
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

A replication study on the intuitiveness of programming language syntax

© The Author(s) 2023

Published version

Lappi, Vilma; Tirronen, Ville; Itkonen, Jonne

Lappi, V., Tirronen, V., & Itkonen, J. (2023). A replication study on the intuitiveness of
programming language syntax. Software Quality Journal, 31(4), 1211-1240.
https://doi.org/10.1007/s11219-023-09631-7

2023

Vol.:(0123456789)

Software Quality Journal
https://doi.org/10.1007/s11219-023-09631-7

1 3

A replication study on the intuitiveness of programming
language syntax

Vilma Lappi1 · Ville Tirronen1 · Jonne Itkonen1 

Accepted: 17 April 2023
© The Author(s) 2023

Abstract
In this article, we present a replication of an empirical experiment that evaluates intui-
tiveness and comprehensibility of keywords relating to different concepts in programming
languages, originally conducted by Stefik and Gellenbeck. Novice programmers face many
barriers when learning programming. One of these barriers is syntax, which for many
languages is not designed based on empirical evidence. The purpose of the experiment
was to provide more empirical evidence on the subject, to find out if the results of the
original experiment can be replicated and if conducting the experiment in an environment
where English is not the native language affects the results. The results of our experiment
replicated most of the findings of the original study and provided further evidence that
some syntactic choices in many popular programming languages are unintuitive for novice
programmers. Our results suggest that the native language of participants who otherwise
had good English skills had little effect when compared to the original study. These results
may support programming language designers in making evidence-based design decisions
and teachers of introductory programming courses in identifying some of the barriers nov-
ice programmers face.

Keywords  Program comprehension · Syntax · Programming languages · Novice
programmers · Native language in programming

1  Introduction

Developing software and educating new programmers is very expensive. In addition to
educating software engineers at university level, considerable investments have been made
to incorporate computer science into basic education in many countries (Department for
Education (UK), 2013; Finnish National Agency for Education, 2014). Software engineers
are also required to stay up to date on the most recent developments in numerous program-
ming languages, libraries, and frameworks. Professionals who work with program code
spend hours on reading it, e.g., debugging and reviewing purposes. Making programming

 *	 Jonne Itkonen
	 jonne.itkonen@jyu.fi

1	 Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

http://orcid.org/0000-0002-8140-7368
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-023-09631-7&domain=pdf

	 Software Quality Journal

1 3

languages easier to learn and comprehend would presumably spare large amounts of both
time and money.

There is a profusion of programming languages used in both the software industry and
the programming education. Despite the commonly stated adage “right tool for the job,”
there is little agreement on how the selection of the programming language will affect the
outcomes in either of these fields. In regard to education, there is not enough systematic
evidence to support any particular approach to how introductory programming courses
should be taught or which language would be the ideal first programming language, as
demonstrated by Pears et al. (2007) and Siegfried et al. (2008) among others.

The lack of evidence based practice in programming language design is explained to a
certain degree by the dearth of empirical evidence in regard to the human aspects of pro-
gramming languages, which has been documented multiple times, some examples being
Stefik et al. (2014), Kaijanaho (2015), and Ko et al. (2015). Empirical evidence is essential
in the scientific method and is held to high standards in other fields of research, such as
medicine, psychology, chemistry, and physics. For programming language designers to be
able to make informed decisions, it is important to gather more evidence that is reproduc-
ible and testable.

Many of the commonly used programming languages share a similar base (such as the
tradition of C style syntax) but have different variations of syntax and semantics. Which
of these variations are beneficial is up for debate, since many decisions in programming
language design are based on opinions or personal experience of experts or committees
instead of empirical evidence. While there is a case to be made for relying on the insight
of experts, there is also evidence that their opinions might not line up with findings in
empirical research. For example, Devanbu et al. (2016) found that while programmers have
strong beliefs in certain claims about software engineering, these beliefs do not necessary
line up with empirical evidence and are primarily based on personal experience. Brown
and Altadmri (2017) researched whether expert educators understand the kind of problems
beginner programmers face and found that the beliefs of the educators did not match the
actual problems that were observed.

To understand and produce program code, every aspiring programmer must first under-
stand the syntax of a programming language, that is, the combinations of characters that
form the correct structure for program code. Denny et al. (2011) found that syntax errors
were common with students of all levels of ability, even those that were performing bet-
ter than average. Similarly, in a study by Bosse and Gerosa (2017), syntax errors were the
problem most frequently reported by students regarding the difficulties of learning pro-
gramming. Denny et al. continued their work in 2012 and found that a few types of syntax
errors are not only considerably more common among students than others but also take
the most time for the students to correct. As with the prevalence of syntax errors, the effect
did not depend on the ability level of the students. This finding was supported by Tirronen
et al. (2015) who found that in the context of a functional programming course most of stu-
dent mistakes were reported by only three compiler error messages.

Compilers usually alert programmers about syntax errors with error messages that can
lead to frustration if implemented poorly, as discussed by Marceau et al. (2011a, b). They
found that syntax error messages are often misinterpreted by students. Some research has
been conducted to determine whether improving these error messages affects the rate at
which syntax errors are made. An article by Denny et al. (2014) suggests that enhancing
syntax error messages does not significantly reduce the rate at which students encounter
compilation errors. This finding was replicated by Pettit et al. (2017), though a study by
Becker (2016) had the opposite results. Even though it is somewhat inconclusive whether

Software Quality Journal	

1 3

syntactic errors can be reduced with proper error messages, syntax remains a barrier to
novices learning programming and more research points to the barrier remaining even with
more informative error messages. Even if students start learning with a block-based pro-
gramming language such as Scratch, where syntactic errors are avoided by allowing the
programmer to combine only compatible blocks, sooner or later they will probably become
acquainted with general purpose programming languages and syntax as well.

To identify some of the barriers students face, Stefik and Gellenbeck (2011) studied
intuitiveness of specific word and symbol choices in programming languages. They asked
both programmers and non-programmers to rate words and symbols by how intuitively
they describe certain concepts in programming languages. They then compared the intui-
tiveness rates of the two groups to each other and created a ranking for the choices of each
concept to find out which choices were more intuitive than others.

In this work, we replicate the study conducted by Stefik and Gellenbeck (2011) and
investigate whether the results from a university in an English speaking country differ from
those from a university in a non-English speaking country. We followed the design of the
original study and compared our results to theirs to find out if the change of testing envi-
ronment affected the perceived intuitiveness of the words and symbols. It should be noted
that as with the original study, the goal of this experiment was not to find the single best
word or symbol for certain concepts, but to get a more general understanding of how the
words or symbols relate to the concepts they are supposed to represent.

Overall our results support the findings of Stefik and Gellenbeck (2011). The data sug-
gests that indeed many popular syntactic choices are unintuitive for novice programmers.
The native language of the participants did not seem to have much effect on the results,
though the participants of our experiment were otherwise proficient in English.

The rest of this article is structured as follows. First, in Sect. 2, we will discuss related
work and replication studies. Then, we will describe the design of this study in more detail
in Sect. 3. In Sects. 4 and 5, the results of the study are presented and discussed. After that,
in Sect. 6, we examine threats to the validity of the study and finally, in Sect. 7, we sum-
marize our findings and conclude.

2 � Background

In this section, we further discuss the relevant background for this study. It is divided into
two parts. In Sect. 2.1, we present some of the earlier work that relates to our study. Then,
in Sect. 2.2, we move to discuss replication and why it is important in science.

2.1 � Related work

The article by Stefik and Gellenbeck (2011) consists of two empirical studies. The first study
examined whether or not sound cues help programmers in debugging tasks. The results sug-
gested that multimedia environments did not increase debugging performance at first, but
with some practice they might be helpful. In the second study, which we replicated, it was
found that novice programmers rated many of the commonly used words in programming
languages, such as “for” and “while,” the least intuitive. Stefik and Gellenbeck’s results are
further examined and compared to the results of this study in Sects. 4 and 5.

	 Software Quality Journal

1 3

A few years later an article by Stefik and Siebert (2013) described four more empirical
studies on syntax and novice programmers. The first two continued and expanded upon the
research on intuitiveness of different constructs in programming languages. The first of the
two partially replicated the study by Stefik and Gellenbeck (2011) but had a larger scope
of concepts. The second study focused on the intuitiveness of larger constructs, such as a
loop structure, instead of single words or symbols. The results of these studies support the
findings of Stefik and Gellenbeck (2011) and reinforce the conclusions that there are dif-
ferences in the perceived intuitiveness of different word choices and constructs in program-
ming languages. Also, the perceived intuitiveness varies with the amount of programming
experience and across different programming languages.

