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We use first-principles-derived numerical simulations to investigate the long-time evolution of a half-quantum
vortex ring, an Alice ring, arising from the decay dynamics of an isolated monopole in the polar phase of a
dilute spin-1 Bose-Einstein condensate. In particular, we study the lifetime and decay characteristics of the
Alice ring under different experimentally relevant conditions. We observe that, in a 87Rb condensate with a
homogeneous external magnetic field, a well-centered Alice ring may survive for over 160 ms, and that during
its lifetime it can contract back into a monopole, which again converts into an Alice ring. Interestingly, we notice
an additional Alice ring, with an opposite topological charge, to emerge during the decay dynamics within the
condensate, leading to the coexistence of two Alice rings in the same cloud. Shortly after this coexistence,
the original Alice ring breaks into a line-like defect referred to as an Alice string. We find that the location
of the initial isolated monopole correlates with the winding direction of the scalar phase in the produced
vortex ring, a phenomenon which we utilize to create two Alice rings with opposite charges and opposite
winding directions. Such created Alice ring and anti-Alice ring naturally annihilate each other in the subsequent
evolution.

DOI: 10.1103/PhysRevResearch.5.023104

I. INTRODUCTION

Owing to their persistence through phase transitions and
dissipation, topological defects are important in multiple areas
of physics such as in cosmology [1] and condensed-matter
physics [2]. The Alice string is a topological line defect, a
vortex line, that was initially studied in the context of field
theories [3,4]. It has an unusual feature of changing the sign
of a monopole charge that encircles it [5–8]. It is possible for
an Alice string to appear also as a closed loop, an Alice ring
(AR), as a result of a continuous deformation of a monopole
defect [9,10].

Bose-Einstein condensates (BECs) with an internal spin
degree of freedom provide an ideal platform for studying
topological defects due to their versatile order parameter
space and symmetries [11]. The multicomponent order pa-
rameter fields of spinor BECs are able to host a wide variety
of topological defects, such as coreless vortices [11], Dirac
monopoles [12,13], skyrmions [14,15], and knots [16,17]. In
particular, the order parameter space of the polar phase of the
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BEC with hyperfine spin F = 1 supports vortices, quantum
knots, and point-like monopole defects [18,19], analogous to
the ’t Hooft-Polyakov monopole [20,21]. We refer to these
topological monopole defects as isolated monopoles since
they are free of any other attached defects, unlike the Dirac
monopole.

It is energetically favorable for the isolated monopole to
decay into a closed vortex ring that conserves the topological
monopole charge [22]. Consequently, such a vortex has a
winding number of 1/2 for the scalar phase, allowed by the
polar order parameter ζp = eiϕ d̂ that is invariant under the si-
multaneous substitutions of d̂ → −d̂ and ϕ → ϕ + π , where
d̂ ∈ R3 is the unit-length director vector and ϕ ∈ [0, π ) is the
scalar phase. Along a path encircling once the half-quantum
vortex, the director continuously changes its direction, and the
scalar phase winds π , rendering the vortex ring analogous to
the AR considered in particle physics [23].

The long-time evolution of an isolated monopole in 87Rb
spin-1 BEC has previously been studied in Refs. [24,25],
though in a quadrupole magnetic field or without any external
magnetic fields. In both cases, the condensate eventually ex-
periences a polar-to-ferromagnetic phase transition caused by
dynamical instabilities driving the spinor degrees of freedom
towards the ferromagnetic ground-state phase of 87Rb. This
change of magnetic phase inevitably leads to the decay of
any produced ARs since the ferromagnetic order parameter
does not support such a topological defect. In addition, even
though the produced AR is observed in the previous literature
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[26], its evolution is not studied in detail. In Ref. [27], the
stability and dynamics of an AR was studied in the case of
23Na, the ground-state phase of which is polar. Their work
was also conducted in the absence of magnetic fields, which
prevents examining the effects of the Zeeman shifts on the de-
cay dynamics. In addition, stationary-state AR solutions were
used as initial conditions, which led to two solution branches
with different ring radii. Thus, it remains open whether a
homogeneous constant magnetic field can be used to im-
prove the stability of ARs in polar BECs. Long-lived ARs
would be of great interest thanks to their peculiar topological
features.

In this paper, we present the evolution and decay dynam-
ics of ARs in purely optically trapped 87Rb spin-1 BECs
in the presence of a homogeneous magnetic field. Since the
total magnetization of the BEC is conserved over the time
scale of the simulations, the minimization of energy to find
the effective ground-state magnetic phase does not depend
on the linear Zeeman energy, and the external-magnetic-
field-induced quadratic Zeeman energy shifts the ground-state
phase of the 87Rb condensate to polar and hence alters the de-
cay dynamics of the polar phase. Instead of a stationary-state
AR solution, we produce the AR by simulating the creation
and decay of the initial isolated monopole. With a purely
polar initial state and perfectly centered monopole, we are
able to verify the existence of the AR after an evolution of
over 160 ms. Interestingly, near the end of this period we find
a second AR to emerge from the boundary of the condensate.
We also study in detail the effects of the quadratic Zeeman
shift, added noise, and the location of the monopole on the
dynamics and decay of the AR which emerges as the decay
product of the initial monopole. We find that by creating the
initial monopole near the condensate boundary, we are able to
change the winding direction of the emerging AR, compared
with the centered case. This allows us to create two ARs, with
opposite winding directions, which eventually annihilate each
other. Experimental nonidealities, such as noise and inaccu-
racy in the monopole positioning, are observed to shorten the
lifetime of the AR, though the ring is still clearly noticeable
beyond 80 ms after its creation. These long-lived ARs suggest
a possibility to theoretically and experimentally demonstrate
their topological charge negation property on monopoles that
travel through them [3].

