
Salla Timonen

Detecting Anomalies by Container Testing: A Survey of

Company Practices and Typical Tools

Master’s Thesis in Information Technology

May 22, 2023

University of Jyväskylä

Faculty of Information Technology

Author: Salla Timonen

Contact information: salla.k.timonen@jyu.fi

Supervisor: Tommi Mikkonen

Title: Detecting Anomalies by Container Testing: A Survey of Company Practices and

Typical Tools

Työn nimi: Poikkeavuuksien havaitseminen konttitestauksella: kyselytutkimus yritysten

käytäntöihin ja tyypillisiin työkaluihin

Project: Master’s Thesis

Study line: Software and Telecommunication Technology

Page count: 51+5

Abstract: Software testing is an integral part of any software process, but with the increas-

ing interest and use of software containers, it is, unfortunately, being overlooked. With the

growth and popularity of software containers, more and more security issues and concerns

are arising. This thesis is about the process of detecting anomalies by testing containers and

was done as a survey of company practices and typical tools. The aim was to get an overview

of what the current approaches are and what might be areas that should be improved upon.

This research validates some observations from other research and makes a contribution by

showing what is the status of how companies currently test software containers. As a result,

it can be concluded that the survey answers demonstrate how important testing truly is, the

rise of interest and use of containers, security and vulnerability issues in software contain-

ers, and the varying ways of testing containers. There is no consensus on how testing is

or should be accomplished, with advances being mainly driven within companies instead of

academic research. Based on findings from the survey and literature, there is further benefi-

cial research to be done regarding security and vulnerability aspects in software containers

and in the development of general good practices on how testing software containers should

be accomplished.

Keywords: Master’s Theses, software containers, software testing

i

Suomenkielinen tiivistelmä: Ohjelmistotestaus on olennainen osa mitä tahansa ohjelmisto-

prosessia, mutta ohjelmistokonttien kasvavan kiinnostuksen ja käytön myötä se valitettavasti

unohdetaan. Ohjelmistokonttien kasvun ja suosion myötä syntyy yhä enemmän tietoturvaon-

gelmia ja huolenaiheita. Tämä pro gradu -tutkielma perehtyy poikkeavuuksien havaitsemis-

prosessiin konttien testauksessa, ja se toteutettiin kyselytutkimuksena yritysten käytäntöihin

ja tyypillisiin työkaluihin. Tavoitteena oli saada yleiskuva siitä, mitkä ovat nykyiset läh-

estymistavat konttien testaukseen ja mitkä voisivat olla alueita, joissa olisi parannettavaa.

Tämä tutkimus vahvistaa joitain havaintoja muista tutkimuksista ja antaa panoksensa osoitta-

malla, mikä on yritysten nykyinen tila konttien testaamisessa. Tuloksina voidaan todeta, että

kyselyn vastaukset osoittavat testauksen tärkeyden, konttien kiinnostuksen ja käytön lisään-

tymisen, konttien turvallisuus- ja haavoittuvuusongelmat, sekä monet erilaiset testaustavat.

Ei ole yksimielisyyttä siitä, miten testaus pitäisi suorittaa, edistyksen tapahtuessa pääasi-

assa yritysten sisällä akateemisen tutkimuksen sijaan. Kyselyn tulosten ja kirjallisuuden pe-

rusteella on havaittavissa tarvetta lisätylle tutkimukselle ohjelmistokonttien turvallisuus- ja

haavoittuvuusnäkökohtiin ja kehitettävä yleisiä hyviä käytäntöjä siitä, miten ohjelmistokont-

tien testaus tulisi suorittaa.

Avainsanat: pro gradu -tutkielmat, ohjelmistokontit, ohjelmistotestaus

ii

List of Figures
Figure 1. CI/CD cycle. 6
Figure 2. Containers vs Virtual Machines. 8
Figure 3. Overview of the container process (adapted from Wong et al. 2021). 9
Figure 4. Overview of security protection requirements in containers (adapted from

Sultan, Ahmad, and Dimitriou 2019). 11
Figure 5. Answers to question 4: years worked in the IT industry. 25
Figure 6. Answers to question 5: years worked with software containers. 25
Figure 7. Answers to question 6: containerization platforms used in the company. 26
Figure 8. Answers to question 11: testing specified to the container itself versus the

containerized content. 29

List of Tables
Table 1. Survey questions: Demographics section. 19
Table 2. Survey questions: Tools used in the company. 20
Table 3. Survey questions: Testing software containers. 21
Table 4. Survey questions: Results of testing. 22
Table 5. Survey questions: Examples. 22

iii

Contents
1 INTRODUCTION . 1

2 BACKGROUND . 2
2.1 Software Testing. 2
2.2 Software Containers . 5
2.3 Securing Software Containers . 11
2.4 Testing Software Containers . 13

3 RESEARCH METHODOLOGY . 16
3.1 Research Background and Context . 16
3.2 Research Question and Hypothesis . 16
3.3 Research Method . 17
3.4 Survey Structure and Construction . 18
3.5 Participants and Data Collection . 22
3.6 Data Evaluation Process . 23

4 RESULTS . 24
4.1 Demographics Section . 24
4.2 Tools Used in the Company. 25
4.3 Testing Software Containers . 27
4.4 Results of Testing . 31
4.5 Examples . 33

5 DISCUSSION. 36
5.1 Interpretation of Results . 36
5.2 Implications of the Study . 38
5.3 Limitations and Weaknesses . 39

6 CONCLUSION . 40

BIBLIOGRAPHY . 41

APPENDICES . 47
A Survey Questions . 47

iv

1 Introduction

Testing is an integral and necessary part of software creation and is a crucial step to having a

working and secure software container. Software containers are having a surge in use and are

on a rising trend. Used more and more by most companies, risks and vulnerabilities related to

them have continuously surfaced. There does not seem to be a consensus on how testing them

should be accomplished, and advances are mainly being driven within companies instead of

academic research, and in numerous ways.

The main objective of this thesis is to take a look at the current status of company practices

and distinguish tools concerning how anomalies can be detected through testing software

containers. This was chosen to be done via a survey, conducted during the spring of 2023

as part of a larger software container project: Containers as the Quantum Leap in Software

Development (QLeap).

The topic for this thesis is scientifically pertinent due to the growing interest and use of

software containers with more and more connected issues frequently emerging. In addition,

it is a practically relevant topic due to being conducted as part of the project QLeap that the

University of Jyväskylä and various companies are partaking in.

The research detailed in this thesis provides a glance at the present status of company prac-

tices, showing possible aspects that require additional research through the survey. The scope

was determined to not only be within the QLeap project and the partaking companies but was

open to any relevant information technology company wishing to participate in the survey.

The structure of this thesis is as follows: Chapter 2 delves into background information and

what research is currently available on the topic of software containers and testing them.

Chapter 3 focuses on the research methodology, including the research hypothesis and how

the survey was structured. The results are shown in Chapter 4, and further discussion is in

Chapter 5. Finally, Chapter 6 concludes this thesis.

1

2 Background

This chapter starts first with an overview of software testing and containers in sections 2.1

and 2.2 and then delves deeper into the background information and what research is cur-

rently available on the topic of software containers and testing them in section 2.3. Finally,

section 2.4 summarizes the key theories found in the literature and comments on what is not

found.

2.1 Software Testing

Software testing is an integral and well-known part of the creation of any software. It is

an essential step in order to make a working program through verification and validation.

Though the process can be costly, avoiding testing is even more costly (Gaur et al. 2016).

The article (Jamil et al. 2016) defines testing as a "process of evaluation that either the spe-

cific system meets its originally specified requirements or not", continuing to state that it

is predominantly a process encompassing validation and verification in order to determine

whether the system being developed meets user-defined requirements.

Another way to think about software testing is to look at the process being done. It is a

process of executing programs with the intent of finding errors to secure software with no

defects (Gaur et al. 2016).

When it comes to the process of software creation, testing must be implemented and thought

of in the pre- and post-development process, as testing is part of the whole software devel-

opment lifecycle. (Jamil et al. 2016)

An important distinction is also to be made here, and that is the difference between testing

and debugging. Software testing is the process done in order to establish whether it meets

specified requirements. Test cases are planned, strategies are specified, and results are eval-

uated. Debugging on the other hand is the process of fixing problems that have been found

during testing. (Anwar and Kar May 2019)

2

There is a plethora of testing standards available and a general consensus on the matter.

According to an article from 1988 by David Gelperin and Bill Hetzel (Gelperin and Hetzel

1988) the major testing models are:

• Phase Models Demonstration to make sure that the software satisfies its specification,

• Destruction to detect implementation faults,

• Life Cycle Models Evaluation to detect requirement, design, and implementation faults,

• Prevention to prevent requirement, design, and implementation faults.