The two other studies reported in the article by Stefik and Siebert (2013) examined the
accuracy at which novice programmers produced program code. The accuracy depended
on the language they used and on syntax variations of programming language constructs,
such as loops. In these studies, Stefik and Siebert found that both language and syntactic
differences affect the accuracy rates. In fact, they found that novices who were using lan-
guages that adhere to C style syntax were not significantly more accurate than those using
a language with randomized keywords. Their preliminary results also suggest that more
intuitive word and symbol choices enhance the accuracy of novice programmers.

The effect of native language on programming has been researched increasingly in
recent years. Work by Guo (2018) suggests that non-native English speakers face many
obstacles in learning programming, when reading and writing code, relating concepts
to their native language and finding suitable instructional materials. One of the barriers
they identified was understanding abbreviated keywords or identifiers, which supports our
hypothesis that native language affects the perceived intuitiveness of word choices in pro-
gramming languages. Furthermore, when reading and discussing code with others, begin-
ner programmers are forced to verbalize words in code. This can lead to multiple differ-
ent verbalizations depending on if the student chooses their native language or English for
pronunciation and word order (Hermans et al. 2018). This adds another layer of transla-
tion and potential burden. Despite these barriers, however, research by Reestman and Dorn
(2019) indicates that native language does not have a significant effect on what compiler
errors are the most frequent at least in Java.

Programming language localization is being researched as an option to make program-
ming more accessible to non-native English speakers. Dasgupta and Hill (2017) found that
novice programmers who used a version of Scratch environment and programming lan-
guage keywords that were localized to their native language were able to produce more
complex programs earlier than programmers from the same country that were using an
English version of the environment and keywords. Similarly, a very recent study by Feijóo-
Garcí et al. (2020) compared the performance of native and non-native English speakers
in English Scratch environment. They found that while there was no significant difference
in their performance in testing, non-native English speakers felt that that they would have
performed better with a localized environment.

Though it seems that non-native English speakers might benefit from localized pro-
gramming environments when the keywords are also translated, the participants in the
study by Guo (2018) preferred English instructions instead of translated ones when the
keywords of a programming language were in English. They felt that translated materials
caused confusion and misinterpretation when combined with English keywords. Another
very recent article by Piech and Abu-El-Haija (2020) analyzed the use of non-English lan-
guages on GitHub and introduced a tool called CodeInternational that could be used to
translate comments and identifiers between human languages. While they maintain that

Software Quality Journal	

1 3

English is the primary language of programming, they propose that a tool like CodeInter-
national would benefit students in learning both English and programming.

As we can see, most of the studies outlined above point to similar conclusions but are
not replications of each other, with the exception of Stefik and Siebert (2013) partially
replicating the study by Stefik and Gellenbeck (2011). This brings us to the next section, in
which we give a brief overview of the importance of replication in the empirical science,
and discuss the use of replication in computer science and the goals we had in replicating
the study by Stefik and Gellenbeck (2011).

2.2 � Importance of replication

Replication is viewed as one of the cornerstones of any empirical science. It is defined as
the action of repeating an experimental procedure with the intention of confirming or dis-
confirming its results (Schmidt, 2009). Despite being such a fundamental part of empirical
science, in many fields of research, repetitions are rarely attempted (Begley & Ellis, 2012;
Makel & Plucker, 2014; Stefik & Hanenberg, 2014; Aarts et al., 2015; Brown et al., 2018;
Hao et al., 2018). Furthermore, a big portion of the replications are conducted by the same
author as the original study (Makel & Plucker, 2014; Hao et al., 2018). Same-author repli-
cation introduces bias to the results more easily and it has been shown that the success rate
of same-author replications is higher than replications that were not conducted by the same
author (Makel & Plucker, 2014; Hao et al., 2018).

The field of computer science is no exception in regard to the low amount of replica-
tions. In 2014, Hornbæk et al. published a study on replication rate in human-computer
interaction (HCI) research. The study showed that the HCI research field has a replication
rate of 3%. Similarly, Hao et al. (2018) reported a replication rate of 2.38% in computer
education research. Their research also confirms the existence of same-author bias in com-
puter education research, with the success rate of replications rising from 58 to 72% when
a replication study is conducted by the same author as the original study.

Over time there have been multiple different classification systems for replications,
including Lykken (1968) and Schmidt (2009). The classification by Schmidt is more
recent and widely used and will therefore be used in this discussion. According to Schmidt
(2009), there are two kinds of replication studies. Direct replication means using the same
methods and experimental design as the original study. Conceptual replication means test-
ing the same hypothesis with different methods. Schmidt also discusses five functions for
replication: controlling for sampling errors, controlling for internal validity, controlling for
fraud, generalizing the results to a larger or different population, and verifying the hypoth-
esis of an earlier study.

Since one goal of this study is to replicate the experimental procedure of Stefik and Gellenbeck
(2011) as closely as possible while taking into consideration the different environment it is con-
ducted in, the study should be considered a direct replication. Some changes to the original
study design have been made with careful consideration in order to adapt the experiment for the
different population it is aimed for. The changes are discussed further in Sect. 3.2.

This replication has two primary functions: verifying the results of Stefik and Gellenbeck
(2011) and finding out whether or not the results of the original study can be generalized
to a different population. The participants of the original study were students of Central
Washington University. Although the authors do not report any information about the native
language of the participants, it is expected that the participants either have English as their
native language or are fluent enough to study in English. It is plausible that the perceived

	 Software Quality Journal

1 3

intuitiveness of certain words might be dependent on an individual’s ability to comprehend
English. Also, since the participants in the original study were students of the same univer-
sity, there is a possibility that their perceptions of the intuitiveness of certain words were
affected by studying the same courses, and being taught by the same teachers among other
factors that come with their shared background. Replicating the experiment in another envi-
ronment also serves as a control for these effects. In this study, we want to examine whether
the results of Stefik and Gellenbeck (2011) can be replicated both in general and in a setting
where English is not the native language.

3 � Study design

In this section, we describe the methodology and design of our study. We start with our
research questions and assumptions, and discuss the tasks used in our experiment. Finally,
we give an overview of the participants of the study.

3.1 � Context

We are trying to answer the following research questions:

RQ1	� What word and symbol choices for programming concepts are most intuitive to
novice programmers?

RQ2	� How does a novice programmer’s native language affect the perceived intuitiveness
of the word choices?

RQ3	� Can the results of Stefik and Gellenbeck (2011) be replicated?

Since this study is a replication of the study by Stefik and Gellenbeck (2011), the first
question is the same as theirs. We will look at RQ1 from two angles. First, whether the per-
ceived intuitiveness for a particular word or symbol is different between programmers and
non-programmers, and second, how the word and symbol choices compare to each other
within a specific concept. The comparison between the two groups tests the assumption
that programmers have learned to relate certain words and symbols to specific concepts
in programming languages and may rate those more intuitive than non-programmers. The
ranking of the different word and symbol choices within a concept gives us insight into
which words might be more intuitive to novices than others to represent the concept.

The second research question is related to our hypothesis that the perceived intuitive-
ness of the word and symbol choices depends on the native language of the person inter-
preting them. Since the study by Stefik and Gellenbeck (2011) was conducted in the USA
and ours in Finland, comparing the results of this study to theirs will give us some under-
standing of whether native English-speakers differ from non-native English speakers in this
regard. Undoubtedly there are other factors than native language that might cause discrep-
ancy between the results of the studies. Those factors are discussed in Sect. 6.

The background for the third research question was already discussed in detail in
Sect. 2.2. As stated there, we want to confirm the validity of the experiment design and
Stefik and Gellenbeck’s (2011) results, and test whether the results of their experiment can
be replicated in a different environment.

Software Quality Journal	

1 3

3.2 � Materials and tasks

Following Stefik and Gellenbeck (2011), we presented the participants with 11 program-
ming concepts and asked them to rate how intuitively given words or symbols described
the concept on a scale from zero (no relation to the concept) to ten (perfect description of
the concept). These ratings gave us numeric scores for each word and symbol that can be
compared to each other and tested statistically.

Stefik and Gellenbeck (2011) conducted their study as a pen and paper survey and each
question had the following structure: first, a short description of the programming concept and
then a list of words or symbols that were each followed by a rating scale from zero to ten. We
used the same structure for the questions, but instead of a pen and paper survey we decided to
use an online survey built on the Webropol survey tool (Webropol, 2020). We chose the online
survey to reach more participants with more variation in programming ability. Possible threats
to validity that are introduced by this type of survey are discussed in Sect. 6.