Furthermore, we pay attention to the observation in
Ref. [27] that the instability of the AR may be caused
by the error arising from the finite spatial discretization. It
has been shown in the case of the scalar Gross-Pitaevskii
equation [28,29] that more isotropic discretization grids than
the widely used evenly spaced Cartesian grids can improve
the accuracy and the reliability of the numerical solution.
Therefore, we utilize a spatial discretization consisting of a
truncated octahedral tiling in order to decrease the AR de-
cay caused by the discretization error. The used numerical
method is also verified to conserve the total magnetiza-
tion to ensure the polar ground-state phase of the BEC in
the presence of a strong enough homogeneous magnetic
field.

The rest of this paper is organized as follows: In Sec. II,
we introduce the mean-field theory of spin-1 BECs and

the characteristics of the polar order parameter. Section III
describes our methods for the AR creation and numerical tem-
poral integration. The results of the simulations are presented
in Sec. IV. Finally, Sec. V summarizes and concludes this
article.

II. THEORY

A. Mean-field theory

In the mean-field approximation of a dilute spin-1 Bose-
Einstein condensate, the order parameter may be expressed
as �(r, t ) = √

n(r, t )ζ (r, t ), where n is the particle density
of the condensate and ζ denotes a three-component complex-
valued spinor that satisfies ζ †ζ = 1. The components ζm are
indexed by the magnetic quantum number m ∈ {+1, 0,−1}.
The temporal evolution of the order parameter at adequately
low temperatures is described by the Gross-Pitaevskii mean-
field equation

ih̄∂t� = {ĥ0 + n[c0 + c2〈F〉 · F] − i�n2}�, (1)

where F = (Fx, Fy, Fz ) is a vector of the standard dimension-
less spin-1 matrices, 〈F〉 = �†F� is the local average spin, �

is the three-body loss term, c0 and c2 are effective atom-atom
interaction strengths, and ĥ0 is the single-particle Hamiltonian
given by

ĥ0(r, t ) = − h̄2

2m
∇2 + V (r) + gF μBB(r, t )F

+ q[B(r, t )F]2, (2)

where m is the atom mass, gF is the Landé g factor, μB is the
Bohr magneton, B is the external magnetic field, and q is the
strength of the quadratic Zeeman shift. The harmonic optical
trapping potential is given by V = m(ωrx2 + ωry2 + ωzz2)/2,
where ωr and ωz are the radial and axial trapping frequencies,
respectively.

The spin-1 matrices Fα (α = x, y, z) are given in the z-
quantized basis, and hence the spinor ζ is presented in the
eigenbasis of Fz. In the analysis of topological defects, it is
convenient to express the spinor also in the Cartesian basis,
in which, the components can be obtained by the unitary
transformation

⎛
⎜⎝

ζx

ζy

ζz

⎞
⎟⎠ = 1√

2

⎛
⎜⎝

−ζ+1 + ζ−1

−iζ+1 − iζ−1√
2ζ0

⎞
⎟⎠, (3)

and the spinor and the order parameter are denoted by ζ and
� = √

n ζ , respectively.

B. Polar order parameter manifold

For spin-1 BECs in the absence of external magnetic fields,
two different magnetic phases can be identified, ferromagnetic
and polar, which are determined by the local average spin
magnitudes |〈F〉| = 1 and |〈F〉| = 0, respectively. In the polar
phase, the spinor can be generally expressed in the eigenbasis
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of Fz as

ζp = eiϕ

√
2

⎛
⎜⎝

−dx + idy√
2dz

dx + idy

⎞
⎟⎠, (4)

where ϕ is the scalar phase and {dα} are real-valued num-
bers satisfying d2

x + d2
y + d2

z = 1. This representation of the
spinor ζp in the eigenbasis of Fz can be transformed us-
ing Eq. (3) such that the Cartesian-basis spinor becomes
ζp(r, t ) = eiϕ(r,t )d̂(r, t ), where d̂ = (dx, dy, dz )ᵀ is a real-
valued unit vector. The polar spinor ζp is invariant under
SO(2) rotations about the director d̂, and it also possesses
a discrete Z2 spin-gauge symmetry of eiϕ d̂ = ei(ϕ+π )(−d̂),
which allows an apparent scalar-phase discontinuity of π in
a continuous order parameter field. The resulting polar order
parameter space is Mp = [U (1) × S2]/Z2, the first and second
homotopy groups of which are isomorphic to the additive
group of integers π1(Mp) ∼= π2(Mp) ∼= Z. This permits the
order parameter field to host both monopoles and vortices as
topological defects, with full and fractional-integer charges,
respectively.

C. Alice ring

An isolated monopole in the polar phase of a spin-1 BEC,
with the topology defined by the director d̂, is schematically
illustrated in Fig. 1(a). Such a topological defect causes the
particle density to vanish at its core. This has a high energy
cost and hence promotes the defect unstable against decay
into a closed vortex loop, which preserves the topology of the
initial monopole far from its core. Such a vortex loop may
have a lower energy cost of filling its core with finite particle
density in the ferromagnetic phase than the corresponding
cost of forcing the density to vanish at the core of the vortex.
A schematic illustration of such a closed ferromagnetic-core
vortex loop, an Alice ring, is shown in Figs. 1(b) and 1(c).

The figure illustrates how the initial monopole topology
of the director field d̂ is preserved far from the torus-shaped
vortex, and hence on any closed poloidal path about the vortex
core, such as L in Fig. 1(b), the director d̂ undergoes a full
reversal of direction, quantifying the topological charge of the
AR as 1/2. Additionally, on any such path similar to L, the
scalar phase ϕ of the polar order parameter also experiences a
winding of π , rendering the ring a half-quantum vortex. Such
a path must always pass through a point where the director
d̂ suddenly flips its sign, and the scalar phase ϕ changes by
π radians, although the exact location of this is not uniquely
determinable since it is not physical and depends on the choice
of gauge. In Fig. 1 the gauge has been chosen such that this
apparent discontinuity is located in the middle of the AR.