In the article, it is also stated that a conflict may arise between the goals of demonstration

and fault detection if the strategy is not carefully selected.

The goals for software testing include:

• Verification and validation with verifying the software works as desired and validating

whether it fulfils conditions,

• Priority coverage with ensuring efficient and effective testing within budget and sched-

ule limits,

• Balanced with balancing requirements, technical limitations, and expectations,

• Traceability with document preparation of both successes and failures of the testing

process,

• Deterministic where what is being done, targets and possible outcomes should be

known. (Sawant, Bari, and Chawan June 2012)

Testing techniques can be broadly categorized into static and dynamic testing. Static testing

(e.g., walk-through, informal review, technical review, or inspection) refers to the method of

testing where code is not executed whereas dynamic testing (e.g., correctness, performance,

reliability, and security testing) is a technique in which the dynamic behaviour of the code is

analyzed. (Anwar and Kar May 2019; Sawant, Bari, and Chawan June 2012)

The basic software testing strategies are unit testing, integration testing, acceptance/validation

testing, and system testing. Unit is the smallest testable module and the benefits of unit test-

ing include cost-effectiveness, providing greater reliability, and being able to test various

parts separately and simultaneously. It also simplifies the debugging due to being limited to

3

a small unit. Examples of unit testing techniques include functional testing, structural test-

ing, and heuristic or intuitive testing. Integration testing is used for constructing the program

structure and performing tests to uncover errors related to the interfaces. This is done by

integrating the unit-tested components and testing them as a group. Some strategies include

top-down and bottom-up integration testing. Acceptance testing is an approach to authenti-

cating whether the product is made per standards and specified criteria. Examples of this are

user acceptance testing, alpha and beta testing, operational acceptance testing, and contact

and regulation acceptance testing. Lastly, system testing is testing conducted on a complete

system in order to evaluate its compliance with its specified requirements. Examples of

this are recovery testing, security testing, graphical user interface testing, and compatibility

testing. (Anwar and Kar May 2019; Sawant, Bari, and Chawan June 2012).

Software vulnerabilities are security flaws, glitches, or weaknesses found in software code

that could be exploited by a threat source, as defined by the Computer Security Resource

Center (CSRC, no date). These vulnerabilities need to be evaluated and tested critically in

software because the exploitation of these can hinder confidentiality, integrity, availability,

and more. Vulnerability management can include steps like detection, evaluation, prioritiza-

tion, and rectification. (Haque and Babar 2021)

Anomalies are inconsistent patterns in data that do not conform to normal behaviour. The

importance of detecting anomalies is shown in many fields. An example in software sys-

tems is the connection between abnormal computer traffic patterns and potentially hacked

computers sending out sensitive data. (Chandola, Banerjee, and Kumar July 2009)

These anomalies can be found through thorough software testing of the vulnerable software.

Many approaches can be taken to detect anomalies and possible attacks. The three major cat-

egories of intrusion detection methodologies are signature-based detection (SD), anomaly-

based detection (AD), and stateful protocol analysis (SPA). SD is a knowledge-based take

on intrusion detection, which relies on signatures (or patterns) that correspond to recognized

threats. SD compares these patterns against captured events, which is effective for known

attacks, but ineffective for unknown ones. It is also time-consuming and hard to keep sig-

natures up to date. AD on the other hand looks into any deviations from what is deemed

to be "normal" behaviour such as activities, connections, hosts, or users. Unlike SD, AD is

4

effective in detecting new vulnerabilities, but since observed events are constantly changing

it may have a weaker accuracy. The third category of intrusion detection is SPA, which is

similar to AD but depends on vendor-developed generic profiles. These are usually based on

protocol standards from international standard organizations and focus on unknown attacks.

The downside is though, that it won’t be able to see attacks that seem like harmless protocol

behaviours, and it might be harder to find compatible SPAs for dedicated operating systems.

(Liao et al. 2013)

The importance of software testing is largely shown through projects with insufficient testing

and sometimes catastrophic results. Though testing is crucial and a fundamental part, there

is a balance to finding the optimal test effort since costs rise with testing, but the quality does

not necessarily continue growing (Anwar and Kar May 2019).

Enhancement in the testing process can be done through test automation, testing frameworks

in agile, and test-driven development. There is also a plethora of testing metrics that can be

used like prioritization metrics and process quality metrics (Jamil et al. 2016).

2.2 Software Containers

Unlike the process of software testing, software containers are more recent and relatively

unfamiliar to many. In the technological definition, containers are simply something that

can hold applications, as can be concluded from their name. Providing applications with an

environment to carry out their dependencies and simultaneously isolating them from uncon-

nected programs and the underlying operating system (OS). In other words, it can be said to

be an application packaging unit containing only its dependencies, and therefore comparable

to the containers in the shipping industry where pre-built containers are used to store and

ship products. (Siddiqui, Siddiqui, and Khan 2019)

With the growth of technology in a relatively brief period, the industry has evolved quite a bit.

First from native to virtualized, then to the cloud, and now to software container technology.

The evolution is focused on creating software that is increasingly lean and agile (Siddiqui,

Siddiqui, and Khan 2019). Software containers allow the user to package applications with

all their required dependencies (for instance software, configurations, libraries, frameworks,

5

Figure 1. CI/CD cycle.

and binaries) (C.-C. Chen et al. 2022). Software containers are sometimes also referred to

as operating system-level virtualization or lightweight virtualization (Sultan, Ahmad, and

Dimitriou 2019).

The need for containers surfaced due to developers having the sometimes-discouraging task

of shifting applications between different environments, like from development to testing and

ultimately to production environments. Migration issues can easily arise during these shifts

since the environments can be dissimilar in both hardware and software. In order to over-

come these obstacles and bring further efficiency, software containers are in use. (Siddiqui,

Siddiqui, and Khan 2019)

Common hindrance developers face is how to release new code quickly yet safely (Leszko

2022). The practice of Continuous Integration and Continuous Delivery (CI/CD) has become

well-known in DevOps, ensuring the fast delivery of new code, by automatically testing and

releasing software versions (Rangnau et al. 2020). This produces many advantages like fast

delivery with faster release cycles, fast feedback, low-risk release, flexible release options,

early discovery, and increased productivity (Zampetti et al. 2021; Leszko 2022). The CI/CD

cycle is shown in figure 1.

Continuous Integration is usually the starting phase, ensuring that code from all developers

is integrated. This brings the first step of feedback by compiling the new code, running

6

automated tests on it, and verifying its quality. The Continuous Delivery part, sometimes

worded as Continuous Deployment, refers to the stages that come after CI in the CI/CD

pipeline. This is when the now-checked code is merged into a shared repository and then

deployed into production. (Leszko 2022)

Docker is one of the key components for deployment using CI/CD pipelines (Abhishek and

Rajeswara Rao 2021). Containers can be deployed using Docker as a part of the CI/CD

pipeline using Jenkin Server (Abhishek, Rao, and Subrahmanyam 2022) and for exam-

ple, scanning containers for known vulnerabilities is a crucial activity of the CI/CD process

(Berkovich, Kam, and Wurster August 2020).

The CI/CD practice works as a kind of bridge between testing and containers, ensuring

that everything works seamlessly. This has resulted in a type of new operating model in

which testing has to be rethought and largely automated. While the more abstract concept

is relatively well understood, CI/CD implementations differ widely (Mahboob and Coffman

2021).

Software containers are also commonly used to support microservices which are an architec-

tural approach, that allows an application to encompass many independently operating com-

ponents (Jamshidi et al. 2018). In addition to container management systems like Docker,

orchestration systems like Kubernetes can be used to control applications and provision re-

sources, resulting in scalable, reliable, and reactive systems (Douglis and Nieh 2019).

When talking about software containers, the contrast between them and traditional virtual

machines should be pointed out. IEEE Internet Computing published a special issue on

virtualization in 2013, at which point virtual machines had already become popular. They

provide a virtual as opposed to a physical version of a resource, and a convenient way to

encapsulate state and deploy services predictably. This helped in plenty of issues found, for

example, efficiency, security, high availability, elasticity, mobility, and scalability. The key

differences between containers and virtual machines are shown in figure 2. (Douglis and

Krieger 2013)

7

Figure 2. Containers vs Virtual Machines.

The key level of virtualization in a virtual machine is the virtualization of the underlying

hardware. Software containers, on the other hand, aim to virtualize and isolate the operating

system itself, therefore giving each containerized application a separate area of execution

within the operating system. Containers allow multiple applications to run in one operating

system, without the need to run multiple operating system instances and can therefore be

more lightweight and potentially more easily managed. (Siddiqui, Siddiqui, and Khan 2019;

Douglis and Nieh 2019)

The idea of software containers is in no way new or recent but can be traced to 1979 and the

Unix V7 operating system and the introduction of the chroot system call. Various isolated

implementations have come about of the software container logic, but a more comprehensive

implementation was LXC by Linux in 2008. Nowadays Docker is the most widely spread

and leading container technology provider. Docker was founded in 2013 and started by using

LXC but has now replaced it with its own library and offers a complete ecosystem around

containers, including but not limited to managers and orchestrators. (Siddiqui, Siddiqui, and

Khan 2019)

8

Figure 3. Overview of the container process (adapted from Wong et al. 2021).

