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Abstract: Building accurate and robust detectors is essential to keep up with
constantly evolving malware. In this thesis, a systematic literature review of
detection techniques of common malware features was conducted. Prevalent
malware families of recent yearswere first studied to identify their common features,
most important of which where API calls and communication with a Command and
Control server. The systematic review was then conducted based on the discovered
features. The final analysis included 33 papers published between 2018 and 2023. All
reviewed papers applied behavior-based detection and most of them used machine
learning in their proposed model. The papers suggested that building both accurate
and fast detectors is possible with machine learning models, and feature processing
techniques can be used to make detectors resistant to some evasive tactics used by
malware. The study revealed a lack of research focus on optimizing the use of
computational resources and counteracting sandbox evasion.
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Suomenkielinen tiivistelmä: Tarkkojen ja vakaiden haittaohjelmatunnistimien
luominen on välttämätöntä haittaohjelmien kehittyessä jatkuvasti. Tässä pro
gradu -tutkielmassa suoritettiin systemaattinen kirjallisuuskatsaus tyypillisten
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haittaohjelmapiirteiden tunnistusmenetelmistä. Viime vuosien yleisimpiä haitta-
ohjelmaperheitä tutkittiin ensin niille tyypillisten piirteiden tunnistamiseksi, joista
tärkeimpiä olivat API-kutsut ja kommunikaatio komentopalvelimen kanssa. Sen
jälkeen suoritettiin systemaattinen katsaus löydettyjen piirteiden perusteella.
Analysoitavaksi valittiin 33 artikkelia, jotka oli julkaistu vuosien 2018 ja 2023 välillä.
Kaikki käsitellyt artikkelit sovelsivat haittaohjelmien käyttäytymisen tunnistamista
ja suurin osa käytti koneoppimista kehittämässään mallissa. Analyysin perusteella
tarkkojen ja nopeiden tunnistimien kehittäminen on mahdollista koneoppimis-
malleilla, ja tunnistettavien piirteiden käsittelyllä voidaan torjua joitain haittaohjel-
mien käyttämiä väistötaktiikoita. Tutkimus osoitti puutteita laskentaresurssien
käytön optimointiin ja analyysiympäristön välttämisen torjumiseen keskittyvässä
tutkimuksessa.

Avainsanat: haittaohjelma, haittaohjelmien tunnistaminen, virustorjunta, koneop-
piminen
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1 Introduction

Malware is an ever increasing problem in the modern world. New malware is
constantly being developed as cybercrime becomes a more popular, profitable,
and sophisticated option for criminals. At the same time, thousands of people
join the Internet every day, IoT devices are rapidly gaining popularity, and critical
infrastructure is digitalized—all creating new opportunities for threat actors to
target.

While new malware is constantly being developed, malware that originated years
ago is also still going around. Agent Tesla is spyware that was originally discovered
in 2014, and it was still one of the most often detected malware families in 2021—as
was Qakbot, a Trojan used to steal banking credentials that was first found already
in 2007 (CISA, ACSC August 2022). These malware families have developed over
the years and several new versions of them have been released. Malware developers
introduce new features and obfuscation techniques to the new variants which allows
them to reuse the same type of malware without being detected. A recent example
of this is a new Agent Tesla variant released in 2021 that incapacitated a Microsoft
Windows antimalware interface and hid the malware’s communications, which
made both detecting and analyzing it more difficult (Threatpost February 2021).

In recent years, the COVID-19 pandemic has had a significant impact on increasing
the number of cyber attacks. In a survey conducted in 2021, 74% of US and UK
financial institutions reported noticing a significant increase in cybercrime during
the previous year, and many experienced that transitioning to remote work made
them more vulnerable to cyber threats. Managing remote access programs, VPNs,
and widely distributed employee devices (while also dealing with budget cuts)
created new challenges for IT security teams and plenty of exploitation opportunities
for criminals especially during the transition period. (Digital Intelligence 2021)

Another sector that suffered greatly from cybercrime during the pandemic was
healthcare. At the end of 2020, cyber attacks against healthcare organizations
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increased globally by 45%over a two-month period, compared to an average increase
of 22% in other sectors. Attacks included Distributed Denial of Service (DDoS)
attacks, remote code execution and botnets, but ransomware was by far the most
prevalent attack method. Even before the pandemic hospitals have been a popular
target for ransomware attacks because they are more likely to pay the ransom than
victims in other sectors. Access to data is critical for hospitals to operate and ensure
patient safety, and spikes in COVID-19 cases (like the one towards the end of 2020)
created even more pressure on them to deal with attacks quickly. (Check Point
January 2021)

A recent trend in the malware field is the increased popularity of the Malware-as-
a-Service (MaaS) model. MaaS providers offer malware as one-time purchases,
commissioned work, or even based on a subscription model. Outsourcing the
technical work enables even less skilled cybercriminals to execute malware attacks.
The services are especially of interest in the case of Ransomware-as-a-Service
(RaaS) products since ransomware provides a straightforward revenue model
for cybercriminals. The high demand causes RaaS providers to develop new
ransomware in increasing amounts: in the first half of 2022 the amount of new
ransomware almost doubled compared to the second half of 2021. (FortiGuard Labs
2022)

Existing detection methods have a hard time keeping up with the fast development
of malicious software. Traditionally, antivirus programs rely on a signature-
based detection where they compare potential threats against a database of known
malware signatures. Thus they cannot detect new threats until they are identified
with another method and updated in the database. Another common technique
is behavior-based detection which monitors how potentially malicious software
behaves in the system. It is better equipped to detect new types and variants of
malware but heavier computational requirements prevent it from being used in
everyday malware detection.

Recently machine learning has become a much more accessible tool for security
researchers. Computational power has increased while its costs have decreased,
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and machine learning as a field has progressed significantly. Additionally, labeled
malware samples have become more readily available for researchers instead of
only security professionals. (Gibert, Mateu, and Planes 2020) Machine learning is
attractive as a potential malware detection method since it allows handling large
masses of data, and it has the ability to generalize information and make decisions
based on it—a quality that makes it powerful specifically in detecting newmalware.
While machine learning has become easier to use in research, the requirements for
computational resources are still a challenge in applying it for general use.

This thesis gives an overview of the most common features used in malware in the
recent years, and the detection techniques applied to them. The selected research
method is the systematic literature review. The study is motivated by the lack
of recent and comprehensive literature reviews on malware detection. Souri and
Hosseini (2018) list several shortcomings in recent literature reviews, which include
analyzing old articles and the lack of a systematic research method among other
things.

The research questions are defined as follows:

Q1. What are the defining characteristics of the most common malware in active
use in 2022?

Q2. What methods are best suitable for detecting said malware features?

The rest of this thesis is organized as follows. Chapter 2 describes the theoretical
background of common malware types, detection techniques, previous literature
reviews on malware detection methods, and features of recent malware. Chapter
3 describes the research design including background on conducting systematic
reviews and a plan for how the research method is applied in this study. Chapter 4
presents the search results and a systematic review of the selected papers guided by
the research questions. Finally, conclusions of the study are presented in chapter 5.

3



2 Theoretical background

In this chapter common malware types are introduced to provide background
information and to highlight the range of differentmalicious programs that detectors
need to take into account. Different malware detection approaches are then
described along with limitations of current detectors. Concepts and challenges
related to the application of machine learning on malware detection are described.
Several surveys previously done on malware detection techniques are presented to
provide additional motivation for the present study by showing that similar work
has not been done in recent years. Finally, selected prevalent malware families are
studied to identify their key features which are then described in detail to answer
the first research question.

2.1 Malware classification

Malware types can be broadly divided into

• viruses,
• worms,
• spyware,
• adware,
• Trojans
• botnets,
• ransomware, and
• fileless malware.

The descriptions in this section are based on articles and definitions from Kaspersky
Lab (n.d.), Malwarebytes (n.d.[a]), and F-Secure (n.d.[d]).

Viruses and worms are similar types of malware and worms can also be classified as
a subtype of viruses. They can corrupt files, slow down the network connection and
the system, spread to other devices, and they have the ability to self-replicate. There
are three main differences between them. Firstly, viruses require a host file they are
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attached to while worms are independent programs. Secondly, viruses require user
interaction, such as running an executable or enabling macros on an infected file,
before they are able to start replicating. Worms can self-replicate independently of
user action which allows them to spread rapidly once the first instance is installed.
Thirdly, viruses spread by replicating their code to other files. Worms, however, exist
as a single instance in a system, and replicate themselves to other systems.

Spyware is software that is installed on the victim’s device without their knowledge
for the purpose of gathering information about the user. Typically it also slows down
the performance of the infected system. It is usually installed along with seemingly
legitimate software that the victim intentionally installs. The information gathered
can be for example login credentials or credit card information, which the attacker
can then use for identity theft or account takeover, or sell to third parties.

Adware plays advertisements automatically on the victim’s device, often quite
aggressively. It is typically installed as a part of free software and its purpose is to
create revenue to the creator through playing ads. Another way to get adware is as a
drive-by download by visiting an infected website where the adware then exploits a
vulnerability in the browser to install the adware on the user’s device. Once installed,
it can play ads regardless of what websites the user visits or what browser they use.

Trojans are malware that are masked as legitimate files or software. Attackers may
use phishing techniques to pass the Trojan to the victim for example as an email
attachment, or the victim may install it as a part of free software. Their behavior
depends on the payload—Trojans can contain e.g. a backdoor that gives attackers
access to the system, a rootkit to hide their other malicious activity, or a keylogger to
record the user’s keystrokes.

A botnet is a network of remotely controlled devices. After being infected with
malware the infected device, or bot, waits for instructions from the attacker either
directly or through other bots. The owner of the device doesn’t usually notice being
infected. Botnets are often used for DDoS attacks to flood the target host with
repeated requests to disrupt services and prevent legitimate requests from going
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through. Other possible applications include e.g. mining cryptocurrencies and
phishing campaigns. Botnet hosts may also rent them for other cybercriminals to
use.

Ransomware is malware that encrypts files on the target device and may also lock
the device completely. The attackers then demand a ransom in exchange for a
decryption key that returns the files to the victim’s use. While ransomware is a
distinct type of malware, its infection method is based on some other malware type.
For example, CryptoLocker was a Trojan that was distributed using a botnet (F-
Secure, n.d.[a]), and WannaCry was a cryptoworm that self-propagated to other
systems (Malwarebytes, n.d.[b]).

Fileless malware is a newer technique used for malware attacks. Fileless malware
does not exist as an executable file in the device’s file system but instead it is loaded
directly into the device’s Random Access Memory (RAM) which makes it difficult
to detect with signature-based methods. It also uses legitimate utilities and libraries
of the infected system (e.g. PowerShell, the .NET framework, and theWindows Task
Scheduler) for its own malicious purposes which makes its behavior similar to a
benign program. The data in RAM is cleared when the system is shut down which
should stop the attack, but attackers can maintain persistence even after a reboot
by e.g. setting up scripts that run when the machine is restarted. The clearing of
RAM also makes learning about an attack after the fact difficult but some signs can
be uncovered through memory forensics (Kaspersky Lab 2017).

