ-
istic contribution to the momentum fraction z structure is
present at all Q2 and suppresses the longitudinal cross
section more than the transverse one.
A similar trend in the Q2 dependence is also visible with

both the boosted Gaussian and BLFQ wave functions. For
the boosted Gaussian case, the agreement with HERA data
has been established numerous times in the previous
literature, e.g., in Ref. [48]. The Q2 dependence of the
cross section is slightly weaker when the BLFQ wave
function is used, but the difference is comparable to the
experimental uncertainties. We note that in Ref. [112] the
BLFQ wave function is found to result in a cross section
underestimating the HERA data in the photoproduction
region. In this work, compared to the setup used in
Ref. [112], we use an updated BLFQ parametrization from
Ref. [111] which was shown in Ref. [113] to result in a
good description of the J=ψ production in ultraperipheral
proton-proton collisions at the LHC, which in practice
probe vector meson photoproduction [15,16].
To cancel normalization uncertainties, we next study

cross section ratios. In Fig. 4 the longitudinal-to-transverse
ratio of the J=ψ production cross section is shown as a
function of the photon virtuality. The results are compared
with the H1 and ZEUS data from Refs. [4,8]. The first
relativistic correction reduces the longitudinal cross section
more than the transverse one. As discussed above, this is
due to the fact that a part of the correction shifts the meson
wave function away from the δðz − 1=2Þ, which is the

2The parameters in the BLFQ wave function are constrained
by the charmonium mass spectrum and not the decay widths that
probe the wave function at r ¼ 0. Consequently the BLFQ wave
function is not required to result in exactly the same decay width
as the other wave functions, which explains the difference at
small r.

3Note, however, that as the dipole amplitude scales as N ∼ r2
at small r, the dominant dipole size scale for the cross section is
larger than the maximum of the overlap peaks in Fig. 1.
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structure preferred by longitudinal photons but not by
transverse photons. This shows up as a decrease in the
longitudinal to transverse ratio as a function of Q2. The
effect is even stronger with the boosted Gaussian and
BLFQ wave functions.
Finally, we study vector meson production in the future

Electron Ion Collider. As the diffractive cross section at
leading order in perturbative QCD is approximatively
proportional to the squared gluon density, exclusive vector
meson production is a promising observable to look for
saturation effects at the future Electron Ion Collider (see
e.g., [114]).
To quantify the nonlinear effects, we compute the

nuclear suppression factor

σγ
�A→J=ψA

cA4=3σγ
�p→J=ψp : ð64Þ

The denominator corresponds to the so-called impulse
approximation, which is used to transform the photon-
proton cross section to the photon-nucleus case in the
absence of nuclear effects, but taking into account the
different form factors (transverse density profiles Fourier
transformed to the momentum space). The A4=3 scaling can
be understood to originate from the fact that the coherent
cross section at t ¼ 0 scales as ∼A2, and the width of the
coherent spectra (location of the first diffractive minimum)
is proportional to 1=R2

A ∼ A−2=3. The numerical factor c
depends on the proton and nuclear form factors and is
found to be very close to c ¼ 1

2
in Ref. [87]. In the absence

of nonlinear effects (or shadowing effects in the gluon
distribution), with dipole amplitudes (19) and (21) that
depend linearly on r2xgðx; μ2Þ, this ratio is exactly 1.

The obtained nuclear suppression factor is shown in
Fig. 5 in the Q2 range accessible at the Electron Ion
Collider. We emphasize that all the nuclear modifications in
this figure are calculated with exactly the same dipole cross
sections, corresponding to the same nuclear shadowing (as
measured e.g., by the nuclear suppression in FL or F2).
Thus the difference between the curves results purely from
vector meson wave function effects. When using the
NRQCD wave function with the relativistic correction,
the boosted Gaussian wave function or the BLFQ wave
function, the obtained nuclear suppression factors are
practically identical. Even though large mass of the vector
meson renders the scale in the process large, a moderate
suppression ∼0.75 is found at small and moderate Q2. In
the smallQ2 region the uncertainty obtained by varying the
NRQCD matrix elements is large.
The fully nonrelativistic wave function results in a much

stronger suppression at small Q2. This can be understood,
as it was already seen in Fig. 1 that this wave function gives
more weight on larger dipoles compared to the other
studied wave functions. As the larger dipoles are more
sensitive to nonlinear effects, a larger nuclear suppression
in this case is anticipated. The first relativistic correction
∼ − r2 suppresses the overlap at large dipole sizes and
consequently the nuclear suppression. At higher Q2 the
photon wave function again cuts out the large dipole part of
the overlap in all cases, and as such the results obtained by
applying the fully nonrelativistic wave function do not
differ from other wave functions any more. At asymptoti-
cally large Q2 only small dipoles contribute and the dipole
amplitudes can be linearized. Consequently, the suppres-
sion factor approaches unity at large Q2 independently of
the applied wave function.
The fact that the fully nonrelativistic wave function

results in a very different nuclear suppression demonstrates

FIG. 5. Nuclear suppression factor for total coherent J=ψ
production as a function of Q2 computed using the different
vector meson wave functions.

FIG. 4. Longitudinal J=ψ production cross section divided by
the transverse cross section as a function of photon virtuality.
Results obtained with different wave functions are compared with
the H1 [4] and ZEUS [8] data.
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that the dependence on the meson wave function does not
completely cancel in the nucleus-to-proton cross section
ratios. Consequently, a realistic (and relativistic) descrip-
tion of the vector meson wave function is necessary for
interpreting the measured nuclear suppression factors. This
indicates that there is a large theoretical uncertainty in using
the fully nonrelativistic formula of Ryskin [3], not only for
extracting absolute gluon distributions, but even for
extracting nuclear modifications to the dipole cross section
(or the gluon density) from cross section ratios.

VI. CONCLUSIONS

In this work we proposed a new parametrization for the
heavy vector meson wave function based on NRQCD long-
distance matrix elements. These matrix elements can be
used to simultaneously constrain both the value and the
derivative of the vector meson wave function at the origin
using quarkonium decay data. This approach provides a
systematic method to compute the vector meson wave
function as an expansion in the strong coupling constant αs
and the quark velocity v.
Compared to many phenomenological approaches used

in the literature, our approach uses two independent
constraints (the wave function value and its derivative).
The obtained wave function is rotationally symmetric in the
rest frame and contains only the S-wave component.
Consequently, we simultaneously obtain a consistent para-
metrization for both polarization states. This is unlike in
some widely used phenomenological parametrizations
where the virtual photon like helicity structure is assumed
on the light front. Relating light cone wave functions to rest
frame ones also provides a consistent way to discuss the
effect of a potentialD-wave contribution to the meson wave
function. We do not see indications, neither theoretically
nor phenomenologically, that a significant D-wave con-
tribution would be required or favored for the J=ψ .
The first relativistic correction to the wave function,

controlled by the wave function derivative at the origin, is
found to have a sizable effect on the cross section. The
negative ∼ − r2 relativistic contribution in terms of the
transverse size r suppresses the obtained wave function at
larger dipole sizes. The momentum fraction part of the
correction partially compensates for this effect for the
transverse photon by shifting the wave function away from
the fully nonrelativistic configuration where both quarks
carry the same fraction of the longitudinal momentum, a
configuration which is not preferred by the transverse
photon.
A disadvantage in our approach is that it is not possible

to obtain a wave function which is normalized to unity. In
the NRQCD framework the value of the wave function at
long distances is parametrized by a nonperturbative matrix
element, whose effect is felt in the value of the wave
function near the origin. This can lead to an overestimation
of the cross section at Q2 ¼ 0, where one is most sensitive

to the long-distance behavior of the wave function. In
practice, however, we obtain cross sections that are quite
similar to what is given by e.g., the boosted Gaussian
parametrization. The wave function overlap with the
photon is also smaller than with the BLFQ approach.
Thus the lack of normalization in the wave function does
not seem to be an important effect for J=ψ. The situation
would be different for lighter vector mesons.
The structure of the wave function can be probed by

studying cross sections (and cross section ratios) at differ-
ent photon virtualities where the dipole sizes contributing
to the cross section vary. The first relativistic correction is
found to weaken the Q2 dependence of the total J=ψ
production cross section and the longitudinal-to-transverse
ratio. These effects are broadly similar to predictions
obtained by the boosted Gaussian parametrization or by
the BLFQ wave function that is based on an explicit
calculation on the light front including confinement effects.
When comparing vector meson production off protons to

heavy nuclei, we find that the wave function does not
completely cancel in the nuclear suppression factor, which
compares the γ�A cross section to the γ�p in the impulse
approximation. This demonstrates that a realistic vector
meson wave function is necessary to properly interpret the
nuclear suppression results, and in particular a fully non-
relativistic approach cannot be reliably used to extract the
nonlinear effects on the nuclear structure.
In addition to the corrections in velocity, it would be

important to include perturbative corrections in the strong
coupling αs in the calculation of exclusive vector meson
production. Indeed some recent advances [94,115] are
gradually making it possible to do so in the dipole picture.
However, a study of the phenomenological implications of
these αs corrections remains to be done. In terms of
understanding current and future experimental collider
data, it would also be important to explore whether this
approach can be extended to excited states such as
the ψðnSÞ.
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APPENDIX A: ORBITAL DECOMPOSITION

In Sec. III we highlighted how it is crucial to properly
transform the NRQCD-based vector meson wave function
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to the light front by performing the Melosh rotation. In
particular, we demonstrated that this rotation gives rise to
the helicity structures absent in the rest frame spin structure
(e.g., nonzero Ψλ¼�1

h¼�1;h̄¼∓1
).

In this section, we illustrate the role of the Melosh
rotation by considering both the J=ψ and virtual photon (in
the case of charm quarks) wave functions and determining
the contributions from the S- andD-wave components. The
NRQCD-based wave function obtained in Sec. III contains
only the S-wave structure. For the J=ψ wave function, we
study here the commonly used boosted Gaussian para-
metrization (see Sec. IVA).
The S and D waves are properly defined in the rest

frame. Consequently, we take the vector meson or the
virtual photon wave functions on the light front written in
momentum space and perform the Melosh rotation to
transform them to the meson rest frame. In the rest frame
we then remove either the S- or D-wave contribution and
transform the final wave function back to the light front and
Fourier transform to transverse coordinate space.
The boosted Gaussian parametrization of the J=ψ wave

function is decomposed to S andD components in Fig. 6. In
principle the angular momentum structure of the para-
metrization could turn out to correspond to a large D-wave
component in the rest frame. Indeed it is mostly constrained
by the choice of having helicity structure on the light front
exactly the same as that of the photon, which has a large
D-wave component as we will see. However, in practice the

S-wave-only result is a good approximation of the full
result. This is due to the small quark velocities contributing
to the wave function, as in the momentum space the
boosted Gaussian wave function is exponentially sup-

pressed at large invariant mass M2 ¼ k2þm2
c

zð1−zÞ . Thus, large
transverse momentum jkj or large longitudinal momentum
(z → 0 or z → 1) contributions are heavily suppressed and
do not generate a significant D-wave component.
A similar discussion can be carried out for the BLFQ

wave function described in Sec. IVA. As shown in [116], in
the rest frame, the squared J=ψ BLFQ wave function is
dominated by the S-wave component, the D wave con-
tributing only a small fraction of the order of 0.1%…4%
(depending on the polarization). In heavier mesons, this
contribution is even smaller. This is comparable to the
boosted Gaussian case discussed above.
Overall, based on neither the boosted Gaussian nor the

BLFQ parametrizations, we do not see any confirmation for
the result of Ref. [98], where the D-wave part of the J=ψ
wave function was found to result in tens of percent
contribution on the vector meson production cross section.
Part of this discrepancy might be merely a question of
terminology. In our discussion here, we have insisted that
the terms S wave and D wave refer to the angular
momentum components of the three-dimensional wave
function in the meson rest frame. Thus the mere presence,
in the light cone wave function, of terms proportional to
transverse momenta originating from the Melosh rotation
cannot be taken as an indication of a D-wave component in
the meson.
Let us now move to the case of a virtual photon. Since a

spacelike virtual photon does not have a rest frame and is
not a bound state, it is not customarily thought of in terms
of an S-D-wave decomposition. Now, however, we have an
explicit light cone wave function for the photon just like for
the meson, and we can use the same procedure to determine
its S- andD-wave components in the meson rest frame. The
resulting squared light front wave functions summed over
quark helicities are shown in Fig. 7. The full photon wave
function, written in Eqs. (17) and (18), is denoted by SþD,
as it can be written as a sum of these two components.
When compared to the full result, the squaredD-wave-only
contribution is found to be strongly suppressed. There is
also a contribution originating from the overlap between
the S- andD-wave contributions. This term would vanish if
we integrated over all the angles. Here, we only integrate
over the azimuthal direction of r. Integration over the
momentum fraction z corresponds to the evaluation of the
coordinate space wave function at x3 ¼ 0, and conse-
quently one angular integral is not performed and the
overlap does not vanish. The relative importance of differ-
ent contributions is found to be approximatively indepen-
dent of Q2.
The S −D overlap contribution is numerically signifi-

cant, which is reflected by the large difference between the

FIG. 6. Vector meson wave function from the boosted Gaussian
parametrization decomposed into S- and D-wave components in
the J=ψ rest frame as a function of the quark-antiquark transverse
separation. The left panel shows the longitudinal polarization and
the right panel transverse polarization.
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full result and the S-wave-only contribution. This suggests
that even though the D-wave contribution is suppressed by
the quark velocity, the charm quark mass is not large
enough to render this contribution negligible. This is due to
the fact that the photon wave function in the momentum
space behaves as ∼1=k2, where k is the quark transverse
momentum, and this powerlike tail brings numerically large
contributions from relatively large momenta. Additionally,
the integration over the longitudinal momentum fraction z
includes high momentum contributions, as the photon wave
function has a support over a large range of z.
The contribution from the S −D overlap changes sign at

large transverse separations in case of the longitudinal
polarization. There is no node in the radial part of the wave
function, but the spherical harmonic function describing the
angular part of theD-wave component changes sign, which
explains the sign flip. In the S −D overlap mostly the
helicity-þ− and −þ components of the D-wave contribute
by coupling to the S wave. On the other hand, in the D-
wave squared wave function, one sums all helicity com-
ponents. As the D-wave component itself is a relativistic
correction, none of the helicity structures dominates unlike
in the S-wave part. Moreover, only theþ− and −þ helicity
components change sign at large distances, and as the þþ
and −− components do not vanish in this region, no node
appears in the squared D wave result. In the case of
transverse polarization with λ ¼ �1, the helicity compo-
nent �� in the D wave also changes the sign at large
distances, but this effect is not easily visible in Fig. 7 as the
other helicity components that do not change sign
dominate.

APPENDIX B: PHOTONLIKE
PARAMETRIZATIONS OF LIGHT CONE WAVE

FUNCTIONS

As discussed in Sec. IV, an often used approach to
parametrize vector meson wave functions is to start from
the helicity structure of the virtual photon light cone wave
functions (17) and (18). One then replaces the Bessel
function K0 in the photon wave functions (17) and (18) by
an unknown function as [48]

efezð1 − zÞK0ðϵrÞ
2π

→ ϕT;Lðr; zÞ; ðB1Þ

with the explicit factor Q in the longitudinal wave function
replaced by the meson mass as 2Q → MV . This leads, with
our sign conventions, to the wave function being written as

ψλ¼0
hh̄

ðr; zÞ ¼
ffiffiffiffiffiffi
Nc

p
δh;−h̄

×

�
MV þ m2

c −∇2
r

MVzð1 − zÞ
�
ϕLðr; zÞ; ðB2Þ

ψλ¼�1
hh̄

ðr;zÞ¼
ffiffiffiffiffiffiffiffi
2Nc

p 1

zð1−zÞðmcδh;�δh̄;�

∓ ie�iθrðzδh;�δh̄;∓−ð1−zÞδh;∓δh̄;�Þ∂rÞϕTðr;zÞ:
ðB3Þ

The scalar functions ϕT;Lðr; zÞ are then parametrized,
and the parameters can be determined by requiring that the
resulting wave function is normalized to unity and repro-
duces the experimental leptonic decay width. In terms of
Lorentz-invariant form factors this means that the meson is
assumed to have a nonzero Dirac form factor but a
vanishing Pauli form factor, since this is the structure
dictated by the gauge-boson-fermion vertex at leading order
perturbation theory. The procedure therefore does not
generate the most general possible helicity structure.
This photonlike parametrization approach starts from a

spacelike photon, where the photon momentum breaks
rotational symmetry that is manifested here as a symmetry
between longitudinal and transverse meson polarization
states. The common approach is to separately parametrize
the longitudinal and transverse functions ϕT;Lðr; zÞ. The
helicity structure obtained by generalization from the
photon wave function is of course consistent with rotational
symmetry, since the decay of a timelike virtual photon is
rotationally symmetric. Thus one could derive a constraint
relating ϕLðr; zÞ and ϕTðr; zÞ by requiring the meson rest
framewave functions to be the same. To our knowledge this
approach has not, however, been used in the literature.
Using separate parametrizations for ϕT;Lðr; zÞ should be
contrasted with the approach in this paper. Here, we
maintain rotational invariance in the meson rest frame,
in particular starting from the same decay constants

FIG. 7. Virtual photon wave function integrated over the
longitudinal momentum fraction z decomposed to S- and D-
wave components as a function of the quark-antiquark transverse
separation.
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calculated from the rest frame wave functions. Our pro-
cedure for going from the rest frame to the light cone wave
function therefore simultaneously determines the wave
function for both longitudinal and transverse polarization
states.
One can take the parametrization (B2) and (B3) in

momentum space, perform the inverse Melosh rotation
and separate the S- and D-wave components to get a rest
frame three-dimensional wave function. Assuming that the
Fourier transforms of the scalar functions are rotationally
invariant, i.e., ϕT;Lðk; zÞ depend only on k ¼ jk⃗j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM=2Þ2 −m2

c

p
, the result of this exercise in momentum

space is

ψλ¼0
S ¼ ϕLðkÞ

�
MV þ 4E2

MV

�

×
ffiffiffiffiffiffiffiffiffi
Ncπ

p 2

ðEþmcÞð2EÞ3=2
�
1

3
k2 þ ðEþmÞ2

�
;

ðB4Þ

ψλ¼þ1;−1
S ¼ ϕTðkÞ · 4E

×
ffiffiffiffiffiffiffiffiffi
Ncπ

p 2

ðEþmcÞð2EÞ3=2
�
1

3
k2 þ ðEþmÞ2

�
;

ðB5Þ

ψλ¼0
D ¼ ϕLðkÞ

�
MV þ 4E2

MV

�

×
ffiffiffiffiffiffiffiffiffi
Ncπ

p 2

ðEþmcÞð2EÞ3=2
4

3
ffiffiffi
2

p k2; ðB6Þ

ψλ¼þ1;−1
D ¼ ϕTðkÞ · 4E

×
ffiffiffiffiffiffiffiffiffi
Ncπ

p 2

ðEþmcÞð2EÞ3=2
4

3
ffiffiffi
2

p k2: ðB7Þ

These expressions are written in terms of the energy of the

quark in the meson rest frame E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

c

q
¼ M=2, and

k ¼ jk⃗j. Let us point out a few aspects of these expressions.
Firstly, as discussed above, in the photonlike parametrization
there is always a D-wave component in the meson wave
function. It is, as expected, explicitly a relativistic correction,
i.e., proportional to the squared 3-momentum of the quark.
Secondly, the rest framewave functions of the transverse and
longitudinal polarizations are not the same but differ by a
factor ðMV þ 4E2

MV
Þ=ð4EÞ ≈ 1þOððM −MVÞ2Þ, whereM is

the invariant mass of the quark pair andMV the mass of the
meson. As discussed earlier in Sec. III, the coordinate
transformation from k3 to z inevitably introduces ambiguities
that are proportional to this difference, so this should not
come as a surprise. In an NRQCD power counting, this

difference is of the order of the binding energy of the meson,
which is higher order than we are considering here.
In spite of this discussion, the wave function that we

obtained in Sec. IV can in fact be written in a photonlike
form in terms of scalar parts of light cone wave functions.
In the notation of [48] these read

ϕLðr;zÞ¼
πffiffiffiffiffiffi

Nc
p ð2mc;NRÞ3=2

4MVmc;NR

4m2
c;NRþM2

V

·

�
Aδðz−1=2Þ

þ B
m2

c;NR

��
34m2

c;NRþ5
2
M2

V

4m2
c;NRþM2

V
þm2

c;NRr
2

�
δðz−1=2Þ

−
1

4
∂2
zδðz−1=2Þ

��
; ðB8Þ

ϕTðr; zÞ ¼
πffiffiffiffiffiffi

Nc
p ð2mc;NRÞ3=2

�
Aδðz − 1=2Þ

þ B
m2

c;NR

��
11

2
þm2

c;NRr
2

�
δðz − 1=2Þ

−
1

4
∂2
zδðz − 1=2Þ

��
: ðB9Þ

We emphasize that we do not expect that writing down such
a parameterization in terms of two scalar parts of a light
cone wave function having the helicity structure of a photon
would be possible at higher orders in the nonrelativistic
expansion.
As a side remark, we discussed above that the photonlike

structure generically implies a nonzero D-wave compo-
nent; see Eqs. (B6) and (B7). On the other hand, our
NRQCD-based wave function by construction has no D
component. However, the D-wave component resulting
from inserting the scalar parts (B8) and (B9) into the
formulas for the D-wave contribution, Eqs. (B6) and (B7),
behaves as ∼k2∇2

k⃗
δð3Þðk⃗Þ. Such a function actually yields

zero when convoluted with any test function fðk⃗Þ, since the
angular integral picks out the l ¼ 2 component of f, which
must vanish at k ¼ 0. Thus the D-wave contribution
corresponding to (B8) and (B9) is in fact zero in a
distribution sense.
It is interesting to note that, when one calculates from

these expressions the decay constants for the different
polarization states using the light cone perturbation theory
expressions (26) and (27) in Ref. [48], one obtains

fL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Nc

mc;NR

s
ef

�
Aþ 5

2

B
m2

c;NR

�
; ðB10Þ
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fT ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Nc

mc;NR

s
ef

2mc;NR

MV

�
A −

1

2

B
m2

c;NR

�
: ðB11Þ

The results are not exactly equal. However, as discussed
above, if one approximates the meson mass by the quark
pair invariant mass, as we did in transforming to the
momentum fraction z, they do reduce to the same result.
This can be seen explicitly by replacing MV in (B11) by

hMi ≈ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c;NR þ hq2i
q

and using Eq. (35) to write, at

lowest nontrivial order in the quark velocity, 2mc;NR=MV ≈

1þ 3B=ðm2
c;NRAÞ (note that B < 0). In this approximation

Eqs. (B10) and (B11) also give back the same decay width
expression that we are using to determine the rest frame
wave function. We reiterate that a difference such as this
can be expected in our procedure. We are constructing our
wave functions by requiring the decay widths calculated
from the rest frame wave functions to have the correct value
and to be the same for the different polarization states. The
coordinate transformation to light cone wave functions
does not conserve these properties exactly, but only up to a
given order in the nonrelativistic expansion.
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We calculate exclusive production of a longitudinally polarized heavy vector meson at next-to-leading 
order in the dipole picture. The large quark mass allows us to separately include both the first QCD 
correction proportional to the coupling constant αs, and the first relativistic correction suppressed by the 
quark velocity v2. Both of these corrections are found to be numerically important in J/ψ production. 
The results obtained are directly suitable for phenomenological calculations. We also demonstrate how 
vector meson production provides complementary information to structure function analyses when one 
extracts the initial condition for the energy evolution of the proton small-x structure.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Deep inelastic scattering (DIS) processes enable precision stud-
ies of proton and nuclear structure thanks to the pointlike struc-
ture of the electron probe. The vast amount of accurate mea-

surements in electron-proton collisions at HERA has allowed for 
a detailed determination of the partonic structure of the proton. 
In particular, a rapid increase of the gluon density towards small 
momentum fraction x has been observed [1,2]. This rise can not 
continue indefinitely without violating unitarity, and nonlinear dy-
namics should eventually start to affect the proton or nuclear 
structure at small x.

In order to describe the hadron structure at high densities 
where nonlinear dynamics should be included, an effective theory 
of quantum chromodynamics known as the Color Glass Condensate 
(CGC) has been developed, see Refs. [3–5] for a review. Despite the 
success of the CGC framework in describing high-energy scattering 
measurements, there is no solid evidence that nonlinear satura-
tion effects are visible at current collider energies. In order to 
access more pronounced nonlinear effects, there are concrete plans 
to construct an Electron-Ion Collider in the US [6–8] with similar 
longer term plans at CERN [9,10] and in China [11]. As the parton 
densities are enhanced by approximatively A1/3 in heavy nuclei, 
the nonlinear dynamics should be more easily accessible by re-
placing the proton by a heavy nucleus in these future facilities.
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Exclusive vector meson production is an especially powerful 
tool in probing hadron structure at small-x. In exclusive processes 
there cannot be a net color charge transfer in the process which, 
at leading order, requires an exchange of two gluons at the am-

plitude level. This renders the cross section to be approximatively 
sensitive to the squared gluon density [12], and nonlinear dynam-

ics is expected to be pronounced in exclusive processes with heavy 
nuclear targets, see e.g. Ref. [13]. An additional benefit of exclu-
sive processes is the fact that only in these events it is possible 
to measure the total momentum transfer to the target, which is 
the Fourier conjugate to the impact parameter. This enables stud-
ies of the Generalized Parton Distribution Functions (GPDs) [14,15]
and the spatial structure of protons and nuclei with event-by-event 
fluctuations [16,17].

So far, almost all phenomenological applications in the CGC 
framework have been at leading order in the QCD coupling con-
stant αs, with the αs ln1/x contributions resummed to all or-
ders in terms of small-x evolution equations such as the Balitsky-
Kovchegov (BK) equation [18,19]. Additionally, a subset of higher-
order corrections to the evolution equation is included in terms 
of the running coupling corrections [20,21]. These applications in-
clude, for example, a successful description of the structure func-
tion [22,23] and vector meson production data [24–33] measured 
at HERA [34–36] and in Ultra Peripheral collisions [17,37] at the 
LHC [38–42]. In recent years, the theory has been developed to-
wards next-to-leading order accuracy, including derivations of the 
next-to-leading order evolution equations [43–47] with perturba-
tive corrections to initial conditions [48,49], and impact factors for 
structure functions [50–54], exclusive [55,56] and inclusive particle 
production [57–64].
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In this Letter we present the first calculation of the exclu-
sive heavy vector meson production at next-to-leading order (NLO) 
in photon-proton collisions. The advantage of heavy mesons such 
as the J/ψ is that the mass scale renders the process perturba-
tive even at low virtualities Q 2, enabling perturbative studies also 
in ultra peripheral collisions at RHIC and at the LHC where the 
photons are approximatively real. We include both the first QCD 
correction ∼ αs, and the first nonrelativistic correction ∼ v2. We 
focus on J/ψ production, in which case both contributions can be 
expected to be parametrically important as for the charm quark 
velocity one can estimate v2 ∼ αs [65]. These developments are 
crucial to enable precision studies of nonlinear dynamics in exclu-
sive scattering processes in the CGC framework. In this work we 
consider the case where the photon is longitudinally polarized, but 
note that it will be possible to extend the results to the transverse 
photon case in the future.

2. Exclusive scattering at high energy

At high energies, it is convenient to describe exclusive vec-
tor meson production in the dipole picture in the frame where a 
highly energetic photon scatters off the target proton or nucleus 
and forms a vector meson. The exclusive nature of the process 
requires that there is no net color exchanged in the process. In 
this frame, the partonic Fock states of the virtual photon, e.g. 
|qq̄〉 dipole and |qq̄g〉 at NLO, have a long lifetime compared to 
the timescale of the interaction. These partons propagate eikonally 
through the color field of the target at fixed transverse coordinates 
xi and pick up Wilson lines V (xi) in the fundamental (quarks) or 
adjoint (gluons) representation. The scattering amplitude can be 
conveniently written as a convolution of the photon and vector 
meson wave functions �γ ∗ and �V , and Wilson line operators in 
the mixed longitudinal momentum fraction zi , transverse coordi-
nate xi space. At high energies the imaginary part dominates, and 
the scattering amplitude at NLO in the case where the transverse 
momentum transfer to the target vanishes can be written as

− iA = 2

ˆ

x0x1

ˆ
dz0 dz1

(4π)
δ(z0 + z1 − 1)�

qq̄∗
V �

qq̄
γ ∗N01

+ 2

ˆ

x0x1x2

ˆ
dz0 dz1 dz2

(4π)2
δ(z0 + z1 + z2 − 1)�

qq̄g∗
V �

qq̄g
γ ∗ N012.

(1)

Here x0, x1 and x2 are the quark, antiquark and gluon transverse 
coordinates respectively, and z0, z1 and z2 are the fractions of the 
photon plus momentum carried by these partons. The calculations 
are done in the target rest frame where the photon plus momen-

tum is chosen to be large. The wave functions depend implicitly 
on quark and gluon helicities, and a summation over the helicity 
states is also implicit. We consider coherent scattering processes, 
where the target proton remains in the same quantum state (i.e. 
no target breakup). The coherent vector meson production cross 
section reads
d

dt
σγ ∗+A→V+A = 1

16π
|A|2. (2)

The Wilson line operator describing the qq̄ dipole-target scattering 
known as the dipole amplitude N01 is

1− N01 = S01 = Re
1

Nc

〈
V (x0)V

†(x1)
〉
, (3)

where x0 and x1 are the quark and antiquark transverse coordi-
nates. Here the average 〈〉 refers to the average of the target color 

charge configurations. Using the Fierz identity, the operator for the 
qq̄g-target scattering can be written as (see e.g. Ref. [50])

1− N012 = Nc

2CF

(
S02S12 − 1

N2
c

S01

)
. (4)

The transverse momentum transfer |�| ≈ √−t is the Fourier con-
jugate to the impact parameter. Consequently, an accurate calcula-
tion of the cross section differentially in |t| would require a realis-
tic description of the impact parameter dependence in the small-x

evolution equation. Such equations exist and have been solved in 
the literature [29,66–68], but come with the price that one has to 
model confinement scale effects that suppress long range Coulomb 
tails. In this work, we want to perform a rigorous NLO calculation 
and limit our analysis to the t = 0 case in which the diffractive 
scattering amplitude is only sensitive to the dipole-target scat-
tering amplitude integrated over the impact parameter, which we 
take to satisfy an impact parameter independent small-x evolution 
equation.