We translated the questions of the original study from English to Finnish so that the
participants’ ability to comprehend English would only affect their understanding of the
words they were rating instead of their understanding of the concept or question itself. The
translations were balanced to the best of our ability to represent the original description by
Stefik and Gellenbeck (2011) as closely as possible while making sure that they would be
understood correctly by a Finnish reader and would create as little bias as possible towards
any of the words or symbols. The translations pose some obvious threats to the validity of
the study, which are again discussed in Sect. 6.

We tested the translations with a pilot study to make sure that they were correctly trans-
lated and described the same concepts as the original descriptions. In the pilot study, par-
ticipants were given both the original description and the translated ones with the word list
for each concept. They were asked to rate on the scale from one (extremely poorly) to five
(extremely well), how well the translations corresponded to the original descriptions and
how well the word lists fit the translated question (whether the translation described the
right concept). The participants were asked to give reasoning for their ratings and feedback
for each question. The pilot had four participants who had programming experience and
could therefore evaluate how well the descriptions fit the concepts.

Based on the pilot study, the translations were adjusted. We had originally translated
parts of the answer options in addition to the concept descriptions. For example, in the
questions about comparison symbols, the structure for the answer options included two
conditions (“It is raining” and “you have money”), which were originally translated into
Finnish, and the symbol or word to be rated in between of the conditions. The participants
of the pilot study found it confusing that the Finnish conditions had English keywords
between them, and therefore in the final survey only the descriptions of the concepts were
translated (Appendix).

3.3 � Participants

The survey was sent to all students of the University of Jyväskylä and 158 participants
decided to take part in the survey. The participants were divided into two groups, program-
mers and non-programmers, based on their programming experience. Stefik and Gellenbeck
(2011) grouped their participants based on whether they attended a programming class or
not. They reported the programming experience of the participants in self-reported years

	 Software Quality Journal

1 3

of experience, but we decided to measure it also by self-evaluation because it seems to be a
more reliable way to measure programming experience according to Siegmund et al. (2014).
We did also measure it by self-reported years of programming experience, but that particu-
lar question seemed to cause some confusion in participants. For example, some participants
answered with a specific year instead of a number of years. Also, when we compared self-
evaluated programming skills with self-reported years of programming experience, some
participants had evaluated themselves to be experienced programmers but still reported zero
years of programming experience.

In the programming experience self-evaluation, participants rated themselves from 1 to
10, with 1 being very inexperienced and 10 being very experienced. Participants who rated
their experience between 1 and 2 were counted as non-programmers and those who rated
their experience between 3 and 10 were counted as programmers. The average rating was
1.30 for non-programmers and 5.38 for programmers. A few participants did not answer
all necessary background questions and their answers were left out. All in all the study
included 90 programmers and 63 non-programmers, with a total of 153 participants. Of
the programmers, 64 were men, 24 were women, one reported their gender as “other,” and
one did not specify their their gender, while of the non-programmers 18 were men, 43 were
women, one reported their gender as “other,” and one did not specify their their gender.

All the participants were non-native English speakers and had Finnish as their native lan-
guage. We received two answers from participants who reported their native languages as
Russian and German, but their answers were left out since there were too few of them to
compare to the native Finnish speakers. The participants rated their English reading com-
prehension ability using the Common European Framework of Reference for Languages
(CEFR), which is an international guideline for describing foreign language ability (Council
of Europe, 2020). The ability is rated on a 6-point scale, from A1 for basic users to C2 for
proficient users. Both programmers and non-programmers rated themselves quite proficient
on average. If the scale is converted to numbers from 1 to 6, with one being A1 and six being
C2, the average score for programmers was 5.33 and the average score for non-programmers
was 4.94. More detailed information about the participants is shown in Table 1.

4 � Results

In this section, we will examine the results of our experiment. First, in Sect. 4.1, we go
over the statistical methods we used to analyze and test our data. Then, in Sect. 4.2, we
describe the results of the experiment and finally, in Sect. 4.3, we describe the differences
between the results of our study and those of Stefik and Gellenbeck (2011).

4.1 � Statistical methodology

We used the same statistical methods as Stefik and Gellenbeck (2011) to compare pro-
grammers and non-programmers. We used Student’s t-tests to find out whether the rat-
ings for each word or symbol choice were significantly different between programmers and
non-programmers. To form rankings for the word or symbol choices for each question, we
first ordered them by the mean of the rating they received. We then compared them pair-
wise with t-tests, starting from the highest rated word or symbol. If the t-test did not result
in a significant difference between the words, they would receive the same rank and the
next word would be compared to the highest rated word of the current rank. If the t-test

Software Quality Journal	

1 3

Table 1   An overview of the participants’ gender, age, and self-reported English reading comprehension
ability measured with the Common European Framework of Reference for Languages (CEFR)

Gender Programmers Non-programmers
n (%) n (%)

Male 64 (71.1%) 18 (28.6%)
Female 24 (26.7%) 43 (68.3%)
Other 1 (1.1%) 1 (1.6%)
Not specified 1 (1.1%) 1 (1.6%)

90 (100%) 63 (100%)

Age Programmers Non-programmers
n (%) n (%)

Under 20 2 (2.2%) 1 (1.6%)
21 to 25 27 (30.0%) 38 (60.3%)
26 to 30 29 (32.2%) 13 (20.6%)
31 to 35 11 (12.2%) 2 (3.2%)
36 to 40 9 (10.0%) 4 (6.3%)
41 to 45 5 (5.6%) 3 (4.8%)
46 to 50 2 (2.2%) 0 (0%)
51 to 55 2 (2.2%) 2 (3.2%)
56 to 60 1 (1.1%) 0 (0%)
Over 60 2 (2.2%) 0 (0%)
Not specified 0 (0%) 0 (0%)

90 (100%) 63 (100%)

CEFR Programmers Non-programmers
n (%) n (%)

A1 0 (0%) 1 (1.6%)
A2 0 (0%) 1 (1.6%)
B1 2 (2.2%) 2 (3.2%)
B2 13 (14.4%) 16 (25.4%)
C1 29 (32.2%) 20 (31.7%)
C2 46 (51.1%) 23 (36.5%)

90 (100%) 63 (100%)

Programming experience Programmers Non-programmers
Self-reported n (%) n (%)

1 (very inexperienced) 0 (0%) 44 (69.8%)
2 0 (0%) 19 (30.2%)
3 30 (33.3%) 0 (0%)
4 8 (8.9%) 0 (0%)
5 11 (12.2%) 0 (0%)
6 8 (8.9%) 0 (0%)
7 13 (14.4%) 0 (0%)
8 14 (15.6%) 0 (0%)
9 4 (4.4%) 0 (0%)
10 (very experienced) 2 (2.2%) 0 (0%)

	 Software Quality Journal

1 3

resulted in a significant difference between the words, the latter word would become the
first word in the next rank and the next word would be compared to it.

We compared the results of our experiment to those of Stefik and Gellenbeck (2011).
First, we compared whether the ratings for individual words differed between the participants
of our experiment and the participants of Stefik and Gellenbeck’s experiment. These compar-
isons were made using 95% confidence intervals by observing which intervals did not overlap
each other, therefore indicating a significant difference between the ratings. Then, we tested
how similar the orders of the words and symbols in each questions were. To compare the
orders of the ranked lists, we used Kendall’s W and Kendall’s tau-b. Kendall’s W was used to
compare the similarity of all four orders (programmers and non-programmers in our experi-
ment and both groups in Stefik and Gellenbeck’s experiments) for each question at the same
time. Kendall’s tau was used to compare two orders to each other (for example programmers
in our experiment vs. programmers in Stefik and Gellenbeck’s experiment). Appropriate for-
mulas were used to accommodate for ties in the orders (Kendall, 1945).

4.2 � The results of this study

In this section, we will present results that relate to RQ1. We will look at what word and
symbol choices were rated highest and lowest by the programmers and non-programmers
who participated in the experiment and compare the groups to each other. We identified
three recurring patterns when comparing the ratings for each question and we will discuss
the questions in the groups that show a similar pattern. There was one question that did not
fit these patterns, which will be discussed on its own.

In four of the eleven questions, both programmers and non-programmers had clear most
preferred options, giving a few words or symbols a significantly higher rating than the oth-
ers. At some point, there was a clear gap between the ratings of subsequent ranks. Typically
after the gap the rest of the options had a lot of ties between them in the rankings. A good
example of this is Question 7, in which the participants were asked to rate how intuitively
different symbols represent assigning a value for a variable. The results for this question
can be seen in more detail in Fig. 7, which also shows the gap in the ratings that is typical
of this pattern. The symbol = was rated the highest by both non-programmers (mean =
7.71, sd = 3.24) and programmers (mean = 8.97, sd = 2.15). The difference between the
first and second highest rating was 3.55 for non-programmers and 3.45 for programmers.
The programmers had a clear second ranked option as well, which was := (mean = 5.52,
sd = 3.70), but non-programmers had seven options ranked for the second place.