The current view of the software container ecosystem includes building blocks like the con-

tainer platform, orchestrator, repositories, and container as a service. Container platforms

help in packaging applications with pre-requisite dependencies, with current provider exam-

ples being Docker, Kubernetes, Mesos, and Vagrant. The container orchestrator helps in the

lifecycle management of the software within containers, like Kubernetes, Docker Swarm,

Mesosphere Marathon, and Nomad. Repositories have collections of container images that

can be found, like Docker Hub and Amazon ECR. Lastly, container as a service (CaaS)

is a service providing ready-to-use container technology, with current parties being Amazon

Elastic Container Service, Microsoft Azure Container Instances, Google Kubernetes Engine,

and IBM Cloud Kubernetes Service. (Siddiqui, Siddiqui, and Khan 2019; Cito et al. 2017)

When using software containers, the ecosystem typically includes a repository (for building

container images from Docker files consisting of the code and libraries) and an image registry

(where the image is pushed for successive deployment as containers). An overview of the

container system and the container process is shown in figure 3.

This ecosystem can lead to ample possible security breaches (like stealing data, conducting

denial of service attacks, and gaining root access for misuse to name a few). Research shows

9

that threats to containers include spoofing, tampering, repudiation, information disclosure,

denial of service (DoS), and elevation of privilege. (Wong et al. 2021)

Docker hub is one of the most popular Docker image repositories, distributing both official

and community images. There have been multiple studies into the state of security vul-

nerabilities in these images, largely due to some reported high-profile attacks done to this

channel of image distribution. One such study was conducted in 2017 (Shu, Gu, and Enck

2017) where a Docker image vulnerability analysis framework (DIVA) was created. DIVA

automatically discovered, downloaded, and analyzed container images found from Docker

Hub. The study went through 356,218 images and concluded that: there is a great extent of

vulnerabilities on average; images were not being updated for hundreds of days; and these

vulnerabilities commonly spread to the child image from the parent. They also call atten-

tion to the need for more automated and systematic procedures to apply security updates to

Docker images.

Another paper containing an in-depth security analysis of Docker images on Docker Hub was

done in 2020 also showing the need for vast improvement (Liu et al. 2020). It identified the

three major sources of security risks to be: sensitive parameters in run commands, malicious

Docker images, and vulnerabilities in contained software that were left unpatched.

One of the first studies into Docker image security was done by inspecting images from

Docker Hub with an open-source tool Banyan Collector they created (Gummaraju, Desikan,

and Turner 2015). This study highlights that over 30 percent of the images in official repos-

itories contained vulnerabilities.

According to a 2018 article measuring Linux container security (Lin et al. 2018), in which a

container security measurement study was conducted using an attack dataset that contained

223 exploits, containers "[do] not provide much security enhancement for the programs in-

side". They continue to conclude that while the security of a software container depends

on the security of the kernel, the interdependence and give-and-take relationship demands

meticulous configurations to successfully thwart privilege escalation attacks. Another more

recent article from 2020 (Kwon and Lee 2020) states that Docker does not provide security

assurances for recognized security vulnerabilities inside of the container images.

10

Figure 4. Overview of security protection requirements in containers (adapted from Sultan,

Ahmad, and Dimitriou 2019).

To combat these growing issues, an article from 2019 (Sultan, Ahmad, and Dimitriou 2019)

derived four generalized use cases for the host-container level in order to identify threats,

suggesting also viable solutions. These can be seen in figure 4.

The first use case is protecting a container from its interior applications, the second was inter-

container protection, the third protecting the host itself from containers, and lastly protecting

the containers from the host. The article delves into a plethora of possible attack scenarios

for these use cases and also suggests workable solutions. The attack scenarios for use-case

I include ones based on image vulnerabilities, configuration defects, embedded malware or

secrets, using untrusted images, privilege escalation, and DoS. Attack scenarios in use-case

II relate to untrusted images, application vulnerabilities, poorly separated inter-container

traffic, insecure runtime, and unbounded network access from containers. The third use-

case with threats being host OS attack surface, containers sharing host OS kernels, resources

accountability, and host filesystems being tampered with include possible attack scenarios

like container escape attacks, DoS and tampering.

2.3 Securing Software Containers

The article from 2019 (Sultan, Ahmad, and Dimitriou 2019) also mentions possible solu-

tions to the various attack scenarios shown in figure 4. Use-case I solutions revolve around

monitoring, scanning, running the applications with the least privilege needed, storing se-

crets outside the image, and updating periodically. Solutions for use-case II involve addi-

11

tional scanning, restricting communication, separation of containers into virtual networks,

and updates. Use-case III includes solutions like using a container-specific OS, scanning,

and running containers with minimal sets of permissions.

Existing mitigation strategies, and the limitations they may have, are also discussed in a study

from 2021 (Wong et al. 2021). The first mitigation strategy they overview is multi-factor

authentication systems. They state multiple disadvantages like increased time and cost, and

the ability of attackers to perform a Short Message Service (SMS) attack on a compromised

phone to get verification codes that are not encrypted. The next mitigation tactic looked

through was those relating to image security, for example reducing attack surfaces, signing

images, and vulnerability scanning. Limitations mentioned for these include the possibility

of stolen private keys, issues in the quality of container scanning, and the need to use various

tools to perform all needed scans. For example, scanners depend on Common Vulnerabilities

and Exposures (CVE) data from public databases and can only detect publicly disclosed

flaws. The accuracy of available container scanning tools was investigated in another article

(Javed and Toor 2021) that also concludes that the OS is the more vulnerable part of the

container.

Security patching is another mitigation strategy introduced in the study by Wong et al, though

the author also states that a reliable and fast patching framework is a current gap in research

that should be addressed. Minimizing administrative privileges is also a way to better secure

a software container, and there are a few developed methods made for this that raise alerts

when detecting anomalies (Lin, Tunde-Onadele, and Gu 2020; Kang, Fuller, and Honavar

2005). This can be done by limiting docker run options, hardening host configurations,

limiting file permissions, configuring Transport Layer Security (TLS), or even running a

container "rootless". (Wong et al. 2021)

Proper isolation can also be done as a mitigation strategy, including Linux kernel Cgroup

which controls and limits the host resources for the container (Wong et al. 2021). Though

another study states that kernel security mechanisms (for example Capability, Seccomp, and

MAC) have a supreme role than that of container isolation (for example Cgroup and Names-

pace) in preventing privilege escalation attacks (Lin et al. 2018). An approach to sandbox

mining and sandbox enforcing was presented in another article where after exploring con-

12

tainers through test cases, the mined sandbox confines and restricts a container’s access to

system calls (Wan et al. 2019).

To prevent DNS spoofing attacks the implementation of network controls is additionally

important. For example, it is recommended that the use of Docker’s default bridge docker0

should be stopped, and instead, the use of a user-defined network is preferred. Robust log

monitoring is also beneficial, like the use of MACs (message authentication codes). It is

also a good tactic to prevent confidential data leaks by not storing unencrypted secrets in

repositories, though not impenetrable. (Wong et al. 2021)

Other mitigation strategies and precautions to take include implementing powerful access

controls and keeping containers lightweight (Efe, Aslan, and Kara 2020).

Although all these mentioned mitigation strategies are important stepping stones to a more

secure software container, other than scanning and monitoring, they are all mostly preven-

tive approaches. Furthermore, they can be done wrong, possibly giving a false sense of

security. Additionally, to these mitigation strategies, software container security frameworks

and testing approaches are looked into in the next section.

2.4 Testing Software Containers

An example of anomaly-based detection in software containers was already briefly men-

tioned in section 2.3 when discussing the minimization of administrative privileges. This

was a reference to an article from 2020 (Lin, Tunde-Onadele, and Gu 2020) where Classi-

fied Distributed Learning (CDL) was implemented as a prototype to detect security attacks

in containerized applications. CDL carries out a distributed learning framework in order to

overcome challenges due to insufficient training data in ephemeral container environments,

aiming to create sturdy normal behaviour models. Evaluations were made in real-world vul-

nerability attacks in frequently used server applications. These experimental results show

not only a sizeable reduction in false positives but also an improvement in attack detection.

A different approach to testing software containers was introduced in an article from 2020

which presents a proposal for Docker Image Vulnerability Diagnostics System (DIVDS)

13

(Kwon and Lee 2020). The intended use of the DIVDS is to diagnose Docker images when

one is uploaded or downloaded from an image repository. This is because Docker images

are currently distributed without any vulnerability diagnostics, which in turn can result in

collapsed environments due to polluted images.