In the situation described above, the order parameter holds
a rotational symmetry about the vertical ring axis, as presented
in Fig. 1(c).

If a half-quantum vortex is line-like, i.e., not wrapped into
a loop as illustrated in Fig. 2, it may be considered to be an
Alice string. Any path about this line-like defect, such as L′
in Fig. 2, holds identical properties to those of L described
above. In Fig. 2, the gauge has been chosen such that the

FIG. 1. Schematic illustrations of (a) a monopole and (b and c)
an Alice ring. In all panels, the greenish ellipsoid represents the
polar-phase BEC cloud and the red domain is the ferromagnetic core
of the Alice ring. In (a) and (b), the cloud is cropped away for y > 0
and the director field d̂ is visualized with black arrows. In (a), the
black dot indicates the location of the zero density. In (b), a closed
poloidal path L about the vortex core is colored with the scalar phase
ϕ according to the given color bar. The director d̂ is also shown at
evenly spaced points on the path L and colored with the scalar phase
ϕ. In (c), the BEC cloud is cropped away for z > 0.

immediate jumps of d̂ → −d̂ and ϕ → ϕ + π occur on the
positive x axis.

III. METHODS

A. Monopole creation

The creation of the initial monopole defect follows the
method originally developed for Dirac monopoles in Ref. [12]
and is extended to isolated monopoles in Ref. [18], where
the internal degrees of freedom of the order parameter
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FIG. 2. Schematic illustration of an Alice string. The greenish
ellipsoid represents the polar-phase BEC cloud and the red domain
is the ferromagnetic core of the Alice string. The cloud is cut in
half along a horizontal axis and the director field d̂ is visualized on
the intersection with black arrows. A closed poloidal path L′ about
the vortex core is colored with the scalar phase ϕ according to the
provided color bar. The director d̂ is also shown at evenly spaced
points on the path L′.

adiabatically follow the changes in the external magnetic field.
In summary, the condensate is initially in the polar-phase
ground state � = √

neiφ (0, 1, 0)ᵀ, in an external magnetic
field of the form B(r, t ) = Bb(t ) + Bq(r, t ), where Bb(t ) =
Bb(t )ẑ is a homogeneous bias field and Bq(r) = bq(xx̂ +
yŷ − 2zẑ) is a quadrupole magnetic field. Initially, the bias
field strength is Bb = 1.0 G and the quadrupole gradient
bq is linearly increased from zero to 4.3 G/cm in 10 ms.
The bias field is subsequently decreased to 45 mG in 10
ms, placing the point at which the magnetic field vanishes
52 µm above the center of the condensate and keeping
the director d̂ approximately aligned with ẑ. The magnetic
field zero is then brought to the center of the conden-
sate by reducing the bias field linearly to zero at the rate
dBb/dt = −0.25 G/s for 180 ms, causing the director to
adiabatically follow the magnetic field and ideally result in a
texture d̂ = (x, y,−2z)/

√
x2 + y2 + (2z)2. Note that the pa-

rameters we employ here are experimentally demonstrated
in Refs. [18,19]. Immediately after the monopole creation
process, we extinguish the quadrupole field in 200 µs and
simultaneously ramp up the bias field to 1.2 G in 500 µs.
Subsequently, the condensate is allowed to evolve in the pres-
ence of the harmonic optical trap and the homogeneous bias
field Bb.

The atom number in the simulated condensate is N =
2.5 × 105 and the radial and axial optical trapping frequencies
are ωr = 2π × 120 Hz and ωz = 2π × 160 Hz. We set the
three-body loss term to � = h̄ × 2.9 × 10−30 cm6/s and the
atom-atom interaction strengths to c0 = (4π h̄2/3m)(2a2 +
a0) and c2 = (4π h̄2/3m)(a2 − a0), where a0 = 101.8 × aB

and a2 = 100.4 × aB are the scattering lengths for 87Rb and
aB is the Bohr radius. Depending on the scenario we study, the
strength of the quadratic Zeeman shift is set to either zero, q =
0, or to q = (gF μB)2/�Ehf, where �Ehf ≈ (6.8 GHz) × 2π h̄
is the 87Rb hyperfine energy splitting and gF = −1/2.

TABLE I. Physical parameters used in the numerical simulations
during the Alice ring evolution.

Parameter Value

Particle number, N 2.5 × 105

Atom mass, m 1.44316060 ×10−25 kg
F = 0 scattering length, a0 5.387 nm
F = 2 scattering length, a2 5.313 nm
Radial trapping frequency, ωr 2π × 120 Hz
Vertical trapping frequency, ωz 2π × 160 Hz
External magnetic field, B (1.2 G) × ẑ
Three-body loss term, � (2.9 × 10−30 cm6/s) × h̄
Quadratic Zeeman strength, q 4.7721 × 10−24 J/T2

B. Numerical methods

In the numerical integrator, we scale the time, energy,
and spatial distances into the units of h̄ωr , 1/ωr , and ar =√

h̄/mωr , respectively, and numerically solve the resulting
dimensionless Gross-Pitaevskii equation (GPE) using discrete
exterior calculus (DEC) [30]. We briefly introduce our uti-
lization of DEC to the GPE in the Appendix, whereas a
detailed description of this matter is given in Ref. [29]. In our
DEC method, the spatial domain is discretized using a pair
of meshes: a primal mesh and its dual mesh. We choose the
body-centered cubic (BCC) grid as the primal mesh and its
Voronoi diagram, the truncated octahedral grid, as the dual
mesh, and present the order parameter on the latter. As a
point of comparison, we run the simulations also using cu-
bic grids for both meshes. The ferromagnetic-phase ground
state is solved using the imaginary-time evolution method in
combination with DEC, without any external magnetic fields.
Subsequently, the ground state is forced to the polar phase by
replacing the spinor with ζ = (0, 1, 0)ᵀ.