The necessary ingredients in the NLO calculation are the pho-
ton and vector meson wave functions and the dipole scattering 
amplitude, all at NLO level. The wave functions have been re-
cently calculated in the literature, first in the massless quark 
limit in Refs. [50,51,55], and recently the heavy quark contribu-
tions have become available [54,56]. These wave functions are 
reviewed in Sec. 3. The dipole amplitude N01 = N01(Y ) whose en-
ergy (or rapidity Y ) dependence is given in terms of the BK equa-
tion is also available at NLO accuracy. The BK equation requires a 
non-perturbative input that can be taken to describe the dipole-
target scattering amplitude at initial x, typically around x ∼ 0.01. 
This perturbative evolution then predicts the dipole amplitude at 
smaller x (higher energies). In this work we use a BK evolved 
dipole scattering amplitude with the initial condition fitted to the 
HERA structure function data [1,2] at NLO accuracy in Ref. [69] (in-
cluding only light quarks), using the public codes from Ref. [70].

3. Vector meson production at next to leading order

In order to calculate exclusive longitudinal quarkonium produc-
tion at next-to-leading order accuracy, light front wave functions 
for the longitudinally polarized virtual photon �γ ∗ and vector me-

son �V are needed at this order in αs (see also Ref. [71] for a 
discussion of negligibly small polarization changing contributions).

The virtual photon light front wave function at NLO accuracy 
in the case of massive quarks has recently been calculated in 
Ref. [54]. In our NLO calculation, we need the wave function de-
scribing the photon fluctuation to the |qq̄〉 Fock state at NLO, �qq̄

γ ∗ , 

and the tree level result for the formation of the |qq̄g〉 state, �qq̄g
γ ∗ . 

Detailed expressions can be found from Ref. [54], and we also 
explicitly show these results in supplementary Appendix A1, equa-
tions (A2) and (A3).

For the heavy quarkonium, a systematic method to include both 
the higher order QCD corrections and the relativistic corrections 
has been derived in Ref. [56]. In this approach, the quarkonium 
wave function is written in terms of the coefficients Ck

n←m defined 
as

�n
V =

∑
m,k

Ck
n←m

1ˆ

0

dz′

4π

(
1

mq
∇

)k

φm(r = 0, z′), (5)

where ∇ = (∂r1 , ∂r2 , (z′ − 1/2)2mqi), MV and mq = MV /2 are the 
meson and heavy quark masses, and φm is the leading order light 
front wave function which is generally nonrelativistic in the case of 
heavy quarkonium. The transverse separation between the quark 
and the antiquark is r, and z′ is the fraction of the meson plus 
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momentum carried by the quark. Here k = (k1, k2, k3) is to be 
understood as a multi-index, and the sum goes over all positive 

values of the single indices ki , and 
(

1
mq

∇
)k = 1

m
|k|
q

∇k1
1 ∇k2

2 ∇k3
3 . As 

we neglect contributions ∼ αsv
2, we need the quarkonium wave 

function �n
V at NLO in the nonrelativistic limit, which corresponds 

to the |k| = k1 + k2 + k3 = 0 case. The |k| > 0 terms are suppressed 
by quark velocity, and are used to calculate relativistic corrections 
in Sec. 4. The variables m and n refer to the partonic Fock states, 
and at NLO in the nonrelativistic limit the non-zero coefficients are 
C

(0,0,0)
qq̄←qq̄

and C (0,0,0)
qq̄g←qq̄

. These have been calculated in Ref. [56] and 
are explicitly shown in supplementary Appendix A2 in Eqs. (A20) 
and (A21).

With m = qq̄, the leading order wave function for the longitu-
dinally polarized quarkonium is φqq̄

h′
0h

′
1
with the helicity structure 

given by δh′
0,−h′

1
. Here h′

0 and h′
1 are the quark and antiquark he-

licities. The coefficients Ck
n←m depend implicitly on the helicities 

of all the partons in state n, denoted by hi , as well as on h′
0 and 

h′
1, and on parton colors as shown explicitly in supplementary 

Appendix A2. Summation over helicities and colors is implicit in 
Eq. (5). In particular, the helicity structure of the �qq̄

V wave func-
tion becomes δh0,−h1 at lowest order in v , where h0 and h1 are 
the quark and antiquark helicities. The helicity flip contribution 
(where the quark helicities are the same) would only appear in the 
longitudinal quarkonium wave function �qq̄

V at the order v4 [72]

which is not included in our calculation. Consequently we can also 
drop the helicity flip component �h. f from the longitudinal pho-
ton wave function at NLO.

Using the NLO wave functions available in the literature, we 
calculate longitudinally polarized exclusive heavy vector meson 
production amplitude −iA at next-to-leading order in the nonrela-
tivistic limit. In this calculation there are both ultraviolet (UV) and 
infrared divergences that cancel at the level of the total NLO ampli-

tude. First, both the real qq̄g and virtual qq̄ contributions contain 
ultraviolet divergences that cancel in the sum. In practice, we use 
dimensional regularization and subtract this UV divergence from 
the real contribution, and add it to the virtual contribution which 
renders both terms finite. As the UV subtraction term can contain 
an arbitrary finite piece, division of the NLO contributions between 
the “real” and “virtual” parts is not unique. In this work, we follow 
the UV subtraction scheme developed in Refs. [50,54] which dif-
fers slightly from the one used in Ref. [56] and results in simpler 
expressions.

In addition to UV divergences, the NLO amplitude is singular 
in the infrared where the gluon plus momentum is very small. In 
order to cancel this divergence, we include two contributions as 
discussed in Ref. [56]. First, the leading order wave function φqq̄

h′
0h

′
1

is divergent at NLO, with the soft gluon divergence regulated by 
an infrared regulator α. The leptonic decay width �(V → e−e+), 
however, is finite and connects the wave function and the infrared 
regulator: [56]

�(V → e−e+) = 2Nce
2
f
e4

3πMV

∑
h′
0h

′
1

∣∣∣∣
ˆ

dz′

4π
φ
qq̄

h′
0h

′
1

∣∣∣∣
2

×
[
1+ 2αsC F

π

(
1

2α
− 2

)]
. (6)

Here e is the elementary charge and e f the fractional charge of 
the quark. In practice the wave function φqq̄

h′
0h

′
1
can be written in 

terms of the decay width and the infrared regulator, and the 1/α
divergence will cancel when combined with the virtual NLO con-
tribution. Additionally, the real gluon emission contribution is also 

singular in the soft gluon limit. This contribution can be absorbed 
in the target BK evolution.

The final result for the scattering amplitude at next-to-leading 
order reads

− iAL = −Q

√
�(V → e−e+)

3MV

16π2αem

ˆ
d2x01

ˆ
d2b

{
KLO

qq̄ (Y0) + αsC F

2π
KNLO

qq̄ (Ydip)

+ αsC F

2π

ˆ
d2x20

1/2ˆ

zmin

dz2Kqq̄g(Yqqg)

}
. (7)

where KLO
qq̄

(Y0) = K0(ζ )N01(Y0), ζ = |x01|
√

1
4
Q 2 +m2

q , xi j = xi −x j

and b is the impact parameter. Detailed expressions for the NLO 
contributions KNLO

qq̄
and Kqq̄g are shown in supplementary Ap-

pendix A3, Eqs. (A24) and (A26). This corresponds to the “unsub-
stracted scheme” discussed e.g. in Refs. [53,69]. Following the same 
terminology, we refer to the second term in Eq. (7) as the virtual 
“dipole” contribution (denoted by NLOdip later), and the third term 
as the real contribution (NLOqq̄g). As discussed above, the division 
of the NLO corrections between these two terms is not unique. The 
dipole amplitudes are evaluated at evolution rapidities Y0, Ydip and 
Yqq̄g that are discussed in detail below.

Evolution equations and rapidities

The integral of Kqq̄g over z2 in Eq. (7) is singular in the limit 
zmin → 0. The singular part is related to the rapidity evolution of 
the dipole amplitude as can be seen by writing out the singularity 
explicitly:

ˆ
d2x20

1/2ˆ

zmin

dz2Kqq̄g = nonsingular term

+ K0(ζ )

ˆ
d2x20

1/2ˆ

zmin

dz2
2

π z2

x201
x220x

2
21

(S01 − S012). (8)

We can recognize from this the leading-order Balitsky-Kovchegov 
equation in integral form. It corresponds to the evolution over 
ln( 1

2zmin
) units of projectile rapidity Y , defined as Y = lnk+/P+ . 

We recall that we work in the frame where the incoming photon 
has a large plus momentum q+ and the gluon plus momentum 
reads k+ = z2q

+ . The target plus momentum P+ is obtained as 
P+ = Q 2

0/(2P−), where the transverse momentum scale of the 
target is taken to be Q 2

0 = 1 GeV2 following [69]. The photon-
proton center of mass energy squared is W 2 = 2q+P− .

When the singular part in Eq. (8) is combined with the term 
KLO

qq̄
(Y0), one obtains the leading order contribution but with the 

dipole amplitude evolved from rapidity Y0 to rapidity

Ydip = Y0 + ln
1

2zmin

(9)

using the LO BK equation at fixed coupling. This evolution is part 
of the actual leading order contribution, as the BK evolution re-
sums αs ln1/x contributions, that at high energy are of the order 
1, to all orders. In this work we use the dipole amplitudes obtained 
as a result of the NLO fit to HERA structure function data [69]

3
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where Y0 = 0, and we also use the same running coupling pre-
scription as in Ref. [69] in numerical analysis. We can write the 
leading order scattering amplitude as

− iAL
LO = −Q

√
�(V → e−e+)

3MV

16π2αem

×
ˆ

d2x01d
2bKLO

qq̄ (Ydip). (10)

We note that what actually is the leading order contribution is 
not unique. One could as well define it as the sum of the lowest 
order contribution evaluated at Y0 and the singular part of NLOqq̄g. 
These two definitions match at fixed coupling if no higher order 
corrections were included in the BK evolution [53]. In the NLO DIS 
fit of Ref. [69] applied in this work, modified versions of the BK 
equation that include the most important higher order corrections, 
in addition to the running coupling effects, were used and conse-
quently Eq. (10) can not be obtained from Eq. (7). The definition of 
what is considered as the leading order contribution matters, be-
cause when calculating the cross sections an interference between 
the leading order and the genuine next-to-leading order contribu-
tions is needed, in which case the NLO correction is obtained as 
−iAL − (−i)AL

LO.

Let us then determine the lower limit of the z2 integral zmin

which controls the amount of small-x evolution. The applicabil-
ity of the eikonal approximation requires that the invariant mass 
of the qq̄g system Mqq̄g satisfies M2

qq̄g
� W 2. There is some free-

dom in determining how strong ordering is required, and resulting 
differences at the cross section level will again formally be of 
higher order in αs. In this work we use the same convention as 
in Ref. [69] and require M2

qq̄g
< W 2, which gives

z2 > zmin = P+

q+ = Q 2
0

W 2 + Q 2 −m2
N

. (11)

In the NLOqq̄g term the rapidity at which the dipole amplitudes are 
evaluated depends on z2, and using again Y = z2q

+/P+ we get

Yqq̄g = ln z2 + ln
W 2 + Q 2 −m2

N

Q 2
0

. (12)

We note that the total evolution range probed in the NLOdip con-

tribution is exactly Ydip discussed above.
For consistency, we choose to evaluate the dipole amplitude 

in the NLOdip term at the same rapidity Ydip as the leading or-
der contribution. In Ref. [69] the virtual corrections to the struc-
ture functions were evaluated at Y = ln 1/xbj, which in our case 
would correspond to the rapidity Y incl

dip
= ln 1/xP = Ydip, where 

xP ≈ (M2
V + Q 2)/(W 2 + Q 2) is the fraction of the target longi-

tudinal momentum transferred to the meson. Although it is not 
exactly consistent to use a different scheme to set the evolution 
rapidity in the structure function fit and in the application of these 
fit results in exclusive vector meson production, here we choose to 
apply the more natural choice for the evolution rapidity. The dif-
ference between these two choices is formally of higher order in 
αs.

In Ref. [69] the fits are performed using initial conditions 
parametrized at both at Y0,BK = 0 and at Y0,BK = 4.61, in which 
case there is no evolution in the region 0 < Y < Y0,BK. The evo-
lution equations that approximate the full NLO BK [43] in the fits 
are the so-called KCBK, ResumBK and TBK equations (following the 
terminology of Ref. [69]) derived in Refs. [73–76]. The “kinemati-

cally constrained BK equation” (KCBK) [75] is obtained by explic-
itly enforcing the required time ordering between the subsequent 
gluon emissions in the evolution. This procedure effectively resums 

corrections that are enhanced by two large transverse logarithms 
∼ αs ln

x202
x201

ln
x212
x202

in the evolution, and the same double logarithms 
are also resummed in Ref. [73]. When additional contributions en-
hanced by single transverse logarithms ∼ αs ln1/(x2i j Q

2
s ) (where 

Q s is the saturation scale of the target) are also resummed fol-
lowing Ref. [74] one obtains the evolution equation referred to as 
the ResumBK equation. The third evolution equation (TBK) refers 
to the BK equation where the evolution rapidity η (“target rapidi-
ty”) is related to the fraction of the total longitudinal momentum 
of the target. When using the fit result that is written in terms 
of the target rapidity η in the impact factors written in terms of 
the (projectile) rapidity Y , we apply the same shift as in Ref. [69]: 
η = Y + ln(min(1, x201Q

2
0 )). For more details of the different evolu-

tion equations, we refer the reader to Ref. [69].

4. Relativistic corrections

As we have parametrically αs ∼ v2, it is also interesting to con-
sider the first relativistic corrections of order v2 at leading order 
in αs . Using Eq. (5), we note that each term in the expansion cor-
responds to a correction of order v |k| . The coefficient functions 
Ck
qq̄←qq̄

are straightforward to calculate at leading order in αs as 
then the wave function gets no loop corrections (and Ck

qq̄g←qq̄
= 0), 

and we can write

�
qq̄
V (αs = 0) =

∞∑
k1,k2,k3=0

C
(k1,k2,k3)
qq̄←qq̄

φ
qq̄

h′
0h

′
1
(k1,k2,k3), (13)

where

C
(k1,k2,k3)
qq̄←qq̄

= δα0α1√
Nc

δh0h′
0
δh1h′

1

1

k1!k2!k3! (mqr1)
k1(mqr2)

k2

× 4π

(
− 1

2i
∂z

)k3

δ (z − 1/2) , and (14)

φ
qq̄

h′
0h

′
1
(k1,k2,k3) :=

1ˆ

0

dz′

4π

1

m
k1+k2
q

× ∂
k1
1 ∂

k2
2 φ

qq̄

h′
0h

′
1
(r = 0, z′)[2i(z′ − 1/2)]k3 . (15)

Here r = (r1, r2) is the transverse separation of the two quarks and 
α0, α1 refer to the quark colors.

Calculating the production amplitude at order v2 corresponds 
to keeping terms with k1 + k2 + k3 ≤ 2. The nonperturbative con-
stants φ

qq̄

h′
0h

′
1
(k1, k2, k3) can be related to the derivatives of the 

leading-order rest frame wave function φRF at the origin as shown 
in Ref. [72]. This allows us to write (see discussion in supplemen-

tary Appendix A2 for more details)

φ
qq̄

h′
0h

′
1
(2,0,0) = φ

qq̄

h′
0h

′
1
(0,2,0) = φ

qq̄

h′
0h

′
1
(0,0,2)

= 1√
2
δh0,−h1

1√
mq

∇2φRF(0)

6m2
q

. (16)

With this the order v2 correction to the production amplitude is:

− iAL
rel = −ee f Q

√
Nc

2π
√
2

2

ˆ
d2x01

ˆ
d2bN01(Ydip)

× ∇2φRF(0)

12m2
q
√
mq

[
2K0(ζ ) − Q 2x201

4ζ
K1(ζ ) +m2

qx
2
01K0(ζ )

]
. (17)
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Fig. 1. Different contributions to the exclusive J/ψ production scattering amplitude 
as a function of center-of-mass energy W .

Fig. 2. Different contributions to the exclusive J/ψ production scattering amplitude 
as a function of photon virtuality Q 2.

The value for ∇2φRF(0) for J/ψ can be determined using the non-
relativistic QCD (NRQCD) matrix elements from [65]:

∇2φRF(0) = −
√

〈O1〉V
2Nc

〈�q 2〉V = −0.120± 0.039 GeV7/2. (18)

The long-distance matrix elements 〈O1〉V and 〈�q 2〉V are related to 
the J/ψ wave function and its derivative at the origin and explic-
itly defined in Ref. [65]. They are determined using mq = 1.4 GeV
for the charm mass. In this work, on the other hand, we use the 
nonrelativistic limit relation mq = MV /2 also when calculating the 
relativistic correction. This difference is of higher order in v , see 
also discussion in Ref. [72].

5. Numerical results

In this section we present numerical results for the exclusive 
J/ψ production at t = 0 in the kinematics covered by HERA and fu-
ture EIC and LHeC/FCC-he measurements. Unless otherwise stated, 
we use the KCBK evolved dipole amplitude with the initial con-
dition parametrized at Y0,BK = 4.61 from Ref. [69]. The qualitative 
features do not depend on the actual dipole amplitude fit used.

The scattering amplitudes for exclusive J/ψ production at lead-
ing and next-to-leading order are shown in Figs. 1 and 2 as a func-
tion of center-of-mass energy W and photon virtuality Q 2. The 
total NLO amplitude is shown in Eq. (7), and should be compared 
to the leading-order result including the small-x BK evolution de-
fined in Eq. (10) and denoted by LO(Ydip) in the figures. Note that 
all results in Figs. 1 and 2 are obtained by using the same dipole 
amplitude N01 from Ref. [69]. The NLO corrections are found to 
be sizeable, of the order of ∼ 75%, and depend weakly on W and 

Fig. 3. Center-of-mass energy dependence of the exclusive J/ψ electroproduction 
cross section at NLO.

Q 2. Only at highest Q 2 values ∼ 100 GeV2 (where the high scale 
renders αs smaller) the NLO corrections become slightly less im-

portant.

In Figs. 1 and 2 the different contributions to the NLO ampli-

tude are also shown separately. First, the LO(Y0) curve refers to the 
leading order result with no BK evolution. The virtual NLO correc-
tion NLOdip is found to be small and positive (by positive we mean 
that it has the same sign as the leading order result) at all W and 
Q 2. The real contribution NLOqq̄g includes a leading order part in 
terms of the BK evolution. In the figures we show separately the 
contribution from the BK evolution shown in Eq. (8), and the gen-
uine next-to-leading order correction to it due to the exact gluon 
emission kinematics included in the full NLO calculation. This NLO 
correction NLOqq̄g(no BK) = NLOqq̄g−NLOqq̄g(BK) significantly sup-
presses the effect of the small-x BK evolution as expected. This 
systematics in the real and virtual corrections is similar to what 
is observed in case of structure function calculations at NLO in 
Ref. [53]. However, we emphasize that the division of the NLO cor-
rections between the NLOdip and NLOqq̄g terms is not unique, see 
the discussion in Sec. 3.

In Fig. 3 we show the energy dependence of the J/ψ electropro-

duction cross section at NLO using different dipole amplitude fits 
which describe the HERA structure function data approximatively 
equally well [69]. For comparison, the LO result using the fit with 
LO BK evolution and leading order impact factors from Ref. [23]
is also shown. In the case of the LO BK evolved result the evo-
lution rapidity is chosen as Y = ln 0.01/xP , consistently with the 
leading-order fit procedure of Ref. [23].

Despite the fact that all dipole amplitudes result in almost iden-
tical descriptions of the HERA structure function data, we find that 
the resulting J/ψ production cross sections can differ by almost a 
factor of 2. This demonstrates that vector meson production pro-
vides complementary information for the extraction of the initial 
condition for the BK evolved dipole scattering amplitude, as it is 
sensitive to the dipole-target interaction at different distance scales 
(see also Ref. [29,30]) compared to total cross section measure-

ments.
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Fig. 4. The effect of the relativistic correction on J/ψ production at LO and at NLO 
as a function of photon virtuality Q 2. The bands show the uncertainties of the rel-
ativistic corrections.

It should be noted that the NLO results for the J/ψ production 
cross section are closer to the LO BK result than one might expect 
judging from Figs. 1 and 2. This can be understood by noting that 
the LO BK result in Fig. 3 is calculated using a LO dipole amplitude 
resulting from a leading-order fit, whereas in Figs. 1 and 2 the 
same NLO fit result was used for the dipole amplitude in all cases. 
In particular, the fit parameters obtained from the LO fit include an 
effective description of some of the higher-order effects. However, 
we still find that the NLO cross section generically evolves more 
slowly in W at high energies compared to LO results.

In Fig. 4 the effect of the relativistic corrections is shown. As 
previously discussed in Ref. [72], the relativistic corrections are sig-
nificant and decrease the cross section up to ∼ 50% at low photon 
virtualities, and become insignificant (but non-zero [77]) at large 
Q 2. At low virtualities the relativistic correction is more important 
than the next-to-leading order contribution. However, when com-

paring the relativistic ∼ v2 and NLO ∼ αs corrections one has to 
keep in mind that the leading order BK evolution effectively in-
cludes higher order corrections encoded in the fit parameters as 
discussed above. The relativistic correction is less important when 
it is added on top of the next-to-leading order result, ∼ 40% at low 
Q 2, as we do not include corrections of the order αsv

2.

The next-to-leading order correction becomes large at high vir-
tualities as can be seen from the lower panel of Fig. 4. We note 
that both LO and NLO fits provide a good description of the Q 2

dependence of the HERA structure function data at small x. The 
stronger virtuality dependence at leading order can be again un-
derstood to result from the fact that J/ψ production is sensitive 
to dipole scattering amplitude at smaller length scales compared 
to structure functions. The small dipole size region is also only 
weakly constrained by the structure function data when the initial 
condition for the BK evolution is fitted.

Technically, the dependence on the virtuality is related to the 
anomalous dimension γ which describes the behavior of the 
dipole amplitude at small dipole sizes: N01 ∼ (x201Q

2
s )γ . At lead-

ing order the BK evolution results in γ ∼ 0.7 at large rapidities, 

but as Y ∼ ln 1/xP in the LO fit, at high Q 2 one is actually sen-
sitive to the dipole amplitude close to the initial condition where 
γ ∼ 1.2 [22,23]. On the other hand, in our NLO setup there is a 
long evolution at high Q 2, see Eq. (12). However, the anomalous 
dimension at asymptotically small dipoles does not actually change 
when higher order corrections are resummed in the NLO fit. As the 
NLO fits also result in γ ∼ 1.2 [69] at the initial rapidity, in princi-
ple we would expect to see comparable Q 2 evolution speeds in the 
exclusive J/ψ production. In practice one is not probing the dipole 
amplitude at asymptotically small dipoles but at x201 ∼ 1/Q 2, and 
in the NLO fits γ decreases in the evolution at intermediate dipole 
sizes [69]. As a result, one finds that the NLO exclusive vector me-

son cross section decreases more slowly as a function of Q 2 than 
the leading order case at high virtualities.

6. Conclusions

We have calculated, for the first time, exclusive heavy vec-
tor meson production at next-to-leading order in the Color Glass 
Condensate framework. In the calculation we apply the recently 
derived wave functions for the virtual photon and vector meson 
including massive quarks. The main result of this work, the scat-
tering amplitude for longitudinal vector meson production at NLO, 
is Eq. (7). We emphasize that this result is free from any ultra-
violet or infrared divergences and suitable for phenomenological 
applications.

We have numerically evaluated the derived scattering ampli-

tude, using dipole-proton scattering amplitudes recently obtained 
as a result of an NLO fit to HERA structure function data. We have 
presented the first numerical calculation of the exclusive J/ψ pro-

duction cross section at NLO in the CGC framework. As the future 
Electron-Ion Collider and other nuclear DIS facilities will provide 
vast amounts of precise vector meson production data in the fu-
ture, these developments that promote the CGC calculations to the 
precision level are extremely important.

We have shown that the next-to-leading order corrections to 
the J/ψ production cross section are significant, although these 
corrections can partially be captured in leading order calculations 
by the non-perturbative fit parameters. We also demonstrate that 
the vector meson production data provides complementary infor-
mation compared to structure function measurements. A global 
analysis including both the reduced cross section and exclusive 
vector meson production data would be preferable in the future 
when extracting the initial condition for the Balitsky-Kovchegov 
evolution of the dipole scattering amplitude. Comparing the NLO ∼
αs correction to the relativistic ∼ v2 correction, we have observed 
that especially at low virtualities both corrections are numerically 
important, with the relativistic correction generically larger.

In the future, we will include the contribution from the 
transversely polarized virtual photons. This development will en-
able comparisons with the vector meson production data from 
HERA [34–36] and from the UPC physics program at the LHC [38,

39], as well as calculation of precise predictions for the EIC. Ex-
tending the calculation from protons to heavy nuclei will also en-
able precision studies of saturation phenomena in current [40–42]

and future nuclear DIS experiments.
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Exclusive production of light vector mesons in deep inelastic scattering is calculated at next-to-leading
order in the dipole picture in the limit of high photon virtuality. The resulting expression is free of any
divergences and suitable for numerical evaluations. The higher-order corrections are found to be
numerically important, but they can be mostly captured by the nonperturbative fit parameters describing
the initial condition for the small-x evolution of the dipole scattering amplitude. The vector meson
production cross section is shown to depend only weakly on the meson distribution amplitude and the
factorization scale. We also present phenomenological comparisons of our result to the existing exclusive ϕ
and ρ production data from HERA and find an excellent agreement at high virtualities.

DOI: 10.1103/PhysRevD.105.114038

I. INTRODUCTION

Deep inelastic scattering (DIS) is a powerful tool to study
the partonic structure of protons and nuclei at high energies.
This process has been studied in detail in electron-proton
collisions at HERA, where the vast amount of measured
data has revealed a rapid increase in the density of gluons
with small momentum fraction x [1,2]. The observed
increase cannot continue indefinitely without violating
unitarity, and as such the saturation effects are expected
to dominate the small-x part of the hadron wave function.
To describe QCD in this region of phase space where parton
densities become of the same order as the inverse of the
strong coupling, an effective field theory approach to QCD,
called the color glass condensate (CGC), has been devel-
oped [3–5].
In CGC, the high density of small-x gluons gives rise to

nonlinear dynamics that slows down the growth of the
gluon density. Despite the success of the CGC-based
calculations in describing various high-energy collider
experiments [6], there has not been definitive experimental
evidence of saturation. To get precise DIS data from the
saturation region new experimental facilities have been
proposed, such as the upcoming Electron-Ion Collider
in the U.S. [7–9] and a similar collider at CERN [10].

