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Abstract: This thesis deals with a systematic literature review considering the amalgamation

of group decision making and multiobjective optimization. The literature review contains

an introduction of the relevant aspects of multiobjective optimization and group decision

making, combining these two (mostly separately considered) research topics into another

research topic called, group decision making in multiobjective optimization. The thesis an-

swers the question what the state of the art of group decision making in multiobjective opti-

mization is. The thesis classifies the methods found in the literature according to the role the

decision makers play in the multiobjective optimization process and presents a classification

of the ways to handle multiple preferences (from several decision makers) in multiobjective

optimization methods. The thesis discusses the results that are found, and proposes seven

desirable properties that should be considered when developing multiobjective optimization

methods for group decision making.
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Suomenkielinen tiivistelmä: Tässä tutkielmassa suoritetaan systemaattinen kirjallisuuskat-

saus ryhmäpäätöksenteon ja monitavoiteoptimoinnin yhdistelmälle. Kirjallisuuskatsaus sisältää

perehdytyksen sekä monitavoiteoptimointiin, että ryhmäpäätöksentekoon yhdistäen nämä
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kaksi aiemmin suurimmaksi osaksi erillään kehitettyä tutkimusaihetta yhdeksi tutkimusai-

heeksi, jota kutsutaan termillä ryhmäpäätöksenteko monitavoiteoptimoinnissa. Tutkielma

vastaa siihen, mikä on kyseisen tutkimusalan nykytila kirjallisuudessa. Tutkielma jaot-

telee löydetyt metodit päätöksentekijöiden roolin mukaan monitavoiteoptimointiprosessissa

ja esittää luokittelun tavoista ottaa huomioon päätöksentekijöiden preferenssi-informaatio

monitavoiteoptimointimenetelmissä. Tutkielma käsittelee löydettyjä tuloksia ja esittää seit-

semän tavoiteltavaa ominaisuutta, jotka pitäisi ottaa huomioon, kun kehitetään monitavoiteop-

timointimenetelmiä ryhmäpäätöksentekoon.

Avainsanat: monitavoiteoptimointi, ryhmäpäätöksenteko, konsensus, äänestys, neuvottelu
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1 Introduction

Decision making is familiar to every one of us from everyday decision making problems and

it involves selecting between alternative decisions. Often, people aim to make an optimal

decision. The optimal decision is often related to the objective of the person making the

decision. Optimization refers to identifying the most efficient way of achieving an objective

and the optimal decision. Optimization problems are often considered to have a single objec-

tive e.g. maximizing profit in a business, minimizing energy consumption for a building or

minimizing the travel time on a transportation truck. In such problems, there exists a single

optimal solution.

However, this is rarely the case in real-world problems where there are multiple conflicting

objectives, such as maximizing profit, but minimizing risks in portfolio optimization or max-

imizing the speed of the car, while minimizing fuel usage and minimizing the price of the car.

The objectives are often conflicting, e.g., a faster car consumes more fuel. Hence, the con-

flicting objectives bring up the concept of trade-offs, to gain on one objective, one must allow

some other objective get worse [52]. For example, to gain a smaller risk in the investment,

the profit objective must be allowed to get worse. These kind of problems with multiple

conflicting objectives are known as multiple criteria decision making (MCDM) problems

[25, 84]. Depending on the properties of the feasible solutions, these types of problems can

be segregated into multiattribute decision analysis (MCDA) and multiobjective optimization

(MOO) [52]. In MCDA, the set of feasible solutions is explicitly predetermined, discrete

and finite [38, 52]. Examples of this type of problems are selecting which car to purchase or

determining the locations of power plants.

In MOO, the set of possible solutions is not explicitly known in advance. Instead, the set of

solutions is only implicitly known via functions of decision variables, and the set of solutions

can contain an infinite number of solutions [52]. MOO problems contain multiple conflicting

objective functions and the solutions to such problems are mathematically speaking equally

desirable. Hence, solving these problems requires a decision maker (DM), a domain expert,

who can distinguish the most preferred solution [52]. In the MOO literature, the focus has

generally been on having a DM or group of unanimous DMs, as in [52, 79].
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However, real-world problems often involve more than one DM. When there are multiple

DMs considering a decision problem, it is referred to as group decision making (GDM)

[38, 49, 52, 67, 79]. GDM problems include a plethora of different situations and have

existed among people as long as there have been groups of people and decisions to make.

Naturally, in a wide problem area such as GDM, many different multi-disciplinary research

fields ranging from political sciences [36] to economics, behavioral sciences and psychology

[68, 82] and to mathematics and computer science have emerged [81].

Depending on the type of a GDM problem under consideration, different decision rules are

followed to reach an agreement among the group [37, 38, 43, 67]. For example, the parlia-

ment’s decision making process relies on voting rules. Or a group of colleagues may try to

find a consensus, and disputants trying to settle a lawsuit rely on a lawyer to facilitate an

agreement. There are advantages and disadvantages to solve problems using GDM. Some

of the advantages include that having more people involved in the decision making gives

more expertise in total to solve the problem, and the participation and act of working as a

group will lead to a better acceptance of the decision by the group [67]. The disadvantages

include properties such as coordination loss, overload in communications and in cognitive

side and interpersonal conflicts [67]. Coordination loss means that some of the efforts of the

individuals will be spent to coordinate the actions of the group.

Let us imagine two examples of very different types of GDM problems. The examples are

designed to highlight the vast difference of possible GDM problems regarding the partici-

pants and their relations to each other. A simple case, familiar to everyday life, would be

a family (on good terms with each other) choosing a restaurant. The family members, the

DMs, may have different preferences regarding what the restaurant should offer. For ex-

ample, one DM may prefer an Italian restaurant, another one may want a restaurant with

vegetarian options. The DMs may discuss, negotiate or vote about the choice. They may

argue, but after all, they are going together to the selected restaurant. This is an example

of a collaborative GDM problem, where the DMs acknowledge the existence of a common

problem, and attempt to work together in a friendly manner trying to reach a group decision

[49]. The decision rule is based on the consensus among the participants.

A very different GDM problem would be the following. Imagine the days of ancient Rome,
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siege negotiations between the Roman general outside the walls and the petty king of the

city under siege. The DMs are enemies, hence heavily conflicting, and there are thousands

of lives at stake. The DMs’ preferences are also heavily conflicting, and their aims are

opposite. The general wants to take over the city and the petty king wants to stay as an

independent ruler. The general has to worry about the consequences of a prolonged siege,

and maybe deadly and possibly failing assault. The petty king knows that if the negotiations

fail, and they fail to defend the city, the Romans will not show mercy and the city will be

pillaged. Both sides must decide on what terms they would settle to end the siege or, whether

it is more beneficial to end the negotiations. For example, the Romans may wish that the city

gives up unconditionally and becomes a subject of Rome. However, the petty king may wish

that with successful negotiations, a pledge of support and a moderate amount of gold steers

the Romans away. This is an example of a non-cooperative GDM problem [49], where the

DMs act as adversaries or disputants. Here, the decision rule is based on the negotiations and

there is a threat of consequences, in case the negotiations end unsuccessfully. In these types

of GDM problems large conflicts, competition and returning to the status quo - not making

any decision - are common occurrences [67].

In the systematic literature review presented in this thesis, we focus on GDM, where there

are multiple different human DMs involved, each with their own opinions, attitudes and

preferences regarding the decision problem. The DMs recognize the existence of a common

problem and attempt to reach a collective decision or a group decision (the terminology

used in the literature varies) [49]. In the context of MCDM, GDM can be classified into

three groups: social choice theory, game theory, and expert judgment/participatory group

[33, 37, 43]. In social choice theory, each DM casts a vote or several votes depending

on the method to select the favorite solution. The counting process of the voting relies

on social choice or a welfare function and will provide the group decision. Game theory

is concerned with situations of conflicts of interest, where individuals are pursuing their

interests against other players who are pursuing their interests. The decision problem to

solve takes a game form, where the players deploy different strategies to try to win. Game

theory provides different automated strategies and bargaining processes for decision making

[67]. The expert judgment considers using DM’s preferences and suggestions of solutions,

possibly considering new solutions, and the selection of a solution is based on agreement
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among the group [37].

Much of the GDM in the MCDM context has focused on problems, where there is an explic-

itly given set of alternative solutions and the problem is solved by aggregating the preferences

of the DMs of the alternative solutions [43, 49]. The aggregation provides a collective al-

ternative solution as the final solution. There is a lot of literature in the GDM considering

problems with explicitly given sets of alternatives, we refer to e.g. [16].

However, as mentioned earlier, in MOO, solutions are not explicitly known beforehand. In

this case, the approach of aggregating the preferences may lead to a collective solution that

does not exist. At the same time, there may be an infinite number of solutions for DMs

to give preferences. This is the main difference that makes much of the existing literature

on GDM poorly applicable to MOO with multiple DMs. In this literature review, we are

interested in the problems that do not have an explicitly given set of alternatives. We aim to

understand how the multiple decision makers interact with the MOO problem, and how the

group converges on a single solution to implement.

As far as the rest of this thesis is concerned, in Chapter 2, key concepts of MOO are intro-

duced. This chapter discusses what the DM is and preferences and the main methods used

in MOO. Chapter 3 introduces the combination of GDM and MOO and discusses relevant

findings from the literature. In Chapter 4, we present the procedure of the systematic litera-

ture review. We present the results of the review in Sections 4.1, 4.2 and 4.3. In Chapter 5,

we discuss the results of the literature review, the limitations of the study and possible future

research topics. Finally, we provide conclusions in Chapter 6.
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2 Multiobjective optimization

In this chapter, an introduction to the concepts of multiobjective optimization is given. First,

in Section 2.1 the formulation of a multiobjective optimization problem is presented with

relevant key concepts. In Section 2.2 we define what a DM in this thesis is and how the

preferences given by the DM can be used to solve multiobjective optimization problems in

different ways. Then, in Section 2.3, we briefly discuss some well-known multiobjective

optimization methods.

2.1 Problem definition and important concepts

A multiobjective optimization problem (MOP) [52] can be defined as

minimize { f1(x), f2(x), . . . , fk(x)},subject to x ∈ S ⊂ R
n
, (2.1)

where k (k ≥ 2) denotes the number of objective functions fi : S →R. The vector of objective

function values can be defined as f (x) = ( f1(x), f2(x), . . . , fk(x))
T . The decision variable

vectors, called decision vectors, x = (x1,x2, . . . ,xn)
T belong to the feasible set S (defined by

constraints), which is a subset of the decision variable space R
n. The image of the feasible

set S, is denoted by Z(= f (S)), and it is called a feasible objective set. The members of Z

are called objective (function) vectors and are denoted by f (x). The words in parentheses are

often omitted for short. Each of the objective functions in a MOP can be either minimized

or maximized and transforming a minimization problem into a maximization problem can

be simply done by multiplying the objective function by −1 and vice versa. In what follows,

we assume minimization unless otherwise mentioned. When a MOP consists only of two

objective functions, it is called a biobjective optimization problem [44].

In multiobjective optimization problems (MOPs) it is assumed that there exists at least partial

conflict between the objective functions, which means that the problems do not have a single

global optimum [52]. Instead, there is a set of Pareto optimal solutions. A solution is Pareto

optimal if no values of any objective functions can be improved without declining some other
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objective function values. In other terms, a solution x ∈ S is Pareto optimal, if there exists

no other solution x∗ ∈ S for which fi(x
∗) ≤ fi(x) for all indices i and the inequality is strict

for at least one index [52]. The image of a Pareto optimal solution is called a Pareto optimal

objective vector. The set of Pareto optimal objective vectors is sometimes called a Pareto

front. A Pareto optimal set, called Pareto set for short, is the set of Pareto optimal solutions.

There can be an infinite number of Pareto optimal solutions in the Pareto set.

A vector representing minimum values of the objective functions is called an ideal (objective)

vector [79]. The ideal vector is infeasible, otherwise, it would be the only solution in the

Pareto optimal set. The ideal vector provides the lower bounds in the Pareto optimal set for

each objective function and it is denoted as z∗.

The term dominate is useful when considering different objective vectors. Let us consider

two objective vectors in Z. An objective vector f (x1), dominates another objective vector

f (x2), if the objective vector f (x1) is strictly less in at least one objective value and less or

equal in others [83]. An objective vector is called non-dominated if it is not dominated by

any other feasible objective vector [83].

Z
Pareto

Z

f2

f1

Z*

Figure 1. Relevant concepts in MOO shown graphically for a biobjective optimization prob-

lem. The picture contains the image of the feasible objective set Z (the whole red area), the

Pareto set ZPareto (the line segment inside the dashed line box) and the ideal vector z∗.
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Some concepts of MOO that have been presented in this section are visualized in Figure 1

for a biobjective optimization problem. The concepts apply with more than two objective

functions. Here, a biobjective optimization problem is shown to ease visualization.

Finding a solution to a MOP in one way or another is called a solution process [52]. Various

MOO methods can be used to solve MOPs. In the absence of any new information since all of

the Pareto optimal solutions can be regarded as equally good in a mathematical sense, there

is a demand to find as many Pareto optimal solutions as possible [24]. This type of search

for the representation of the Pareto optimal solutions is the main focus e.g. in a majority of

the evolutionary multiobjective optimization (EMO) literature [20].

However, when there is a DM present, the subjective preferences of the DM can be used to

determine a most preferred solution [52]. Such a solution is referred to as the final solution.

Hence, the goal of solving the MOP is to select the final solution. In this review, the MOP is

not solved until the final solution has been selected. In the next Section 2.2, we discuss what

is the DM and how the DM can affect the solution process of the MOP.

2.2 The decision maker and preferences

In the context of this review, the DM is a human who is an expert in the problem domain.

In this section the DM is either a single person or an unanimous group of persons. Later in

this review, we discuss multiple DMs. This person may be someone having some stake in

the resolution of the solution process, called a stakeholder. Either way, they are referred to

as DMs. In some research domains, a DM may be an artificial agent DM, either representing

the preferences of a DM or acting upon decision rules set upon it. In this review, we consider

only the former type of agent DMs.

There are some assumptions regarding the DM in this review. Firstly, it is assumed that

the DM can provide preference information and eventually distinguish the final solution to

the problem. The preference information can be expressed in various ways and it is used

in the solution process. Secondly, we assume that the DM always prefers Pareto optimal

solutions over dominated solutions. In other words, in case of minimizing all objectives, the

DM always prefers less to more. Therefore, the final solution is a Pareto optimal solution,
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which the DM deems as the most preferred solution.

The role of the DM is to give preference information that can be used in solving the MOP

[52]. If preference information is available, it can be incorporated into the solution process

before, after or during the optimization. The following classification of MOO methods relies

on the participation of the DM in the solution process and the timing when the DM expresses

their preference information [52]:

1. No preference: No articulation of preference information is used and some neutral

compromise solution is selected.