During the evolution, the order parameter does not persist
purely in the polar phase, though it is still possible to find
a unique director and phase also in the mixed phase, which
have identical properties to those in the pure polar phase, as
required by the continuity of the order parameter. We extract
ϕ and d̂ by first decomposing the spinor in the Cartesian basis
into two real-component vectors as ζ = u + iv. Then, we find
a phase ϕ′, such that for the gauge transformation eiϕ′

(u +
iv) = d + ib, it holds that d · b = 0. This is achieved by solv-
ing ϕ′ from tan(2ϕ′) = 2u · v/(|u|2 − |v|2). For a purely polar
order parameter, we have b = 0, d̂ = d/|d|, and ϕ = ϕ′, and
hence, we use these quantities for the scalar phase and the
director also in the case of mixed phases [31].

The numerical simulations are carried out using a cubic
computational domain with the side length of L = 24 × ar

and spatial discretizations with 1123 × 12 and 2563 degrees of
freedom for the truncated octahedral mesh and for the cubic
mesh, respectively.

IV. RESULTS

A. Decay dynamics and lifetime

First, we examine the evolution of the AR using the phys-
ical parameters presented in Table I and define the evolution
time T by taking T = 0 as the instant when the quadrupole
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FIG. 3. Decay of a well-centered initial monopole into an Alice ring in the ideal noise-free case. Cross section (x = 0 plane) of the BEC
order parameter with significantly nonvanishing particle density for (a and b) T = 0 ms and (c) T = 4 ms, with the director d̂ and the scalar
phase ϕ of the polar phase represented by the black arrows and the background color map, respectively. In (b), the monopole is shown in a
zoomed-in and rotated (about the y axis) view with a three-dimensional (3D) visualization of the domain of the elevated local average spin
magnitude (|〈F〉| = 0.8) as a bright red torus (color not denoting ϕ). The semitransparency of the red surface denotes that the domain is not
purely ferromagnetic. In (c), the view angle is as in (b) for T = 4 ms with the fully opaque bright red torus-shaped 3D domain presenting
the almost pure ferromagnetic phase (|〈F〉| � 0.95). In (a) the field of view is 14 × 10 a2

r . The field of view of (b) and (c) is denoted by the
black-border isosceles trapezoid in (a). The white lines in the scalar phase color maps denote the instantaneous jumps of π and the simultaneous
reversals of d̂. The physical parameters used in the simulations are presented in Table I.

field is extinguished. The decay of the initial monopole into
the AR is presented in Fig. 3, which shows that at T = 0, the
director is well aligned with the quadrupole field and a torus-
shaped domain with elevated local average spin magnitude
(|〈F〉| = 0.8) has already emerged around the center of the
BEC. For the director and scalar phase, Fig. 3 focuses only
on the x = 0 plane, but the structure is essentially symmetric
about the z axis. After T = 0, the radius of the ring and |〈F〉|
start to increase, and at T = 4 ms, the vortex core has been
filled with almost pure ferromagnetic phase (|〈F〉| > 0.95).
The ferromagnetic filling is energetically favorable over forc-
ing the particle density to zero at the vortex core since for
87Rb the spin healing length ξs is significantly greater than
the density healing length ξn (ξs ≈ 14.7 × ξn). Figure 3 also
clearly illustrates that on a closed poloidal path about the
core, the scalar phase ϕ winds and the director d̂ rotates by
π radians. Throughout the rest of our analysis, we utilize the
ferromagnetic core, in combination with the scalar phase and
director, to verify the existence of the AR.

First, we examine the long-time evolution in these ideal cir-
cumstances where the initial state �0 = √

ng(0, 1, 0)ᵀ, where
ng is the density of the ground state that is free of noise,
and the monopole is placed exactly at the center of the BEC.
Figure 4 shows the ferromagnetic core of the AR vortex at
different points in time, which reveals that during the evolu-
tion, the AR travels back and forth along the z axis and that its
radius varies in time. During the first 90 ms of the evolution,
the AR stays within a harmonic oscillator length ar from the
origin and the radius of the AR increases from 0.8 × ar to
1.5 × ar .

Despite the changes in the position and size, the ferromag-
netic core retains its ring-like form for over 160 ms, after
which the ring breaks at a single point and the vortex extends
into a line-like defect, with both ends at the condensate bound-
ary still possessing the half quantum of phase winding for the
full length of the vortex, i.e., the Alice ring becomes a curvy
Alice string, illustrated in Fig. 5. The figure also shows how
one end of the Alice string starts to align with the z axis.

The decay of the AR can be observed also in the evolution
of the total magnetization M = ∫ 〈F〉 dr, visualized in Fig. 6,
where the x and y components of M start to oscillate around
the zero value approximately at the same time the AR decays.
The figure also verifies the conservation of the z magnetization
in the numerical method, which is important to avoid the
transition to the ferromagnetic phase.

