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The focus of this thesis is the spectral theory for unbounded self-adjoint operators.
The main result of the thesis is the corresponding spectral theorem, which states
that any unbounded self-adjoint operator can be written as an operator-valued in-
tegral over the spectrum of the operator. This is a generalization of the spectral
decomposition for self-adjoint matrices.

The proof of the spectral theorem for unbounded self-adjoint operators follows
by proving it first for bounded self-adjoint operators and then for unitary operators.
From the unitary case, the spectral theorem for unbounded self-adjoint operators is
proven by using the Cayley transform.

Finally, some consequences of the spectral theory are considered. Special em-
phasis is given to its applications to quantum mechanics where physical observables
correspond to self-adjoint operators.

Tiivistelmä
Penttala, Jani
Spektraaliteoria rajoittamattomille itseadjungoiduille operaattoreille
Pro gradu -tutkielma
Matematiikan ja tilastotieteen laitos, Jyväskylän yliopisto, 2023, 49 sivua.

Tässä tutkielmassa keskitytään rajoittamattomien itseadjungoitujen operaattorien
spektraaliteoriaan. Tutkielman päätulos on tällaisten operattorien spektraalilause,
jonka mukaan mikä tahansa rajoittamaton itseadjungoitu operaattori voidaan kir-
joittaa operaattoriarvoisena integraalina operaattorin spektrin yli. Tämä on itsead-
jungoitujen matriisien spektraalihajotelman yleistys.

Rajoittamattomien itseadjungoitujen operaattorien spektraalilause seuraa johta-
malla se ensin rajoitetuille itseadjungoiduille operaattoreille ja tämän jälkeen unitaa-
risille operaattoreille. Unitaaristen operaattorien spektraalilauseesta saadaan johdet-
tua rajoittamattomien itseadjungoitujen operaattorien tapaus Cayleyn muunnoksen
avulla.

Lopuksi tarkastellaan joitain spektraaliteorian seurauksia. Erityisesti keskitytään
sen sovelluksiin kvanttimekaniikassa, missä fysikaaliset suureet vastaavat itseadjun-
goituja operaattoreita.

2



Contents
Abstract 2

Tiivistelmä 2

1 Introduction 5

2 Hilbert space 5
2.1 Operators on a Hilbert space . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Spectrum of an operator . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Normal operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Projection-valued measure 14
3.1 Measure and integration theory . . . . . . . . . . . . . . . . . . . . . 15
3.2 Properties of a projection-valued measure . . . . . . . . . . . . . . . . 17

4 Spectral theorem for bounded self-adjoint operators 23
4.1 Proof of the spectral theorem . . . . . . . . . . . . . . . . . . . . . . 24

5 Unbounded self-adjoint operators 32
5.1 Spectral theorem for unitary operators . . . . . . . . . . . . . . . . . 32
5.2 Cayley transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Spectral theorem for unbounded self-adjoint operators . . . . . . . . . 38
5.4 Consequences of the spectral theorem . . . . . . . . . . . . . . . . . . 39

6 Applications of the spectral theory in quantum mechanics 41
6.1 Introduction to quantum mechanics . . . . . . . . . . . . . . . . . . . 41
6.2 Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Rigged Hilbert spaces and generalized eigenvectors . . . . . . . . . . 45

References 48



4



1 Introduction

Linear operators appear in many different fields of mathematics where the system
can be written in terms of a Hilbert space. Thus, it is useful to have a thorough
understanding of linear operators. A subset of linear operators, i.e. normal operators,
can be understood via the spectral theory, which allows us to write the operator
in terms of its spectral representation. The central theorem describing this is the
spectral theorem. Writing an operator in terms of its spectral representation often
simplifies the situation significantly as it essentially turns the operator to a simple
multiplication.

While the study of the spectral theory started originally from eigenvalues of ma-
trices and Fredholm integrals, the presentation in terms of abstract operators in a
Hilbert space was started by Hilbert in the beginning of the 20th century. This was
completed to the unbounded case later by von Neumann who was largely inspired
by the recent developments in quantum mechanics making use of linear operators.
Generalizations of the spectral theory were also considered later, where instead of
working in a Hilbert space one considers a more abstract C∗-algebra. The spectral
theorem for this more general case is due to Gel’fand and Naimark. [Steen 1973]

In this thesis, we focus on a special case of normal operators, namely the self-
adjoint operators. The main property of these operators is that their spectrum is
limited to a subset of real numbers R. This is also the reason why they are one of
the most common normal operators one encounters in other fields, making them of
special interest. An example is given by self-adjoint operators that are mostly studied
in quantum mechanics, where the self-adjoint operators correspond to physical ob-
servables. The spectral theory for self-adjoint operators thus finds lots of applications
also outside pure mathematics.

The main result of this thesis is the spectral theorem for unbounded self-adjoint
operators, Theorem 5.5. To prove this, we first consider the spectral theorem in
the case of bounded self-adjoint operators in Section 4. This can then be used to
show the unbounded case in Section 5, which follows from the spectral theorem for
unitary operators by the Cayley transform. This proof of the spectral theorem follows
largely [Hall 2013; Kreyszig 1978]. The spectral theorem is written in terms of the
projection-valued measure associated with the corresponding operator. Projection-
valued measures along with the required measure theory are explained in Section 3.
We note that there are also several other versions of the spectral theorem which are
written in a slightly different form, see e.g. [Hall 2013, Theorem 7.19]. Finally, we
consider some applications of spectral theory to quantum mechanics in Section 6.

2 Hilbert space

The central objects of interest in this thesis are operators acting in some Hilbert space.
In general, a Hilbert space is a special case of a vector space with some additional
structure that allows us to talk about relations between different elements of the
Hilbert space. This structure is given by the inner product.
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Definition 2.1 (Inner product). An inner product on a vector space X over C is
a map ⟨·, ·⟩ : X ×X → C, such that for all ϕ, ψ, χ ∈ X and c ∈ C we have:

1. ⟨ψ, ϕ⟩ = ⟨ϕ, ψ⟩.

2. ⟨ϕ, ϕ⟩ is real and non-negative, and ⟨ϕ, ϕ⟩ = 0 if only if ϕ = 0.

3. ⟨cϕ, ψ⟩ = c⟨ϕ, ψ⟩ and ⟨ϕ, cψ⟩ = c⟨ϕ, ψ⟩.

4. ⟨ϕ+ ψ, χ⟩ = ⟨ϕ, χ⟩+ ⟨ψ, χ⟩ and ⟨ϕ, ψ + χ⟩ = ⟨ϕ, ψ⟩+ ⟨ϕ, χ⟩.

Here we follow the physics convention that an inner product is conjugate linear
(or antilinear) in its first argument and linear in its second argument, as defined by
Points 3 and 4. This property of the inner product is called sesquilinearity.

The inner product defines a norm on the vector space by

∥ψ∥ =
√

⟨ψ, ψ⟩. (1)

A norm allows us to have a notion of distance on the vector space, which gives the
vector space extra structure that for example allows us to talk about the convergence
of sequences. A vector space is said to be complete if every Cauchy sequence converges
to an element in the vector space. A complete vector space equipped with a norm
is called a Banach space. A Hilbert space is a Banach space where the norm is
defined in terms of the inner product by Equation (1). Throughout this thesis, we
will denote the Hilbert space we are working on by H.

The inner product also allows us to talk about the orthogonality of vectors: vectors
ψ, ϕ ∈ H are called orthogonal if ⟨ψ, ϕ⟩ = 0. For a vector space V ⊂ H we can
define its orthogonal complement by

V ⊥ = {ψ : ⟨ψ, ϕ⟩ = 0 for all ϕ ∈ V } . (2)

One can show that the orthogonal complement is also a vector space.

2.1 Operators on a Hilbert space

Mappings from one vector space to another are called operators. In this work, oper-
ators are taken to mean specifically linear operators:

Definition 2.2 (Operator). Let X, Y be vector spaces over C. Then a mapping
T : X → Y is an operator from X to Y if it is linear. The range of the operator T
is denoted by Ran(T ) = T (X).

A special case of an operator is a linear functional which is a linear function from
a vector space to complex numbers, f : X → C.

Operators can be used to define different notions of convergence in the Hilbert
space.

Definition 2.3 (Convergence of sequence of vectors). Let X be a normed space. A
sequence {ψn}n∈N of vectors in X is said to be:
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1. strongly convergent if there is a vector ψ ∈ X such that limn→∞ ∥ψn − ψ∥ =
0.

2. weakly convergent if there is a vector ψ ∈ X such that for every bounded
linear functional f : X → C we have limn→∞ f(ψn) = f(ψ).

It is straightforward to show that strong convergence implies weak convergence,
and if they both converge then the limit is the same. Different notions of convergence
are sometimes useful, as some sequences may be weakly convergent but not strongly.

It is interesting to note that operators T : X → Y also form a vector space. A
norm for operators can be defined in the following way.

Definition 2.4 (Norm of an operator). Let X, Y be normed vector spaces with norms
∥·∥X , ∥·∥Y , and T : X → Y an operator. Then the operator norm of T is given by

∥T∥ = inf {K ∈ R : ∥Tψ∥Y ≤ K∥ψ∥X for all ψ ∈ X} . (3)

In the case ∥T∥ <∞ the operator T is called bounded. If an operator is not bounded,
it is called unbounded.

It turns out that an operator is bounded if and only if it is continuous. Bounded
operators are generally well-behaved, in contrast to unbounded ones, as we will see
when proving the spectral theorem for unbounded self-adjoint operators. We denote
the space of bounded operators T : H → H in Hilbert space H by B(H).

It is also useful to have a notion of convergence for a sequence of operators Tn.
The simplest definition is in terms of the operator norm, but other definitions also
exist.

Definition 2.5 (Convergence of sequence of operators). Let X and Y be normed
spaces. A sequence {Tn}n∈N of bounded operators Tn : X → Y is said to be:

1. uniformly operator convergent if {Tn}n∈N converges in the operator norm.

2. strongly operator convergent if {Tnψ}n∈N converges strongly in Y for every
ψ ∈ X.

3. weakly operator convergent if {Tnψ}n∈N converges weakly in Y for every
ψ ∈ X.

It is straightforward to show that in terms of convergence, uniform implies strong
and strong implies weak. Also, if the limit exists for different types of convergence
then they converge to the same operator.

Another useful notion we can define with operators is the dual space. For a vector
space X we define a dual space X∗ that consists of all linear functionals f : X → C.
One important theorem on Hilbert spaces is the Riesz representation theorem which
allows us to associate a bounded element in the dual space H∗ for every element in
the initial Hilbert space H:
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Theorem 2.6 (Riesz representation theorem). If f : H → C is a bounded linear
functional, then there exists a unique χ ∈ H such that

f(ψ) = ⟨χ, ψ⟩ (4)

for all ψ ∈ H. Furthermore, the operator norm of f as a linear functional is equal to
the norm of χ as an element of H.

Proof. See [Kreyszig 1978, Theorem 3.8-1].

We also quote here the bounded linear transformation theorem (BLT) which
can be used to extend bounded operators defined on a dense subspace of a Hilbert
space to the whole Hilbert space in a continuous manner.

Theorem 2.7 (Bounded linear transformation theorem). Let V1 be a normed space
and V2 a Banach space. Suppose W is a dense subspace of V1 and T : W → V2 is a
bounded operator. Then there exists a unique bounded operator T̃ : V1 → V2 such that
T̃ |W = T . Furthermore, the norm of T̃ equals the norm of T .

Proof. See [Kreyszig 1978, Theorem 2.7-11].

From here on we will assume that bounded operators are defined on the whole
Hilbert space H, as they can always be extended continuously to the completion of
their domain.

On Hilbert spaces, we can define the adjoint of an operator. For bounded operators
defining the adjoint is simple.

Definition 2.8 (Adjoint of a bounded operator). Let T be a bounded operator on H.
Then the adjoint of the operator T is an operator T ∗ such that for all ψ, ϕ ∈ H, we
have

⟨ψ, Tϕ⟩ = ⟨T ∗ψ, ϕ⟩. (5)

Theorem 2.9 (Existence of the adjoint for bounded operators). The adjoint operator
T ∗ of T in Definition 2.8 exists, is unique, and is a bounded operator with the norm
∥T ∗∥ = ∥T∥.

Proof. This is essentially a consequence of the Riesz representation theorem 2.6. See
[Kreyszig 1978, Theorem 3.9-2] for details.

For unbounded operators the definition of the adjoint operator is more compli-
cated, rising from the fact that unbounded operators might not be defined on the
whole Hilbert space H. Instead, we will assume that they are defined on a dense
subspace of H. Then the following definition can be given.

Definition 2.10 (Adjoint of an unbounded operator). For an unbounded operator
T on H, the adjoint T ∗ of T is defined as follows. A vector ϕ ∈ H belongs to the
domain Dom(T ∗) of T ∗ if the linear functional

⟨ϕ, T ·⟩ (6)
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defined on Dom(T ) is bounded. For ϕ ∈ Dom(T ∗), let T ∗ϕ be the unique vector χ
such that

⟨χ, ψ⟩ = ⟨ϕ, Tψ⟩ (7)

for all ϕ ∈ Dom(T ).

Here the existence and uniqueness of the vector χ = T ∗ϕ follow from the Riesz
representation theorem 2.6.

Finally, we will also note the definition of a closed operator which will be needed
when considering the definition of self-adjoint operators.

Definition 2.11 (Closed operator). An operator T on H is said to be closed if its
graph,

G(T ) = {(ψ, Tψ) : ψ ∈ Dom(T )}, (8)

is a closed subset of H×H. An operator T on H is said to be closable if the closure
in H × H of the graph of T is the graph of a function. If T is closable, then the
closure T cl of T is the operator with a graph equal to the closure of the graph of T .

The following important theorem states that closed unbounded operators cannot
be defined on a closed subset of H.

Theorem 2.12 (Closed graph theorem). Let T : Dom(T ) → H be a closed operator
on H. Then if Dom(T ) is closed in H, the operator T is bounded.

Proof. See [Kreyszig 1978, Theorem 4.13-2].

2.2 Spectrum of an operator

Operators can often be studied in terms of their spectrum. For finite-dimensional
Hilbert spaces the spectrum coincides with the eigenvalues of the operator. The
infinite-dimensional case is a little bit more technical, and the general definition of
the spectrum is more complicated.