2. A priori: The DM provides their preferences before optimization. The optimization

process tries to find a Pareto optimal solution satisfying the preferences as well as

possible.

3. A posteriori: A representation of the Pareto optimal solutions is first found. The DM

provides their preferences by selecting the desired solution after seeing the solutions.

4. Interactive: The DM iteratively articulates their preferences during the optimization

process and can update the preferences.

The advantages and disadvantages of a priori methods include, that it is often difficult for

the DM to know in advance what type of solution(s) they would prefer [86] and preferences

may be optimistic or pessimistic. This may lead to the optimization process of generating

non-relevant solutions. However, a priori methods do not require much of the DM’s time to

participate in the solution process.

In a posteriori methods, the advantage is that the DM has a lot of good solutions to choose

from, after a representative set of Pareto optimal solutions has been found. This information

may lead to a better understanding of the trade-offs between the objectives [86]. However,

the disadvantages include that the computation of the representation may waste time and

resources on solutions the DM is not interested in. In addition, the DM may have difficulty

evaluating possibly dozens or hundreds of solutions, so choosing a subset of solutions to

show to the DM is another issue to solve.

Interactive methods contain iterations consisting of phases of preference elicitation and so-

lution generation. The phases take turns until the DM finds the final solution (or some other
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stopping criterion is met) [55]. The DM expresses their preference information during the

preference elicitation steps. The advantages of interactive methods include involving the

DMs in the optimization process, which can help the DM to learn about the problem and

their preferences [53]. This provides other advantages such as by having more understand-

ing of the problem, the DM can better justify why they prefer the final solution over the other

solutions [20, 55]. However, the disadvantage of this is that an interactive solution process

requires much more time and focus from the DM [55].

Preference information types

In the following, we introduce relevant preference information types needed in this literature

review. Some of the preference information types we introduce are widely used in MOO and

some are used more often in MCDA. However, the aim of the following discussion is not be

exhaustive or try to give a wide overview of the different types of preference information in

MOO: we aim merely to introduce all the preference information types that are used later in

this review.

The DM may express preference information in various ways and the preference information

expressed may be related to objective functions or solutions [20]. The preference information

may consist of weights for or classification of objective functions, local preference informa-

tion such as aspiration levels, the DM indicating the most preferred (or disliked) solution(s)

of a subset or pairwise comparisons of objective functions or solutions [53, 74, 86].

Weights for objective functions are supposed to represent the relative degree of importance

of the objective function for a DM, often modeled as a weight vector with components wi ≥ 0

for all i = 1, . . . ,k for k objective functions. However, as shown in [70], it is not clear what

this relative degree of importance of the objective functions actually means for a DM as the

weights behave in an indirect way [55]. For example, small adjustments of the weight vector

may cause big differences in the objective function values and vice versa [55]. Moreover,

as the weight values are in the weight space [86], they do not have a clear meaning for the

DM who is a domain expert and understands the objective space [52, 83]. In addition, it

is very difficult for the DM to adjust the weight vector to obtain a desirable solution since

there does not exist any correlation among the weight value wi and the objective function
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value f (x) corresponding to the following solution x [59]. Hence, it can be hard for DM to

provide an accurate weight vector or get desired solutions by modifying the weights [59, 83,

86]. In Section 2.3, we mention some other issues of using weights for objective functions

in solving MOPs.

Reference points are formed of aspiration levels, which are desired values given by the DM

for each objective function or reservation levels, which are values that the DM expects to

be achieved [52, 74, 88]. The aspiration (or reservation) levels form the vector referred

to as a reference point and they have some useful properties, such as, the reference point

does not require any consistency in the preferences the DM expresses among iterations and

the reference point reflects the desires of the DM well [59]. Moreover, the reference point

is in the objective space [86] and since the objective functions are meaningful to the DM,

the reference point can be argued to be more understandable for the DM than weights for

objectives [59].

The DM can rank solutions in the order of satisfaction, referred to as the ranking of solutions

[20]. The ranking of solutions requires some way of determining the subset of solutions

that is shown to the DM as in most cases there are more solutions than a human DM can

be expected to rank. Alternatively, the DM can only indicate the most preferred solution(s),

which most satisfies the DM. Similarly, the DM may indicate a least preferred solution(s)

from the shown solutions.

In pairwise comparisons, the DM is shown two solutions and the DM indicates the preferred

solution of the two [13]. Often the solutions shown in pairwise comparisons are selected ran-

domly, although they can be selected more carefully e.g. according to the earlier preference

information given by the DM [13].

The preferences expressed by a DM can be transformed to a preference model to evaluate

the decision process of the DM [79]. A preference model that is commonly used is a utility

function [43]. This assumes that the DM makes decisions based on a utility function U :

Rk → R, representing the preferences of the DM of the objective functions [43]. By using

the utility function, the preferences of the DM of the different solutions can be determined.

The utility function can be inferred from some of the preference types given by the DM e.g.
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from a ranking of solutions [20].

One more preference information type we define in this review, is called selected objectives.

This concept means a subset of all the objective functions in the MOP that a DM cares about.

Preference relations relate to the situation that for a DM all the objective functions or solu-

tions may not be equally important. In this way, the objective functions can be ranked in a

preferred order, called as ranking of the objectives. Preference relations are binary relations,

that have properties such as transitivity [25, 79]. Transitivity means that if we have solutions

x,y,z, and the following is true, x is preferred to y and y is preferred to z, then also x is pre-

ferred to z [79]. The main disadvantage of preference relations is that they cannot handle

non-transitive preferences [20].

Outranking is a different ranking of the solutions allowing non-transitivity [86] and it is

often used in MCDA [71]. The outranking-based methods discussed in this review are based

on building outranking relations between the solutions. In outranking methods, the aim is

to determine for each pair of solutions whether the DM prefers one of them, is indifferent

or the solutions are incomparable [20]. To achieve this, different preference indicators are

defined and compared with specific threshold values (which the DM may give as preference

information). The disadvantages of this approach are that the DM is required to give many

different parameters [86] and the method may become computationally expensive, especially

when there is a large number of solutions [20].

Uncertainty in the preferences

The DM may prefer to articulate their preferences with uncertainty [86]. In contrast to ear-

lier precise preference information types, uncertain preference information is referred to as

imprecise preference information. In cases like this, to model the uncertainty in preferences,

small deviations can be introduced into the preferences. This can be modeled by the DM

providing the preference information as interval or fuzzy numbers. An interval number is

an extension of the concept of a real number, described as a range E = [l,u], where l is the

lower limit and u is the upper limit. The range contains all real numbers lying between the

lower and upper limit [29]. Interval numbers can be used in interval preference models, e.g.

the interval outranking model in [27].
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Fuzzy numbers can be used to handle uncertainty in preferences such as reference points,

weights and outranking [86]. For example, considering a reference point, denoted by R =

(r1, . . . ,rk) for k objective functions using fuzzy numbers, the desired value of each objective

can be expressed as triangular fuzzy numbers ri = (rlower
i ,rmost

i ,r
upper
i ), where rmost

i is the

most possible value of the fuzzy number and rlower
i and r

upper
i are, respectively, the lower and

upper bounds, according to the fuzzy preferences of the DM [89]. A membership function,

a generalization of an indicator function, can be used to represent the degree of truth of the

fuzzy reference point [57]. Used in MCDA problem settings, in fuzzy preference relations,

the DM’s preferences are described with a membership function that denotes the preference

intensity of a solution over the other alternative solutions [35]. There are different types

of fuzzy preference relations in the literature such as additive, multiplicative or linguistic

preference relations [35, 45].

In this review, the preference information type that the DM expresses has the main focus, not

whether the preference information is given in a precise or an imprecise format. Now, we

have discussed the role of the DM in the solution process and what type of preferences the

DM may express. Next, we discuss a few MOO methods used to solve MOPs.

2.3 Introducing two methods for solving MOPs

In this section, we discuss two MOO methods that are used or inspired the developed meth-

ods in 70% of the papers in the reviewed GDM literature. They are introduced and some of

their main advantages and disadvantages are discussed due to their overwhelming popularity

in the literature. The discussion here will introduce concepts that are later referred to. In

Chapter 3, we consider group decision making in the context of MOO.

One way to classify MOO methods is to split them into scalarization-based and evolutionary-

based methods. A scalarization-based method refers to solving a MOP by scalarization.

Scalarization means that the MOP is converted to a single objective (scalar-valued) optimiza-

tion problem [52]. The main advantage of scalarization is that when the scalarization method

is selected properly (considering the specifics of the problem to solve), the Pareto optimality

of a found solution can be guaranteed [52, 53, 79]. There are various scalarization-based
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methods.

The advantages of scalarization-based methods include that they are easily adapted to differ-

ent types of MOPs and DM’s preferences and they are computationally efficient [52]. The

disadvantages contain that to find multiple Pareto optimal solutions the scalarization methods

often have to be applied multiple times [24] and the solution found is significantly impacted

by the choice of the scalarization function [54].

An example of a scalarization method is the weighted sum method, presented, e.g. in [83,

90]. The idea of the weighted sum method is to connect each objective function with a

weighting coefficient and minimize the weighted sum of the objectives. In this way, the

multiple objective functions are transformed into a single objective function [52]. It is typ-

ically assumed that the weights wi ≥ 0 for all i = 1, . . . ,k are normalized so the following

applies, ∑
k
i=1 wi = 1 and the objective functions should be normalized [55]. A solution to the

weighted sum method is Pareto optimal if the weights are positive or the solution is unique

[52].

As mentioned, the weighted sum is used a lot in the reviewed literature. The advantages of

the weighted sum method are that it is simple to understand and implement, and it can be

used in an a priori or in an a posteriori manner [52] and also in an interactive manner when

the DM can adjust the weights [59, 83]. However, the weighted sum method contains several

disadvantages. Firstly, the weighted sum method cannot find unsupported solutions of the

Pareto front in nonconvex problems [59]. Secondly, the correlations among the objective

functions may lead the DM not being able to find desirable solutions as a "good" weight

vector (according to the preferences of the DM) may provide an undesirable solution and

vice versa [83]. Lastly, the weighted sum method is likely to find solutions with unbalanced

objective function values [55] and an even distribution of weights may not result in an evenly

distributed set of solutions [44].

Evolutionary methods are heuristics for solving MOPs and there is a plethora of different

EMO methods, called evolutionary multiobjective optimization algorithms (EMOAs) [4, 23].

EMOAs model evolutionary processes occurring in nature by creating a population of indi-

vidual solutions that are evaluated for their fitness [4]. The fitness measures the goodness of a
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solution, and how well the solution performs on the problem. Naturally, in the MOO context,

the better the fitness of the solutions is, the closer it approximates a Pareto optimal solution

[23]. As EMOAs are methods based on heuristics, they cannot guarantee Pareto optimality

[22] and hence we refer to these solutions as approximated solutions. However, the EMOAs

can guarantee that the solutions found at the end of the method are non-dominated solutions

[22], meaning that no solution belonging to the final population dominates any other solution

in the final population.

The evolutionary operators such as crossover, mutation and selection [4] modify the popula-

tion. Briefly, the selection operators select (in some specified manner) some individuals for

reproduction. Reproduction contains crossover and mutation operators. Crossover combines

the selected individuals in some manner, and the offspring are subjected to random mutations

adjusting their properties. The process continues over multiple generations with the fittest

individuals surviving and individuals with a low fitness being removed from the population.

EMOAs have some advantages and disadvantages. The advantages include i) the EMOAs

are less likely to get stuck on local optimums, ii) EMOAs are simple to implement, and iii)

EMOAs are flexible to use and can be applied in a wide range of MOPs including nonconvex

objective functions [21, 23, 24]. The disadvantages contain that EMOAs cannot guarantee

the Pareto optimality of the found solutions [23] and EMOAs require many function evalua-

tions, which is an issue, especially with computationally expensive objective functions [39].

In addition, EMOAs have several parameters (such as population size, crossover, mutation

and selection operators to use and their probabilities) that need to be selected in some manner

and they affect the performance of the methods [39].

An example of an EMOA is the non-dominated sorting genetic algorithm II (NSGA-II) [24].

NSGA-II is an a posteriori method, which aims to generate a diverse set of non-dominated

solutions. To get started, NSGA-II generates an initial population and evaluates the fitness

of the solutions in the population. A non-dominated sorting procedure is utilized to sort the

individual solutions into different levels, called fronts, based on the dominance relationships

with respect to each other. Then, a crowding distance operator is used to measure the dis-

tances between the solutions in the front to maintain diversity among the population. NSGA-

II can use, for example, binary tournament selection as the selection operator and simulated
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binary crossover operator and polynomial mutation to create a new population from the se-

lected solutions. The selection and reproduction operators generate the new population, and

the process is repeated for a specified number of generations.
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3 Group decision making

In this chapter, we introduce the combination of group decision making and multiobjective

optimization. As discussed in Chapter 1, the main difference in MOO with multiple DMs to

most GDM problems in MCDA is in the properties of the feasible solutions. The solutions

are not explicitly given in MOO, instead, they are found using MOO methods. First, in

Section 3.1, we introduce the combination of GDM and MOP and define relevant concepts

regarding the group of DMs and how they can collectively make decisions. In Section 3.2,

we discuss how the multiple preferences (from several DMs) can be incorporated into the

solution process. Lastly, in Section 3.3, we briefly consider relevant concepts from the GDM

literature used in determining the group’s preferred solution.

3.1 Introducing GDM-MOP

The combination of GDM and MOP can be referred to as a GDM-MOP. The term, GDM-

MOP, was defined first time in [89] and after that, the term has been used in [6, 27, 29, 57,

76]. However, in [89], the authors state that the goal of solving a GDM-MOP is to select the

most acceptable solutions according to the group among the Pareto set. In this review, we

assume that in solving GDM-MOPs, the group’s aim is to select a most preferred solution

(in the context of the group), called a collective solution. When multiple solutions are found

using the multiple preferences of the DMs, they are referred to as collective solutions. The

collective solution that is selected to be implemented in practice is called the final (collective)

solution. The word in parentheses is usually left out.

The GDM-MOP is defined as a decision situation including:

• A group of m DMs (m > 1).

• A common MOP under consideration as defined in Equation (2.1).

• The goal is to find a collective solution acceptable to the group.