These facilities would allow for DIS measurements with
heavy nuclei where the saturation effects are amplified
approximately by A1=3. To meet the precision of these
future experimental studies where nonlinear QCD dynam-
ics is probed, it is necessary to promote the theory
calculations in the CGC framework to higher-order
accuracy.
One powerful process to probe gluon saturation is

exclusive vector meson production as it requires an
exchange of at least two gluons with the target. This
renders the cross section roughly proportional to the gluon
density squared [11] at leading order (but the situation is
more complicated at next-to-leading order in a collinear
factorization based approach, see Ref. [12]). Another
advantage of it is that only in exclusive processes it is
possible to measure the momentum transfer squared t in the
process. The momentum transfer dependence can be related
to the impact parameter dependence via a Fourier trans-
form, providing access to the spatial distribution of nuclear
matter in nuclei at high energy [13,14] and to the
generalized parton distribution functions [15].
A convenient approach for describing exclusive vector

meson production in DIS is the dipole picture where the
process can be written in terms of the virtual photon and
meson light-front wave functions along with the dipole-
target scattering amplitude [16,17]. The dipole amplitude
satisfies perturbative small-x evolution equations, such as
the Balitsky-Kovchegov (BK) equation [18,19], which
resums large logarithmic contributions ∼αs ln 1=x. The
photon wave function can be calculated perturbatively
[20,21], but the meson wave function is instead non-
perturbative and therefore requires additional modeling.
For heavy vector mesons one can take advantage of the
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small relative velocity of the quark-antiquark pair in the
meson and model it as a fully nonrelativistic bound state
[11], with velocity corrections that can be linked to the
nonrelativistic QCD (NRQCD) matrix elements [22].
Another possibility is to take the limit of high photon
virtuality, Q2 ≫ M2

V (whereMV is the meson mass), where
one can make a twist expansion for the process [23,24].
This corresponds to writing the meson wave function in
terms of a nonperturbative distribution amplitude, on top of
which higher-order corrections can be calculated perturba-
tively. This is especially suitable for light vector mesons
and is a basic assumption in this paper.
The next-to-leading order (NLO) calculations in the

dipole picture are starting to become available. First of
all, the BK equation is available at NLO accuracy [25–28].
The NLO corrections to the virtual photon wave function
have been calculated with both massless [29–31] and
massive [32,33] quarks. These developments enable phe-
nomenological studies of proton and nuclear structure
functions at small x, and also make it possible to determine
the nonperturbative initial condition for the small-x evo-
lution of the dipole amplitude by performing fits to HERA
data [34–37]. Another recently proposed approach to
determine the initial condition is based on a perturbative
calculation of the proton color charge correlators in terms
of the nonperturbative proton valence quark wave func-
tion [38,39]. In order to calculate exclusive vector meson
production at NLO accuracy, the additional ingredient
required is the meson wave function at NLO. This wave
function has been calculated in the nonrelativistic limit
for heavy vector mesons in Ref. [40] and used for
calculating longitudinal heavy vector meson production
at NLO accuracy in Ref. [41] including also the first
relativistic corrections [22]. Other recent developments
towards the NLO accuracy in the CGC framework include,
for example, studies of dijet production in DIS and
hadronic collisions [42–44], and inclusive hadron produc-
tion in proton-lead collisions [45–52].
The main focus of this work, light vector meson

production in the high-Q2 limit at NLO, has been calcu-
lated in Ref. [53] using covariant perturbation theory in
momentum space including nonlinear QCD dynamics in
the shockwave approach. In this paper, we calculate the
NLO corrections using light cone perturbation theory [20]
in mixed transverse coordinate, longitudinal momentum
fraction space. The advantage of the light cone perturbation
theory is that the calculation can be divided into the photon
and meson wave functions that need to be combined only at
the end. One can also directly take advantage of the
recently calculated photon NLO wave function. The mixed
coordinate space is convenient as the transverse coordinates
of the partons do not change during the interaction with the
target at high energies. Compared to Ref. [53] we also use a
different scheme to subtract the rapidity divergence from
the real gluon emission part. This scheme is developed in

Refs. [46,51,54,55] in order to avoid unphysical results in
single hadron production and in proton structure function
calculations at NLO accuracy. Our results are also straight-
forward to apply in phenomenological analyses using
existing dipole amplitude fits as is demonstrated in thiswork.
The paper is structured as follows. In Sec. II we present

the framework for vector meson production and explain the
resummation of small-x gluons. In Sec. III, the photon
and meson NLO wave functions are shown explicitly. The
NLO corrections to the light vector meson wave function
are calculated using light cone perturbation theory at
leading twist. We then proceed to calculate the production
amplitude in Sec. IV and present the result in the mixed
space. In Sec. V, we show numerical calculations of the
NLO production amplitude along with comparisons to the
existing ρ and ϕ production data before presenting our
conclusions in Sec. VI.

II. EXCLUSIVE SCATTERING AT HIGH ENERGY

A. High energy factorization

The scattering amplitude for exclusive vector meson
production at high energy and in the zero squared momen-
tum transfer t ¼ 0 limit can be written in a factorized form

−iA ¼
X
f

2

Z
dD−2x0dD−2x1

×
Z

dz0dz1
ð4πÞ2 4πδðz0 þ z1 − 1ÞΨγ�→qq̄

f ðΨV→qq̄
f Þ�N01

þ
X
f

2

Z
dD−2x0dD−2x1dD−2x2

×
Z

dz0dz1dz2
ð4πÞ3 4πδðz0 þ z1 þ z2 − 1Þ

×Ψγ�→qq̄g
f ðΨV→qq̄g

f Þ�N012; ð1Þ

and the coherent vector meson V electroproduction cross
section can now be obtained as

dσγ
�þp→Vþp

dt

����
t¼0

¼ 1

16π
jAj2: ð2Þ

Here x0;1;2 are the quark, antiquark, and gluon transverse
coordinates, and zi denotes the fractions of the photon’s
plus momentum carried by these partons. This factorization
is justified at high energy as the lifetimes of the virtual
photon qq̄ and qq̄g Fock states are much longer than
the timescales related to the interactions with the target
color field. We use the eikonal approximation and describe
the interactions with the target in terms of Wilson line
correlators. The Wilson line VF;AðxÞ describes a color
rotation of a quark (fundamental representation F) or a
gluon (adjoint representation A) when it propagates through
the target, and the relevant correlators read
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N01 ¼ 1 −
1

Nc
hTrfVFðx0ÞV†

Fðx1Þgi; ð3Þ

N012 ¼ 1 −
1

CFNc
hVba

A ðx2ÞTrftbVFðx0ÞtaV†
Fðx1Þgi;

≈ 1 −
Nc

2CF

�
S02S12 −

1

Nc
2
S01

�
; ð4Þ

where S01 ¼ 1 − N01. Here we took the mean field
limit where the average over the target color charge
configurations denoted by h� � �i factorizes. These correla-
tors satisfy the BK evolution equation discussed in Sec. II C
and depend implicitly on evolution rapidity, which we will
specify later.
We only consider forward production in this work even

though this framework can also be extended to calculate the
momentum transfer dependent cross section. The momen-
tum transfer is the Fourier conjugate to the impact param-
eter, and thus being able to calculate the cross section at
finite momentum transfer is an advantage of exclusive
processes as this can be used to do spatial imaging of the
hadron structure [13]. On the other hand, this means that
calculating vector meson production at t ≠ 0 would require
us to implement a model to describe the nonperturbative
spatial structure of the proton. As the purpose of this work
is to focus on a rigorous NLO calculation of a vector meson
production cross section we choose not to employ any such
modeling and limit our studies to t ¼ 0 where only the
dipole amplitude integrated over the impact parameter is
required. The same quantity is also probed in structure
function measurements that are used to constrain the initial
condition for the BK evolution of the dipole scattering
amplitude N01 [37].

B. Twist expansion

The meson light-front wave function is highly non-
perturbative. For heavy vector mesons one can model
the wave function based on the nonrelativistic nature of
heavy quarks [22] but this simplification cannot be made
for light mesons. On the other hand, the high-virtuality
limit Q2 ≫ M2

V , which is justified for light mesons, can
be used to simplify the mathematical description of the
process. In this limit transverse momentum scales on the
meson side become corrections suppressed by powers of
1=Q2, leading to the twist expansion of the meson wave
function [23,24]. The leading-twist term then does not
depend on the transverse momentum scales of the meson,
meaning that only the dependence on the longitudinal
momenta remains.
The twist expansion can be explained formally using

the virtual photon wave function. The photon wave
function is exponentially suppressed in Q2r2, where r is
the dipole size, which renders the relevant dipole sizes
to be r2 ∼ 1=Q2. We can then do a Taylor expansion

for the meson wave function ΨVðr;zÞ¼ΨVð0;zÞþ
1
6
r2∇2

rΨVð0;zÞþ…¼ΨVð0;zÞþOð 1
Q2Þ (see also Ref. [22]).

Thus, only the dependence on the momentum fraction z
remains at leading order in the twist expansion. The
momentum space equivalent of this is a delta function in
terms of the quark transverse momentum k: ΨVðk; zÞ ¼
ð2πÞ2δ2ðkÞΨVðr ¼ 0; zÞ þOð 1

Q2Þ. This first term in the

wave function corresponds to the twist-2 distribution
amplitude ϕðzÞ of the meson. In an NLO calculation the
distribution amplitude has to be renormalized as we will
demonstrate explicitly below, and the scale dependence
of the renormalized distribution amplitude is described
in terms of the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) evolution equation [20,56], which is discussed
in more detail in Sec. IV C.
The twist expansion also guarantees that we need the

nonperturbative part of the meson wave function only for
the qq̄ state. The nonperturbative part for other Fock states,
such as qq̄g, is higher order in twist and can therefore be
neglected at high Q2 [57,58]. This means that the meson
wave function for the qq̄g state can be calculated pertur-
batively by considering a gluon emission from the qq̄ state,
i.e., at high virtualities the Fock state qq̄g is created through
the process V → qq̄ → qq̄g [see Figs. 1(f) and 1(g)].
Another consequence of the high virtuality is that we

need to consider only the longitudinal polarization for both
the photon and the meson. A polarization flip is highly
suppressed in coherent vector meson production such that
the meson and photon effectively have the same polariza-
tion [59] (see also Ref. [60]). In fact, in the limit of zero
momentum exchange t ¼ 0 the polarization flip contribu-
tion vanishes exactly in our calculation. In the case of
transverse production the leading-twist distribution ampli-
tude is twist 3 [23], meaning that transverse production is
suppressed relative to longitudinal by σT=σL ∼M2

V=Q
2 for

high virtualities. Thus, total light vector meson production
is given by the longitudinal cross section σðγ�L þ A →

VL þ AÞ up to corrections of order OðM2
V

Q2 Þ.

C. High-energy evolution

The dipole amplitude, given by the correlator N01 ¼
1 − S01, satisfies the perturbative BK equation describing
its energy dependence. At leading order the BK equation
reads [18,19]

∂

∂Y
S01 ¼

Z
d2x2KBKðx0;x1;x2Þ½S02S12 − S01�: ð5Þ

This equation is written in terms of a rapidity variable Y,
which is discussed in more detail shortly. The kernel KBK
describes the probability density for a dipole with trans-
verse coordinates x0 and x1 to emit a gluon at the transverse
coordinate x2. Including the running coupling corrections
following Ref. [61], the kernel can be written as
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KBKðx0;x1;x2Þ ¼
Ncαsðx2

01Þ
2π2

�
x2
01

x2
21x

2
20

þ 1

x2
20

�
αsðx2

20Þ
αsðx2

21Þ
− 1

�

þ 1

x2
21

�
αsðx2

21Þ
αsðx2

20Þ
− 1

��
; ð6Þ

where we use the notation xij ¼ xi − xj. The BK equation
effectively resums the contributions αs ln 1=x ∼ 1 from
small-x gluons, which is necessary for the stability of
the perturbative calculations at high energy.
When higher-order corrections enhanced by large double

transverse logarithms are resummed [62], the NLO BK
equation [25] becomes stable and can in principle be
used in phenomenological applications [27]. A usual and

numerically convenient approach, however, is to include
resummations of the most important higher-order cor-
rections to the leading-order BK equation. The leading-
order BK equation with such resummations can be used to
accurately approximate the full NLO BK equation [27,63].
Several resummation schemes exist, and in this work the
following equations are used (we adopt the terminology
used in Ref. [37]): KCBK [55], ResumBK [62,64], and
TBK [65]. The nonperturbative initial conditions for these
evolution equations have been determined in Ref. [37] by
performing a fit to the HERA structure function data [1]. Of
these, the evolution rapidity in the KCBK and ResumBK
equations is the projectile rapidity Y ¼ ln kþ

Pþ, where kþ and
Pþ are the gluon and target plus momenta. We work in the

FIG. 1. NLO corrections to the meson light-front wave function. (a) and (b) propagator corrections, (c) and (d) regular gluon exchange,
(e) instantaneous gluon exchange, (f) and (g) perturbative generation of the qq̄g Fock state.
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frame where the photon plus momentum qþ is large and the
photon has no transverse momentum. The target plus
momentum is obtained as Pþ ¼ Q2

0=ð2P−Þ, where the
target transverse momentum scale is taken to be Q2

0 ¼
1 GeV2 (note that the photon-nucleon center-of-mass
energy reads W2 ¼ 2qþP−).
Both KCBK (“kinematically constrained BK”) and

ResumBK (“resummed BK”) involve a resummation of
double transverse logarithms ∼αs ln

jx02j
jx01j ln

jx12j
jx01j, with

ResumBK also resumming single transverse logarithms
αs ln

1
x2ijQ

2
s
at all orders. In the KCBK equation the double

logarithms are resummed by explicitly requiring a time
ordering between the subsequent gluon emissions, which
results in a nonlocal equation. The third evolution equation,
TBK (“BK equation in target rapidity”), uses the target
rapidity η as an evolution variable. This rapidity variable is
related to the fraction of the target longitudinal momentum
fraction transferred in the scattering process in the frame
where the target has a large longitudinal momentum (see
Ref. [65] for a detailed discussion). This evolution rapidity
corresponds to

η ¼ ln
1

xP
¼ ln

W2 þQ2

Q2 þM2
V
: ð7Þ

Consequently, the TBK evolution can be thought as
evolution in ln 1=xP whereas the KCBK and ResumBK
equations correspond to evolution in lnW2. In order to use
dipole amplitudes as a function of the target rapidity η in the
impact factors written in terms of the projectile rapidity Y,
we use the same shift as in Ref. [37]:

η ¼ Y − ln
1

minf1;x2
01Q

2
0g

: ð8Þ

The BK equation contains a transverse-coordinate de-
pendent coupling constant. We model the running of the
coupling in the coordinate space following Ref. [37]:

αsðx2
ijÞ ¼

4π

β0 ln
h�

μ2
0

Λ2
QCD

�
1=c þ

�
4C2

x2ijΛ
2
QCD

�
1=c

i
c : ð9Þ

This running coupling approaches a constant value in the
infrared region 1=jxijj ≳ ΛQCD, with the constants μ0 and c
controlling its behavior there. The values of these constants
are chosen as in Ref. [37]. The constantC2 is a fit parameter
that describes the relation between momentum and coor-
dinate spaces, k2 ¼ 4C2=r2, with the expected value C2 ¼
e−2γE from Fourier analysis [66,67]. The same coordinate
space coupling constant is used when calculating the
scattering amplitude, Eq. (1), where the coupling constant
is included in the next-to-leading order photon and meson
wave functions. As the running coupling prescription (6)
can be seen to effectively choose the smallest of the three
distance scales x2

01;x
2
12;x

2
02, when calculating the qq̄g

contribution in Eq. (1) we choose to evaluate the coupling

at the scale set by the smallest of the daughter dipoles, as in
Ref. [37]. When evaluating the qq̄ term the scale choice
is x01.

III. LIGHT-FRONT WAVE FUNCTIONS
AT NEXT-TO-LEADING ORDER

The NLO corrections to exclusive vector meson pro-
duction can be calculated in terms of the NLO wave
functions for the photon and meson. In this section, we
first list the relevant photon light-front wave functions at
NLO accuracy calculated in Refs. [29–31]. Then, we
proceed to calculate the light vector meson wave function
at NLO in terms of the twist-2 distribution amplitude, and
present the results Fourier transformed to mixed transverse
coordinate, longitudinal momentum fraction space.

A. On the regularization scheme

The calculation will be done in two different regulari-
zation schemes. The first one is the conventional dimen-
sional regularization (CDR) where the momenta and
polarization vectors of all particles are continued to D
dimensions. The second one is the four-dimensional
helicity (FDH) scheme where the polarization vectors are
kept in four dimensions [68,69]. In our case, this amounts
to real gluons having two polarization states.
To do the calculations simultaneously in both schemes

we follow the notation of Ref. [32]. The dimension arising
from the gluon polarization vectors is denoted as Ds to
distinguish it from the dimension D in the dimensional
regularization. The CDR scheme corresponds to the case
Ds ¼ D, and for the FDH scheme we have Ds ¼ 4. Sums
over gluon helicities can be calculated as

P
λ ϵ

i
λϵ

j�
λ ¼ δijðDsÞ

where the subscript denotes that this Kronecker delta has
Ds − 2 transverse dimensions. In the sums over spin and
Lorenz indices we take Ds ≥ D so that the following
relations for the Kronecker deltas hold:

δijðDsÞδ
ij
ðDsÞ ¼Ds−2; δijðDÞδ

ij
ðDÞ ¼D−2; δijðDsÞδ

jk
ðDÞ ¼ δikðDÞ:

ð10Þ

Wewill also make use of the following spinor identity [29]:

ūh0 ðp − kÞ=ϵ�λðkÞuhðpÞ ¼ ðv̄h0 ðp − kÞ=ϵλðkÞvhðpÞÞ�

¼ 2pþ

kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ

pþ − kþ

s
δhh0ϵ

j�
λ

×

�
ki −

kþ

pþ pi

�
Vij
h

�
kþ

pþ

�
; ð11Þ

where h ¼ �1 is the quark helicity and

Vij
h ðzÞ ¼

�
1 −

z
2

�
δijðDsÞ þ ih

z
2
ϵijðDsÞ: ð12Þ
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Here the Ds-dimensional Levi-Civita tensor has to be
understood through the Fierz identity

ϵijðDsÞϵ
kl
ðDsÞ ¼ δikðDsÞδ

jl
ðDsÞ − δjkðDsÞδ

il
ðDsÞ: ð13Þ

This identity is valid in Ds dimensions if there are no more
than two Levi-Civita tensors [29], which holds for the
calculations considered in this paper.

B. Photon wave function

The photon light-front wave functions in the massless
quark case have been calculated in Refs. [29–31] and are
shown here for completeness. In our notation, an additional
factor of 1

2qþ
Q

i
1ffiffiffi
zi

p appears in the wave functions. This

additional factor follows from a different choice of the

integration measure, which we choose to be
Q

i
d2xidzi
4π . With

this choice the leading-order wave function for the virtual
photon in the mixed transverse coordinate and plus
momentum fraction space is

Ψγ�→qq̄
f;LO ðz0;x01Þ ¼

eefQ

π
δα0α1δh0;−h1z0ð1 − z0ÞKD−4

2
ðjx01jQÞ

×

�
Q

2πjx01j
�D−4

2

: ð14Þ

We always work in the frame where the photon transverse
momentum is zero. Here ef is the fractional charge of
the quark with flavor f, Q2 is the virtuality of the photon,
zi ¼ kþi =q

þ is the (anti)quark’s fraction of the photon plus
momentum, and αi and hi are the color and helicity indices.
We also use the short-hand notation Q2 ¼ z0ð1 − z0ÞQ2.
Quantities corresponding to the quark are denoted with
i ¼ 0 and antiquark with i ¼ 1. We note that the last
factor, which is equal to 1 at D ¼ 4, is absent in Ref. [29]
where the transverse momenta of the observed par-
ticles are kept in two dimensions. Here “observed”
particles are those that appear as the final state in the
wave function, not including soft or collinear particles.
In this paper, we choose to evaluate the transverse
momenta of the observed particles in D − 2 dimensions,
as this is necessary for regularizing the NLO meson wave
function. However, this term does not have any contri-
bution to the final cross section where all 1

D−4 divergences
have been canceled. In principle, this factor multiplied by
Kγ�L contributes a finite logarithm term ∼ ln jx01j. It
however cancels when we perform the UV subtraction
in Sec. IV B.
The next-to-leading order correction to the photon wave

function can be written as

Ψγ�→qq̄
f;NLOðz0;x01Þ ¼

eefQ

π
δα0α1δh0;−h1z0ð1 − z0ÞKD−4

2
ðjx01jQÞ αsCF

2π
Kγ�L ×

�
Q

2πjx01j
�D−4

2

; ð15Þ

where

Kγ�L ¼
�
3

2
þ ln

�
α2

z0ð1 − z0Þ
���

2

4 −D
þ γE þ lnðπx2

01μ
2Þ
�
þ 1

2
ln2

�
z0

1 − z0

�
−
π2

6
þ 5

2
þ 1

2

Ds − 4

D − 4
: ð16Þ

Here α is the infrared cutoff for the gluon plus momentum fraction and μ is the mass scale for dimensional regularization,
and the last term depends on the regularization scheme.
The virtual photon wave function for the Fock state qq̄g can be written as

Ψγ�→qq̄g
f ðzi;xiÞ ¼ 4eefQgtaα0α1δh0;−h1

1ffiffiffiffiffi
z2

p ϵj�h2

�
z1ð1 − z1ÞVij

h0

�
z2

z0 þ z2

�
IiðlÞ − z0ð1 − z0ÞVij

−h0

�
z2

z1 þ z2

�
IiðmÞ

�
; ð17Þ

where

IiðlÞ ¼ Iiðx102;x20; Q2
ðlÞ;ωðlÞÞ; IiðmÞ ¼ Iiðx012;x21; Q2

ðmÞ;ωðmÞÞ;
Q2

ðlÞ ¼ z1ð1 − z1ÞQ2; Q2
ðmÞ ¼ z0ð1 − z0ÞQ2 ¼ Q2;

ωðlÞ ¼
z0z2

z1ðz0 þ z2Þ2
; ωðmÞ ¼

z1z2
z0ðz1 þ z2Þ2

;

xijk ¼ xij −
zk

zj þ zk
xkj; ð18Þ

and

Iiðb; r; Q2;ωÞ ¼ ð4π2μr2Þ4−D2 i
8π2

ri

r2

Z
∞

0

du u1−D=2e−uQ
2

e−
b2
4uΓ

�
1þD − 4

2
;
ωr2

4u

�
: ð19Þ
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Quantities with the subscript 2 correspond to the emitted
gluon. The function Ii differs from the similar one inRef. [29]
by an additional power 4−D

2
for the variable u, which has the

same origin as the last factor in Eqs. (14) and (15).

C. Light vector meson wave function

In this section, we calculate the NLO corrections to the
light vector meson light-front wave function. The calcu-
lation is done in the limit where the transverse coordinate
dependence of the meson leading-order wave function can
be neglected. As discussed in Sec. II, this follows from the
large photon virtuality. This means that we can neglect all
mass scales in the meson, allowing us to set the meson mass
MV to zero along with the transverse momenta ki of the
quark and the antiquark. We work in a frame where both the
photon and the vector meson transverse momenta are zero,
as we consider forward production. Consequently, at
leading order the meson wave function is given by a delta
function in the transverse plane:

ΨV→qq̄
f;LO ðz0;k0Þ ¼ cf

δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p ϕ0ðz0Þ

× ð2πÞD−2δD−2ðk0Þ: ð20Þ

Here ϕ0ðzÞ is the (bare) distribution amplitude of the meson
that describes how the meson plus momentum is shared by
the two quarks. This wave function is normalized in such a
way that it gives the correct decay constant fV given that
the distribution amplitude is normalized asZ

1

0

dzϕ0ðzÞ ¼ 1: ð21Þ

The decay constant fV is related to the leptonic width by

ΓðV → lþl−Þ ¼ 4πα2emf2V
3MV

: ð22Þ

The wave function (20) describes the probability of the
meson to split into a quark-antiquark pair with the flavor f.
Here cf is a normalization factor needed for mesons that
consist of a superposition of different flavored quark-
antiquark states. For example, the ρ meson can be written
at leading order as jρi ¼ 1ffiffi

2
p ðjuūi − jdd̄iÞ, giving us cu ¼

1ffiffi
2

p and cd ¼ − 1ffiffi
2

p . The normalization factors are also

related to the effective charge fraction of the meson that
is defined by eV ¼ P

f cfef. We emphasize that in the
high-Q2 limit the dependence on the vector meson type is
included in the nonperturbative distribution amplitude
ϕ0ðz0Þ (in addition to the normalization factors fV , eV ,
and cf).
At next-to-leading order, we get perturbative corrections

to the meson wave function from Feynman diagrams shown
in Fig. 1. Of these, the Figs. 1(a) and 1(b), corresponding to
the self-energy corrections of the quark and antiquark,
evaluate to zero. This is a consequence of the dimensional
regularization used in the calculation, as these diagrams
give transverse integrals with no mass scales (in the high-
Q2 limit considered here where we neglect the quark and
meson masses and the quark transverse momenta) such

as
R dD−2k0

ð2πÞD−2
1
k2
0

¼ 0.

To calculate the rest of the diagrams we use the Feynman
rules of the light cone perturbation theory from Ref. [29].
For Fig. 1(c) this gives

Ψ1 c
f ¼

Z
dD−2k0

0dk
0þ
0

ð2πÞD−24π

1

4kþ2 k
0þ
0 k0þ1 ðP− − k−0 − k−1 ÞðP− − k−0 − k0−1 ÞΨ

V→qq̄
LO ðz00;k0

0; α
0
0; α

0
1; h

0
0; h

0
1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0ð1 − z0Þ
zð1 − zÞ

s

× μ4−Dg2tα2α0α00
tα2α0

1
α1
ūð0Þ=ϵ�h2ð2Þuð00Þv̄ð10Þ=ϵh2ð2Þvð1Þ;

¼ −4π
αsCF

2π

μ4−D

k2
0

cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p

×
Z

1

z0þα
dz0ϕ0ðz0Þ

z0
z0

1

ðz0 − z0Þ2
�
z0ð1 − z0Þ þ z0ð1 − z0Þ þ

Ds − 4

2
ðz0 − z0Þ2

�
; ð23Þ

where the identity (11) has been used to simplify the result. The square root factor in the first line comes from
our choice for the integration measure, and the quark and antiquark transverse momenta after the gluon exchange are
k0 and k1 ¼ −k0. We use a notation uð0Þ ¼ uh0ðk0Þ; vð1Þ ¼ vh1ðk1Þ for the quark and antiquark spinors, and the
primed quantities correspond to the intermediate quark and antiquark whose spins and helicities are summed over
(see Fig. 1).
The contribution of Fig. 1(d) is similar to Fig. 1(c). An explicit calculation gives the result Eq. (23) with the substitutions

z0 → 1 − z0 and z0 → 1 − z0:
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Ψ1 d
f ¼ −4π

αsCF

2π

μ4−D

k2
0

cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p

×
Z

z0−α

0

dz0ϕ0ðz0Þ
1 − z0
1 − z0

1

ðz0 − z0Þ2
�
z0ð1 − z0Þ þ z0ð1 − z0Þ −Ds − 4

2
ðz0 − z0Þ2

�
: ð24Þ

Here we used the symmetry condition ϕðz0Þ ¼ ϕð1 − z0Þ that follows from the parity of the vector meson.
The final contribution to the NLO qq̄ wave function comes from Fig. 1(e) describing an exchange of an instantaneous

gluon between the quark and the antiquark. The contribution from this diagram can be evaluated to give

Ψ1 e
f ¼ 8π

αsCF

2π

μ4−D

k2
0

cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p
Z

1

0

dz0ϕ0ðz0Þ
z0ð1 − z0Þ
ðz0 − z0Þ2

½θðz0 − z0 − αÞ þ θðz0 − z0 − αÞ�: ð25Þ

Summing these contributions together, we get the NLO correction to the meson qq̄ wave function:

ΨV→qq̄
f;NLOðz0;k0Þ ¼ cf

δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p αsCF

2π

× 4π
μ4−D

k2
0

Z
1

0

dz0ϕ0ðz0Þ
�
θðz0 − z0 − αÞ z0

z0

�
1þ 1

z0 − z0

�
þ θðz0 − z0 − αÞ 1 − z0

1 − z0

�
1þ 1

z0 − z0

�

þDs − 4

2

�
1 − z0
1 − z0

θðz0 − z0Þ þ z0
z0
θðz0 − z0Þ

��
: ð26Þ

It should be noted that this NLO correction does not affect the normalization (21) of the distribution amplitude. The reason
for this is that the decay constant is given by fV ∼

R
dz0

R
dD−2k0ΨV→qq̄ðz0;k0Þ, and this integral vanishes for Eq. (26) in

dimensional regularization.
We also need the wave function for the qq̄g state. This is simply given by the sum of Figs. 1(f) and 1(g), which evaluates to

ΨV→qq̄g
f ðzi;kiÞ ¼ cf

πfV
eV

ffiffiffiffiffiffi
Nc

p 2gtaα0α1ffiffiffiffiffiffiffiffiffiffi
Ncz2

p ϵj�h2δh0;−h1μ
4−D
2
ki
2

k2
2

×

�
ð2πÞD−2δD−2ðk1Þϕ0ðz1ÞVij

h0

�
z2

z0 þ z2

�
− ð2πÞD−2δD−2ðk0Þϕ0ðz0ÞVij

−h0

�
z2

z1 þ z2

��
: ð27Þ

Note that the momentum conservation implies z0 þ z1 þ z2 ¼ 1 and k0 þ k1 þ k2 ¼ 0.
These wave functions are presented in the momentum space. For the meson production calculation we need the mixed

space wave functions, which can be calculated from the momentum space wave functions by a Fourier transform in the
transverse plane. The leading-order wave function in the mixed space is given by

ΨV→qq̄
f;LO ðz0;x01Þ ¼

Z
dD−2k0dD−2k1

ð2πÞ2ðD−2Þ eiðk0·x0þk1·x1Þð2πÞD−2δD−2ðk0 þ k1ÞΨV→qq̄
LO ðz0;k0Þ;

¼ cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p ϕ0ðz0Þ: ð28Þ

The NLO correction to the qq̄ wave function is given by

ΨV→qq̄
f;NLOðz0;x01Þ ¼

Z
dD−2k0dD−2k1

ð2πÞ2ðD−2Þ eiðk0·x0þk1·x1Þð2πÞD−2δD−2ðk0 þ k1ÞΨV→qq̄
NLO ðz0;k0Þ;

¼ cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p αsCF

2π
ðπx2

01μ
2Þ4−D2 Γ

�
D − 4

2

�

×
Z

1

0

dz0ϕ0ðz0Þ
�
θðz0 − z0 − αÞ z0

z0

�
1þ 1

z0 − z0

�
þ θðz0 − z0 − αÞ 1 − z0

1 − z0

�
1þ 1

z0 − z0

�

þDs − 4

2

�
1 − z0
1 − z0

θðz0 − z0Þ þ z0
z0
θðz0 − z0Þ

��
; ð29Þ
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and the wave function for the qq̄g state is

ΨV→qq̄g
f ðzi;xiÞ ¼

Z
dD−2k0dD−2k1dD−2k2

ð2πÞ3ðD−2Þ eiðk0·x0þk1·x1þk2·x2Þð2πÞD−2δD−2ðk0 þ k1 þ k2ÞΨV→qq̄gðzi;kiÞ;

¼ cf
πfV

eV
ffiffiffiffiffiffi
Nc

p 2gtaα0α1ffiffiffiffiffiffiffiffiffiffi
Ncz2

p ϵj�h2δh0;−h1μ
4−D
2

Z
dD−2k2

ð2πÞD−2
ki
2

k2
2

×

�
ϕ0ðz1ÞVij

h0

�
z2

z1 þ z2

�
eik2·x20 − ϕ0ðz0ÞVij

−h0

�
z2

z0 þ z2

�
eik2·x21

�
;

¼ cf
πfV

eV
ffiffiffiffiffiffi
Nc

p 2gtaα0α1ffiffiffiffiffiffiffiffiffiffi
Ncz2

p ϵj�h2δh0;−h1

�
ϕ0ðz1ÞVij

h0

�
z2

z0 þ z2

�
Jiðx20Þ − ϕ0ðz0ÞVij

−h0

�
z2

z1 þ z2

�
Jiðx21Þ

�
; ð30Þ

where

JiðrÞ ¼ i
2π

ri

r2
ðπμr2Þ4−D2 Γ

�
1þD − 4

2

�
: ð31Þ

IV. LIGHT VECTOR MESON PRODUCTION AT NEXT-TO-LEADING ORDER

A. Production amplitude

Having determined the NLO corrections to the meson wave function, we now have all the ingredients to calculate the
exclusive light meson production amplitude. We substitute the photon wave functions for the qq̄ [sum of Eqs. (14) and (15)]
and qq̄g [Eq. (17)] states, along with the meson wave functions for the qq̄ [sum of Eqs. (28) and (29)] and qq̄g [Eq. (30)]
states, into Eq. (1) to obtain the production amplitude and keep terms up to OðαsÞ. The production amplitude can then be
divided into the dipole (qq̄) and real emission (qq̄g) parts. The dipole part contains the leading-order result

−iALO ¼ eQfV
π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2bN01z0ð1 − z0ÞKD−4

2
ðjx01jQÞϕ0ðz0Þ ×

�
Q

2πjx01j
�D−4

2

; ð32Þ

and the NLO correction

−iAqq̄
NLO ¼ eQfV

π

αsCF

2π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2bN01z0ð1− z0ÞKD−4

2
ðx01QÞ×

�
Q

2πjx01j
�D−4

2

×



ðπx2

01μ
2Þ4−D2 Γ

�
D− 4

2

�Z
1

0

dz0ϕ0ðz0Þ
�
θðz0 − z0 − αÞ z0

z0

�
1þ 1

z0 − z0

�
þ θðz0 − z0 − αÞ1− z0

1− z0

�
1þ 1

z0 − z0

��

þϕ0ðz0ÞKγ�L þDs − 4

D− 4

Z
1

0

dz0ϕ0ðz0Þ
�
1− z0
1− z0

θðz0 − z0Þ þ z0
z0
θðz0 − z0Þ

��
; ð33Þ

where b ¼ ðx0 þ x1Þ=2. The real emission part reads

−iAqq̄g ¼ eQfV
π

αsCF

2π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2b

Z
1−z0

α
dz2

Z
dD−2x20N012

×
−8π2

z2



ϕ0ðz1ÞJiðx20Þ

1

1 − z1
½z1ðz20 þ ð1 − z1Þ2ÞIiðlÞ − z0ðz0ð1 − z0Þ þ z1ð1 − z1ÞÞIiðmÞ�

þ ϕ0ðz0ÞJiðx21Þ
1

1 − z0
½z0ðz21 þ ð1 − z0Þ2ÞIiðmÞ − z1ðz0ð1 − z0Þ þ z1ð1 − z1ÞÞIiðlÞ�

þDs − 4

2
z22

�
ϕ0ðz1Þ

z1
1 − z1

Jiðx20ÞIiðlÞ þ ϕ0ðz0Þ
z0

1 − z0
Jiðx21ÞIiðmÞ

��
; ð34Þ

where b ¼ z0x0 þ z1x1 þ z2x2. These choices for the impact parameter b follow Ref. [37], but we note that in the t ¼ 0
case the weighting of the coordinates by the momentum fractions zi in the definition of b does not affect the results.
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The coherent vector meson V electroproduction cross
section (2) can now be evaluated using the scattering
amplitude

iA ¼ iAqq̄
LO þ iAqq̄

NLO þ iAqq̄g: ð35Þ

When squaring the amplitude, we keep terms up to OðαsÞ.
However, the iAqq̄g amplitude also contains a large con-
tribution enhanced by a large logarithm ln 1=z2 ∼ 1=αs, and
as such this contribution has to be considered as being part
of the leading order amplitude. This is in practice done by

taking into account the BK evolution as we will discuss in
more detail in Secs. IV D and V.