Definition 2.13 (Spectrum of an operator). Let T be an operator on H.

1. One calls a resolvent set of T the set ρ(T ) of numbers λ ∈ C such that:

(a) Ran(T − λI) = H,

(b) (T − λI) : Dom(T ) → H is injective,

(c) (T − λI)−1 : Ran(T − λI) → H is bounded.

2. If λ ∈ ρ(T ), the resolvent of T is the operator

Rλ(T ) = (T − λI)−1 : Ran(T − λI) → Dom(T ). (9)

3. The spectrum of T is the set σ(T ) = C \ ρ(T ).

The spectrum of T can be further divided into three disjoint subsets:

9



1. the point spectrum σp(T ), made by the λ ∈ C for which T−λI is not injective,

2. the continuous spectrum σc(T ), made by the λ ∈ C for which T − λI is
injective and Ran(T − λI) = H, but (T − λI)−1 is not bounded,

3. the residual spectrum σr(T ), made by the λ ∈ C for which T −λI is injective
but Ran(T − λI) ̸= H.

In essence, the condition for a complex number λ to belong to the resolvent set is
the following: if there exists a bounded inverse (T −λI)−1 : Ran(T −λI) → Dom(T ),
where Ran(T − λI) = H, then λ ∈ ρ(T ). Also note that if T is defined on the whole
space H and λ ∈ ρ(T ), then Ran(T − λI) = R−1

λ (H) is closed as the preimage of the
closed set H for the continuous map Rλ, and we actually have Ran(T − λI) = H.

We can show that the spectrum σ(T ) of an operator is always closed. To see this,
we first need the following lemma.

Lemma 2.14. Let T ∈ B(H) be an operator such that ∥T∥ < 1. Then (I − T )−1

exists as a bounded linear operator on the whole space H and

(I − T )−1 =
∞∑
n=0

T n (10)

where the series converges in the operator norm sense.

Proof. First of all, we note that ∥T j∥ ≤ ∥T∥j for all j ∈ N. This can be seen from∥∥T jψ∥∥ ≤ ∥T∥
∥∥T j−1ψ

∥∥ ≤ . . . ≤ ∥T∥j∥ψ∥ (11)

where we have used the definition of the norm 2.4. As this is true for all ψ ∈ H, we
must have ∥T j∥ ≤ ∥T∥j. Using this we then see that the partial sums SN =

∑N
n=0 T

n

converge to S =
∑∞

n=0 T
n as

∥S − SN∥ =

∥∥∥∥∥
∞∑

n=N+1

T n

∥∥∥∥∥ ≤
∞∑

n=N+1

∥T n∥ ≤
∞∑

n=N+1

∥T∥n → 0 (12)

when N → ∞ because ∥T∥ < 1. Thus the series is operator norm convergent. To
show that S = (I − T )−1, we see that by a direct calculation

(I − T )SN = SN(I − T ) = I − TN+1. (13)

When N → ∞, this converges to the identity operator I, showing that S = (I −
T )−1.

Theorem 2.15 (Closed spectrum). The resolvent set ρ(T ) of an operator T is open;
hence the spectrum σ(T ) is closed.
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Proof. If ρ(T ) = ∅, the resolvent is trivially open. Consider then ρ(T ) ̸= ∅ and
λ0 ∈ ρ(T ). As T − λ0I is invertible, we can write

T − λI =
[
I − (λ− λ0)(T − λ0I)

−1
]
(T − λ0I). (14)

The inverse (T −λ0I)
−1 : Ran(T −λ0I) → Dom(T ) is also bounded, and thus we can

extend the bounded operator Vλ : Ran(T − λ0I) → H, Vλ = I − (λ− λ0)(T − λ0I)
−1

to the whole space Ran(T − λ0I) = H by the BLT theorem 2.7. Let us denote this
extension by Ṽλ : H → H. If we choose λ such that |λ− λ0| < 1

∥(T−λ0I)−1∥ , by
Lemma 2.14 the operator Ṽλ has a bounded inverse on the whole space H, and thus
also the operator Vλ has a bounded inverse defined on the space Ran(Vλ). Then the
operator T − λI = Vλ(T − λ0I) also has a bounded inverse (T − λ)−1 : Ran(Vλ) →
Dom(T ). We must also have Ran(Vλ) = Ran(Ṽλ) = H, and thus λ ∈ ρ(T ) for all
|λ− λ0| < 1

∥(T−λ0I)−1∥ . This proves that ρ(T ) is open and hence σ(T ) = C \ ρ(T ) is
closed.

The spectrum of the operator is also related to its norm, given by the following
theorem.

Theorem 2.16. If T ∈ B(H), then its spectrum satisfies the following property

sup
λ∈σ(T )

|λ| = lim
n→∞

n
√
∥T n∥. (15)

Proof. See [Kreyszig 1978, Theorem 7.5-5].

Numbers in the point spectrum are also called the eigenvalues of T . If λ ∈ σp(T ),
then Ker(T −λI) ̸= {0} and there exists ψ ∈ H such that Tψ = λψ. Such a vector ψ
is called an eigenvector with an eigenvalue λ. Conversely, if there exists some ψ ∈ H
such that Tψ = λψ, then T − λI is not injective and λ ∈ σp(T ). Finite-dimensional
operators have only a point spectrum which simplifies their discussion. The distinc-
tion between the continuous and residual spectra is not as clear cut, but it turns out
that the continuous spectrum is in many cases more relevant. For example, normal
operators do not have a residual spectrum but may have a continuous one [Moretti
2017, Proposition 8.7].

2.3 Normal operators

An important class of operators is normal operators.

Definition 2.17 (Self-adjoint, unitary and normal operators). An operator T ∈ B(H)
is said to be:

1. self-adjoint if T ∗ = T ,

2. unitary if T is bijective and T ∗ = T−1,

3. normal if TT ∗ = T ∗T .
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Note that self-adjoint and unitary operators are special cases of normal operators.
The usefulness of normal operators is that the spectral theorem can be applied to
them: in the finite-dimensional case, this is given the fact that normal matrices are
exactly the ones that can be unitarily diagonalizable. Self-adjoint operators are in
general very common, as in a certain sense they correspond to “real-valued” operators.
This will become more apparent in Section 4. One reason why unitary operators are
important is that they keep the inner product invariant: ⟨Uψ,Uϕ⟩ = ⟨ψ, ϕ⟩ for all
ψ, ϕ ∈ H when U is a unitary operator. For example, changing the basis of a vector
space orthogonally corresponds to a unitary operator.

Normal and self-adjoint operators can also be defined in the unbounded case,
but then one has to be careful with the domains of the operators. Essentially, the
equivalences in Definition 2.17 also mean that the domains of the operators agree.
This is generally not the case, which is why we make the following distinction for
operators that are seemingly self-adjoint.

Definition 2.18 (Unbounded self-adjoint operator). An unbounded operator A on H
is symmetric if

⟨ϕ,Aψ⟩ = ⟨Aϕ, ψ⟩ (16)

for all ϕ, ψ ∈ Dom(A). The operator A is self-adjoint if it is symmetric and
Dom(A∗) = Dom(A). Finally, A is essentially self-adjoint if it is closable and
its closure Acl is self-adjoint.

The difference between symmetric and self-adjoint operators is in the domain of the
adjoint operator A∗. We always have Dom(A) ⊂ Dom(A∗), but it is also possible that
Dom(A∗) is strictly larger than Dom(A). It turns out that in this case the spectral
properties of the operator might vastly differ from those of self-adjoint operators.
For example, the spectrum σ(A) might also contain complex numbers outside the
real line which is not possible for self-adjoint operators as we will prove shortly [Hall
2013, Section 9.6]. For this reason, it is the self-adjoint operators that are more
interesting in many cases instead of the symmetric ones, and the spectral theorem
considered in this work is for self-adjoint operators. The spectral theorem also works
for essentially self-adjoint operators, as we can simply consider their closure instead
which is self-adjoint. The requirement of the closure being self-adjoint is reasonable in
the sense that self-adjoint operators are always closed (see [Hall 2013, 9.8]). Note that
(essentially) self-adjoint operators are also the ones that correspond to observables in
quantum mechanics, where they are usually called Hermitian operators.

It should also be noted that in general it is not easy to prove that a symmetric
operator is also self-adjoint. For example, a sum of self-adjoint operators might not be
self-adjoint [Hall 2013, Section 9.10]. Some theorems for proving the self-adjointness
of an operator can be found in [Hall 2013, Section 9] and [Moretti 2017, Section 5].

Self-adjoint and unitary operators have the following spectral properties.

Theorem 2.19. Let H be a Hilbert space.

1. If A is self-adjoint on H (but not necessarily bounded, nor defined on the whole
H in general):
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(a) σ(A) ⊂ R
(b) σr(A) = ∅

2. If U ∈ B(H) is unitary:

(a) σ(U) is a subset of the complex unit circle S1 = {λ ∈ C : |λ| = 1}.
(b) σr(U) = ∅

Proof. Let A ∈ H be self-adjoint, and consider λ = µ + iν with µ, ν ∈ R and ν ̸= 0.
We wish to show that λ ∈ ρ(A). By a direct calculation, we see that

⟨(A− λI)ψ, (A− λI)ψ⟩ =⟨(A− µI)ψ, (A− µI)ψ⟩+ ν2⟨ψ, ψ⟩
− iν [⟨(A− µI)ψ, ψ⟩ − ⟨ψ, (A− µI)ψ⟩]

=⟨(A− µI)ψ, (A− µI)ψ⟩+ ν2⟨ψ, ψ⟩
(17)

for all ψ ∈ Dom(A). In other words,

∥(A− λI)ψ∥2 ≥ ν2∥ψ∥2 (18)

and thus Ker(A−λI) = {0}. A similar argument shows that also Ker(A−λI) = {0}.
Thus, there exists an inverse (A− λI)−1 : Ran(A− λI) → H which is also bounded
by ∥∥(A− λI)−1

∥∥2 ≤ 1

ν2
. (19)

To show that also Ran(A− λI) = H, consider ψ ∈ Ran(A− λI)
⊥
∩Dom(A). Then

0 = ⟨ψ, (A− λI)ϕ⟩ = ⟨(A− λI)ψ, ϕ⟩ (20)

for all ϕ ∈ Dom(A). As Dom(A) is dense in H we must have ψ ∈ Ker(A− λI) = {0}
which shows that Ran(A− λI) = H. All of this means that λ = µ+ iν ∈ ρ(A) when
ν ̸= 0, meaning that σ(A) ⊂ R.

To show that σr(A) = ∅, consider λ ∈ σ(A) \ σp(A). This means that A − λI

is injective. We can repeat the previous argument to show that Ran(A− λI) = H.
This means that λ /∈ σr(A) and hence the residual spectrum must be empty.

Consider then a unitary operator U ∈ B(H). Because

∥Uψ∥ = ∥U∗ψ∥ = ∥ψ∥ (21)

for all ψ ∈ H, we have ∥U∥ = ∥U∗∥ = 1. We can then use Theorem 2.14 to show
that if |λ| > 1 the operator U − λI has the inverse (U − λI)−1 : H → H,

(U − λI)−1 = −1

λ

(
I − 1

λ
U

)−1

= −1

λ

∞∑
n=0

(
1

λ
U

)n
, (22)

and if |λ| < 1 then the inverse is given by

(U − λI)−1 = U∗(I − λU∗)−1 = U∗
∞∑
n=0

(λU∗)n . (23)
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These values of λ then cannot be part of the spectrum and thus σ(U) ⊂ S1.
Proving σr(U) = ∅ goes in a similar way as the self-adjoint case. Let λ ∈ σ(U) \

σp(U), which means that U − λI is injective. Let ψ ∈ Ran(U − λI)
⊥

so that for all
ϕ ∈ H we have

0 = ⟨ψ, (U − λI)ϕ⟩ = ⟨(U∗ − λI)ψ, ϕ⟩. (24)

Thus U∗ψ = λψ, which can also be written as Uψ = λψ by noting that U∗ = U−1 and
λ = λ−1 for λ ∈ σ(U) ⊂ S1. But U − λI is injective, so we must have ψ ∈ {0} which
proves that Ran(U − λI) = H. Hence λ /∈ σr(U), which means that σr(U) = ∅.

3 Projection-valued measure
In this section, we will go through the notion of a projection-valued measure that
can be used to present the spectral theorem in a very general form. As the name
implies, a projection-valued measure is a generalization of the notion of a measure
where, instead of having values in the real numbers, the values of the measure are
projection operators to subspaces of the original Hilbert space.

The need for a projection-valued measure can be motivated by first considering
the spectral theorem for finite-dimensional operators T : H → H. Then, provided
that the operator T is normal, the finite-dimensional spectral theorem states that the
operator can be written as the sum

T =
∑
i

λieλie
†
λi
, (25)

where λi is the ith eigenvalue and ei the corresponding eigenvector. This allows us
to interpret Tψ in the following way: each term in the sum can be thought of as first
projecting the vector ψ onto the eigenspace and then multiplying by the corresponding
eigenvalue. The problem with this approach is that it does not generalize directly
to infinite-dimensional Hilbert spaces, as the existence of eigenvectors for normal
operators is no longer guaranteed. Instead of writing the operator in terms of the
eigenvectors, it is better to think of the terms eλie

†
λi

as projections to subspaces
of the Hilbert space that stay invariant under T . This notion does generalize to
infinite dimensions with the help of projection-valued measures. For example, the
finite-dimensional case can then be written as

T =

∫
σ(T )

λ dµT (λ) (26)

where σ(T ) is the spectrum of the operator T and µT : σ(T ) → B(H) is the projection-
valued measure defined as

µT (E) =
∑
λ∈E

Pλ (27)

with the projection operators Pλ = eλe
†
λ. In the infinite-dimensional case, the

projection-valued measure cannot be written in such a simple form, and the proof
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of the spectral theorem boils down to finding a projection-valued measure µT such
that Equation (26) is satisfied.

3.1 Measure and integration theory

Understanding projection-valued measures requires some familiarity with measure
theory. For this reason, we briefly go through the basic definitions and most important
theorems that will be needed later. First, we need the notion of a σ-algebra which
defines a suitable collection of subsets for which we can define a measure.