Another proposal was introduced in 2022 with the SEAF framework (L. Chen et al. 2022).

SEAF stands for Scalable, Efficient, and Application-independent Framework which is to be

used for container security detection. They propose this static detection method, which in-

spects various security defects and evaluates their impacts. It utilizes a Global Relationship

Tree-based analysis and open-source modules for anomaly detection. The article concludes

by evaluating popular repositories and finding more than 35 000 security defects in cate-

gories of misconfigurations, unauthorized access, CoinMiner malware, sensitive information

leakage, and software vulnerabilities. It is also stated that since the detection rules are based

on known threat models, SEAF cannot reveal threats before they are disclosed.

There are a plethora of other similar frameworks and patterns for securing software contain-

ers like the Secure Container Manager Pattern (Syed and Fernandez 2020) which focuses

on the use of container managers for orchestrating container clusters, and the Framework to

Secure Docker Containers (Abhishek and Rajeswara Rao 2021) which looks into container

image security in cloud computing.

Another notable framework is CONSERVE: a framework for the selection techniques for

monitoring container security (Jolak et al. 2022). After reviewing different container moni-

toring techniques, it gives a "multi-dimensional decision support framework for an informed

and optimal selection of a suitable set of container monitoring techniques to be implemented

in different application domains".

A conference paper from 2021 (Sidqui and Siddiqui 2021) points out that testers are at the re-

ceiving end in which no global standards yet exist for the non-functional part of applications.

The same authors later wrote the Non-Functional Testing Framework for Container-Based

Application (Siddiqui and Siddiqui 2021). It takes a deeper dive into this with the objective

of having an inclusive framework that could assist in defining the process and an eco-system

which could be used to test the non-functional behaviour of container applications.

14

According to the authors (Siddiqui and Siddiqui 2021) deciding factors for an application’s

success come from testing results. They state that the evolution of containers has mainly

been driven by industry adaptation rather than academic research. This is especially true on

the testing side because testing frameworks can be found for containerized platforms, rather

than for container-based applications. And specifically to these container-based applications

the need for non-functional testing grows critical due to the application being oblivious to

the underlying hardware and middleware. Though one of the same authors did a review for

testing approaches, it was restricted to cloud-based applications (Siddiqui and Ahmad 2016).

A blog post was written concerning the differences between testing cloud-native and on-

premise testing (Patrizio 2020). It articulates that testing a collection of resources (like

dozens of containerized applications) means the need for testing each application against ev-

ery resource as well as each other. For example in a case where multiple containers use the

same database, it is not evident that a problem doesn’t occur when containers 1 and 2 simul-

taneously use it, even if containers 1 and 3 work together without performance problems. To

lessen the impact of all these unknowns, Siddiqui et. al. define four non-functional attributes

characterizing the container application’s surrounding environment and its behaviour: ca-

pacity, scalability, stability, and high availability (Siddiqui and Siddiqui 2021).

Other than issue mitigation strategies as mentioned in section 2.3, and further monitoring

and diagnostics systems and frameworks introduced in this section, information on testing

specifically software containers are scarce. That, in particular, is precisely what should be

scrutinized, and what this thesis delves into.

15

3 Research Methodology

This chapter starts first with an overview of the research background and context in section

3.1, then the research question and hypothesis in section 3.2, after which the research method

is explained in section 3.3. The construction of the survey 3.4, response collection 3.5 and

the method for data evaluation 3.6 are then described in the stated sections.

3.1 Research Background and Context

This thesis is conducted as part of a larger software container project: Containers as the

Quantum Leap in Software Development (QLeap). The project QLeap is funded by Business

Finland and led by the University of Jyväskylä aiming to investigate the full lifecycle of

containers as the quantum leap in software development.

The goals of the project are to bring together researchers and industry experts from different

organizations to facilitate industry-academia collaboration, and to research problems that

emerge from use cases and development approaches from industrial partners’ business needs.

The topic for this thesis is not only scientifically pertinent due to the growing interest and

use of software containers with more and more connected issues frequently emerging, but in

addition, it is a practically relevant topic due to being conducted as part of the project QLeap.

The specific topic of testing software containers arose from the partaking companies’ needs

and distinguished use cases.

3.2 Research Question and Hypothesis

The main objective of this thesis is to take a look at the current status of company practices

and distinguishing tools concerning how anomalies can be detected through testing software

containers.

The encapsulated research question for this thesis is the following:

16

RQ: What is the status of how companies test software containers?

Based on this research question, the aim is to delve into different areas of testing software

containers, which are also represented in the survey conducted:

• the first section is about tools used in testing,

• the second section is the process and practices of testing,

• the third section is the results and challenges of testing,

• the fourth and last section is about goals and future implementation plans.

Based on the research findings described in chapter 2, there does not seem to be a consensus

on how testing software containers should be accomplished, and advances are mainly being

driven within companies instead of academic research, and in numerous diverse ways. The

hypothesis is that the survey answers between companies will be vastly different, with vary-

ing levels of testing, and that there might not even be a clear method for specifying testing

to the software containers.

The research detailed in this thesis is hoped to provide a glance at the present status of

company practices, and additionally show via the survey results possible aspects that require

additional research.

3.3 Research Method

The research process started with reviewing literature that is available on the topic of testing

software containers. A survey was then created in order to ask the prevalent questions to

answer the research question and the varying topics described in the previous section.

A survey is a structured data collection method based on the creation of a form with questions

to which respondents provide answers based on their knowledge, expertise, and experience.

It is a common data-gathering process allowing access to information from a group of re-

spondents during research. Surveys are relatively flexible and are therefore used in many

diverse types of research, like planning and evaluation. It can be either qualitative or quanti-

tative depending on the type of research and wanted data.

17

The idea of conducting the research as a survey first came from the companies involved and

was decided upon as the research strategy with the distribution being completely online after

some thought. Though a survey is a fundamental research strategy used to gather informa-

tion, it nevertheless still has its difficulties, and it is easier to create a poor-quality survey

than one with real value (Kelley et al. May 2003).

There are many steps to think through before starting the creation of a survey. Firstly, there

must be a clear research goal. After this, the method for collecting data and the type of

questions asked need to be examined. The questions themselves need to be designed so that

they answer the research question, in a clear, concise, and unbiased way. After the survey is

created, it can be distributed, and responses analyzed. (Jones, Baxter, and Khanduja 2013)

The main pros to a survey, in this case, were the opinion of the companies involved, giving

time to find the appropriate respondents, giving them time to look through and think about

the questions before answering them, not limiting time for answering, and the easy online

distribution.

On the other hand, the main cons for a survey, in this case, were possible interpretations of

the questions, creating questions that were not directing the respondent but still being able to

get clear answers, and mainly getting people to go through and answer the survey.

Most of these cons were addressed with thorough consideration of the survey questions that

peers also went through to mitigate interpretations, and providing an email address through

which questions could be asked. Additionally asking questions from different approaches

and reaching out to multiple people for responses and sending reminders for answering the

survey.

3.4 Survey Structure and Construction

The survey was created with Webropol 3.0, a survey and reporting tool that the university

offers use of licenses for students and staff. Webropol makes online survey creation simple

and offers help and analysis tools. It also handles how the material is collected, processed,

stored, and archived/destroyed. Other helpful tools Webropol offers are emails that can be

18

sent based on triggers (e.g., receiving an answer to a survey), adding a contact form to the

survey, and establishing rules for some questions (e.g., having some questions be mandatory,

or giving preset options).

Though Webropol provides a service through which it is possible to make, send, collect,

analyze, and delete data in a controlled manner, the questions asked, and their formatting

needed a lot of attention. A balance had to be obtained between a precise enough question to

get relevant results, but not too broad or biased which might result in interpretations based

on the respondents’ understanding.

The survey structure has five main sections, prefaced by an introduction, preceded by a

contact form, and followed by a place to add any additional comments or questions the

respondent may have. With a total of twenty-three questions, including the contact form and

additional comments, the contact form was the only mandatory question that required an

answer before being able to submit the form, which asked for the respondent’s email address

and company name (used for sorting the answers).

The first section of the survey is the Demographics section with a total of four questions,

two of which are multiple choice and two open-answer questions. The importance of this

section is to understand the respondents’ roles and experiences in the companies, regarding

containers. These questions are listed in table 1.

Table 1. Survey questions: Demographics section.

No. Question Type of answer

2. What sort of software/system is being containerized in the

company?

Open answer

3. What are your major responsibilities in the company? Open answer

4. How many years have you been working in the IT industry? 0-2 / 3-5 / 6-10 / 11-

15 / >15 years

5. How many years have you been working with software con-

tainers?