B. UV subtraction

The dipole (−iAqq̄
NLO) and real emission (−iAqq̄g) parts of

the amplitude are separately UV divergent. However, most
of the divergences cancel in their sum. Therefore it is useful
to subtract the UV divergent part of the real emission and
combine it with the dipole part. The subtracted term is
chosen to be

−iAqq̄g
UV ¼ eQfV

π

αsCF

2π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2b

Z
1−z0

α
dz2

Z
dD−2x20N01

×
−8π2

z2



ϕ0ðz1ÞJiðx20ÞIiUVðx20; z1ð1 − z1ÞQ2Þ z1

1 − z1
ðz20 þ ð1 − z1Þ2Þ

þ ϕ0ðz0ÞJiðx21ÞIiUVðx21; z0ð1 − z0ÞQ2Þ z0
1 − z0

ðz21 þ ð1 − z0Þ2Þ

þDs − 4

2
z22

�
ϕ0ðz1Þ

z1
1 − z1

Jiðx20ÞIiðlÞ þ ϕ0ðz0Þ
z0

1 − z0
Jiðx21ÞIiðmÞ

��
; ð36Þ

where

IiUVðr; Q2Þ ¼ i
4π2

ðπμr2Þ4−D2 ri

r2
Γ
�
1þD − 4

2

�
e
− r2

x2
01

eγEKD−4
2
ðjx01jQÞ ×

�
Q

2πjx01j
�D−4

2

: ð37Þ

This choice for the UV subtraction term is analogous to the one in Ref. [29] and also what is used when considering heavy

vector meson production in Ref. [41]. Unlike in Ref. [29], we choose to include the additional factor ð Q
2πjx01jÞ

D−4
2 to the UV

subtraction to cancel the same factor in the dipole part.
The integrals over x20 and z2 can be done analytically, which simplifies the UV subtraction term to

−iAqq̄g
UV ¼ −

eQfV
π

αsCF

2π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2bN01ϕ0ðz0Þz0ð1 − z0ÞKD−4

2
ðx01QÞ ×

�
Q

2πjx01j
�D−4

2

×



Γ
�
1þD − 4

2

�
Γ
�
4 −D
2

�
ðπμ2x2

01e
γEÞ4−D2

�
3þ 2 ln

�
α2

z0ð1 − z0Þ
��

þDs − 4

D − 4

�
: ð38Þ

We then add this to the dipole part, which gives us

−iAqq̄
sub ¼

eQfV
π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2bN01z0ð1 − z0ÞKD−4

2
ðx01QÞ ×

�
Q

2πjx01j
�D−4

2

×
Z

1

0

dz0ϕ0ðz0Þ


δðz0 − z0Þ

þ αsCF

2π

�
Kðz0; z0Þ

�
2

D − 4
− lnðπμ2x2

01e
γEÞ

�
þ δðz0 − z0Þ

�
1

2
ln2

�
z0

1 − z0

�
−
π2

6
þ 5

2

��

þ αsCF

2π

Ds − 4

D − 4

�
−
1

2
δðz0 − z0Þ þ 1 − z0

1 − z0
θðz0 − z0Þ þ z0

z0
θðz0 − z0Þ

��
: ð39Þ

Here Kðz; z0Þ is the kernel of the ERBL equation [20,56], which describes the scale dependence of the distribution
amplitude as we will discuss in Sec. IV C:
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Kðz; z0Þ ¼ z
z0

�
1þ 1

z0 − z

�
θðz0 − z − αÞ þ 1 − z

1 − z0

�
1þ 1

z − z0

�
θðz − z0 − αÞ þ

�
3

2
þ ln

�
α2

zð1 − zÞ
��

δðz0 − zÞ: ð40Þ

This form for the ERBL kernel is equivalent to the usual one written in terms of the plus distributions in the limit α → 0.
After the UV subtraction, the real emission part becomes finite and reads:

−iAqq̄g
sub ¼ eQfV

π

αsCF

2π

Z
1

0

dz0

Z
d2x01

Z
d2b

Z
1−z0

α
dz2

Z
d2x20

2

πz2
ϕ0ðz0Þ

×



N012K0ðRQÞ 1

1 − z0

�
z0ðð1 − z0 − z2Þ2 þ ð1 − z0Þ2Þ

1

x2
21

− ð1 − z0 − z2Þðz0ð1 − z0Þ

þ ð1 − z0 − z2Þðz0 þ z2ÞÞ
x20 · x21

x2
20x

2
21

�
− N01

z0
1 − z0

ðð1 − z0 − z2Þ2 þ ð1 − z0Þ2Þ
1

x2
21

e
−

x2
21

x2
01

eγEK0ðx01Q̄Þ
�
; ð41Þ

where R2 ¼ z0z1x2
01 þ z1z2x2

21 þ z0z2x2
20.

C. ERBL evolution and the renormalized
distribution amplitude

The dipole part −iAqq̄
sub, Eq. (39), still contains a diver-

gence of the form 1
D−4, which is canceled when the

distribution amplitude is renormalized. We define the
renormalized distribution amplitude ϕðz; μFÞ as

ϕðz; μFÞ ¼ ϕ0ðzÞ þ
αsCF

2π

Z
1

0

dz0Kðz; z0Þϕ0ðz0Þ

×

�
2

D − 4
þ γE − lnð4πÞ þ ln

�
μ2F
μ2

��
; ð42Þ

where μF is the factorization scale. This choice for the finite
terms in the subtraction corresponds to the MS scheme. We
note that the distribution amplitude depends on the regu-
larization scheme (FDH or CDR), as in practice it has to be
determined from some experimental process for which an
NLO calculation also depends on the same scheme choice.
In principle the scheme-dependent term ∼ðDs − 4Þ=
ðD − 4Þ in Eq. (39) could be also included in the definition

of the renormalized distribution amplitude (42). However,
in this work we choose to keep the scheme dependence
explicitly visible in the dipole term, Eq. (39). This allows us
to straightforwardly quantify the scheme dependence
which is shown in the Appendix to be negligible.
The renormalized distribution amplitude satisfies the

ERBL evolution equation [20,56]

∂ϕðz; μFÞ
∂ ln μ2F

¼ αsCF

2π

Z
1

0

dz0Kðz; z0Þϕðz0; μFÞ; ð43Þ

where the kernel Kðz; z0Þ is given in Eq. (40). We note that
this renormalization does not change Eq. (21) for the
normalization of the distribution amplitude as the z integral
over the ERBL kernel vanishes:

R
1
0 dzKðz; z0Þ ¼ 0.

Next we use Eq. (42) to write the bare distribution
amplitude ϕ0ðzÞ in −iAqq̄

sub, Eq. (39), in terms of the
renormalized distribution amplitude. We also choose to
use the scale dependent renormalized distribution ampli-
tude instead of the bare distribution in the NLO part, as
their difference is now formally higher order in αs. This
results in the finite expression

−iAqq̄
fin ¼

eQfV
π

Z
1

0

dz0

Z
d2x01

Z
d2bN01z0ð1 − z0ÞK0ðx01QÞ

×
Z

1

0

dz0ϕðz0; μFÞ


δðz0 − z0Þ þ αsCF

2π

�
−Kðz0; z0Þ ln

�
μ2Fx

2
01e

2γE

4

�
þ δðz0 − z0Þ

�
1

2
ln2

�
z0

1 − z0

�
−
π2

6
þ 5

2

��

þ αsCF

2π

Ds − 4

D − 4

�
−
1

2
δðz0 − z0Þ þ 1 − z0

1 − z0
θðz0 − z0Þ þ z0

z0
θðz0 − z0Þ

��
: ð44Þ

Similarly we can replace ϕ0ðzÞ by ϕðz; μFÞ in the real
emission part (41).
Let us briefly consider the evolution of the renormalized

distribution amplitude. It is useful to write the distribution
amplitude in terms of the eigenfunctions fnðzÞ of the ERBL
kernel

Z
1

0

dz0Kðz; z0Þfnðz0Þ ¼ λnfnðzÞ: ð45Þ

The eigenfunctions can bewritten in terms of theGegenbauer

polynomials C
ð3
2
Þ

n as fnðzÞ ¼ 6zð1 − zÞCð3
2
Þ

n ð2z − 1Þ, and the
corresponding eigenvalues are given by [20]
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λn ¼ −
1

2
þ 1

ðnþ 1Þðnþ 2Þ − 2
Xnþ1

k¼2

1

k
: ð46Þ

Writing the distribution amplitude as a sum of the eigen-
functions, the ERBL equation then tells us that the coef-
ficients in the sum depend on the factorization scale:

ϕðz; μFÞ ¼
X∞
n¼0

anðμFÞfnðzÞ: ð47Þ

Taking into account the running of the coupling constant as
αsðμ2FÞ ¼ 4π

β lnðμ2F=Λ2
QCDÞ

, we can solve the evolution of the

coefficients an explicitly [20]:

anðμFÞ ¼ an ln

�
μ2F

Λ2
QCD

�2CF
β λn

: ð48Þ

Here ΛQCD¼0.241GeV and β¼ð11Nc−2NfÞ=3 with
Nf ¼3. Values for the coefficients an at an initial scale
are a nonperturbative input for the calculation. These
coefficients also depend on the considered vector
meson, and should be determined from experimental
data. It should be noted that the eigenvalue λn is zero
for the term n ¼ 0 and negative for the n > 0 terms. This
means that the first term is actually constant in μF, and the
higher-order terms become suppressed as μF increases.
In the asymptotic limit μF → ∞ only the first term con-
tributes, and the distribution amplitude then simplifies to
ϕðz; μF ¼ ∞Þ ¼ 6zð1 − zÞ. Here we have also used the fact
that the coefficient a0 of the first term is actually determined
by the normalization condition Eq. (21), as the orthogon-
ality of the Gegenbauer polynomials guarantees that only
the first term contributes to the normalization, giving us
a0 ¼ 1. It should also be noted that parity conservation
demands that the distribution amplitude is invariant under
the substitution z ↔ 1 − z, meaning that all terms with
n ¼ odd are zero in the sum.
We point out that Eq. (48) is divergent for μF ¼ ΛQCD. In

practice, we avoid this singularity by introducing an
infrared (IR) cutoff μF0 for the ERBL evolution and freeze
the distribution amplitude below this scale: ϕðz; μFÞ ¼
ϕðz; μF0Þ for μF < μF0. We choose the value of the IR
cutoff to be μF0 ¼ 1 GeV. The dependence on the IR cutoff
is quantified in the Appendix.

D. Soft gluon divergence

The real emission part still has an IR divergence from the
lower limit α of the z2 integral. This is related to the
emission of soft gluons from the dipole, and to the rapidity
evolution of the dipole amplitude. This can be seen by
noting that the singular part of the real emission can be
written as

−iAqq̄g
sing ¼

eQfV
π

Z
1

0

dz0

Z
d2x01

Z
d2bϕðz0;μFÞz0ð1− z0Þ

×K0ðjx01jQÞαsCF

2π

Z
1−z0

zmin

dz2

Z
d2x20

2

πz2

× ½N012−N01�
x2
01

x2
20x

2
21

; ð49Þ

where the identity [29]Z
d2x2

�
x2
01

x2
20x

2
21

−
1

x2
20

e−x
2
20
=ðx2

01
eγE Þ −

1

x2
21

e−x
2
21
=ðx2

01
eγE Þ

�
¼ 0

ð50Þ
has been used. Note that as we do not have an explicit
dependence on the infrared cutoff α in the integrands any-
more, from now on the lower limit of the z2 integral is
denoted by zmin whose value will be discussed shortly. We
can recognize the integrand in Eq. (49) as the kernel of the
(fixed coupling leading order) BK equation (5). This can
then be combined with the leading-order term [α0s part of
Eq. (44)], and the sumof these two contributions corresponds
to using in the leading-order term a dipole amplitude evolved
from the initial rapidity Y0 to the rapidity

Ydip ¼ Y0 þ ln
1 − z0
zmin

: ð51Þ

At finite center-of-mass energy the lower limit zmin of the z2
integral should not be taken to zero. In particular, the invariant
massof theqq̄g systemshouldbemuch less thanW2 inorder to
justify the usage of the eikonal approximation, which imposes
the lower limit zmin. We follow Refs. [37,41] and choose

zmin ¼ min

�
eY0

Q2
0

W2 þQ2 −m2
N
; 1 − z0

�
: ð52Þ

Here the minimum comes from the kinematic constraint
z0 þ z2 ≤ 1, which guarantees that the dipole does not evolve
backwards in rapidity.Aswe are interested in the high (but finite)
energy limit, theminimum is only needed in a small subset of the
integration region and in practice the evolved rapidity is

Ydip ¼ ln

�
ð1 − z0Þ

W2 þQ2 −m2
N

Q2
0

�
: ð53Þ

For theαs-suppressed terms thedependenceon theevolution
rapidity is formally of higher order in the coupling constant.
Following again Refs. [37,41] we choose to use the same evo-
lution rapidity Ydip when evaluating the next-to-leading order
terms in the dipole part, Eq. (44). The z2-dependent evolution
rapidityusedwith realgluonemission termisobtained fromthe
definition Y ¼ ln kþ

Pþ and can be written as [41]

Yqq̄g ¼ ln z2 þ ln
W2 þQ2 −m2

N

Q2
0

: ð54Þ
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E. Full result

We can now write the scattering amplitude for light meson electroproduction in its full form. It reads

−iA ¼ eQfV
π

Z
d2x01

Z
d2b

Z
1

0

dz0



KLO

qq̄ ðY0Þ þ
αsCF

2π
KNLO

qq̄ ðYdipÞ þ
Z

d2x20

Z
1−z0

zmin

dz2
αsCF

2π
Kqq̄gðYqq̄gÞ

�
; ð55Þ

where the LO part is

KLO
qq̄ ðY0Þ ¼ N01ðY0Þz0ð1 − z0ÞK0ðjx01jQÞϕðz0; μFÞ; ð56Þ

and the NLO corrections are

KNLO
qq̄ ðYdipÞ ¼ N01ðYdipÞz0ð1 − z0ÞK0ðjx01jQÞ



ϕðz0; μFÞ

�
1

2
ln2

�
z0

1 − z0

�
−
π2

6
þ 5

2

�

− ln

�
μ2Fx

2
01e

2γE

4

�Z
1

0

dz0Kðz0; z0Þϕðz0; μFÞ

þDs − 4

D − 4

Z
1

0

dz0ϕðz0; μFÞ
�
−
1

2
δðz0 − z0Þ þ 1 − z0

1 − z0
θðz0 − z0Þ þ z0

z0
θðz0 − z0Þ

��
ð57Þ

for the dipole part and

Kqq̄gðYqq̄gÞ ¼
2

πz2
ϕðz0; μFÞ



N012ðYqq̄gÞK0ðRQÞ 1

1 − z0

�
z0ðð1 − z0 − z2Þ2 þ ð1 − z0Þ2Þ

1

x2
21

− ð1 − z0 − z2Þðz0ð1 − z0Þ þ ð1 − z0 − z2Þðz0 þ z2ÞÞ
x20 · x21

x2
20x

2
21

�

− N01ðYqq̄gÞ
z0

1 − z0
ðð1 − z0 − z2Þ2 þ ð1 − z0Þ2Þ

1

x2
21

e
−

x2
21

x2
01

eγEK0ðx01QÞ
�

ð58Þ

for the real emission. The lower limit for the z2 integral is
given by Eq. (52). This expression is finite and suitable for
numerical evaluation. The rapidity scales at which the
different dipole amplitudes are evaluated, Y0, Ydip, and
Yqq̄g, are shown explicitly. In numerical calculations we
follow Ref. [37] and take Y0 ¼ 0.
The NLO correction to the dipole part has a depen-

dence on the regularization scheme given by a term
proportional to

Ds − 4

D − 4
¼



1 for CDR

0 for FDH
: ð59Þ

This regularization scheme dependence is in principle
canceled by the regularization scheme dependence of
the distribution amplitude at the given order in αs. The
distribution amplitude is a nonperturbative quantity that has
to be determined from some process where the same
regularization scheme dependence should also appear. In
this paper, we choose to use the CDR regularization scheme
when we show numerical results in Sec. V. However, it will
turn out that the regularization scheme dependence is very
small even if the same distribution amplitude is used in both

schemes, which is a consequence of the fact that for the first
term in the Gegenbauer expansion (47) of the distribution
amplitude this regularization scheme dependent term van-
ishes. The regularization scheme dependence of the cross
section will be discussed quantitatively in the Appendix.
The dependence on the factorization scale μF is of higher

order in αs, as can be verified by taking into account
the ERBL equation. However, as we are keeping terms
only to the order αs, the results do have a dependence on
the factorization scale. The value of μF can be chosen
in different ways. Equation (44) suggests the choice
μ2F ¼ 4e−2γE=x2

01, as with this choice the logarithm multi-
plying the ERBL kernel Kðz; z0Þ vanishes (we will refer to
this term as the “ERBL term”). Note that the factor 4e−2γE is
the same one that appears in the Fourier analysis of the
coordinate space running coupling [66,67]. This choice
for the factorization scale will be referred to as the r scheme
to emphasize its dependence on the dipole size. In the
qq̄g term we choose to use the smallest dipole size
minfjx01j; jx20j; jx21jg for the factorization scale, in accor-
dance with the running of the coupling constant αs. Another
possible choice for the factorization scale is to use μF ¼ Q,
which is supported by the fact that the relevant length scales
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for meson production are Q ∼ 1=jx01j, meaning that the
logarithm lnðQ2x2

01Þ of the ERBL term in Eq. (44) should
also be small in this scheme. This will be referred to as the
Q scheme, and its main advantage is that the hard scale
does not depend on the integration variable. In this paper,
we will use the r scheme in our calculations as then the
ERBL term vanishes completely. In the Q scheme, there
can in practice be a large contribution from the ERBL term
as the dipole amplitude amplifies the contribution of larger
dipoles that can have a numerically significant contribution
even at moderately large virtualities [70,71]. This scheme
dependence is studied in more detail in the Appendix,
where it is shown that the factorization scale dependence at
the cross section level is a few percent.
The result (55) can be compared to the previously

calculated NLO light vector meson production from
Ref. [53]. In that paper the production amplitude is
presented in the momentum space as opposed to the mixed
space used in this paper. Comparing these results is
nontrivial, as one has to perform complicated Fourier
transforms from momentum space to coordinate space to
match the results. We have only been able to make
comparisons for the dipole part of the amplitude, finding
that the result of Ref. [53] matches our result in the CDR
scheme apart from differences in the UV subtraction
procedure. The real gluon emission part is much more
complicated, and so far we have not been able to make
actual comparisons of the results.

V. NUMERICAL RESULTS

In this section, we present numerical results for coherent
light vector meson electroproduction at next-to-leading
order, calculated using Eq. (55). As our default setup,
we use the CDR scheme for regularization and r scheme
for the factorization scale μF. For the distribution ampli-
tude, we choose to keep only the first two terms in the
Gegenbauer expansion (47). The reason for this is that the

exact values for the higher-order terms are not well known
but estimated to be small [72]. For the ρ meson, the
coefficient of the second term has been extracted in many
different ways, with relatively large uncertainties [73]. We
choose to use the value a2ðμF ¼ 1 GeVÞ ¼ 0.1, which is in
agreement with most of the values tabulated in Ref. [73].
We also choose to use this same value for the ϕ meson, as
current analyses suggest that they are of the same order of
magnitude [57,72]. As we then use the same distribution
amplitude for both mesons, the only difference between
ρ and ϕ production is the decay constant fV , which appears
as an overall coefficient in Eq. (55). These decay constants
can be calculated from the experimental values for the
leptonic widths [74] using Eq. (22).
The numerical results are calculated using the dipole

amplitude fits from Refs. [37,75] for the different schemes
of the BK evolution equation discussed in Sec. II C. We use
the fits where the “Balitskyþ smallest dipole” running
coupling scheme is used, and use both fits with initial
evolution rapidities Y0;BK; η0;BK ¼ 0 and Y0;BK; η0;BK ¼
4.61 (in which case the dipole amplitude is frozen in the
region Y0 ¼ 0 < Y < Y0;BK or η0 ¼ 0 < η < η0;BK). In
these fits the impact parameter dependence is assumed
to factorize and one can replace

R
d2b → σ0=2, and the

proton transverse area σ0=2 is a fit parameter which is also
determined in Ref. [37].
In Fig. 2, we show different contributions to the

exclusive ρ production amplitude at NLO as a function
of the center-of-mass energy W [Fig. 2(a)] and photon
virtuality Q2 [Fig. 2(b)]. The same dipole amplitude,
corresponding to the KCBK equation with the initial
rapidity Y0;BK ¼ 4.61 for the BK evolution [37], is used
in these figures. Here the leading-order result is denoted by
LOðYdipÞ, which is calculated from the leading-order part
of Eq. (55) with the dipole amplitude evaluated at rapidity
Ydip. Using the evolved rapidity Ydip means that the
LOðYdipÞ contains the resummation of large logarithms
∼αs ln 1=x included in the BK evolution. The result LOðY0Þ

(a) (b)

FIG. 2. Different parts of the longitudinal NLO amplitude for exclusive ρ production. (a) Dependence on the center-of-mass energy of
the γ� − p system. (b) Dependence on the photon virtuality Q2. The amplitude has been scaled by Q3 for easier readability.
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is the leading-order term of Eq. (55) at the initial rapidity
Y0, and NLOdip is the NLO correction to the dipole term
corresponding to Eq. (57). The contribution from the qq̄g
term, Eq. (58), has been divided into two parts: the result
NLOqq̄gðBKÞ contains only the part corresponding to the
BK equation, Eq. (49), and NLOqq̄gðno BKÞ is Eq. (58)
from which the BK contribution has been subtracted. The
total NLO result is then the sum

NLO ¼ LOðY0Þ þ NLOdip þ NLOqq̄gðBKÞ
þ NLOqq̄gðno BKÞ: ð60Þ

From these plots we see that the contributions from the
LO result at the initial rapidity and from the NLO dipole
term are small. Both qq̄g contributions are large, but they
mainly cancel each other. These findings are similar to
what has been observed in the case of heavy vector
meson production [41]. The total NLO correction, the
difference between NLO and LOðYdipÞ, is large and
positive. However, we point out that in these plots the
same NLO fitted dipole amplitude was used to calculate all
of the results. Consequently, these results only quantify the
largeness of the NLO correction terms in Eq. (55) and not
the actual difference between the NLO and LO results
where the corresponding dipole amplitude fits should
be used.
We also note that at fixed coupling the identification

LOðYdipÞ ¼ LOðY0Þ þ NLOqq̄gðBKÞ would be exact if the
dipole amplitude satisfied the leading-order fixed coupling
BK equation. In that case there would be no ambiguity in
defining the leading-order amplitude. In our setup this is
not the case, and consequently the leading-order amplitude
is not uniquely defined. In this work we choose it to be
LOðYdipÞ following Ref. [41], as this is the most natural
choice when using a dipole amplitude that satisfies a

resummed BK evolution equation. Identifying LOðY0Þ þ
NLOqq̄gðBKÞ as a leading order term instead would have
maximally a ∼20% effect on the calculated cross sections
discussed below.
Next we show numerical comparisons to the existing

coherent vector meson production data for ρ and ϕ mesons
at (moderately) largeQ2. The H1 data is from Ref. [59], and
the ZEUS data is from Ref. [76] for ϕ and Ref. [77] for ρ.
The results are shown with various different dipole ampli-
tude fits that all give a good description of the HERA
structure function data. As discussed above, the NLO
results use fits from Ref. [37]. For the leading order, the
dipole amplitude used is the “MVe” fit from Ref. [35]. In
the leading-order calculation the evolution rapidity is

chosen as Y ¼ ln 1
xP

¼ ln W2þQ2

Q2þM2
V
, consistently with the fit.

The differential cross section is proportional to the square
of the production amplitude as given by Eq. (2). When
calculating the cross section at NLO, we drop the higher-
order terms proportional to α2s so that we only keep the
genuine NLO correction at the cross section level.
In Fig. 3, we show the differential cross section for

the longitudinal ϕ and ρ production at t ¼ 0. Here the
experimental data is for the total production, which is
the sum of the longitudinal and transverse channels.
However, the longitudinal production dominates at
Q2 ≫ M2

V , and therefore it is expected that for high
virtualities these data points accurately correspond to the
longitudinal case.
In general, we see that both the LO and NLO results

describe the H1 data well. The difference between the
LO and NLO results is smaller than one would expect based
on Fig. 2, as in the leading-order fit the nonperturbative
parameters describing the initial condition of the dipole
amplitude effectively capture part of the higher-order
effects. This difference becomes small at high virtua-
lities, where our approach is expected to be most reliable.