Definition 3.1 (σ-algebra). A collection of subsets Ω of set X is a σ-algebra pro-
vided that the following properties are satisfied.

1. ∅, X ∈ Ω.

2. A ∈ Ω implies X \ A ∈ Ω.

3. If Ak ∈ Ω for all k = 1, 2, . . ., then ∪∞
k=1Ak ∈ Ω.

4. If Ak ∈ Ω for all k = 1, 2, . . ., then ∩∞
k=1Ak ∈ Ω.

The space X with a σ-algebra Ω is denoted by (X,Ω).

An important case of a σ-algebra is the Borel σ-algebra which is the smallest σ-
algebra containing the open sets of X. Sets contained in the Borel σ-algebra are called
Borel sets. The notion of a Borel set will be useful in this work, as the projection-
valued measure in the spectral theorem will be defined on the Borel σ-algebra of
C.

Definition 3.2 (Measure). Let X be a set and Ω a σ-algebra over X. A set function
µ from Ω to the extended real number line [−∞,∞] is called a measure if it satisfies
the following properties:

1. (Non-negativity) For all E ∈ Ω, we have µ(E) ≥ 0.

2. (Null empty set) µ(∅) = 0.

3. (Countable additivity) For all countable collections {Ek}∞k=1 of pairwise disjoint
sets in Ω, we have µ (∪∞

k=1Ek) =
∑∞

k=1 µ(Ek).

A property of a function f : X → Y is said to be true almost everywhere (or
a.e.) with respect to a measure µ if it is true for all x ∈ X except in a subset E ⊂ X
with measure zero, i.e. µ(E) = 0.

The purpose of these definitions is to allow a general notion of integration, called
Lebesgue integration. Not all functions are integrable, and first we have to consider
which functions we can even consider. These are called measurable functions.

Definition 3.3 (Measurable function). Let (X1,Ω1) and (X2,Ω2) be two spaces with
σ-algebras. A mapping f : X1 → X2 is called measurable with respect to the pair
(Ω1,Ω2) if f−1(B) ∈ Ω1 for all B ∈ Ω2.
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For example, all continuous functions are measurable when the σ-algebras are
Borel σ-algebras. Another example of measurable functions is that of simple func-
tions which are used to define the Lebesgue integral.

Definition 3.4 (Simple function). Let Ω be a σ-algebra over X. A simple function
f : X → R is a function that assumes only finitely many values, that is, it can be
written as the finite sum f =

∑n
i=1 ci1Ei

where ci ∈ R and Ei ∈ Ω. Here 1E : X →
{0, 1} denotes an indicator function:

1E(x) =

{
1 if x ∈ E

0 if x /∈ E
. (28)

Definition 3.5 (Integration of simple functions). Let µ be a measure on a σ-algebra
Ω over X and f : X → R, f =

∑n
i=1 ci1Ei

a non-negative simple function. The
integral of f with respect to the measure µ is defined as

∫
X
f dµ =

∑n
i=1 ciµ(Ei).

For a general simple function f , we can divide it into negative and non-negative
parts f = f+ − f− where

f+(x) =

{
f(x) if f(x) ≥ 0

0 otherwise
f−(x) =

{
−f(x) if f(x) < 0

0 otherwise
. (29)

The integral is then defined as
∫
X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ.

With simple functions, it is now possible to define integration for general measur-
able functions.

Definition 3.6 (Integration of measurable functions). Let f : X → R be a measurable
function and f(x) ≥ 0 µ-a.e. Define∫

X

f dµ = sup

{∫
X

ϕ dµ : ϕ ≥ 0 is a simple function and ϕ(x) ≤ f(x) µ-a.e.
}
.

(30)
The function f is integrable if this quantity is finite.

In the general case of a signed function we shall call f Lebesgue integrable with
respect to µ if both functions f+ and f− are integrable. Then we set∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ . (31)

For complex functions f : X → C, f is integrable if both its real and complex parts
are integrable, and the integral is defined as the sum∫

X

f dµ =

∫
X

Re f dµ+ i

∫
X

Im f dµ . (32)

Lebesgue integration is continuous in regard to taking limits of function sequences
under certain conditions. One important case needed in this work is the dominated
convergence.
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Theorem 3.7 (Dominated convergence theorem). Assume g ≥ 0 is µ-integrable and
the functions f, fk are µ-measurable for all k ∈ N. Suppose fk → f µ-a.e. as k → ∞,
and |fk| ≤ g for all k ∈ N. Then

lim
k→∞

∫
|fk − f | dµ = 0 (33)

which also implies

lim
k→∞

∫
fk dµ =

∫
f dµ . (34)

Proof. See [Evans and Gariepy 2015, Theorem 1.19].

The following property of Lebesgue integration will also turn out to be useful in
this work, which can be understood as a change of variables.

Theorem 3.8 (Change of variables). Let µ be a measure on X and f a µ-measurable
function X → Y . A function g on Y is integrable with respect to the measure µ ◦ f−1

precisely when the function g ◦ f is integrable with respect to µ. In addition, one has∫
Y

g d
(
µ ◦ f−1

)
=

∫
X

g ◦ f dµ . (35)

Proof. See [Bogachev 2007, Theorem 3.6.1].

We will sometimes denote
∫
X
f(λ) dµ(λ) =

∫
X
f dµ to clarify that the function

defined on X. Also, if the measure µX : X → [0,∞] is defined only on the subset X
of some larger space Y , we extend it to the space Y by µY : Y → [0,∞], µY (E) =
µX(E ∩X) where E ⊂ Y .

3.2 Properties of a projection-valued measure

A projection-valued measure is defined as a map that assigns an orthogonal projection
for each set in the σ-algebra. Orthogonal projections are operators that essentially
divide a Hilbert space to a vector space and its orthogonal complement.

Theorem 3.9 (Orthogonal projection). For any closed subspace X ⊂ H, there is
a unique bounded operator P such that P = I on X and P = 0 on the orthogonal
complement X⊥. This operator is called the orthogonal projection onto X and it
satisfies P 2 = P and P ∗ = P .

Conversely, if P is any bounded operator on H satisfying P 2 = P and P ∗ = P ,
then P is the orthogonal projection onto a closed subspace X, where X = Ran(P ).

Proof. See [Kreyszig 1978, Theorem 9.5-1].

Definition 3.10 (Projection-valued measure). Let X be a set and Ω a σ-algebra in
X. A map µ : Ω → B(H) is called a projection-valued measure if the following
properties are satisfied.
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1. For each E ∈ Ω, µ(E) is an orthogonal projection.

2. µ(∅) = 0 and µ(X) = I.

3. If E1, E2, E3 . . . in Ω are disjoint, then for all v ∈ H we have

µ

(
∞⋃
j=1

Ej

)
v =

∞∑
j=1

µ(Ej)v, (36)

where the convergence of the sum is in the norm topology on H.

4. For all E1, E2 ∈ Ω we have µ(E1 ∩ E2) = µ(E1)µ(E2).

The general idea of the projection-valued measure is that disjoint subsets of X are
mapped to orthogonal subspaces of the Hilbert space H. An example of a projection-
valued measure is the mapping µT (E) =

∑
λ∈E Pλ discussed earlier, where T is a

finite-dimensional normal matrix and Pλ projections to the eigenspaces corresponding
to the eigenvectors λ. For example, in the case of the identity matrix T = I we have

µI(E) =

{
I if 1 ∈ E

0 otherwise.
(37)

A projection-valued measure can be used to define an ordinary measure.

Theorem 3.11. Let Ω be a σ-algebra in a set X and let µ : Ω → B(H) be a projection-
valued measure. Then for all ψ ∈ H the map µψ : Ω → R,

µψ(E) = ⟨ψ, µ(E)ψ⟩, (38)

defines a measure.

Proof. By using the properties of the projection-valued measure, one can check that
the map µψ satisfies the properties of the measure in Definition 3.2.

We will next prove some properties of the projection-valued measure. To do this
we need the notion of a bounded quadratic form.

Definition 3.12 (Quadratic form). A quadratic form on a Hilbert space H is a
map Q : H → C with the following properties.

1. Q(λψ) = |λ|2Q(ψ) for all ψ ∈ H and λ ∈ C.

2. The map L : H×H → C,

L(ϕ, ψ) =
1

2
[Q(ϕ+ ψ)−Q(ϕ)−Q(ψ)]− i

2
[Q(ϕ+ iψ)−Q(ϕ)−Q(iψ)], (39)

is sesquilinear.

Furthermore, a quadratic form Q is bounded if there exists a constant C such that
|Q(ϕ)| ≤ C∥ϕ∥2.
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The quadratic form Q is essentially a generalization of the notion of a norm,
and the corresponding sesquilinear form L is the generalization of the inner product
associated with the norm. Note that we can also write the quadratic form in terms
of the sesquilinear form, Q(ψ) = L(ψ, ψ). Given an operator T the sesquilinear form
L(ϕ, ψ) = ⟨ϕ, Tψ⟩ defines a quadratic form Q(ψ) = ⟨ψ, Tψ⟩ and vice versa. This
especially means that the operator µψ(E) in Theorem 3.11 is a (bounded) quadratic
form when it is considered as a function of ψ.

Theorem 3.13. If Q is a bounded quadratic form on H, there is a unique T ∈ B(H)
such that Q(ψ) = ⟨ψ, Tψ⟩ for all ψ ∈ H. If Q(ψ) belongs to R for all ψ ∈ H, then
the operator T is self-adjoint.

Proof. We wish to use the Riesz representation theorem 2.6 to find the required
operator T . First we note that if Q is bounded, then also the associated sesquilinear
map L is bounded as

|L(ϕ, ψ)| =∥ϕ∥∥ψ∥
∣∣∣∣L( ϕ

∥ϕ∥
,
ψ

∥ψ∥

)∣∣∣∣
≤∥ϕ∥∥ψ∥

{
1

2

∣∣∣∣Q( ϕ

∥ϕ∥
+

ψ

∥ψ∥

)∣∣∣∣+ 1

2

∣∣∣∣Q( ϕ

∥ϕ∥
+ i

ψ

∥ψ∥

)∣∣∣∣
+

∣∣∣∣Q( ϕ

∥ϕ∥

)∣∣∣∣+ ∣∣∣∣Q( ψ

∥ψ∥

)∣∣∣∣}
≤C∥ϕ∥∥ψ∥

(40)

for some constant C ≥ 0. The linear functional Lϕ(ψ) = L(ϕ, ψ) is then also bounded,
and the Riesz representation theorem asserts that there exists a unique χ ∈ H such
that ⟨χ, ψ⟩ = Lϕ(ψ) for all ψ ∈ H. Furthermore, ∥χ∥ ≤ C∥ϕ∥. This χ depends on ϕ,
and let us denote this dependence by a mapping Bϕ = χ. From the sesquilinearity of
L it follows that the map B is linear, and B is also bounded as ∥Bϕ∥ ≤ C∥ϕ∥. As B
is a bounded operator defined on H, it has an adjoint operator T = B∗ defined also on
H. This allows us to write L(ϕ, ψ) = ⟨Bϕ, ψ⟩ = ⟨ϕ, Tψ⟩, giving us Q(ψ) = ⟨ψ, Tψ⟩ as
was required. This operator is also unique: if we have L(ϕ, ψ) = ⟨ϕ, Tψ⟩ = ⟨ϕ, T ′ψ⟩
for all ϕ, ψ ∈ H, then T = T ′.

If Q(ψ) is real for all ψ ∈ H, then

L(ψ, ϕ) = −iL(iψ, ϕ)

= − i

2
[Q(ϕ+ iψ)−Q(ϕ)−Q(iψ)] +

1

2
[Q(iϕ+ iψ)−Q(iϕ)−Q(iψ)] = L(ϕ, ψ).

(41)

This means that ⟨Tϕ, ψ⟩ = ⟨ψ, Tϕ⟩ = L(ψ, ϕ) = L(ϕ, ψ) = ⟨ϕ, Tψ⟩ for all ϕ, ψ ∈ H,
meaning that T is self-adjoint.

Theorem 3.14 (Operator-valued integral). Let Ω be a σ-algebra in a set X and let
µ : Ω → B(H) be a projection-valued measure. Then there exists a unique linear
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map, denoted f 7→
∫
X
f dµ, from the space of bounded, measurable, complex-valued

functions on Ω into B(H) with the property that〈
ψ,

(∫
X

f dµ

)
ψ

〉
=

∫
X

f dµψ (42)

for all f and all ψ ∈ H, where µψ is given by µψ(E) = ⟨ψ, µ(E)ψ⟩. This integral has
the following additional properties.

1. For all E ∈ Ω, we have ∫
X

1E dµ = µ(E). (43)

In particular, the integral of the constant function 1 is the identity operator I.

2. For all f , we have ∥∥∥∥∫
X

f dµ

∥∥∥∥ ≤ ∥f∥∞ (44)

where ∥f∥∞ = supλ∈X |f(λ)| is the sup norm of f .

3. Integration is multiplicative: For all f and g, we have∫
X

fg dµ =

(∫
X

f dµ

)(∫
X

g dµ

)
. (45)

4. For all f , we have ∫
X

f dµ =

(∫
X

f dµ

)∗

(46)

In particular, if f is real-valued, then
∫
X
f dµ is self-adjoint.

5. If the sequence of bounded measurable functions {fn}n∈N is bounded and con-
verges to f : X → C pointwise, the integral of f in the projection-valued measure
µ exists and equals ∫

X

f dµ = lim
n→∞

∫
X

fn dµ . (47)

The limit is taken in the strong operator norm sense.

Proof. First we need to understand how to even define an integral over the projection-
valued measure, i.e. how to define the map f 7→

∫
X
f dµ. We do this by first

considering the map Qf : H → C, Qf (ψ) =
∫
X
f dµψ, where µψ is the measure given

in Theorem 3.11.
As the measure µψ is a bounded quadratic form, a simple calculation shows that

Qf is also a bounded quadratic form when f is a bounded, measurable function on
Ω. To prove this, let us first consider the case of simple functions f =

∑n
i=1 ci1Ei

.
Then Qf (ψ) =

∑n
i=1 ciµψ(Ei) and it is straightforward to show that the proper-

ties of a quadratic form are satisfied. Furthermore, Qf is bounded, as |Qf (ψ)| ≤
∥f∥∞µψ(X) = ∥f∥∞∥ψ∥2 . Passing the integration from simple functions to bounded
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measurable functions by Definition 3.6, one can show that the mapping Qf satisfies
the properties of a bounded quadratic form also in the case of bounded measurable
functions f .