As can be seen from the examples of ransomware, these malware categories are not
absolute or mutually exclusive and they often overlap. Typically another type of
malware is wrapped in a Trojan—for example, a Trojan can connect the infected
computer to a botnet or install spyware on the device. The described types are also
not the only forms of malware—some other types include e.g. logic bombs, and the
aforementioned rootkits.
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2.2 Detection techniques

Malware detection approaches are typically divided into two categories, signature-
based and behavior-based detection. Both techniques can also be applied at the same
time for a hybrid approach.

2.2.1 Signature-based detection

Most antivirus software is based on signature-based detection. Antivirus programs
compare potential threats to known malware signatures and block the ones with a
match in the program’s database. The advantages of signature-based detection are
its fast identification, ease of use, and accessibility, whichmake it an effectivemethod
against known threats.

Signature-based detection can be implemented in a few different ways. The simplest
approach is to use the hashed value of a malicious file. It is a precise way to identify
a specific malware and results in virtually no false positives. However, hash-based
searching is especially ineffective against modifications in the malware as even the
addition of one character to a text file alters its hashed value. (Griffin et al. 2009)
A more advanced method to form a signature is by reverse engineering malware
binaries. Performing static analysis on disassembled malware binaries can provide
evenmore information about themalware’s specific features that can then be used for
the signature, like specific instructions used in themalware code (Deng andMirkovic
2018). Static analysis is traditionally done manually but in recent years machine
learning methods have been applied to automate the analysis process making it
considerably faster (Hassen, Carvalho, and Chan 2017; Shalaginov et al. 2018). The
application of machine learning on malware detection is covered more extensively
in section 2.3.

Signatures can be improved by using a combination of features discovered in static
analysis and other common characteristics like file size and type. A popular tool
to create signatures is YARA1, an open-source project that can be used to create

1. https://virustotal.github.io/yara/
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descriptions based on textual or binary patterns in malicious files. By using a
combination of rules the descriptions can match a whole family of malware which
enables catching several malware variants with one signature.

Themajor drawback of signature-based scanners is that they can be evaded relatively
easily through code obfuscation, which is a general approach to masking the
malware’s purpose by making the code more difficult for a human reader to
understand. Code obfuscation can be done utilizing different techniques like
encryption, polymorphism, dead code insertion, instruction substitution, and
register reassignment (You and Yim 2010). Out of these, encryption is perhaps
the most challenging to counteract as it prevents disassembling malware binaries
for static analysis (Chen, Brophy, and Ward 2021). Encrypted malware consists of
an encrypted virus body and a decryptor which decrypts the virus when it is run
in the host system. Antivirus products cannot detect signatures in the encrypted
virus body but they can still look for signatures in the decryptor. To counter this,
decryptors can be improved further through polymorphism. Polymorphic malware
can modify its decryptor using different obfuscation techniques and thus create
countless different decryptors. Metamorphic malware, on the other hand, is not
encrypted but can similarly mutate the virus body as it propagates, potentially
making every instance of the malware unique. (Szőr 2005; You and Yim 2010).

Regardless of how the signature is formed, the reliance on previously identified
malware remains the biggest disadvantage of the signature-based approach. It is
virtually ineffective against new malware strains or new variants of older malware
that have been obfuscated using some of the previously describedmethods. Creating
a general signature for an entire malware family may be effective in detecting new
variants, but it still requires prior knowledge and analysis of the malware before the
signature can be formed and thus doesn’t protect against the constantly emerging
new malware. The concept is easily applied to antivirus programs but signatures
need to be more robust than the traditionally used hashes and binary sequences.
Signature-based detection is also, by principle, ineffective against fileless malware
since it lies solely in memory and does not have a file that can be checked for a
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signature. The heavy focus on malware behavior and machine learning methods
in recent research is further indication that signature-based detection in itself is no
longer sufficient for effective malware detection.

2.2.2 Behavior-based detection

Behavior-based detection methods detect malware based on its activity when it
infects a system. It is especially useful in detecting new malware variants because
typically malware behavior remains the same even if malware authors attempt to
avoid detection through code obfuscation. Even across different families, malware
instances perform similar actions in the infected host which makes the behavior-
basedmethod effective against new threats. (Mosli et al. 2017; Singh and Singh 2021)

Typically behavior-based tools utilize dynamic analysis by running a potentially
malicious program in a sandbox environment (e.g. Cuckoo2) and logging its
behavior in a text file. Activity monitored in the sandbox includes typically API
calls and their arguments, created processes, accessed domains and IP addresses,
file or registry access patterns, loaded DLLs, and DNS requests (Mosli et al. 2017;
Maniriho, Mahmood, and Chowdhury 2022b). In addition to the Windows API,
services provided by the Windows kernel can be accessed with system calls. Using
the services in itself does not necessarily indicatemalicious behavior but calling them
directly in user code is rare and often a sign of malicious activity (Raff and Nicholas
2020). Sandbox programs can also provide a quick static analysis of the malware
code (Fox May 2021). The log file is usually analyzed manually and the information
can be used to create a signature for the malware (David and Netanyahu 2015).

Malicious activity can be divided into host behavior and network behavior. Host
behavior refers to activities that may alter the attributes of the host system, like
modifying registry files (Lin et al. 2015). Network behavior typicallymeans activities
like connecting to remote hosts or servers to exfiltrate data or send spam (Perdisci,
Lee, and Feamster 2010; Lin et al. 2015). Monitoring network-level activity may

2. https://cuckoosandbox.org/
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increase the detection accuracy because in some cases, malware variants that execute
different actions in the system show the same malicious behavior in the network
(Perdisci, Lee, and Feamster 2010). This is especially useful when considering new
variants of a malware family that try to avoid detection by altering their behavior in
the system. However, the inverse is also possible. Malware authorsmaymaintain the
same system-level code but modify network attributes—for example, malware that
originally used the IRC protocol to contact a Command and Control (C&C) server is
modified to use HTTP instead (Perdisci, Lee, and Feamster 2010). This way the two
malware samples behave very similarly in the host but differently in the network,
and both behavior types need to be considered for ideal accuracy.

The main downside of the behavior-based approach is that it is much slower
compared to signature-based solutions as it requires running and analyzing files
in a sandbox. Additionally, some malware can detect it is running in a sandbox
environment and alter its behavior to seem like a benign file or stop executing
completely. For example, the fileless ransomwareUIWIX terminates itself if it detects
a VM or a sandbox (TrendMicro May 2017). When malware passes detection and is
allowed to run in the host, the malicious behavior is activated. The sandbox should
thus be set up in a way that malware cannot identify the analysis environment based
on e.g. a standard MAC address or lack of user files and cache. (Singh and Singh
2021)

Despite its limitations, the behavior-based approach is often considered much more
powerful—and even necessary—compared to the signature-based method which is
insufficient in the constantly evolving field of malware. Behavior-based techniques
are immune to code obfuscation because they focus on what the malware is doing
rather than how it is implemented, which makes them much more accurate for
detecting both known and unknown threats. (Moser, Kruegel, and Kirda 2007;
O’Kane, Sezer, and McLaughlin 2011) The increasing popularity of new types of
malware like fileless malware also highlights the need for dynamic analysis as it may
not be possible to detect them with signatures (Saad, Briguglio, and Elmiligi 2019).
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2.3 Machine learning in malware detection

Machine learning (ML) has gathered a lot of interest as an option to overcome the
downsides of traditional malware detection methods. This is aided by the recent
advancements in machine learning like natural language processing and computer
vision, the increase in computational power and the decrease in its cost, and the
increase in publicly available labeled feeds of malware (Gibert, Mateu, and Planes
2020). ML methods allow handling large masses of data and finding patterns in
them that would normally require a lot ofmanual work to uncover. The ability ofML
models to generalize based on previously learned information is also an important
advantage in detecting new malware variants (Raff and Nicholas 2020).

Applying ML to malware detection follows the same principles as the traditional
methods. Patterns that ML solutions detect can be static features like binary
sequences or other signatures, or dynamic features like memory and registry usage,
network traffic, or API call traces (El Merabet and Hajraoui 2019; Gibert, Mateu, and
Planes 2020). For example, Hassen, Carvalho, and Chan (2017) extracted different
features using static analysis and used them to classify malware samples into known
malware families, while David and Netanyahu (2015) applied dynamic analysis for
an automated signature generation method based on malware’s behavior and used
it to train a deep neural network. As previously stated, static features can easily be
altered or masked with different obfuscation techniques, which makes the dynamic
features more useful when considering detecting new malware also in the case of
ML methods.

Clustering and classification are two pattern identification methods commonly
used in the automatic analysis of malware. Clustering is a form of unsupervised
learning that identifies similarities between objects in unlabeled data and groups
them according to their common characteristics. Traditional manual labeling of
new malware samples is time-consuming work that could be eased with the use of
clustering. (Ng et al. 2019) Classification, on the other hand, is a supervised learning
technique to assign labeled objects into predefined groups. A malware classifier
is trained using labeled datasets to distinguish between benign and malicious files,
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and give accurate predictions when facing previously unseen files (El Merabet and
Hajraoui 2019). Each file in the training dataset is labeled according to its defining
features and whether it is malicious or benign, which enables learning algorithms
to map the relationships between file features and labels (Markel and Bilzor 2014).
Both clustering and classification applications utilize the fact that malware variants
of the same family often share common static features and behavior patterns.

In conventional ML techniques feature engineering—the process of selectively
extracting features from raw data—is done manually which requires extensive
knowledge of the domain in addition to being time-consuming and error-prone
(Maniriho, Mahmood, and Chowdhury 2022b). In recent years, deep learning
(DL) solutions have contributed to great advancements in fields like speech
recognition and natural language processing. DL algorithms have a hierarchical
structure that imitates the human brain and allows automatically extracting features
and abstractions from underlying data. Thus the algorithms have the ability to
learn from both labeled and unlabeled datasets and produce classification models
which automates the feature engineering process (Najafabadi et al. 2015; Maniriho,
Mahmood, and Chowdhury 2022b).

There are still various challenges related to the application of ML in practical
everyday malware detection. While more labeled datasets have become publicly
available, finding a balanced, good-quality dataset is still a challenge. Training a
model on a dataset with noticeably different sizes of classes can easily skew the
model’s predictions. Malware families with strong polymorphism are typically
overrepresented in datasets that are filtered by sample-uniqueness and thus cause
class imbalance (Rossow et al. 2012). Additional imbalance is caused by the ratio
of malicious to benign samples. Virus samples are shared publicly but obtaining
non-copyright-protected benign files is more difficult (Gibert, Mateu, and Planes
2020). In classifier training, researchers often use their own datasets or build on top
of existing ones because many of the available datasets are outdated or limited due
to challenges with privacy policies (Vinayakumar et al. 2019).

Using ML does not completely eliminate the challenge that evolving malware
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creates. One issue related to this is concept drift—relationships between input and
output change over time because malware, like any software, changes with added
features, bug fixes, and porting to new environments (Gibert, Mateu, and Planes
2020; Raff and Nicholas 2020). ML models still need to be updated to keep up
with the changes. Dynamic analysis techniques are an advantage against updating
malware, but just as in traditional behavior-based detection, ML solutions that apply
dynamic analysis are also ineffective against malware that is able to detect it is
running in a virtual environment (Mohaisen, Alrawi, and Mohaisen 2015).