This pattern can also be seen in Question 11, which was about how intuitive certain
symbols were for concatenating text strings. The highest rating was given to +, again by
both non-programmers (mean = 8.21, sd = 2.38) and programmers (mean = 8.51, sd =
2.13). Both groups had a clear second place too, &, with a difference of 2.53 (non-program-
mers) and 4.02 (programmers) to the highest rating. The rest of the options had even lower
ratings with a lot of ties for the same ranks.

Table 1   (continued)

Programming experience Programmers Non-programmers
Self-reported n (%) n (%)

90 (100%) 63 (100%)

Software Quality Journal	

1 3

The three other questions with the same pattern were Questions 4, 5, and 6. The partici-
pants were asked to rate word and symbol choices for and-, or-, and xor-operators respec-
tively. For and-operator, the highest rated option for non-programmers was and (mean =
9.30, sd = 1.70) and the second highest rated option was & (mean = 8.52, sd = 2.50). After
that, there was a gap of 3.25 before the third highest rated option which was tied for the
third rank with three others. The highest rated option for programmers was also and (mean
= 9.27, sd = 1.62). Their second rank was a tie between && (mean = 8.03, sd = 2–75)
and & (mean = 7.79, sd = 2.86). They had two definitive gaps in their ratings with the rat-
ing of the third ranked option, ∧ (mean = 4.22, sd = 3.94), dropping from the second rank
but also having a gap of 2.59 after it.

For or-operator, the highest rated option for both groups was the word or (non-programmers:
mean = 8.59, sd = 2.73 and programmers: mean = 9.22, sd = 1.49). For non-programmers,
the rest of the options were tied for either second or third rank, with the difference between
the highest and second highest ranked options being 3.99. The programmers had the following
commonly used symbols in ranks two through four: || (mean = 6.75, sd = 3.33), | (mean =
5.64, sd = 3.75) and ∨ (mean = 4.26, sd = 3.76). The rest of the options were tied for ranks
five through seven. For xor-operator, both groups had again a clear highest rated word choice
but this time they preferred different words. The non-programmers gave their best rating to or
(mean = 7.57, sd = 3.41) with a difference of 3.17 to the second ranked option and program-
mers gave their best rating to xor (mean = 6.60, sd = 3.60) with a difference of 2.61 to the
second ranked option. The rest of the words and symbols were tied for ranks 2 through four
(non-programmers) or two through five (programmers).

The second recurring pattern, which we identified in three questions, was that neither
group had a single highest rated option or the difference between the highest and second
highest options was not as big as in the previous group. Also, the ratings were spread more
linearly with high, medium-range, and low ratings. This linear descent of the ratings can be
seen in Fig. 2, which shows the results of Question 2. In this group of questions, there were
few significant differences between the ratings of programmers and non-programmers, with
the highest rated options being mostly the same with some small variation in their order.
An example of this pattern is Question 2, which was about rating which symbols were the
most intuitive to surround the condition of a conditional statement. For non-programmers,
the highest rated pair of symbols was parentheses (mean = 7.44, sd = 3.23), which was tied
for first rank with square brackets, no symbols, and curly brackets. The highest rated option
for programmers was also parentheses (mean = 8.45, sd = 2.44) and tied for the first rank
was no symbols. The other symbols that were in first rank for non-programmers, square and
curly brackets, were tied for second place.

In Question 3, the ratings were also more linear with no clear gap at any point between
ranks. The participants were asked to rate potential word choices to represent a function
or a method. Again, there was little disagreement between the ratings of the groups. The
non-programmers had four words tied for first rank, the highest rated one being func-
tion (mean = 8.05, sd = 2.22) and the others operation, action, and task. The
programmers had only one word in the first rank, function (mean = 8.49, sd = 1.74).
Tied for second rank were method, operation, task, and action. The gap between
the highest and second highest rated words was 1.15.

The third question in this group is Question 8, in which participants evaluated words
and phrases to represent a conditional statement. The highest rated option for non-
programmers was only if (mean = 8.48, sd = 2.41), which was tied for first rank with
if and with the condition that. Similarly to Question 3, the programmers
had one option in the first rank, which was if (mean = 9.28, sd = 1.63). The difference

	 Software Quality Journal

1 3

between the second highest rated option, only if, and the highest rated one was 1.4.
Also, tied for the second rank was while.

The third pattern we identified was a mix of the previous two. In this group, which includes
two questions, the programmers had a clear top two in their ranking while the non-programmers
were more undecided, with a lot of ties in their ranking. The first question in this group is
Question 9, the results of which can be seen in more detail in Fig. 9. The figure shows how
the ratings of non-programmers are close to each other while the programmers have a rating
that jumps out of the line and is higher than the rest. In this question, the participants were
asked to rate how intuitively different symbols represent calling a method of an object. For
non-programmers, the highest rated symbol was : (mean = 6.11, sd = 3.23), which was tied
for first place along with = and ->. The rest of the options were tied in either second or third
rank, except for @#- which was alone in rank four. The programmers, however, had . as their
highest rated symbol (mean = 8.02, sd = 2.90) and : as their second highest rated symbol
(mean = 6.28, sd = 2.90) in ranks one and two. The rest of the options were tied in ranks three
to five, with @#- being alone in rank six, similarly to the non-programmers.

Question 10, in which participants rated which symbols were the most intuitive to sur-
round a text string, followed the same pattern. Again, non-programmers had a lot of ties in
their ranking, with 5 options tied for the first rank. The highest rated one was double quotes
(mean = 7.25, sd = 3.18) and the others were parentheses, curly brackets, double slashes,
and single quotes. The programmers had double quotes as the highest ranked option (mean
= 8.42, sd = 2.68), single quotes as the second highest ranked option (mean = 7.52, sd =
3.00), and the rest of the options were close to each other with many ties (Figs. 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, and 11).

There was one question, Question 1, which did not fit any of the patterns we identi-
fied with the other questions. In this question, the participants were asked to evaluate how
intuitively different words described a loop. As shown in Fig. 1, the word repeat was
at the top of the ratings of both groups. Otherwise, the words which received high ratings
from one group seemed to receive low ratings from the other group and vice versa. Non-
programmers had two words tied for the first rank: repeat (mean = 7.63, sd = 3.01) and
redo (mean = 6.73, sd = 3.38), and three words tied for the second rank: again (mean =
6.46, sd = 3.03), do, and rerun. Programmers also had two words tied for the first rank
and three for the second, but the words were mostly different. The words tied for the first
rank were loop (mean = 7.90, sd = 2.56) and repeat (mean = 7.61, sd = 2.89) and for
the second rank while (mean = 6.79, sd = 2.95), foreach, and iterate.

4.3 � Comparison to the original study

In this section, we will describe the results that relate to RQ2 and RQ3. We will present
comparisons between our results and those of Stefik and Gellenbeck (2011). As explained in
Sect. 4.1, we compared both the order in which the words and symbols were ranked by the
participants, and the ratings that were given to individual words and symbols. When compar-
ing the ordered rankings, we found a significant difference between the studies in only one
question. When we compared the ratings of individual words, we found more differences. We
grouped the questions into three categories based on between which groups of participants
the individual differences were found. We will discuss each of these categories later in this
section, but first we will look the difference in the order of the words and symbols.

The question in which the order of the words and symbols in our study was significantly
different from the order in Stefik and Gellenbeck’s study was Question 5. The difference in the

Software Quality Journal	

1 3

order could only be found between the non-programmers of the different experiments (Kendall’s
tau-b = 0.24, z = 0.96, p = 0.34). Between the programmers in each study, there was no sig-
nificant difference in word and symbol order. As can be seen in Fig. 5, the non-programmers
in Stefik and Gellenbeck’s experiment rated and, &&, and & significantly higher than the non-
programmers in our experiment. Therefore, those options also placed higher in their ranking
compared to ours, pushing some of the options that were ranked high in our ranking lower in
theirs. This makes the orders of the words different enough to be significant.