FIG. 3. Photon virtuality dependence of the longitudinal cross section at t ¼ 0 for various different dipole amplitude fits, compared
to the H1 data for the sum of longitudinal and transverse productions [59]. (a) Cross section for ϕ production. (b) Cross section
for ρ production.
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The NLO results also give a surprisingly accurate description
of the data for smaller values of the photon virtuality where
the framework cannot be trusted (we have assumed that
Q2 ≫ M2

V). We consider this agreement to be accidental for
two reasons. First, we have only calculated the longitudinal
cross section, leaving out the transverse contribution which
is significant at small Q2. Second, we neglect any depend-
ence on the dipole size in the meson wave function, keeping
only the r ¼ 0 case which corresponds to the distribution
amplitude. In general, the wave function is expected to be a
decreasing function of jrj, meaning that this approximation
overestimates the results. These two corrections, which may
have significant numerical contributions at small virtualities,
affect the result in opposite ways and therefore their total
contribution at least partially cancels.
Next we will consider the t-integrated cross sections for

which more data exists. To avoid additional modeling for
the impact parameter dependence of the dipole amplitude,
we evaluate the t integral by using the following exper-
imental parametrization for the t dependence of the cross
section:

dσ
dt

¼ e−bjtj ×
dσ
dt

ðt ¼ 0Þ: ð61Þ

Here b is the slope parameter that in general depends onQ2

andW. It has been measured for both ϕ and ρ [59,76,77] at
different values of the virtuality atW ¼ 75 GeV. The slope
parameter can be thought of as the effective transverse area
of the meson-target system, and we model its dependence
on virtuality and center-of-mass energy by assuming the
parametrization

b ¼ b0 þ
b1

Q2 þM2
V
þ 4α0 ln

W
W0

: ð62Þ

TheW dependence determined from HERA data [59] gives
α0 ¼ 0.12� 0.04. The model for the virtuality dependence
is chosen for its simplicity and that it approaches a constant
value at highQ2. Also, the dependence on the virtuality and
the center-of-mass energy does not seem to be correlated
[59]. We fit the parameters b0 and b1 to H1 and ZEUS data
atW0 ¼ 75 GeV, with the fit shown in Fig. 4, and note that
the errors on these fitted parameters are significant, which
results in ∼10% uncertainty in the calculated total cross
sections.
The virtuality dependence of the coherent ϕ and ρ

production cross sections is shown in Figs. 5 and 6. In
Fig. 5, the results are calculated using different dipole
amplitudes fitted to the HERA structure function data
in Ref. [37], using fits with both choices for the initial
evolution rapidities Y0;BK (η0;BK in the case of TBK
evolution). The H1 collaboration has measured, in addi-
tion to the total production cross section, the longitudi-
nally polarized ρ production, which exactly corresponds
to the presented theory calculations. In general we find
an excellent agreement with the H1 and ZEUS data
[59,76,77], except that the ϕ production cross section
is overestimated at low virtualities where our approxima-
tions are not justified.

FIG. 4. The measured slope parameter b for ρ and ϕ production
as a function of photon virtuality [59,76,77] and a fit to this data.

FIG. 5. Photon virtuality dependence of the integrated longitudinal cross section for various different dipole amplitude fits, compared
to the HERA data [59,76,77]. (a) Cross section for ϕ production. (b) Cross section for ρ production.
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In Fig. 6, we show results obtained using the dipole
amplitudes fitted to the structure function pseudodata
generated in Ref. [37] such that it includes only the
approximative light quark contribution. For comparison,
the results calculated with the dipole amplitudes fitted to
the full HERA structure function data are also shown. In the
fit process of Ref. [37] only the light quark contribution is
calculated, and as such the fit to light quark pseudodata is in
principle better motivated than the fit to the full HERA
structure function data. On the other hand, the light-quark-
only data contains a larger nonperturbative contribution,
and the determined parametrizations describing the initial
condition of the dipole amplitude are not physically as well
motivated. Here we use these light quark fits with the
KCBK evolution equation, but different schemes for the
BK evolution result in very similar cross sections at all Q2.
We see that the results calculated with dipole amplitudes

fitted to the light quark pseudodata also show a relatively
good agreement with the virtuality dependence of the H1
and ZEUS light meson production data. However, the cross

sections at large virtualities are somewhat underestimated.
This difference inQ2 dependence between the two fit setups
is expected, as the light-quark-only pseudodata is close to the
full structure function data at lowQ2where similar results for
other observables are also expected. On the other hand, at
high Q2 the charm contribution on structure functions is
significant, and consequently the light quark fit should result
in smaller cross sections in this kinematical region, which is
exactly what we observe in Fig. 6.
In Figs. 7 and 8, we show the dependence of the

integrated cross section on the photon-proton center-of-
mass energy W. Again, Fig. 7 shows results obtained with
the dipole amplitudes fitted to the HERA data, and Fig. 8
shows results calculated with dipole amplitudes fitted to the
light quark pseudodata for comparison. The center-of-mass
energy dependence of the results agrees with the data,
although the results with the light quark fit seem to
underestimate the data by a constant factor as already seen
in Fig. 6. The differences in the results with different
schemes for the BK evolution start growing at larger W, as

FIG. 6. Photon virtuality dependence of the integrated cross section for longitudinal production, with dipole amplitudes fitted to
HERA structure function data and pseudodata consisting of only light quark production. (a) Cross section for ϕ production. (b) Cross
section for ρ production.

FIG. 7. Center-of-mass dependence of the integrated longitudinal cross section compared to the H1 data [59]. (a) Cross section for
ϕ production. (b) Cross section for ρ production.
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at high W one starts to be sensitive to the region not
constrained by the structure function data. This suggests
that light meson production data can provide additional
constraints when the nonperturbative initial condition for
the BK evolution is extracted from experimental data. The
dependence on the center-of-mass energy is similar for the
HERA and light quark fitted dipole amplitudes.
In Fig. 9(a), we show the dependence of the cross section

on the distribution amplitude. We have normalized the
results by the cross section calculated using the asymptotic
form for the distribution amplitude that corresponds to the
case where the higher-order terms in the Gegenbauer
expansion (47) vanish, i.e., an ¼ 0 for n > 0. The case
a2ð1 GeVÞ ¼ 0.1 corresponds to our default setup, and the
cases a2ð1 GeVÞ ¼ �0.2 are estimates for the upper and
lower bounds for the coefficient, chosen based on Ref. [73].
The final setup shown has the coefficients a2ð1 GeVÞ ¼
−0.054 and a4ð1 GeVÞ ¼ −0.022 chosen such that the

distribution amplitude matches the boosted Gaussian wave
function parametrization for the ρ meson from Ref. [16] at
r ¼ 0, where the higher Gegenbauer terms are neglected.
The reason for this choice is that the distribution amplitude
should roughly correspond to the wave function at r ¼ 0,
and the boosted Gaussian is a phenomenological wave
function that describes well vector meson production at
leading order [16]. We see that the dependence on the
distribution amplitude is moderate, and maximally ∼30%
in the considered kinematical domain.
The different distribution amplitudes are illustrated in

Fig. 9(b), both at the initial scale μ2F ¼ 1 GeV2 and after the
ERBL evolution up to μ2F ¼ 50 GeV2 using the extreme
values for a2. While the form of the distribution amplitude
depends considerably on the value of a2, the effect on the
cross section in Fig. 9(a) is small. In Fig. 9(b), we also see
that as the factorization scale μF increases the distribution
amplitude approaches the asymptotic form, but there is still

FIG. 8. Center-of-mass dependence of the integrated longitudinal cross section, with dipole amplitudes fitted to HERA structure
function data and pseudodata consisting of only light quark production. (a) Cross section for ϕ production. (b) Cross section for
ρ production.

FIG. 9. Dependence of the cross section on the distribution amplitude. (a) Ratio of the cross section with varied coefficients in the
Gegenbauer expansion to the default setup. (b) Distribution amplitude with different coefficients a2 and the effect of the ERBL
evolution. The asymptotic form withan>0 ¼ 0 is also shown.
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a significant deviation from the asymptotic shape
at μ2F ¼ 50 GeV2.

VI. CONCLUSIONS

In this paper, we have presented a next-to-leading
order calculation of exclusive light vector meson pro-
duction in the dipole picture using the light cone
perturbation theory. The main result of this work is
the scattering amplitude for longitudinally polarized light
vector meson production at high Q2 given in Eq. (55).
This amplitude is finite and directly suitable for numeri-
cal evaluations. In particular the 1

D−4 divergences have
been canceled between the real and virtual diagrams after
the ERBL evolution of the renormalized distribution
amplitude is also taken into account. The apparent soft
gluon divergence is shown to be factorizable into the
small-x Balitsky-Kovchegov evolution of the dipole
amplitude. While a similar calculation has already been
done in the momentum space [53] (using also a different
scheme to subtract the rapidity divergence), the results
presented in this paper are in the mixed transverse
coordinate-longitudinal momentum fraction space where
the numerical calculations using existing results for the
dipole-target scattering amplitude are straightforward.
Comparing the results in the different spaces is cumber-
some due to the requirement of calculating complicated
Fourier transforms, and thus an explicit comparison of
the two results has been made only partially.
We have also calculated numerically exclusive light

meson production at NLO and compared the results to
the existing HERA data for ρ and ϕ mesons. The NLO
corrections are numerically important, but their effect can
be partially captured when the initial condition for the
small-x evolution of the dipole amplitude is fitted to the
structure function data. Consequently, the differences
between LO and NLO results are moderate in the high
virtuality region Q2 ≫ M2

V where our framework is valid.
The different schemes used to capture higher-order effects
in the small-x evolution result in similar cross sections for
vector meson production. Some deviations can be seen in
the center-of-mass energy W dependence, which means
that the exclusive vector meson production data can further
constrain the nonperturbative initial condition for the small-
x evolution. Both the Q2 and W dependencies of the
production cross section are in excellent agreement with the
HERA data. If a dipole amplitude with an initial condition
fitted to the structure function pseudodata that only
includes a light quark contribution is used, the experimental
cross sections are underestimated at high Q2. We also note
that there is some overall normalization uncertainty due to,
e.g., modeling the t dependence of the vector meson
production cross section. We additionally left out the
commonly used phenomenological corrections (see, e.g.,
[16]) whose role should be further clarified.

Our result for the analytic expression of the production
amplitude is presented in two different schemes for
regularization in the transverse plane: the CDR and FDH
schemes. The regularization scheme dependence is shown
to be very small. The results also depend on the choice for
the factorization scale μF, for which we present two
different choices, taking this scale to be either a func-
tion of the dipole size or of the photon virtuality. The
dependence on the factorization scale is also relatively
small. Both of these scheme dependencies have numeri-
cally small effects because the distribution amplitudes for
the ρ and ϕ mesons are close to the asymptotic form,
and the dependence on regularization scheme and fac-
torization scale vanishes in the Q2 → ∞ limit. The
dependence on the exact form of the distribution ampli-
tude, on the other hand, is somewhat larger with effects
of up to ∼30% in the HERA kinematics at the cross
section level for realistic values of the higher-order terms
in the Gegenbauer expansion.
The results in this paper are calculated at zero momen-

tum transfer t ¼ 0. Calculating the t dependence of
exclusive vector meson production is also interesting as
it allows access to the spatial distribution of the target color
field including its event-by-event fluctuations [14,78,79].
This requires additional nonperturbative modeling of the
dipole amplitude that we wanted to avoid in this paper. We
also note that the dipole amplitudes used in numerical
calculations in this paper were fitted to HERA data using
only massless quarks, while there is a significant contri-
bution from the massive c quark to the structure functions
in HERA kinematics. As the NLO photon wave functions
with massive quarks are becoming available [32,33], it will
be possible to make a new NLO fit for the dipole amplitude
to the HERA data including heavy quark contributions.
This is needed for accurate phenomenological comparisons
with the HERA data. The results of this work can then be
used for predicting exclusive light vector meson production
in the future Electron-Ion Collider which will also produce
data for DIS off heavy nuclei, allowing for precision studies
of saturation phenomena.
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APPENDIX: SCHEME DEPENDENCE

In this appendix, we quantify the dependence of the light
vector meson production cross section on the choices for
regularization and factorization schemes. The cross sec-
tions have been calculated as described in Sec. V, and our
default setup is the same. The dipole amplitude used in this
appendix is the KCBK evolved one from Ref. [37] with the
initial rapidity Y0;BK ¼ 4.61.
First, we show the dependence of the cross section on the

regularization scheme in the transverse plane. The cross
section has been calculated in both the CDR and FDH
schemes and their ratio is shown in Fig. 10. This ratio
depends on the distribution amplitude, and it is equal to
unity in the asymptotic limit μ2F → ∞, where only the first
term in the Gegenbauer expansion (47) contributes. For this
reason we show the ratio with two different distribution
amplitudes: one with a2ð1 GeVÞ ¼ 0.1 (our standard
setup), and one with a2ð1 GeVÞ ¼ 0, a4ð1 GeVÞ ¼ 0.1.
Higher-order terms are set to zero. We see that the
dependence on the regularization scheme is very small
in both cases, of the order 0.2% at most. Small scheme
dependence is expected, as the first dominant term in the
Gegenbauer expansion vanishes when one calculates the
scheme dependent term in Eq. (44). It should be noted that
the ratio does not seem to approach the asymptotic limit in
the considered kinematics. This is a consequence of the
ERBL evolution with running coupling being extremely
slow, and the scheme dependence vanishes if we go to even
higher values of virtuality.
The cross section depends on the factorization scale μF

at which the distribution amplitudes are evaluated as
discussed in Sec. IV C. In Fig. 11, the cross sections have
been calculated evaluating the distribution amplitude in
both the r and Q schemes using our default choice for the
distribution amplitude with a2ð1 GeVÞ ¼ 0.1. The factori-
zation scale has also been scaled by factors of 0.5 and 2.
These results have been normalized by our default setup

(r scheme with μF ¼ 2e−γE=r). In the Q scheme, varying
the factorization scale by a factor of 2 has a very small
effect. For the r scheme the cross section varies somewhat
more, but the variation is still only ∼2%. The difference
between the r and Q schemes is also only a few percent at
most, meaning that the dependence on the factorization
scale is small. This follows from the fact that the distri-
bution amplitude receives only a small correction from the
second scale-dependent Gegenbauer term, and the domi-
nant term is factorization scale independent.
Finally, we show the dependence on the infrared cutoff

μF0 in Fig. 12 using our default setup [r scheme and
a2ð1 GeVÞ ¼ 0.1]. There is some dependence on the IR
cutoff, almost 5% at most with our choice for a2. The
reason for the cutoff dependence is that the dipole ampli-
tude amplifies the contribution of large dipoles, meaning
that dipoles of size 1=r ∼ 1 GeV may have a numerically
significant contribution even when Q2 ≫ 1 GeV2. The
dependence on the IR cutoff vanishes exactly in the limit
Q2 → ∞.

FIG. 10. Ratio of the ρ production cross sections calculated in
FDH and CDR regularization schemes.

FIG. 11. Ratio of the cross section with different choices for the
factorization scale μF to the default setup.

FIG. 12. Ratio of the cross section with different IR cutoffs μF0
for the ERBL evolution to the default setup.
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1 Introduction

In Quantum Chromodynamics (QCD), emission of small momentum fraction x gluons is
preferred, which renders parton densities very large when probed at small momentum fraction
x in high-energy collider experiments [1, 2]. Consequently, parton densities eventually
become so large that the smallness of the QCD coupling αs is compensated by the gluon
density, and non-linear dynamics starts to dominate in the hadron wave function [3].

An especially powerful probe of non-linear QCD dynamics is given by exclusive vector
meson production in deep inelastic scattering (DIS) experiments. The exclusivity of the
process requires that, at leading order, two gluons are exchanged with the target hadron at
the amplitude level. Thus the cross section approximately scales as gluon density squared [4]
(at next-to-leading order in collinear factorization the relationship is less direct, see ref. [5])
An additional advantage is that only in exclusive scattering processes it is possible to
determine the total transverse momentum transfer Δ, which is a Fourier conjugate to the
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impact parameter, and as such the spectra are sensitive to the spatial distribution of color
charge in the target color field [6].

Exclusive production of heavy vector mesons, in particular J/ψ, has been studied in
detail in electron-proton DIS experiments at HERA [7–14]. Recently, it has also become
possible to access even higher center-of-mass energies and scattering off nuclear targets
in ultra-peripheral collisions (UPCs) at RHIC [15–17] and at the LHC [18–29]. In these
events the impact parameter is larger than the sum of the radii of the colliding nuclei, which
suppresses strong interactions and these events are effectively real photon-nucleus scattering
processes [30].

In the next decade, the Electron-Ion Collider in the US [31, 32] and other potential
nuclear DIS facilities [33, 34] will provide vast amounts of precise data on exclusive vector
meson production over a wide kinematical domain. To take advantage of these recent and
future developments that provide a unique access to non-linear QCD dynamics at small x,
it is important to develop theoretical calculations to the comparable level of accuracy.

To describe QCD in the high energy (and density) regime, we employ the Color Glass
Condensate (CGC) effective field theory approach [35, 36]. In this formulation the color
field of the target is written in terms of Wilson lines that describe an eikonal propagation of
partons in the color field, resumming multiple interactions. The purpose of this work is to
present the first next-to-leading order (NLO) calculation of transversely polarized exclusive
heavy vector meson production cross section at high energy within the CGC framework.

Exclusive vector meson production has been studied extensively within the CGC frame-
work at leading order in the QCD coupling, see for example refs. [37–41] related to J/ψ

production in γ∗+p scattering and [42–50] in γ∗+A scattering (e.g. in UPCs where the pho-
ton is real). Note also that in these leading-order calculations the small-x evolution equations
such as the Balitsky-Kovchegov (BK) equation [51, 52] (or phenomenological parametriza-
tions modeling the small-x evolution) resum contributions ∼ αs ln 1/x to all orders, and
running coupling corrections [53, 54] also resum a subset of higher-order contributions.

At high energy the scattering process is conveniently described in the dipole picture
where the (virtual) photon splits into a quark-antiquark dipole long before the interaction
with the target (see discussion in section 2). The dipole then interacts with the target
and eventually forms the bound state. In order to develop the CGC calculations to NLO
accuracy, all ingredients (the virtual photon and heavy vector meson wave functions, and
the dipole-target scattering amplitude) are needed at this order in perturbation theory. In
recent years there has been a rapid progress in the field to achieve this. The evolution
equations at NLO, describing the center-of-mass energy dependence of the dipole-target
scattering amplitude, are derived and solved in refs. [55–60] (and a subset of higher-order
corrections are resummed in [61–65]). The initial condition for the perturbative evolution is
fitted to HERA structure function data at NLO accuracy in ref. [66] (see also refs. [67, 68]
for an NLO calculation of the proton color charge correlations at moderate x that can
potentially be used to initialize the evolution). The NLO light-front wave function for a
virtual photon was first derived in the massless quark limit in refs. [69–72] and recently
the results with finite quark masses have also become available [73–75]. The NLO wave
functions exist also for heavy [76] and light [77, 78] vector mesons. In addition to structure
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functions and exclusive processes, NLO calculations for dijet production in DIS and hadronic
collisions [79–82], and inclusive particle production in proton-nucleus collisions [83–91] are
becoming available.

The present paper completes the calculation of exclusive heavy vector meson production
at next-to-leading order that we initialized in previous publications. First, the relativistic
corrections suppressed by the squared quark velocity ∼ v2α0

s were determined in ref. [92].
Later, in ref. [93] we calculated the next-to-leading order corrections ∼ v0αs to longitudinally
polarized heavy vector meson production. This paper presents the calculation of transversely
polarized heavy vector meson in virtual photon-target scattering at the order αsv0, and
demonstrates how the NLO corrections and the relativistic corrections can both be included
consistently. This development enables us to present the first calculation of exclusive J/ψ

production at the order O(αsv0, α0
s v2), and comparisons with the HERA and LHC data

are presented in this paper.
This manuscript is structured as follows. The exclusive vector meson production

process in the dipole picture is first presented in section 2. The next-to-leading order QCD
corrections for the transverse heavy vector meson production are calculated in section 3.
The implementation of relativistic (velocity) corrections is discussed in section 4 before
presenting numerical results in section 5 and conclusions in section 6.

2 High-energy scattering in the dipole picture

2.1 Exclusive vector meson production

The high-energy limit allows us to describe exclusive scattering in a factorized form where
different parts of the process can be written independently. We work in a frame where the
photon plus momentum q+ is very large and it has no transverse momentum. The splitting
of the virtual photon and the vector meson formation are described by the (boost invariant)
light-front wave functions of the photon (Ψγ∗) and meson (ΨV ). At leading order the only
contribution comes from the photon splitting into a quark-antiquark dipole. Additional
Fock states have to be introduced at higher orders in αs, and at next-to-leading order one
has to include a contribution from the photon splitting into a qq̄g state. The corresponding
NLO scattering amplitude for vector meson production at t ≈ −Δ2 = 0 can be written as

−iA = 2
∫

d2x0 d2x1

∫ dz0 dz1
(4π)2 4πδ(z0 + z1 − 1)Ψqq̄

γ∗Ψqq̄∗
V N01

+ 2
∫

d2x0 d2x1 d2x2

∫ dz0 dz1 dz2
(4π)3 4πδ(z0 + z1 + z2 − 1)Ψqq̄g

γ∗ Ψqq̄g∗
V N012. (2.1)

Here xi are the transverse coordinates of the quark (i = 0), the antiquark (i = 1) and the
gluon (i = 2), and zi are the corresponding fractions of the photon plus momentum. The
different helicity and color components of the wave functions are summed over implicitly.
The coherent vector meson production cross section then reads [94]

dσ

dt

∣∣∣∣
t=0

=
1

16π
|〈A〉|2 . (2.2)
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The action of the Wilson lines V (xi) on the quark-antiquark dipole is given by the
dipole amplitude N01:

1 − N01 = Re
1

Nc

〈
Tr V (x0)V †(x1)

〉
. (2.3)

The dipole-target scattering amplitude N01 depends on the transverse separation x01 =
x0−x1, impact parameter b = (x0+x1)/2 and projectile evolution rapidity Y . The evolution
rapidity depends on the photon-nucleon system center-of-mass energy W as discussed in
section 2.2. The notation 〈· · · 〉 corresponds to the average of the target color charge
configurations, which is done at the amplitude level in eq. (2.2) when calculating coherent
(i.e. no target dissociation) vector meson production [94] (see also e.g. refs. [41, 45, 95]
related to incoherent diffraction and discussion about the averaging procedure). Similarly,
interaction of the qq̄g system with the target is given in terms of the dipole amplitude N012
which in the mean field limit can be written as [96]

1 − N012 =
Nc

2CF

(
S02S12 − 1

N2
c

S01

)
, (2.4)

where Sij = 1 − Nij .
As the impact parameter is conjugate to the momentum transfer in the process, the

impact parameter dependence of the dipole amplitudes can be connected to the t-dependence
of the production amplitude. However, the impact parameter dependence of the dipole
amplitude requires additional modeling and an effective description of confinement effects
(see e.g. [39, 97–99]), and for simplicity we choose to study only the case t = 0 given by
eq. (2.1) where only the impact parameter integrated dipole amplitude constrained by
structure function measurements [66] contributes.

In general, the production amplitude depends on both the polarization of the photon
λγ and the vector meson λV . The polarization mixing λγ �= λV is heavily suppressed
and consequently it is sufficient to consider only the case λγ = λV [100]. Vector meson
production can then be divided into longitudinal and transverse production, of which
longitudinal channel has already been calculated at NLO by us in ref. [93]. In this paper
we complete the NLO production calculation by computing the transverse production case,
allowing us to consider total vector meson production.

2.2 High-energy evolution

The center-of-mass energy or, equivalently, Bjorken-x dependence of the Wilson lines can
be obtained by solving the perturbative JIMWLK [101–107] evolution equation. In the
large-Nc limit one can derive from it the BK equation describing the energy (evolution
rapidity Y ) dependence of the dipole amplitude N01:

∂S01
∂Y

=
∫

d2x2KBK(x0, x1, x2)[S02S12 − S01]. (2.5)

The kernel KBK describes the probability to emit a gluon at the transverse position x2 from
the quark-antiquark dipole at the coordinates x0 and x1. Including the running-coupling
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corrections following [53], the kernel reads

KBK(x0,x1,x2) =
Ncαs(x2

01)
2π2

[
x2

01
x2

21x2
20

+
1

x2
20

(
αs(x2

20)
αs(x2

21)
−1

)
+

1
x2

21

(
αs(x2

21)
αs(x2

20)
−1

)]
, (2.6)

where xij = xi − xj .
The BK equation at next-to-leading order, and a numerical solution to it, are avail-

able [55, 58–60] (as well as the NLO JIMWLK equation [56, 57]). In principle it would be
consistent to use the full NLO evolution equation when calculating vector meson production
at this order in αs. However, the NLO BK equation is numerically demanding due to an
extra transverse integral, which is also the reason why there is no initial condition to it fitted
to experimental data. In this work we follow ref. [66] and use the leading-order BK evolution
equation combined with different implementations of a resummation of the most important
higher-order contributions. These resummations are known to approximate the full NLO
BK equation well as shown in refs. [59, 108]. The initial conditions for these evolutions are
determined in ref. [66] by performing a fit to HERA structure function data [1, 2]. In our
numerical analysis we use the fit results from publicly available codes [109]. The running
strong coupling constant in coordinate space is evaluated using the same parametrization
as in the corresponding dipole amplitude fits in ref. [66]. The explicit expression for the
running coupling is

αs(x2
ij) =

4π

β0 ln
[(

μ2
0

Λ2
QCD

)1/c
+
(

4C2

x2
ijΛ2

QCD

)1/c
]c (2.7)

with ΛQCD = 0.241 GeV, c = 0.2, μ0/ΛQCD = 2.5, β0 = (11Nc − 2NF )/3 and NF = 3, and
C2 is a fit parameter determined when the initial condition for the BK evolution is fitted to
the HERA data.

The three different schemes to include resummation of higher-order corrections into
the BK equation used in this work are, following the terminology of ref. [66], KCBK [110],
ResumBK [63, 64] and TBK [61]. The evolution rapidity in the KCBK and ResumBK
equations is related the fraction of the projectile (photon) plus momentum carrried by
the gluon:

Y = ln
k+

P + , (2.8)

where k+ = z2q+ is the gluon plus momentum and P is the target momentum. The
evolution rapidity in the TBK equation is related to the target longitudinal momentum
fraction as we will discuss shortly.

The KCBK (“kinematically constrained BK equation”) is derived in ref. [110] by
requiring the necessary time ordering between the subsequent gluon emissions. This
procedure effectively resums corrections that are enhanced by double transverse logarithm
∼ αs ln x02

x01
ln x12

x01
. The same logarithms are included in the ResumBK (“resummed BK”)

equation, with the difference that in ref. [63] a form of the evolution equation which is local
in rapidity Y is derived. Additionally, the ResumBK evolution equation further includes a
resummation of single transverse logarithms [64] ∼ αs ln 1

x2
ijQ

2
s

to all orders. For explicit
expressions for these evolution equations, see ref. [66].
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The third evolution equation used in this work is the TBK equation (“BK equation
in target rapidity”), where the evolution rapidity η is expressed in terms of the fraction
of the target longitudinal (minus) momentum transferred in the process xP (see detailed
discussion in ref. [61]):

xP ≈ M2
V + Q2

W 2 + Q2 , (2.9)

where MV is the meson mass. Consequently the TBK evolution can be thought of as
evolution in ln 1/xP, whereas the KCBK and ResumBK evolutions written in terms of the
projectile rapidity Y are evolutions in ln W 2 [61, 66].

When using a solution to the TBK evolution, written in terms of the target rapidity η,
in the NLO impact factors calculated in this work that are written in terms of projectile
rapidity Y we use the same shift as in ref. [66]:

η = Y − ln
1

min{1, x2
01Q2

0} , (2.10)

where the target transverse momentum scale is set to Q2
0 = 1 GeV2.

Initial conditions for all these three evolution equations are obtained in ref. [66] by
parametrizing the initial condition and fitting the free parameters to the HERA reduced
cross section data. In this work we use the fit results obtained using the “Balitsky + smallest
dipole” running coupling scheme. We note that in ref. [66] only the light quark contribution
is included in the NLO structure function calculations. On the other hand, in this work we
consider heavy vector meson production, and as such it is not fully consistent to use the fit
results from ref. [66]. However, the main purpose of this work is to derive the cross section
at NLO accuracy, and detailed phenomenological comparisons to experimental data should
be done later when the initial condition for the BK evolution is determined including the
effect of quark masses.

3 Vector meson production at next-to-leading order

Next-to-leading order corrections to exclusive vector meson production consist of corrections
from perturbative gluons. These can be included by calculating the virtual photon and
meson wave functions at proper order in αs such that we have all the corrections at the order
αs at the amplitude level. This means that we have to include the O(αs) loop corrections
to the light-cone wave functions Ψqq̄

γ and Ψqq̄
V , and also take into account the contribution

from the qq̄g state with the wave functions Ψqq̄g
γ and Ψqq̄g

V . The NLO wave function for the
transverse photon with massive quarks has been calculated in refs. [74, 75], and the NLO
heavy vector meson wave function in the nonrelativistic limit is evaluated in ref. [76]. These
results are applied in this work.

For completeness, we present here the next-to-leading order wave functions that enter
our calculations. Our notation follows mostly refs. [74, 75] with the exception that the
integration measure is chosen to be

∏
i

d2xidzi
4π where i goes over the partons of the Fock

state corresponding to the wave function. This introduces additional normalization factors
1

2q+
∏
i

1√
zi

compared to the photon wave functions presented in [74, 75]. Also, we choose to
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use the conventional dimensional regularization (CDR) scheme for our calculations, which
corresponds to the case Ds = D in refs. [74, 75].

The wave functions contain divergences that need to be regularized. Ultraviolet (UV)
divergences are regularized using dimensional regularization in D − 2 dimensions for the
transverse coordinates. Infrared (IR) divergences originating from gluons with zero plus
momenta are removed by introducing a cut-off α for the gluon plus momenta, k+

2 > αq+

where α > 0 and q+ is the plus momentum of the photon. The divergences will cancel in
the calculation, and at the end we will take the limit D → 4 and α → 0.