Another challenge related to ML is the interpretability of models. Most ML
models used today are black box models that are given an input and they produce
an output through a process that is invisible to humans. However, in malware
detection applications it is more useful to have interpretable models to help analysts
understand the logic behind the model’s predictions and to discover if a model’s
decisions are biased or inconsistent (Maniriho, Mahmood, and Chowdhury 2022a).
It can be especially useful when dealing with false positive cases to help analysts
figure out whether the false alarm was due to an error in the training set or the
model. The more interpretable a model is, the easier it is to assess its quality and
correct it when needed. (Gibert, Mateu, and Planes 2020; Maniriho, Mahmood, and
Chowdhury 2022b)

Despite the development of faster andmore powerful processors, computational cost
is still a major limitation of machine learning applications. Developing a practical
and effectiveMLmodel is always a compromise between costs and accuracy. Several
features need to be considered for most accurate classification but the more features
are included in a classifier, the more computational resources it requires. Features
need to be selected deliberately to mitigate the costs and take full advantage of the
available resources. The development of more powerful processors could allow
using more complex ML models in the future.
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2.4 Related work

Numerous review papers on malware detection have been published over the years
but malware develops fast and makes such reviews quickly outdated. The goal of
the comparisons in this section is to show that this thesis does not overlap with
previously published review papers. For relevancy’s sake, only surveys from the
last few years are covered in this section.

As Maniriho, Mahmood, and Chowdhury (2022a) mention in their survey,
conducting multiple surveys on a similar topic is common and while they share
the topic, they differ on scope, analysis, reviewed articles, and outcome. No survey
can completely exhaust a topic. Additionally, the reviewed articles may be selected
differently between otherwise similar surveys, whether it is the time frame, inclusion
and exclusion criteria, or the article selection method. For example, Maniriho,
Mahmood, and Chowdhury (2022a) used the snowball approach where they chose
an initial batch of papers and used their bibliographies for selecting additional
articles. In this thesis, however, the papers are selected based on the relevancy
algorithms of the used search engines. The search and selection process is covered
in more detail in section 3.3.

In a recent survey, Aboaoja et al. (2022) review malware analysis and detection
approaches. They present a taxonomy that maps analysis and detection methods
to the malware features most frequently associated with them, and divides feature
engineering phases to different feature extraction and representation methods.
While the research topic is very similar, they cover articles published over a much
longer time compared to this thesis and they do not focus or comment on the most
prevalent malware of the recent years.

Souri andHosseini (2018) survey datamining techniques used inmalware detection.
They summarize the current challenges related to data mining, review current ML
approaches, and cover the most significant techniques in detail. They compare the
frequency and accuracy of classification methods used in the reviewed articles but
do not specify the considered malware features.
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Maniriho, Mahmood, and Chowdhury (2022a) review dynamic malware analysis
tools and behavior-based detection techniques involvingML andDL techniques. For
selecting the reviewed papers, they select a starting set of papers and expand the
selectionwith additional papers from the references of the initial set, andwith papers
citing the initial group. The main difference compared to this thesis, in addition to
the selection method, is that Maniriho, Mahmood, and Chowdhury (2022a) do not
specify the most common features in recent malware. Additionally, in this review
the scope is not limited to the behavior-based method as the goal is to present the
techniques recently applied for malware detection regardless of the approach.

In another review, Tayyab et al. (2022) examine statistical, ML, and DL techniques
in malware detection and review datasets and performance metrics used in past
studies. Their specific focus in DL is the use of smaller datasets in meta learning
algorithms like Few Shot Learning (FSL). The idea of FSL is to concentrate on the
most significant features for best efficiency which could be useful when designing
a cost-effective malware detector. However, they cover articles over a longer time
period rather than the most novel research which is distinctly different from the
purpose of this thesis.

There are numerous other surveys that focus specifically on ML techniques. El
Merabet and Hajraoui (2019), Gibert, Mateu, and Planes (2020), Raff and Nicholas
(2020), and Singh and Singh (2021) all examine the application of ML techniques
on malware detection but they differ from this thesis in various ways. They may
not state the features that are considered in detection, or they include older articles
in their review because their goal is to paint an overall picture on the topic rather
than describe the most recent features and methods. Conversely, some surveys, like
Moussaileb et al. (2021), have similar research questions to this thesis but they limit
their scope only to ransomware.

This systematic review examines the common features present in malware in the
recent years, and the most efficient techniques to detect those features. As gathered
in this section, there has been extensive work on reviewing malware detection but
in most cases the surveys focus on the application of a specific detection method,

15



e.g. deep learning algorithms. Many reviews limit their scope to a general type of
malware like ransomware instead of considering what malware features are most
prevalent today. Additionally, the majority of the papers related to this topic are
surveys describing the topic overall, rather than systematic reviews assessing the
current state-of-the-art. Therefore in most of the summarized papers, the search
protocol used for the reviewed articles is not described and cannot be directly
compared with this review.

2.5 Features of recent malware

The first research question of this thesis is, Q1. What are the defining characteristics

of the most common malware in active use in 2022? Examining features of the recently
most widespreadmalware families helps identify commonalities between them. The
information can be used to determine the key features that should be the focus of
detection solutions to make them as efficient as possible.

Check Point lists Emotet, Formbook, XMRig, AgentTesla, Trickbot and Ramnit
frequently among the topmalware families in their 2022monthly reports. In January
2022, all of them were in the top 10 malware families (Check Point February 2022),
and in December 2022 all except Trickbot made the list (Check Point January 2023).
On the other hand, Kaspersky (December 2022) list Ramnit, ZeuS, and Trickbot
as some of the top banking Trojans detected most often in 2022, and Magniber as
one of the top ransomware families. The eight selected malware families and their
commonly used techniques are reviewed in this section.

ZeuS, or Zbot, is a large family of Trojans that is mainly used to steal online banking
information. It can intercept data entered in online forms, inject additional fields
to the targeted websites, or even present a whole fake website hosted on a server
controlled by the attacker. ZeuS communicates with remote servers to download
its configuration file, send the stolen information, and download copies of itself or
configuration files if needed. Typically it creates a hidden folder where it places files
used to store the stolen information and the initial configuration file it downloads. It
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also makes a copy of itself and if it doesn’t detect any firewall processes, it modifies
registry entries to establish automatic execution at startup. (F-Secure, n.d.[b]; Trend
Micro June 2015) For example, if the variant drops the executable sdra64.exe, it
adds it to the following registry entry (Trend Micro June 2015):

HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\Winlogon

userinit = "%System%\userinit.exe, %System%\sdra64.exe,"

Ramnit, also known as Nimnul and Cosmu, is a worm with several variants
developed since its creation. Ramnit originally spread through removable drives and
infected files in the system but was soon updated with code copied from the ZeuS
malware which enabled it to be used as a banking Trojan to steal user credentials
(Dunn August 2011). Ramnit registers itself as a system service by adding registry
keys to the HKLM\SYSTEM\CurrentControlSet\Services\ registry tree which
enables its automatic execution at system startup, and creates additional registry
keys (similar to ZeuS’s) to ensure further persistence (Trend Micro September
2014). For evasion purposes, it can add several registry values to hide itself from
Windows Defender (Praszmo September 2017), delete registry values related to the
Windows safe mode (Trend Micro September 2014), and kill processes associated
with antivirus software (Chen November 2012).

Trickbot is a Trojan mainly used to steal financial data. It is primarily spread
throughmaliciousMicrosoft Officemacroswhich, once enabled, execute a script that
downloads the main executable that contains the malware logic. As a persistence
technique it creates a scheduled system task to keep itself running. (Salinas and
Holguín June 2017) It has several modules with different functions, allowing it to
e.g. steal browser data, inject malicious code into web browsers to monitor online
banking details, gather network information in the infected system and send it to a
C&C server, and steal credentials from different applications—among many other
features. Because of its modular structure, it can be used for various kinds of attacks
in addition to simply stealing banking data. (Ang May 2019)
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Magniber is a ransomware program that can exploit various different vulnerabilities
to gain access to a system where it encrypts files matching to predefined extensions
(Trend Micro Research January 2023). Its encryption process has two phases:
first it encrypts the files with a symmetric encryption key, then encrypts the key
with a stronger asymmetric encryption algorithm. It modifies registry values to
elevate its privileges and then runs a command to delete all shadow copies so that
the encrypted files cannot be recovered. (Cybereason September 2021). During
execution, it uses direct system calls rather than the standard Windows API which
helps it evade detection. Recently variants have disguised themselves as Windows
updates where the inital dropper is a JavaScript file which loads the .NET executable
directly in memory, making the malware itself fileless. (Manna-Browne December
2022; Schläpfer October 2022)

Emotet started out as a banking Trojan and has expanded into a botnet. The
Trojan infects machines typically through malicious Microsoft Office macros which
download the executable malware from a remote server. Emotet has modules for
stealing banking details from network traffic, stealing email credentials from email
software, harvesting browser data, and extracting email addresses for spamming.
The collected information is sent to a C&C server. (Symantec July 2018) It uses
packing and code jumps for obfuscating the malware code (Trend Micro Research,
n.d.), as well as various obfuscation techniques for the initial dropper (Silverio et
al. May 2022). It can also inject code to explorer.exe and other processes which
is a technique used for defense evasion and privilege escalation. For persistence,
Emotet adds the executable malware payload to the Windows autorun registries, or
creates scheduled tasks to execute it. Additionally it creates files in the system root
directories to run them as services in an attempt to spread the malware to adjacent
systems. (CISA January 2020) Since its evolution into a botnet, Emotet has been used
to distribute other malware and recently it has been spreading the banking Trojan
IcedID and the cryptominer XMRig (Proofpoint November 2022).

Formbook is a spyware Trojan used to steal login credentials from browsers and
other applications. In addition to harvesting login details, it has various other
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capabilities like logging keystrokes, searching through files, and taking screenshots.
Before execution it checks the environment for debuggers and other analysis tools
and terminates if they are found. With specifics depending on the Formbook
variant, it drops various script files to %APPDATA%\Local\Temp\ and adds the
main script files to a Run registry key to automatically execute them. Formbook
then injects itself into the legitimate Windows processes AddInProcess32.exe
and explorer.exe to mask its behavior. From then on it injects itself into various
other processes like browsers and messaging applications from which it steals input
and clipboard data. It can receive additional downloads and commands from a C&C
serverwhich it also contacts to send the stolen information. (F-Secure, n.d.[c]; Zhang
April 2021a)

XMRig is an open-source cryptocurrency miner that, when used for malicious
purposes, mines the cryptocurrency Monero on the victim’s machine using their
computational resources and electricity. It is not designed to be malicious in itself
but attackers can deploy it to a breached system, or bundle it with other malware to
mine cryptocurrency alongside themain attack (Check Point, n.d.). For example, the
Sysrv botnet spreads the miner by targeting vulnerabilities that allow remote code
access (Kimayong April 2021). Running a miner in the background makes general
use of the computer much slower but detecting the miner itself can still be difficult.
The processes XMRig runs have been concealed with obfuscation techniques like
process hollowing (Remillano II, Nebre, and Dela Cruz December 2019), or by
hiding the process names with a separate tool (Masubuchi May 2021). The specific
indicators of compromise and viable detection techniques are thus dependent on the
malware it is paired with and other attack techniques used.