Interestingly, just before the decay of the initial AR into
an Alice string, another AR emerges from the boundary of
the condensate as visualized in Fig. 7. When compared to
the original AR, the second ring has an opposite topological
charge, visible from the rotation direction of the director d̂ on

FIG. 4. Ferromagnetic cores (|〈F〉| > 0.95) of the Alice ring
shown by different colors for different evolution times T after the
monopole creation in the case of a well-centered monopole and no
initial noise. The 3D toruses are shown directly along the y axis and
hence their ring-like shapes are not fully visible. See Table I for
parameter values.
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FIG. 5. Alice string at T = 180 ms, as a product of an Alice ring
breaking off at a single point. In (a), the director d̂ and the scalar
phase ϕ are presented on the y = 0 plane at regions of significant
particle density, with black arrows and background color map, re-
spectively, and the almost pure ferromagnetic phase (|〈F〉| > 0.95),
i.e., the core of the curvy Alice string, is represented by the bright red
3D domain (color not denoting ϕ). In (b), the same ferromagnetic-
phase core of the string as in (a) is colored by the scalar phase ϕ

and shown from a different view angle. The field of view in (a) is
12 × 9 a2

r and in (b) is 6 × 6 a2
r . The simulation was conducted in the

ideal conditions. See Table I for parameter values.

FIG. 6. Components of the total magnetization vector M =∫ 〈F〉 dr as functions of the evolution time T after the monopole
creation in the ideal conditions. See Table I for parameter values.

FIG. 7. Coexistence of two Alice rings. The director d̂ and the
scalar phase ϕ are represented on the x = 0 plane at T = 162 ms
by black arrows and background color map, respectively. The spin-
gauge symmetry transformation is applied here to d̂ and ϕ with
respect to the gauge used in Fig. 3. The almost pure ferromagnetic
phase (|〈F〉| > 0.95) is represented by the bright red domains. The
field of view is 14 × 10 a2

r . The simulation was conducted in the ideal
conditions. See Table I for parameter values.

a poloidal path about the vortex. Despite this, the two ARs
have identical scalar-phase winding directions, which keeps
them apart and therefore tends to protect them from annihi-
lating each other. After the original AR decays into the previ-
ously mentioned Alice string, it subsequently merges with this
newly produced ferromagnetic domain near the condensate
boundary and causes them together to break into arbitrary
sections with no clearly identifiable structure. At this point of
time, we consider the half-quantum vortex to be fully decayed.

Next, we simulate the AR in conditions similar to their
experimental realization [26]. We perturb the initial state
with noise as �0 = √

ng(0, 1, 0)ᵀ + 0.1 × (X,Y, Z )ᵀ, where
X,Y, Z ∈ C with real and imaginary parts being random
numbers according to the standard normal distribution. The
noise amplitude of 0.1 is chosen empirically in an attempt to
maximize the matching between the simulated results and the
experimental observations in Ref. [26]. The noise populates
dynamically unstable modes which draw more population
exponentially in time, and hence the lifetime of the AR can
be expected to decrease only logarithmically with respect to
the initial noise amplitude. After this, the order parameter
is normalized to match the atom number used in the exper-
iments [26] and to prevent its fluctuation with the random
seed. Furthermore, we create the initial monopole randomly
inside the origin-centered ball of radius ar . We observe that
these factors prompt arbitrary ferromagnetic-phase domains
to emerge from the condensate boundary, which causes the
AR to decay sooner than in the ideal case considered above.
The displacement of the initial monopole is also observed to
affect the orientation of the AR and lead to a bend of the ring
axis away from the z axis as shown in Fig. 8.

Given the employed three-body loss rate �, a characteristic
number for 87Rb spin-1 BECs, the particle number Ñ (t ) =∫

n(r, t )dr essentially vanishes approximately at T = 3 s, and
causes Ñ to decrease only by 5% of the initial number N
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FIG. 8. Long-lived Alice ring in experimental-like conditions at
T = 84 ms. The director d̂ (black arrows) and the scalar phase ϕ

(background color) are shown in the x = y plane and the red domain
denotes the almost pure ferromagnetic phase (|〈F〉| > 0.95). The
field of view is 8 × 8 a2

r . Random noise with a magnitude of 10%
of the order parameter amplitude is added to the initial state and the
monopole is placed randomly in the origin-centered ball of radius ar

by the creation ramp. See Table I for parameter values.

during the lifetime of the AR. The simulation was run also
without the three-body loss term, but no significant difference
in the AR evolution or lifetime was observed. We also study
the effects of the quadratic Zeeman effect and the spatial dis-
cretization on the lifetime and decay dynamics of the AR. The
AR lifetime is not found to be significantly longer when the
strength of the quadratic Zeeman shift is set to zero, hence the
decay is unlikely to be caused by the quadratic Zeeman effect.
On the other hand, the evenly spaced Cartesian grid, com-
monly used with the time-splitting spectral methods [32], is
found to cause faster AR decay such that, for example, in the
ideal conditions, a lifetime of only 100 ms is observed.

B. Winding direction of the scalar phase

Let us examine the noise-free case. By comparing the
initial state of the AR in Fig. 3 for T = 4 ms to the decayed
states in Figs. 5 and 7 for T > 160 ms, we observe that the
half-quantum winding of the scalar phase changes its direction
during the evolution. This spontaneous flip in the winding
direction takes place approximately at the half-lifetime point
T ≈ 82 ms and is illustrated in Fig. 9. The figure shows how at
first, the winding is such that the scalar phase increases along
the positive z direction when traveled through the ring. Next,
the AR shrinks significantly, after which it grows back to its
original size, but with a winding such that the scalar phase
increases in the negative z direction when traveled through the
AR. Furthermore, closer examination of the dynamics of the
topological defect during the flip reveals that, in between the
different scalar phase winding directions, the AR contracts
back into a monopole, presented in Fig. 10. These observa-

FIG. 9. Spontaneous flip in the winding direction during the time
interval from T = 81 ms to 84 ms, as indicated in each panel. The
scalar phase ϕ on the x = 0 plane is represented by the background
color and ferromagnetic phase by the red domain. The field of view
in all of the panels is 6 × 6 a2

r . See Table I for parameter values.

tions motivate us to further investigate the factors determining
the winding direction and the cause for its flip.