As Qf is a bounded quadratic form, Theorem 3.13 then says that there exists
a unique operator Af such that Qf (ψ) = ⟨ψ,Afψ⟩ for all ψ ∈ H. This allows
us to define integration with respect to the projection-valued measure by setting∫
X
f dµ = Af . We are then left with proving the additional properties of the operator-

valued integration.
To prove Point 1, consider f = 1E. Then Qf (ψ) =

∫
X
1E dµψ = µψ(E) =

⟨ψ, µ(E)ψ⟩, and by the uniqueness of Af we find
∫
X
1E dµ = µ(E).

For Point 3, we note that for indicator functions we have(∫
X

1E1 dµ

)(∫
X

1E2 dµ

)
=µ(E1)µ(E2) = µ(E1 ∩ E2) =

∫
X

1E1∩E2 dµ

=

∫
X

1E11E2 dµ .

(48)

A direct calculation then shows that this also holds for simple functions, and by taking
limits from simple functions we can prove this for bounded measurable functions.

Point 4 follows from the identity

Qf (ψ) =

〈
ψ,

(∫
X

f dµ

)
ψ

〉
=

∫
X

f dµψ =

(∫
X

f dµψ

)
=

〈
ψ,

(∫
X

f dµ

)
ψ

〉
=

〈(∫
X

f dµ

)
ψ, ψ

〉
=

〈
ψ,

(∫
X

f dµ

)∗

ψ

〉
.

(49)

The uniqueness of the operator corresponding to Qf asserts that we must have∫
X
f dµ =

(∫
X
f dµ

)∗.
To prove Point 2, we can use Points 3 and 4. For all ψ ∈ H we have∣∣∣∣〈(∫

X

f dµ

)
ψ,

(∫
X

f dµ

)
ψ

〉∣∣∣∣ = ∣∣∣∣〈ψ,(∫
X

f dµ

)∗(∫
X

f dµ

)
ψ

〉∣∣∣∣
=

∣∣∣∣〈ψ,(∫
X

|f |2 dµ
)
ψ

〉∣∣∣∣ = ∣∣∣∣∫
X

|f |2 dµψ
∣∣∣∣ ≤ sup

λ∈X

(
|f(λ)|2

)
µψ(X)

=

(
sup
λ∈X

|f(λ)|
)2

∥ψ∥2,

(50)

and therefore
∥∥∫

X
f dµ

∥∥ ≤ supλ∈X |f(λ)|.
Finally, for Point 5, the function f is measurable as the limit of measurable func-

tions. It is also bounded by the same constant K that bounds the sequence {fn}n∈N.
For all ψ ∈ H we then have∥∥∥∥(∫

X

f dµ−
∫
X

fn dµ

)
ψ

∥∥∥∥2 = ∫ |f − fn|2 dµψ . (51)
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We have |f − fn|2 → 0 pointwise and these functions are bounded by |f − fn|2 ≤
(|f |+ |fn|)2 ≤ 4K2. Thus, the assumptions of the dominated convergence theorem 3.7
are satisfied, and we have

lim
n→∞

∫
fn dµψ =

∫
f dµψ . (52)

This is true for all ψ ∈ H, which proves that the limit is strong operator convergent.

Points 1, 2, 4, and 5 are extensions of similar properties for ordinary measures.
Point 3, multiplicativity of operator-valued integration, is perhaps surprising when
compared to integration with respect to ordinary measures as very few measures
satisfy this property. For projection-valued measures this essentially follows from
the projective nature of µ, µ(E)2 = µ(E). The multiplicativity of operator-valued
integration is a very useful property that will play an important role in proving many
of the theorems in this work.

Operator-valued integration can also be extended to unbounded measurable func-
tions f , with the restriction that the operator

∫
X
f dµ is then only defined in a

subspace Wf ⊂ H of elements ψ ∈ Wf for which the integral
∫
X
f dµψ is finite. This

is made precise by the following theorem.

Theorem 3.15. Suppose µ is a projection-valued measure on (X,Ω) with values in
B(H) and f : Ω → C is a measurable function (not necessarily bounded). Define a
subspace Wf of H by

Wf =

{
ψ ∈ H :

∫
X

|f |2 dµψ <∞
}
. (53)

Then there exists a unique unbounded operator on H with domain Wf , denoted by∫
X
f dµ, with the property that〈

ψ,

(∫
X

f dµ

)
ψ

〉
=

∫
X

f dµψ (54)

for all ψ in Wf . This operator satisfies〈(∫
X

f dµ

)
ψ,

(∫
X

f dµ

)
ψ

〉
=

∫
X

|f |2 dµψ (55)

for all ψ ∈ Wf .

Proof. The proof goes by finding the operator associated with the quadratic form
Qf (ψ) =

∫
X
f dµψ. This can be done in a similar way to Theorem 3.13, even though

now the quadratic form Qf is not necessarily bounded. For details, see [Hall 2013,
Proposition 10.1].
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These theorems then define what is meant by operator-valued integration. This
definition, however, is very abstract and not explicitly constructive. An equivalent
definition of operator-valued integration, reminiscent of a Lebesgue integral, is given
by approximating the integral of a general measurable function by simple functions.
This can be made precise by the following definition [Moretti 2017, Definition 8.49].

Definition 3.16 (Operator-valued integration, second form). Suppose µ is a
projection-valued measure on (X,Ω) with values in B(H). Let us denote the vec-
tor space of simple functions f : X → C, f =

∑n
i=1 ci1Ei

, equipped with the sup norm
∥·∥∞ by S(X). The integral of simple functions, I : S(X) → B(H), is defined as
I(f) =

∫
X
f dµ =

∑n
i=1 ciµ(Ei).

As the map I is a bounded operator and the space of simple functions S(X) is
dense in the Banach space of bounded measurable functions Mb(X), we can use The-
orem 2.7 to extend the integral I to bounded measurable functions. This extension
Ĩ : Mb(X) → B(H) is unique and defines the operator-valued integration of bounded
measurable functions: Ĩ(f) =

∫
X
f dµ.

There is also a third way to understand operator-valued integration [Bogachev
and Smolyanov 2020, Proposition 7.9.3].

Definition 3.17 (Operator-valued integration, third form). Let Ω be a σ-algebra over
X, µ a projection-valued measure on (X,Ω) and f : X → C a bounded measurable
function. For every n, one can partition X into disjoint parts Xn,1 . . . Xn,n ∈ Ω such
that for any choice of points xn,k ∈ Xn,k the sums

∑n
k=1 f(xn,k)µ(Ωn,k) will converge

to
∫
X
f dµ in the operator norm.

The caveat in this definition, however, is that in general one cannot choose the
sets Xn,k arbitrarily. For example, if the integration is over X = [a, b] ⊂ R and
one chooses Xn,k as a partition of the interval [a, b], this definition is an extension
of Riemann integration to projection-valued measures, and thus such a choice for
the sets Xn,k works only for Riemann-integrable functions. For general measurable
functions, one can choose Xn,k = f−1(En,k) with sets En,k that partition the complex
plane into smaller regions as n→ ∞.

4 Spectral theorem for bounded self-adjoint opera-
tors

Before considering the spectral theorem for a general self-adjoint operator, it is easier
to consider the bounded case first. There are two main reasons for this. First, the
bounded case is simpler, as one does not need to worry about the domain of the
operator and its adjoint: the BLT theorem 2.7 guarantees that they can be extended
to the whole Hilbert space H. Second, the spectral theorem in the bounded case can
be used to prove the theorem for general, possibly unbounded, self-adjoint operators
with little effort.

The main idea of the proof is to find the projection-valued measure µA that satisfies
the spectral theorem. This is done by defining the functional calculus of the operator
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A ∈ B(H), that is, defining the operator f(A) for Borel-measurable functions f . The
reason we need this is that the required projection-valued measure can be written
as µA = 1E(A), where 1E(A) is given by the functional calculus of the operator A.
It turns out that defining the functional calculus for measurable functions is quite
tricky, but this is required as indicator functions are not even continuous. Defining
the functional calculus for continuous functions is a little easier and is the first step
before broadening the definition to measurable functions. Finally, having found the
correct projection-valued measure, the spectral theorem follows quite directly.

4.1 Proof of the spectral theorem

Lemma 4.1 (Spectral mapping theorem). For all A ∈ B(H) and all polynomials p,
we have

σ(p(A)) = p(σ(A)). (56)

Proof. If p is a constant polynomial, the theorem is trivial. Hence, we can assume
that the degree of p is at least one.

Let us first show that σ(p(A)) ⊂ p(σ(A)). Consider λ ∈ σ(p(A)). By the funda-
mental theorem of algebra, we can write p(x) − λ = a(x − x1) . . . (x − xn) where xi
are the zeros of p(x)− λ. It is clear then that the operator p(A)− λI can be written
as

p(A)− λI = a(A− x1I) . . . (A− xnI). (57)

If xi ∈ ρ(A) for all i, the operator p(A) − λI would have a bounded inverse
(p(A)− λI)−1 = a−1(A−x1I)−1 . . . (A−xnI)−1. As λ ∈ σ(p(A)), this is not possible,
and thus xi ∈ σ(A) for some i. On the other hand, p(xi) = λ and thus λ ∈ p(σ(A)),
which proves this part of the theorem.

Let us then show that p(σ(A)) ⊂ σ(p(A)). Consider λ ∈ σ(A), and we wish to
show that then p(λ) ∈ σ(p(A)). Using again the fundamental theorem of algebra, we
can write

p(x)− p(λ) = (x− λ)q(x) (58)

where q is some polynomial. The corresponding identity in the operator case can be
written as

p(A)− p(λ)I = (A− λI)q(A). (59)

As λ ∈ σ(A), the operator A− λI does not have a bounded inverse and so does not
p(A) − p(λ)I. This shows that p(λ) ∈ σ(p(A)), which proves the final part of the
theorem.

Before defining the functional calculus for continuous functions, we need the fol-
lowing lemmas.

Lemma 4.2 (Weierstrass approximation theorem). The polynomials with real coef-
ficients are dense in the space of continuous real-valued functions on X, C(X;R),
where X ⊂ R is compact and the norm is defined by the sup norm ∥f∥∞.
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Proof. See [Folland 1999, Section 4.7].

Lemma 4.3. If A ∈ B(H) is self-adjoint we have

∥A∥ = sup
λ∈σ(A)

|λ|. (60)

Proof. Let us first show that ∥A2∥ = ∥A∥2 when A ∈ B(H) and A is self-adjoint. By
the Cauchy-Schwarz inequality

|⟨χ, ψ⟩|2 ≤ ∥χ∥2∥ψ∥2, (61)

we see that for all ψ ∈ H the equality

sup
∥χ∥=1

|⟨χ, ψ⟩|2 = ∥ψ∥2 (62)

holds. For ∥ψ∥ = 1, this gives us

∥∥A2ψ
∥∥2 = sup

∥χ∥=1

∣∣⟨χ,A2ψ⟩
∣∣2 = sup

∥χ∥=1

|⟨Aχ,Aψ⟩|2 =

(
sup
∥χ∥=1

|⟨Aχ,Aψ⟩|

)2

≥
(
∥Aψ∥2

)2
= ∥Aψ∥4

(63)

and thus ∥A2∥ ≥ ∥A∥2. On the other hand, in proving Lemma 2.14 we showed that
∥A2∥ ≤ ∥A∥2. Together these imply∥∥A2

∥∥ = ∥A∥2, (64)

and a repeated use of this equation shows that
∥∥A2n

∥∥ = ∥A∥2
n

.
We can now use Theorem 2.16, which tells us that

sup
λ∈σ(A)

|λ| = lim
n→∞

n
√

∥An∥ = lim
n→∞

2n
√

∥A2n∥ = lim
n→∞

2n
√
∥A∥2n = ∥A∥ (65)

which was to be proven.

Theorem 4.4 (Functional calculus). Suppose A ∈ B(H) is self-adjoint. Then there
exists a unique bounded linear map from C(σ(A);R) into B(H), denoted by f 7→ f(A),
such that when f(λ) = λm, we have f(A) = Am. The map f 7→ f(A), f ∈ C(σ(A);R),
is called the (real-valued) functional calculus for A.

Proof. The idea is to show that the mapping F : P(σ(A);R) → B(H), p 7→ p(A) of
the functional calculus is bounded as an operator from the space of real polynomials
P(σ(A);R) to operators in the Hilbert space. Thus, we can use the BLT theorem 2.7
to extend it uniquely to the space P(σ(A);R). The Weierstrass approximation theo-
rem 4.2 then shows that this is the vector space of continuous functions C(σ(A);R).
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We note that

∥F(p)∥ = ∥p(A)∥ = sup
λ∈σ(p(A))

|λ| = sup
λ∈p(σ(A))

|λ| = ∥p∥∞ (66)

where we used Theorems 4.1 and 4.3 as p(A) is a self-adjoint operator. This shows
that the functional calculus mapping is bounded (with norm 1), and thus the BLT
theorem can be used to extend the functional calculus to C(σ(A);R) uniquely.

With the existence and uniqueness of the functional calculus proven, the notation
f(A) is from now on to be understood as defined by mapping the function f ∈
C(σ(A);R) by the functional calculus corresponding to a self-adjoint operator A ∈
B(H). The functional calculus satisfies the following properties.

Theorem 4.5. If A ∈ B(H) is self-adjoint, the (real-valued) continuous functional
calculus for A, mapping C(σ(A);R) into B(H), has the following properties.

1. Multiplicativity: For all f, g ∈ C(σ(A);R), we have

(fg)(A) = f(A)g(A), (67)

where fg denotes the pointwise product of f and g.