Agent Tesla is a Remote Access Trojan (RAT) and a keylogger used to steal login
credentials from various browsers, email clients, and other software, as well as other
information gathered through harvesting clipboard data and capturing screenshots
(Zhang June 2017). It sends all collected information to a C&C server over FTP,
HTTP, or SMTP. The initial script is often executed through malicious Microsoft
Office macros but other types of files have also been used to distribute the malware.
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It establishes persistence through registry keys or scheduled tasks, or by copying
itself into theWindows Startup folder, and uses various process injectionmethods to
hide itself. (Walter April 2021; Splunk Threat Research TeamNovember 2022) Some
indicators that can be used to detect it include e.g. excessive use of taskkill.exe,
creation of scheduled tasks, modification of registry keys for privilege escalation,
or suspicious processes started by Microsoft Office macros (Splunk Threat Research
Team November 2022).

Based on the review in this section the key techniques used by the recent major
malware families are modifying registry entries, scheduling tasks, process injection,
creating processes, and contacting a C&C server. The techniques are commonly
related to establishing persistence in the infected system, e.g. by ensuring that the
malware runs at specific time intervals or at system startup. The techniques and how
different malware use them are next described in more detail.

Windows has the following registry keys to define applications that are run
automatically every time a user logs on (Microsoft Learn February 2022):

HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows\CurrentVersion\Run

HKEY_CURRENT_USER\Software\Microsoft\

Windows\CurrentVersion\Run

The Winlogon key used in Windows 7 systems has the following two subkeys that
can autostart programs (MITRE ATT&CK June 2022a):

HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\Winlogon\Shell

HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\Winlogon\Userinit

The userinit key is used by e.g. ZeuS (Trend Micro June 2015). Additionally, the
Load value of the following registry keys can be used to run programs when a user
logs on (MITRE ATT&CK June 2022a):

20



HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\Windows Load

HKEY_CURRENT_USER\Software\Microsoft\

Windows NT\CurrentVersion\Windows Load

For example Agent Tesla saves its executable to the Load value (Zhang June 2017).
Registry key manipulation can be detected by monitoring command execution, file
modification, process creation, andWindows registry key creation and modification
(MITRE ATT&CK June 2022a).

Task scheduling can be used for the initial execution of the malware, or as a
persistence technique to keep it running. All major operating systems have utilities
for scheduling programs or scripts to run at a specific time. In Windows systems
the Task Scheduler is responsible for scheduling tasks. In addition to the GUI, it
can be accessed with e.g. the schtasks or at utilities. (MITRE ATT&CK July
2022e) For example, Trickbot schedules two tasks: one that runs at system startup,
and one that executes every minute. Typically the scheduled executables are located
in %APPDATA%\Roaming\which helps distinguish Trickbot’s scheduled tasks from
benign system tasks. (Campbell and Cargill July 2020) Agent Tesla uses schtasks
to execute themalware, and one of its variants attempts to download a newversion of
it every two hours to keep themalware up-to-date (ZhangDecember 2021b). Emotet
is also known to use scheduled tasks for persistence (CISA January 2020).

Process injection is a technique used to avoid detection by masking the malware
process under a legitimate process. It can also be used for privilege escalation since
executing code in the context of another process may allow inheriting the memory,
system and network resources, and privileges it holds. Process injection can be
done by creating a new thread within the target process, or by hijacking one of
its existing threads, and is commonly done by abusing legitimate functionalities.
(MITRE ATT&CK October 2022d; Secarma, n.d.) Agent Tesla uses process injection
by executing a legitimate program like RegAsm.exe or Regsvcs.exe and injecting
its malicious code into the started process. It commonly uses process hollowing,
a technique where memory sections of a legitimate process are unmapped and
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replaced with malicious code. (Walter April 2021)

Creating system processes, or services as they are called in Windows systems, is
another technique for achieving persistence. The services run on system startup
and are generally used to perform background system functions. Services can be
created using system utilities like sc.exe, by modifying the registry, or via the
Windows API. (MITRE ATT&CK June 2022b) For example, Trickbot creates an
autostart service that runs the malware on system startup (Llimos and Pascual
November 2018), and Emotet creates files in root directories that are run as services
to propagate the malware to other systems (CISA January 2020).

In addition to different system activities, most—if not all—malware today perform
some network activity as well. Many of themalware families reviewed above contact
a C&C server to download malicious scripts or configuration information, and to
send the data they have collected. The contacted domains and IP addresses vary
between malware (and often between variants or even individual instances of the
same variant) so they can be used as signatures only for specific cases. Detecting
malicious network activitywithout a known signature or domain is very challenging,
and the analysis of traffic can bemademore difficult with encryption, like in the case
of TrickBot (Salinas and Holguín June 2017). Applying network features for general
malware detection is thus very difficult.

Lastly, it is essential to consider the API calls malware makes during its execution.
The way malware performs many of its actions like creating processes is often
done through API calls (MITRE ATT&CK April 2022c). For example, Formbook
calls various Windows APIs like ZwOpenProcess() and ZwOpenThread()

to inject itself into explorer.exe (Zhang April 2021a). XMRig calls the
CreateProcess() API to start AddInProcess.exe, and then calls several
other APIs like VirtualAlloc() and WriteProcessMemory() to deploy the
malicious xmrig.exe in that process (Zhang January 2023). Accordingly, API calls
are one of the most used features in behavior-based detection (Gibert, Mateu, and
Planes 2020; Singh and Singh 2021).
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3 Research design

The goal of this study is to identify detection techniques that are best suitable for
the common features present in the most prevalent recent malware. The selected
research method is the systematic literature review. This section describes the
general approach of a systematic review as well as the research questions, the search
strategy, the selection criteria, and the data extraction plan for the systematic review
conducted in this thesis.

3.1 Systematic literature review

As Kitchenham and Charters (2007) define it, a systematic literature review aims to
identify, evaluate, and interpret all available research relevant to a particular research
question or topic. Whereas primary studies collect data directly, a systematic review
is a form of secondary study that uses primary studies as its data source. It is a
method used to summarize existing evidence regarding a topic, identify gaps in
current research, and provide a base for further research (Kitchenham and Charters
2007). It is thus a suitable method to obtain a comprehensive overview on the topic
of interest.

Compared to systematic mapping studies, systematic reviews have more narrowly
defined research questions and scope. Systematic mapping studies aim to give an
overview of the types of studies published on a particular research area. Systematic
reviews, on the other hand, study a more specific topic and evaluate the selected
papers in detail. Systematic reviews require more depth and effort to achieve their
goals and therefore cover fewer articles than mapping studies. (Petersen et al. 2008)

Due to the nature of a Master’s thesis, the study selection and data extraction
processes are carried out by a single author which limits the available resources
considerably. It also diverges from the guidelines of Kitchenham and Charters
(2007) as the lack of another perspective may cause biased results, but it is accepted
as a risk. The limited resources, as well as the time constrains that come with a
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Master’s thesis, are taken into account in the number of papers selected for analysis.

In the process detailed by Kitchenham and Charters (2007), conducting a systematic
review can be divided into three main phases: planning, conducting, and reporting
the review. Planning involves identifying the need for a review, specifying the
research questions, and defining the review protocol. Conducting the review
consists of searching and selecting primary studies, data extraction, and data
synthesis. Finally the results are written in a report. The following sections describe
how each phase is implemented in this thesis.

3.2 Research questions

A systematic review is driven by the research questions as they direct the outcome
of each phase of the review process. The search and selection processes identify
primary studies that address the research questions. The data extraction process
extracts information related to the research questions from the selected primary
studies. Finally the data analysis process synthesizes the extracted data to form
answers to the research questions. (Kitchenham and Charters 2007)

A research question should bemeaningful to both practitioners and researchers, lead
to changes in current practices or increased confidence in the current practice, and
identify common beliefs that conflict with reality (Kitchenham and Charters 2007).
In the context of malware detection, it is in the interest of both researchers and
industry security professionals to develop detection solutions that are as accurate
and efficient as possible, though for industry practitioners the performance aspect
may bemore critical. Identifying the best techniques for detecting commonmalware
features informs whether efforts should be directed to building new kinds of
solutions or improving the most critical aspects of the existing ones.

Staples and Niazi (2007) emphasize the importance of defining the research
questions narrowly to reduce the intense workload of a systematic review and to
improve the quality of the paper selection and data extraction. Following this advice,
this thesis is limited to two research questions with a very limited scope.
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Based on the guidelines described above, the research questions are defined as
follows:

Q1. What are the defining characteristics of the most common malware in active
use in 2022?

Q2. What methods are best suitable for detecting said malware features?

Identifying the common features of the most prevalent recent malware families is a
prerequisite for answering the second question since it allows narrowing the search
strings used during the search process. This additional objective is presented as the
first research question but it is not included as a part of the formal systematic review
because the information is for the most part gathered from gray literature, including
various electronic sources like blog posts andwhite papers published by commercial
security providers, which makes defining and implementing a systematic search
plan challenging if not impossible. The question is answered in the background
portion of this study in section 2.5 where eight malware families that were among
the most widespread ones in 2022 are described along with their features.

The second research question is the main question answered with a systematic
analysis of what detection techniques were used in academic literature. Information
gathered from answering the first question is used to formulate the search strings
and direct the data extraction process.

3.3 Search and selection process

The resources used to search for articles were IEEE Xplore1, Google Scholar2, ACM
Digital Library3, and ScienceDirect4. Brereton et al. (2007) note that a single source is
not enough to find all primary studies on a subject. Several databases were used also
in this thesis to make the search as complete as possible within reasonable bounds.

The most relevant keywords related to the research topic were identified as malware

1. https://ieeexplore.ieee.org/Xplore/home.jsp
2. https://scholar.google.com/
3. https://dl.acm.org/
4. https://www.sciencedirect.com/
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and detection. Initial trial searches revealed that using those search terms alone
gave quite general results, so the malware features reviewed in section 2.5 were
incorporated into the search string. The top results of the trial searches also included
many Android and Internet of Things (IoT) specific articles, but the focus of this
thesis is limited primarily to the Windows platform. To refine the search closer to
the scope of the present study, papers that clearly focused on mobile or IoT malware
were excluded from the search. To achieve this, papers that contained the terms
android, mobile, iot, or internet of things in their title were excluded. Surveys and
reviews were also excluded from the search since the papers needed to be primary
studies. Boolean conditions were used to include all relevant search terms into the
same string. Based on these conditions, the following search string was formulated:

malware AND detection AND

(api OR registry OR task schedule OR process creation OR

process injection OR "command and control") NOT

title:android NOT title:mobile NOT title:iot NOT

title:"internet of things" NOT

title:survey NOT title:review

A trial search on Google Scholar using the above rules and time frame limited to
2018 onward gave about 17 300 results. This showed more promising papers in the
top results compared to the other trial searches and was selected as the base search
string used in the systematic review.