Next, we will move on to describe the differences in the ratings of individual words
and symbols. The first recurring pattern we found was in questions where the differences
occurred only between the groups of programmers while non-programmers of both experi-
ments gave similar ratings to all the words and symbols. Three questions fit this category:
Questions 6, 9, and 10. While the order in which the words and symbols were ranked in
was similar between the groups, the programmers in Stefik and Gellenbeck’s experiment
rated many words or symbols significantly higher than the programmers in our experiment.
In Question 6, the results of which can be seen in Fig. 6, the programmers in the original
experiment gave a significantly higher rating to nine out of the thirteen words and symbols
than the programmers in our experiment. In Question 9, both groups of programmers gave a

Fig. 1   A figure showing the rankings and ratings with 95% confidence intervals for Question 1 (NP, non-
programmer; P, programmer)

	 Software Quality Journal

1 3

similar rating to their highest rated symbol, ., but after that the ratings of our programmers
drop more steeply. Similarly, in Question 10, the two highest rated pairs of symbols, “ ”
and ‘ ’, received a similar rating but after that the ratings of our programmers declined
faster. The results of Questions 9 and 10 can be seen in more detail in Figs. 9 and 10.

The second recurring pattern we found was questions where there were significant
differences between both the programmers and the non-programmers of the studies. This
pattern was identified in six questions: Questions 1, 3, 5, 7, 8, and 11. We will point out
only some of the individual differences, the rest can bee seen in the figures relating to
each question. In Question 1 (Fig. 1), the word reoccur was given a higher rating by
both of Stefik and Gellenbeck’s groups when compared to our groups. The same occurs
in Question 3 (Fig. 3) with the word concern, in Question 7 (Fig. 7) with the symbol
=:, and in Question 8 (Fig. 8) with the words for, loop, and redo. In Question 3,
the ratings of the word function were the other way around, with both groups in our
experiment rating the word higher than the groups in the original experiment.

In Questions 5 (Fig. 5) and 11 (Fig. 11), all the significant differences were such
that the participants in Stefik and Gellenbeck’s experiment rated the words or symbols
higher than the participants in our study did. For Question 5, the biggest differences

Fig. 2   A figure showing the rankings and ratings with 95% confidence intervals for Question 2 (NP, non-
programmer; P, programmer)

Software Quality Journal	

1 3

were with the words or symbols and and & for which the difference was between non-
programmers, and the word xor for which the difference was between programmers.
For Question 11, the biggest differences were with the symbols & and * for which the
difference was between the programmers of the studies.

The last recurring pattern we found was questions where there were little to no differ-
ences between the groups of the different experiments. In Question 2, there were little
differences both within the studies and between them, as can be seen in Fig. 2. In Ques-
tion 4 (Fig. 4), there are more differences within the studies, but only one significant
difference between them, with the programmers in Stefik and Gellenbeck’s experiment
giving a higher rating to the symbol %% than the programmers in our experiment.

5 � Discussion

In this section, we will discuss the results presented in the previous section and how they relate
to our research questions that were defined in Sect. 3.1. We will begin with RQ1. In Sect. 4.2,
we divided the questions into three categories based on recurring patterns we identified.

Fig. 3   A figure showing the rankings and ratings with 95% confidence intervals for Question 3 (NP, non-
programmer; P, programmer)

	 Software Quality Journal

1 3

In the first category, both programmers and non-programmers had clear top rated words
or symbols. Both groups thought = was the most intuitive symbol for assignment and +
for concatenating strings. The participants are probably familiar with these symbols from
mathematics, where they have similar, though not exactly the same, functions. This might
explain the intuitiveness of these symbols. The symbols are already commonly used in pro-
gramming languages to represent these concepts and the results suggest that the symbols =
and + are good choices regarding novice programmers.

The questions regarding logic operators also fell into this category. Both programmers
and non-programmers seem to prefer words over symbols when it comes to these opera-
tors, since and and or were the top rated options for their corresponding operators. The
groups disagreed on the most intuitive word for xor-operator, which will be discussed
later in this section when comparing our results to those of Stefik and Gellenbeck (2011).
Though logic operators are often represented by symbols, these results suggest that novice
programmers might benefit from using words instead.

In the second category, the ratings of the words and symbols descended more linearly
instead of having a clear gap at some point. Because of this, there seems to be a group of
good options for these concepts instead of any clear top choices. For surrounding the condition

Fig. 4   A figure showing the rankings and ratings with 95% confidence intervals for Question 4 (NP, non-
programmer; P, programmer)

Software Quality Journal	

1 3

in a conditional statement any kind of brackets or no symbols at all seem to work for non-
programmers, though since parentheses are commonly used in programming languages, they
are probably a good choice for familiarity. Whether the condition needs any symbols around it
is something to consider. At least the participants in this experiment rated the option without
any symbols highly, though the example they rated was quite simple. Drawing better conclu-
sions regarding that would need more research with more complex examples.

As for conditional statements themselves, if, only if, and with the condi-
tion that were the highest rated options, but since if is commonly used already and
the shortest of these options, it might continue to be the best choice. In this question,
these highest rated options were quite similar to each other, which probably explains their
similar ratings. There being few differences between the ratings of programmers and non-
programmers in this category might indicate that these ratings are not affected by the pro-
gramming experience of the participant.

In the third category, the programmers had clear top choices while the non-programmers
had more even ratings. This might suggest that these questions were more affected by the
programming experience of the participants. This might also be the result of the concepts
being quite specific to programming and perhaps they were not as easy to understand for

Fig. 5   A figure showing the rankings and ratings with 95% confidence intervals for Question 5 (NP, non-
programmer; P, programmer)

	 Software Quality Journal

1 3

novice programmers. The concept of calling a method of an object might have been espe-
cially obscure to the non-programmers since there is no clear real-life representation for it.
There is also the possibility (as with any of these questions) that there are more intuitive
options for non-programmers but they were missing from this study.

The concept that divided programmers and non-programmers most was loops. Though
repeat seems to be the best choice according to both groups, otherwise, the ratings were
quite different. The commonly used words foreach, for, and while were rated highly
by the programmers but poorly by the non-programmers. This suggests that, though the
common words for loops are very unintuitive for novice programmers, the experienced pro-
grammers have likely learned to associate them with the concept as they are so widely used
in programming languages, and thus rated the common words so highly.

In RQ2, we were interested in whether the results of Stefik and Gellenbeck could be
replicated in a setting where English is not the native language of the participants. The
differences between the studies ended up being mostly in the ratings of individual words
rather than in larger patterns. We expected the native language of the participants to have
a bigger impact on the results, though it should be noted that, as shown in Sect. 3.3 and
Table 1, the participants in our experiment understood English well based on their own

Fig. 6   A figure showing the rankings and ratings with 95% confidence intervals for Question 6 (NP, non-
programmer; P, programmer)

Software Quality Journal	

1 3

evaluation. There might have been more differences if the participants were less proficient
in English, but verifying this requires doing more experiments with suitable participants.
We originally intended to compare the results within our experiment based on the English
skills of the participants to get more insight into how their skills affected their ratings of
different words and symbols. Unfortunately the distribution of out participants’ English
skills leaned too heavily toward the proficient side so that statistical testing was not possi-
ble. Therefore, we cannot answer RQ2 other than that the native language of a programmer
does not seem to have a significant effect on the perceived intuitiveness of these keywords
as long as they are otherwise proficient in English.

Overall our results were quite similar to those of Stefik and Gellenbeck (2011) and most
of the findings that they discussed in their article were supported by our experiment. This
suggests that the answer to RQ3 (Can the results of Stefik and Gellenbeck (2011) be rep-
licated?) is yes, because it would seem that the experiment design gives consistent results
and that the results can be replicated in a different setting.

One of Stefik and Gellenbeck’s most notable findings was that the words that are often
used to describe loops in programming languages are not very intuitive to novice program-
mers. Our results provide further evidence of this. In our study, the word redo was tied

Fig. 7   A figure showing the rankings and ratings with 95% confidence intervals for Question 7 (NP, non-
programmer; P, programmer)

	 Software Quality Journal

1 3

with repeat and was high in the rankings of Stefik and Gellenbeck’s as well, which sug-
gests that it too might be a good alternative.

Another finding we replicated was that both programmers and non-programmers seem to
prefer words instead of symbols when it comes to logic operators. Regarding the xor opera-
tor, our non-programmers also rated the word or highly, similarly to the non-programmers
in Stefik and Gellenbeck’s experiment. As they discussed, there might not be a word that
well represents the concept of exclusive or operation, or at least it was not one of the options
in these studies.

We also replicated the three findings which suggest that the symbols that are currently
commonly used to represent a concept are intuitive to novice programmers. The symbol
= was the clear first choice for assignment operator, the symbol + for concatenating text
strings, and the symbols “ ” for distinguishing text strings.

Stefik and Gellenbeck were mixed on the results regarding the concepts of calling a
method of an object and conditional statements. They stated that the options rated highly
by non-programmers did not, in their opinion, clearly indicate the concepts they were
supposed to represent, and that more research was needed to draw any conclusions. Our
results replicated theirs so at least with these questions and options the non-programmers

Fig. 8   A figure showing the rankings and ratings with 95% confidence intervals for Question 8 (NP, non-
programmer; P, programmer)

Software Quality Journal	

1 3

prefer the same options. It is unclear if these options are intuitive to novice programmers
or whether the concepts were not fully grasped by them. We too feel that more research is
needed on these concepts.