2. Self-adjointness: For all f ∈ C(σ(A);R), the operator f(A) is self-adjoint.

3. Non-negativity: For all f ∈ C(σ(A);R), if f is non-negative, then f(A) is a
non-negative operator.

4. Norm and spectrum properties: For all f ∈ C(σ(A);R), we have

∥f(A)∥ = sup
λ∈σ(A)

|f(λ)| (68)

and
σ(f(A)) = {f(λ) : λ ∈ σ(A)}. (69)

Proof. For Point 1, first note that the product fg ∈ C(σ(A);R) if f, g ∈ C(σ(A);R). If
f and g are polynomials, this property is true, and by the continuity of the functional
calculus the multiplicativity then is also extended to the space C(σ(A);R).

The first part of Point 4, ∥f(A)∥ = supλ∈σ(A) |f(λ)|, is essentially shown in prov-
ing Theorem 4.4, as one can extend this property from polynomials to functions in
C(σ(A);R) by taking limits. To show the second part σ(f(A)) = {f(λ) : λ ∈ σ(A)},
let us first consider λ0 /∈ {f(λ) : λ ∈ σ(A)}. Then the function g(λ) = 1/(f(λ)− λ0)
is continuous on σ(A), and the operator g(A) is the inverse of f(A)−λ0I. This means
that λ0 /∈ σ(f(A)), and thus σ(f(A)) ⊂ {f(λ) : λ ∈ σ(A)}.

For the direction {f(λ) : λ ∈ σ(A)} ⊂ σ(f(A)), consider λ0 = f(µ) for some
µ ∈ σ(A). The idea then is that we can find a sequence of polynomials (pn)n∈N that
converges to f in sup norm. By the spectral mapping theorem 4.1, the operator
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pn(A)−pn(µ)I is not invertible, and by taking the limit n→ ∞ it can be shown that
also f(A)− f(µ)I is not invertible, proving this side of the theorem. For details, see
[Hall 2013, Proposition 8.4].

Point 2 can also be proven in a similar way to Points 1 and 4, as p(A) is self-adjoint
for all polynomials p. By continuity of the functional calculus we then have

⟨f(A)ψ, ϕ⟩ = ⟨ψ, f(A)ϕ⟩ (70)

for all ψ, ϕ ∈ H. Note that f(A) is also defined in the whole Hilbert space H, as by
Point 4 it is bounded.

Non-negativity in Point 3 means that ⟨ψ, f(A)ψ⟩ ≥ 0 for all ψ ∈ H. This follows
from the fact that if f ∈ C(σ(A);R) is non-negative, then there exists g ∈ C(σ(A);R)
such that f = g2 and g =

√
f is real-valued. This means that g(A) is self-adjoint by

Point 2, and we have

⟨ψ, f(A)ψ⟩ = ⟨ψ, g(A)2ψ⟩ = ⟨g(A)ψ, g(A)ψ⟩ ≥ 0 (71)

which proves Point 3.

We will now go on to define the projection-valued measure associated with the
operator A. First, we need the Riesz-Markov-Kakutani representation theorem which
allows us to write a linear functional in terms of a unique measure.

Theorem 4.6 (Riesz-Markov-Kakutani representation theorem). Let X be a compact
metric space. Suppose Λ : C(X;R) → R is a linear functional with the property that
Λ(f) is non-negative whenever all the values of f are non-negative. Then there exists
a unique measure µ on the Borel σ-algebra in X for which

Λ(f) =

∫
X

f dµ (72)

for all f ∈ C(X;R).

Proof. See [Folland 1999, Theorems 7.2 and 7.8].

This, combined with the functional calculus, allows us to find a measure associated
with ⟨ψ,Aψ⟩.

Corollary 4.7. Let A ∈ B(H) be self-adjoint and Λψ : C(σ(A);R) → R be the linear
functional such that Λψ(f) = ⟨ψ, f(A)ψ⟩. Then there exists a unique measure µψ on
the Borel σ-algebra of σ(A) such that

Λψ(f) =

∫
σ(A)

f(λ) dµψ(λ) . (73)

Proof. First note that σ(A) is compact if A is bounded, and as a subset of R it is
also a metric space. By the non-negativity property of the functional calculus f(A)
in Theorem 4.5, the map Λψ satisfies the requirements in Theorem 4.6 and thus the
unique measure µψ can be found.
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We can then use the measure µψ to define the integral
∫
σ(A)

f(λ) dµψ(λ) for general
bounded measurable functions f .

Definition 4.8. If f is a bounded measurable (complex-valued) function on σ(A),
define a map Qf : H → C by the formula

Qf (ψ) =

∫
σ(A)

f(λ) dµψ(λ) , (74)

where µψ is the measure in Theorem 4.7.

Theorem 4.9. For any bounded measurable function f on σ(A), the map Qf in
Definition 4.8 is a bounded quadratic form.

Proof. See the proof of Theorem 3.14.

Definition 4.10. For a bounded measurable function f on σ(A), let f(A) be the
operator associated with the quadratic form Qf by Theorem 3.13. This means that
f(A) is the unique operator such that

⟨ψ, f(A)ψ⟩ = Qf (ψ) =

∫
σ(A)

f dµψ (75)

for all ψ ∈ H.

The uniqueness of the operator f(A) in this definition follows from the unique-
ness in Theorem 3.13. The operator f(A) agrees with the operator in the functional
calculus by the definition of Λψ and Qf when f ∈ C(σ(A);R). The power of Def-
inition 4.10 is that it allows us to extend the functional calculus from continuous
functions to bounded measurable functions and especially to the indicator functions.
From the indicator functions we can then build the projection-valued measure as-
sociated with the operator A. Before that, we need the following proposition that
simply extends the multiplicativity of the functional calculus to bounded measurable
functions:

Theorem 4.11. For any two bounded measurable functions f and g, we have

(fg)(A) = f(A)g(A). (76)

Proof. See [Hall 2013, Proposition 8.9].

Theorem 4.12. Suppose A ∈ B(H) is self-adjoint. For any Borel set E ⊂ σ(A),
define an operator µA(E) by

µA(E) = 1E(A), (77)

where 1E is the indicator function, and 1E(A) is given by Definition 4.10. Then µA

is a projection-valued measure on σ(A) and satisfies

f(A) =

∫
σ(A)

f dµA(λ) (78)

where f : R → C is a bounded measurable function and f(A) is defined by the
functional calculus of A.
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Proof. Let us first prove that µA is a projection-valued measure, i.e. it satisfies the
four properties in Definition 3.10.

For Point 1, we have to prove that µA(E)2 = µA(E) and µA(E) is self-adjoint for
all E ⊂ σ(A). As (1E)

2 = 1E, by Theorem 4.11 we have µA(E)2 = 1E(A)1E(A) =
(1E)

2(A) = 1E(A) = µA(E). The self-adjointness follows from Definition 4.10 and
the real-valuedness of the function 1E.

Point 2 follows from the fact that 1∅(x) = 0 and 1σ(A)(x) = 1 for all x ∈ σ(A).
Thus, by the definition of functional calculus for polynomials 4.4, we have µA(∅) = 0
and µA(σ(A)) = I.

Point 4 follows from Theorem 4.11, as µA(E1 ∩E2) = 1E1∩E2(A) = (1E11E2)(A) =
1E1(A)1E2(A) = µA(E1)µ

A(E2).
Finally, to prove Point 3, consider disjoint sets Ei. Let us define µAN =

∑N
i=1 µ

A(Ei)
and E =

⋃∞
i=1Ei. Let us first consider the convergence of the infinite series∑∞

i=1 µ
A(Ei). If the sets Ei are non-empty, the sum

∑∞
i=1 µ

A(Ei) does not converge
in the uniform operator sense, as

∥∥∑n
i=1 µ

A(Ei)−
∑m

i=1 µ
A(Ei)

∥∥ = 1 for all n > m.
It does, however, converge in the strong sense. To see this, we note that

lim
N→∞

〈
ψ, µANψ

〉
= lim

N→∞

∫
σ(A)

N∑
i=1

1Ei
dµψ =

∫
σ(A)

lim
N→∞

1⋃N
i=1 Ei

dµψ =

∫
σ(A)

1E dµψ

=
〈
ψ, µA(E)ψ

〉
.

(79)

The limit can be taken inside the integral by the dominated convergence theorem 3.7
as
∑N

i=1 1Ei
≤ 1 for all N ∈ N, and the third equivalence follows from the pointwise

convergence limN→∞
∑N

i=1 1Ei
(x) = 1E(x). As µAN and µA(E) are orthogonal projec-

tions satisfying P 2 = P , from this is it follows that
∥∥µANψ∥∥ strong→

∥∥µA(E)ψ∥∥. Thus,
we can understand the series

∑∞
i=1 µ

A(Ei) converging in the strong operator sense,
and the limit is given by µA(E). This proves Point 3.

We have then proven that µA is a projection-valued measure. Also note that
⟨ψ, µA(E)ψ⟩ =

∫
X
1E dµAψ = µAψ(E), so that the measure µAψ in Theorem 4.7 agrees

with the one used for defining operator-valued integration in Theorem 3.14. This
means that for all bounded measurable functions f , the operator f(A) given by the
functional calculus can be written as f(A) =

∫
σ(A)

f dµA.

Having found the required projection-valued measure µA, we are ready to prove
the spectral theorem for bounded self-adjoint operators.

Theorem 4.13 (Spectral theorem for bounded self-adjoint operators). If A ∈ B(H)
is self-adjoint, then there exists a unique projection-valued measure µA on the Borel
σ-algebra in σ(A), with values in projections on H, such that

A =

∫
σ(A)

λ dµA(λ) . (80)

Proof. The existence of the measure is guaranteed by Theorem 4.12, and also setting
f(λ) = λ we see that Equation (80) is satisfied.
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For the uniqueness of the measure µA, suppose that there is another projection-
valued measure νA with the property A =

∫
σ(A)

λ dνA(λ). By Corollary 4.7 the
measure µAψ is unique, so we must have µAψ = νAψ for all ψ ∈ H. Operator-valued
integration is defined in Theorem 3.14 using the measure µψ and thus

∫
σ(A)

f dµA =∫
σ(A)

f dνA for all measurable bounded functions f . For every set E in the Borel σ-
algebra of σ(A) we see that µA(E) =

∫
σ(A)

1E dµA =
∫
σ(A)

1E dνA = νA(E). Therefore
the projection-valued measures µA and νA have to be the same, and the projection-
valued measure in the spectral theorem is unique.

The spectral theorem allows us to write the functional calculus in terms of
operator-valued integration. From now on we will define the functional calculus in
this way for an operator that can be written in the form of the spectral theorem. The
functional calculus defined in this way satisfies the following properties which will be
needed later.

Theorem 4.14. Let T be an operator on H such that there is a unique projection-
valued measure µT which satisfies

T =

∫
σ(T )

λ dµT (λ) . (81)

Then the functional calculus for the operator T is defined as

f(T ) =

∫
σ(T )

f dµT (82)

where f : σ(T ) → C is a measurable function. The functional calculus satisfies the
following properties:

1. For all polynomials p we have

p (f(T )) = (p ◦ f) (T ) (83)

where p (f(T )) is defined as the polynomial p of the operator f(T ) and (p ◦ f) (T )
by the functional calculus on the function p ◦ f .

2. If f(T ) is invertible and the function g(x) = 1
f(x)

is bounded in σ(T ), the inverse
f(T )−1 can be written as

f(T )−1 =

∫
σ(T )

g dµT . (84)

3. If the function f can be written as a power series f(λ) =
∑∞

n=0 cnλ
n that is

absolutely convergent for all λ ≤ k and the operator T is bounded with the norm
∥T∥ ≤ k, then

f(T ) =
∞∑
n=0

cnT
n (85)

where the series is norm operator convergent.
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4. Let T be bounded and W ∈ B(H) an operator that commutes with T , WT =
TW . If the function f is a bounded measurable function, then W also commutes
with f(T ).

Proof. First note that operator-valued integration is linear and multiplicative accord-
ing to Theorem 3.14.

To prove Point 1, let us consider a polynomial p(x) =
∑n

i=1 aix
i. A direct calcu-

lation shows that

(p ◦ f)(T ) =
∫
σ(T )

n∑
i=1

aif
i dµT =

n∑
i=1

ai

(∫
σ(T )

f dµT
)i

=
n∑
i=1

aif(T )
i = p (f(T )) .

(86)
For Point 2, suppose that the inverse f(T )−1 exists and the function g(x) = 1

f(x)

is measurable. Then we have

f(T )

(∫
σ(T )

g dµT
)

=

∫
σ(T )

fg dµT =

∫
σ(T )

dµT = 1 (87)

and similarly (∫
σ(T )

g dµT
)
f(T ) = 1. (88)

The uniqueness of the inverse proves Point 2.
For Point 3, suppose f(λ) =

∑∞
n=0 cnλ

n is absolutely convergent for all |λ| ≤ k

and ∥T∥ ≤ k. Let us denote fN(λ) =
∑N

i=1 cnλ
n. Then

∥f(T )− fN(T )∥ =

∥∥∥∥∫
σ(T )

(f − fN) dµ
T

∥∥∥∥ ≤ sup
λ∈σ(T )

|f(λ)− fN(λ)|

≤ sup
λ∈σ(T )

∞∑
n=N+1

|cn||λ|n ≤
∞∑

n=N+1

|cn|kn → 0

(89)

as N → ∞ because the series
∑∞

n=0 cnλ
n is absolutely convergent for all |λ| ≤ k. This

proves Point 3.
For Point 4, see [Hall 2013, 7.16]. It essentially follows from the fact that if

WT = TW then all polynomials p(T ) commute with W , and by taking limits suitably
this is true for all f ∈ C(σ(T );R). It is then possible to extend this property to all
bounded measurable functions f .

It is important to assume the uniqueness of the projection-valued measure µT

here for if there were two different projection-valued measures for which Equation (81)
holds, it would be possible that the functional calculus depends on the chosen measure.
Although we will not prove it here, it turns out that normal operators are the only
ones that can be written in the form of Equation (81), and the associated projection-
valued measure is unique [van Neerven 2022, Theorem 10.54]. Thus, if an operator
can be written in the form of the spectral theorem, the associated projection-valued
measure is always unique.
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5 Unbounded self-adjoint operators

The purpose of this section is to expand the spectral theorem from bounded self-
adjoint operators to the unbounded case. While the form of the spectral theorem is
similar, the proof requires a few extra steps that come from the unboundedness of
the operators. One also has to be careful when considering the domain of unbounded
operators. For example, unbounded self-adjoint operators cannot be defined on the
whole Hilbert space, which is a direct consequence of the closed graph theorem 2.12
as self-adjoint operators are also closed [Moretti 2017, Theorem 5.18]. Instead, we
will assume that the operators are defined on some dense subset of the Hilbert space.