The same base search string is used for each search engine and its specific syntax
is modified according to that of the used search engine. The results are sorted
according to relevance based on each search engine’s own algorithm, and the time
frame is limited to 2018–2023 using the search engine’s filter function. The 50
first results are initially retrieved from each search. Duplicate papers are then
removed and the inclusion and exclusion criteria (detailed in the next section) are
applied to choose the most relevant papers. The selection is based on a review of
title, keywords, abstracts, and conclusions as per the recommendation by Brereton
et al. (2007). If necessary, additional selection rounds are conducted with more
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scrutiny to narrow down the selected papers.

3.4 Inclusion and exclusion criteria

In addition to well-defined search strings, it is necessary to define selection criteria
to limit the reviewed material to the most relevant primary studies that provide
evidence about the research question (Kitchenham and Charters 2007).

For a paper to be selected, it was required for the paper to clearly refer to
applying a technique to malware detection or classification in the abstract or the
conclusions. Classification is treated synonymously to detection because especially
in ML applications, many studies emphasize classification over detection but both
principles can be applied for detection solutions. Similarly, trial search results
included some papers that described their focus as malware analysis rather than
detection. The topics can overlap depending on how the author interprets and
discusses them, and the full extent to which they are covered may not be apparent
based on abstract and conclusions alone. However, papers that focus on malware
analysis but make no mention of a detection technique are discarded to make the
data extraction process less taxing, even at the risk of discarding some papers that
discuss detection outside of the abstract and the conclusions. Additionally, the paper
had to state that the proposed techniquewas applied to at least one of the key features
identified in section 2.5.

The included papers were required to be primary studies as the systematic review
is a secondary study. It was also required for them to be peer-reviewed journal
articles or conference papers. Thiswas especially important because rigorous quality
assessment was not done in the scope of this thesis due to time limitations. The
quality of the publishing channels was futher assessed based on the evaluation by
Publication Forum (JUFO)5. The journal or conference of each paperwas searched in
the JUFO Portal6. Conferences not found in the search were assessed based on their

5. https://julkaisufoorumi.fi/en
6. https://jfp.csc.fi/en/web/haku/julkaisukanavahaku
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publisher according to JUFO’s classification policy (Publication Forum September
2016). Requirements for level 1 are e.g. transparency on the editorial board and
the peer-review process, and if a publishing channel fails to fulfill any of the the
requirements it is classified as level 0 (Publication Forum March 2023). Therefore,
papers that did not reach at least level 1 in the JUFO evaluation were excluded.

The other exclusion criteriawere related to practicalmatters and further ensuring the
relevancy of the papers. Papers that were not written in English were excluded to
reflect the language of this thesis. Due to practical limitations, papers not accessible
for free orwith theUniversity of Jyväskylä credentialswere also excluded. To narrow
down the results to match the scope of this review, papers that focused specifically
on mobile or IoT malware, or malware of some other non-Windows platform, were
excluded.

Finally to further ensure relevancy, papers published before 2018 were excluded.
Even though only the top malware of 2022 was used to review the most common
malware features, the search for the detection techniques was expanded to about a
five-year period. This was due to two main reasons. First, the malware that was
the most popular in 2022 was not developed in that year alone, but has been around
for years. Second, the features are not unique to the reviewed malware but have
been used in a similar manner for years, and thus have been studied by security
researchers over a long period of time. The search is still limited to relatively recent
publications to focus on techniques that are still relevant in the malware field today.

To summarize, the inclusion criteria were:

• The topic is malware detection or classification
• Primary study
• Peer-reviewed journal article or conference paper
• Targets one or more of the following features:

– API calls
– Modifying registry entries
– Scheduling tasks
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– Process injection
– Creating processes
– C&C communication

The exclusion criteria were:

• Published before 2018
• Language is not English
• Full text is not available for free or with University of Jyväskylä credentials
• Focuses on mobile, IoT, or some other non-Windows platform
• Publishing channel evaluated as level 0 on Publication Forum

3.5 Quality assessment

Kitchenham and Charters (2007) recommend assessing the quality of the selected
articles based on bias, internal validity, and external validity. Bias refers to howmuch
the results systematically depart from the ’true’ results. Internal validity refers to
the degree of systematic error likely produced in the study. External validity defines
how largely the effects are applicable outside of the study. Staples and Niazi (2007)
express that it is difficult for an outsider to reliably assess how thoroughly other
authors have considered the validity of their studies, and use a simplified quality
assessment approach of extracting a ’yes’ or ’no’ based on whether the study had
considered each quality factor. They discovered that only 15 % of their selected
studies addressed the quality measures even partially.

Brereton et al. (2007) report previously using an approach where they evaluated the
quality of the papers based on the completeness of the data. Papers lacking in quality
did not provide data or statistical tests to support their claims, or reported some but
not all of the required information. In another of their previous studies, Brereton et
al. (2007) report relying on the quality of the peer-review processes of the journals
their selected papers were published in.

In this thesis, rigorous quality assessment is not done for the selected papers because
of the time limitations discussed earlier. Instead, a simplified version is adapted
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from the guidelines of Kitchenham and Charters (2007). Additionally, even though
Kitchenham and Charters (2007) recommend performing the quality assessment
before data extraction, in this thesis the quality criteria are considered as part of the
extracted data to simplify the process.

For this thesis it is relevant to consider the accuracy of the detection techniques.
Accuracy is here defined as the correctly classified instances divided by all instances.
It can be quantified in more detail with precision, recall, and the F-score. Precision
is the number of true positive results divided by the number of all positive results
(including false positives), and recall is the number of true positives divided by the
number of all results that should have been labeled as positive. Together they are
used to calculate the F-score. As an additional quality indicator, the transparency of
the research process from the experiment setup to the conclusions is considered.

The following checklist is used for quality assessment:

1. Are precision and recall considered when evaluating the accuracy of the
method?

2. Is clear evidence provided to support the claims made in the study?

3.6 Data extraction

The purpose of planning the data extraction stage is to accurately record the
information to be obtained from the reviewed papers. Defining a data extraction
form directs the analysis process to gather all information relevant to the research
questions. (Kitchenham and Charters 2007)

According to Biolchini et al. (2005), the extracted information can be objective
or subjective. Objective information is the identification details of the study
(title, authors, and source), methodology used to conduct the study, results
obtained through executing the study, and limitations found by the article’s authors.
Subjective information is additional information obtained directly from the authors,
or conclusions the reviewer makes after reading the study.
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The data extraction questions are formed with the research questions in mind to
obtain all relevant data without too much excess information. General publication
information including the title, author names, publication year, and publishing
journal or conference is gathered from all analyzed papers.

The following questions are used for data extraction:

1. What is the studied detection technique(s)?
2. What malware feature(s) is the detection technique applied to?
3. Is the detection technique based on static or dynamic features?
4. How are the features extracted?
5. Is the model based on non-ML or ML techniques?
6. How accurate is the technique?
7. What is the computational performance of the technique like?
8. What are the advantages of the technique?
9. What are the disadvantages of the technique?

In addition, answers to the quality assessment questions defined in the previous
section are extracted.

3.7 Data synthesis

In data synthesis, the results of the primary studies are summarized and collected
together. Data synthesis can be descriptive, quantitative, or qualitative depending on
the type of analyzed studies and the research questions (Kitchenham and Charters
2007).

In descriptive synthesis the extracted data is collected into a table that includes
information relevant to the research questions, and highlights the similarities and
differences between study results. It is important to identify whether the results
are consistent between studies or if they differ, and what causes the differences.
(Kitchenham and Charters 2007) Simply tabulating the information may not clearly
answer the research questions, so it is necessary to explain inductively how the
collated information relates to the questions (Brereton et al. 2007).
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This thesis applies primarily descriptive synthesis by tabulating the key information
extracted from the papers and examining it in relation to the research questions.
As a quantitative measurement, the accuracy of the models proposed in the papers
is included in the table to aid in reliably and clearly comparing the different
detection techniques. As observed by Brereton et al. (2007), comparing quantitative
information may be difficult as the reporting protocols can vary considerably
between studies, which is why the accuracy is accepted as a sufficient quantitative
measure.
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4 Literature review of detection techniques of common

malware features

In this section the results of the systematic literature review are presented. The goal
of this section is to answer the second research question, Q2. What methods are best

suitable for detecting [the most common] malware features?

4.1 Search results

The time frame in all searches was limited to 2018–2023 according to the selection
criteria. The searches were conducted in March and April of 2023.

The search string used for Google Scholar was:

malware AND detection AND

(api OR registry OR task schedule OR process creation OR

process injection OR "command and control")

-intitle:android -intitle:mobile -intitle:iot

-intitle:"internet of things"

-intitle:survey -intitle:review

For ACM, the same search string gave more irrelevant results so the search string
was modified slightly for the rest of the searches. The search string used for ACM
was:

malware AND detection AND

(api OR registry OR task schedule OR process OR inject OR

"command and control") NOT

[Title: android] NOT [Title: mobile] NOT

[Title: iot] NOT [Title: "internet of things"] NOT

[Title: survey] NOT [Title: review]

For IEEE Xplore, a similar approach was applied and the search string was:
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malware AND detection AND

(api OR registry OR task schedule OR process OR

inject OR "command and control") NOT

"Document Title":android NOT

"Document Title":mobile NOT "Document Title":iot NOT

"Document Title":"internet of things" NOT

"Document Title":survey NOT "Document Title":review

For ScienceDirect, the main search string was:

malware AND detection AND

(api OR registry OR task schedule OR process OR

inject OR "command and control")

As an additional filter, in the "Title" field of the advanced search it was specified to
exclude irrelevant search terms:

NOT android NOT mobile NOT iot NOT "internet of things" NOT

survey NOT review

For each search, the first 50 results were initially selected. Three selection rounds
were performed to select the papers for review. During the first selection, papers
were evaluated roughly for their relevancy. Instead of considering specific malware
features in this phase, the papers only needed to be related to malware detection or
classification to complete the first selection more quickly. All other selection criteria
detailed in section 3.4 were also considered except the publishing channel’s JUFO
level. After the first selection round and removal of duplicates, 135 papers were
selected.

During the second selection round the topic of the papers was evaluated with more
scrutiny based on the malware features of interest. If the abstract or the conclusions
did not specify them, the full article was skimmed for the considered features. This
was especially necessary in the case of ML solutions because the models are often
trainedwithmultiple features and the authors may not describe the feature selection
in the abstract and conclusions. After accepting only papers with relevant features,
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79 papers were selected.

Finally on the third selection round, papers were selected based on their publisher’s
quality rating as evaluated by JUFO. Five papers were discarded because their
publishing channels were classified as level 0. After the selection rounds and quality
assessment, a total of 74 papers were selected for analysis. The results of these
selection rounds are summarized in table 1.
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4.2 Analyzed articles

The number of papers was still very large for a single researcher to analyze. To
narrow down the sample articles, half of the papers were randomly selected with
a Python script. The list of articles was first randomized using the shuffle()

function in the randommodule, then the first 37 papers in the randomized list were
selected and the rest discarded.

During the analysis, three more papers were discarded because they covered a
large number of features that were unclear. Additionally, one paper was discarded
because it was found to be about an analysis tool rather than a detection solution.
In the end, a total of 33 papers were analyzed. The final selection rounds are
summarized in table 2. The full list of articles used for final analysis is presented
in appendix A. The discarded papers are listed in appendix B.