3.1 Virtual photon wave function at next-to-leading order

With these conventions, the LO transverse photon wave function for the qq̄ state (at zero
photon transverse momentum, q = 0) is [75]

Ψγ∗→qq̄
LO = − 1

2q+√z0(1 − z0)
eef
2π

(
κz

2π|x01|
)(D−4)/2

εjλγ
δα0α1

×
{

ū(0)
[
(2z0 − 1) δijγ+ +

1
2

γ+
[
γi, γj

]]
v(1)iκz

xi01
|x01|K(D−4)/2+1 (|x01|κz)

− mqū(0)γ+γjv(1)K(D−4)/2 (|x01|κz)
}

(3.1)

where u(0) and v(1) are spinors corresponding to the quark and antiquark, mq is the heavy
quark mass, κv =

√
v(1 − v)Q2 + m2

q where Q2 is the photon virtuality, and α0, α1 are
the color indices of the quark and antiquark. The fraction of the photon plus momentum
carried by the quark is z0. Repeated indices in the Latin alphabet are summed over in
D − 2 transverse dimensions. The functions Kν are modified Bessel functions of the second
kind. The NLO correction to the qq̄ wave function is [74, 75]

Ψγ∗→qq̄
NLO = − 1

2q+√z0(1 − z0)
eef
2π

(
αsCF

2π

)
εjλγ

δα0α1

×
{

ū(0)
[
(2z0 − 1) δijγ+ +

1
2

γ+
[
γi, γj

]]
v(1)F [PiVT ]

+ ū(0)γ+v(1)F [PjN T ] + mqū(0)γ+γiv(1)F
[(

PiPj

P2 − 1
2

δij
)

ST
]

− mqū(0)γ+γjv(1)F
[
MT + VT − 1

2
ST

]}
,

(3.2)

where the wave function is written in terms of different form factors. It will turn out that we
do not need to know the explicit expressions for all of these form factors, which follows from
the fact that at leading order in αs and v the vector meson spin structure is very simple,
picking up only parts with an odd number of transverse gamma matrices. In addition to
this, the traceless part PiPj

P2 − 1
2δij also vanishes as after taking the gamma matrix traces

one gets εjλγ
εi∗λV

(
PiPj

P2 − 1
2δij

)
= 0 which is valid for λγ = λV in 2 transverse dimensions.
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In the polarization mixing case, λγ �= λV , there would be a non-zero contribution from this
term. Thus, only the last term in eq. (3.2) contributes to vector meson production in the
nonrelativistic limit, and the required combination of the form factors reads

F
[
MT +VT − 1

2
ST

]
=
(

κz
2π|x01|

)(D−4)/2
K(D−4)/2 (|x01|κz)

{
1
2

+
[3

2
+ln

(
α

z0

)
+ln

(
α

1−z0

)][2(4π)(4−D)/2

4−D
Γ
(

1+
4−D

2

)
+ln

(
x2

01μ2

4

)
+2γE

]}

+K0 (|x01|κz)
{

ΩT
V (γ;z0)+L(γ;z0)− π2

3
+ln2

(
z0

1−z0

)
+3

}
+ ĨTVMS(|x01|, z0). (3.3)

Here μ is the mass scale coming from dimensional regularization. The functions ΩT
V and L

are defined as

ΩT
V (γ; z) =

(
1 +

1
2z

)[
ln(1 − z) + γ ln

( 1 + γ

1 + γ − 2z

)]
− 1

2z

[(
z +

1
2

)
(1 − γ) +

m2
q

Q2

]
ln
(

κ2
z

m2
q

)
+ (z ↔ 1 − z) ,

(3.4)

and

L(γ; z) =
∑
σ=±1

⎡⎣Li2

(
1

1 − 1
2z (1 + σγ)

)
+ Li2

⎛⎝ 1
1 − 1

2(1−z)(1 + σγ)

⎞⎠⎤⎦ (3.5)

where Li2 is the dilogarithm function and

γ =

√
1 +

4m2
q

Q2 . (3.6)

The function ĨTVMS(r, z) can be written in the form

ĨTVMS(r,z) =∫ 1

0
dξ

{
1
ξ

[2lnξ

1−ξ
− 1+ξ

2

][
K0

(
r

√
κ2
z+

ξ(1−z)
1−ξ

m2
q

)
−K0 (rκz)

]

+
[
−3(1−z)

2(1−ξ)
+

1−z

2

]
K0

(
r

√
κ2
z+

ξ(1−z)
1−ξ

m2
q

)}

+
∫ z

0
dχ

∫ ∞

0
du

{
1

1−χ

1
(u+1)2

[
−z− u

1+u

z+uχ

z
(χ−(1−z))

]
K0

(
r

√
κ2
z+u

1−z

1−χ
κ2
χ

)

+
1

(u+1)3

[
κ2
z

κ2
χ

(
1+u

χ(1−χ)
z(1−z)

)
− m2

q

κ2
χ

χ

1−χ

(
2

(1+u)2

u
+

u

z(1−z)
(z−χ)2

)]

×
[
K0

(
r

√
κ2
z+u

1−z

1−χ
κ2
χ

)
−K0 (rκz)

]}
+(z ↔ 1−z) , (3.7)

where the substitution (z ↔ 1 − z) corresponds to the whole expression.

– 8 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
7

In addition to the qq̄ wave function of the photon, we also need the light-front wave
function for the qq̄g state (again for the photon with zero transverse momentum). This can
written as [75]

ψγ
∗→qq̄g =

1
2q+√

z0z1z2
taα0α1eefgεlλγ

ε∗jσ
(
Σlj + Σlj

m

)
, (3.8)

where σ is the gluon helicity and

Σlj = − 1
(z0 + z2)

ū(0)γ+
[
(2z0 + z2)δij − z2

2

[
γi, γj

]]
×
[
(2z1 − 1)δkl − 1

2

[
γk, γl

]]
v(1)Iik(j)

− 1
(z1 + z2)

ū(0)γ+
[
(2z0 − 1)δkl +

1
2

[
γk, γl

]]
×
[
(2z1 + z2)δij +

z2
2

[
γi, γj

]]
v(1)Iik(k)

+
z2z0

(z0 + z2)2 ū(0)γ+γjγlv(1)J(l) − z2z1
(z1 + z2)2 ū(0)γ+γlγjv(1)J(m)

(3.9)

and

Σlj
m = −mq

1
(z0 + z2)

ū(0)γ+
[
(2z0 + z2)δij − z2

2

[
γi, γj

]]
γlv(1)Ii(j)

+ mq
z2

2
(z0 + z2)2 ū(0)γ+γj

[
(2z1 − 1)δkl − 1

2

[
γk, γl

]]
v(1)Îk(j)

+ m2
q

z2
2

(z0 + z2)2 ū(0)γ+γjγlv(1)I(j)

+ mq
1

(z1 + z2)
ū(0)γ+γl

[
(2z1 + z2)δij +

z2
2

[
γi, γj

]]
v(1)Ii(k)

+ mq
z2

2
(z1 + z2)2 ū(0)γ+

[
(2z0 − 1)δkl +

1
2

[
γk, γl

]]
γjv(1)Îk(k)

− m2
q

z2
2

(z1 + z2)2 ū(0)γ+γlγjv(1)I(k).

(3.10)

The special functions use the following labeling for the subindices

I(j) = I(x0+2;1, x20, Q
2
(j), ω(j), λ(j)) I(k) = I(x0;1+2, x21, Q

2
(k), ω(k), λ(k)) (3.11)

Î(j) = Î(x0+2;1, x20, Q
2
(j), ω(j), λ(j)) Î(k) = Î(x0;1+2, x21, Q

2
(k), ω(k), λ(k)) (3.12)

J(l) = J (x0+2;1, x20, Q
2
(j), ω(j), λ(j)) J(m) = J (x0;1+2, x21, Q

2
(k), ω(k), λ(k)) (3.13)

(and analogously for the special functions with transverse indices), where

ω(j) =
z0z2

z1(z0 + z2)2 , ω(k) =
z1z2

z0(z1 + z2)2 ,

Q
2
(j) = z1(1 − z1)Q2, Q

2
(k) = z0(1 − z0)Q2, (3.14)

λ(j) =
z1z2
z0

, λ(k) =
z0z2
z1

,

xn+m;p = −xp;n+m =
znxn + zmxm

zn + zm
− xp. (3.15)

– 9 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
7

The special functions I are defined as:

Iij(b,r,Q
2
,ω,λ) =

− μ(4−D)/2

4(4π)D−2 birj
∫ ∞

0
duu−D/2e−u(Q2+m2

q)e−b2/(4u)
∫ u/ω

0
dt t−D/2e−tωλm

2
q e−r2/(4t), (3.16)

Ii(b,r,Q
2
,ω,λ) =

iμ(4−D)/2

2(4π)D−2 ri
∫ ∞

0
duu1−D/2e−u(Q2+m2

q)e−b2/(4u)
∫ u/ω

0
dt t−D/2e−tωλm

2
q e−r2/(4t), (3.17)

Îi(b,r,Q
2
,ω,λ) =

iμ(4−D)/2

2(4π)D−2 bi
∫ ∞

0
duu−D/2e−u(Q2+m2

q)e−b2/(4u)
∫ u/ω

0
dt t1−D/2e−tωλm

2
q e−r2/(4t), (3.18)

I(b,r,Q
2
,ω,λ) =

μ(4−D)/2

(4π)D−2

∫ ∞

0
duu1−D/2e−u(Q2+m2

q)e−b2/(4u)
∫ u/ω

0
dt t1−D/2e−tωλm

2
q e−r2/(4t), (3.19)

J (b,r,Q
2
,ω,λ) =

(2π)2−D
(

μ

ω

) 4−D
2

⎛⎜⎝
√√√√Q

2+m2
q+λm2

q

b2+ωr2

⎞⎟⎠
D−3

KD−3

(√
Q

2+m2
q+λm2

q

√
b2+ωr2

)
. (3.20)

3.2 Meson wave function at next-to-leading order

For the heavy vector meson wave function we can use the nonrelativistic expansion developed
in ref. [76]. In this expansion, corrections in αs are included in factors multiplying the
leading-order wave function, and corrections suppressed by the heavy quark velocity v

appear as derivatives of the leading-order wave function. For a general Fock state n we
write this in the following form:

Ψn
V =

∑
m,k

Ck
n←m

∫ 1

0

dz′

4π

(
1

mq
∇
)k

φm(r = 0, z′), (3.21)

where φm is the leading-order wave function (LOWF) for the Fock state m and the sum
goes over all Fock states m. The case m = qq̄, n = qq̄ is shown schematically in figure 1,
where the primed indices 0′, 1′ correspond to the nonrelativistic quark and antiquark in the
LOWF and the non-primed indices 0, 1 correspond to the quark and antiquark in the wave
function Ψqq̄. It should be noted that the coefficient functions Ck

n←m depend on colors and
helicities of the particles in Fock states n and m, and the sum over these is left implicit.
The derivative ∇ is defined in the mixed space as ∇ = (∂r1 , ∂r2 , (z′ − 1/2)2mqi), where ri
are the components of the transverse separation r, and k = (k1, k2, k3) is to be understood
as a multi-index:

(
1
mq

∇
)k

= 1
m

|k|
q

∇k1
1 ∇k2

2 ∇k3
3 where |k| = k1 + k2 + k3.
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0′

1′

0

1

Cqq̄→qq̄ Ψqq̄
Vφqq̄

V

(a) Contribution of the leading-order wave function φqq̄ to the total vector meson wave function.

= + + + + · · ·Cqq̄→qq̄

(b) The coefficient function Cqq̄←qq̄ in terms of Feynman diagrams. The self-energy corrections are
not shown.

Figure 1. Perturbative corrections to the meson light-front wave function Ψqq̄
V .

The strength of this expansion is that it is now straightforward to include corrections at a
given order in αs and v. Higher-order corrections in αs can be calculated perturbatively from
Feynman diagrams, and they are defined as parts of the coefficient functions Ck

n←m. Relativis-
tic corrections in v can be read from the derivatives which amount to a suppression of v|k|.

At next-to-leading order in the nonrelativistic limit, we need the following wave
functions [76]:

Ψqq̄
V = C

(0,0,0)
qq̄←qq̄

∫ 1

0

dz′

4π
φqq̄h′

0h
′
1
(r = 0, z′), (3.22)

Ψqq̄g
V = C

(0,0,0)
qq̄g←qq̄

∫ 1

0

dz′

4π
φqq̄h′

0h
′
1
(r = 0, z′). (3.23)

Here C
(0,0,0)
qq̄←qq̄ is calculated to the order O(g2) and C

(0,0,0)
qq̄g←qq̄ to the order O(g) in the strong

coupling constant. Only the LOWF for the dominating Fock state qq̄ contributes at this
order in the expansion, as soft gluons in the LOWF Fock state would bring additional
suppression in velocity (see also discussion in ref. [76]). Relativistic corrections at leading
order in αs are discussed in more detail in section 4.

As the functions C
(0,0,0)
n←m are fully perturbative (and calculated at NLO accuracy

in ref. [76]), the nonperturbative physics is contained in the constants
∫ dz′

4π φqq̄h′
0h

′
1
(r =

0, z′) where h′0 and h′1 are the helicities of the quark and antiquark in the LOWF. The
nonrelativistic limit requires that the helicity structure of LOWF is simply δ(h′

0+h′
1)/2,λV

where λV is the polarization of the vector meson. To write the expressions in a more
compact form we extract the helicity and color structure from the LOWF in the coefficients
C̃k
n←qq̄:

C̃
(0,0,0)
n←qq̄ =

1√
Nc

δα0α1
−1

mq2
√

2
ū(0′)/ελV

v(1′)C(0,0,0)
n←qq̄ (3.24)
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and write the spin-independent part of the LOWF as
∫ dz′

4π φqq̄(r = 0, z′). The spinors
u(0′), v(1′) correspond to the nonrelativistic quark and antiquark in the LOWF with
z0′ = z1′ = 1

2 . The perturbative coefficients required for the transverse NLO calculation in
the nonrelativistic limit are then

C̃
(0,0,0)
qq̄←qq̄ =

1√
Nc

δα0α1
1

4
√

k+
0 k+

1 k+
0′k

+
1′

ū(0)γ+u(0′)v̄(1′)γ+v(1)εjλV

×
{

4πδ(z − 1/2)(1 + δZ)
1

mq2
√

2
ū(0′)γjv(1′)

+
αsCF

2π

16πz0(1 − z0)
(z0 − 1/2)2

1
mq2

√
2

ū(0′)γjv(1′)
[
θ

(
z0 − 1

2
− α

)
+ θ

(1
2

− z0 − α

)]
×
[
K0(τ) − 1

2z0(1 − z0)

(
θ

(
z0 − 1

2

)
(1 − z0) + θ

(1
2

− z0

)
z0

)(
K0(τ) − τ

2
K1(τ)

)]
− αsCF

2π
8πiK0(τ)

(
θ

(
z0 − 1

2
− α

)
(1 − z0) + θ

(1
2

− z0 − α

)
z0

)

× 2mq√
2q+ xi01ū(0′)

[
δijγ+(2z0 − 1) +

1
2

γ+
[
γi, γj

]]
v(1′)

}
(3.25)

and

C̃
(0,0,0)
qq̄g←qq̄ =

1√
Nc

taα0α1

g

2π

1
(q+)2 εj∗σ ū(0′)γkεkλV

v(1′)v̄(1′)γ+v(1)

×
(

mqz2
π|x20|μ

)(D−4)/2
√

2z2
1 − 2z2

· 4πδ(z1 − 1/2)

×
{

− i(1 − z2)
xi20
|x20|KD/2−1

(
2mqz2|x02|)ū(0)

[
δij − z2

2(1 − z2)
[γi, γj ]

]
γ+u(0′)

+ z2KD/2−2
(
2mqz2|x20|)ū(0)γjγ+u(0′)

}
+ gluon emission from antiquark, (3.26)

with

τ = 2mq|x01|
∣∣∣∣z0 − 1

2

∣∣∣∣ . (3.27)

The wave function renormalization factor δZ is calculated in the pole-mass scheme and is
given by

δZ = −αsCF

2π

[
1

D − 4
(4 ln(2α) + 3) + 2 ln(2α)

(
ln
(

m2
q

4πμ2

)
+ 1 + ln(2α)

)

+ (4 ln(2α) + 3)
γE
2

+
3
2

ln
(

m2
q

4πμ2

)
− 2

]
. (3.28)
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The contribution from an antiquark emitting the gluon is left implicit in eq. (3.26). Its
contribution to the final expression is equal to the quark emitting the gluon, meaning
that we can include its contribution by multiplying the result from the quark contribution
by two.

3.3 Calculation of the next-to-leading order production

The next-to-leading order amplitude (2.1) has contributions from two terms: the quark-
antiquark dipole contribution 2

∫
x0x1

∫ dz0dz1
(4π)2 4πδ(z0 + z1 − 1)Ψqq̄

γ∗Ψqq̄∗
V N01 and real gluon

emission 2
∫

x0x1x2

∫ dz0dz1dz2
(4π)3 4πδ(z0 + z1 + z2 − 1)Ψqq̄g

γ∗ Ψqq̄g∗
V N012. The next-to-leading

order corrections to the dipole term come from virtual gluon loops. Using the above
expressions for the photon and meson wave functions it is possible to calculate these two
contributions.

The evaluation of the dipole term yields

2
∫

x0x1

∫ dz0 dz1
(4π)2 4πδ(z0 + z1 − 1)Ψqq̄

γ∗Ψqq̄∗
V N01

=
∫ 1

0

dz′

4π
φqq̄(r = 0, z′)

∫
dD−2x01 d2b N01(r, b)

√
Nc

2
2eefmq

π

{
K0(ζ)

+
αsCF

2π

{
− 2

D − 4
[4 ln(2α) + 3] K(D−4)/2(ζ) + ĨTVMS

(1
2

, x01

)
+ KT

+ K0(ζ)
[
ΩT
V
(

γ;
1
2

)
+ L

(
γ;

1
2

)
− π2

3
+

7
2

+
1
α

+ 4 ln(2α) ln
(

2π2|x01|4μ2eγE

ζ

)
+ 3 ln

(
4π2|x01|3μ2

mqζ

)]}}

(3.29)

where ζ = |x01|
√

1
4Q2 + m2

q , b = 1
2(x0 + x1) and

KT =
∫ 1/2

0
dz

{
4z|x01|κzK1 (|x01|κz) K0(τ)

[
1 + (1 − 2z)2

]

+
1

(z − 1/2)2

{
8z(1 − z)K0 (|x01|κz)

[
K0(τ) − 1

2(1 − z)

(
K0(τ) − τ

2
K1(τ)

)]

− 2K0(ζ)
[1

2
+ (z − 1/2)

(
1 + 2γE + 2 ln

(
τ

2

))]}}
. (3.30)

– 13 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
7

For simplicity, we have chosen the LOWF to be real. The real emission contribution is

2
∫

x0x1x2

∫ dz0 dz1 dz2
(4π)3 4πδ(z0 + z1 + z2 − 1)Ψqq̄g

γ∗ Ψqq̄g∗
V N012

=
∫ 1

0

dz′

4π
φqq̄(r = 0, z′)

∫
dD−2x01 dD−2x20 d2b

∫ 1/2

α
dz2

× N012

√
Nc

2
2eefmq

π

αsCF

2π
4π

(
mqz2

π|x20|μ
)D−4

2

×
{

8K(D−2)/2(2mqz2|x20|) ixi20
|x20|mq

[
− Ii(j)

(
(D − 2)z2

2 − 2z2 + 1
)

− z2
2 Îi(j) (2z2 − 1)

+ Ii(k)
1

2z2 + 1
+ z2

2 Îi(k)
1

(2z2 + 1)2

(
4z2

2 − 4z2 + 1
) ]

+ 8z2K0 (2mqz2|x20|)
[

1
2

Iii(j) (−1 + 2z2) +
1

2(1 + 2z2)
Iii(k)

(
4z2

2 + 4z2 + 1
)

− 2
(
(1 − 2z2)z2J(l) + 2m2

qz
2
2I(j)

) ]}
,

(3.31)

where we have set D → 4 wherever possible and b = z0x0 + z1x1 + z2x2. Both the dipole
term (3.29) and real gluon emission contributions (3.31) have divergences in the D → 4
(UV) and α → 0 (IR) limits. However, the UV divergences cancel in their sum. Therefore
it is useful to subtract the UV divergent part of the real correction and add it to the dipole
term. Note that now the division of the NLO contributions between the two terms is not
unique but depends on the chosen UV subtraction scheme. We choose to do this subtraction
following the scheme presented in ref. [96] and used in refs. [74, 93]. In our case, this means
that we write:

N012xi20Ii(j)K(D−2)/2
(
2mqz2|x20|) ={

N012xi20Ii(j)K(D−2)/2
(
2mqz2|x20|) − N01Iqq̄gUV

}
+ N01Iqq̄gUV (3.32)

where

Iqq̄gUV =
(
mqz2|x20|)−D/2+1Γ(D/2 − 1)2

× iμ2−D/2

8πD/2 |x20|4−D
(

ζ

2π|x01|2
)(D−4)/2

K(D−4)/2 (ζ) e−|x20|2/(|x01|2eγE ). (3.33)

Although the subtraction procedure is not unique, this particular choice has the correct
behavior at x20 → 0 and results in relatively simple expressions. With the subtraction of
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eq. (3.32) we can perform the x20 and z2 integrals before adding it to the dipole part:[
2
∫

x0x1x2

∫ dz0 dz1 dz2
(4π)3 4πδ(z0 + z1 + z2 − 1)Ψqq̄g

γ∗ Ψqq̄g∗
V N012

]
UV subtraction

=
∫ 1

0

dz′

4π
φqq̄(r = 0, z′)

∫
dD−2x01 dD−2x20 d2b

∫ 1/2

α
dz2

× N01

√
Nc

2
2eefmq

π

αsCF

2π
4π

(
mz2

π|x20|μ
)(D−4)/2 −8imq

|x20|
[
(D − 2)z2

2 − 2z2 + 1
]

Iqq̄gUV

=
∫ 1

0

dz′

4π
φqq̄(r = 0, z′)

∫
dD−2x01 d2b N01

√
Nc

2
2eefmq

π

αsCF

2π
K(D−4)/2(ζ)

×
{

(4 ln(2α) + 3)
[ 2

D − 4
+ ln

(
ζ

2π2|x01|4μ2eγE

)]
− 1

}
. (3.34)

Adding this to the dipole term we get

−iAqq̄ = 2
∫ 1

0

dz′

4π
φqq̄(r = 0,z′)

∫
d2x01 d2bN01(r,b)

√
Nc

2
eefmq

π

{
K0(ζ)

+
αsCF

2π

{
ĨTVMS

(1
2

,x01

)
+KT +K0(ζ)

[
ΩT
V
(

γ;
1
2

)
+L

(
γ;

1
2

)
− π2

3
+

5
2

+
1
α

−3ln
(

mq|x01|
2

)
−3γE

]}}
. (3.35)

Note that this expression is now UV finite, allowing us to take the limit D → 4. The
UV subtraction also cancelled the dependence on the scale μ introduced by dimensional
regularization.

For the real correction, the UV subtracted form is

− iAqq̄g = 2
∫ 1

0

dz′

4π
φqq̄(r = 0, z′)

√
Nc

2
eefmq

π

∫
d2x01 d2b d2x20

∫ 1/2

α
dz2

αsCF

2π
Kqq̄g

(3.36)
where

Kqq̄g = 32πmq

{
K1(2mqz2|x20|) ixi20

|x20|

[
−Ii(j)

(
(1−z2)2+z2

2
)

−z2
2 (2z2−1) Îi(j)

+Ii(k)
1

2z2+1
+Îi(k)

z2
2(2z2−1)2

(2z2+1)2

]
N012

+
z2
mq

K0 (2mqz2|x20|)
[

−1+2z2
2

Iii(j)+
1+2z2

2
Iii(k)−2(1−2z2)z2J(l)−4m2

qz
2
2I(j)

]
N012

−
(
(1−z2)2+z2

2
) 1

8π2mqz2|x20|2 K0 (ζ)e−x2
20/(x2

01e
γE )N01

}
.

(3.37)

This expression is also UV finite and does not depend on the renormalization scale μ.
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The dipole term (3.35) still has an apparent IR divergence coming from the 1
α term.

This is related to the fact that the LOWF is also divergent and has to be renormalized. This
can be seen explicitly in the NLO equation for the leptonic width which in the nonrelativistic
limit is given by [76]

Γ(V → e−e+) =
2Nce

2
fe4

3πMV

∣∣∣∣∫ dz′

4π
φqq̄(r = 0, z′)

∣∣∣∣2 [1 +
αsCF

π

( 1
α

− 4
)]

. (3.38)

As the leptonic width has to be finite, the LOWF has to have an IR divergent part that
cancels the 1

α divergence appearing in this equation. One way to account for this IR
divergence of the LOWF is to invert eq. (3.38) and solve the integrated LOWF directly
from it, which gives at the order O(αs)∫ dz′

4π
φqq̄(r = 0, z′) =

√
Γ(V → e−e+)

3πMV

2e2
fe4Nc

[
1 +

αsCF

2π

(
4 − 1

α

)]
. (3.39)

This expression can then used in eqs. (3.35) and (3.36) to cancel the IR divergence in the
dipole term and to connect the nonperturbative integral over LOWF to the leptonic width
for which one can use the experimental value in numerical calculations. The dipole part of
the amplitude is then

− iAqq̄ =
√

Γ(V → e−e+)
3πMV

2Nce2
fe4

√
Nc

2
eefmq

π
2
∫

d2x01

∫
d2b

{
KLO
qq̄ +

αsCF

2π
KNLO
qq̄,Γ

}
(3.40)

where the LO part is
KLO
qq̄ = K0(ζ)N01, (3.41)

and the NLO part, which contains the corrections from virtual gluon loops, is defined as

KNLO
qq̄,Γ =

{
ĨTVMS

(1
2

, x01

)
+ KT

+ K0(ζ)
[
ΩT
V
(

γ;
1
2

)
+ L

(
γ;

1
2

)
− π2

3
+

5
2

+ 4 − 3 ln
(

mq|x01|
2

)
− 3γE

]}
N01.

(3.42)

We define this way of renormalizing the LOWF to be the decay width scheme. Note that
this renormalization scheme adds the term αsCF

2π × 4 from the equation of the leptonic width
to the virtual correction KNLO

qq̄,Γ .
We can also renormalize the LOWF in a different way where such an additional term

does not appear. This is done by connecting the LOWF φqq̄ in our regularization scheme to
the dimensionally regularized one φqq̄DR following ref. [76]:∫ dz′

4π
φqq̄ =

∫ dz′

4π
φqq̄DR ×

[
1 − αsCF

2π

1
α

]
. (3.43)

This also cancels the IR divergence in the virtual correction. Now the dipole part of the
amplitude can be written as

− iAqq̄ =
∫ dz′

4π
φqq̄DR ×

√
Nc

2
eefmq

π
2
∫

d2x01

∫
d2b

{
KLO
qq̄ +

αsCF

2π
KNLO
qq̄,Ψ

}
(3.44)
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where the LO part is still given by eq. (3.41) but the NLO correction is slightly different:

KNLO
qq̄,Ψ =

{
ĨTVMS

(1
2

,x01

)
+KT

+K0(ζ)
[
ΩT
V
(

γ;
1
2

)
+L

(
γ;

1
2

)
− π2

3
+

5
2

−3ln
(

mq|x01|
2

)
−3γE

]}
N01. (3.45)

We will refer to this renormalization scheme of the LOWF as the wave function scheme. Here
one still has to determine the value of the dimensionally regularized LOWF for numerical
calculations. This can likewise be done with the leptonic width, from which we can solve
the dimensionally regularized LOWF in the nonrelativistic limit as∫ dz′

4π
φqq̄DR =

√
Γ(V → e−e+)

3πMV

2e2
fe4Nc

[
1 +

αsCF

2π
× 4

]
. (3.46)

Note that when the relativistic corrections are taken into account in section 4 the rela-
tion (3.46) will be modified. The difference between the decay width and wave function
schemes boils down to the location of the NLO correction αsCF

2π × 4 from the equation
for the leptonic width, i.e., whether the correction appears in the equation for the virtual
correction or as an overall coefficient when solving the LOWF. The difference between the
schemes is parametrically of the order O(α2

s ) which is of higher order than considered here.
This difference is also numerically small in realistic kinematics as we will demonstrate in
appendix A.

When choosing the scheme one also has to take into account the running of the coupling
constant αs. In the decay width scheme we use the running coupling in the coordinate space
αs(xij), eq. (2.7), whereas in the wave function scheme the coupling constant is evaluated
at the momentum scale of the decay process. Following ref. [111], we take this to be the
vector meson mass so that the coupling constant in eq. (3.46) is chosen to be αs(MV ).

3.4 Rapidity divergence and the leading-order result

The real correction (3.36) is still IR divergent as can be verified by taking the α → 0 limit
for the lower bound of the z2 integral. This divergence is actually related to the rapidity
evolution of the dipole amplitude. The divergent part of the real correction (3.37) is

αsCF

2π
Ksing
qq̄g =

αsCF

π2
1
z2

K0(ζ)
x2

01
x2

20x2
21

[N012 − N01] (3.47)

from which we recognize, using eq. (2.4), the leading-order BK equation (2.5) if the running
of the coupling is neglected. Thus at fixed coupling it is possible to combine this divergent
part with the leading-order part (3.41) of the production amplitude by taking into account
the rapidity evolution of the dipole amplitude.

The amount of BK evolution is controlled by the lower limit of the z2 integral (recall
that Y = ln

(
z2q+/P +) as discussed in section 2.2). In practice one should not take here

the α → 0 limit. Instead, the lower limit has to be set to a finite value. The reason is the
following: as the invariant mass Mqq̄g of the qq̄g system goes like M2

qq̄g ∼ 1/z2 at small
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z2, in the limit z2 → 0 we would have Mqq̄g → ∞. However, in the calculation we employ
the eikonal approximation which assumes that M2

qq̄g � W 2 where W is the center-of-mass
energy of the photon-proton system. Therefore we should set the lower limit, denoted by
zmin from now on, such that the eikonal limit is satisfied. We follow ref. [66] and choose
zmin = P +/q+.