Fortunately, we can use the spectral theorem for the bounded self-adjoint operators
to also prove the unbounded case. The idea is that by choosing a proper mapping we
can get a correspondence between unitary and self-adjoint operators which extends
to the spectral theorem. We first prove the spectral theorem for unitary operators
which can then be used to prove the spectral theorem for unbounded self-adjoint
operators. In total, the idea is that we map the spectrum of an unbounded self-
adjoint operator A to a compact subset of the real numbers. Essentially, this is done
with the function f : R → [−π, π], f(x) = 2 arccot(x), and heuristically the idea is
that the operator f(A) is a bounded self-adjoint operator for which we can use the
spectral theorem 4.13. The problem here is, however, that it is not clear how to even
define f(A) when A is unbounded. It turns out that it is easier to divide f into two
maps. The first maps the unbounded self-adjoint operator A to a unitary operator
U by the Cayley transform, and the second allows us to write U = exp(iS) where S
is a bounded self-adjoint operator. Together, these imply that the unbounded self-
adjoint operator A can be written as A = cot

(
1
2
S
)

where S is a bounded self-adjoint
operator. We will start by showing the existence of the second mapping and also
prove the spectral theorem for unitary operators as a consequence.

5.1 Spectral theorem for unitary operators

The spectral theorem for unitary operators follows quite directly from the bounded
self-adjoint case. First we need, however, the following lemma.

Lemma 5.1 (Wecken’s lemma). Let W and A be bounded self-adjoint operators on
H. Suppose that WA = AW and W 2 = A2. Let P be the orthogonal projection of H
onto Ker(W − A). Then:

1. If a bounded linear operator commutes with W − A, it also commutes with P .

2. Wψ = 0 implies Pψ = ψ for all ψ ∈ H.

3. We have W = (2P − I)A.

Proof. Let B ∈ B(H) be an operator that commutes with W − A. This allows us to
write

0 = B(W − A)Pψ = (W − A)BPψ (90)
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and

0 = B∗(W − A)Pψ = [(W − A)B]∗Pψ = [B(W − A)]∗Pψ = (W − A)B∗Pψ. (91)

This shows that BPψ ∈ Ker(W − A) and B∗Pψ ∈ Ker(W − A) for all ψ ∈ H.
Consequently, PBP = BP and PB∗P = B∗P , which allows us to write BP =
PBP = (PB∗P )∗ = (B∗P )∗ = PB, where we also used the fact that P is self-adjoint
as an orthogonal projection. This proves Point 1.

For Point 2, let ψ ∈ H be such that Wψ = 0. Then

∥Aψ∥2 = ⟨Aψ,Aψ⟩ = ⟨ψ,A2ψ⟩ = ⟨ψ,W 2ψ⟩ = ⟨Wψ,Wψ⟩ = 0 (92)

so that Aψ = 0. This means that ψ ∈ Ker(W − A) and thus Pψ = ψ.
Finally, for Point 3, note that (W − A)(W + A) = W 2 − A2 = 0 and thus

(W + A)ψ ∈ Ker(W − A) for all ψ ∈ H. This implies

(W + A)ψ = P (W + A)ψ = P (W − A+ 2A)ψ = 2PAψ (93)

for all ψ ∈ H, where we used Point 1 to write P (W − A) = (W − A)P = 0. Solving
for W we have W = (2P − I)A as was required.

Theorem 5.2 (Spectral theorem for unitary operators). Suppose U is a unitary
operator on H. Then there exists a unique projection-valued measure µU on σ(U)
with values in B(H) such that ∫

σ(U)

λ dµU(λ) = U. (94)

Proof. The main idea of the proof is that we need to find a bounded self-adjoint oper-
ator S such that U = eiS = cosS + i sinS. After that the projection-valued measure
can be found using the spectral theorem for bounded self-adjoint operators 4.13.

Let us write U = V + iW , where V = 1
2
(U + U∗) and W = 1

2i
(U − U∗). The

operators V and W are bounded with norms ∥V ∥, ∥W∥ ≤ 1 as

∥V ∥ ≤ 1

2
(∥U∥+ ∥U∗∥) = 1 (95)

and similarly for W . They are also self-adjoint, which is easy to check as (U±U∗)∗ =
(U∗ ± U). This means that the spectra of V and W are closed subsets of [−1, 1].
Additionally, a direct calculation shows that

V 2 +W 2 = I. (96)

The idea is to find the required operator S using V and W . Note that if we
were considering just numbers in the complex plane, constructing s ∈ (−π, π] using
v = cos s and w = sin s would work by s =

(
2× 1[0,1](w)− 1

)
arccos v. Here the

factor in front of arccos v corrects for the fact that arccos (cos s) = |s| instead of s. A
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similar idea can be used to construct the operator S with V and W , but the problem
is showing that this operator satisfies V = cosS and W = sinS.

Let us denote g : [−1, 1] → (−π, π],

g(λ) = arccosλ. (97)

Using the functional calculus for bounded self-adjoint operators 4.4 we are allowed to
write g(V ). Let us also define the operator

A = sin g(V ) (98)

which is again defined using the functional calculus for V . Using the integral form of
the functional calculus from Theorem 4.12 it is also possible to prove that

V 2 + A2 =

∫
σ(V )

(
λ2 + sin2 g(λ)

)
dµV (λ) =

∫
σ(V )

(
cos2 g(λ) + sin2 g(λ)

)
dµV (λ)

=

∫
σ(V )

1 dµV (λ) = I

(99)

where µV is the projection-valued measure from the spectral theorem for the operator
V . Comparing this with Equation (96) we see that A2 = W 2. As V commutes with
W , by Theorem 4.14 so does also A. Thus the assumptions of Wecken’s lemma 5.1
are satisfied and we conclude that

W = (2P − I)A. (100)

where P is the orthogonal projection to the subspace Ker(W − A). Note that
P commutes with V and g(V ) according to Wecken’s lemma, as V commutes
with W − A. The projection P is connected to our schematic idea of writing
S =

(
2× 1[0,1](W )− 1

)
arccosV as we could also write P = 1[0,1](W ). This fact is

not needed to show this theorem, and it can be shown afterward using the functional
calculus for the operator S.

We now proceed to define S = (2P − I)g(V ) = g(V )(2P − I) and show that this
operator S is self-adjoint, bounded, and satisfies U = eiS. The self-adjointness and
boundedness follow from the fact that P and V are bounded and self-adjoint and the
function g is bounded and real. To show that V = cos(S) and W = sin(S), we first
note that S2 = (2P − I)2g(V )2 = g(V )2 as (2P − I)2 = 4P 2− 4P + I = I. According
to Theorem 4.14, we can write the operator eiS as the Maclaurin series

eiS =
∞∑
n=0

in

n!
Sn =

∞∑
l=0

i2l

(2l)!
S2l +

∞∑
l=0

i2l+1

(2l + 1)!
S2l+1

=
∞∑
l=0

i2l

(2l)!
g(V )2l + (2P − I)

∞∑
l=0

i2l+1

(2l + 1)!
g(V )2l+1

=cos g(V ) + i(2P − I) sin g(V ) = V + iW = U.

(101)

Thus, we have found a bounded self-adjoint operator S such that U = eiS. Also note
that ∥S∥ ≤ ∥g(V )∥ ≤ π, and thus σ(S) ⊂ [−π, π].
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Using the spectral theorem for S we can now write

U =

∫
[−π,π]

eiλ dµS(λ) . (102)

This is not yet in the form of the spectral theorem. We would like to change the
integration variable to ξ = eiλ, but the problem is that this map is not bijective. Let
us define f : [−π, π] → S1, f(λ) = eiλ. Note that this is not injective as f(−π) = f(π),
but it allows us to define the projection-valued measure µU(E) = µS (f−1(E)) where
E ⊂ S1 is a Borel set. Then we note that

U =

∫
[−π,π]

eiλ dµS(λ) =

∫
[−π,π]

f dµS =

∫
S1

λ dµU(λ) . (103)

This integral is defined over S1, not σ(U). If we can show µU(S1 \ σ(U)) = 0
then we can restrict the integral to the set σ(U) so that we have the form in the
spectral theorem. For simplicity, let us define µU(C \ S1) = 0 so that we can write
U =

∫
C λ dµ

U(λ). Consider then some λ0 ∈ ρ(U). The resolvent ρ(U) is open so
λ ∈ ρ(U) for all λ ∈ B(λ0, ε) for small enough ε > 0, where B(λ0, ε) is an open ball
with a radius ε. The operator µU(B(λ0, ε)) is a projection operator to some subspace
V (λ0, ε), and let us choose ϕ ∈ V (λ0, ε). Then

(U − λ0I)ϕ = (U − λ0I)µ
U(B(λ0, ε))ϕ =

∫
B(λ0,ε)

(λ− λ0) dµ
U(λ)ϕ (104)

so that

∥(U − λ0I)ϕ∥2 ≤ ∥ϕ∥2
∥∥µU(B(λ0, ε))

∥∥2 sup
λ∈B(λ0,ε)

|λ− λ0|2 = ∥ϕ∥2
∥∥µU(B(λ0, ε))

∥∥2ε2.
(105)

If V (λ0, ε) ̸= {0}, we have
∥∥µU(B(λ0, ε))

∥∥ = 1 and we can choose ϕ ̸= 0 so that

∥∥(U − λ0I)
−1
∥∥2 ≥ ∥(U − λ0I)

−1(U − λ0I)ϕ∥2

∥(U − λ0I)ϕ∥2
≥ ∥ϕ∥2

∥ϕ∥2∥µU(B(λ0, ε))∥2ε2
=

1

ε2
.

(106)
Note that (U − λ0I)ϕ ̸= 0 as U − λ0I is injective. Now if µU(B(λ0, ε)) ̸= 0 for all
ε > 0 , we see that the operator (U − λ0I)

−1 is unbounded which contradicts the
assumption λ0 ∈ ρ(U). Thus µU(B(λ0, ε)) = 0 for some ε > 0. This shows that for
all λ0 ∈ ρ(U) there exists a ball B(λ0, ε) where µU(B(λ0, ε)) = 0, and hence we must
have µU(ρ(U)) = 0. We can then restrict the integral to the spectrum σ(U) and write

U =

∫
σ(U)

λ dµU(λ) . (107)

We are then left to prove the uniqueness of the projection-valued measure µU .
Suppose that there is another projection-valued measure νU such that

U =

∫
S1

λ dνU(λ) . (108)
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Then we can write the operators V and W as

V =

∫
S1

1

2

(
λ+ λ

)
dµU(λ) =

∫
S1

1

2

(
λ+ λ

)
dνU(λ) , (109)

W =

∫
S1

1

2i

(
λ− λ

)
dµU(λ) =

∫
S1

1

2i

(
λ− λ

)
dνU(λ) . (110)

On the other hand, they are self-adjoint, and thus there are unique projection-valued
measures µV and µW such that

V =

∫
[−1,1]

λ dµV (λ) , (111)

W =

∫
[−1,1]

λ dµW (λ) . (112)

By Theorem 3.8 this suggests that

µV (E) = µU
(
f−1(E)

)
= νU

(
f−1(E)

)
(113)

and
µW (E) = µU

(
g−1(E)

)
= νU

(
g−1(E)

)
(114)

for all Borel sets E ⊂ [−1, 1], where f(λ) = 1
2

(
λ+ λ

)
= Reλ and g(λ) = 1

2i

(
λ− λ

)
=

Imλ. This is not enough to show that the measures µU and νU are the same as the
functions f : S1 → [−1, 1] and g : S1 → [−1, 1] are not bijections; instead,

f−1 ◦ f(E) = {λ : λ ∈ E or λ ∈ E} (115)

and
g−1 ◦ g(E) = {λ : λ ∈ E or − λ ∈ E}. (116)

We note, however, that [f−1 ◦ f(E)] ∩ [g−1 ◦ g(E)] = E for all E ⊂ S1, and thus

µU(E) = µU
([
f−1 ◦ f(E)

]
∩
[
g−1 ◦ g(E)

])
= µU

(
f−1 ◦ f(E)

)
µU
(
g−1 ◦ g(E)

)
= νU

(
f−1 ◦ f(E)

)
νU
(
g−1 ◦ g(E)

)
= νU

([
f−1 ◦ f(E)

]
∩
[
g−1 ◦ g(E)

])
= νU(E).

(117)

This proves the uniqueness of the projection-valued measure.

5.2 Cayley transform

To prove the spectral theorem for unbounded self-adjoint operators we need a function
that maps them to unitary operators. This is provided by the Cayley transform.

Theorem 5.3 (Cayley transform). If A is a self-adjoint operator on H, let U be the
operator defined by

Uψ = (A+ iI)(A− iI)−1ψ (118)

Then the following results hold:
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1. The operator U is a unitary operator on H.

2. The operator U − I is injective.

3. The range of the operator U − I is equal to Dom(A) and for all ψ ∈ Ran(U − I)
we have

Aψ = i(U + I)(U − I)−1ψ. (119)

Proof. As A is self-adjoint, its spectrum is real, and therefore the maps A + iI :
Dom(A) → H and A− iI : Dom(A) → H are bijective with bounded inverses. Thus
the map U is well-defined.

To prove Point 1, we need to show that U is bijective and U∗ = U−1. As a
composition of two bijective maps, it is also bijective. To show U∗ = U−1 we first
note that for any ψ, ϕ ∈ Dom(A),

⟨(A+ iI)ψ, (A+ iI)ϕ⟩ = ⟨(A− iI)ψ, (A− iI)ϕ⟩ (120)

which can be shown by a direct calculation. Thus for any ξ, χ ∈ H,
⟨Uξ, Uχ⟩ = ⟨(A+ iI)(A− iI)−1ξ, (A+ iI)(A− iI)−1χ⟩

= ⟨(A− iI)(A− iI)−1ξ, (A− iI)(A− iI)−1χ⟩ = ⟨ξ, χ⟩
(121)

from which we see that U∗U = UU∗ = I and hence U∗ = U−1.
For Point 2, consider ψ ∈ Ker(U − I). Then

0 = (U − I)ψ = (A+ iI)(A− iI)−1ψ − ψ = 2i(A− iI)−1ψ. (122)

But (A− iI)−1 is injective, so we must have ψ = 0 and hence Ker(U−I) = {0} which
proves Point 2.