A small displacement, not exceeding ar from the origin,
of the initial monopole is not noticed to affect the winding
direction. It seems to rather be determined by the noise per-
turbation, or more precisely, by the spin polarization of the

FIG. 10. Monopole as a result of Alice ring contraction at T =
82.4 ms. The director d̂ and the scalar phase ϕ on the x = 0 plane
are represented by the black arrows and the background color, re-
spectively. The field of view is 4 × 4 a2

r . See Table I for parameter
values.
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FIG. 11. (a and b) Particle density of the m = 0 component in-
tegrated along the x axis (

∫ |�0|2dx). (c and d) The scalar phase
(background color) and its winding direction (black arrow) corre-
sponding to (a) and (b), respectively. The red areas denote the cross
sections (x = 0 plane) of the ferromagnetic phase. For (a) and (c), the
initial condition has 〈|〈F〉|〉 = 0 and for (b) and (d), 〈|〈F〉|〉 > 0. In
(a) and (b) the field of view is 24 × 24 a2

r and in (c) and (d) 4 × 4 a2
r .

See Table I for parameter values.

initial state: how much the local spin magnitude |〈F〉| differs
from zero seems to be correlated with the winding direction
of the emerging half-quantum vortex. Therefore, in the exper-
imental conditions, the AR possesses a winding opposite to
the ideal case already from the beginning and does not expe-
rience the direction change during the evolution. From these
observations it appears that in the ideal conditions, the spin
polarization of the AR-supporting order parameter increases
during the evolution, and once it reaches a certain threshold,
the winding direction flips. The winding direction can also
be identified from the integrated m = 0 particle density on
the y = 0 plane as shown in Fig. 11. The different winding
directions cause either a V-shaped or a -shaped gap to the
density profile, which we will subsequently call positive and
negative windings, respectively.

Even though the aforementioned small displacement of the
initial monopole does not noticeably affect the winding, the
case is different with more substantial distances away from
the origin. In particular, if the monopole is displaced along
the z axis such that the AR is produced near the condensate
boundary, the winding may be opposite to that of the well-
centered case. This happens, for example, if the preferred
winding direction is such that it would cause the AR to travel
upwards, but the AR is created near the top of the condensate
so that it does not have room to travel up. This causes the AR
to have its winding to favor downwards movement. Note that
also for the well-centered AR, the direction of movement in
Fig. 4 agrees with the winding directions shown in Fig. 9.

C. Annihilation

In Sec. IV A, we mentioned the emergence of the second
AR with the opposite topological charge before the decay
of the original AR. However, during their coexistence, we
observe that the ARs arising from the ideal conditions have
identical winding directions of the scalar phase (Fig. 7).
By utilizing the observations obtained in Sec. IV B, we are
also able to produce two coexisting ARs with both opposite
charges and opposite scalar-phase windings. This is achieved
by creating the initial monopole close to the top boundary
of the cloud, which forces its decay product AR to flip its
winding with respect to the z = 0 case. The second AR still
similarly emerges near z = 0, holding its original winding. We
use such noise to perturb the initial condition that is known to
cause a -shaped m = 0 density profile when the monopole
is placed at the origin, i.e., negative scalar-phase winding. The
initial monopole is then placed near the top boundary of the
condensate cloud at z = 2.42 × ar , which causes the produced
AR to have positive winding instead. Again, in the decay
dynamics, a second AR emerges from the side boundary but
now, contrary to the original AR, the second one possesses the
negative winding that an initially centered monopole would
also have.

The opposite winding directions of the two ARs cause
them to approach each other until their ferromagnetic cores
eventually merge together and the opposite scalar phase wind-
ings and director-determined topological charges cancel each
other, which subsequently releases the merged ferromagnetic
cores and allows them to return to the polar phase. This
intriguing annihilation process of the AR and anti-AR is
presented in Fig. 12, where at T = 10 ms, we observe the
scalar-phase winding to be zero on a poloidal path about the
point where the ferromagnetic cores have merged. The phase
change can also be observed as a drop in the evolution of
the expectation value of the local average spin magnitude
〈|〈F〉|〉 = ∫

n|〈F〉|dr/N presented in Fig. 13. The noise per-
turbation in the initial condition and the extreme placement of
the monopole cause the decay to happen a lot quicker than in
our other simulations, already at around T = 10 ms.

V. CONCLUSION

We have numerically studied the long-time evolution and
decay dynamics of Alice rings in 87Rb spin-1 BECs. The
evolution was studied in the presence of an external homoge-
neous magnetic field using a natural-crystal-structure spatial
discretization in our numerical solver to maximize the lifetime
of the Alice ring. The numerical simulations show that with an
initially unperturbed ground state, an Alice ring created at the
center of the condensate has a lifetime of over 160 ms. In con-
ditions closer to those of experimental setups, the Alice ring
decays after a 90-ms evolution. A detailed inspection of the
decay dynamics also revealed the emergence of a second Alice
ring into the condensate from its boundary. The director field
of the emerging Alice ring has an opposite monopole winding
from that of the original ring. In this case, the two Alice rings
have an identical winding direction of the scalar phase, and the
original ring decays by breaking into an Alice string instead
of annihilating with the coexisting anti-Alice ring.
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FIG. 12. Annihilation of the Alice ring and anti-Alice ring. The
ferromagnetic-phase cores (red domains), the director d̂ (black ar-
rows), and the scalar phase ϕ (background color) are shown for
evolution times from T = 6 ms to T = 14 ms. In all of the panels, the
field of view is 14 × 10 a2

r . The initial state is perturbed with noise,
10% of the order parameter amplitude, and the initial monopole is
placed near the top boundary of the cloud, at z = 2.42 × ar . See
Table I for parameter values.