The following aspects regarding multiple DMs are important and, from now on, they are

referred to determine a group structure. The DMs have their own knowledge, attitudes and
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opinions, and the DMs recognize the existence of a common problem and attempt to reach

a collective solution [43, 49]. The DMs in the group may have different roles or degrees

of importance in making the decision. For example, the group may be led by a supra DM

(SDM) [43], who has the final say over the final solution. The group may or may not be

able to communicate in-person. The group may prefer making decisions anonymously or

in-person [51]. The group may prefer making the decision by some specified way, e.g. by

group discussion or by a specified decision rule e.g. by voting. In this review, we refer to

this specific way or rule as a group decision method. A group decision method is some sort

of a principle or criterion that provides the final solution. Commonly used group decision

methods include group discussion, negotiation, aiming for consensus, voting and relying on

a third party to resolve conflicts between the DMs [49].

Finding a solution to a GDM-MOP in one way or another is called a solution process. We

define group decision making in multiobjective optimization (GDM-MOO) methods to refer

to the methods used to solve GDM-MOPs. The concepts of MOO described in Section 2.2

apply to GDM-MOO methods. In addition, the DMs can express their preferences using

the same types of preference information and the preference information of the DMs can

be incorporated a priori, a posteriori or in an interactive manner. Hence, the GDM-MOO

methods can be classified into a priori, a posteriori and interactive GDM-MOO methods

[57].

In Section 3.2, we discuss the approaches found from the reviewed literature of handling

multiple preferences (from several DMs) in the GDM-MOO methods. We also study how

these approaches can be combined with group decision methods to find a final solution that

is acceptable to the group.

3.2 Incorporating multiple preferences

In this section, we consider approaches to handling multiple preferences (from several DMs).

The multiple preferences must be somehow incorporated into the GDM-MOO method to find

collective solutions in the solution process. In this thesis, we distinguish between two types

of handling preferences and refer to them as an indirect and direct approach. When referring
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to them together, they are called preference approaches.

Indirect approach

In an indirect approach, the individual DM’s preferences are in some way combined into a

collective preference. This can be done in different ways, however, often different aggrega-

tions operators are used. An example of an aggregation operator is the arithmetic mean. The

aggregation of the preferences is crucial and different aggregation operators lead to different

collective preferences. The SDM may also be in charge of forming the collective preference.

The collective preference can be formed using any preference information type, that can be

mapped from multiple preferences into a single preference. For example, multiple refer-

ence points can be aggregated into a collective reference point or multiple weight vectors

into a collective weight vector. Similarly, one can aggregate multiple utility functions into a

collective utility function. They all can be referred to as collective preferences.

The collective preference can be used similarly as a single preference in various preference-

based MOO methods for a single DM. Depending on the MOO method applied, either a

collective solution or multiple solutions will be reached.

The issues of the indirect approach have received a lot of research in GDM [35, 40]. By

purely aggregating the preferences of the DMs into a collective preference, the existence of

an agreement among the DMs cannot be guaranteed, which may lead to a solution for which

some DMs feel that their preferences have not been considered [45, 69]. In the case of the

DMs’ preferences being about shown solutions, the aggregated collective preference may not

correspond to any solution in the Pareto set. For example, an average of two solutions may

not exist. Another issue to mention is that, even if the individual preferences (e.g. complete

rankings of the solutions) are transitive, the collective preference is not, as discussed in the

famous Arrow’s Impossibility Theorem [3].

Direct approach

In a direct approach, the multiple preferences from several DMs are not combined into a

collective preference. Instead, the preferences are used directly in some way in the solution

process. For example, the method may use multiple weight vectors from multiple DMs
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to find solutions according to each of the weight vectors as in [47]. Another example is

in [64], where the utilized EMOA prefers solutions that are closer to reference points of

individual DMs. The direct approach does not exclude the possibility of using also e.g. a

collective reference point along the individual preferences as in [89]. The main difference

to an indirect approach is that there are multiple individual preferences instead of a single

collective preference.

However, the issue with the direct approach is that an another step need to be taken to select

the final solution. After all, in solving GDM-MOPs, a final solution must be determined.

Hence, another decision is to be made, where the DMs must choose the group decision

method to use to select the final solution.

Finding the final solution

Single solution

Indirect approach Direct approach

Final solution

Applying a group
decision method

Yes

No

Figure 2. A graph illustrating how indirect and direct approaches can be used to find the final

solution.

Figure 2 illustrates how indirect and direct approaches can be used to find the final solution.

As mentioned, in the indirect approach, depending on the applied MOO method either a

collective solution or multiple solutions are found. In the case of a collective solution, that

solution can be defined to be the final solution. For example in [11] the collective preference

was used in a weighted sum method to find a collective solution, determined as the final so-
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lution. In the case of multiple collective solutions, another group decision method is needed

to select the final solution.

A direct approach requires utilizing a group decision method at some phase of the solution

process to converge from multiple solutions (generated using multiple preferences) into a

final solution. A group decision method can be incorporated into the GDM-MOO method

to determine the final solution. For example, the DMs may vote about the solutions, and the

solution with the most votes is selected as the final solution.

3.3 Introducing relevant concepts found in the literature

In this section, we introduce relevant concepts found in the GDM literature. First, we discuss

using consensus as a group decision method and as a way of tackling the issue of aggregat-

ing multiple preferences into a collective preference. Then, we introduce group decision

methods, which are referred to later in this review.

Introducing consensus in GDM

As mentioned in Section 3.2, the issues with an indirect approach are that the agreement of

the final solution cannot be guaranteed and that the collective preference may not directly

relate to a Pareto optimal solution. Moreover, in problems with multiple DMs with hetero-

geneous preferences and multiple conflicting objectives, it seems unreasonable to expect the

group to be able to attain full unanimity. Since the acceptance of the final solution is crucial

in many real-world GDM problems, a phase called a consensus reaching process (CRP) can

be added to the solution process [45, 63].

Next, we discuss what a consensus in the context of GDM is and how consensus can be

defined. There are several different consensus definitions in the literature, and the term has

been used for years in various contexts [34]. As mentioned, in MCDA problem settings often

used in GDM, the preferences are related to the solutions and in MOO the preferences can

be related to the objective functions or the solutions. Here, we discuss consensus in general,

including consensus about the preferences and consensus about the solutions. Consensus can

refer to a full agreement [34, 45], even though more flexible interpretations of a consensus
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have also been used considering a partial agreement [40]. We refer to [34] for different

consensus definitions and ways of measuring consensus.

In this review, we define a consensus to mean an agreement among (most of) the DMs. A

consensus degree refers to the level of agreement among the DMs. The consensus degree

can be computed using a consensus measure. The consensus measure indicates how close

the DMs’ opinions are to unanimity [63]. Consensus measures can be classified as based

on distances from a collective preference and based on distances between the preferences of

the individual DMs [45, 63]. These distances are then aggregated using certain aggregation

operators [91]. A consensus measure can be used to evaluate the consensus degree of a given

solution. However, the acceptable consensus degree must be decided by some threshold.

A consensus threshold indicates the minimum value of acceptable agreement [15, 45]. For

example, at least 9 out of 10 DMs must agree on a given solution. We refer to [15] for more

discussion on how to determine consensus thresholds. Hence, the solutions that satisfy the

consensus degree are referred to as consensus solutions.

DMs

Problem Solutions

Gathering
preferences

Consensus
measurement

Consensus control

Consensus progress

Preferences

Moderator

Consensus measures
based on distances to

the collective
preference

Consensus measures
based on distance

between DMs

Feedback
mechanism

No feedback
mechanism

comparing to a
threshold value

procedure to
increase

agreement

Figure 3. A general CRP scheme introduced in [45].
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A consensus reaching process is an interactive process consisting of several rounds of dis-

cussion and negotiation to achieve a maximum degree of consensus among DMs [6, 14, 27,

34, 45]. The consensus reaching process involves a moderator (or an SDM who acts as the

moderator) who knows the consensus degree of the group and is in charge of guiding the

process in each round of the consensus reaching process by computation of some consensus

measures [34]. The consensus reaching process can be performed in person or online.

Figure 3 has a general consensus reaching process scheme, adapted from [45]. In the consen-

sus reaching process, first, the preferences of the DMs are obtained, and then the consensus

degree can be measured. The consensus control stage refers to comparing the current con-

sensus degree to the consensus threshold. The consensus progress stage refers to different

ways of adjusting DMs’ preferences. In consensus reaching processes with a feedback mech-

anism, the moderator provides feedback to the DMs to modify their preferences. In contrast,

in no-feedback methods, the moderator adjusts the preferences of the DMs to be more like

the collective preference. The consensus reaching process can successfully end when the

consensus threshold is reached. The consensus reaching process continues with the DMs

adapting their preferences if the consensus threshold is not met.

For a more detailed discussion and taxonomy of consensus reaching processes, we refer to

[14, 63]. The consensus reaching process can be used in different stages of solving the GDM-

MOP [6]. For example, in an a priori method, the consensus reaching process can be used to

make the DMs’ preferences more similar, in an a posteriori method to help to select the final

solution and in an interactive method during the iterations to adjust the DMs’ preferences.

Group decision methods

In the following, we discuss different group decision methods used in the reviewed literature.

The group decision methods discussed here assume that we have generated a subset of solu-

tions that are shown to the DMs. More specifically we have a finite number of j alternative

solutions. In other words, we have an MCDA problem setting.

The group decision methods of group discussion and negotiation refer to the DMs discussing

or negotiating in person of selecting the final solution. In this review, we state it separately

if these methods are not performed in person, and instead e.g. through an online negotiation
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platform. As mentioned, the consensus reaching process can be utilized as a group decision

method.

Many well-known MCDA methods can be utilized in GDM problems when multiple pref-

erences are aggregated into a collective preference. For example, in the analytic hierarchy

process (AHP) [75], the DMs perform pairwise comparisons of solutions. Then, the AHP

method computes relative weights for the solutions. The final solution is found by aggregat-

ing the relative weights (from multiple DMs) by using e.g. a geometric mean operator.

Next, we consider group decision methods related to social choice methods and the ranking

of solutions. There are two types of approaches in voting-based group decision methods. The

DMs’ preferences can be used directly with a social choice function to select a single solution

from the set of solutions or indirectly with a social welfare function which aggregates the

individual DM’s rankings of the solutions into a single social ranking [8]. Both types of

methods are referred to as social choice (SC) methods in this review. Generally, the social

choice methods aim to satisfy all DMs’ preferences, meaning that in most cases the solution

selected may not be a solution each DM would have individually preferred the most [1].

This type of majority influence is seen as desirable behavior in the context of democratically

oriented decision making [8].

Let us next discuss examples of social choice functions. In majority voting, also known as

plurality rule, the DMs vote and the solution with the highest number of votes is selected as

the final solution [1]. Another social choice method is score voting. In score voting, the DMs

vote for each solution with a scale e.g. (0-9 Likert scale) and the solution with the highest

score is selected as the final solution [78].

Let us then give examples of social welfare functions. The Borda count method is a ranked

voting method where the DMs rank the solutions in the order of preference [8, 30]. The

solution the DM least prefers gets a score of zero, the following solution gets a score of 1

and so on, up to j points for the most preferred solution. Then, the Borda ranking is decided

by ordering the Borda scores. It is well known, that in the Borda count method, a determined

minority group of DMs can lower the chances of otherwise popular solutions [8].

The Borda count is a linear function of a solution’s average rank. Hence, the Borda ranking
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is the same as the ranking that would be achieved by taking an average of the preferences of

the solutions [8], which may not be desirable in some situations. The following social choice

method takes this issue into account. In a social choice method called a median voting rule,

the DMs rank the solutions as above. But instead of averaging the ranks, the median of the

ranks is taken. In this way, the solution that receives the highest score from the DMs is

selected [1, 8]. Many different social choice methods can be utilized in selecting the final

solution, and we refer to [8] for more discussion of social choice based methods.

The fallback bargaining (FB) methods simulate the bargains done in negotiations. First, the

DMs rank the solutions. Then, the DMs fall back, step by step, to less preferred solutions,

starting with their most preferred solution, then their second most preferred solution and

so on, until a solution is found that all of the DMs agree with [12]. The different fallback

bargaining methods utilize different agreement rules. For example, in the case of the agree-

ment rule being unanimity, the method is called unanimity fallback bargaining. In some

fallback bargaining methods, the DMs may be allowed to indicate impasse in their ranking,

determining the solution they will not descend below in their ranking.
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4 Systematic literature review

In this thesis, we conducted a systematic literature review concentrating on published papers

in GDM-MOPs. The main goal of this review was to find out what kind of research has been

conducted on solving GDM-MOPs. At the beginning of the process, there was no clear path

or terminology to which we could refer to. Hence, we had to identify methods and definitions

commonly used in solving these types of problems and tie them all together to the existing

MOO literature. This work brought up e.g. the combination of GDM and MOP to be called

GDM-MOP.

First, we discuss the goal for the systematic literature review including the research ques-

tions. Secondly, we introduce the way of the systematic literature was conducted and lastly,

we discuss the search queries and databases used in the review.

The systematic literature review aims to find some often-used ways of solving MOPs and

provide sensible classifications that would help the future work on this interesting amalgama-

tion of GDM and MOO. The literature review investigates the state-of-the-art in GDM-MOO.

The following research questions have been adjusted with the knowledge found during the

process.

The main research question: What kind of methods exist in the literature to solve GDM-

MOPs? To tackle the main research question, we can split it up into the following sub-

research questions.

1. What kind of preference information is asked from the DMs in GDM-MOO methods?

2. How are the multiple preferences from several DMs incorporated into the solution

process?

3. How is the final solution selected in GDM-MOO methods?

The way of conducting the systematic literature review followed loosely the steps of [61]

adapted to the field of MOO. The purpose of the literature review was to assess the current

literature regarding GDM in MOPs. A set of test searches was performed first to find proper

search terms for the search queries. The test searches were conducted to find knowledge
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about relevant keywords and the combinations of the keywords.

A paper was included in the review according to the inclusion criteria if the title, abstract or

keywords contained any of the search terms or any new but relevant combination of them.

In addition, a paper was included if it was written in English and published as a journal or

conference article, and according to the abstract was relevant to the literature review.

A paper was excluded if it did not consider a MOP. Moreover, if the problem was explicitly

given as a set of alternatives, the paper was excluded. A paper had to contain more than

one human DM (or e.g. an agent representing a DM) and the DMs had to be involved in

the solution process. In addition, couple of papers of clearly low quality were excluded of

consideration (e.g. language issues).

Literature searches were conducted using Scopus and Web of Science as search databases,

with the search queries listed in Table 2. Differences in the search queries between Web of

Science and Scopus are related to the syntax of the search engine and they perform function-

ally in the same way. As mentioned, only papers published in English were considered and

the main search was performed in July of 2022. The following steps of extracting the in-

formation from the papers, screening for inclusion and exclusion were performed iteratively

multiple times. This process took a lot of consideration and several iterations had to be done

during the process.