As U−I = 2i(A−iI)−1 is injective and Ran(U−I) = Ran ((A− iI)−1) = Dom(A),
it has an inverse (U − I)−1 : Dom(A) → H. For all ψ ∈ Dom(A) we then have

i(U + I)(U − I)−1ψ = i
[
2A(A− iI)−1

] [
2i(A− iI)−1

]−1
ψ = Aψ (123)

as was required for Point 3.

We can understand how the Cayley transform works by considering complex num-
bers instead of operators. The corresponding map C : C \ {i} → C,

C(x) =
x+ i

x− i
, (124)

is a Möbius transform that maps the real line to the unit circle, which means that
in the Cayley transform the spectrum of a self-adjoint operator is mapped onto the
spectrum of a unitary operator. The inverse Möbius transformation, C−1 : C\{1} →
C,

C−1(x) = i
x+ 1

x− 1
, (125)

maps the unit circle to the real line. It should be noted here that if U is a unitary
operator such that the inverse (U−I)−1 exists, the operator C−1(U) defined with the
functional calculus coincides with the inverse Cayley transform

C−1(U) = i(U + I)(U − I)−1 (126)

according to Theorem 4.14.
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5.3 Spectral theorem for unbounded self-adjoint operators

With all of these prerequisite results, proving the spectral theorem for unbounded
self-adjoint operators is very straightforward. Let us first prove the existence of the
required projection-valued measure.

Theorem 5.4. Let A be a self-adjoint operator on H. Define a projection-valued
measure µA on R by

µA(E) = µU(C(E)), (127)

where C is the map given by Equation (124) and µU is the projection-valued measure
from the spectral theorem for the unitary operator U = (A+ iI)(A− iI)−1. Then

A =

∫
σ(A)

λ dµA(λ) . (128)

Proof. Let us define measures µUψ (E) = ⟨ψ, µU(E)ψ⟩ and µAψ(E) = ⟨ψ, µU (C(E))ψ⟩.
Using the change of variables λ = C−1(ξ) according to Theorem 3.8, we can write∫

R
λ dµAψ(λ) =

∫
S1\{1}

C−1(ξ) dµAψ
(
C−1(ξ)

)
=

∫
S1\{1}

C−1(ξ) dµUψ (ξ)

= ⟨ψ,C−1(U)ψ⟩ = ⟨ψ,Aψ⟩.
(129)

As this holds for all ψ ∈ H, we must have

A =

∫
R
λ dµA . (130)

The integral can be restricted to σ(A) by the same argument as when proving the
spectral theorem for unitary operators 5.2.

We are finally ready to prove the main theorem of this thesis:

Theorem 5.5 (Spectral theorem for self-adjoint operators). Suppose A is a self-
adjoint operator on H. Then there is a unique projection-valued measure µA on σ(A)
with values in B(H) such that ∫

σ(A)

λ dµA (λ) = A. (131)

Proof. The existence of the projection-valued measure µA is given by Theorem 5.4 so
we only have to prove the uniqueness.

Suppose that there is another projection-valued measure νA such that∫
σ(A)

λ dνA(A) = A. Then we can show that the unitary operator given by the
Cayley transform, U = (A+ iI)(A− iI)−1, can be written as

U = C(A) =

∫
R
C(λ) dνAψ (λ) =

∫
S1\{1}

ξ dνAψ
(
C−1(ξ)

)
. (132)
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On the other hand, we can write

U = C(A) =

∫
R
C(λ) dµAψ(λ) =

∫
S1\{1}

ξ dµAψ
(
C−1(ξ)

)
. (133)

From the uniqueness of the projection-valued measure for unitary operators, we see
that νAψ (C−1(E)) = µAψ (C

−1(E)) for all E in the Borel σ-algebra of S1 \ {1}. As
C−1 : S1 \ {1} → R is a bijection, this means that we must have νA = µA and thus
the projection-valued measure is unique.

5.4 Consequences of the spectral theorem

We will now consider a few properties that can be proven with the help of the spectral
theorem.

Definition 5.6 (Spectral subspaces). For a self-adjoint operator A on H, let µA be
the associated projection-valued measure, extended to be a measure on R by setting
µA(R\σ(A)) = 0. Then for each Borel set E ⊂ R, define the spectral subspace VE
of H by

VE = Ran(µA(E)). (134)

Theorem 5.7. Let A be a self-adjoint operator on H. Then the spectral subspaces
VE associated with the operator A have the following properties.

1. For disjoint sets E1, E2 ⊂ R the spectral subspaces VE1 and VE2 are orthogonal.

2. If E is bounded, the spectral subspace VE belongs to the domain of A and VE is
invariant under A.

3. The spectrum of A|VE is contained in the closure of E. In particular, if E is
bounded, then A|VE is a bounded operator.

4. If E is contained in (λ0 − ε, λ0 + ε), then for all ψ ∈ VE we have

∥(A− λ0I)ψ∥ ≤ ε∥ψ∥. (135)

Vectors ψ satisfying this condition are called approximate eigenvectors.

5. If λ0 is in the spectrum of A, then for every neighborhood U of λ0, we have
VU ̸= {0}, or, equivalently, µA(U) ̸= 0.

Proof. For Point 1, consider sets E1, E2 ⊂ R such that E1 ∩ E1 = ∅. Let ψ1 ∈ VE1

and ψ2 ∈ VE2 , which means that there exist ϕ1, ϕ2 ∈ H such that ψ1 = µA(E1)ϕ1 and
ψ2 = µA(E2)ϕ2. Then we have

⟨ψ1, ψ2⟩ =⟨µA(E1)ϕ1, µ
A(E2)ϕ2⟩ = ⟨ϕ1, µ

A(E1)µ
A(E2)ϕ2⟩

=⟨ϕ1, µ
A(E1 ∩ E2)ϕ2⟩ = ⟨ϕ1, µ

A(∅)ϕ2⟩ = 0
(136)
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so the spectral subspaces VE1 and VE2 are orthogonal.
For Point 2, it is easy to see from the multiplicativity of the operator-valued

integration that AµA(E) =
∫
E
λ dµA. The function f(λ) = λ is bounded on E if

E is bounded, and thus the operator AµA(E) is bounded and defined on the whole
H. Any ψ ∈ VE can be written as ψ = µA(E)ϕ for some ϕ ∈ H, allowing us
to write Aψ = AµA(E)ϕ which is defined and thus ψ ∈ Dom(A). This proves
that VE ⊂ Dom(A). Also note that AµA(E) = µA(E)AµA(E), which means that
Aψ = µA(E)Aϕ ∈ VE and thus VE is invariant under A.

For Point 3, consider λ0 /∈ E. Then the function g : C → C, g(λ) = 1E(λ)
λ−λ0 is

bounded, and thus the operator g(A) is also bounded and satisfies

g(A)(A− λ0I) = (A− λ0I)g(A) = 1E(A) = µA(E). (137)

This is the identity operator in the subspace VE, and thus (A−λ0I)|VE has a bounded
inverse. This means that λ0 /∈ σ(A|VE), proving Point 3.

To prove Point 4, suppose that ψ ∈ VE where E ⊂ (λ0 − ε, λ0 + ε). Then ψ is in
the range of µA(E), and

(A− λ0I)ψ = (A− λ0I)µ
A(E)ψ. (138)

This allows us to write

∥(A− λ0I)ψ∥2 =⟨(A− λ0I)µ
A(E)ψ, (A− λ0I)µ

A(E)ψ⟩

=

〈
ψ,

∫
E

(λ− λ0)
2 dµA(λ)ψ

〉
=

∫
E

(λ− λ0)
2 dµAψ(λ)

≤ sup
λ∈E

(λ− λ0)
2 × ∥ψ∥2 = ε2∥ψ∥2

(139)

as was required.
Finally, let us consider Point 5. Let λ0 ∈ σ(A) and assume that there exists ε > 0

such that for U = (λ0 − ε, λ0 + ε) we have µA(U) = 0. Consider then the bounded
function f defined by

f(λ) =

{
1

λ−λ0 when |λ− λ0| ≥ ε

0 when |λ− λ0| < ε.
(140)

The function f(λ)× (λ− λ0) then agrees with the constant function 1 except in the
set U . But µA(U) = 0 so this agreement is µAψ -almost everywhere for all ψ ∈ H and
thus its operator-valued integral agrees with the identity operator, i.e.

f(A)(A− λ0I) = (A− λ0I)f(A) = I (141)

where the operators are defined in Dom(A). As Dom(A) = H, we must have λ0 ∈
ρ(A). This is a contradiction with the assumption λ0 ∈ σ(A), proving Point 5.

40



Points 1, 2, and 3 are in a certain sense generalizations of similar properties
for operators in finite-dimensional Hilbert spaces, as in that case we can divide the
operator into orthogonal eigenspaces corresponding to different eigenvectors. In the
general case, we also need to consider the continuous spectrum for which we do not
have eigenvectors, but even then we can divide the Hilbert space into orthogonal
subspaces corresponding to different subsets of the spectrum.

Point 5 says that the measure assigns non-zero values to sets that contain some
λ0 in the spectrum. The converse of this was actually proven as a part of the spectral
theorem unitary operators 5.2, where it was shown that for λ0 ∈ ρ(A) there exist
neighborhoods U with zero measure µA(U) = 0.

Point 4 says that even though in general we cannot find eigenvectors for each
λ0 ∈ σ(A), we can find vectors that are arbitrarily close to being an eigenvector. One
might try to find an actual eigenvector by taking a sequence of vectors ψn such that
Equation (135) is satisfied for ε = 1

n
. However, there is no guarantee that such a

sequence will converge to an element in the Hilbert space, and indeed it can converge
only for values in the point spectrum λ0 ∈ σp(A). In Section 6.3 we will consider
a somewhat generalized case, in which a different notion of convergence is defined,
such that it is possible for the limit of approximate eigenvectors to exist outside the
Hilbert space.

6 Applications of the spectral theory in quantum
mechanics

Since the formulation of quantum mechanics at the beginning of the 20th century,
physicists noticed that understanding functional analysis is crucial for understanding
the physical reality at small length scales. In quantum mechanics, physical observ-
ables are defined as self-adjoint operators on the Hilbert space describing physical
states. Thus, a proper understanding of self-adjoint operators is necessary for quan-
tum mechanics, and it is not surprising that spectral theory plays a central role. In
fact, one major motivation for developing spectral theory for unbounded self-adjoint
operators came from [von Neumann 1933] when it was realized that quantum mechan-
ics can be written in terms of self-adjoint operators which are generally unbounded.
The purpose of this section is to give the reader a brief introduction to how spectral
theory is used in relation to quantum physics.

6.1 Introduction to quantum mechanics

The basic assumption of quantum mechanics is that physical systems are given by
states |Ψ⟩ which are defined as vectors in a separable Hilbert space. This is a very
abstract notion, and usually the Hilbert space is left undefined as separable Hilbert
spaces are isomorphic up to the dimension of the space [Moretti 2017, Theorem 3.30].
Perhaps the simplest non-trivial example of a physical state is a system with two
possible states, denoted by g and e, which can for example correspond to the ground
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state and the excited state of a particle. The most general form for this state is then

|Ψ⟩ = α |g⟩+ β |e⟩ (142)

where α, β ∈ C, written in Dirac’s bra–ket notation. States are also generally normal-
ized to one, as states differing by scalar multiplication are considered to correspond
to the same physical state. The norm in this simple case is given by

⟨Ψ|Ψ⟩ = |α|2 ⟨g|g⟩+ |β|2 ⟨e|e⟩ = |α|2 + |β|2 = 1. (143)

The numbers |α|2 and |β|2 then correspond to probabilities for the state to be in the
states g and e. This is called the Born rule of quantum mechanics.

Different states are related to each other by operators. A very important class
of operators is the (essentially) self-adjoint operators, as they correspond to physical
quantities that can be measured. Examples of these are position, momentum, energy,
angular momentum, and electric charge of a particle, with each having a corresponding
self-adjoint operator. The spectral theorem then allows us to study these properties
in terms of the spectral representation of the operator. For example, one may ask
what is the probability that a state |Ψ⟩ has a physical property A in the set of possible
values E when observed. If the property has the corresponding self-adjoint operator
Â, then this probability is given by

⟨Ψ|µA(E)|Ψ⟩ =
∫
E

dµAΨ = µAΨ(E) (144)

where µA is the projection-valued measure associated with the operator Â. Essen-
tially, this means that the state |Ψ⟩ is projected onto the spectral subspace VE, and
the probability is given by the norm of the projected state. A special case of this is
the position operator, where this is usually written in terms of the wave function
of the state, ψ : R3 → C, as

⟨Ψ|µX(E)|Ψ⟩ =
∫
E

|ψ(x)|2 d3x . (145)

The wave function gives the probability density for a particle to be at the position
x. Each state has a corresponding wave function, and the inner product between
different states is defined as

⟨Φ|Ψ⟩ =
∫
R3

ϕ(x)ψ(x) d3x . (146)

For this quantity to be finite the wave functions then have to belong to the Hilbert
space L2(R3).

6.2 Schrödinger equation

Perhaps the most important equation in quantum mechanics is the Schrödinger
equation which describes the time-evolution of the state:

iℏ
d

dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ . (147)
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Here Ĥ is the Hamiltonian operator and ℏ is the reduced Planck constant. In the
non-relativistic case, where the particles are moving at velocities much smaller than
the speed of light, the single-particle Hamiltonian reads

Ĥ =
1

2m
P̂ 2 + V̂ = − ℏ2

2m
∇2 + V (x) (148)

where ∇2 is the Laplace operator, V̂ = V (x) is the potential acting on the particle
and m is the particle’s mass. For physical reasons, the potential is often a real-
valued function so that the Hamiltonian operator is symmetric. On the other hand,
the Hamiltonian is not necessarily self-adjoint: an example of this is the Hamiltonian
with the potential V (x) = −x4 which does not correspond to a physical situation [Hall
2013, Section 9.10]. These cases where the Hamiltonian is not self-adjoint are often
pathological or unphysical, which is the reason why we will from now assume that
the Hamiltonian Ĥ is a self-adjoint operator.