FIG. 13. Expectation value of the local average spin magnitude
as a function of the evolution time T corresponding to Fig. 12. The
initial state is perturbed with noise, 10% of the order parameter
amplitude, and the initial monopole is placed near the top boundary
of the cloud, at z = 2.42 × ar . The dashed red line marks the time
instant when the Alice ring and anti-Alice ring annihilate. See Table I
for parameter values.

The scalar-phase winding of the centered Alice ring is
observed to be correlated with the magnetic polarization of the
order parameter that supports the initial monopole defect. The
winding is opposite that of the centered case if the Alice ring
is created near the condensate boundary such that its natural
traveling direction would otherwise be blocked. This causes
the anti-Alice ring to emerge with an opposite scalar-phase
winding, which enables the annihilation of the two Alice
rings inside the condensate. In future studies, a more thorough
investigation of the cooperative action of noise and three-body
losses to the dynamics and lifetime of the Alice ring may be
conducted. Most interestingly, the long-lived Alice rings may
be utilized to demonstrate their intriguing property of negating
the charge of a monopole that passes through them.
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APPENDIX: DISCRETE EXTERIOR CALCULUS

Discrete exterior calculus provides a discrete extension of
differential geometry and exterior algebra, and in this de-
scription of its utilization, we assume some prior knowledge
with its concepts as defined in Ref. [30]. A more detailed
description of the utilization of discrete exterior calculus to
general wave propagation problems is given in Ref. [33] and
particularly to the Gross-Pitaevskii equation in Refs. [28,29].

We begin by regarding the order parameter � as a complex
vector-valued discrete differential 0-form ψ , which allows
us to write the Laplacian in the single-particle Hamiltonian
[Eq. (2)] in a discrete form as − �3 d2 �−1

2 dᵀ
2 , where d2
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is a matrix representing the discrete exterior derivative that
operates on discrete differential 2-forms, and �2 and �3 are
matrices representing the discrete Hodge stars that operate on
discrete differential 2-forms and 3-forms, respectively.

We discretize the spatial domain using a pair of meshes
consisting of a primal mesh and a dual mesh. The body-
centered cubic grid is used as the primal mesh and its Voronoi
diagram, the truncated octahedral grid, as the dual mesh. Be-
cause of the choice for the dual mesh, its edges are always

orthogonal to the faces of the primal mesh, which renders
the discrete Hodge stars diagonal matrices. The discrete dif-
ferential 0-form ψ corresponds to the nodes and the discrete
differential 1-form u = dᵀ

2 ψ to the edges of the dual mesh.
The discrete codifferential − �3 d2�

−1
2 maps the discrete dif-

ferential 1-form u first to primal mesh faces as a discrete
differential 2-form, and then through a 3-form on primal mesh
bodies back to the dual nodes, which finalizes the full dis-
cretization of the Laplacian.

[1] R. P. L. Azevedo and C. J. A. P. Martins, Cosmic strings and
other topological defects in nonscaling regimes, Phys. Rev. D
95, 043537 (2017).

[2] A. Zong, A. Kogar, Y. Bie, T. Rohwer, C. Lee, E. Baldini,
E. Ergeçen, M. Yilmaz, B. Freelon, E. Sie, H. Zhou, J.
Straquadine, P. Walmsley, P. Dolgirev, A. Rozhkov, I. Fisher, P.
Jarillo-Herrero, B. Fine, and N. Gedik, Evidence for topological
defects in a photoinduced phase transition, Nat. Phys. 15, 27
(2019).

[3] A. Schwarz, Field theories with no local conservation of the
electric charge, Nucl. Phys. B 208, 141 (1982).

[4] A. Schwarz and Y. Tyupkin, Grand unification and mirror parti-
cles, Nucl. Phys. B 209, 427 (1982).

[5] M. Bucher and A. S. Goldhaber, SO(10) cosmic strings
and SU(3)color Cheshire charge, Phys. Rev. D 49, 4167
(1994).

[6] M. Bucher, K.-M. Lee, and J. Preskill, On detecting discrete
Cheshire charge, Nucl. Phys. B 386, 27 (1992).

[7] S. Ben-Menahem and A. R. Cooper, Baryogenesis from unsta-
ble domain walls, Nucl. Phys. B 388, 409 (1992).

[8] M. G. Alford, K. Benson, S. Coleman, J. March-Russell, and F.
Wilczek, Interactions and Excitations of Non-Abelian Vortices,
Phys. Rev. Lett. 64, 1632 (1990).

[9] F. A. Bais and P. John, Core deformations of topological de-
fects, Int. J. Mod. Phys. A 10, 3241 (1995).

[10] F. Bais and J. Striet, On a core instability of ’t Hooft–Polyakov
type monopoles, Phys. Lett. B 540, 319 (2002).

[11] T.-L. Ho, Spinor Bose Condensates in Optical Traps, Phys. Rev.
Lett. 81, 742 (1998).

[12] V. Pietilä and M. Möttönen, Creation of Dirac Monopoles
in Spinor Bose-Einstein Condensates, Phys. Rev. Lett. 103,
030401 (2009).

[13] M. W. Ray, E. Ruokokoski, S. Kandel, M. Möttönen, and D. S.
Hall, Observation of Dirac monopoles in a synthetic magnetic
field, Nature (London) 505, 657 (2014).

[14] W. Lee, A. H. Gheorghe, K. Tiurev, T. Ollikainen, M. Möttönen,
and D. S. Hall, Synthetic electromagnetic knot in a three-
dimensional skyrmion, Sci. Adv. 4, eaao3820 (2018).