The analyzed papers were published between 2018 and 2023 as per the selection
criteria. They were distributed across the publication years with five papers
published in 2018, six papers in 2019, 11 papers in 2020, three papers in 2021, seven
papers in 2022, and one in 2023.

Table 2: Summary of the randomized articles selected for analysis.

Search engine
After selection

rounds

Half of the papers

randomized
Final analysis

Google Scholar 17 9 7

IEEE Xplore 25 11 11

ACM 11 9 8

ScienceDirect 21 8 7

All 74 37 33

4.3 Quality assessment

The quality of the papers was assessed with a short checklist during data extraction.
The quality questions were:
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1. Are precision and recall considered when evaluating the accuracy of the
method?

2. Is clear evidence provided to support the claims made in the study?

Most papers assessed the accuracy of their method by calculating precision, recall,
and/or the F-score. Some papers calculated the true positive rate (TPR), which is the
same as recall, and the false positive rate (FPR) instead. In total, 22 papers used both
precision and accuracy, six papers used TPR and FPR, four papers provided only the
accuracy or used different additional metrics, and one paper showed various values
for accuracy only in graph form.

For the most part the analyzed papers fulfilled the second quality standard but there
were a few instances where some of the research steps were unclear or difficult to
understand. Typically the feature extraction process was not well described. For
example, Goyal and Kumar (2020) extracted string features with static analysis
but did not expand on the features or the extraction process, or whether the
extracted features were processed somehow before classifier training. In hindsight,
the phrasing of the quality question leaves room for interpretation which is why
quantities for papers that did or did not fulfill it are not stated here.

4.4 Malware features

The majority of the papers studied malicious API calls as a primary feature. Papers
included both API calls monitored dynamically and static API calls extracted from
PE files. The second-most-represented feature was C&C communication and only
one paper was focused on registry activity. The rest of the papers studied a variety
of features including those identified in section 2.5, as well as features like file
operations, PE file headers, mutex operations, and using a packer. The distribution
of the papers across different features is represented in figure 1. In cases where there
were several features covered in equalmanner in the paper and it could not be clearly
classified under one of the main features, the paper was classified under a variety of
features.
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Figure 1: Number of analyzed papers for each malware feature.

Task scheduling was identified as key behavior in many malware families in section
2.5 but none of the analyzed papers identified it as a targeted behavior for detection.
Instead, it is likely that if it is relevant for certain malware, it is detected as part of
the various API calls characteristic of that malware. Including it as a key behavior
to analyze was perhaps unnecessary due to inexperience and lack of understanding
on my part. In similar fashion, registry activity can be detected based on API calls
which may explain why there was only one paper focusing on registry operations
in the analysis pool. Additionally, process creation and injection appeared in papers
alongside other features but none of the papers focused solely on either of them.

The techniques used to detect API calls and their accuracies are summarized in
table 3 and those used for C&C detection in table 4. The paper on detecting
registry activity is shown in table 5 and the remaining papers on various features
are summarized in table 6.
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Table 3: API detection techniques and their accuracies.

Paper Detection technique Detection accuracy
Yin et al. HIN 98.25%
He and Kim CNN, ResNet-50 shown in graph
Liu and Wang BLSTM 97.85%
Lu et al. combined RF and bidirectional residual

LSTM model
96.70%

Zhang et al. CNN (opcode) and BPNN (API) F1 95%
Goyal and Kumar kNN, GNB, MNB, DT, SVM, RF 97.53% (RF on API)
Kishore, Barisal
and Mohapatra

CNN with LeNet-5, AlexNet and ResNet-34;
double detector model with system call
and API detectors

99.40%

Kishore, Barisal
and Mohapatra

double detector model with SVM and HTM
detectors

95.2%

Li, Lü and Shi GAN TP 98.4% (original),
98.7% (retrained)

Namani and Khan ANN 94.62% (API),
97.42% (with
PE headers)

Rabadi and Teo SVM, GB, RF, DT, PA 99.2–99.4% (GB)
Wu, Guo and Wang GB 99.97%
Amer, Zelinka
and El-Sappagh

MLE 99.7%
(Windows dataset)

D’Angelo, Ficco
and Palmieri

Associative Rule 99.03%

Ding et al. BERT combined with GCN 97.82%
Li et al. GNN 98.43%
Namita, Prachi
and Sharma

ML models trained with DT, SVM, LR
and kNN

99.91%
(SVM and LR)

Wijaya, Lim and
Kotualubun

Markov chain 87.19%

Xu, Zhang and Zhou BERT 88%
Xue, Wang and Feng MLP 91%
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Table 4: C&C communication detection techniques and their accuracies.

Paper Features Detection technique
Detection
accuracy

Ghafir et al. IP addresses, SSL
certificates, domains,
Tor connections

separate detection module for each
feature, correlation framework
finds links between alerts

TP 82.3%
FP 13.6%

Piet, Anderson
and McGrew

HTTP, TLS, custom
plaintext protocols,
polling behavior,
and tool-specific
artifacts

passive scanning and semi-active
scans targeting suspicious servers
triggered by passive monitoring
system, RF classifier

TP 98.5%
FP 0.01%

Chen et al. statistical behavioral
features from packets,
network flow converted
to grayscale images

double detector model with
One-Class SVM anomaly detector
(statistical behavior profiling) and
Convolutional Auto-encoder
anomaly detector (spatial behavior
profiling)

F1 94.1%

Alageel and
Maffeis

domain names
requested in
PCAP files

parser module, crawler module,
preprocessor module, and
classifier module; RF classifier
performed best

98.51%

Novo and
Morla

encrypted malware
C&C traffic, list of
TLS/SSL certificates
used by botnet C&C
servers, extract
numerical features
from traffic flows

3-layer DNN detector trained on
a public C&C traffic dataset,
white-box adversarial learning,
and a proxy-based approach for
crafting longer flows

95%
(original),
varies with
adversarial
samples

Spooren et al. domain generation
algorithms

1) classical ML using manually
engineered features (RF)
2) DL recurrent neural network
(LSTM)

93.8% (RF),
98.7% (LSTM)

Table 5: Registry activity detection technique and its accuracy.

Paper Detection technique Detection accuracy
Tajoddin and Abadi anomaly-based ensemble classifier with Gaussian,

kNN, k-means and Parzen window classifiers
98.43%
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Table 6: Detection techniques for combinations of features and their accuracies.

Paper Features Detection technique
Detection
accuracy

Íncer Romeo
et al.

registry modifications, processes,
digital signing, packer detection,
static and dynamic imports,
file operations

monotonic GB
classifier

temporal
detection
rate 62%

Pektaş and
Acarman

mutexes, created processes,
copying or deleting itself, DNS
requests, remote IPs, TCP and
UDP ports, reading files, registry
keys, changed and created files

online learning
algorithm

98%

Almutairi
et al.

C&C communication:
network’s flow records;
host behavior: file creation,
registry key modification,
processes

hybrid technique
combining network
and host data
analyzers, classifiers
with NB and DT
algorithms

99.6%
(hybrid+DT)

Gupta and
Rani

file metadata, size, packer
detection, sections, DLLs,
dropped files, API calls, mutex
operations, and file, registry,
network and process activities

ensemble learning
model with five base
classifiers: NB, kNN,
DT, SVM, RF

99.5%
(method 1),
99.2%
(method 2)

Ravi et al. API calls, PE headers, PE
imports, PE image

Attention-based
Multi-View DL
architecture using 1-d
CNN, LSTM, and DNN

98% (Windows
dataset)

García,
DeCastro-
García and
Castañeda

API calls, network traffic, file
activity, registry activity

homogeneous transfer
learning algorithms
with integrated ML
algorithms

MCC 0.9531
(GB average)
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4.5 Detection techniques

Most of the papers applied machine learning methods and a minority studied non-
ML techniques. The ML models proposed in the papers used classical machine
learning as well as neural networks and deep learning techniques.

Commonly usedMLmodels were Random Forest (RF), k-Nearest Neighbor (kNN),
Decision Tree (DT), Support Vector Machine (SVM), and Gradient Boosting (GB).
RF models performed generally well. For example, out of all models studied by
Goyal and Kumar (2020), RF was the best performing one with an accuracy of
97.53 %. Gupta and Rani (2020) built an ensemble learning model with kNN, DT,
SVM and RF as some of the base classifiers and reached an accuracy of over 99 %
with two different methods where one was based on weighted voting and one on
stacking a set of base classifiers.

The GB applications were all implemented using the XGBoost library. The models
by Rabadi and Teo (2020) and Wu, Guo, and Wang (2020) reached a very high
accuracy of over 99 %. GB performed well also when integrated into transfer
learning algorithms (García, DeCastro-García, and Castañeda 2023). However, the
monotonic GB classifier proposed by Íncer Romeo et al. (2018) performed very
poorly with a temporal detection rate of 62 %. The monotonicity was applied as a
defense against evasive techniques used by malware but it caused a significant drop
in accuracy when compared to the ordinary XGBoost classifier.

Google’s language model BERT (Devlin et al. 2018) was used in two papers. Ding
et al. (2022) applied it to extract semantic information from API sequence data and
their model reached a high accuracy of 97.82 %. Xu, Zhang, and Zhou (2022) added
API calls to BERT’s pretraining data to improve its classification accuracy inmalware
detection applications but the accuracy remained quite low at 88 %.

Other ML classifiers used were Naive Bayes (NB), Gaussian Naive Bayes (GNB),
Multinomial Naive Bayes (MNB), Hierarchical Temporal Memory (HTM), Passive-
Aggressive (PA), Logistic Regression (LR), Gaussian, k-means, and Parzen window.
Some of the other ML techniques used were the framework Heterogeneous
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Information Network (HIN), and a new ML algorithm based on associative rules
proposed by D’Angelo, Ficco, and Palmieri (2021).

Neural networks were implemented most often implemented with Convolutional
Neural Network (CNN), Graph Neural Network (GNN), Artificial Neural Network
(ANN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), and
Bidirectional Long Short-TermMemory (BLSTM).All the techniques performedwell
with high accuracies e.g. in the CNN-based double detector model by Kishore,
Barisal, and Mohapatra (2020b), the GNN-based detection and classification
framework by Li et al. (2022), and the DL architecture applying CNN, LSTM and
DNN by Ravi et al. (2022) which all reached over 98 % in accuracy.

Other neural network techniques used were Back Propagation Neural Network
(BPNN) and Graph Convolutional Networks (GCN). Multilayer Perceptron (MLP),
Generative Adversarial Network (GAN), and Convolutional Auto-encoder were
three types of ANNs used in the papers.

Only a few papers used non-ML techniques and they varied depending on the
detected features. C&C communication is typically detected by scanning the
network for suspicious traffic. In the framework proposed by Ghafir et al. (2018) the
malicious trafficwas for the most part detected based on lists of known IP addresses,
SSL certificates and Tor servers. Amer, Zelinka, and El-Sappagh (2021) proposed a
model based on the statistical Maximum Likelihood Estimation (MLE) method that
reached a very high accuracy of 99.7 % in detecting malware based on API calls.
In another paper, Wijaya, Lim, and Kotualubun (2022) applied a stochastic Markov
chain on API call categorization but their model had poorer performance at just over
87 % in accuracy.