Another question, the results of which Stefik and Gellenbeck were left mixed on, was
Question 3, which was about functions. They were unsure whether their description of
the concept (“Take a behavior”) was clear and accurate enough to the participants, since
the programmers in their study rated operation and action higher than the expected
top answers function and method. We agree that the description is not necessar-
ily clear enough. This question was the hardest one to translate into Finnish since there
was not a way to translate the description as it was while still making sense to a Finnish
speaker. After experimenting with a couple of alternatives and gathering feedback in the
pilot study, we settled on a description that in our opinion described the concept better
even though it was not a direct translation of the original question. Our description would
translate roughly to “definition of action.” Since the description was changed so much in
the translation process, the results for this question cannot be directly compared.

Comparing the orders of words and symbols between the studies did not reveal any
significant differences. This was probably affected by there being options in many of the
questions that one would expect to get low ratings. An example of this is the option @#- in

Fig. 9   A figure showing the rankings and ratings with 95% confidence intervals for Question 9 (NP, non-
programmer; P, programmer)

	 Software Quality Journal

1 3

Question 9. Since some options would probably end up at the bottom of the order every
time, the orders are bound to be similar. It brings to question how were the word and sym-
bol choices determined in the original study. Stefik and Gellenbeck mention that they con-
ducted multiple pilots in advance to refine the testing process and probably the questions
themselves, but do not make it clear how the options were chosen.

Another point we would like to make regarding the choice of words and concepts is
that the scope of concepts which were chosen for the study was quite limited. Stefik and
Gellenbeck touch on this in their text a little bit and mention that they wanted to focus on syn-
tax and semantics which are common in most languages. It could be argued that the chosen
concepts are common for many of the more object-oriented languages and especially those
that are based on c when it comes to syntax, but not necessarily to other programming para-
digms. With this said, it should be kept in mind that the original study was made in part to aid
the authors in developing their own programming language, Quorum, which probably guided
their choices for the concepts.

The last thing we would like to address is that the key words in a programming language
are by far not the only thing that contributes to how easy it is to learn and comprehend. As
Stefik and Gellenbeck also state, taking a programming language and simply exchanging

Fig. 10   A figure showing the rankings and ratings with 95% confidence intervals for Question 10 (NP, non-
programmer; P, programmer)

Software Quality Journal	

1 3

its keywords to others is not likely to make much of a difference. As already discussed
in Sect. 2.1, Stefik did go on to experiment with larger structures in the study by Stefik
and Siebert (2013). There are also other things to consider in regard to key words such as
how easy they are to write. Some amount of intuitiveness might be worth sacrificing for a
shorter keyword, for example. We believe that intuitive keywords would support learnabil-
ity and easier comprehension of programming languages but would not make a difference
significant enough on their own.

6 � Threats to validity

There are a number of threats to the validity of this study. With any survey, there are some
threats that are always present, such as whether the wordings of the questions are biased
towards some answers, and the limited possibility to conduct the survey with a random sam-
ple of the population (Wiersma, 2013). With this study, these threats also relate to the valid-
ity of this study as a replication because we translated the original questions to Finnish.
While we believe that translation was the right choice in order to prevent the English skills
of the participants from affecting their understanding of the question itself, it might have had

Fig. 11   A figure showing the rankings and ratings with 95% confidence intervals for Question 11 (NP, non-
programmer; P, programmer)

	 Software Quality Journal

1 3

some effect on how the results of the studies can be compared to each other. There is a risk
that the translation process might have slightly altered the way the questions are interpreted
or benefited some answer options more than others. As discussed in Sect. 5, this was an
issue with at least Question 3. This threat does not concern the results of our experiment, but
whether the results can accurately be compared to those of Stefik and Gellenbeck (2011).
The translations were evaluated in our pilot study and, other than Question 3, the transla-
tions are close enough to the original questions for comparisons to be made in our view.

Another change we made from the original study to our study design was that we con-
ducted the survey online rather than on paper. Due to the anonymity of our survey, there is
some uncertainty to the actual demographic of the participants in our study. Although we
sent the link only to students of the University of Jyväskylä, we have no way of knowing
whether it was forwarded to others. Had we done the survey on pen and paper, we would
have had more control over this. Another possible threat that the online survey introduces
is that it was harder for the participants to ask questions or get further clarification about
the procedure, though we did provide an email address for them so they could contact us
with any questions regarding the study. This threat adds some uncertainty to what kind of
population the results could be generalized to, though the most relevant background infor-
mation was asked in the survey. Whether the participants accurately reported their back-
ground information and answers to the research question is also a threat, but this kind of
bias is a threat in any survey and not just those that are conducted online.

7 � Summary and future work

In this article, we have presented an empirical study on the intuitiveness of certain word
and symbol choices in programming languages. We replicated the findings of Stefik and
Gellenbeck which show that while some of the words and symbols that are currently
used in many programming languages are intuitive to novice programmers, others are not.
We found that, at least with Finnish students that have good English skills, the participants
not having English as their native language did not make many significant difference to the
results.

For future work, this kind of research could be expanded almost infinitely with dif-
ferent concepts and words. It would, in our opinion, be beneficial to broaden the scope
of the concepts examined in future studies and take into account more diverse program-
ming paradigms. Furthermore, experimenting with larger structures in program code, as
Stefik and Siebert did, might be more impactful than comparing single words or sym-
bols. Gathering evidence from multiple angles would hopefully help future program-
ming language designers make better informed design decisions and create more intuitive
programming languages.

Regarding the effect the native language of a programmer has on their comprehension
of and learning of programming languages, there is a need for more research. We did not
get enough diversity in the English skills of our participants to be able to compare the
effect it had on their ratings of different words though we originally planned to. Since
English-based programming languages are used globally, getting more information on how
they could be made more easily learnable and understood by those with only basic English
skills would help, making them more accessible and might lessen the gatekeeping effect of
having to learn English in order to learn programming.

Software Quality Journal	

1 3

Appendix. Survey questions and their translations

The questions from the original survey were translated into Finnish so that the English
skills of the participants would not affect the results. The original questions and their Finn-
ish translations are listed in Table 2.

Table 2   Finnish translations of the survey questions

Concept Description

Doing something zero or more times Rate how well the words describe doing something
zero or more times

Jonkin asian tekeminen nolla kertaa tai useammin Arvioi miten hyvin sanat kuvaavat jonkin asian
tekemistä nolla kertaa tai useammin

Stop doing an action Imagine that the computer is asked to stop when the
variable a is less than 10. This statement may or
may not be surrounded by special characters so that
the computer can process the statement. Imagine
when writing a program you had to guess which
characters the language designer used. Rate each set
of characters as to how intuitive you think they are

Toiminnan lopettaminen Kuvittele, että tietokonetta pyydetään pysäyttämään
sen hetkinen toiminta, kun muuttujan "a" arvo
on pienempi kuin 10. Tämä lauseke saattaa olla
ympäröitynä erikoismerkeistä koostuvalla
merkkiparilla, jotta tietokone pystyy käsittelemään
sen. Kuvittele, että kirjoittaessasi ohjelmaa sinun
täytyy arvata mitä merkkejä ohjelmointikielen
suunnittelija käytti. Arvioi miten intutiivisia
merkkiparit ovat

Take a behavior Rate how well each word corresponds to taking
behavior

Toiminnan määrittely Arvioi miten hyvin sanat kuvaavat jonkin tietynlaisen
toiminnan määrittelyä

Take a behavior only when 2 conditions are true Suppose you would go to the store only when the
following two conditions are true: (1) you have
money, (2) it’s not raining. Rate each word choice
as to how well it indicates that both conditions must
be true for you to go to the store

Toiminnon suorittaminen, kun kaksi ehtoa täyttyy Kuvittele, että menet ostoksille vain, kun seuraavat
ehdot täyttyvät: (1) sinulla on rahaa (you have
money), (2) ulkona ei sada (it’s not raining). Arvioi
miten hyvin seuraavat vaihtoehdot kuvaavat sitä,
että molempien ehtojen tulee täyttyä, että menisit
ostoksille

Take a behavior when at least one condition is true Suppose you would go to the store if one of the
following two conditions is true: (1) you have
money, (2) it’s not raining. Rate each word choice
as to how well it indicates that at least one
condition must be true for you to go to the store