[15] K. Tiurev, T. Ollikainen, P. Kuopanportti, M. Nakahara,
D. S. Hall, and M. Möttönen, Three-dimensional skyrmions
in spin-2 Bose-Einstein condensates, New J. Phys. 20, 055011
(2018).

[16] D. S. Hall, M. W. Ray, K. Tiurev, E. Ruokokoski, A. H.
Gheorghe, and M. Möttönen, Tying quantum knots, Nat. Phys.
12, 478 (2016).

[17] T. Ollikainen, A. Blinova, M. Möttönen, and D. S. Hall, Decay
of a Quantum Knot, Phys. Rev. Lett. 123, 163003 (2019).

[18] M. W. Ray, E. Ruokokoski, K. Tiurev, M. Möttönen, and D. S.
Hall, Observation of isolated monopoles in a quantum field,
Science 348, 544 (2015).

[19] T. Ollikainen, K. Tiurev, A. Blinova, W. Lee, D. S. Hall, and
M. Möttönen, Experimental Realization of a Dirac Monopole
through the Decay of an Isolated Monopole, Phys. Rev. X 7,
021023 (2017).

[20] G. Hooft, Magnetic monopoles in unified gauge theories, Nucl.
Phys. B 79, 276 (1974).

[21] A. M. Polyakov, Particle spectrum in quantum field theory,
JETP Lett. 20, 194 (1974).

[22] J. Ruostekoski and J. R. Anglin, Monopole Core Instability and
Alice Rings in Spinor Bose-Einstein Condensates, Phys. Rev.
Lett. 91, 190402 (2003).

[23] U. Leonhardt and G. E. Volovik, How to create an Alice string
(half-quantum vortex) in a vector Bose-Einstein condensate,
J. Exp. Theor. Phys. 72, 46 (2000).

[24] K. Tiurev, E. Ruokokoski, H. Mäkelä, D. S. Hall, and
M. Möttönen, Decay of an isolated monopole into a Dirac
monopole configuration, Phys. Rev. A 93, 033638 (2016).

[25] K. Tiurev, P. Kuopanportti, A. M. Gunyhó, M. Ueda, and M.
Möttönen, Evolution of an isolated monopole in a spin-1 Bose-
Einstein condensate, Phys. Rev. A 94, 053616 (2016).

[26] A. Blinova, R. Zamora-Zamora, T. Ollikainen, M. Kivioja, M.
Möttönen, and D. Hall, Observation of an Alice ring in a Bose-
Einstein condensate (2022), to be published.

[27] T. Mithun, R. Carretero-González, E. G. Charalampidis, D. S.
Hall, and P. G. Kevrekidis, Existence, stability, and dynamics of
monopole and Alice ring solutions in antiferromagnetic spinor
condensates, Phys. Rev. A 105, 053303 (2022).

[28] J. Räbinä, P. Kuopanportti, M. I. Kivioja, M. Möttönen, and T.
Rossi, Three-dimensional splitting dynamics of giant vortices
in Bose-Einstein condensates, Phys. Rev. A 98, 023624 (2018).

[29] M. Kivioja, S. Mönkölä, and T. Rossi, GPU-accelerated time
integration of Gross-Pitaevskii equation with discrete exterior
calculus, Comput. Phys. Commun. 278, 108427 (2022).

[30] A. N. Hirani, Discrete exterior calculus, Ph.D. thesis, California
Institute of Technology (2003).

[31] T. Zibold, V. Corre, C. Frapolli, A. Invernizzi, J. Dalibard,
and F. Gerbier, Spin-nematic order in antiferromagnetic spinor
condensates, Phys. Rev. A 93, 023614 (2016).

[32] H. Wang, A time-splitting spectral method for coupled Gross-
Pitaevskii equations with applications to rotating Bose-Einstein
condensates, J. Comput. Appl. Math. 205, 88 (2007).

[33] J. Räbinä, L. Kettunen, S. Mönkölä, and T. Rossi, General-
ized wave propagation problems and discrete exterior calculus,
ESAIM: M2AN 52, 1195 (2018).

023104-10

https://doi.org/10.1103/PhysRevD.95.043537
https://doi.org/10.1038/s41567-018-0311-9
https://doi.org/10.1016/0550-3213(82)90190-0
https://doi.org/10.1016/0550-3213(82)90265-6
https://doi.org/10.1103/PhysRevD.49.4167
https://doi.org/10.1016/0550-3213(92)90174-A
https://doi.org/10.1016/0550-3213(92)90620-Q
https://doi.org/10.1103/PhysRevLett.64.1632
https://doi.org/10.1142/S0217751X9500156X
https://doi.org/10.1016/S0370-2693(02)02152-4
https://doi.org/10.1103/PhysRevLett.81.742
https://doi.org/10.1103/PhysRevLett.103.030401
https://doi.org/10.1038/nature12954
https://doi.org/10.1126/sciadv.aao3820
https://doi.org/10.1088/1367-2630/aac2a8
https://doi.org/10.1038/nphys3624
https://doi.org/10.1103/PhysRevLett.123.163003
https://doi.org/10.1126/science.1258289
https://doi.org/10.1103/PhysRevX.7.021023
https://doi.org/10.1016/0550-3213(74)90486-6
https://doi.org/10.1103/PhysRevLett.91.190402
https://doi.org/10.1134/1.1312008
https://doi.org/10.1103/PhysRevA.93.033638
https://doi.org/10.1103/PhysRevA.94.053616
https://doi.org/10.1103/PhysRevA.105.053303
https://doi.org/10.1103/PhysRevA.98.023624
https://doi.org/10.1016/j.cpc.2022.108427
https://doi.org/10.1103/PhysRevA.93.023614
https://doi.org/10.1016/j.cam.2006.04.042
https://doi.org/10.1051/m2an/2018017