0-2 / 3-5 / 6-10 / >10

years

19

Table 2. Survey questions: Tools used in the company.

No. Question Type of answer

6. What containerization platform(s) is in use in the company? Selection from list

7. What tools to test container-based applications are used in

the company?

Open answer

The second section is Tools used in the company with just two questions about the tools used

in the company, the first of which is answered by choosing answers from a list, with the

possibility of also adding one’s own answer so as not to miss anything. These questions are

listed in table 2.

The third section Testing software containers goes through the process, practices, and plans

for anomaly detection through testing software containers via eight questions, three of which

are multiple choice questions, one broader open-answer question, and five more specified

ones. This is one of the most important sections of the survey since it directly answers topics

related to the research question. The motivation behind the questions for this section is to

hone in on and encapsulate the process of testing containers, in order to not only gauge how

it is done but also see how it compares between various companies. The questions for this

section are listed in table 3.

20

Table 3. Survey questions: Testing software containers.

No. Question Type of answer

8. What is the process of testing containers in the company? Open answer

9. Is there testing done before containerization of the soft-

ware?

Yes / No / Not sure

10. Is there testing done after containerization of the software? Yes / No / Not sure

11. Is the testing specified to the container itself or the con-

tainerized content?

Container itself /

Containerized con-

tent / Both / Not sure

12. What practices and techniques do you use to make con-

tainerized software more testable?

Open answer

13. What type(s) of testing is done to containers and container-

ized software?

Open answer

14. Are there plans to implement other types of testing, and if

so, what?

Open answer

15. What automated testing strategies do you use to test con-

tainers?

Open answer

The fourth section Results of testing focuses on results, and challenges, and specifically aims

to find out whether containerization itself affects test results. This section has three open-

answer questions, listed in table 4.

The fifth and last section Examples asks for more concrete findings and potential future

implementation plans with four open-answer questions. These questions are listed in table

5.

Lastly, the survey has an Additional comments part where any comments, questions or clari-

fications can be added if wanted.

21

Table 4. Survey questions: Results of testing.

No. Question Type of answer

16. What differences, if any, have been found through testing

software before and after containerization?

Open answer

17. Have you found that the act of containerization affects test

results, if so, how?

Open answer

18. What challenges do you face when testing containers? Open answer

Table 5. Survey questions: Examples.

No. Question Type of answer

19. What anomalies are you looking to find through testing con-

tainers and containerized software?

Open answer

20. What sort of anomalies have been detected through testing

containers and containerized software?

Open answer

21. How are you planning to improve anomaly detection and

accuracy?

Open answer

22. What are aspects that you have not found through test-

ing/are not testing for, but hope to implement in the future?

Open answer

3.5 Participants and Data Collection

As mentioned in the previous section, the survey was constructed by utilizing the tool We-

bropol. In addition to providing a way to create surveys, it also allows the user to easily

distribute the survey. The way it was done for this thesis, was a public link which was then

emailed to the various companies part of the QLeap project as well as posted on LinkedIn to

reach further interested companies. On the back end of Webropol, it was also possible to see

the number of people opening the survey, starting to respond, and completing the survey.

The aim for survey answers was to get answers from multiple companies, hopefully from

people with varying work profiles and particularly those who work closely with containers:

testers, software developers, project managers etc. In some cases, multiple people from the

same company responded giving a more complete picture of that company, which could

22

then be compared to the testing approaches of other companies. This information was also

provided to the contact people from each company, to whom the survey link was sent, who

in turn would proceed to identify the people to respond within their companies.

In total there were six companies taking part in the QLeap project that were creating software

and utilizing containers, and thus potential companies to answer the survey. In addition to

these six, other companies were reached via a LinkedIn post asking for respondents inter-

ested in the topic. The participating companies that answered the survey ranged in size, the

software they make and the extent of container usage.

Limiting when the survey could not be answered or seen anymore, and the deletion of data

was also possible through Webropol, to manage the process well.

3.6 Data Evaluation Process

The responses for surveys done with Webropol are visible to the creator through their online

website, where the survey is also created. The data for each question is displayed individ-

ually, with some ready-made graphs provided for multiple-choice questions. Webropol also

allows for the creation of your own graphs, which helps comb through and summarize the

results in a readable way.

The option of filtering answers was also necessary for the data evaluation, due to there being

multiple answers from each company. Answers could be filtered to show only those answers

where the answer for the company name in the contact form matched each other, therefore

allowing the results to be evaluated per company instead of per individual respondent.

Some of the answers were multiple choice, where a more quantitative data evaluation ap-

proach could be taken. This includes bar graphs and comparisons of numbers. On the other

hand, most questions in the survey were open-answer questions and a qualitative approach

was taken, due to the nature of the more descriptive and conceptual answers. The answers

were all read and summarized, and similarities were found. These were then charted in

several ways.

23

4 Results

This chapter goes through all the results of the survey, divided into subsections the same way

the survey was with section 4.1 going through the demographics section, sections 4.2 and 4.3

looking at the tools and the process of testing containers, section 4.4 focusing on the results

of testing, and lastly section 4.5 showing the more concrete findings.

There were respondents from nine different companies with thirteen respondents in total

ranging between one to three answers per company. The survey itself was opened by a bit

over one hundred people according to the Webropol back-end statistics.

4.1 Demographics Section

Question 2. What sort of software is being containerized in the company?

The software being containerized ranged greatly between the companies. Mentioned projects

related to things like Research and Development (R&D), cloud software, machine learning,

value stream metrics, web applications, testing, back-end services, and development envi-

ronments.

Question 3. What are your major responsibilities in the company?

The respondents also had various types of roles within the companies ranging from solu-

tion/enterprise/software architects, product owners, development/R&D team leads, scrum

masters, software consultants, software testers, and back-end developers.

Question 4. How many years have you been working in the IT industry?

The majority of respondents had been working in the IT industry for over 15 years as illus-

trated in Figure 5.

24

Figure 5. Answers to question 4: years worked in the IT industry.

Question 5. How many years have you been working with software containers?

Most respondents had been working with software containers for 6-10 years, though the

varying amounts can be seen in Figure 6.

Figure 6. Answers to question 5: years worked with software containers.

4.2 Tools Used in the Company

Question 6. What containerization platform(s) is in use in the company?

Docker was the most used container platform used by the different companies with eight out

25

of nine companies having used it as shown in Figure 7.

Figure 7. Answers to question 6: containerization platforms used in the company.

Other containerization platforms mentioned were Nomad, OCI, Rancher (RKE), open shift,

k3s, and Podman.

Question 7. What tools do you use to test container-based applications?

Tools used to test container-based applications varied, with specific tools mentioned being

JUnit, TestContainers (Java), Docker Desktop and tools, minikube, Robot framework, Spira,

sonarqube, trivy, selenium, protractor, and jest. Specific test frameworks mentioned were

pact.io and cucumber. There was also mention of in-house test platforms, automated Con-

tinuous Integration and Continuous Delivery (CI/CD) pipeline tests, and container checker

tools.

In addition to specific tools used for testing, what also came across from the answers was

how dependent the tools used are on the software language, the technology stack used, and

even just which team in the company is being asked.

26

4.3 Testing Software Containers

Question 8. What is the process of testing containers in the company?

The answers to question eight had some commonalities but mostly varied, also within the

companies depending on the respondent and their role.

Listed here are some examples of the testing processes mentioned:

• Github test cases, test containers for Java, CI/CD tools, and robot framework.

• Code changes run through with robot tests in an environment that replicates a real con-

tainer environment. Afterwards, when tests pass and a release candidate (rc) version

is created the rc is deployed on the development environment to be tested in an envi-

ronment replicating the production environment. The tested container is deployed to

the staging environment simulating deployment to production and verification testing

is done before the container is cleared for release to production.

• During development testing occurs locally on the developer machines, and then the

work is reviewed and automatically tested in the company’s CI/CD platform.

• Many different release trains and CI/CD pipelines with shifting maturity depending on

the offering technology stack. Unit tests, Application Programming Interface (API)

tests, and integration tests are a development responsibility and should be done re-

gardless of whether containers are used or not. The same goes for static code analysis.

All of these quality-assuring steps can be achieved either manually or automatically as

steps in a CI/CD pipeline. What differs with containers is that we usually include auto-

matic steps in the CI/CD pipeline for continuous vulnerability scans, one of our more

modern solutions use harbor and trivy which continuously and automatically scan all

pushed container images for known CSV:s. A CI/CD pipeline can also automatically

spin up, execute and close down a composition of multiple containers, which is very

useful when you have many microservices and want to test a full deployment of your

services.

• Containers are used for running full development environments and allow to run com-

plete environments for integration tests.