The target plus momentum is given by P + = Q2
0/(2P−) where Q2

0 is again the transverse
momentum scale of the target which we have taken to be Q2

0 = 1 GeV2 following [66]. The
center-of-mass energy of the photon-proton system is then given by W 2 = 2q+P−−Q2 +m2

N .
Using these expressions we get the following condition for z2:

z2 > zmin =
P +

q+ =
Q2

0
2P−q+ =

Q2
0

W 2 + Q2 − m2
N

. (3.48)

Using this integration limit we find that the z2 integral of the Ksing
qq̄g part corresponds to the

evolution of the dipole amplitude from the initial rapidity Y0 = 0 to the rapidity

Ydip = ln
1
2

zmin
= ln

W 2 + Q2 − m2
N

2Q2
0

(3.49)

using the leading order BK equation.
Evaluating the dipole amplitude at this rapidity corresponds to a resummation of large

logarithms αs ln W 2. As parametrically αs ln W 2 ∼ 1, the actual leading-order part of the
production amplitude corresponds to the term KLO

qq̄ (Ydip) where we use the rapidity Ydip to
evaluate the dipole amplitude:

− iAT
LO =

∫ dz′

4π
φqq̄DR ×

√
Nc

2
eefm

π
2
∫

d2x01

∫
d2b KLO

qq̄ (Ydip). (3.50)

Note that the IR divergent part (3.47) combined with the lowest order part in (3.41) results
in eq. (3.50) (which corresponds to the subtracted scheme of ref. [70]) exactly only at fixed
coupling. As discussed in section 2.2, in this work we use dipole amplitudes that are evolved
using running coupling BK equations that include a resummation of most important higher
order corrections to all orders and as such approximate the full next-to-leading order BK
equation accurately. Consequently the definition of the leading order scattering amplitude is
not unique, but we use the definition (3.50) as it naturally includes also the parametrically
large resummation effects included in the used BK equations.

At next-to-leading order, we choose to evaluate the leading-order part at the initial
rapidity Y0 and let the qq̄g part take care of the rapidity evolution. This corresponds to the
unsubtracted scheme used also in ref. [66]. For the virtual correction KNLO

qq̄ we choose to
evaluate the dipole amplitudes at the evolved rapidity Ydip which corresponds to the total
evolution range as discussed above (but note that the dependence on the evolution rapidity
is formally of higher order in αs). For the term Kqq̄g in eq. (3.37) we use the definition
Y = ln k+

2 /P + and evaluate the dipole scattering amplitude at the rapidity:

Yqq̄g = ln
z2q+

P + = ln z2 + ln
W 2 + Q2 − m2

N

Q2
0

(3.51)
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Taking the rapidity dependence of the dipole amplitudes into account we can write the
final scattering amplitude for the next-to-leading order production amplitude of transversely
polarized vector meson in the form

−iAT =
∫ dz′

4π
φqq̄DR ×

√
Nc

2
eefmq

π
2
∫

d2x01

∫
d2b

{
KLO
qq̄ (Y0)

+
αsCF

2π
KNLO
qq̄,Ψ (Ydip) +

∫
d2x20

∫ 1/2

zmin
dz2

αsCF

2π
Kqq̄g(Yqq̄g)

}
. (3.52)

Here KLO
qq̄ , KNLO

qq̄,Ψ and Kqq̄g are given by eqs. (3.41), (3.45) and (3.37), and the rapidity values
in parentheses correspond to the rapidities at which the dipole amplitudes are evaluated.
An analogous result can also be written in the decay width scheme. The initial rapidity is
chosen to be Y0 = 0 following ref. [66]. The strong coupling constant is evaluated at the
distance scale set by the parent dipole, |x01|2, in the first two terms and by the smallest
dipole min{|x01|2, |x20|2, |x21|2} in the last term, consistently with the NLO fit of ref. [66].

We note that in ref. [66] the virtual contribution KNLO
qq̄ is evaluated at the rapidity

Y = ln 1/xbj which in our case would correspond to Y incl = ln 1/xP �= Ydip. It is not entirely
consistent to use a different evolution rapidity in our NLO calculation of vector meson
production and in the fit procedure used to determine the dipole-proton amplitude. However,
as in ref. [93] we choose to use the more natural choice for the evolution rapidity and note
that the difference between the usage of the two rapidities is formally of higher order in αs.

4 Relativistic corrections at leading order

We can use the nonrelativistic expansion (3.21) to include the first relativistic corrections
of order v2. At leading order in αs, the nonrelativistic expansion reduces to a distributional
identity

ΨV→qq̄
LO = φqq̄h0h1

(r, z) =
∑
k

1
k1!k2!k3!

(mqr1)k1(mqr2)k24π

(
− 1

2i
∂z

)k3
δ (z − 1/2)

×
∫ 1

0

dz′

4π

1
mk1+k2
q

∂k1
r1 ∂k2

r2 φqq̄h0h1
(r = 0, z′)[2i(z′ − 1/2)]k3 (4.1)

from which it is easy to read off the coefficients Ck
qq̄←qq̄. In general, including terms of order

v2 corresponds to including the terms with |k| = k1 + k2 + k3 ≤ 2. From now on, we will
focus on the case where the meson polarization is λV = +1. The final result, eq. (4.10), will
be the same for both transverse polarizations λV = ±1. We can then write the relativistic
correction at the order v2 as

−iAλV =+1
rel =

√
Nc

2
eefmq

π
2
∫

d2x01

∫
d2b N01

×
{

K0(ζ)
m2
q

2

[
r2

1φqq̄++(2, 0, 0) + r2
2φqq̄++(0, 2, 0)

]
− r2Q2

8ζ
K1(ζ)φqq̄++(0, 0, 2)

− K1(ζ)
iζ(r1 − ir2)

2r2

[
r1
(
φqq̄+−(1, 0, 0) − φqq̄−+(1, 0, 0)

)
+ r2

(
φqq̄+−(0, 1, 0) − φqq̄−+(0, 1, 0)

) ]}
(4.2)
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where we introduced a simplifying notation

φqq̄h0h1
(k1, k2, k3) :=

∫ 1

0

dz′

4π

1
mk1+k2
q

∂k1
r1 ∂k2

r2 φqq̄h0h1
(r = 0, z′)[2i(z′ − 1/2)]k3 (4.3)

and ri = (x01)i. Strictly speaking, it is the complex conjugate of eq. (4.2) that corresponds
to vector meson production, but as this quantity is real we have chosen to write it in
this form to get rid of the complex conjugates on the meson wave function. Note that
we do not have here terms like φqq̄+−(1, 0, 1) or φqq̄−−(2, 0, 0). The reason for this is that
non-dominant spin components also bring additional velocity suppression, giving a total
velocity suppression of v|k|+|

1
2 (h′

0+h′
1)−λV |. This is because in momentum space the meson

wave function must have angle-dependence given by (px ± ipy)|
1
2 (h′

0+h′
1)−λV | which then has

to be coupled with similar terms when combined with the photon wave function. This
explains why the non-dominant spin terms have to go like p

2| 12 (h′
0+h′

1)−λV |
T ∼ v|h′

0+h′
1−2λV |,

meaning that there is an additional velocity suppression of v|
1
2 (h′

0+h′
1)−λV |. This can be seen

explicitly in ref. [92] where φλV =+1
+− (1, 0, 0) ∼ v2 and φλV =+1

−− (2, 0, 0) = 0 at O(v2).
We can simplify eq. (4.2) by using the spin-parity JPC = 1−− of the vector meson.

Although parity is only a dynamical symmetry in the light-front, one can still use it to derive
symmetry relations of the light-front wave function using similar properties such as the
so-called mirror parity (see the discussion in ref. [112] and the references therein). The spin
of the meson allows us to write the dependence on the azimuthal angle ϕ⊥ as φλV

h0h1
(r, z) =

eimlϕ⊥φ
λV

h0h1(|r|, z) where ml = λV − (h0 + h1)/2 is the magnetic quantum number and the
part φ does not depend on the angle ϕ⊥. The C- and P -parities give the requirements
φλV
h0h1

(r, z) = C(−1)1+mlφλV
h1h0

(r, 1 − z) and φλV
h0h1

(r, z) = P (−1)ml+Jeimlϕ⊥φ
−λV

−h0,−h1(|r|, z).
Using these, the relativistic corrections can be simplified as

− iAλV =+1
rel =

√
Nc

2
eefmq

π
2
∫

d2x01

∫
d2b N01

×
{

1
2

m2x2
01K0(ζ)φqq̄++(2, 0, 0) − r2Q2

8ζ
K1(ζ)φqq̄++(0, 0, 2) − ζK1(ζ)

[
iφqq̄+−(1, 0, 0)

]}
.

(4.4)

In ref. [93] where longitudinal production is calculated at NLO, the decay width scheme
is used throughout the paper to renormalize the LOWF. This is possible for the longitudinal
production even with the relativistic corrections, as it turns out that the leptonic width for
a longitudinally polarized vector meson depends only on the fully nonrelativistic part of the
LOWF. For transverse production it is no longer possible to use the decay width scheme with
the relativistic corrections as then the leptonic width (at leading order in αs) has the form

Γ
(
V (λV = +1) → e−e+) =

2Nce
2
fe4

3πMV

[ ∫ dz′

4π

1
2MV z′(1 − z′)

×
{

mqφ
qq̄
++(r, z′) + i(∂r1 − i∂r2)

(
−z′φqq̄+−(r, z′) + (1 − z′)φqq̄−+(r, z′)

)}
r=0

]2

(4.5)
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which also has contributions from relativistic components of the wave function. The leptonic
width (4.5) can be calculated using the light-cone perturbation theory (see e.g. ref. [113]), and
eq. (4.5) is the form one gets without making any assumptions about the meson wave function.
In the nonrelativistic limit φqq̄++ ∼ δ(z′− 1

2), MV = 2mq, eq. (4.5) reduces to eq. (3.38) at LO.
For consistency, one should use the same scheme when combining NLO results of

transverse and longitudinal production. We choose to use the wave function scheme
throughout this paper as then it is possible to quantify the significance of the relativistic
corrections without additional complications coming from the scheme dependence. The
previously derived longitudinal cross section is presented in the wave function scheme in
appendix B.

Using eqs. (3.52) and (4.4) requires that we know the nonperturbative constants related
to the LOWF. Note that when relativistic corrections are included we cannot use eq. (3.43)
to directly express dimensionally regularized wave function in terms of the leptonic decay
width, as in the case of transverse polarization the relativistic corrections contribute to
the decay width as can be seen from eq. (4.5). We instead calculate these constants using
the heavy vector meson wave function from ref. [92] that includes relativistic corrections of
order v2. This is a convenient choice as this wave function connects the nonperturbative
constants in eq. (3.52) and (4.4) to the universal NRQCD matrix elements at order v2.
Using this wave function allows us to write

φqq̄DR = φqq̄++(0, 0, 0) =
1√
4mq

[
φRF(0) +

7
12m2

q

�∇2φRF(0)
]

, (4.6)

φqq̄++(2, 0, 0) = φqq̄++(0, 0, 2) = 2[iφqq̄+−(1, 0, 0)] =
1

6√
mq

1
m2
q

�∇2φRF(0) (4.7)

where φRF(�r) is the value of the rest-frame wave function in the position space (see ref. [92] for
the corresponding light-front wave function). One advantage of using this particular choice
of the wave function is that it results in the same leptonic width for both the longitudinal
and transverse polarizations at the order O(v2), which follows from the spherical symmetry
of the wave function in the rest frame.

The rest-frame wave function can be connected to the NRQCD matrix elements by [111]

φRF(0) =
1√
2Nc

√
〈O1〉V

[
1 + O

(
v4
)]

, (4.8)

�∇2φRF(0) = −〈�q 2〉V φRF(0)
[
1 + O

(
v2
)]

= −〈�q 2〉V 1√
2Nc

√
〈O1〉V

[
1 + O

(
v2
)]

. (4.9)

Numerical values for the NRQCD matrix elements can be obtained from the decay width
data. For J/ψ production, we use the values for 〈O1〉V and 〈�q 2〉V (with their correlated
uncertainties) from ref. [111]. Similarly, for Υ production the matrix elements from ref. [114]
are used. We note that the matrix elements for J/ψ in ref. [111] are determined using a
charm mass mc = 1.4 GeV. On the other hand, in our calculation we use the non-relativistic
value mc = MV /2, where MV is the J/ψ mass, effectively neglecting the quark momentum
contribution to the meson invariant mass (similarly the b quark mass is taken to be half
of the Υ mass). Consequently, the different mass values result in a difference which is of
higher order in quark velocity v, see also the discussion in ref. [92].
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The relativistic corrections to the production amplitude can then be written as

−iAT
rel =

√
Nc

2
eefmq

π
2
∫

d2x01

∫
d2b N01

× 1
6√

mq

1
m2
q

�∇2φRF(0)
{

1
2

m2
qx2

01K0(ζ) − x2
01Q2

8ζ
K1(ζ) − 1

2
ζK1(ζ)

}
. (4.10)

The main result of this work, the exclusive heavy vector meson production cross section at
the order O(αsv0, α0

s v2) is then eq. (3.52), to which eq. (4.10) is added.

5 Numerical results

We show numerical results for the transverse vector meson production amplitude and for
the total (longitudinal and transverse) coherent vector meson production cross section in
γ∗ + p scattering at next-to-leading order. We consider separately the fully nonrelativistic
limit O(αsv0), and the case where first relativistic corrections are included, O(αsv0, α0

s v2).
The longitudinal vector meson production is calculated using the results of ref. [93] included
for completeness in appendix B.

The numerical calculations are done in the wave function scheme for the renormalization
of the LOWF. We note that it would be possible to use the decay width scheme in the
nonrelativistic limit, but this would introduce additional scheme dependence when comparing
to the case with the relativistic corrections included. The difference between the two wave
function renormalization schemes is studied numerically in detail in appendix A.

5.1 Transverse vector meson production amplitude

First we study in detail different contributions to the forward (t = 0) transverse J/ψ

production amplitude, eq. (3.52), in the nonrelativistic limit. This equation is finite and
can be directly evaluated numerically. We limit ourselves to the forward production case
as we do not want to specify any specific form of impact parameter dependence for the
dipole-proton scattering amplitude, and at t = 0 only the dipole-proton amplitude integrated
over the impact parameter appears. The dipole-proton amplitude is obtained from ref. [66]
where the assumption is that the impact parameter b integral only results in a constant
factor σ0/2 interpreted as the proton transverse area, also determined from the fit to HERA
structure function data.

Different contributions to the scattering amplitude as a function of center-of-mass
energy W and photon virtuality Q2 are shown in figure 2. In these calculations we have
chosen to use as the dipole amplitude the fit performed with the KCBK evolution and using
an initial evolution rapidity Y0,BK = 4.61 in ref. [66]. Note that in ref. [66] two different
initial rapidities for the BK evolution are used (Y0,BK = 4.61 and Y0,BK = 0), and the
dipole amplitude is frozen in the region Y0 < Y < Y0,BK. Results using both of these initial
evolution rapidities are shown later in this section.

The different contributions to the scattering amplitude shown in figure 2 are labeled as
follows. First, NLO corresponds to the full NLO level scattering amplitude of eq. (3.52).
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(a) Amplitude as a function of the center-of-mass
energy W .
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(b) Amplitude as a function of the photon virtu-
ality Q2.

Figure 2. Different contributions to the transverse exclusive J/ψ production scattering amplitude
at next-to-leading order.

The leading-order result, obtained using a BK-evolved dipole amplitude evaluated at the
rapidity Y = Ydip is labeled as LO(Ydip) and shown in eq. (3.50), and LO(Y0) corresponds
to the ∼ α0

s part (first line of eq. (3.52)) where the dipole amplitude is evaluated at the
initial rapidity. The virtual NLO contribution is denoted by NLOdip, but we emphasize
that an UV divergence has been cancelled between the real and virtual contributions and
as such the division of NLO corrections into the real and virtual parts is not unique. The
real gluon emission correction obtained using the UV subtraction scheme used in this work,
eq. (3.36), is shown as NLOqq̄g(BK) and NLOqq̄g(no BK). The NLOqq̄g(BK) term refers to
the singular part of the gluon emission contribution (see eq. (3.47)) which can be included in
the BK evolution, and NLOqq̄g(no BK) corresponds to the remaining pure NLO correction.
In this notation the total NLO amplitude can be expressed as

NLO = LO(Y0) + NLOdip + NLOqq̄g(BK) + NLOqq̄g(no BK). (5.1)

The real gluon emission contribution (NLOqq̄g terms) has a large contribution, which
is expected as the BK evolution resumming terms ∼ αs ln 1/x ∼ 1 to all orders should be
considered to be part of the leading order result. However, we also find a significant negative
NLO correction NLOqq̄g(no BK) to the BK evolution from the actual NLO calculation where
the exact gluon emission kinematics is included. In our UV subtraction scheme the virtual
NLO contribution NLOdip is very small. The total NLO correction is significant, about
∼ 50% of the (BK-evolved) LO contribution. These conclusions are valid at all W and Q2.

In the longitudinal production case presented in ref. [93], the NLO corrections were found
to be even more significant (∼ 75% of the LO result); however, these results cannot be directly
compared as the longitudinal calculation used the decay width scheme for the renormalization
of the LOWF as opposed to the wave function scheme. In the decay width scheme the NLO
corrections are larger because of the larger scheme-dependent constant in Kqq̄

NLO, which is true
for both longitudinal and transverse production. It should be noted that this difference in
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the NLO corrections is compensated by the overall LOWF-related constant in the amplitude
which is smaller in the decay width scheme, bringing the numerical values of the full NLO
result in the two schemes closer to each other and thus reducing the scheme dependence.

The term NLOqq̄g(BK) corresponds to the (leading order) BK evolution, and as such
one could also take the leading order scattering amplitude to be LO(Y0) + NLOqq̄g(BK).
As can be seen in figure 2, this differs from LO(Ydip) by roughly a factor of 2. As discussed
in section 3.4 this difference would vanish at fixed coupling if the dipole amplitude satisfied
the leading order BK equation, but in this work where we use resummed BK evolution
equations to approximate the full NLO BK equation it is more natural to use LO(Ydip) as a
leading order amplitude. This choice includes most of the parametrically large resummation
corrections to the leading order amplitude and renders the NLO corrections moderate. On
the other hand, if one used LO(Y0) + NLOqq̄g(BK) as a leading order amplitude, the NLO
corrections would be dominant and even render the cross section negative at high Q2.

5.2 Differential cross section at t = 0

Next we calculate the coherent transverse J/ψ production cross section at t = 0. When
squaring the scattering amplitude only the genuine NLO corrections are kept, and NNLO
contributions proportional to α2

s are dropped out. In practice, eq. (3.50) is used as the
leading-order amplitude, and when squaring the amplitude its interference with genuine NLO
contributions is needed. This NLO correction is obtained from eq. (3.52) by subtracting the
leading-order amplitude (3.50). Similarly, when including relativistic corrections we do not
keep the square of the relativistic correction that would be proportional to v4 (but note that
such contribution was included in the numerical results reported in ref. [93]). Instead, when
relativistic corrections are included we add the interference term between the leading-order
amplitude, eq. (3.50), and the v2 suppressed part of the amplitude, eq. (4.10).

The differential J/ψ production cross section at t = 0 is shown in figure 3(a) as a
function of the center-of-mass energy W , using different fits for the dipole-proton scattering
amplitude from ref. [66]. Results obtained using fits where the initial evolution rapidity
is Y0,BK = 4.61 (or η0,BK = 4.61 in the case of TBK evolution) are shown as solid lines,
and dashed lines correspond to calculations where fits with the initial rapidity Y0,BK = 0
(η0,BK = 0) are used. The LO result is “LO LOBK” which uses the leading-order dipole-
proton amplitude from ref. [42] (we use the fit referred to as “MVe” in [42]) at the rapidity
Y = ln 1/xP as this is the rapidity scale used in the LO fit.

We see that the NLO corrections reduce the cross section slightly. This is in contrast
to what is seen in figure 2, and can be explained by the fact that in figure 2 the same NLO-
fitted dipole amplitude was used for both the LO and NLO results. When nonperturbative
parameters describing the initial condition for the BK evolution are determined in leading-
order fits such as in refs. [42, 115], they effectively absorb a part of the higher-order
contributions.

These results are in line with what has been obtained for longitudinal vector meson
production at NLO [93]. The NLO corrections generally change the center-of-mass energy
dependence (faster evolution at low W compared to LO, slower or similar to LO at high W ).
We also find some deviations between the results with different NLO dipole amplitudes,
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Figure 3. Differential cross section for transverse J/ψ production at next-to-leading order. In the
case of TBK evolution the rapidity values correspond to the target rapidity η. The uncertainty
bands are obtained by taking into account the uncertainties of the NRQCD matrix elements.

similarly to the longitudinal J/ψ production case [93]. As all of these dipole amplitudes
were fitted to the same HERA structure function data, this deviation shows that vector
meson production gives us complementary information to structure function analyses. This
will be discussed more in section 5.3.

In figure 3(b), we show the effect of relativistic corrections at LO and NLO. At small
Q2, the relativistic corrections reduce the cross section by ∼ 60% at LO and ∼ 40% at NLO
and are numerically more important than the next-to-leading order QCD corrections, that
in turn have a much larger effect at large Q2. The relativistic corrections have a smaller
relative effect at NLO than at LO because of the sizable NLO corrections (recall that we do
not include O(αsv2) corrections). It should be noted that the relativistic corrections do not
vanish at high Q2, which is in contrast with longitudinal production where the relativistic
corrections are negligible for high photon virtualities [93, 116].

5.3 Total vector meson production cross section

The transverse vector meson production can be combined with longitudinal production
to calculate the total vector meson production cross section σtot = σL + σT . This is a
phenomenologically more interesting quantity as most exclusive vector meson production
data is measured in terms of the total production cross section.
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Figure 4. Total exclusive J/ψ production at next-to-leading order, with HERA data from [7–9, 14],
ALICE data from [19, 20], and LHCb data from [22, 23].

As discussed above, we only calculate vector meson production at t = 0 (see eq. (2.1))
as we do not want to specify any particular model for the proton impact parameter profile.
In order to obtain results that can be compared with experimental t-integrated cross section
measurements, we use the experimentally measured t slopes that allow us to write the
γ∗ + p → V + p cross section as

dσ

dt
= e−b|t| × dσ

dt
(t = 0). (5.2)

For the J/ψ production the slope b can be written as b = b0 + 4α′ ln(W/(90 GeV)), where
the experimentally measured values for the J/ψ production are b0 = 4.15 GeV−2 and
α′ = 0.116 GeV−2 [8]. This allows us to calculate the total t-integrated vector meson
production.

The results are shown in figure 4 separately for the nonrelativistic case and with the
v2 relativistic corrections, and they are compared to the experimental data measured by
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H1 [9, 14], ZEUS [7, 8], ALICE [19, 20], and LHCb [22, 23] collaborations. However, we
emphasize again that the phenomenological analysis here is not fully consistent as we are
using the dipole amplitudes extracted from a fit to structure function data where only the
light quark contribution is included [66], and a fully consistent setup would require a heavy
quark contribution to be included in the structure function calculations also. Consequently,
strong conclusions cannot be drawn from these data comparisons.

Keeping this uncertainty in mind, we find that both the W and Q2 dependence of the
experimental data is described reasonably well, especially when the relativistic corrections
are included. For the virtuality dependence, the relativistic corrections are important at
low Q2 and the next-to-leading order corrections also modify the dependence on Q2 slightly,
however both LO and NLO results are compatible with the HERA data. Generally, we
again find that both the relativistic and NLO corrections can be numerically important
and need to be included when considering the J/ψ production.

At W � 100 GeV the calculations using dipole amplitudes from BK fits where the
evolution starts at the smallest possible evolution rapidity Y0,BK = 0 (or η0,BK = 0 in the
case of TBK evolution) result in W slope which is not compatible with the data. The
next-to-leading order corrections also become extremely large, even rendering the cross
section negative. As we will demonstrate in appendix A, the results obtained with Y0,BK = 0
(η0,BK = 0) in the low-W region are also sensitive to the wave function renormalization
scheme, but this is not the case for the fits with Y0,BK = 4.61 (η0,BK = 4.61). We consider
this behavior in the low-energy region to be an artifact of the unphysical initial condition
obtained in the BK evolution fits in ref. [66] when the evolution is started at Y0,BK = 0,
in which case there is a long evolution before one enters in the region probed by small-
x structure function data. In that case the fit results in unphysical parameters, and
especially the anomalous dimension γ is very large at the initial condition.1 As heavy
vector meson production is sensitive to smaller size dipoles than the structure function
fitted in [66], similar unrealistically large NLO corrections were not observed in the NLO
fit of ref. [66]. Consequently, we consider the results obtained with Y0,BK = 4.61 to be our
main numerical results and emphasize that heavy vector meson production data provides
additional constraints for the determination of the nonperturbative initial condition for the
small-x evolution.

The leading-order result is constant at W < 31 GeV which corresponds to xP > 0.01.
This is because in the leading-order calculation the dipole amplitude is evaluated at
Y = ln 1/xP and no BK evolution is included in the region Y < ln 1

0.01 in the leading order
fit [118] used in this work.

Next we study the longitudinal-to-transverse J/ψ production cross section ratio where
e.g. the normalization uncertainty cancels. This is plotted in figure 5 where we show
the results for the nonrelativistic case (figure 5(a)) and with the relativistic corrections
(figure 5(b)), compared to the HERA data [7, 9]. Excluding the TBK η0,BK = 0.00 dipole,
the NLO corrections have only a modest effect on this ratio, slightly increasing it in general.

1The dipole amplitude behaves as N01 ∼ (x2
01Q2

s)γ in the dilute region, and large γ corresponds to e.g.
negative unintegrated gluon distribution [117].
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Figure 5. Longitudinal J/ψ production cross section divided by the transverse cross section
compared to H1 [9] and ZEUS [7] data at W = 90 GeV.
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Figure 6. Exclusive Υ photoproduction cross section as a function of center-of-mass energy W

compared with HERA [119–121] and LHC [122, 123] data. Results are obtained using the KCBK
evolution equation with initial evolution rapidity Y0,BK = 4.61.

In the nonrelativistic limit the differences between the different dipole amplitude fits having
initial evolution rapidity Y0,BK = 4.61 (or η0,BK = 4.61) are negligible, whereas with
Y0,BK = 0 (η0,BK = 0) there is some variation. Including the relativistic corrections increases
this variation in both cases. The agreement with the experimental data is similar for both
the LO and NLO results, and in both cases the ratio seems to be somewhat overestimated.
This ratio is sensitive to the form of the wave function (see e.g. ref. [92]), and in particular
including the relativistic corrections improves the agreement with the HERA data slightly.

Finally, we consider exclusive Υ photoproduction. As Υ is much heavier than the
J/ψ studied above, relativistic corrections become very small and it can be expected to be
more sensitive to the next-to-leading order QCD corrections. The Υ photoproduction cross
section as a function of the center-of-mass energy W is shown in figure 6 and compared with
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HERA [119–121], CMS [122] and LHCb [123] data. The t-integration of the analytic result
is done using eq. (5.2) with the experimentally measured W -independent slope parameter
b = 4.3 GeV−2 [124]. The relativistic corrections, calculated using the NRQCD matrix
elements from ref. [114], are indeed small at ∼ 3% level at all W . The next-to-leading order
contributions are larger, and result in a slower W dependence compared to leading-order
results. Results obtained at leading and next-to-leading order are both compatible with the
available data. Again the leading-order result is constant at W < 95 GeV where xP > 0.01.

6 Conclusions

We have presented the first calculation for transversely polarized exclusive heavy vector
meson production at next-to-leading order accuracy in the Color Glass Condensate frame-
work. The main result of this work is eq. (3.52), which is the scattering amplitude for
the transverse vector meson production at NLO in the nonrelativistic limit. We have also
presented how relativistic corrections, which are generally as important numerically as
the NLO QCD corrections (in the case of J/ψ production), can be consistently included
in the NLO calculation. The corresponding part of the scattering amplitude is given in
eq. (4.10). Combined with the NLO calculation for the longitudinal production presented
in ref. [93], the results of this paper allow for phenomenological studies of heavy vector
meson production at next-to-leading order accuracy.

The NLO corrections are numerically significant for both the transverse and longitudinal
production amplitude. This is largely compensated by the smaller dipole amplitude in
the NLO calculation, making the NLO results mostly in line with the LO production and
rendering the NLO corrections generally moderate. When the first relativistic corrections
are added the agreement of the coherent J/ψ production cross section with the HERA
and LHC data is improved, especially at small photon virtualities where the relativistic
corrections are larger than the NLO corrections.

If the NLO cross sections are calculated using dipole amplitude fits from ref. [66] where
there is a long evolution before one enters the region constrained by the small-x structure
function data (Y0,BK = 0 or η0,BK = 0 fits), the NLO corrections become very large at small
center-of-mass energies and even result in negative cross sections. However, we also note
that the nonperturbative parameters describing the initial condition in these fits are not
physically well motivated. Large NLO corrections observed in this case illustrate how heavy
particle production is sensitive to different length scales than structure function calculations
and can provide additional constraints when the nonperturbative initial condition for the
Balitsky-Kovchegov equation is determined.

Now that the results for both longitudinal and transverse [73–75] photon wave functions
with massive quarks are available, it will be possible to extend the dipole amplitude fits
of ref. [66] to the massive quark case. This will allow for a consistent phenomenological
study of NLO vector meson production at t = 0, which was not possible in this paper.
Furthermore, as the impact parameter dependence of the gluon structure is directly related
to the t dependence of vector meson production, it would be especially interesting to study
t-dependent vector meson production amplitudes. This requires additional modeling for
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the impact parameter dependence of the dipole amplitude, which is the reason it was not
considered in this work.