The set of included papers was supplemented with forward and backward searches from each

paper. Forward search means that the papers that have cited the paper under consideration are

reviewed with the inclusion criteria. Similarly, backward search means that we examine the

papers that the current paper under consideration has cited. Again, inclusion and exclusion

steps were performed. In the end, the total number of papers included was 40.
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Query 1 Query 2

Scopus

( TITLE-ABS-KEY ("group decision making)

AND TITLE-ABS-KEY ("multi-objective

optimization) AND NOT ALL ("multi-

attribute) )

( TITLE-ABS-KEY ("negotia-

tion) AND TITLE-ABS-KEY

("multi-objective optimization) )

Web of

Science

"group decision making" (Topic) and "multi-

objective optimization" (Topic) not "multi-

attribute" (All Fields)

"negotiation" (Topic) AND

"multi-objective optimization"

(Topic)

Table 2. The search queries used in this literature review.

4.1 A priori methods

In this section, we discuss GDM-MOO methods, where preference information is given a

priori and how it is incorporated. In Subsection 4.1.1, we answer the question about what

kind of preference information is asked from the DMs. In Subsection 4.1.2, we discuss how

the multiple preferences from individual DMs are incorporated into the solution process in

an a priori manner. Lastly, in Subsection 4.1.3 we consider how a priori methods select the

final solution.

In Table 3, the reference column indicates the paper referred to as on that row and the prefer-

ence information types column mentions the utilized preference information types separated

by a comma. In the cases where the DMs had options the word or is separating the op-

tions. The third column indicates whether the methods used indirect or direct approaches.

The final solution column indicates whether the method identified the final solution for the

GDM-MOP.

Reference Preference information types

Incorporat-

ing multiple

preferences

Final so-

lution

[72] reference point direct No

[50] fuzzy ranking of objectives indirect Yes

OptMPNDS2 [80] selected objectives - No
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[11] weights or ranking of objectives direct Yes

[73] reference point direct No

[32] - indirect Yes

OptMPNDS [48] selected objectives - No

MWS-NSGA [47] weights for objectives direct No

[31] weights for objectives indirect No

[64] reference point direct No

[89] fuzzy reference point direct No

[58] fuzzy reference point direct No

[57]
fuzzy reference point or triangular or

Gaussian membership function
direct No

WIN [17] ranking of objectives indirect Yes

NSS-GPA [10] reference point, deviation value indirect No

W-NSS-GPA [9] reference point, deviation value indirect No

[28]
weights, fuzzy preference relations,

reference point
indirect Yes

Table 3: The reviewed a priori GDM-MOO methods in a

table format.

4.1.1 Preferences in a priori methods

This subsection describes what type of preference information has been used in published a

priori methods. As can be seen in Table 3, the most common type of preference information

used in GDM-MOO methods is reference points. Reference points can be used with precise

and imprecise preference information types. In the reviewed literature considering precise

preference information types, the DMs articulate their preferences as reference points in [9,

10, 28, 72, 73]. Besides the reference point, in [9, 10], each DM provides information about

how much they can tolerate deviation in each component of the reference point.

Sometimes the DMs’ preferences may be regarded to be imprecise, in which case fuzzy,

interval or triangular numbers can be used to model these imprecisions. In [28] the DMs set
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a fuzzy preference relation and in [58, 89] the DMs provide their preferences as triangular

fuzzy numbers forming fuzzy reference points. In [57], the authors widen the possibilities

of the types of preference information the DMs can express, as the DMs can define their

preferences as a triangular or Gaussian membership function.

Other commonly used preference information types in the reviewed literature are DMs ex-

pressing the degree of importance of objectives as weights, as in [11, 28, 31, 47] and ranking

of the objectives as in [11, 17]. In [50] the DMs linguistically express fuzzy ranking of the

objectives. While the preferences are given by ranking the objectives in [11, 17, 50], they

are transformed into weights of the objectives.

Finally, we mention other types of preference information that are not so popular. The pref-

erence information is incorporated in the problem formulation stage in [48, 80] where the

DMs select the objectives they care about. No further involvement of the DMs is used in

these methods. It is not clearly stated in [32] whether the DMs articulate their preferences

in some unspecified manner or the preferences are in some way deducted from the DMs’

known interest in the objectives. The following subsection focuses on handling the multiple

preferences from multiple DMs.

4.1.2 Using multiple preferences in the solution process

In this subsection, the focus is on the approaches presented in the reviewed literature regard-

ing the handling of multiple preferences. A priori given preferences can be used in various

ways to help in finding collective solutions. As mentioned earlier, the ways can be roughly

classified into using the preferences directly, or indirectly. In the cases where group inter-

action is possible, a consensus reaching process can be performed to bring their preferences

closer to each other before running a priori method.

Indirect approaches

Agent-based negotiation support systems NSS-GPA and W-NSS-GPA presented in [9, 10]

respectively, aim to aggregate the DMs’ preferences that can be assumed to be at least partly

conflicting before the optimization. As mentioned earlier, the DMs provide their preferences

as reference points and also specify acceptable deviations for each component of the refer-
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ence point. The DMs participate in several negotiation rounds using an agent-based software

framework. An assistant agent represents each DM, and a moderator agent facilitates the

procedure. The DMs communicate through the software framework making offers of chang-

ing their preferences and requesting others DMs to change their preference. The moderator

agent regulates the negotiations based on the current consensus degree. The consensus de-

gree corresponds to the average of all distances of the DM agents’ reference points from

the collective reference point. Based on the consensus degree, the moderator agent gives

suggestions to the DMs to modify their preferences.

The main difference between NSS-GPA and W-NSS-GPA is the equality of the DMs and the

way of handling the possible manipulative behavior of the DM agents. W-NSS-GPA consid-

ers different degrees of importance of the DMs, modeled by weights. In both methods, the

moderator agent considers manipulations by the DM agents and penalizes manipulative DM

agents. The penalization is done by changing their reference point in [10] and by manipu-

lator isolation in [9]. The manipulator isolation deprives the manipulative DM agent from

communicating with other DM agents and forces the manipulative DM agent to update their

preferences according to the collective preference.

In [50], the DMs’ preferences are gathered using a fuzzy ranking of the objectives. The

DMs are regarded to be equal and by utilizing a multi-attribute decision making method, a

fuzzy factor rating system is used to determine the objectives’ collective weights, taking into

account the DMs’ preferences. Another approach utilizing fuzzy numbers is in [28], where

the authors build a fuzzy outranking model from the weights for objectives, reference points,

and fuzzy preference relations given by the DMs. The collective outranking model is used

to determine the satisfaction of the DMs with the solutions generated using NSGA-II.

An approach utilizing negotiations to form collective preferences is applied in [31]. The

MOP is decomposed into different subproblems. The DMs working on these subproblems

negotiate about the parameters and weights for objectives used in scalarization methods such

as the weighted sum method. The negotiated weights for objectives form the collective

weight vector.

The MOP to be solved in [32] is related to a real-world problem considering different trans-
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portation companies which aim to collaborate on the transportation of goods and gain ben-

efits regarding costs and emissions. The companies act as the DMs, and the problem and

knowledge about the situation are used in solving the problem. The knowledge about which

kind of solution is desired, called here as predefined desirability of solutions, can be used

to modify the aggregation of multiple preferences to the collective preference. The authors

present different methods using different predefined desirability of solutions.

Papers relying on the SDM to form the collective preference are discussed next. The SDM

can use different decision making and decision analysis tools to help make an informed

judgment, but eventually, this approach relies on the SDM’s expertise. A stakeholder analysis

supports the SDM in [17]. The SDM determines the importance of the individual DMs

through an influence and interest ranking method analysis. The rankings of the importance

of the DMs are converted to weights. A collective weight vector is formed from the DMs’

preferences and the degrees of importance of the DMs.

Direct approaches

Utilizing a direct approach in the first stage of a two-stage algorithm in [11] where the DMs

provide their preferences for the objectives using weights. The method includes an SDM.

The weighted sum method using the weight vectors generates a set of alternative solutions.

At second stage of the algorithm the DMs evaluate the generated alternative solutions in-

dependently without negotiations with other DMs and score each alternative solution. The

SDM sets the degrees of importance of individual DMs with weighting coefficients.

Next, we discuss a priori EMOAs with a direct approach. Direct preference incorporation

utilizes multiple preferences without aggregation; hence, multiple solutions will be found

even in scalarization-based methods. Generally, a priori methods incorporating a direct ap-

proach in the reviewed literature try to find solutions that differ a lot from each other or on

the opposite, solutions that are similar. The differing solutions aim to provide more options

for the DMs, while similar solutions try to make the selecting final solution easier.

The following two papers consider a resource allocation problem, where non-finite resources

are allocated between all the DMs participating in the process. The goal is to allow the DMs

to enter their own preferences to integrate all of the DMs’ preferences into the search for
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a solution to achieve the best objective values for each DM. The reference points the DMs

provide are used directly to determine the level of satisfaction of a given solution in [72].

The evolutionary method evolves potential solutions by alternating between the evolution of

the solutions and the evolution of the preferences. As a result, a set of solutions is found.

Following this approach in [73], the reference points given by the DMs are used as weights

for the objectives. In this way, the weighted sum based scalarization is used as a fitness

function in the evolutionary method. Multiple solutions are found as a result.

Another a priori evolutionary approach to the incorporation of multiple preferences in a

direct manner is presented in [47]. The algorithm uses weight vectors given by the DMs to

find multiple relevant regions of interest to multiple DMs simultaneously and multiple non-

dominated solutions in those regions of interest. The crowding distance operator in NSGA-II

is replaced with a preference measure. The preference measure prefers the solutions closer

to the Pareto optimal solutions corresponding to the weight vectors in the objective space

[47]. To maintain diversity, the solutions close to this preferred solution are penalized in the

preference measure.

Direct approaches with a consensus measure

As defined earlier, a consensus solution refers to a solution that all or most of the DMs can

accept. The following method utilizes a consensus measure based on the distances between

the DMs’ preferences. Authors in [64] present a rank based consensus approach to find a set

of consensus solutions utilizing R-NSGA-II, which is a variation of NSGA-II that utilizes a

reference point as the preference information. In the method, the crowding distance operator

of R-NSGA-II is modified by changing how the ranking is calculated and how the solutions

in the same rank are preferred. The method minimizes normalized distances between the ref-

erence points of DMs and the non-dominated solutions. The method is complemented by an

additional ranking scheme, which removes the effects from the differences in the magnitudes

of the objectives.

In the following, we introduce distance based consensus measures. These approaches con-

sider fuzzy preferences and the robustness of preferences and solutions and focus on fuzzy

GDM-MOPs. The methods focus on calculating the desirability of solutions with specific
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measures. The aim is to find a set of consensus solutions incorporating the DMs’ preferences

and taking the robustness of solutions into account.

In [89], the original MOP is reformulated to a biobjective optimization problem minimiz-

ing a consensus and a preference robustness measure. The consensus measure is based on

the distances between the DMs’ fuzzy reference points and the distance of the solution to

a collective preference. The collective preference is the mean of the reference points. The

robustness measure is defined to evaluate the effect of small perturbations in the objective

space of the MOP. The DMs’ fuzzy reference points are given to modified NSGA-II to find a

set of solutions, which are measured in the new consensus robustness space. A set of consen-

sus solutions is reached by solving this biobjective problem using NSGA-II with a modified

ranking procedure to incorporate the DMs’ preferences and the degree of importance of the

DMs.

Inspired by the work done in [89] and also using fuzzy reference points, the authors in

[58] redefine consensus and introduce a new measure called robust consensus combining

the redefined consensus measure and the preference robustness measure. In [57] the authors

introduce a total of twelve robust consensus measures. The different robust consensus mea-

sures are formed with different aggregation operators. As mentioned the DMs’ preferences

are given as either fuzzy reference points or as triangular or Gaussian membership func-

tions. In the case of fuzzy reference points, the preferences are transformed into triangular

or Gaussian membership functions. In both of the methods discussed, the considered MOP

is reformulated by including the robust consensus measure as an additional objective. A set

of robust consensus solutions is found by solving the reformulated problem using EMOAs

in [57, 58]. The degree of importance of the DMs can be specified in the methods by using

weights.

4.1.3 Selecting the final solution

This subsection discusses the approaches taken to select the final solution in a priori GDM-

MOO methods. As mentioned, the goal of solving a GDM-MOP is to find the final solution

to be implemented. A straightforward approach to find the final solution would be to form

33



a collective preference and use any preference based MOO method, that provides a single

Pareto optimal solution and set that as the final solution. However, selecting the final solu-

tion is not popular in the reviewed literature as Table 3 suggests. Instead, the focus is on

finding collective solutions. This can be achieved by using the collective preference in any

MOO method that provides multiple solutions, or the preferences of the DMs are used di-

rectly to provide a set of collective solutions. Selecting the final solution from the collective

solutions ought to be easier. The final solution selection requires utilizing some group de-

cision method, and these group decision processes are rarely demonstrated in the reviewed

literature.

Next, the methods that provide the means to select the final solution are discussed. These

methods utilize a collective preference in different scalarization-based methods. The weighted

sum method is used in [11, 32, 50] to find the final solution using the collective weight vector.

Applying another scalarization-based method, the WIN method presented in [17] chooses the

final solution that minimizes the scalarized WIN value to a normalized ideal vector.

In [28], the fuzzy outranking-based method returns only the non-dominated solutions that

satisfy an indicator function considering the number of satisfied DMs. In the cases, where

there are more than one solution, the group (or the SDM) apply any group decision method

that has been agreed by the group.

Most a priori methods in the reviewed literature do not select the final solution, see [9, 10,

31, 47, 48, 57, 58, 64, 72, 73, 80, 89]. Instead, they focus on finding a set of collective

solutions from where the DMs are expected to select the final solution either by negotiations

[31] or by using some new information e.g., DMs’ preferences of consensus and robustness

measures like suggested in [89].

4.2 A posteriori methods

In a posteriori methods, an (approximation of the) set of Pareto optimal solutions is generated

before DMs are included in the solution process. The DMs need to evaluate (a subset of) the

solutions and select the final one. Hence this section does not follow a similar structure as

the others. First, in Subsection 4.2.1, we consider the MOP formulation stage and how the
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Pareto set is found. Then, in Subsection 4.2.2, we focus on the group decision making phase

of selecting the final solution.

Papers where a posteriori methods have been proposed are summarized in Table 4. In Table

4, the reference column indicates the paper under consideration on that row. The preference

information types column mentions the used preference information types separated by a

comma. If the DMs had options the word or is separating the options. The group decision

method(s) used indicates the types of the group decision methods utilized to determine col-

lective solutions. The final solution column indicates whether the method is able to identify

the final solution for the GDM-MOP.