• Unit tests, functional tests of inputs/outputs of containers, per container and in multi-

27

container end-to-end setups. Reliability tests of running without restarts and monitor-

ing. Security and open-source license scans.

• Most of the testing is done as integration testing (back-end and database) before con-

tainerization. Front-ends and suitable parts of back-ends are tested with some addi-

tional unit tests. Some end-to-end (E2E) tests may be used in some projects, which

test some limited functionality against a relatively complete test environment, which

typically runs on containerized software (SW) in the cloud, but they are relatively rare.

Other things mentioned were specifically using docker unittest, container structure tests, and

manual functional testing (for software inside the container).

Questions 9-10. Is there testing done before/after containerization of the software?

For both questions nine and ten, eight out of the nine companies chose "yes", with one an-

swer being "not sure".

Question 11. Is the testing specified to the container itself or the containerized content?)

The responses for question 11 are illustrated in Figure 8 with the answers being per respon-

dent instead of per company since the answers varied also inside some of the companies.

28

Figure 8. Answers to question 11: testing specified to the container itself versus the con-

tainerized content.

Most answers state that the testing is specified to the containerized content and not the con-

tainer itself.

Question 12. What practices and techniques do you use to make containerized software more

testable?

Answers for question 12 included:

• Having containers run in a local development environment for easier root cause anal-

ysis and deployment of testing,

• Loose coupling,

• Abstraction,

• Unit testing,

• Docker exec commands to examine the output,

• Allowing software to run in test mode that allows test versions of dependencies where

you can set predefined or parameterized states (fulfilling preconditions),

• Clear network interfaces between containers,

• Container hardening,

• Log design.

29

Mentions back to question 8 were also made.

Question 13. What type(s) of testing is done to containers and containerized software?

Types of testing done to containers and containerized software specified were:

• User Interface (UI) and User Experience (UX) tests,

• Database tests,

• Logic tests,

• Security tests,

• Penetration tests,

• Testing for any misconfigured containers,

• Manual functional testing for the software,

• Unit tests,

• Functional testing,

• Exploratory testing (in development environment replicating production),

• Test automation checking the whole development environment and its User Interfaces

and back-end services work together,

• Scalability and high availability (tested to be efficient and reliable),

• Deployment of new application versions (without affecting the user experience),

• Container structure tests,

• Integration tests,

• End-to-end testing,

• Reliability,

• Performance,

• Legal.

The role of the CI/CD pipeline was also commented on and as in question 12, some mentions

back to question 8 were made here.

30

Question 14. Are there plans to implement other types of testing, and if so, what?

Plans for implementing further types of testing mentioned mostly related to automated tests

(unit testing, security testing, integration tests, and Quality Assurance (QA) steps (static code

analysis, vulnerability scans)). More "toolized" tests were also mentioned for vulnerability

testing or testing supply chain attacks, as were the addition of more good practice scanning

tools and running tests in a CI/CD in a container.

Question 15. What automated testing strategies do you use to test containers?

The answers to question 15 were mostly about the research of automated testing for con-

tainers at this stage, though some mentions were made to unit tests, integration tests, release

testing, CI/CD pipelines for code changes, and MS Azure structure for staging and deploy-

ment.

4.4 Results of Testing

Question 16. What differences, if any, have been found through testing software before and

after containerization?

There were two types of answers for question 16, the others being positive things and on

the other hand negative aspects were also brought in. Some positives differences mentioned

about testing software before versus after containerization were:

• Containers make automation easier,

• Consistency of the different software layers (stack), even driver level is easy to manage

and handle,

• It makes it easier to run the full system and run end-to-end tests,

• Environments are more repeatable,

• Production-like environments on development machines are more likely,

• Each branch can have its own isolated environment making change testing more tar-

geted.

31

As for the negative aspects, it was mentioned that error situation analysis requires more work

if the logging of the systems is not thought out fully before testing.

There were also mentions of not seeing differences or not knowing in cases where the soft-

ware has always been containerized since the beginning.

Question 17. Have you found that the act of containerization affects test results, if so, how?

The answers for question 17 varied, also among respondents within the same company. Mul-

tiple respondents stated that they have not found the act of containerization affected test re-

sults. There was mention of containerized testing providing more consistent results and that

they are available faster with less painful maintenance. Multiple answers also mentioned

containers enabling easier automation.

Another aspect introduced was the need to use different configurations for testing, and that

the software environment might change how the software operates: if tested before con-

tainerization the software execution environment is different than in a container. If tested

inside the container, then the test environment must be part of the container and it’s not very

clever to have the test environment in a real operation environment - so full testing in a real

container is "impossible".

Question 18. What challenges do you face when testing containers?

Question 18 got quite a few answers, with most respondents choosing to answer it, many

giving multiple answers and only two leaving it blank. Listed next are the answers:

• Test environment must be in the container,

• Compilation times are longer,

• If, e.g., a container is configured wrong, the network connections of the SW do not

work,

• Creating an environment for them to be testable is sometimes challenging,

• The infrastructure to run containerized tests is not always easy to set up,

• Depending on the application architecture, especially with microservices you might

32

have dependencies to additional services to be able to run integration or E2E tests - but

this is related to the microservice pattern rather than the software running in containers,

• Dynamic visualization of the results especially in multi-container environments,

• Synchronization between different containers was an issue at the start,

• Ramping up a system for tests is sometimes slow and requires extra focus on designing

software so that you won’t depend on the slow initialization of containers that one part

depends on,

• Testers have had more trouble contributing as it adds a layer of operating their own

environments,

• Testing containerized software is one thing and testing from a container is sometimes

hard for people to understand as "more test environments at your fingertips",

• Heavily containerized SW may be difficult to test using test runners which itself run

in containers, such as GitLab CI. Docker-in-docker helps, but it is itself a relatively

complex piece of SW and makes it hard to understand how tests actually are run,

• Debugging tests are difficult if they only run in a complex environment with multiple

containers.

4.5 Examples

Question 19. What anomalies are you looking to find through testing containers and con-

tainerized software?

Like question 18, this question got quite a few answers. It was communicated through mul-

tiple answers that any anomalies and errors are looked for and that the answer is the same

whether the system is containerized or not. More specific anomalies brought up are listed:

• Regression issues,

• Performance down-grades,

• Load-related anomalies such as issues with session replication, bottlenecks, memory

leaks,

• Vulnerabilities or increased technical dept through static code analysis,

• Long-term stable execution on different hardware with similar capabilities,

33

• Smooth dynamic scalability,

• Broken APIs between dependencies,

• Reconnect/disconnect logic issues,

• Software crash/hang discovery,

• Impact on functionality, reliability, performance, and supportability.

Question 20. What sort of anomalies have been detected through testing containers and

containerized software?

Multiple answers to question 20 explained that there has not been much in particular, but

those mentioned are listed here, many of which echo the answers to question 19:

• Errors,

• Regression issues,

• Performance down-grade,

• Session replication issues,

• For example the very critical log4j bug in 2021. (This was further explained to have

been caught by automatic vulnerability scans and stating that achieving the same thing

with manual work would have taken weeks with a high risk of missing out),

• Low-level drivers have created challenges example nvidia cuda driver, mysql driver,

network drive access and network resource access,

• Broken APIs between dependencies,

• Reconnect/disconnect logic issues,

• Failed crash/hang discovery,

• A lot of the interface definitions and security hardening stuff are more in our control in

containers and misconfigurations are more typical because of it. Or misconfigurations

we get to fix and address ourselves.

Question 21. How are you planning to improve anomaly detection and accuracy?

A few answers for question 21 stated that there are no plans to improve anomaly detection

and accuracy, but there were also a plethora of plans mentioned:

34

• Static code analysis,

• Vulnerability scanning,

• Putting test framework inside a container when testing,

• Writing better testing components that gather more data and are modular enough to be

used in more than one test,

• By learning more about containerized testing and automation,

• Daily scans of your containers against csv-databases are a great way to automatically

find out if your software is subject to new vulnerabilities,

• More testing in development and staging,

• Improve health check logic,

• Isolating changes is helping pinpoint the time when things broke down with changes.

Question 22. What are aspects that you have not found through testing/are not testing for

but hope to implement in the future?

Unlike some of the previous questions, question 22 was only answered by less than half the

respondents. The comments from those who answered are listed:

• The container as a one-test target is not very valuable, instead the integration test of

the whole architecture in the real-run environment is very valuable,

• Automation of high-load of usage,

• We might further develop our ability to compare resource needs and performance

through the comparison of metrics between releases in CI/CD execution,

• More static scans of container definitions,

• Dynamic behaviour in terms of efficient scalability,

• Stress testing.

35

5 Discussion

This chapter goes into more detail and discusses interpretations of the survey results in sec-

tion 5.1, implications of the study in section 5.2, and finally limitations, weaknesses and

suggestions for more research are discussed in section 5.3.