With these possible future developments in mind, the results presented in this paper
can be used for extensive comparisons with heavy vector meson production data from
HERA [7, 8, 14] and from the UPC physics program at the LHC [20, 22, 23], along with
making predictions for the future EIC. The results can also be extended from proton targets
to heavy nuclei by changing the dipole-target scattering amplitude, which enables studies
of non-linear QCD dynamics in heavy nuclei at small-x. This is especially interesting given
the existing and future data from ultra-peripheral Pb+Pb collisions at the LHC [24–29]
and possibilities at the future nuclear DIS experiments.
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A Dependence on the wave function renormalization scheme

As discussed in section 4, the renormalization of the LOWF can be done in different ways. In
this paper we consider two different renormalization schemes, called the decay width scheme
(eq. (3.39)) and the wave function scheme (eq. (3.43)). The reason for the different schemes
is that the decay width scheme is convenient in the nonrelativistic case as then one can use
the same running coupling constant (2.7) as in the rest of the calculation when renormalizing
the meson wave function. On the other hand the wave function scheme is necessary when
considering the relativistic corrections as in that case the decay width scheme is not possible
for transverse production. This makes the NLO cross section dependent on the choice of
the wave function renormalization scheme. The choice of the scheme appears parametrically
at α2

s , and is thus of higher order than we consider here, but it can still have an effect on
the numerical results. This is what we will study in this appendix.

In the nonrelativistic case we can choose to use either of these two schemes. The decay
width scheme is used as described by eq. (3.39). For the wave function scheme, we can calcu-
late the dimensionally regularized LOWF in eq. (3.43) from the nonrelativistic limit of the
leptonic width using eq. (3.46). In that case one has to choose the scale at which to calculate
the coupling constant. A natural choice is the mass of the vector meson which in the case of
J/ψ evaluates to αs(MJ/ψ) ≈ 0.25 [111] (for Υ this is αs(MΥ) ≈ 0.18 [114]). The difference
between the decay width and wave function schemes is then where the NLO contribution
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Figure 7. Scheme dependence of the differential J/ψ production cross section at NLO illustrated
as a ratio of the cross sections calculated in the decay width (Γ) and wave function (Ψ) schemes in
the nonrelativistic limit.

to the decay width appears when calculating the NLO production amplitude. In the decay
width scheme it is calculated as part of the virtual correction KNLO

qq̄ ; in the wave function
scheme it appears when we calculate the value of the dimensionally regularized LOWF.

To quantify the effects of the scheme choice, we have evaluated the NLO differential
cross section for exclusive J/ψ production as a function of Q2 and W in the nonrelativistic
case using the two different schemes. The ratio of these cross sections is shown in figure 7
for both longitudinal and transverse production. We see that in the calculations where
a BK evolution starting at rapidity Y0,BK = 4.61 (or η0,BK = 4.61 in the case of TBK
evolution) is used there is only a small dependence on the scheme, of the order 10%. On
the other hand, if the BK evolution starts at initial rapidity 0 the differences between the
two schemes become very large at small center-of-mass energies W . However, we note that
as discussed in section 5 the initial conditions for evolutions starting at rapidity Y0,BK = 0
have unphysical features that do not strongly affect the structure function calculations and
the fit process of ref. [66], but have a large effect here as heavy vector meson production is
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sensitive to smaller dipole sizes.

B Longitudinal vector meson production at next-to-leading order

For completeness, we list here the expressions for longitudinal vector meson production at
NLO from ref. [93]. The NLO production amplitude can be divided into similar parts as in
the case of transverse production. In the decay width scheme, the production amplitude
can be written as

− iAL = −
√

Γ(V → e−e+)
3πMV

2Nce2
fe4

√
Nc

2
eefQ

2π
2
∫

d2x01

∫
d2b

{
KLO
qq̄ (Y0)

+
αsCF

2π
KNLO,L
qq̄,Γ (Ydip) +

αsCF

2π

∫
d2x20

∫ 1/2

zmin
dz2 KL

qq̄g(Yqqg)
}

(B.1)

where KLO
qq̄ is defined in eq. (3.41),

KNLO,L
qq̄,Γ (Ydip) = N01(Ydip)×

[
Ĩν
(1

2
,x01

)
+KL

+K0(ζ)
(

ΩL
V
(

γ;
1
2

)
+L

(
γ;

1
2

)
− π2

3
+2+4−3ln

( |x01|mq

2

)
−3γE

)]
(B.2)

and

KL
qq̄g(Yqq̄g) = −32πmq

{
ixi20
|x20|K1(2mqz2|x20|)

×
[(

(1 − z2)2 + z2
2
)

Ii(j) + (2z2
2 − 1)(1 − 2z2)Ii(k)

]
N012(Yqq̄g)

+ 4mqz
3
2K0(2mqz2|x20|)

[
I(j) − 1 − 2z2

1 + 2z2
I(k)

]
N012(Yqq̄g)

+
1

8π2

(
(1 − z2)2 + z2

2
) 1

mqz2|x20|2 K0(ζ)e−x2
20/(x2

01e
γE )N01(Yqq̄g)

}
. (B.3)

The special functions L(γ, z), I(j), I(k), Ii(j) and Ii(k) are defined in section 3.1. The terms
KL and ΩL

V can be written as

KL =
∫ 1/2

0
dz

{
16z(1−z)K0

(
|x01|

√
Q

2+m2
q

)
2z [K0(τ)−τK1(τ)]

+
1

(z−1/2)2

{
16z(1−z)K0

(
|x01|

√
Q

2+m2
q

)[
2z(1−z)K0(τ)−z

(
K0(τ)− τ

2
K1(τ)

)]

−K0(ζ)
[
1+2

(
z− 1

2

)[
1+2γE+2ln(mq|x01|)+2ln

(1
2

−z

)]]}}
(B.4)
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and

ΩL
V(γ; z) =

1
2z

[
ln(1 − z) + γ ln

( 1 + γ

1 + γ − 2z

)]
+

1
2(1 − z)

[
ln(z) + γ ln

( 1 + γ

1 + γ − 2(1 − z)

)]

+
1

4z(1 − z)
(γ − 1) ln

⎛⎝Q
2 + m2

q

m2
q

⎞⎠ +
m2
q

2Q
2 ln

⎛⎝Q
2 + m2

q

m2
q

⎞⎠. (B.5)

Finally, the special function ĨV(z, x01) is given by

ĨV(z, x01) = ĨV(a)+(b)(z, x01) + ĨV(c)+(d)(z, x01), (B.6)

with

ĨV(a)+(b)(z, x01) =
∫ 1

0

dξ

ξ

(
−2 ln ξ

1 − ξ
+

1 + ξ

2

)

×
[
2K0

(
|x01|

√
Q

2 + m2
q

)
− K0

(
|x01|

√
Q

2 + m2
q +

(1 − z)ξ
1 − ξ

m2
q

)

− K0

(
|x01|

√
Q

2 + m2
q +

zξ

1 − ξ
m2
q

)]
(B.7)

and

ĨV(c)+(d)(z, x01) = m2
q

∫ 1

0
dξ

∫ 1

0
dx

×
⎧⎪⎨⎪⎩
⎡⎢⎣K0

(
|x01|

√
Q

2 + m2
q

)
− K0

⎛⎜⎝|x01|

√√√√Q
2 + m2

q

1 − x
+ κ

⎞⎟⎠
⎤⎥⎦

× CL
m

(1 − ξ)(1 − x)
[
x(1 − ξ) + ξ

1−z
] [

x(Q2+m2
q)

1−x + κ

]

+(z → 1 − z)

⎫⎪⎬⎪⎭ . (B.8)

The coefficient CL
m in the above expression reads

CL
m =

z2(1 − ξ)
1 − z

⎡⎣−ξ2 + x(1 − ξ)
1 + (1 − ξ)

(
1 + zξ

1−z
)

x(1 − ξ) + ξ
1−z

⎤⎦ , (B.9)

and

κ =
ξm2

q

(1 − ξ)(1 − x)
[
x(1 − ξ) + ξ

1−z
] [ξ(1 − x) + x

(
1 − z(1 − ξ)

1 − z

)]
. (B.10)
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When considering relativistic corrections, one can no longer use the decay width scheme
for transverse production. It is then more consistent to use the wave function scheme which
works also with the relativistic corrections. In the wave function scheme, the longitudinal
production amplitude can be written as

− iAL = −
∫ dz′

4π
φqq̄,LDR ×

√
Nc

2
eefQ

2π
2
∫

d2x01

∫
d2b

{
KLO
qq̄ (Y0)

+
αsCF

2π
KNLO,L
qq̄,Ψ (Ydip) +

αsCF

2π

∫
d2x20

∫ 1/2

zmin
dz2 KL

qq̄g(Yqq̄g)
}

(B.11)

where the LOWF φqq̄,LDR is now the dimensionally regularized one from eq. (3.43), and the
virtual correction becomes

KNLO,L
qq̄,Ψ (Ydip) = N01(Ydip)×

[
Ĩν
(1

2
,x01

)
+KL

+K0(ζ)
(

ΩL
V
(

γ;
1
2

)
+L

(
γ;

1
2

)
− π2

3
+2−3ln

( |x01|m
2

)
−3γE

)]
(B.12)

instead of KNLO
qq̄,Γ (Ydip). The relativistic corrections to longitudinal production can be written

as

−iAL
rel = −eefQ

√
Nc

2π
2
∫

d2x01 N01(Ydip)

× 1
4

{(
φqq̄,L+− (0, 0, 2) + φqq̄,L−+ (0, 0, 2)

) [
2K0(ζ) − Q2x2

01
4ζ

K1(ζ)
]

+
(
φqq̄,L+− (2, 0, 0) + φqq̄,L−+ (2, 0, 0) + φqq̄,L+− (0, 2, 0) + φqq̄,L−+ (0, 2, 0)

) m2x2
01

2
K0(ζ)

}

= −eefQ
√

Nc

2π
2
∫

d2x01 N01(Ydip)

× 1
2

{
φqq̄,L+− (0, 0, 2)

[
2K0(ζ) − Q2r2

4ζ
K1(ζ)

]
+ φqq̄,L+− (2, 0, 0)m2x2

01K0(ζ)
}

. (B.13)

where the expression was simplified using the identity φqq̄,L+− (r, z′) = φqq̄,L−+ (r, z′) that follows
from the spin-parity of the vector meson as discussed in section 4.

The nonperturbative constants related to the LOWF can be written in terms of the
rest-frame wave function φRF(�r) [92], giving us

∫ dz′

4π
φqq̄,LDR =

√
2φqq̄,L+− (0, 0, 0) =

1√
4mq

[
φRF(0) +

5
12m2

q

�∇2φRF(0)
]

(B.14)

φqq̄,L+− (2, 0, 0) = φqq̄,L−+ (0, 0, 2) =
1

6
√

2mq

1
m2
q

�∇2φRF(0). (B.15)
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This allows us to write the v2 relativistic correction in the compact form

− iAL
rel = −eefQ

√
Nc

2π
√

2
2
∫

d2x01

∫
d2b N01(Ydip)

× ∇2φRF(0)
12m2

q
√

mq

[
2K0(ζ) − Q2x2

01
4ζ

K1(ζ) + m2
qx2

01K0(ζ)
]

. (B.16)

The value of the rest-frame wave function and its derivatives can be related to NRQCD
matrix elements as described in section 4.
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We predict heavy quark production cross sections in deep inelastic scattering at high energy by applying
the color glass condensate effective theory. We demonstrate that, when the calculation is performed
consistently at next-to-leading order accuracy with massive quarks, it becomes possible, for the first time in
the dipole picture with perturbatively calculated center-of-mass energy evolution, to simultaneously
describe both the light and heavy quark production data at small xBj. Furthermore, we show how the heavy
quark cross section data provides additional strong constraints on the extracted nonperturbative initial
condition for the small-xBj evolution equations.

DOI: 10.1103/PhysRevLett.130.192301

Introduction.—Probing the properties of the nonlinearly
behaving gluonic matter in protons and nuclei at high
energies is a major science goal of the future Electron-Ion
Collider (EIC) [1–3]. Measuring the total and heavy quark
production cross sections in deep inelastic scattering (DIS)
off nuclei is especially intriguing, as nonlinear saturation
effects are enhanced in heavy nuclei [4]. The EIC will be
able to perform very precise total cross section measure-
ments over a relatively wide kinematical domain charac-
terized by the gluon longitudinal momentum fraction xBj
and the photon virtuality Q2.
Nonlinear gluon saturation effects are expected to have a

modest effect on structure functions in the EIC kinematics
(see, e.g., [5–7]). To unambiguously determine the exist-
ence of nonlinear QCD dynamics at collider energies and to
quantify its role on the small-xBj structure of protons and
nuclei, it is likely necessary to perform a global analysis of
the future proton and nuclear DIS data at small xBj. In
particular, it will be important to include both the inclusive
and heavy quark production data that have different
sensitivities on saturation effects in order to extract in
detail the properties of the QCD matter at extremely large
parton densities. Charm production is an especially power-
ful process as the charm mass is large enough to suppress
nonperturbative effects, but simultaneously light enough to
allow one to access QCD dynamics in the nonlinear regime.

To describe QCD dynamics at high energies, where
parton densities are very large and emergent nonlinear
phenomena dominate, it is convenient to use the color glass
condensate (CGC) [8,9] effective field theory framework.
The DIS process is then naturally described in the dipole
picture [10,11], where the photon splits into a quark-
antiquark pair long before the interaction with the target.
The interaction of the quark dipole with the target is then
taken to be eikonal, i.e., the transverse coordinates of the
partons do not change when they traverse through the target
color field. In this picture, leading-order (LO) calculations
including a resummation of the high-energy logarithms
αs ln 1=x to all orders (where αs is the strong coupling)
within the CGC framework have been successful in
describing the precise proton structure function data from
HERA [12–14]. This suggests that the HERA data is
compatible with the hypothesis that gluon saturation is
manifest at HERA energies. In addition, calculations based
on collinear factorization have also found the resummation
of the high-energy logarithms to be important in order to
describe the details of the HERA data [15].
The structure function data is used to constrain the

nonperturbative initial condition for the small-xBj evolution
equations. Therefore, a good description of the total cross
section data is crucial when applying the CGC framework
to describe any other scattering process (e.g., proton-
nucleus collisions at the LHC [13,16–20]). Compatibility
with the available cross section data is also required when
developing a realistic description for the early stages of
heavy-ion collisions [21], needed to extract the fundamen-
tal properties of the quark-gluon plasma.
In this Letter, we present predictions for heavy quark

production cross sections in DIS using the nonperturbative
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initial condition for the perturbative Balitsky-Kovchegov
(BK) small-xBj evolution equation [22,23], determined
from the fits to total DIS cross section data in [24]. The
predicted heavy quark cross sections are shown to be in
excellent agreement with the HERA data [25]. This is the
first time in the CGC framework that a simultaneous
description of total and heavy quark production data is
achieved in calculations where the energy dependence is
obtained by solving the small-xBj evolution equation. A
crucial ingredient, here, is the next-to-leading order (NLO)
accuracy in αs recently achieved for the massive impact
factors from first-principle light-cone perturbation theory
calculations [26–28]. We also demonstrate how the heavy
quark production data can provide additional constraints
for the extracted nonperturbative initial condition of the BK
evolution.
The results presented here are from the first-ever

numerical calculation of the heavy quark structure func-
tions in the dipole picture at NLO. The successful descrip-
tion of the HERA data demonstrates that future global
analyses are feasible and can be applied to probe in detail
gluon saturation at the LHC and future EIC, where nuclear
targets with larger saturation scales are available.
Structure functions at high energy.—Using the optical

theorem, the total virtual photon ðγ�Þ—proton (p) cross
section can be obtained from the forward elastic γ� þ p →
γ� þ p scattering amplitude. In the dipole picture, the
γ� þ p scattering is described in terms of eikonal inter-
actions between the partonic Fock states of the photon and
the target color field, and perturbatively calculable impact
factors describing the photon fluctuations to the given
partonic states. Eikonal interactions with the target are
encoded in the Wilson lines, which are the scattering matrix
elements for bare partons propagating through the target
color field.
At NLO, the contributing photon Fock states are the

quark-antiquark jqq̄i and quark-antiquark-gluon jqq̄gi
states. Therefore, at NLO, the total virtual photon cross
section can be schematically decomposed into two parts.
The first contribution [illustrated in Fig. 1(a)] corresponds
to the case where the qq̄g system crosses the shockwave

σγ
�
qq̄g ¼ Kqq̄g ⊗ N012: ð1Þ

The second contribution [illustrated in Fig. 1(b)], which
includes the lowest-order part (interaction with an une-
volved target) and the one-gluon-loop QCD corrections to
it, reads

σγ
�
qq̄ ¼ Kqq̄ ⊗ N01: ð2Þ

Here, Kqq̄ and Kqq̄g refer to the perturbatively computed
NLO impact factors obtained with massive quarks in [26–
28] and in the massless quark limit in [29–31]. In addition,
the notation ⊗ refers to an integral over the parton trans-
verse coordinates xi and longitudinal momentum fractions
in the mixed space. Additionally, N01 and N012 are
correlators of two or three Wilson lines, where the sub-
scripts 0,1,2 refer to the transverse coordinates of the quark,
antiquark, and the gluon. In terms of the Wilson lines, VðxÞ
in the fundamental representation, these correlators read

S01 ¼
1

Nc
hTrfVðx0ÞV†ðx1Þgi; ð3Þ

S012 ¼
Nc

2CF

�
S02S21 −

1

N2
c
S01

�
: ð4Þ

Here, h� � �i refers to the average over the target color charge
configurations, Nc is the number of colors, CF¼ðN2

c−1Þ=
ð2NcÞ, Sij ¼ 1 − Nij, and Sijk ¼ 1 − Nijk. In addition, we
have used the mean-field limit (which is a precise approxi-
mation [32]) to factorize the expectation value of the
product to a product of expectation values.
The Wilson lines and their correlators satisfy small-xBj

evolution equations describing their dependency on the
center-of-mass energy (see Ref. [33] for a detailed dis-
cussion of the evolution variable). The dipole amplitude
N01 satisfies the BK equation [22,23] and via Eq. (4) N012

also depends on the center-of-mass energy. The evolution
rapidity depends on the lower limit of the emitted gluon
longitudinal momentum fraction [24,34]. The integration
over the emitted gluon phase space in Eq. (1) contributes a
large logarithm of energy that modifies the scattering
amplitude of the original dipole N01. These logarithms
are resummed into the BK equation [34]. The BK equation
and a numerical solution to it are known at NLO [35–37].
We use the initial condition fitted to the HERA data in [24]
including only massless quarks, where the full (numerically
heavy) NLO BK equation has been approximated by
evolution equations that use different schemes to resum
the most important higher-order corrections. The same
evolution equations, ResumBK [38,39], KCBK [40], and
TBK [33], referring to different resummation schemes, are
used in this Letter as in [24].
The structure functions are written in terms of the total

virtual photon-target cross sections as F2 ¼ ðQ2=4π2αemÞ×
ðσγ�T þ σγ

�
L Þ, and FL ¼ ðQ2=4π2αemÞσγ

�
L . Here, the sub-

scripts T and L refer to the transverse and longitudinal

(a) (b)

FIG. 1. Example diagrams contributing to the elastic γ�p
amplitude at NLO. The blue band represents the dipole–
shockwave interaction.
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virtual photon polarization, respectively, and σγ
�
T;L corre-

spond to a sum of qq̄ and qq̄g contributions. The exper-
imental data is reported in terms of the reduced cross
section

σrðy; x;Q2Þ ¼ F2ðx;Q2Þ − y2

1þ ð1 − yÞ2 FLðx;Q2Þ; ð5Þ

where y ¼ Q2=ðsxÞ is the inelasticity and ffiffiffi
s

p
is the lepton-

nucleon center-of-mass energy.
Results.—We calculate the proton reduced cross section

σr and the charm and bottom contributions to it (σr;c and
σr;b). We use the NLO dipole-proton scattering amplitudes
determined in [24], available at [41]. In particular, we use
the “light quark” fits of [24] where only the massless u, d,
and s quarks are included and the nonperturbative initial
condition is fitted to the light quark contribution of the
reduced cross section data measured at HERA [42]. This
contribution is determined in [24] by subtracting interpo-
lated charm and bottom quark contributions from the total
cross section data. We do not include the fits to the
inclusive HERA data as they use the massless quark cross
sections to fit the inclusive data containing a substantial
heavy quark contribution.
In [24], multiple different fits are reported, correspond-

ing to different choices for the initial evolution rapidity
Y0;BK and different schemes for the coordinate space
running coupling and resummations of particular higher-
order corrections. In total, there are 12 fits reported for
massless quarks. All different fits result in an approxi-
mately equally good description of the light quark con-
tribution to the HERA structure function data.
We calculate predictions for the charm production cross

section in the region xBj<0.01;2.5GeV2≤Q2<50GeV2

using all the different fits from [24], and compare the result
to the HERA data from [25] in order to find which fits (if
any) are allowed by the heavy quark production data. The
charm mass (in the pole mass scheme used in the calcu-
lation of [27]) is allowed to vary within 1.1 GeV < mc <
1.6 GeV. We consider a fit to be compatible with the
HERA charm production data if one obtains χ2c=N ≲ 2.5
with the optimal charm mass. We find that predictions
calculated by using three of the 12 fits are in excellent
agreement with the charm production data. This is illus-
trated in Fig. 2, where a comparison to the HERA reduced
cross section data in a few selected Q2 bins is shown. The
H1 and ZEUS collaborations have also measured inclusive
b quark production [25], but due to the larger uncertainties
and more limited kinematical coverage, we do not use this
dataset to determine which NLO fits from [24] are allowed.
However, we note that, using each of the three fits
discussed above, an excellent description of the b quark
production data is obtained. In each case, we find χ2b=N ≲
1.6 when the b quark mass is also fitted to this data.
The excellent agreement with the predicted heavy quark

production cross sections and the HERA measurements

shows that, at NLO, it is possible to simultaneously
describe all small-xBj proton structure function data. The
results also demonstrate that the inclusion of the heavy
quark production data to the extraction of the nonpertur-
bative initial condition for the high-energy evolution
equation provides additional tight constraints. Similar
conclusions have also been made in calculations of exclu-
sive heavy quarkonium production [43,44]. The advantage
of the charm reduced cross section studied in this Letter is
that one does not need to introduce an additional model
uncertainty related to the nonperturbative vector meson
structure.
The fits that are found to be compatible with the charm

quark production data are summarized in Table I along with
the determined optimal heavy quark masses. The fact that
the heavy quark data provides additional strong constraints
for the determination of the initial condition for the BK
evolution is expected. The heavy quark cross section is
sensitive to much smaller dipoles than the inclusive one
which can not discriminate fits that differ only at small
dipole sizes. We note that the heavy quark production data

FIG. 2. Charm reduced cross section predictions calculated
using the different NLO fits from [24] for the dipole amplitude
that result in a good description of the charm data. The results are
compared to the combined HERA data from [25].

TABLE I. Fitted initial conditions for the small-xBj evolution at
NLO from [24] that are compatible with the heavy quark
production data from HERA. The corresponding charm and
bottom masses are also shown. The terminology used to specify
the resummation scheme and the running coupling prescription
follows that of [24], and the abbreviation PD refers to parent
dipole and BSD to Balitskyþ smallest dipole [45] running
coupling.

#
Resummation

scheme αs Y0;BK

mc

(GeV) χ2c=N
mb

(GeV) χ2b=N χ2tot=N

1 ResumBK PD 0 1.42 1.86 4.83 1.37 1.25
2 KCBK PD 0 1.49 2.55 4.96 1.58 1.23
3 TBK BSD 0 1.29 1.02 5.04 1.12 1.83
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only allows fits where the BK evolution is started at initial
rapidity Y0;BK ¼ 0. In the second class of fits considered
in [24], the dipole is frozen in the low-energy region
0 < Y < Y0;BK ¼ lnð1=0.01Þ where Y is the evolution rapi-
dity. This is not completely consistent as the qq̄g produc-
tion cross section (1) in the soft gluon limit results in a
(leading order) BK evolution for the dipole. Additionally,
we note that (in the case of ResumBK and KCBK
evolutions formulated in terms of the projectile rapidity)
the parent dipole prescription for the running coupling is
preferred. We interpret that these physical constraints from
the heavy-quark production data are because charm and
bottom production probe dipole amplitudes in the pertur-
bative region, and contribution from large dipoles domi-
nating in light quark production with N ∼ 1, is suppressed,
see, e.g., [6]. Based on the observations above, we argue
that the fits summarized in Table I are the ones that should
be used in all NLO CGC calculations. The potential
deviation between the predictions is then a measure of
the model uncertainty after the nonperturbative input is
constrained by all HERA structure function data.
To more clearly illustrate the compatibility of the NLO

CGC calculation with the most recent precise HERA data
from [46], we show, in Fig. 3, the total reduced cross
sections computed using the dipole amplitude fits allowed
by the charm data. We emphasize that this is the first time in
the CGC framework that a simultaneous description of both
the total and heavy quark production cross section is
obtained when a perturbative small-xBj evolution equation
is used to describe the center-of-mass energy dependence.
Previous LO analyses have found it impossible to

perform such a global fit to the HERA data without
introducing, for example, additional parameters that render
the proton probed by a charm quark dipole different from
the proton probed by a light quark dipole [12]. A similar
approximative NLO evolution equation as in this Letter

was used in [14] but coupled to the LO impact factor. In that
case, it was also found impossible to simultaneously
describe the inclusive and heavy quark production data.
When the computation is promoted to full NLO accu-

racy, the mass dependence is modified for two reasons.
First, after including higher-order corrections to the BK
equation (in projectile rapidity), the dipole amplitude no
longer evolves toward an asymptotic shape with an anoma-
lous dimension γ < 1 (at small dipole sizes r, the amplitude
behaves as N ∼ r2γ) [47]. Instead, the anomalous dimen-
sion (which is γ ≳ 1 in the fits reported in [24]) remains
approximatively constant suppressing the dipole ampli-
tudes at small dipoles [24,37]. Hence, the heavy quark
production cross section is suppressed relative to light
quark production. Second, adding the NLO corrections to
the massive impact factor enhances the heavy quark
production. With TBK evolution, we have opposite sys-
tematics: a small γ is developed and the impact factor
suppresses heavy quark production. The net effect of these
two competing NLO corrections is such that the mass
dependence of the cross section matches that of the HERA
data when the three fits identified in this Letter are used.
Finally, we illustrate the remaining theory uncertainty

when performing NLO CGC calculations. We calculate
predictions for the proton longitudinal structure function
FL, and for the charm and bottom quark contributions to it,
in the EIC kinematics. We take xBj ¼ 2 × 10−3, and show,
in Fig. 4, the structure functions as a function of Q2

calculated using the three fits determined above. For the
bottom structure function, the different fits result in almost
identical predictions for the EIC, whereas for charm pro-
duction, the predictions begin to differ at Q2 ≳ 20 GeV2.
On the other hand, in the total longitudinal cross section a
significant difference up to 20% is seen at allQ2. Therefore,
an inclusion of the future FL data in the global analysis will

FIG. 3. Total reduced cross section calculated using the dipole
amplitude fits allowed by the heavy quark production data. Note
that, as the σr depends on inelasticity y, the theory curves
connecting the calculated points are not smooth.

FIG. 4. Total (solid lines), charm (dashed lines), and bottom
(dotted lines) longitudinal structure functions as a function of
photon virtuality in the EIC kinematics calculated using the three
dipole amplitude fits compatible with the heavy quark data.
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provide further constraints for the initial condition of the
small-xBj evolution. The currently available FL data from
HERA [48] is not able to distinguish between the differ-
ent fits.
Discussion.—We have calculated heavy quark produc-

tion cross sections in DIS at NLO in the CGC framework.
The Bjorken-xBj dependence is obtained by solving the BK
evolution equation with an initial condition extracted by
fitting the total DIS cross section data in [24]. We identify a
small subset of the fits reported in [24] that result in
predictions for the charm and bottom structure functions
which are in excellent agreement with the HERA data [25].
These three fits, constrained by both the total and heavy
quark cross section data summarized in Table I, should be
used in all future phenomenological applications at NLO
accuracy.
This is the first time in the CGC framework with

perturbative energy evolution when a simultaneous descrip-
tion of all small-xBj proton structure function data is
obtained. A good agreement with the HERAmeasurements
is a crucial test for the gluon saturation physics incorpo-
rated in the CGC framework and enables rigorous studies
of nonlinear QCD dynamics in DIS and other scattering
processes. In particular, we demonstrate that global analy-
ses including all small-xBj structure function data are
feasible at NLO and that the heavy quark production data
can provide additional constraints in such analyses.
As an application, we have calculated predictions for the

proton longitudinal structure function FL, which will be
measured accurately at the future Electron-Ion Collider. We
reported predictions separately for the inclusive and heavy
quark production cross section and showed that the
remaining model uncertainty is moderate. Including the
FL data to the global analysis will further constrain the
nonperturbative initial condition for the small-xBj evolution
equations.
To fully explore the model uncertainties, one should

perform a global analysis to the HERA inclusive and heavy
quark production data, taking into account the correlated
experimental uncertainties, and extract the nonperturbative
model parameters with their uncertainties directly from
such an analysis. Additional constraints and more detailed
probes of nonlinear dynamics can be obtained by including
other observables such as diffractive structure functions and
exclusive cross sections. Such studies are becoming fea-
sible thanks to the extensive progress toward NLO accuracy
in the CGC framework, see, e.g., Refs. [43,44,49–58]. In
the future, we plan to perform a full Bayesian analysis to
determine the likelihood distribution for all the model
parameters, which will also enable one to fully take into
account the propagation of model uncertainties.
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