Toiminnon suorittaminen, kun ainakin yksi ehto
täyttyy

Kuvittele, että menet ostoksille vain, kun joku
seuraavista ehdoista täyttyy: (1) sinulla on rahaa
(you have money), (2) ulkona ei sada (it’s not
raining). Arvioi miten hyvin seuraavat vaihtoehdot
kuvaavat sitä, että ainakin yhden ehdon tulee
täyttyä, että menisit ostoksille

	 Software Quality Journal

1 3

Table 2   (continued)

Concept Description

Take a behavior when one condition is true, but not
both conditions

Suppose you would go to the store only if one of the
following conditions are true: (1) you have money,
(2) it’s not raining. Rate each word choice as to how
well it indicates that one condition is true, but not
both conditions for you to go to the store

Toiminnon suorittaminen, kun vain yksi ehto täyt-
tyy

Kuvittele, että menet ostoksille, kun vain toinen
seuraavista ehdoista täyttyy: (1) sinulla on rahaa
(you have money), (2) ulkona ei sada (it’s not
raining). Arvioi miten hyvin seuraavat vaihtoehdot
kuvaavat sitä, että yhden mutta ei molempien
ehtojen tulee täyttyä, että menisit ostoksille

Assigning a value to a computer’s memory Suppose you wanted to write a mathematical
expression that represented taking a number,
perhaps 1024, and putting it into a location in a
computer’s memory in the location represented by
the variable “a.” Rate each symbol according to
how well you think it represents assigning a value
to a computer’s memory

Arvon sijoittaminen tietokoneen muistiin Kuvittele, että haluat kirjoittaa matemaattisen
lausekkeen, joka esittää numeron (esimerkiksi
1024) sijoittamista tietokoneen muistiin paikkaan,
jota edustaa muuttuja “a”. Arvioi miten hyvin
merkit kuvaavat arvon sijoittamista tietokoneen
muistiin

Doing something only when a condition is true Please rate the following statements according to how
well they represent doing an operation only when
the variable “a” has a value that is less than 10

Jonkin asian tekeminen vain ehdon täyttyessä Arvioi miten hyvin seuraavat vaihtoehdot kuvaavat
toiminnon suorittamista vain, kun muuttujan “a”
arvo on pienempi kuin 10

Telling a noun to take a behavior Suppose we represented in the computer a “Square”
and that we wanted to tell the square to “move itself
up” on a user’s computer screen. Please rate each of
the following phrases as to how intuitively they tell
a square to move up

Kappaleen käskeminen suorittamaan jokin toiminto Kuvittele, että esittäisimme tietokoneella neliön
"Square" ja haluaisimme käskeä neliötä “liikuttamaan
itseään ylöspäin” (move up) tietokoneen näytöllä.
Arvioi miten intuitiivisesti seuraavat vaihtoehdot
käskevät neliötä siirtymään ylöspäin

Enclosing a list of characters Suppose that the computer needs to wrap characters
with special symbols to indicate a list of characters.
Please rate each of the following choices for an
enclosure as to how well you think they intuitively
match of the idea of enclosing the words *my
words here*

Vapaan tekstin ympäröiminen Kuvittele, että osoittaakseen joukon merkkejä olevan
vapaata tekstiä, tietokoneen täytyy ympäröidä
ne erikoismerkeillä. Arvioi miten intuitiivisesti
seuraavat merkit sopivat ympäröimään sanoja *my
words here*

Software Quality Journal	

1 3

Funding  Open Access funding provided by University of Jyväskylä (JYU).

Data availability  The datasets generated during and/or analyzed during the current study are not publicly
available due to data being possibly too identifying, but are available from the corresponding author on
reasonable request.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Aarts, A. A., Anderson, J. E., Anderson, C. J., et al. (2015). Estimating the reproducibility of psychological
science. Science, 349(6251). https://​doi.​org/​10.​1126/​scien​ce.​aac47​16

Becker, B. A. (2016). An effective approach to enhancing compiler error messages. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education (pp. 126–131). Association for
Computing Machinery, New York, NY, USA, SIGCSE ’16. https://​doi.​org/​10.​1145/​28395​09.​28445​84

Begley, C. G., & Ellis, L. M. (2012). Raise standards for preclinical cancer research. Nature, 483(7391),
531–533. https://​doi.​org/​10.​1038/​48353​1a

Bosse, Y., & Gerosa, M. A. (2017). Why is programming so difficult to learn? Patterns of difficulties related
to programming learning mid-stage. SIGSOFT Software Engineering Notes, 41(6), 1–6. https://​doi.​org/​
10.​1145/​30112​86.​30113​01

Brown, N. C. C., & Altadmri, A. (2017). Novice Java programming mistakes: Large-scale data vs. educator
beliefs. ACM Transactions on Computing Education, 17(2). https://​doi.​org/​10.​1145/​29941​54

Brown, N. C. C., Altadmri, A., Sentance, S., et al. (2018). Blackbox, five years on: An evaluation of a large-
scale programming data collection project. In Proceedings of the 2018 ACM Conference on Interna-
tional Computing Education Research (pp. 196–204). Association for Computing Machinery, New
York, NY, USA, ICER ’18. https://​doi.​org/​10.​1145/​32309​77.​32309​91

Council of Europe. (2020). Common European framework of reference for languages. Retrieved June 11,
2020, from https://​www.​coe.​int/​en/​web/​common-​europ​ean-​frame​work-​refer​ence-​langu​ages/​home

Dasgupta, S., & Hill, B. M. (2017). Learning to code in localized programming languages. In Proceedings
of the Fourth (2017) ACM Conference on Learning @ Scale (pp. 33–39). Association for Computing
Machinery, New York, NY, USA, L@S ’1. https://​doi.​org/​10.​1145/​30514​57.​30514​64

Table 2   (continued)

Concept Description

Putting together two separate lists of characters into
one larger word

Suppose that we want to combine the words fire and
fox into one single word firefox. Please rate each
of the following as to how you think they represent
putting together two separate lists of characters into
one larger word

Kahden erillisen sanan yhdistäminen yhdeksi isom-
maksi sanaksi

Kuvittele, että halutaan yhdistää tietokoneen muistissa
olevat sanat *fire* ja *fox* yhdeksi sanaksi *firefox*.
Arvioi miten hyvin seuraavat vaihtoehdot kuvaavat
kahden tietokoneen muistissa olevan sanan
yhdistämistä yhdeksi isommaksi sanaksi

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1038/483531a
https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1145/2994154
https://doi.org/10.1145/3230977.3230991
https://www.coe.int/en/web/common-european-framework-reference-languages/home
https://doi.org/10.1145/3051457.3051464

	 Software Quality Journal

1 3

Denny, P., Luxton-Reilly, A., & Carpenter, D. (2014). Enhancing syntax error messages appears ineffectual.
In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education
(pp. 273–278). Association for Computing Machinery, New York, NY, USA, ITiCSE ’14. https://​doi.​
org/​10.​1145/​25917​08.​25917​48

Denny, P., Luxton-Reilly, A., Tempero, E., et al. (2011). Understanding the syntax barrier for novices. In
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science
Education (pp. 208–212). Association for Computing Machinery, New York, NY, USA, ITiCSE ’11.
https://​doi.​org/​10.​1145/​19997​47.​19998​07

Denny, P., Luxton-Reilly, A., & Tempero, E. (2012). All syntax errors are not equal. In Proceedings of
the 17th ACM Annual Conference on Innovation and Technology in Computer Science Education (pp.
75–80). Association for Computing Machinery, New York, NY, USA, ITiCSE ’12. https://​doi.​org/​10.​
1145/​23252​96.​23253​18

Department for Education (UK). (2013). National curriculum in England: Computing programmes of study.
Retrieved January 8, 2021, from https://​www.​gov.​uk/​gover​nment/​publi​catio​ns/​natio​nal-​curri​culum-​in-​engla​nd-
​compu​ting-​progr​ammes-​of-​study/​natio​nal-​curri​culum-​in-​engla​nd-​compu​ting-​progr​ammes-​of-​study

Devanbu, P., Zimmermann, T., & Bird, C. (2016). Belief & evidence in empirical software engineering. In
Proceedings of the 38th International Conference on Software Engineering (pp. 108–119). Association
for Computing Machinery, New York, NY, USA, ICSE ’16. https://​doi.​org/​10.​1145/​28847​81.​28848​12

Feijóo-García, P. G., McNamara, K., & Stuart, J. (2020). The effects of native language on block-based pro-
gramming introduction: A work in progress with hispanic population. In 2020 Research on Equity and
Sustained Participation in Engineering, Computing, and Technology (RESPECT) (pp 1–2). https://​doi.​
org/​10.​1109/​RESPE​CT498​03.​2020.​92725​13

Finnish National Agency for Education. (2014). Perusopetuksen opetussuunnitelman perusteet. https://​eperu​steet.​
opint​opolku.​fi/​beta/#/​fi/​perus​opetus/​419550/​tiedot

Guo, P. J. (2018). Non-native English speakers learning computer programming: Barriers, desires, and
design opportunities. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (pp. 1–14). Association for Computing Machinery, New York, NY, USA, CHI ’18. https://​doi.​
org/​10.​1145/​31735​74.​31739​70

Hao, Q., Smith, I. V. D. H., Iriumi, N., et al. (2019). A systematic investigation of replications in computing
education research. ACM Transactions on Computing Education, 19(4). https://​doi.​org/​10.​1145/​33453​28

Hermans, F., Swidan, A., & Aivaloglou, E. (2018). Code phonology: An exploration into the vocalization of
code. In Proceedings of the 26th Conference on Program Comprehension (pp. 308–311).