5.1 Interpretation of Results

The first section of the survey is the Demographics section. The importance of this section is

to understand the respondents’ roles and experiences in the companies, regarding containers.

The answers showed the variety of the respondents’ backgrounds and the software being

containerized in the companies. It was also shown that the respondents have been working

in the IT industry for a longer time, with most answers stating more than 15 years. The

respondents’ work with containers, on the other hand, is more varied with around half having

worked with them for less than six years and a half for six or more.

The second section is Tools used in the company with just two questions about the tools used

in the company. Docker was the most used, with eight out of nine companies having used

it. This is unsurprising since Docker is the leading container technology provider and was

founded in 2013 (Siddiqui, Siddiqui, and Khan 2019). Kubernetes and Azure were not far

behind with seven and six companies utilizing them, respectively.

The third section Testing software containers goes through the process, practices, and plans

for anomaly detection through testing software containers. Brought up in the 2021 article was

how the evolution of containers has mainly been driven by industry adaptation rather than

academic research (Siddiqui and Siddiqui 2021) discussed in section 2.4. This is shown in

the answers to question eight, with the processes of testing containers between the companies

varying greatly. There seems to not be any consensus on how testing software containers is

or should be accomplished, correlating to the fact that one could not be found in the literature

either. The hypothesis of the survey answers between companies being vastly different, with

varying levels of testing, and there not being a clear method for specifying testing to the

software containers held true.

36

There was a consensus, however, between respondents for questions nine through eleven,

with most companies having testing done both before and after containerization and having

that testing be specified to the containerized content.

The answers to questions 12 and 13 also brought some insight into the plethora of testing

done on containerized software and techniques to make them more testable. Though software

container security and vulnerabilities were not originally part of the scope of this thesis, they

were mentioned in these survey answers and deemed important and relevant enough and

therefore also brought into this thesis.

Question 14 was one of the most answered open answer questions with eleven out of thirteen

choosing to answer. This seems telling as the question is about plans of implementing other

types of testing. Many of the answers related to automated tests, which seem to be the

next step for many companies. Question 15 expands on automated testing and shows that

some companies have that in place, though statements were also made about the need for

expansion.

The fourth section Results of testing focuses on results, and challenges, and specifically aims

to find out whether containerization itself affects test results. The answers unveil differences

found between testing software before and after containerization, with both positive and

negative aspects brought up. Question 18 was a more crucial question with the answers

displaying challenges faced when testing containers. This was one of the most answered

open answer questions with eleven out of thirteen respondents choosing to answer. One of

the main takeaways from the answers was the challenges in setting up an effective way to

test containers. This can be linked again to the fact that there is no consensus on how testing

software containers is or should be accomplished.

The fifth and last section Examples asks for more concrete findings and potential future

implementation plans. Software container security and vulnerabilities were mentioned again,

and emphasis was put on the need to test for all kinds of errors and anomalies, with examples

of the ones found in the answers to question 20. A key point to bring up concerning the fifth

section is the mention of plans to learn more about containers, testing them, and automation

regarding them. The use of containers is on the rise and the development of good practices

37

is still ongoing as clearly seen from the survey answers.

5.2 Implications of the Study

The main objective of this thesis is to take a look at the current status of company practices

and distinguishing tools concerning how anomalies can be detected through testing software

containers. The encapsulated research question for this thesis stated in section 3.2 is the

following:

RQ: What is the status of how companies test software containers?

Based on previous research described, and the survey results, one of the key findings is that

there does not seem to be a consensus on how testing software containers should be ac-

complished, and advances are mainly being driven within companies instead of academic

research, and in numerous diverse ways. This is also something written about in the ar-

ticle Non-Functional Testing Framework for Container-Based Applications (Siddiqui and

Siddiqui 2021).

The hypothesis of the survey answers between companies being vastly different, with varying

levels of testing, and there not being a clear method for specifying testing to the software

containers held true. An essential point to bring up again is that the use of containers is

on the rise and the development of good practices is still ongoing as clearly seen from the

survey answers, and the mention of plans to learn more about containers, testing them, and

automation regarding them.

Another key point is that although software container security and vulnerabilities were not

originally part of the scope of this thesis, they were mentioned in the survey answers and

deemed important and relevant enough and therefore also brought into this thesis.

The research detailed in this thesis is hoped to provide a glance at the present status of

company practices, and additionally show via the survey results possible aspects that require

additional research. Analyzing the survey results discussed in this thesis shows both the

importance of software testing and the potential gaps in research on security and vulnerability

aspects in software containers and in the development of general good practices on how

38

testing software containers should be accomplished.

5.3 Limitations and Weaknesses

The limitations and weaknesses of this survey and its results are predominantly related to the

small size of respondents. It should also be remembered that the answers examined are the

opinions of these respondents when thinking about the reliability of these results.

The very last part of the survey has an Additional comments section where any comments,

questions or clarifications can be added if wanted. The answers mainly focused on the inter-

est in the topic and results, but comments related to possible improvements included:

• The need for specifying where testing containers and where testing the software in the

container is meant,

• The issue of asking for a large base of experience from people who often have single

product experience and therefore answers depending greatly on even the team inside

the company,

• Mention of the respondent themselves not working with containers too much or in a

limited way.

These weaknesses, especially the first one, could be improved by further research such as

structured thematic interviews, to collect and analyze the sought-after qualitative data. For

this thesis, a survey was chosen over interviews due to the apprehension and recognition that

it might result in even fewer respondents.

It is true that there is a notable imbalance in the respondents’ answers due to the roles and

in some cases limited use of containers. Despite this, the survey answers demonstrate uni-

formly how important testing truly is, the rise of interest and use of containers, security and

vulnerability issues in software containers, the varying ways of testing containers and the

gaps in current research. This research validates some observations from other research and

makes a contribution by showing what is the status of how companies currently test software

containers.

39

6 Conclusion

Testing is an integral and necessary part of software creation and is a crucial step to having a

working and secure software container. Software containers are having a surge in use and are

on a rising trend. Used more and more by most companies, risks and vulnerabilities related

to them have continuously surfaced.

The research detailed in this thesis provides a look into the current status of company prac-

tices and distinguishing tools concerning how anomalies can be detected through testing

software containers.

It can be concluded that the survey answers demonstrate how important testing truly is, the

rise of interest and use of containers, security and vulnerability issues in software containers,

and the varying ways of testing containers. There is no consensus on how testing is or should

be accomplished, with advances being mainly driven within companies instead of academic

research.

Further beneficial research in light of this thesis is the seen gaps in current research about

security and vulnerability aspects in software containers and in the development of general

good practices on how testing software containers should be accomplished.

In conclusion, this research validates some observations from other research and makes a

contribution by showing what is the status of how companies currently test software contain-

ers.

40

Bibliography

Abhishek, Manish Kumar, and D. Rajeswara Rao. 2021. ”Framework to Secure Docker Con-

tainers”. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustain-

ability (WorldS4), 152–156. https://doi.org/10.1109/WorldS451998.2021.9514041.

Abhishek, Manish Kumar, D. Rajeswara Rao, and K. Subrahmanyam. 2022. ”Framework

to Deploy Containers using Kubernetes and CI/CD Pipeline”. International Journal of Ad-

vanced Computer Science and Applications 13 (4). http://dx.doi.org/10.14569/IJACSA.

2022.0130460.

Anwar, Nahid, and Susmita Kar. May 2019. ”Review Paper on Various Software Testing

Techniques and Strategies”. Global Journal of Computer Science and Technology (): 43–49.

https://doi.org/10.34257/GJCSTCVOL19IS2PG43.

Berkovich, Shay, Jeffrey Kam, and Glenn Wurster. August 2020. ”UBCIS: Ultimate Bench-

mark for Container Image Scanning”. In 13th USENIX Workshop on Cyber Security Exper-

imentation and Test (CSET 20). USENIX Association. https://www.usenix.org/conference/

cset20/presentation/berkovich.

Chandola, Varun, Arindam Banerjee, and Vipin Kumar. July 2009. ”Anomaly Detection: A

Survey”. ACM Comput. Surv. 41 (). https://doi.org/10.1145/1541880.1541882.

Chen, Chao-Chun, Min-Hsiung Hung, Kuan-Chou Lai, and Yu-Chuan Lin. 2022. ”Docker

and Kubernetes”. In Industry 4.1: Intelligent Manufacturing with Zero Defects, 169–213.

https://doi.org/10.1002/9781119739920.ch5.

Chen, Libo, Yihang Xia, Zhenbang Ma, Ruijie Zhao, Yanhao Wang, Yue Liu, Wenqi Sun,

and Zhi Xue. 2022. ”SEAF: A Scalable, Efficient, and Application-independent Framework

for container security detection”. Journal of Information Security and Applications 71. ISSN:

2214-2126. https://doi.org/10.1016/j.jisa.2022.103351.