Reference Preference information types
Group decision

method(s) used

Final

solution

[30] ranking solutions SC, FB Yes

[60] ranking solutions SC, FB Yes

[1] ranking solutions SC, FB Yes

[2] ranking solutions SC, FB Yes

[66] ranking solutions with impasse FB Yes

[65] ranking solutions SC Yes

[56]
ranking solutions, least preferred so-

lution
SC, FB No

[78] most preferred solution score voting Yes

[5] pairwise comparison of objectives group discussion Yes

[33]

weights, pairwise comparisons of

objectives, range of feasible solu-

tions

SC Yes

Table 4. The reviewed a posteriori GDM-MOO methods in a table format.

4.2.1 Finding solutions

In the papers where a posteriori methods were proposed many authors considered real-world

problems. Hence, the developed methods are typically tailored to these specific problems.

These methods include a lot of problem-specific information and assumptions that are not
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relevant to the focus of this review and therefore are not discussed in much detail. Instead,

we focus on how the MOP was solved.

In the following, we discuss the problem formulation stage of a posteriori GDM-MOO meth-

ods. In [1, 2, 30, 56, 60, 65, 66], the authors consider real-world problems that utilize dif-

ferent simulators and MOO methods aiming to find good solutions for policymakers. The

GDM-MOP considered in [30] involves water allocation in river systems, irrigation networks

in [56], water distribution system of a city in [60], infrastructure planning regarding urban

storm water management in [65] and simulation models regarding groundwater contamina-

tion in [1, 2, 66].

The DMs considered in these problems are stakeholders involved in some way, e.g. farm-

ers of an area considered. The primary purpose of these studies is to build a simulation-

optimization model considering the DM’s preferences and the uncertainties related to the

problem and to find collective solutions. From the collective solutions, a final solution can

be selected. Generally, each DM only focuses on one objective function, and the DMs’ pref-

erences of the objective functions to optimize are either already given or for example, as in

[1], the DMs’ objective functions and preferences are identified through data analyses and

interviews.

The objective function that is important to an individual DM is modeled as that DM’s utility

function in [1, 2, 30, 65, 66]. The optimization stage starts after the problem has been

formed. The authors use NSGA-II to generate a set of non-dominated solutions in [1, 2,

30, 56, 60, 65, 66]. In some of the papers, the generated set of solutions is related to a

specific (uncertainty) scenario, leading to a different set of solutions for each of the scenarios

considered. Since each of the scenarios require a single final solution, the different scenarios

are not considered further in this review. Instead, we focus on the set of solutions found and

what GDM methods are used to select the final solution.

Next, we discuss other papers utilizing a posteriori methods. In [78], the authors design

a collaborative group decision making shipping marketplace without a moderator using

Blockchain. The three objectives functions are indicators relating to maximizing shipping

numbers and values and minimizing empty trucks. The DMs generate Pareto optimal solu-
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tions by solving the MOP with different scalarization methods.

Considering the trade-offs between logistic costs and response times, the location-allocation

problem of placing temporary relief distribution centers is presented in [5]. The objective

functions are to minimize response time, logistic costs and unsatisfied demands. The hu-

manitarian response experts took part via an online questionnaire to elicit preferences re-

garding the weights of the objectives and to provide pairwise comparisons of the objectives.

The preferences of the experts and a Monte Carlo simulation are used to generate differ-

ent weight vectors. A problem-specific weighted sum approach using the generated weight

vectors is used to generate a set of solutions.

In [33], the authors consider a real-world problem optimizing public transportation networks.

The objective functions are to maximize total travel time savings, maintain balanced origin

and destination terminals and to minimize the construction budget. The MOP is solved with

an EMOA, and a set of non-dominated solutions is found. In the next subsection, we consider

how the DMs provide their preferences for the generated solutions.

4.2.2 Selecting the final solution

As mentioned, in a posteriori methods, a set of Pareto optimal solutions is found, and the

DMs need to evaluate (a subset) of them. Hence, this subsection discusses what type of

preference information the DMs give about the solutions shown to them and how the dif-

ferent preferences of solutions are aggregated for final solution selection. Various types of

preferences can be given. In the reviewed literature regarding a posteriori GDM-MOO meth-

ods, most of the methods rely on voting-based or negotiation-based social choice methods

or methods from the MCDA literature. Table 4 summarizes the preference information types

given to the methods and the methods used in the final solution selection.

Social choice methods

In the following discussion, we consider the papers that use social choice methods to select

the final solution. In [1, 2, 30, 56, 60, 65, 66], the DMs’ preferences are modeled with utility

functions and then different social choice methods are used to rank the solutions. In these

papers, as mentioned, the authors often present several final solutions concerning alternative
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solutions regarding different scenarios or uncertainties in the problem and by using multiple

different social choice methods. We consider how the final solution is selected from the best

solutions (according to the social choice methods). The social choice methods discussed in

this subsection can be split into voting-based social choice methods like Borda count and

negotiation-based methods like unanimity fallback bargaining as introduced in Section 3.3.

The most popular social choice methods in the reviewed literature are Borda count [1, 2,

30, 56, 60, 65] and median voting rule [1, 30, 56, 60]. The papers utilize at least four

different social choice methods. In [56], the DMs rank the solutions and their least preferred

solution and they are used as an input for social choice methods and for a game-theory based

bargaining method, respectively.

Next, we discuss how the final solution is selected. The steps involving the DMs and how

the final solution is selected were not always clear in the papers. Hence, the following is our

interpretation of the approaches to select the final solution.

First, the DMs rank the solutions using the social choice methods in [30, 60]. Then, instead of

using a fallback bargaining method to determine the final solution directly, the DMs bargain

over the social choice methods. The best social choice method according to the fallback

bargaining, determines the final solution. In [60], the best social choice methods, according

to the scenario considered, are Borda count, Condorcet’s practical method and plurality rule.

The corresponding solutions are selected as the final solutions per the scenario considered.

In [30] the unanimity fallback bargaining method results in the Borda count and Condorcet

choice as the best social choice method in two different scenarios.

Another approach in the reviewed literature is to use fallback bargaining side by side with the

social choice methods to rank the solutions. In [1], the final solution is the one that both of

the fallback bargaining methods suggested, while in [56] the authors use several social choice

methods, and fallback bargaining methods to find a set of solutions but do not indicate which

is selected as the final solution.

The fallback bargaining method can be also the only social choice method to select the final

solution. In [66], the fallback bargaining method is implemented with an impasse. The

method is able to find the final solution in each scenario considered. In [65], social choice
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methods are used without using any fallback bargaining methods. The Borda count method

is determined to be the best social choice method and decides the final solution.

Other methods

An online questionnaire is used to get preference information from DMs in [33]. The DMs

provide weights for objective functions and pairwise comparisons of the objectives for three

different MCDA methods including AHP. The DMs indicate how many solutions they are

willing to rank, and then rank them using the MCDA methods. In this way, each DM has a

ranking of the solutions for each of the MCDA ranking methods used. Then, the rankings are

given to the Borda count method to obtain the final combined ranking. The highest-ranked

solution is selected as the final solution.

In [5], the authors test the method with real DMs who are experts in the humanitarian re-

sponse. The eight DMs are split into two test groups with four DMs, each group solving the

problem independently. A moderator supports the DMs and ensures that everyone clearly un-

derstands the decision situation. The DMs are provided with generated solutions and some

visualizations of the solutions. The DMs had one hour to discuss and converge on the final

solution. Both of the subgroups did agree on the final solution.

As mentioned, in [78], different scalarization-based methods are used to generate a set of

Pareto optimal solutions representing collaborative shipping contracts. After the solutions

have been found, the DMs perform a score voting on the solutions. The solution with the

highest score is selected as the final solution.

4.3 Interactive methods

In this section, we discuss interactively given preference information and how it is incor-

porated into GDM-MOO methods. In Subsection 4.3.1, we consider what kind of prefer-

ence information is asked from the DMs. In Subsection 4.3.2, we discuss how the multiple

preferences are incorporated in to the solution process in an interactive manner. Lastly, in

Subsection 4.3.3 we consider how the final solution is selected.

In Table 5, we summarize the papers proposing interactive methods for GDM. The reference
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column indicates the paper referred to as on that row and the preference information types

column mentions the used preference information types separated by a comma. If the DMs

had options, the word or is separating the options. The second column indicates whether

the methods used indirect or direct approaches. The third, final solution, column indicates

whether the method can identify the final solution for the GDM-MOP.

Reference Preference information types

Incorporat-

ing multiple

preferences

Final

solu-

tion

[85] binary satisfaction to solution direct Yes

[29]
interval weights, veto, majority,

credibility thresholds
indirect Yes

Mhab-EC [76] weights for objectives direct No

[46] preference ranking indirect Yes

CIMO [7] classification of objectives direct Yes

[62] - direct Yes

Mhab-EC [77] weights for objectives direct No

CI-NSGA-II, CI-SMS-EMOA,

CI-SPEA2 [18]

pairwise comparison or free de-

sign in game
indirect No

NEMO-GROUP [42] pairwise comparison of solutions indirect No

[87] - direct No

[6]
interval weights, veto, majority,

credibility thresholds
indirect Yes

[27]

interval weights, veto, conser-

vatism, credibility and majority

thresholds

indirect Yes

CI-NSGA-II, CI-SMS-EMOA

[19]
pairwise comparison of solutions indirect Yes

Table 5. The reviewed interactive GDM-MOO methods in a table format.
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4.3.1 Preferences in interactive methods

This subsection focuses on the types of preference information the DMs provide in the differ-

ent interactive GDM-MOO methods. The reviewed literature contained various preference

articulation styles, collected from the DMs in different stages of the decision making pro-

cess. As mentioned, Table 5 summarizes the different preference information types used in

interactive methods.

To start with, we discuss interactive methods utilizing evolutionary algorithms with differ-

ent preference information types. The preferences include weights for objective functions

and pairwise comparisons of solutions. After this, we present different scalarization-based

algorithms with varying preference information types.

Weights for objective functions are commonly used in interactive GDM-MOO methods.

Considering precise preference information, the DMs provide weights for objectives in [76,

77]. The weight vector is given to an agent representing the DMs’ interests in an agent-

based framework, called multi-human-agent-based evolutionary computation (Mhab-EC).

The Mhab-EC uses evolutionary methods to generate non-dominated solutions that are shown

to the DMs. After seeing the generated non-dominated solutions, the DMs can provide new

weights for restarting the method and reach different solutions. Mhab-EC is meant to be run

several times with DMs adjusting their preferences while gaining new information from the

solutions found. Hence the authors call their method interactive.

The following papers focus on situations where the DMs’ preference information can be

imprecise or imperfect and the objective values may be uncertain. The DMs can adjust their

preferences during the consensus reaching processes led by the SDM in these methods.

The DMs expressed their preferences as interval weights to model the imprecise informa-

tion in the DMs’ preferences in [6, 27, 29]. Compensatory preference models mean that

poor values in some objectives can be compensated by good values in others, while non-

compensatory preference models do not allow this. Depending on whether a DM wants to

express compensatory or non-compensatory preferences, the DM chooses which preference

model to follow in [6, 29], either a weighted sum model or an interval outranking model,

respectively. In the weighted sum model, the DM needs only to provide the interval weights
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for objectives. Next, we discuss the case when the DM wishes to express non-compensatory

preferences.

Influenced by multi-criteria ordinal classification methods [6, 27, 29], in the interval out-

ranking model, interval weights are supplemented with additional parameters from the DMs.

These parameters included veto, majority and credibility thresholds in [6, 27, 29]. Veto

thresholds allow considering veto situations in the outranking model. Majority and cred-

ibility thresholds are used in the outranking model to establish precise preferences from

imprecise preferences. Besides these parameters, in [27], the authors include conservatism

thresholds to model the risk-taking attitudes of different DMs regarding the objective val-

ues. The conservatism threshold is utilized in the outranking model in handling imprecise

preferences.

Pairwise comparisons of solutions are another common type of preference articulation in in-

teractive methods, used in [18, 19, 42]. The interactive methods used evolutionary algorithms

utilizing pairwise comparisons of solutions and aggregating the preference information to a

collective preference to guide the search process. In [18, 19], the DMs perform pairwise

comparisons of randomly selected non-dominated solutions. The DMs select their best solu-

tion from the shown solutions. Additionally, in [18], the DMs can express their preferences

by a free design mode in a gamified graphical user interface dedicated to the facility location

problem in a video game. This is discussed in more detail in the following subsection.

In [42], the authors propose a set of evolutionary algorithms called NEMO-GROUP, where

pairwise comparisons of solutions of several DMs are incorporated into the evolutionary

search. At regular intervals, each DM compares a pair of randomly selected non-dominated

solutions. The best solutions selected are used to form utility functions representing the

DM’s and the group’s preferences.

Next we discuss miscellaneous types of preference information in interactive methods. The

DMs can indicate their preferences at each iteration of the algorithm by solving a subprob-

lem from which the values of a utility function can be deduced in [62]. The paper did not

explain how an individual DM can solve this problem. The DMs select the most preferred

solutions of the shown solutions in [87]. The median of the preferences is computed, and
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the solutions adjacent to this median determine the direction the algorithm moves in the ob-

jective space. In [7], the DMs classify the objective functions using natural language into

five different classes. The authors in [85] consider a real-world problem optimizing a wine-

harvest schedule. There are two DMs and two objective functions. The DMs do not give any

preferences before the optimization, only after a solution is generated and shown to them.

The DMs indicate their agreement or disagreement of the suggested solution.

The interactive method presented in [46] generates a set of Pareto optimal solutions using

scalarization-based MOO methods. The DMs must decide how many solutions they want to

see after each iteration. The DMs discuss in a group about the solutions and form tentative

preference rankings. After the group discussion, the DMs provide ordinal rankings of the

solutions independently without group interaction. The ordinal rankings are aggregated to a

collective preference ranking used in the optimization.

4.3.2 Using multiple preferences in the solution process

In this subsection, we consider how the multiple preferences (from several DMs) are incor-

porated in the interactive GDM-MOO methods. The preference information is expressed

progressively during the solution process. The preferences can be incorporated in either an

indirect or a direct manner. If group interaction is possible, the DMs can take part in a

consensus reaching process to bring their preferences closer to each other. The consensus

reaching process can also be used after finding solutions to help with final solution selection.

Indirect approaches with evolutionary algorithms

Next, we discuss interactive GDM-MOO methods that involve an indirect approach and

study how multiple preferences are combined to collective preference(s) and utilized to guide

the solution process. In [18, 19], in each iteration the DMs perform pairwise comparisons

of two randomly selected solutions. The DMs select the best solution and then all of the

pairwise comparisons are used to form a collective reference point. The selection operators

of the developed evolutionary algorithms are replaced by a selection operator based on the

distance to the collective reference point. The variation operator is replaced in [18] by im-

plementing a free design mode, where the DMs can update and redesign the game objects,
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like trucks and warehouses, in a dynamic manner. The redesigned solutions are re-injected

into the population.