4.6 Detection techniques of common malware features

This section identifies what detection techniques are typically applied to API calls,
C&C communication, registry activity, and other malware features. Additionally it
discusses commonly used feature extraction and processing techniques.
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4.6.1 API calls

Across studies API calls were usually extracted by running the malware samples in
the Cuckoo sandbox which executes the files and logs the API calls made by the
sample. Alternatively, in some papers the API calls were extracted statically from
PE headers or from disassembled binaries. Raw API data was typically filtered for
nonrepetitive consecutive calls to condense it into the most relevant information.

In a few papers, API calls were examined in conjunction with opcode (operations
performed in machine language instructions) or system calls resulting in a high
detection accuracy. Zhang et al. (2019) used BPNN to train their model for detecting
API calls and CNN for opcode. The feature-hybrid model was more accurate
than either method alone and retained similar detection speed. Kishore, Barisal,
and Mohapatra (2020a) built a double detector model where the SVM model first
detected samples based on system calls and then sent the samples initially classified
as benign to a HTMmodel that re-classified the files based on API calls.

A common technique for feature processingwas to represent API sequences in graph
form. Using APIs called by malware to form an API call graph helps retain more
characteristic information than simple call names (Li, Lü, and Shi 2020). The GAN
model used by Li, Lü, and Shi (2020) required a fixed size for the input samples so
they identified the key APIs—those that reflect the characteristics of malware—to
build graphs of the same scale. In the Associative Rule based model by D’Angelo,
Ficco, and Palmieri (2021), all transitions between two API calls were extracted and,
in conjunction with the order of their occurrence, were represented in graph form.
Ding et al. (2022) connected the API sequences of multiple processes into a graph
that included information about API sequences called by a process, aswell as parent-
child relationships between processes. Wijaya, Lim, and Kotualubun (2022) formed
API call category transition probability graphs from call sequences and used them
to identify malware based on similarity scores.

To improve accuracy, some papers suggested including the arguments used with
the API calls, or the processes related to them. Considering API arguments makes
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the feature extraction process more complex but the behavior and implications of
API calls can differ significantly based on the arguments—for example, calling the
WriteFile API function on system files can have very different impact compared
to writing on user files (Li et al. 2022). Rabadi and Teo (2020) incorporated the
arguments with two different methods: in the first they extracted all arguments of
each API call as one feature, and in the second extracted each argument of each API
call as a separate feature. Both methods performed well with the second method
applied to a GB model providing the best detection accuracy. Li et al. (2022) argue
that simply extracting the arguments, like was done by Rabadi and Teo (2020), is
not sufficient. In the model they propose, they included semantic information like
relationships between API calls in addition to the calls and their arguments.

Two of the papers applied converting the malware binaries to grayscale or RGB
images and detecting the API call patterns in the images. Kishore, Barisal, and
Mohapatra (2020b) built a double detector CNN model with one detector for API
calls and one for system calls and achieved a high detection accuracywith the LeNet-
5 architecture. Their model performed well with a detection speed of 1.03 s which
is slow in comparison to the state-of-the-art models but could be improved with
reducing noise in the malware images. He and Kim (2019) also built a CNN model
using the ResNet-50 model but their solution performed siginificantly worse. CNNs
generally need to have a fixed size inputwhich in the case ofmalware samplesmeans
cutting the binaries to the same size and potentially losing some of the malware
code. He and Kim (2019) applied Spatial Pyramic Pooling (SPP) to allow inputs
of arbitrary size but it resulted in very high false positive rates.

It is clear that retaining more details related to the API calls, rather than using only
the API names, is beneficial for the detector’s performance. API call graphs and
grayscale images are both viable ways to represent the more complex information.
An alternativeway to increase the detector’s accuracy is to combineAPI call detection
with system calls or opcode. High detection accuracies can be achieved with both
traditional ML and DL models, though the former methods typically have much
more practical computational requirements.
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4.6.2 C&C communication

The studies onC&C communication varied based on the techniques and the detected
features. The features used by different studies were numerous: IP addresses,
TLS/SSL certificates, domain fluxing, Tor connections, HTTP packets, polling,
domain name requests, and so on. Most of the papers based their detectors on
generic behavior that could be applied to a variety of malware. In some cases the
detection was limited to static signatures or features of specific malware families.

A simple way to build a network detector is to block known addresses, domain
names, and certificates used by malicious actors. Ghafir et al. (2018) proposed
a model of four submodules that detect malicious IP addresses, malicious SSL
certificates, domain fluxing, and Tor connections. The domain fluxing module
monitored the network behavior but the three othermoduleswere based ondenylists
of knownC&C server IPs, malicious SSL certificates, and Tor servers. Static lists have
a similar problem as signature-based detection in the sense that they can make the
detectors quickly out of date. Tomitigate this issue, Ghafir et al. (2018) implemented
automatic update mechanisms to refresh the denylists while the detector is running.
Relying on known addresses and certificates is still a disadvantage as it makes the
detector slow to react to new malware.

Ghafir et al. (2018) based their fourth module on detecting domain generation
algorithms (DGAs) which was also studied by Spooren et al. (2019). Detecting
DGAs is an alternative method to relying on lists of domains known to be malicious.
DGAs are used in domain fluxing to change the C&C server’s domain name
frequently in order to avoid detection by denylists. Ghafir et al. (2018) based their
detection on a case where an infected host queries a large number of domains in
an attempt to connect to the C&C server. If a large number of failed queries was
detected while monitoring the network, the detector raised an alert. Spooren et
al. (2019) built RF and LSTM solutions to detect DGA names themselves. They
applied a dataset based on manually crafted features, like character sequences, as
well as other features, like whether the DGAdomain has a valid top level domain, on
the RFmodel. Their secondmodel was based on LSTM that can learn the patterns of
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DGAs from raw input data. They reached high accuracy when detecting individual
DGAs but multiclass detection had poor performance on both models.

Domain names were also studied by Alageel and Maffeis (2021). They focused on
detecting Advanced Persistent Threats (APTs) which are threat actors that target
specific organizations. Their model was based on different features characteristic of
APT domains, and they found that DGAdomainswere not commonly used byAPTs.
They built separate modules for parsing DNS queries from PCAP files, crawling
identifying features from them, preprocessing and normalizing the data, and finally
classifying it. They reached a high accuracy of over 90 % but since their solution
is based on discovering very specific types of threats, it is not sufficient alone for
practical detection solutions.

Piet, Anderson, and McGrew (2018) implemented passive and active network
scanning for detecting three commonly used RATs: Meterpreter, Empire, and Pupy.
Their passive scanner monitored the network for generic behavior of the attack tools,
and the active scanning was used when the passive scanner failed to identify a
suspicious server. Their solution can be used to detect the three malware families
studied reliably but as such it cannot be applied more broadly because the behavior
is specific to those families. For example, each attack tool had unique characteristics
in their HTTP packages that were used to identify them. On the other hand, polling
behavior, i.e. querying the C&C server for new commands, is more generic across
different RATs and could thus be utilized also in common detectors. The active
scanning was done manually to target uncertain cases which made it resource and
time consuming, and should not be applied to all traffic because of its invasive nature.
In the end, the principle of detecting generic behavior is much more reliable against
new variants since it does not rely on static signatures.

Chen et al. (2020) used an anomaly-based approach where they trained one detector
with normal statistical features from packets, and one detector with normal network
flow data converted to grayscale images. The statistical detector was based on a One-
Class SVMmodel and the image detector on a Convolutional Auto-encoder ANN. A
high false positive rate is typical of anomaly detection models which is why only the
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network flows labeled as abnormal by both detectors were regarded as C&C traffic.
They reachedprecision and recall of over 90%when the threshold to classify network
flow as malicious was set relatively low.

Novo and Morla (2020) proposed a model for detecting encrypted C&C traffic that
aims to be resistant against adversarial samples, i.e. data that attempts to deceiveML
classifiers. They built a DNN detector that originally reached an accuracy of 95 %
and then tested it with iterative hardening and attacking with crafted adversarial
samples. Based on their results, the competition between adversarial attacks and
retraining the model seems difficult to predict and defend, as an attack with new
adversarial traffic can drop the detector’s accuracy significantly.

As can be seen from the reviewed papers, network threats vary widely which can
make it difficult to build a single generic solution to detect them all. An ensemble-
based approach with multiple specialized modules based on different types of C&C
communication may be an effective way to alleviate this issue.

4.6.3 Registry activity

The only paper solely on registry-based detection was a study by Tajoddin and
Abadi (2019). Similarly to the C&C detector by Chen et al. (2020), they used an
anomaly-based approach where they used only benign registry behavior to train an
ensemble classifier. They ran benign programs in the Cuckoo sandbox and extracted
all registry operations performed by them and used them to form feature vectors for
training the classifier. They used Gaussian, kNN, KM, and Parzen to build a total
of 40 subclassifiers, and used a subset of them for detection reaching an accuracy of
over 98 %.

An ensemble classifier is a viable method to attain a high accuracy and
reduce misclassifications but using multiple classifiers increases the complexity
significantly. Tajoddin and Abadi (2019) used a memetic algorithm to reduce
the ensemble classifier’s size and achieve a log-linear complexity O(r logr) for the
detection step. However, their solution had multiple classifiers for each method
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which may be excessive, and from a resource perspective it could be more beneficial
to have fewer carefully crafted submodules in the first place.

As mentioned in section 4.4, registries can be accessed with API calls. Windows
provides API functions such as RegCreateKeyExA to perform read, write, and
delete operations on registry keys and values. Solutions based on detecting registry
activity are thus more of a minor subset of API-based detectors. Detectors may in
fact benefit from considering calls related to multiple different malicious activities to
improve detection accuracy.

4.6.4 Combinations of features

The remaining six papers included in the analysis used a variety of features in
addition to the ones that were central to the literature search. The papers included
features like mutexes (locking execution threads), creating files, and using a packer,
as well as static features like file metadata and PE headers. All the papers used ML
and DL techniques which make it easier to handle a large number of features in one
detector.

API calls, C&C communication, and registry activity were typically detected based
on similar principles as in the papers focusing primarily on those features. Almutairi
et al. (2020) used an alternative method to detect registry activity: their model
checked periodically if the registry keys had changed. The approach is reasonable for
their model which aims to detect botnets in an early infection phase but for detectors
that run samples in a sandbox, inspecting API calls and registry keys themselves
is likely sufficient and more straightforward. On the other hand, actively checking
registries may help catch malware that has bypassed detection by e.g. terminating
itself in the sandbox environment.

Process activities were identified as a key feature in section 2.5 but the literature
search did not result in any papers targeting specifically that behavior. However,
four papers included it in their feature selection along with a variety of other
features. Íncer Romeo et al. (2018) and Gupta and Rani (2020) used process data
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obtained from Cuckoo that included all processes that a binary created, injected, or
terminated. The model by Almutairi et al. (2020) attempted to detect botnets by
checking the active time of processes. Pektaş and Acarman (2018) used API calls
related to process activities like creating and terminating processes.