Hornbæk, K., Sander, S. S., Bargas-Avila, J. A., et al. (2014). Is once enough? On the extent and content of
replications in human-computer interaction. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (pp. 3523–3532). Association for Computing Machinery, New York, NY,
USA, CHI ’14. https://​doi.​org/​10.​1145/​25562​88.​25570​04

Kaijanaho, A. J. (2015). Evidence-based programming language design: A philosophical and methodologi-
cal exploration. University of Jyväskylä, Jyväskylä. http://​urn.​fi/​URN:​ISBN:​978-​951-​39-​6388-0

Kendall, M. G. (1945). The treatment of ties in ranking problems. Biometrika, 33(3), 239–251. https://​doi.​
org/​10.​2307/​23323​03

Ko, A., LaToza, T., & Burnett, M. (2015). A practical guide to controlled experiments of software engineer-
ing tools with human participants. Empirical Software Engineering, 20(1), 110–141. https://​doi.​org/​
10.​1007/​s10664-​013-​9279-3

Lykken, D. T. (1968). Statistical significance in psychological research. Psychological Bulletin, 70(3, Pt.1),
151 – 159.

Makel, M. C., & Plucker, J. A. (2014). Facts are more important than novelty: Replication in the education
sciences. Educational Researcher, 43(6), 304–316. https://​doi.​org/​10.​3102/​00131​89X14​545513

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011a). Measuring the effectiveness of error messages
designed for novice programmers. In Proceedings of the 42nd ACM Technical Symposium on Com-
puter Science Education (pp. 499–504). Association for Computing Machinery, New York, NY,
USA, SIGCSE ’11. https://​doi.​org/​10.​1145/​19531​63.​19533​08

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011b). Mind your language: On novices’ interactions
with error messages. In Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Para-
digms, and Reflections on Programming and Software (pp. 3–18). Association for Computing
Machinery, New York, NY, USA, Onward! 2011. https://​doi.​org/​10.​1145/​20482​37.​20482​41

Pears, A., Seidman, S., Malmi, L., et al. (2007). A survey of literature on the teaching of introductory
programming. In Working Group Reports on ITiCSE on Innovation and Technology in Computer

https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1145/2325296.2325318
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://doi.org/10.1145/2884781.2884812
https://doi.org/10.1109/RESPECT49803.2020.9272513
https://doi.org/10.1109/RESPECT49803.2020.9272513
https://eperusteet.opintopolku.fi/beta/#/fi/perusopetus/419550/tiedot
https://eperusteet.opintopolku.fi/beta/#/fi/perusopetus/419550/tiedot
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/3345328
https://doi.org/10.1145/2556288.2557004
http://urn.fi/URN:ISBN:978-951-39-6388-0
https://doi.org/10.2307/2332303
https://doi.org/10.2307/2332303
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.3102/0013189X14545513
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/2048237.2048241

Software Quality Journal	

1 3

Science Education (pp. 204–223). Association for Computing Machinery, New York, NY, USA,
ITiCSE-WGR ’07. https://​doi.​org/​10.​1145/​13454​43.​13454​41

Pettit, R. S., Homer, J., & Gee, R. (2017). Do enhanced compiler error messages help students? Results
inconclusive. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (pp 465–470). Association for Computing Machinery, New York, NY, USA, SIGCSE
’17. https://​doi.​org/​10.​1145/​30176​80.​30177​68

Piech, C., & Abu-El-Haija, S. (2020). Human languages in source code: Auto-translation for localized
instruction. In Proceedings of the Seventh ACM Conference on Learning @ Scale (pp. 167–174).
Association for Computing Machinery, New York, NY, USA, L@S ’20. https://​doi.​org/​10.​1145/​
33865​27.​34059​16

Reestman, K., & Dorn, B. (2019). Native language’s effect on Java compiler errors. In Proceedings of the
2019 ACM Conference on International Computing Education Research (pp. 249–257). Association
for Computing Machinery, New York, NY, USA, ICER ’19. https://​doi.​org/​10.​1145/​32912​79.​33394​23

Schmidt, S. (2009). Shall we really do it again? The powerful concept of replication is neglected in the
social sciences. Review of General Psychology, 13(2), 90–100. https://​doi.​org/​10.​1037/​a0015​108

Siegfried, R. M., Chays, D., & Herbert, K. (2008). Will there ever be consensus on CS1? In FECS (pp.
18–23).

Siegmund, J., Kästner, C., Liebig, J., et al. (2014). Measuring and modeling programming experience.
Empirical Software Engineering, 19(5), 1299–1334. https://​doi.​org/​10.​1007/​s10664-​013-​9286-4

Stefik, A., & Gellenbeck, E. (2011). Empirical studies on programming language stimuli. Software
Quality Journal, 19(1), 65–99. https://​doi.​org/​10.​1007/​s11219-​010-​9106-7

Stefik, A., & Hanenberg, S. (2014). The programming language wars: Questions and responsibilities for
the programming language community. In Proceedings of the 2014 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software (pp. 283–299). Asso-
ciation for Computing Machinery, New York, NY, USA, Onward! 2014. https://​doi.​org/​10.​1145/​
26611​36.​26611​56

Stefik, A., & Siebert, S. (2013). An empirical investigation into programming language syntax. ACM
Transactions on Computing Education (TOCE), 13(4), 1–40. https://​doi.​org/​10.​1145/​25349​73

Stefik, A., Hanenberg, S., McKenney, M., et al. (2014). What is the foundation of evidence of human
factors decisions in language design? An empirical study on programming language workshops.
In Proceedings of the 22nd International Conference on Program Comprehension (pp. 223–231).
Association for Computing Machinery, New York, NY, USA, ICPC 2014. https://​doi.​org/​10.​1145/​
25970​08.​25971​54

Tirronen, V., Uusi-Mäkelä, S., & Isomöttönen, V. (2015). Understanding beginners’ mistakes with
Haskell. Journal of Functional Programming, 25, 30. https://​doi.​org/​10.​1017/​S0956​79681​50001​79

Webropol. (2020). Webropol survey tool website. Retrieved June 11, 2020, from https://​webro​pol.​com/
Wiersma, W. (2013). The validity of surveys: Online and offline. Oxford Internet Institute, 18(3), 321–340.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Vilma Lappi  was a M.Sc. student at the University of Jyväskylä, at the
time of writing this article. The study described in this article was con-
ducted as part of her master’s thesis work. At present, she works at the
Bank of Finland as a software developer. Her research interests include
the design, usability, and accessibility of programming languages.

https://doi.org/10.1145/1345443.1345441
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3386527.3405916
https://doi.org/10.1145/3386527.3405916
https://doi.org/10.1145/3291279.3339423
https://doi.org/10.1037/a0015108
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1007/s11219-010-9106-7
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.1145/2534973
https://doi.org/10.1145/2597008.2597154
https://doi.org/10.1145/2597008.2597154
https://doi.org/10.1017/S0956796815000179
https://webropol.com/

	 Software Quality Journal

1 3

Ville Tirronen  is a senior lecturer of Computer Science at University of
Jyväskylä. His work focuses on teaching programming languages and research-
ing related topics. He is presently studying real-world software construction as
software engineer at Typeable.

Jonne Itkonen  is a lecturer at the University of Jyväskylä, Finland.The
focus of his teaching and research is in design, development, and tools
of software.

	A replication study on the intuitiveness of programming language syntax
	Abstract
	1 Introduction
	2 Background
	2.1 Related work
	2.2 Importance of replication

	3 Study design
	3.1 Context
	3.2 Materials and tasks
	3.3 Participants

	4 Results
	4.1 Statistical methodology
	4.2 The results of this study
	4.3 Comparison to the original study

	5 Discussion
	6 Threats to validity
	7 Summary and future work
	Appendix. Survey questions and their translations
	References