The DMs make pairwise comparisons of solutions in the NEMO-GROUP methods in [42].

The collective preference model combines individual pairwise comparisons into a compre-

hensive value representing the whole group of DMs. The authors form two types of group

utility functions, which evaluate the solutions. The NEMO-GROUP methods also incorpo-

rate weights for DMs’ degrees of importance. The different utility functions are used in the

NEMO-GROUP methods to find a set of consensus solutions.

Indirect approaches with a consensus measure

Methods to be discussed in the following build a collective preference model to measure the

consensus of the DMs about solutions. The methods consider imprecise preference infor-

mation and groups, where interaction and communication is possible among the DMs. In

addition, these methods assume that there is a moderator (or an SDM acting as a moderator)

available to guide the consensus reaching process. The consensus measure counts the num-

ber of DMs who are satisfied and respectively dissatisfied with their current objective values

in [27, 29]. In [6], the consensus measure considers the number of highly satisfied, satisfied,

dissatisfied and highly dissatisfied DMs. In the methods in [6, 27, 29], it is assumed that

with the guidance of the moderator, the DMs are able to set up their individual MOPs. The

methods start with a consensus reaching process guided by the moderator. The consensus

reaching process aims to make the DMs’ preferences more similar. Then, the DMs solve the

MOP individually by using any MOO method. The DMs distinguish their best solution and

those solutions are considered as reference points for the DMs in the following GDM-MOP.

All of the methods in [6, 27, 29], use EMOAs incorporating the collective model to find

non-dominated solutions which are then evaluated by the consensus measure as discussed.

The solutions found are consensus solutions. If no solutions are found, another consensus

reaching process must be performed, and after the DMs’ preferences have been adjusted, the

optimization is performed again.

Here, a preference model refers to either an interval outranking model or an weighted sum

model with interval numbers. The DMs set up the parameters for the preference model they
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prefer to use. The parameters for the interval outranking model included veto, majority and

credibility thresholds and both preference models required DMs to specify interval weights

for objectives. In addition, in [27] the DMs need to specify a conservatism threshold. In [6,

29] the DMs are split into subgroups corresponding to the preference model for the subse-

quent consensus reaching processes.

Next, we discuss how the interval outranking-based methods proposed in [6, 27, 29] handle

measuring the consensus degree of solutions. Some additional information is needed. In

[29], each DM sets a boundary for each objective function to classify any solution into a set

of satisfying or dissatisfying solutions. This boundary should not be shared with other DMs.

In [6], the DMs set their representative solutions by classifying some solutions to either

satisfactory or unsatisfactory ones. Representative solutions mean examples of satisfying

and unsatisfying solutions. It is assumed that the DM has at least a vague idea of what

makes a solution satisfying and what makes a solution unsatisfying. Both the boundary,

and the representative solutions, are used in the preference model to classify solutions to in

satisfactory or dissatisfactory classes. In this way, the consensus degree of given solution

can be computed.

The SDM’s role is important in the two methods presented in [27]. In the first method, the

SDM creates a collective model aggregating all the DMs’ preferences. As mentioned, each

DM expressed interval weights for objectives, reference point and veto, majority, credibility

and conservatism thresholds. The collective model is updated by the SDM after each con-

sensus reaching process and can be used to find the final solution. In the second method,

the SDM focuses on the consensus measure maximizing group satisfaction and minimizing

dissatisfaction. The solution close to the individual DM’s preferences is considered to satisfy

that DM. The concept of closeness is defined in the method. However, the SDM reserves the

final judgment to define the concept of closeness and other parameters of the model, includ-

ing the degrees of importance of DMs. After building the collective model, the SDM solves

the problem by looking for consensus solutions that maximize group satisfaction and min-

imize group dissatisfaction. If group interaction is possible, a consensus reaching process

under the moderation of the SDM can be performed to make the preferences of the DMs

more alike.
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Indirect approach with a scalarization-based method

Next, we discuss a scalarization-based method that uses an indirect approach, including

group discussions, to help achieve a consensus ranking of the DMs’ rankings of solutions.

The method in [46] used two multiobjective linear optimization methods to generate a set

of Pareto optimal solutions. To use these methods with multiple DMs, the DMs’ prefer-

ences are aggregated into a collective preference in the following manner. The DMs discuss

the generated Pareto optimal solutions and each provides a tentative ordinal ranking of the

solutions. Then the DMs can adjust their ordinal rankings of the solutions without group

interaction. These will be converted to equivalent cardinal rankings, and then a collective

ranking is formed. Based on the collective ranking, the method generates four new solu-

tions, which the DMs again discuss. The DMs can decide to restart the process or decide on

the final solution.

Direct approaches

In the following, we discuss methods utilizing a direct preference information approach.

Mhab-EC aims to find consensus solution(s) without needing face-to-face meetings of DMs.

As mentioned, in Mhab-EC [76, 77], the DMs give weights for objectives to be used in

agents as the agent’s preferences. The agents work in a virtual agent space, move randomly

and share their preferences with other agents. The sharing mechanism makes the individual

agents’ preferences more similar to the average of the nearby agents. The agents generate

new preferences at each generation. In [77], the authors extend Mhab-EC to let the DMs ad-

just their preferences between iterations of the method. The solutions found after a maximum

number of iterations is reached are defined as the consensus solutions.

The DMs provide their preferences by classifying the objective functions in [7]. The method

is set up to divide a MOP into subproblems that the different DMs solve in parallel. The

SDM is supervising the DMs and after each DM has solved their subproblems, the SDM

solves their MOP considering the (not necessarily Pareto optimal) solutions found by the

individual DMs. This is repeated until a stopping criterion is reached. The authors in [62,

87] assume that the preference structure of each DM can be represented by a utility function.

In the methods, the DMs’ utility functions are used to find collective solutions.
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4.3.3 Selecting the final solution

As mentioned, the goal in solving a GDM-MOP in practice is to find the final solution to im-

plement. In the interactive GDM-MOO methods, various ways are utilized to select the final

solution. Some methods include a consensus reaching process with a moderator, some meth-

ods do not involve a moderator in this, some methods utilize different voting approaches, and

some rely on the SDM’s expertise to select the final solution. In the following, we discuss

how the final solution is selected.

As mentioned, in [6, 27, 29], a set of consensus solutions is found and the authors propose

separate ways of then selecting the final solution, depending on the number of solutions in

the set of consensus solutions. If there is a single consensus solution, it is selected as the final

solution. Otherwise, in [27, 29] the SDM selects a group decision method to select the final

solution. In [29], the group decision method is based on the outranking credibility index of a

given solution. The solution with the best value according to this indicator is selected as the

final solution. In [27], either the SDM selects the final solution or the group decision method

is a consensus measure to calculate the satisfaction of the DMs with the consensus solutions.

The solution with the best consensus degree is selected as the final solution. The authors

in [6] consider two other approaches to selecting the final solution from multiple consensus

solutions. In case of two consensus solutions, the group selects the final solution by voting.

If there are three or more consensus solutions, the final solution is chosen by a Borda count

(the solution with the highest score).

Next, we discuss methods where a consensus reaching process is used to determine the final

solution. In [46], the group discusses the four consensus solutions (obtained so far) according

to the collective ranking of the DMs. The DMs have to agree on the final solution selected

from the consensus solutions. Otherwise, the group decides whether to continue the search

or end the process by selecting the final solution with a majority vote. The negotiation

protocol considering two DMs in a wine-harvesting schedule problem introduced in [85],

proceeds as follows until an agreement is found. The authors utilized an approach to find the

starting Pareto optimal solution for the negotiation by minimizing the augmented weighted

Chebyshev distance to the ideal vector. The starting Pareto optimal solution is shown to

the two DMs, and if both DMs agree that this solution can be selected as the final solution,
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the negotiations end. Otherwise, a new solution is generated by exploring the neighborhood

around the solution last shown to the DMs. The new solutions shown are solutions that

increase one objective in a similar percentage to the decrease of the second objective. When

both DMs give their agreement on the solution generated, the process ends by selecting that

solution as the final one.

Next, we consider methods using voting-based or MCDA-based approaches to select the

final solution. In [62, 87], majority voting is used to select the final solution and in [7], the

AHP method is used to select the final solution among the different generated solutions. In

the gamified decision making process in [19], at the end of the game, the method has created

only one solution, and that is presented as the final solution. Since, the DMs’ preferences are

taken equally into account, that solution is best according the majority of the group.

In the following methods, the focus is not on final solution selection. Generally, the found

solutions are called collective ones, since they are found using multiple preferences (from

the group of DMs) or they are called consensus solutions, since they are evaluated using

a consensus measure. In [42, 76, 77] the goal of the solution process is to find a set of

consensus solutions and in [18], to find a set of collective solutions. As mentioned, in this

review, we refer to collective solutions, when solutions are found (in any way) using the

multiple preferences of the DMs. Also, we refer to consensus solutions as solutions that

satisfy a consensus degree. However, the authors in [76, 77] define the converged solutions

as the consensus solutions. In the case of multiple consensus solutions, it is suggested that a

group decision method is needed to select the final solution. In the end, the final solution is

not selected.
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5 Discussion

In this chapter, we discuss several important aspects of the reviewed literature regarding

GDM-MOPs and GDM-MOO methods. The focus of the literature review was to examine

the state of the art of the combination of GDM and MOO methods. The reviewed literature

consists of 40 papers and in the following, we summarize the findings regarding the research

questions, which are discussed in Chapter 4. The first research question asks what kinds

of preference information types the DMs were expected to express. The second research

question asks how the multiple preferences from several DMs were incorporated into the

solution process. The third research question asks how the final solution was selected in

GDM-MOPs.

To answer the research questions, we evaluated different preference information types given

by multiple DMs and how the preferences were incorporated into the solution process. We

considered how the methods supported the DMs in the final solution selection. We adopted

the taxonomy from the MOO field to classify GDM-MOO methods based on the timing

of incorporating the DMs’ preference information in the solution process. In addition, we

introduced indirect and direct approaches to including the multiple preferences of several

DMs in the solution process.

First, in Section 5.1, we discuss the distribution of the papers according to the performed

classification and suggest desirable properties of GDM-MOO methods. The desirable prop-

erties are formed by combining the relevant findings from the reviewed literature with the

general issues to consider when solving GDM problems. In Section 5.2, we discuss these

desirable properties in light of the results of the literature review. Lastly, in Section 5.3, we

consider the limitations of the study and discuss future research topics.

5.1 Desirable properties of GDM-MOO methods

To start with, let us consider the distribution of the papers according to the performed clas-

sification. In Figure 4, most of the methods proposed are a priori methods followed by

interactive methods and then a posteriori methods. However, we do need to remind, that
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one of the interactive methods (utilized in two papers) could have been classified as an a

priori method. In this thesis, the authors’ own classification of their method belonging to

interactive methods was respected.

Considering the papers using a posteriori methods, it is surprising that it has the smallest

amount of papers, since GDM in a posteriori MOO methods is the most similar to the ex-

tensive GDM research in MCDA problem settings. The reason why the case is this comes

from the way this literature review was conducted. As mentioned in Chapter 4, if the paper

considers an MCDA problem setting, with an explicitly given set of alternative solutions,

the paper was excluded since it did not have an optimization perspective where solutions are

generated from the feasible set.
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Figure 4. Number of papers reviewed in the method classes

Desirable properties of GDM-MOO methods

The way of developing GDM-MOO methods in the reviewed literature and how they are

discussed raises questions and concerns. Much of the information and descriptions of the

methods are not compatible. For example, how can a method be said to solve a GDM-MOP

if the final solution is not selected? Furthermore, many GDM-MOO methods lack testing

with real DMs in real-world MOPs.
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The following properties are derived from these questions and the results achieved by per-

forming this literature review. The properties are purposed to indicate important aspects of

solving a GDM-MOP, assumptions or elements of the DMs and their preference information

that should be considered in solving a GDM-MOP or in developing a GDM-MOO method.

The properties aim to ensure that the important aspects of solving GDM-MOPs are addressed

and the methods will have validity in real-world problems. Therefore, we list desirable prop-

erties to aim to meet so that GDM-MOO methods would be more applicable to real-world

problems and easier to understand and apply in practice.

• Desirable properties (DP)

DP1 - The method is tested with real DMs.

DP2 - The method is tested with real-world MOPs.

DP3 - The authors report for which kind of groups the method is developed for.

DP4 - The preference information the DMs are required to provide is understandable

for them.

DP5 - The method incorporates the preferences of each of the DMs.

DP6 - The method provides support to the final solution selection.

DP7 - Most (if not all) of the DMs can accept the final solution.

Next, we briefly discuss the desirable properties. DP1 and DP2 are often entangled together.

DP1 requires that the DMs are domain experts in the problem and not e.g. the authors acting

as DMs. DP2 requires that the GDM-MOO method is tested with real-world MOPs instead of

benchmark problems, where the objective functions do not mean anything to the DMs. The

purpose of DP1 and DP2 is to ensure that the GDM-MOO method will work in real-world

problems with real human DMs. Fulfilling DP1 and DP2 brings validity to the usability of

the developed method in solving real-world MOPs.

The purpose of DP3 is to point out that different types of groups will benefit from different

types of GDM-MOO methods. Authors should communicate to which types of groups the

method is developed for, so it can be easily applied by others in solving suitable GDM-MOPs

with similar types of groups. Defining the group structure, e.g. in a manner discussed in

Section 3.1, will make sure the relevant aspects are communicated (and therefore considered
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in the method development).

DP4 requires that the preference information type is such that each DM can understand it. At

the same time, the DMs should not have to provide too many different types of preferences,

since that also affects the understandability and may increase cognitive load.

DP5 indicates that the preferences of each DM are incorporated in the GDM-MOO method.

The preferences of the DMs should guide the search and it would be preferable that all the

DMs’ preferences would be considered. However, DP5 does not require that each of the

individual DM’s preference will be considered in a similar manner or with a similar effect in

the solution process.

DP6 ensures that the GDM-MOO method supports the DMs in selecting the final solution. If

the final solution is not selected, there is no solution to implement in practice and the GDM-

MOP has not been solved. The GDM-MOO method should be able to help the DMs to find

collective solution(s) from which the DMs are able to determine the final solution.

The purpose of DP7 is to bring some validity to the acceptance of the final solution. As dis-

cussed, by using e.g. aggregation-based methods, the solution(s) found may be too different

from the solution(s) an individual DM would have preferred. This may lead to a situation

where the final solution is not implemented in practice. The GDM-MOO method should

contain some ways to guarantee the acceptance of the final solution or the authors should

e.g. directly ask from the DMs about the acceptance of the final solution.

How are (or the lack of) the desirable properties manifested in the reviewed literature? Are

there some findings that should be considered in future research? In the next section, we

discuss these desirable properties and the lack of fulfilling them in the reviewed literature.