Combining a variety of features in a single detector allows hybrid detection of host
and network activity. As discussed in section 2.2, this approach can help catch new
malware variants: if a malware variant has altered its system-level behavior in an
attempt to evade detection, it may still exhibit network behavior that is recognized as
malicious, or vice versa. Almutairi et al. (2020) proposed a hybrid model combining
network and host data analyzers to detect botnet-specific behavior and reached a
high accuracy of 99.6 % in their DT model. Its advantage is that if one of the
analyzers fails, the other can still detect it based on other features. Though their
model is specific to botnets, the principle of two detectors specialized in different
types of behavior can be appliedmorewidely. In another paper, Pektaş andAcarman
(2018)monitored different network features like DNS requests and destination ports
through the API calls related to them. They combined both host and network
features to the same online-learning-based model but still achieved a high accuracy
of 98 %.

Whether the features are incorporated into one model, or used to form an ensemble
detector with multiple submodules, considering several features is generally
beneficial for the detector’s accuracy. Especially a hybrid approach targeting both
system and network behavior is based on two very different types of behavior which
could be advantageous in catching evasive malware. However, including more
features in a model increases the complexity which should be taken into account
in feature selection.

4.6.5 Solutions for common detection challenges

Due to the nature of the research questions and the literature search approach, all
the reviewed papers applied behavior-based techniques at least partially in their
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proposed models. The papers that used static features applied them as general
rules instead of creating signatures from them, with the exception of the denylists
used by Ghafir et al. (2018). For research interests the behavior-based approach
naturally offers a lotmore possibilities to explorewhen building an effective detector.
Therefore the challenges addressed in this section are all related to behavior-based
detection.

As discussed earlier in section 2.2.2, a major downside of behavior-based techniques
is that they require much more computational resources compared to signature-
based detectors, particularly in machine learning applications. ML and especially
DL models require the heaviest computation during the training phase. However,
updating and retraining the model with new samples is less demanding, so heavy
initial training requirements do not necessarily mean that a model is impractical
to use. The training and detection times are dependent on various factors like the
selected technique and the format of the sample data. For example, kNNmodels do
not need to be trained to the same extent as other ML methods but their detection
speed is much slower (Zhang et al. 2019). The size of the training dataset also
has a significant impact on training time and can heavily influence the detection
accuracy. The model by Zhang et al. (2019) took about a day and a half to train with
4,000 samples, while in the online learning algorithmmodel by Pektaş and Acarman
(2018) the initial analysis of 60,000 samples took 15 days. However, it was not always
clear what kind of training setup was used e.g. in terms of the CPU and memory
resources of the computers.

Some of the fastest detection times were reported by Zhang et al. (2019) who
achieved a detection speed of 0.034 s with their CNN-BPNN detector and still
maintained a detection accuracy of over 95 %. To attain this, they used principal
component analysis which is amethod to reduce the dimensionality of large datasets
to smaller ones that retain key information from the large set. Kishore, Barisal,
and Mohapatra (2020a) also reported a detection speed of 0.03 s in their model
combining SVM and HTM detectors with a similar accuracy as Zhang et al. (2019).
The effect of data type can be seen in the study by Kishore, Barisal, and Mohapatra

52



(2020b), whose model—while reaching a higher accuracy of 99.4 %—had a slightly
slower detection time of 1.03 s caused by their approach of representing samples in
image format. Nevertheless, the results are promising and show that the trade-off
between accuracy and detection speed is not an either-or situation, and a functional
balance between them can be found.

Many of the analyzed papers did not discuss the performance requirements of their
proposedmodel, or how applicable it is for practical antivirus solutions. Alageel and
Maffeis (2021) simply stated that solving the performance issues is excluded from
their scope but several papers did not address the issue at all. The solutions proposed
in the papers may be largely theoretical due to the academic approach and solving
practical performance issues is frequently left for future research.

The availability of balanced datasets has been identified as an issue for ML models
in the past. Most of the reviewed papers chose to use balanced datasets with
roughly equal numbers of benign andmalicious samples. Imbalanced datasets were
also used in the favor of both malicious and benign samples. A higher rate of
benign samples reflects real-life situationsmore accurately but based on the reviewed
papers there was no clear correlation between the malicious-to-benign sample ratio
and accuracy. The studies also used datasets of varying sizes—Íncer Romeo et
al. (2018) trained their model with 500,000 and validated with 40,000 samples, while
Wijaya, Lim, and Kotualubun (2022) used 480 malware samples for training and
160 for testing. Anomaly-based solutions like the one by Tajoddin and Abadi (2019)
used only benign data for training. Most papers used publicly available datasets
but Alageel and Maffeis (2021) collected their own data on APT C&C domains
themselves and released the dataset with their research. Based on the variety of
datasets used it seems that balanced training data is readily available.

From the perspective of concept drift, the issue of datasets seems more pressing.
Li et al. (2022) pointed out the effect of concept drift by testing their model (trained
with a dataset form 2019)with twodatasets from2020, one from the first half and one
from the second half of the year. Themodel’s original accuracy 98.43 % decreased by
almost 6 %, and the false negative rate increased from the initial 0.84 % to 9.18 %. It is
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clear that even in a short amount of time the model is impacted significantly by new
malware variants introducing features that were not learned by the original model.
Chen et al. (2020) suggest that an anomaly-based approach may be advantageous
against this issue in the case of botnet detection. However, concept drift affects both
benign and malicious binaries so anomaly-based detection alone is not a sufficient
solution (Raff and Nicholas 2020). As a basic principle, generalizing malicious
behavior is advantageous to detecting new variants but it may cause losing some
of the accuracy. Periodically updating the models with fresh samples is likely the
most straightforward way to keep them up-to-date.

A key limitation of behavior-based solutions is that some malware can detect it is
executing in a sandbox environment and terminate itself to evade detection. Thiswas
identified also in the experiment by Pektaş and Acarman (2018) who reported that
during their analysis 25 % of the malware samples did not run. Additionally, 45 % of
the samples did not perform enough activities to provide useful data because they
required user interaction to be installed, or more CPU and memory to run. Samples
that fail to rundecrease the accuracy of the detectorwhichmay lead tomalware being
allowed to run in the host system after passing detection. Continuing to monitor
activity in the host could help catching malware that has already installed, like how
Almutairi et al. (2020) monitored the active time of processes and modifications
on critical API keys to detect botnets in an early phase. As an alternate method,
static extraction of API calls can be used to complement dynamic techniques, though
the approach is defenseless against encryption and other obfuscation methods that
prevent malware from being disassembled.

Behavior-based techniques are by principle resistant to code obfuscation but there
are still ways for malware authors to deceive detectors by altering the malware’s
behavior. Detection based on API calls is a common technique but detectors can be
confused with redundant API calls that mask behavioral patterns in the malware.
The approach proposed by D’Angelo, Ficco, and Palmieri (2021) counteracts this by
using the transition probabilities between API invocations in the call sequence. He
and Kim (2019), on the other hand, generated adversary samples with redundant
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API injection and tested their model against them. The grayscale images proved to
be resilient against API injection but the performance of RGB images suffered more
noticeably as the number of injected calls increased.

There are still various challenges related to malware detection and behavior-based
solutions. The most significant limitations are related to computational resources,
sandbox evasion, and concept drift. Detection models need to be designed with
the hardware limitations in mind. The computational performance is impacted by
the selection and processing of the features, and the selection and application of
the detection technique. Combination of static and behavioral features is likely
necessary to mitigate both sandbox evasion and code obfuscation. In machine
learning applications themodels need to be updated regularly to minimize the effect
of concept drift and to maintain a high detection accuracy.
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5 Conclusions

This thesis presents a systematic review of detection techniques for common
malware features. The topic is of active interest in the academic field which was
reflected by the vast number of relevant search results. The study was narrowed
down to a total of 33 papers published between 2018 and 2023 which were analyzed
to identify common techniques related to feature extraction, feature processing, and
malware detection.

As a prerequisite for conducting the systematic review, common malware features
were first reviewed. Eight malware families were selected from the most prevalent
malware of 2022, and techniques used by them were gathered from various
electronic sources like blog posts andwhite papers published by commercial security
providers. The most common techniques were identified as modifying registry
entries, scheduling tasks, process injection, creating processes, and contacting aC&C
server. Additionally, API calls were recognized as a key feature since they are used
to apply many of the aforementioned techniques.

The features were used in the literature search to narrow down the search results.
During the review process, many of the techniques identified earlier turned out
to not be relevant for malware detection, or they were detected through API call
activity. Accordingly, API calls were the most studied feature among the sample
papers. They are a versatile feature as they can reflect various different malware
behaviors. C&C communication was another well-represented feature and the
papers studied several different behaviors and techniques related to it. Targeting
bothAPI calls andC&C communication enables covering a range ofmalware activity
and is advantageous for ideal results, as combining different features generally
benefits the detection accuracy.

The majority of the papers applied machine learning in their proposal across all the
studied features. Models based on both classical ML and DL techniques performed
well and were suitable for datasets combining a variety of features. The non-
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ML techniques featured in the papers were denylists applied to detecting C&C
communication, and statistical and stochastic models used in API call detection.
Notably all the papers applied behavior-based detection which is preferable to
the signature-based approach and even necessary in order to detect new malware
variants.

Many studies built ensemble models with several submodules that specialized in
detecting specific features. An ensemble model can be set up to verify samples
incrementally by sending samples initially classified as benign to following detectors
to reanalyze them. Alternatively, the ensemble can consist of independent detectors
that all monitor the samples concurrently. The submodules form a safety net so
that if malware passes through one detector, another one may still catch it. The
ensemble approach is also a logical way to build hybrid models where system and
network detection are separated to different modules. As a drawback, it requires
more computational resources due to the added complexity.

The literature review highlighted possible solutions to common detection challenges
like detection speed, evasive tactics, and the availability of datasets. The review
showed that achieving fast detection times while retaining a high accuracy is
attainable with suitable feature processing combined with an ML model. As
an example of evasion mitigation, different techniques were used to counteract
redundant API call injection. The papers featured a variety of large datasets of both
malware and benign programs which indicates that there are plenty of resources
to train ML models for malware detection. However, concept drift makes datasets
quickly out of date which increases the need to update models regularly.

Many of the challenges related to malware detection were still left with no definitive
solutions. A large number of the papers did not discuss the computational
requirements of their proposed model which is a key factor when building practical
antivirus solutions, especially in the case of behavior-based ML models. Though
some evasive techniques were addressed in the papers, others like sandbox evasion
were not thoroughly resolved. Sandbox evasion is a major drawback related to the
behavior-based approach and can significantly reduce the accuracy of detectors.
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The goal of this thesis was to provide a cross section of the current malware features
and detection techniques. It was conducted with a limited scope due to the nature
of a Master’s thesis completed by a single author. Having only one person conduct
the selection and data extraction processes may skew the results, and the number
of selected papers and the depth of the analysis were restricted by time constraints.
Despite its limitations, the study successfully identified features of some of the most
widespread malware families today, presented novel studies that target detecting
those features, and highlighted techniques that can be applied for accurate and
practical detection solutions.

This thesis examined features of the most prevalent malware families of recent
years. Many of the inspected malware families originated years ago and thus do
not necessarily represent the newest challenges inmalware detection. An interesting
topic for further research would be to study novel malware techniques and ways to
counteract them.
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