The Schrödinger equation (147) is formally solved by

|Ψ(t)⟩ = e−iĤt/ℏ |Ψ(t)⟩ =
∫
E∈R

dµH(E) e−iEt/ℏ |Ψ(0)⟩ (149)

where we used the functional calculus of the Hamiltonian to write the operator
e−iĤt/ℏ in terms of the projection-valued measure µĤ . The fact that this solves the
Schrödinger equation is given by the Stone’s theorem [Moretti 2017, Theorem 9.33]
which essentially states that the derivative of the unitary operator Ut = e−iĤt/ℏ is
well-defined and

d

dt
Ut = − i

ℏ
ĤUt. (150)

The solution (149) to the Schrödinger equation is in practice quite complicated.
A simpler form is obtained if one is restricted to solutions that are given as a linear
combination of the eigenvectors of the Hamiltonian, i.e. solutions of the form

|Ψ(t)⟩ =
∑
n

En∈σp(Ĥ)

cn(t) |Ψn⟩ (151)

where the states |Ψn⟩ satisfy the time-independent Schrödinger equation

Ĥ |Ψn⟩ = En |Ψn⟩ . (152)

One can then show that the coefficients have the form cn(t) = cne
−iEnt/ℏ where cn are

constants determined by the initial condition. This reduces solving the Schrödinger
equation to finding the eigenvalues and eigenvectors of the Hamiltonian which is a lot
simpler than constructing the projection-valued measure µH .

It is then important to ask how one should understand the solutions of the
Schrödinger equation corresponding to the eigenvectors of the Hamiltonian, as in
general the Hamiltonian can also have a non-empty continuous spectrum. The spec-
trum of the Hamiltonian is dependent on the potential V (x), and hence it should be
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possible to study the spectrum from the form of the potential. Perhaps surprisingly,
one can often relate the physical situations of bounded and unbounded particles to the
simple distinction between discrete and essential spectra. The discrete spectrum
σd(Ĥ) consists of the isolated points in the spectrum σ(Ĥ), and the essential spectrum
is the rest of the spectrum σess(Ĥ) = σ(Ĥ) \ σd(Ĥ). Points in the discrete spectrum
also correspond to eigenvalues with finite-dimensional eigenspaces [Moretti 2017, Re-
mark 9.15-1]. Bounded and unbounded particles are, roughly speaking, characterized
by the energy of the particle. If the energy is less than the bounds of the potential,
the particle is considered bounded – this means that it does not have enough energy
to escape the potential well.

In the simplest case of an infinitely bounded continuous potential, there are only
bounded particles and hence one would expect the Hamiltonian to have only a discrete
spectrum. This is indeed the case.

Theorem 6.1 ([Hislop and Sigal 1996, Theorem 10.7]). Assume that V ≥ 0, V is
continuous and V (x) → ∞ as ∥x∥ → ∞. Then the Hamiltonian Ĥ has a purely
discrete spectrum.

Another theorem relating bounded particles to the discrete spectrum deals with
Kato potentials.

Definition 6.2. A potential function V (x) is called a Kato potential if V is real and
V ∈ L2(Rn) + L∞(Rn)ε, where the ε indicates that for any ε > 0 we can decompose
V = V1 + V2 with V1 ∈ L2(Rn) and V2 ∈ L∞(Rn) with ∥V2∥∞ < ε.

Theorem 6.3 ([Hislop and Sigal 1996, Corollary 14.10]). If V is a Kato potential,
then σess(Ĥ) = [0,∞).

The definition of the Kato potential means that the potential has to approach
zero as ∥x∥ → ∞, and it also cannot have singularities that are too steep. For
example, in the 3-dimensional case the Coulomb potential V (x) = −κ 1

∥x∥ is a Kato
potential, but potential V (x) = −κ′ 1

∥x∥2 is not. Particles with the energy E > 0

are then unbounded, and Theorem 6.3 states that these correspond to the essential
spectrum. These theorems provide some intuition to the physical correspondence
between bounded particles and eigenvectors of the Schrödinger equation.

As a concrete example of this distinction between bounded and unbounded parti-
cles, consider the one-dimensional bounded potential well

V (x) =

{
−V0 if −a < x < a,

0 otherwise,
(153)

where V0 > 0 is the depth of the well and a > 0 its width. Let us simply state
the results here; for a more thorough study the reader is referred to [Griffiths 1995,
Section 2.6]. For each interval (−∞,−a), (−a, a), (a,∞), the solutions of the time-
independent Schrödinger equation Ĥψ(x) = Eψ(x) have to satisfy

ψ(x) =


A1e

ix
√
2mE/ℏ +B1e

−ix
√
2mE/ℏ if x < −a,

A2e
ix
√

2m(E+V0)/ℏ +B2e
−ix

√
2m(E+V0)/ℏ if −a < x < a,

A3e
ix
√
2mE/ℏ +B3e

−ix
√
2mE/ℏ if x > a,

(154)
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where Ai and Bi are constants. It turns out that the solutions and their derivatives
also have to be continuous, which sets constraints for the solutions at x = −a and
x = a. We immediately notice that if E ≥ 0 the solutions do not belong to the Hilbert
space L2(R3) unless A1 = B1 = A2 = B2 = 0. Taking into account the continuity
requirements, this is only satisfied by the zero function Ψ(x) = 0, meaning that the
values E ≥ 0 cannot correspond to eigenvalues. They still belong to the continuous
spectrum σc(Ĥ), as the bounded potential well is a Kato potential and Theorem 6.3
states that σess(Ĥ) = [0,∞). A similar analysis shows that values En ≤ −V0 do not
yield solutions to the Schrödinger equation, and they also do not correspond to the
spectrum of the Hamiltonian. We are then left to consider values −V0 < E < 0. It
turns out that these values belong to the spectrum if they satisfy the transcendental
equation

tan
(a
ℏ
√

2m(E + V0)
)
=

√
−E

E + V0
(155)

or

cot
(a
ℏ
√
2m(E + V0)

)
= −

√
−E

E + V0
. (156)

These equations are solved by a finite amount of values E ∈ (−V0, 0), and they
correspond to the point spectrum of the Hamiltonian. Thus, we have found that
σd(Ĥ) ⊂ (−V0, 0) and σess(Ĥ) = [0,∞), i.e. the bounded states correspond to the
discrete spectrum and unbounded to the essential spectrum.

Even if E > 0, it is still possible for a function to seemingly satisfy the time-
independent Schrödinger equation. For example, in the free-particle case, V0 = 0,
these are simply given by

Ψ(x) = Aeix
√
2mE/ℏ +Be−ix

√
2mE/ℏ (157)

where E ∈ (−∞,∞) and A,B are constants. One can, however, check that these
functions are not square integrable, meaning that they do not belong to the Hilbert
space L2(R) and thus do not correspond to eigenvectors of the Schrödinger equation.
It is possible to generalize the notion of eigenvectors such that for all values in the
spectrum we have a notion similar to the eigenvectors, called generalized eigenvectors.
It is then possible to show that the values E ≥ 0 in the finite potential well admit
generalized eigenvectors, whereas the case E < −V0 does not correspond to the
spectrum and hence cannot be described in such a way. Generalizing the notion of
eigenvectors is the topic of the next section.

6.3 Rigged Hilbert spaces and generalized eigenvectors

A crucial difference between the point spectrum σp and the continuous spectrum σc
is that for the point spectrum we can find eigenvectors of the operator. In the finite-
dimensional case, a normal matrix can be described entirely by how it acts on its
eigenvectors as given by the finite-dimensional spectral theorem. Writing matrices in
terms of their eigenvectors turns out to be a very useful way to study the properties of
the matrix and thus one would like to do the same for infinite-dimensional operators.
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In general, however, this is not possible as normal operators can have a non-empty
continuous spectrum, in which case it is not possible to find corresponding eigenvec-
tors. To extend the notion of an eigenvector to the continuous spectrum, one can
define generalized eigenvectors. These are objects that in a certain sense satisfy
AF = λF for λ ∈ σc(A). The catch is that these objects do not belong to the Hilbert
space H, as in a sense they have an infinite norm ∥F∥ = ∞. Instead, they can be
considered as functionals defined on some dense subspace Ω ⊂ H, so that they belong
to the dual space Ω∗. This leads to the definition of a rigged Hilbert space.

Definition 6.4 (Rigged Hilbert space). Let H be a Hilbert space and Ω ⊂ H a
dense subspace such that Ω is given a topological vector space structure for which the
inclusion map i : Ω → H, i(ψ) = ψ, is continuous. The pair (H,Ω) is called a rigged
Hilbert space.

Essentially, topological vector spaces are vector spaces equipped with topologies
that make vector addition and scalar multiplication continuous. See [Trèves 1967,
Section 3] for the exact definition. For example, normed spaces are topological vector
spaces.

The usefulness of rigged Hilbert spaces is that one can now write the spectral
theorem in a form that is closer to the finite-dimensional case where the operator is
decomposed into eigenvalues and eigenvectors. In the infinite-dimensional case one
has to consider generalized eigenvectors instead.

Definition 6.5 (Generalized eigenvector). Let A be an operator on a rigged Hilbert
space (H,Ω) which maps the space Ω into itself. A generalized eigenvector of A is a
linear functional F ∈ Ω∗ such that for all ψ ∈ Ω the equation

F (Aψ) = λF (ψ) (158)

holds. The number λ ∈ C is the eigenvalue corresponding to the generalized eigenvec-
tor F .

Theorem 6.6 (Spectral theorem for self-adjoint operators in rigged Hilbert spaces
[Bogolubov et al. 1975, Theorem 1.3]). A self-adjoint operator in a rigged Hilbert space
possesses a complete set of generalized eigenvectors corresponding to real eigenvalues.

Proof. See [Gel’fand and Vilenkin 1964, Section 1.4].

Here the completeness of generalized eigenvectors Fλ, λ ∈ X, means that for any
vectors ψ, ϕ ∈ Ω we can write

⟨ϕ, ψ⟩ =
∫
X

Fλ(ϕ)Fλ(ψ) dµ(λ) (159)

where µ is an ordinary measure associated with the generalized eigenvectors Fλ. Note
that if the functionals Fλ are bounded, then by the Riesz theorem 2.6 we can find a
vector ξλ ∈ H such that Fλ(ψ) = ⟨ξλ, ψ⟩. Equation (159) then reduces to

⟨ϕ, ψ⟩ =
∑
λ

1

∥ξλ∥2
⟨ϕ, ξλ⟩⟨ξλ, ψ⟩ (160)
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which can be understood as the completeness of the basis {ξλ}.
As a concrete example, consider the one-dimensional momentum operator in quan-

tum mechanics, P̂ = −iℏ∂x, in the Hilbert space L2(R). It is a self-adjoint operator
with the spectrum σ(P̂ ) = σc(P̂ ) = R, σp(P̂ ) = ∅. Thus, it does not have any eigen-
vectors but with a suitably chosen subset Ω, the Schwartz space [Hall 2013, Definition
A.15], it has generalized eigenvectors that form a complete set. These generalized
eigenvectors can be written as ψp(x) = eipx/ℏ and they satisfy P̂ψp(x) = pψp(x). Note
that their norm is infinite with respect to the inner product ⟨f, g⟩ =

∫
R f(x)g(x) dx

and thus they do not belong to L2(R). They can, however, be constructed from func-
tions in L2(R) by using approximate eigenvectors. To see this, note that for functions
ψεp(x) = exp

(
i
ℏpx−

1
ℏ2 ε

2x2
)

with ε > 0 we have∥∥∥(P̂ − pI)ψεp

∥∥∥ = ε
∥∥ψεp∥∥. (161)

These functions converge pointwise ψεp(x) → ψp(x) when ε → 0. The functions ψp
are also complete in the sense that for any ϕ ∈ Ω we have

ϕ =

∫
R
⟨ψp, ϕ⟩ψp

dp

2πℏ
=

∫
R
ϕ̃(p)eipx/ℏ

dp

2πℏ
(162)

where
ϕ̃(p) = ⟨ψp, ϕ⟩ =

∫
R
e−ipx/ℏϕ(x) dx (163)

is the Fourier transform of ϕ. This allows us to write Equation (159) as

⟨ϕ, ψ⟩ =
∫
R
ϕ(x)ψ(x) dx =

∫
R

(
ϕ̃(p)

)
ψ̃(p)

dp

2πℏ
(164)

which is just Plancherel’s theorem from Fourier analysis. Here the functional Fp
corresponding to ψp has been written as

Fp(ϕ) = ⟨ψp, ϕ⟩ = ϕ̃(p). (165)

There are also other ways to write the completeness that are more common in the
physics literature. The completeness can be understood in terms of distributions, as
it is possible to show that

⟨ψp, ψq⟩ = 2πℏδ(p− q) (166)

where δ(p− q) is the delta distribution that is formally defined on the Schwartz space
in terms of the functional

δp(ϕ) = ϕ̃(p) ≡
∫
R
2πℏδ(p− q)ϕ̃(q)

dq

2πℏ
. (167)

In terms of Dirac’s bra–ket notation, Equation (166) is often to referred as the nor-
malization of the momentum states

⟨p|q⟩ = 2πℏδ(p− q), (168)
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and the corresponding completeness relation is written as

I =

∫
R
|p⟩⟨p| dp

2πℏ
. (169)

This notation is often very convenient, as operators common in physics have general-
ized eigenvectors that can be written in a simple form, usually as linear combinations
of delta distributions and standard functions. If these generalized eigenvectors – and
the associated measure – can be solved, the spectral decomposition of the operator
can be written in terms of the generalized eigenvectors, which often simplifies the
situation tremendously. As a concrete example, this gives a precise definition for the
wave function of the state: in terms of the position eigenstates |x⟩, the wave function
of the state |Ψ⟩ is given by

⟨x|Ψ⟩ = ψ(x). (170)

Thus, generalized eigenvectors allow one to treat states in terms of functions, making
calculations easier. This is the reason why quantum mechanics is, often implicitly,
defined in terms of rigged Hilbert spaces instead of ordinary ones.
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