5.2 Evaluating the reviewed literature

Here, we discuss the desirable properties in the context of the reviewed GDM-MOO liter-

ature. We highlight papers, where the desirable properties are fulfilled and discuss papers

where they are ignored. Table 6 gives an overview of how the desirable properties DP1, DP2,

DP3 and DP7 are met in the reviewed papers. We explain the entries and their meaning in
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the table, with respect to the desirable property under consideration. We discussed DP4, DP5

and DP6 in Chapter 4, hence they are not repeated in the table.

Desirable properties DP1 DP2 DP3 DP7

[72, 73] ✗ ✗ C_d, I_n,DI_e ✗

[50] ✓ ✓ −,−,DI_n ✗

OptMPNDS, OptMPNDS2 [48, 80] ✗ ✗ −, I_y,DI_e ✗

[11] ✓ ✓ C_d, I_n,DI_n ✓

MWS-NSGA [47] ✗ ✗ −,−,DI_e ✗

[31] ✗ ✓ C_d, I_n,DI_n ✗

[64] ✗ ✓ −,−,DI_e ✗

[57, 58, 89] ✗ ✗ −,−,DI_n ✗

WIN [17] ✓ ✓ −,−,DI_n ✓

NSS-GPA, W-NSS-GPA [9, 10] ✗ ✗ C_a, I_y,DI_n ✗

[28, 29] ✗ ✓ C_a, I_n,DI_n ✓

[1, 2, 30, 32, 33, 60, 65, 66, 85] ✓ ✓ −,−,DI_e ✓

[56] ✓ ✓ −,−,DI_e ✗

[78, 87] ✗ ✗ −,−,DI_e ✗

[5] ✓ ✓ C_a,−,DI_e ✓

Mhab-EC [76, 77] ✗ ✗ C_d,−,DI_e ✗

NEMO-GROUP [42] ✗ ✗ −,−,DI_n ✗

[46] ✓ ✓ C_a, I_y,DI_e ✓

CIMO [7] ✗ ✓ −, I_n,DI_n ✗

[62] ✗ ✗ −,−,DI_e ✓

CI-NSGA-II, CI-SMS-EMOA, CI-SPEA2 [18] ✓ ✓ −,−,DI_e ✗

CI-NSGA-II, CI-SMS-EMOA [19] ✓ ✓ −,−,DI_e ✓

[6] ✗ ✓ C_a, I_y,DI_e ✓

[27] ✗ ✓ C_a,−,DI_n ✓

Table 6: The desirable properties DP1, DP2, DP3 and DP7

in the reviewed literature.
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Discussion of DP1 and DP2

In the following, we discuss DP1 and DP2 in light of the reviewed literature. Let us get

started with how to decipher Table 6 regarding DP1 and DP2. The symbol ✓ indicates that

DP1 has been fulfilled in the corresponding paper and the symbol ✗ indicates the opposite.

In this review, we interpret that DMs are real-world DMs, if the authors clearly indicate

this, e.g. by reporting the roles of the DMs. For example in [85], the authors reported that

one of the DMs is an oenologist (wine-harvesting expert) and the other is a field manager

(economical expert). We regard also students who are testing GDM-MOO methods as real-

world DMs. The cases, where the authors are acting as DMs have been marked with the ✗.

In some of the papers, it was very hard to deduce whether real DMs were involved or the

authors acted as DMs. In these cases, it is assumed that there were no real DMs involved.

Regarding DP2, the symbol ✓ indicates that DP2 has been fulfilled in the paper and the

symbol ✗ indicates the opposite. DP2 is not fulfilled if the GDM-MOO method is tested with

benchmark problems e.g. ZDT or DTLZ problems as in [42] or there is no testing performed

for the designed method as in [78]. Otherwise, DP2 is considered to be fulfilled. The papers

fulfilling DP2 include real-world case studies as in [30], real-world inspired problems that

are utilized to test the developed method as in [64] or examining data from older case studies

to build the MOP as in [33]. The important distinction is whether the objective functions and

decision variables have real meaning for the DMs.

In Table 6, we can see that there are 17 papers that have real DMs (DP1). From these 17

papers, 16 papers also use a real-world problem to test the developed method or to solve a

real-world problem (DP2). The remaining paper is [64], where the authors tested the devel-

oped method using a real-world inspired shop scheduling problem, but the authors played

the roles of DMs. It can be argued that the objective functions did not have real meaning for

the DMs (the authors). In total, there are 24 papers with real-world problems or real-world

inspired problems.

Next, let us discuss the papers that fulfill both DP1 and DP2 according to Table 6. There were

different types of DMs involved in solving various real-world MOPs. The authors in [1, 2, 30,

56, 60, 65, 66] considered various real-world case studies formed as MOPs. The papers had
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several different types of DMs or groups of DMs. For example, in [65], the DMs represented

different companies or interest groups, e.g. farmers of the area. The DMs in [5, 50] were

real humanitarian experts solving a disaster response MOP, that utilized disaster data from

an earthquake. In [85], the authors considered a wine harvesting scheduling problem with an

oenologist and a field manager as DMs.

The authors acted as DMs in real-world inspired problems considering portfolio optimiza-

tion in [6, 27, 28, 29] and in benchmark problems in [48, 58, 72, 76, 77, 80, 89]. The validity

of these GDM-MOO methods may be under question due to the following reasoning. Firstly,

the authors acted as the DMs, therefore it can be argued that the objective functions do not

mean anything to the DMs. In the methods using test problems and the authors acting as

the DMs, this is emphasized even more. In addition, some authors used specifically selected

test problems. In [48, 80], the authors used test problems that are guaranteed to find collec-

tive solutions, when the DMs give their preferences in a certain way. Since this cannot be

assumed to be the case in real-world problems, how would the developed methods work in

reality?

The papers [76, 77] utilizing agents representing the DMs raises some questions. In the

method, the DMs are represented by agents in the evolutionary population. The DMs are

supposed to give their preferences as weights for objectives to an agent. However, the evo-

lutionary method had hundreds of agents (varying between 300 and 400), and hence the

preferences of the agents were generated randomly. It is unclear how the method should

work with real DMs. Are there hundreds of DMs? How the preferences of a few DMs would

be incorporated into the method?

Here, we have discussed several aspects of why DP1 and DP2 should be considered when

proposing new methods in the literature. Testing the methods with real-world problems will

bring validity to the method, especially when combined with real DMs. The need to consider

properties such as DP1 and DP2 has also been noted in the literature, for example, discussed

as future research in [73, 77, 80].

Discussion of DP3

DP3 requires that the authors report the group structure, at least containing the aspects dis-
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cussed in Section 3.1. Briefly, to summarize, it must be determined whether the DMs can

communicate with each other or not, is the preference information shared and whether the

degree of importance of the DMs is equal or not. These aspects have been captured in DP3

in Table 6.

First, let us explain how to decipher DP3 in Table 6. The column for DP3 consists of three

parts of information, separated by a comma. In all of the parts, a hyphen indicates that the

authors did not give this information. The first part refers to communication. In the cases,

where the DMs can communicate with each other in any way, be it in-person or online,

communication is allowed (marked as Ca in the table). When communication is disallowed,

Cd is marked. The second part refers to the information about the preferences of the other

DMs being shared with individual DMs. If preference information is shared, it is indicated

by Iy and In is used if the information is not shared. The third part refers to the degree of

importance of the DMs. In the cases, where the DMs are equal in degree of importance,

we write DIy. Otherwise, DIn is written. This includes the cases, where e.g. the DMs are

weighted differently or there is an SDM present. Let us, for example, consider the following

example −, In,DIn. Here, the first part, −, means that the authors did not give information

about the communication among the DMs. The second part, In means that the preferences of

the DMs were not shared with other DMs and the third part, DIn, means that the DMs had

different degrees of importance.

By observing Table 6 regarding DP3, we can see that there are various combinations of

these parts. All the methods reported the degree of the importance of the DMs in some way

or another. Often, the degree of importance of DMs is modeled by the weighting of the

DMs as in [57, 58, 89]. Most times the weights are decided by the authors or by an SDM.

However, the weighting of the DMs directly affects the solution process and the final solution

selected and it is not clear how to set these weights. For example in [50], the method allows

weighting of the DMs, but in testing the method the authors only consider equally weighted

DMs because it was too complex of an issue to determine the importance of individual DMs

without inducing bias.

In seven papers, there is an SDM or a moderator playing an important role in the solution

process. The SDM was often in charge of weighting the DMs. In some cases, the SDM is
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a natural part of the group e.g. the manager as in [11] and a project manager in [17], who

selected the DMs to participate in the solution process, weighted the DMs and also selected

the final solution. However, in [6, 27, 28, 29], the methods require the SDM (or a third-

party moderator) to monitor the consensus reaching process and guide the DMs during the

solution process. The details of the consensus reaching process are not mentioned by the

authors, except in [28], where the authors describe a general approach including the DMs

discussing and applying some unspecified group techniques to reach a consensus. It may be

hard to have this type of a third party available. Moreover, the person guiding the DMs in

the consensus reaching process may have an effect on the final solution. This can be argued

to be a desirable feature when an SDM is involved, but it is undesirable when a third-party

moderator (who is assumed to be impartial) is involved. On the other hand, a competent

SDM in charge of the consensus reaching process may lead to more satisfied DMs at the end

of the process [34].

The communication between the DMs and sharing of preference information are not reported

as often in the reviewed literature. The information presented in Table 6 regarding commu-

nication and sharing of preference information, is deduced mostly from few sentences that

mention the issue in the papers. Generally, in the reviewed literature, there is very little

focus on details of the group structure. In 14 papers communication is mentioned: in 8 of

the papers the communication is allowed and in 6 it is disallowed. For example, in [9, 10]

the DMs’ can communicate through the agent-based negotiation framework, but in the other

agent-based framework [76, 77] the DMs are not allowed to communicate. Regarding the

sharing of the preference information, in 13 papers the authors indicate whether the pref-

erence information is shared (6 papers) or not (7 papers). In [9, 10], the DMs can see the

preferences of the other DMs and the collective preference, but for example in [72, 73] the

DMs do not see the preferences of the others. Most of the papers reporting whether the DMs

can communicate also report whether the preference information was shared. However, for

example in [48, 80], the authors mention that every DM can see the other DMs’ preferences,

but the communication between the DMs is not mentioned at all.

In the reviewed literature, sometimes the authors defined that their method was developed for

committees [42, 87] or teams [7]. What exactly is a committee or a team in these cases, was
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not elaborated or defined. This type of definition is important as the methods are developed

for this specific type of a group in mind. The authors in [6, 27, 28, 29], considered this issue.

They provide a clear characterization of group structures originally defined by [51]. In the

following, we introduce this characterization of the group structures and discuss the main

properties of these group structures.

A characterization of group structures

(a) partner association

(b) team (c) committee

Figure 5. Group structures introduced in [51]. a) partner association b) team c) committee.

According to [51], the group structures for GDM-MOP are

(a) partner association,

(b) team and

(c) committee.

In partner association (see Figure 5 a), the whole group is responsible for the decision. There

is a symmetry between the DMs indicating that all the DMs hold the same accountability of

the decision. The symmetry is present in the communications and in the sharing of informa-

tion. The DMs can communicate among each other and can see the preferences of the other

DMs. However, the symmetry does not imply that all DMs are equally skilled negotiators

or have the same system of values. The final solution is selected according to a previously

agreed group decision method [26, 27].

58



The symmetry is missing from the other group structures called team and committee. There

is an SDM in charge who chooses the group decision method to use and selects the final

solution based on the preferences of the DMs. The communication and flow of information

are asymmetrical. In a team, the group members only interact with the SDM (see Figure 5

b). In a committee, there is complete interaction between the group members, but the SDM

still has the final say [51] (see Figure 5 c).

In addition, in all group structures, there can be a moderator or a facilitator to help in differ-

ent processes [51], e.g. helping to prevent deadlocks in negotiations, helping DMs use the

method or guiding the consensus reaching process. Finally, all these group structures allow

allocating different degrees of importance to DMs.

Discussion of DP4

The GDM-MOO method fulfills DP4 if the preference information the DMs express is in

an understandable format to the DMs. This is obviously subjective, and for example, some

DMs may understand weights for objectives very well while other DMs prefer using pairwise

comparisons of the solutions. Some methods allow few options for the DMs to express

their preferences, but only in [6] the group does not need to agree to use the same type

of preference information. However, we discuss what preference information types have

been used in the different methods in the reviewed literature. In addition, we consider the

advantages and disadvantages of the most common preference information types and answer

the first research question.

The number of preference information types utilized in the different methods is shown in

Figure 6. The preference information that is expressed in either a precise or an imprecise

format, has been aggregated into the same bar. The same aggregation has also been done

for weights, ranking and pairwise comparisons, regarding whether the information to be

evaluated is about the objective functions or the solutions. For example, the bar for ranking

contains both the ranking of the objective functions and the ranking of the solutions.

A reference point was the most popular preference information type utilized in a priori meth-

ods. The reference point had to be found by each of the DM by solving their own MOP in

[6, 27, 29]. The advantage of the reference points is that they contain the aspiration levels
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Figure 6. The preference information types in the method classes.

that the DM would like to achieve. Because of this, it can be argued that they are simple to

understand for the DM. On the other hand, if the DM cannot define such aspiration levels, a

reference point cannot be formed.

The next two most popular preference information types were ranking and weights. The

ranking of solutions performed by voting-based social choice methods in e.g. [1, 30] was

very popular in a posteriori method class, and an interactive method [46] utilized ranking

of solutions. The few a priori methods [11, 17, 50] used ranking of the objective functions.

The only a posteriori method using weights for objective functions was in [33]. The weights

were used also in a priori and interactive methods, most often as weights for objectives as

in [47, 77]. As mentioned in Chapter 2, weights are often seen as simple to understand and

implement but it is hard for the DMs to provide accurate weight vectors. Additionally, the

weighted sum method has issues if some of the objective functions are correlated and cannot
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find all Pareto optimal solution unless the problem is convex.

Pairwise comparisons were used commonly. The pairwise comparisons of the objective func-

tions was utilized in a posteriori methods [5, 33], and the pairwise comparisons of solutions

were utilized in interactive methods [18, 19, 42]. Most of the miscellaneous preference in-

formation types were one-offs and hence were aggregated into the last bar in Figure 6. These

included veto, majority, credibility thresholds for an outranking model in [6, 27, 29], and

classification of the objective functions in [7].

While it has been claimed that preference information types like pairwise comparison and

(partial) ranking of solutions may be less cognitively demanding to provide than e.g. weights

for objectives [41, 42], many methods used the less demanding preference information in

combination with a larger amount of different (and more complex) preference information

types. For example, in [28] the DMs are expected to give a reference point, weights for

objectives and fuzzy preference relations. Similar kind of outranking-based model was used

also in [6, 27, 29], where the DMs had to express various different parameters and thresholds

such as majority threshold. The number of parameters required from the DMs has been noted

as an issue with outranking-based methods [20]. Moreover, the authors in [28] noted that

preference information they utilized can be cognitively demanding for the DMs to provide.

Another example of complex preference information for the DMs to express was in [57],

where the DMs express their preferences as a membership function. This type of preference

information seems very hard to provide for the DM, who is the expert in the problem domain,

but not in the optimization methods or preference modeling.

Many of the methods using pairwise comparisons or utility functions e.g. [30, 42, 62, 87]

transform the DMs’ preference information into utility functions. This approach assumes

that the DMs have this kind of an underlying utility function [43] that can be inferred in

some way e.g. by observing how the DM makes decisions. However, often people make

decisions based on simple heuristics [43].

Here, we have discussed the precise and imprecise preference information as one entity.

However, the DMs may have their own perception of the objective values and the uncer-

tainty in the problem and according to [6, 27, 29] including imprecision in the preferences
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is important to consider in solving GDM-MOPs. The DMs expressed imprecise preference

information, modeled using either interval or fuzzy numbers, in [6, 27, 28, 29, 50, 57, 58,

89]. However, by adding another layer of uncertainty in the form of imprecise preference

information, the GDM-MOP becomes even more complex. The method must also handle the

different interactions with the different layers of uncertainty e.g. from the preferences and

the uncertainty related to the problem e.g. simulation-optimization model as in [30].

In summary, the relevant issue regarding DP4 is balancing between the understandability

of the preference information for human DMs and using preference information types that

provide some desired properties in the preference model.

Discussion of DP5 and DP6

Next, we consider DP5, DP6. In addition, we summarize the answers to research questions 2

and 3 as they are linked to DP5 and DP6. DP5 aims to ensure that the preferences of the DMs

are taken into account in the method. This means that the DMs’ preferences are incorporated

into the method in some manner. Figure 7 shows how many of the methods used indirect

and direct approaches. DP6 aims to ensure that the GDM-MOO method supports the DMs

in selecting the final solution. The final solution must be selected to solve the GDM-MOP

successfully. Figure 8 shows how many of the methods selected the final solution.

In the following, we discuss Figures 7, 8 and also refer to Tables 3 and 5. According to Figure

7, indirect and direct approaches were both used in the reviewed literature. As discussed in

Section 3.2, if there are multiple collective solutions found, a group decision method must

be used to select the final solution.

Of the total of 40 papers, in 22 papers the proposed method provided support for selecting

the final solution. So, in almost half of the GDM-MOO methods, the final solution was not

selected and the GDM-MOP was not fully solved. As nine out of ten a posteriori GDM-

MOO methods selected the final solution, only 13 papers select the final solution of the total

of 30 papers in a priori and interactive methods. As far as a priori methods are concerned, in

five of 17 papers, the final solution was selected. Considering interactive methods, in eight

of the total of 13 papers, the final solution was selected. It is clear that this is not an ideal

situation for the GDM-MOO literature for real-world relevancy.
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Figure 8. The number of papers selecting the final solution.

However, the reviewed literature sheds some light on why this situation has occurred. The

final solution selection phase is often dismissed in the reviewed GDM-MOO literature. This

is manifested in mainly two ways. Firstly, the authors in [9, 10, 42, 77, 89] explicitly mention

that the method aims to find a set of collective solutions, instead of a final solution. Secondly,

the final solution selection was seen as a trivial part of the process that can be solved by
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utilizing any already existing group decision method. However, many times the suggested

group decision method was not applied and the final solution was not selected. For example,

in [31], the authors state that the DMs select the final solution by negotiations and in [77],

the authors suggest that the DMs may use some criterion as the group decision method e.g.

select the best non-dominated solution, to select the final solution. The authors in [77] did

not specify what the best non-dominated solution in this context is.

However, the reviewed literature did contain GDM-MOO methods utilizing either indirect or

direct approaches and selecting the final solution. For example, in [11], the method utilized a

direct approach and an SDM selected the final solution. In an interactive method in [85], the

DMs were gradually shown generated Pareto optimal solutions, until a solution was found

which both of the DMs determined as acceptable. The GDM-MOO methods utilizing an

indirect approach selected the final solution most times, by using different group decision

methods e.g. utilizing a consensus reaching process to select the final solution in [46], or

finding the final solution using the weighted sum method with a collective weight vector in

[50] or using the Borda count method to select the final solution in [6].

In [27, 29], the authors brought up the case that much of the interactive GDM-MOO methods

assume that a collective preference is transitive, which as discussed in 3.2 is not the case.

Therefore in using indirect approach this should be considered and not assuming that the

transitivity property is in collective preference and hence a solution should be acceptable to

the DM.

Next, we discuss a posteriori methods in light of DP6. As mentioned, 9 out of 10 a posteriori

methods selected the final solution. The methods utilized several different social choice

methods, and the authors indicated which collective solution was determined as the final

solution. The only exception was in [56], where various social choice methods were used

to find several collective solutions, but the authors did not clarify which was selected as the

final one.

However, there is a concern regarding some of the reviewed a posteriori methods. As men-

tioned, the DMs in [1, 2, 30, 56, 60, 65, 66] expressed their preferences in the problem for-

mulation stage, and then the DM’s preferences were modeled with utility functions. Then,
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a set of non-dominated solutions was generated with an NSGA-II. Next, the DMs were ex-

pected to be able to rank a large number (a few dozens) of non-dominated solutions using

different social choice methods in [1, 2, 30, 56, 60, 65, 66]. For example, in [30], the DMs

had to rank 35 solutions in five different uncertainty scenarios.

However, ranking all of the found non-dominated solutions would not be possible if there

are hundreds or thousands of non-dominated solutions, which is not a rare occurrence when

using EMOAs. Therefore, some sort of filtering must be done to select a (reasonably sized)

subset of solutions to show to the DMs. There was no discussion about this issue in the

reviewed literature and only in [33], the DMs have the option to indicate how many solutions

they are prepared to rank. The above discussion raises the question of whether the DMs are

ranking the non-dominated solutions or their utility functions are performing the ranking of

solutions and hence the DMs are not actively involved into the solution process. For example,

in [65], the authors mention that the DMs’ utility functions are used to rank the solutions.

Discussion of DP7

DP7 brings up the acceptance of the final solution among the DMs. As discussed in Section

3.3, the final solution is the solution most preferred by the group, but in many cases, the

individual DMs may not agree on the final solution. The acceptance of the final solution

is especially relevant in real-world MOPs where the DMs may not implement the solution

they do not agree with. Hence, the acceptance of the final solution must be considered in the

method.

Let us discuss Table 6. In the table, the last column indicates, whether DP7 was considered in

the paper with symbol ✓or not with symbol ✗. The reasoning is the following. First, the final

solution must be selected and additionally, there must be some validation of the acceptance

among the individual DMs. The validation means using different acceptance measures such

as consensus measures or plainly asking the DMs questions, such as do you accept the final

solution or what do you think of the final solution. In the following, we discuss the types of

validation performed in the papers. If this type of validation is not reported by the authors,

in this review, we consider that D7 is not fulfilled.

A popular way of validating the acceptance of the final solution is to rely on a group deci-
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sion method that the group has agreed to use. For example in [1, 2, 30, 60, 65, 66] the DMs

have agreed to use social choice methods to select the final solution. The final solution se-

lected with the social choice method is a socially optimal solution and accepted by the DMs.

Another approach is using consensus measures. In the reviewed literature, several different

consensus measures were used to determine the acceptance degree of the final solution e.g.

in [6, 27, 28, 62]. When the SDM selects the final solution as in [11, 17], the acceptance

of the other DMs is not relevant, since the SDM’s acceptance is the only thing that can pre-

vent the solution from being implemented. Although, in [27], it was supposed that the SDM

acts as an altruistic dictator and in some way considers the acceptance of the final solution

among all the DMs. These types of approaches rely on the DMs respecting the group deci-

sion method selected earlier in the decision making. However, it is not clear how the DMs

select the group decision method and if the DMs do not select it, how can it be assumed that

the DMs accept the final solution?

Another way of bringing up some validation of the acceptance of the final solution was

asking the DMs what they felt about the final solution. In [46], where the majority of the

DMs reported that the group interaction played a great role in the GDM process and it posi-

tively contributed to their comprehension of the problem considered. Furthermore, the DMs

showed a high degree of confidence in the final solution. Also in [33], the authors mention

that DMs were asked to comment on the final solution regarding their preference informa-

tion. Another way was presented in [5, 11], where the authors discussed what solutions

individual DMs would have preferred and why the final solution was selected.

In summary, there are different ways to take into account the acceptance of the final solution

among the DMs. In the reviewed literature, the most often used way was relying on the

group decision method to guarantee acceptance based on the fact that the DMs agreed to use

that specific group decision method. Only a few papers asked for the DMs’ feedback on the

acceptance of the final solution.
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5.3 Limitations of the conducted work and future research directions

In this section, we discuss the limitations of the literature review. Furthermore, we discuss

several important future research directions found in the reviewed literature. Firstly, the

searches were conducted in July of 2022, but the following steps of including, excluding and

reading the papers, analyzing the results and writing the thesis have taken almost a year. This

means that the searches may be somewhat outdated. In addition, the amount of knowledge

gained by preparing this review would let us form better search queries to possibly find

something new. The focus on GDM-MOO is vague and several different approaches in

GDM have not been considered in this review, the biggest example being game theoretical

approaches. However, as a Master’s thesis, it is not possible to include everything.

Furthermore, the conducted classifications could be improved. The preference incorporation

could be split in more detail than to indirect and direct approaches. This could include

e.g. considering different group decision method types in the classification. In addition, the

classification of GDM-MOO methods as a priori, a posteriori and interactive ones is not the

only one that can be used. Another possible way would be to consider in the classification

of how the GDM-MOP is solved, e.g. in an asynchronous manner, where the MOP is solved

first and then the GDM problem and methods where the MOP and GDM problem are solved

synchronously. This type of classification could emphasize the role of GDM in MOO better.

Overall, solving GDM-MOPs requires more research. Future research directions include

developing GDM-MOO methods for different groups of DMs. We discussed group structures

to consider the different types of groups but these group structures (or something like them)

are not used in the literature. As mentioned, only in [6, 27, 28, 29], the group structure

was defined and e.g. in [87] is was mentioned that the method is designed for committees,

however, there was no further information about the group structure. In addition, a DM

may give preferences in a manipulative manner e.g. by giving more extreme preferences

than they actually prefer to move the collective preference more towards their preference. In

the reviewed literature, the manipulative behavior of the DMs was only considered in [9],

and there are multiple issues to consider when trying to detect and prevent it. For example,

consider an interactive method. What if the DM learns from the problem and gives suddenly

different preferences? How to detect if the change is due to learning or from a manipulative
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behavior of the DM? Furthermore, if the manipulative behavior is detected, how should it be

handled? Should the DM be punished e.g. by lowering their degree of importance? There are

no simple answers, and the unique combination of GDM-MOO makes the issue even more

difficult to handle.

There are still more issues to consider, for example, how to decide the degree of importance

of the DMs, how to guarantee the acceptance of the final solution in situations where the

DMs are independent and can decide not to implement the final solution. The DMs should be

more actively involved in the solution process and feedback should be asked from the DMs,

especially regarding the acceptance of the final solution. The latter was only considered

in few papers e.g. in [46]. Other issues relate to the methods used and the communication

of the DMs, the interactions among the DMs and using real-world problems. As 70% of

the methods (used in the reviewed literature) were either based on the weighted sum or

NSGA-II, other types of MOO methods should also be considered in solving GDM-MOPs.

Furthermore, as mentioned, much of the literature did not use real DMs or solve real-world

problems in testing the proposed methods. Some methods used a consensus reaching process

and group discussions to promote consensus among the DMs. However, details of these

approaches were not mentioned. Future research should fill these gaps in the literature.

Other types of future research directions include considering solving GDM-MOPs with more

than 20 DMs, referred to as large-scale GDM-MOPs, which is becoming a more and more

important problem domain in the expansion of the current technologies such as social net-

works and e-democracy [45]. Furthermore, in the reviewed literature, there are no GDM-

MOO methods directed at cases, where the DMs have different sets of objective functions.

In addition, handling imprecise information and considering different roles of the DMs is

seen as an important research direction in GDM-MOO [27, 29].
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6 Conclusions

In this thesis, we concentrated on assessing the current state of the literature regarding GDM

and MOPs. The main concepts of MOO and GDM were introduced and common terminol-

ogy was laid for GDM-MOO. We explained how the systematic literature was conducted.

Then the papers included were discussed in some detail. Following, we summarized what

we found in the 40 papers that were included in this review.

The papers with GDM-MOO methods were classified according to the role of the DM in the

solution process to a priori, a posteriori and interactive methods. We considered the pref-

erence information types the DMs expressed and two different ways of handling multiple

preferences from several DMs, called indirect and direct approaches. In addition, we inves-

tigated the phase of the final solution selection in the papers. Lastly, we proposed desirable

properties for GDM-MOO methods. The desirable properties were the result of the work

done, including important aspects to consider in solving GDM-MOPs. We discussed the pa-

pers in the light of the desirable properties. Moreover, we suggested some ways to consider

these desirable properties.

This review aimed at investigating the state-of-the-art of GDM-MOO literature and finding

ways to solve these types of problems. As discussed, there are different approaches taken in

the GDM-MOO literature. Overall, most of the methods are either specific to a problem area,

to a group structure or to a theoretical test framework. A large portion of the literature does

not consider the final solution selection. In this thesis, we also discussed why different types

of group structures are meaningful and suggested a way of characterizing group structures

of different types of groups.

We have detected gaps in the current GDM-MOO literature such as considering manipulative

behavior, large-scale GDM-MOPs, using other types of MOO methods than the weighted

sum or NSGA-II and the lack of using real DMs and real-world problems in testing the

proposed methods. The weaknesses detected in the literature include not selecting the final

solution, not considering what type of groups the method has been developed for and not

asking for any feedback from the DMs on the acceptance of the final solution.
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In summary, we reviewed what has been done in solving GDM-MOPs. We answered the

research questions of how to solve GDM-MOPs, what type of preference information was

used, how the DMs’ preferences were incorporated into the solution process and how the

final solution was selected. Furthermore, we suggested some desirable properties. In future

research, these properties should be tested and further enhanced with the knowledge gained

from experiments involving real DMs and real-world GDM-MOPs. The DMs should be

inquired about the relevant aspects of the designed methods, e.g. whether the DMs accept

the final solution or think that the method is understandable and whether it works well.
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