Efe, Ahmet, Ulaş Aslan, and Aytekin Mutlu Kara. 2020. Securing Vulnerabilities in Docker

Images. International Journal of Innovative Engineering Applications 4 (1): 31–39. ISSN:

2587-1943. https://doi.org/10.46460/ijiea.617181.

41

https://doi.org/10.1109/WorldS451998.2021.9514041
http://dx.doi.org/10.14569/IJACSA.2022.0130460
http://dx.doi.org/10.14569/IJACSA.2022.0130460
https://doi.org/10.34257/GJCSTCVOL19IS2PG43
https://www.usenix.org/conference/cset20/presentation/berkovich
https://www.usenix.org/conference/cset20/presentation/berkovich
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1002/9781119739920.ch5
https://doi.org/10.1016/j.jisa.2022.103351
https://doi.org/10.46460/ijiea.617181

Cito, Jürgen, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi, and Har-

ald C. Gall. 2017. ”An Empirical Analysis of the Docker Container Ecosystem on GitHub”.

In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),

323–333. https://doi.org/10.1109/MSR.2017.67.

CSRC. No date. ”Glossary”. Visited on March 16, 2023. https://csrc.nist.gov/glossary/term/

software_vulnerability.

Douglis, Fred, and Orran Krieger. 2013. ”Virtualization”. IEEE Internet Computing (USA)

17 (2): 6–9. ISSN: 1089-7801. https://doi.org/10.1109/MIC.2013.42.

Douglis, Fred, and Jason Nieh. 2019. ”Microservices and Containers”. IEEE Internet Com-

puting 23 (6): 5–6. https://doi.org/10.1109/MIC.2019.2955784.

Gaur, Jai, Akshita Goyal, Tanupriya Choudhury, and Sai Sabitha. 2016. ”A walk through of

software testing techniques”. In 2016 International Conference System Modeling and Ad-

vancement in Research Trends (SMART), 103–108. https:/ /doi.org/10.1109/SYSMART.

2016.7894499.

Gelperin, D., and B. Hetzel. 1988. ”The Growth of Software Testing”. Commun. ACM (New

York, NY, USA) 31 (6): 687–695. ISSN: 0001-0782. https://doi.org/10.1145/62959.62965.

Gummaraju, J, T Desikan, and Y Turner. 2015. ”Over 30 percent of Official Images in

Docker Hub Contain High Priority Security Vulnerabilities”. Visited on January 31, 2023.

https://www.banyansecurity.io/blog/over-30-of-official- images-in-docker-hub-contain-

high-priority-security-vulnerabilities/.

Haque, Mubin Ul, and Muhammad Ali Babar. 2021. ”Well Begun is Half Done: An Empir-

ical Study of Exploitability and Impact of Base-Image Vulnerabilities”. 2022 IEEE Interna-

tional Conference on Software Analysis, Evolution and Reengineering (SANER), 1066–1077.

https://www.semanticscholar.org/paper/Well-Begun- is-Half-Done%3A-An-Empirical-

Study-of-%26-of-Haque-Babar/a8e1fd78284439f82d85f8119a638b458356b214.

42

https://doi.org/10.1109/MSR.2017.67
https://csrc.nist.gov/glossary/term/software_vulnerability
https://csrc.nist.gov/glossary/term/software_vulnerability
https://doi.org/10.1109/MIC.2013.42
https://doi.org/10.1109/MIC.2019.2955784
https://doi.org/10.1109/SYSMART.2016.7894499
https://doi.org/10.1109/SYSMART.2016.7894499
https://doi.org/10.1145/62959.62965
https://www.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities/
https://www.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities/
https://www.semanticscholar.org/paper/Well-Begun-is-Half-Done%3A-An-Empirical-Study-of-%26-of-Haque-Babar/a8e1fd78284439f82d85f8119a638b458356b214
https://www.semanticscholar.org/paper/Well-Begun-is-Half-Done%3A-An-Empirical-Study-of-%26-of-Haque-Babar/a8e1fd78284439f82d85f8119a638b458356b214

Jamil, Muhammad Abid, Muhammad Arif, Normi Sham Awang Abubakar, and Akhlaq Ah-

mad. 2016. ”Software Testing Techniques: A Literature Review”. In 2016 6th International

Conference on Information and Communication Technology for The Muslim World (ICT4M),

177–182. https://doi.org/10.1109/ICT4M.2016.045.

Jamshidi, Pooyan, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan Tilkov. 2018.

”Microservices: The Journey So Far and Challenges Ahead”. IEEE Software 35 (3): 24–35.

https://doi.org/10.1109/MS.2018.2141039.

Javed, Omar, and Salman Toor. 2021. ”Understanding the Quality of Container Security

Vulnerability Detection Tools”. CoRR abs/2101.03844. arXiv: 2101.03844.

Jolak, Rodi, Thomas Rosenstatter, Mazen Mohamad, Kim Strandberg, Behrooz Sangchoolie,

Nasser Nowdehi, and Riccardo Scandariato. 2022. ”CONSERVE: A framework for the se-

lection of techniques for monitoring containers security”. Journal of Systems and Software

186:111158. ISSN: 0164-1212. https://doi.org/10.1016/j.jss.2021.111158.

Jones, TL, Maj Baxter, and V Khanduja. 2013. ”A quick guide to survey research”. Annals

of the Royal College of Surgeons of England 95 (1): 5–7. https://doi.org/10.1308/00358841

3X13511609956372.

Kang, Dae-Ki, D. Fuller, and V. Honavar. 2005. ”Learning classifiers for misuse and anomaly

detection using a bag of system calls representation”. In Proceedings from the Sixth Annual

IEEE SMC Information Assurance Workshop, 118–125. https://doi.org/10.1109/IAW.2005.

1495942.

Kelley, Kate, Belinda Clark, Vivienne Brown, and John Sitzia. May 2003. ”Good practice in

the conduct and reporting of survey research”. International Journal for Quality in Health

Care 15, number 3 (): 261–266. ISSN: 1353-4505. https://doi.org/10.1093/intqhc/mzg031.

Kwon, Soonhong, and Jong-Hyouk Lee. 2020. ”DIVDS: Docker Image Vulnerability Diag-

nostic System”. IEEE Access 8:42666–42673. https : / / doi .org /10 .1109 /ACCESS.2020 .

2976874.

43

https://doi.org/10.1109/ICT4M.2016.045
https://doi.org/10.1109/MS.2018.2141039
https://arxiv.org/abs/2101.03844
https://doi.org/10.1016/j.jss.2021.111158
https://doi.org/10.1308/003588413X13511609956372
https://doi.org/10.1308/003588413X13511609956372
https://doi.org/10.1109/IAW.2005.1495942
https://doi.org/10.1109/IAW.2005.1495942
https://doi.org/10.1093/intqhc/mzg031
https://doi.org/10.1109/ACCESS.2020.2976874
https://doi.org/10.1109/ACCESS.2020.2976874

Leszko, R. 2022. Continuous Delivery with Docker and Jenkins: Create secure applications

by building complete CI/CD pipelines. Packt Publishing. ISBN: 9781803245300. https : / /

books.google.fi/books?id=3V5qEAAAQBAJ.

Liao, Hung-Jen, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung. 2013. ”In-

trusion detection system: A comprehensive review”. Journal of Network and Computer Ap-

plications 36 (1): 16–24. ISSN: 1084-8045. https://doi.org/10.1016/j.jnca.2012.09.004.

Lin, Xin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. 2018. ”A

Measurement Study on Linux Container Security: Attacks and Countermeasures”. In Pro-

ceedings of the 34th Annual Computer Security Applications Conference, 418–429. ACSAC

’18. Association for Computing Machinery. ISBN: 9781450365697. https://doi.org/10.1145/

3274694.3274720.

Lin, Yuhang, Olufogorehan Tunde-Onadele, and Xiaohui Gu. 2020. ”CDL: Classified Dis-

tributed Learning for Detecting Security Attacks in Containerized Applications”. In Annual

Computer Security Applications Conference, 179–188. ACSAC ’20. Association for Com-

puting Machinery. ISBN: 9781450388580. https://doi.org/10.1145/3427228.3427236.

Liu, Peiyu, Shouling Ji, Lirong Fu, Kangjie Lu, Xuhong Zhang, Wei-Han Lee, Tao Lu, Wen-

zhi Chen, and Raheem A. Beyah. 2020. ”Understanding the Security Risks of Docker Hub”.

In European Symposium on Research in Computer Security. https://doi.org/10.1007/978-3-

030-58951-6_13.

Mahboob, Jamal, and Joel Coffman. 2021. ”A Kubernetes CI/CD Pipeline with Asylo as a

Trusted Execution Environment Abstraction Framework”. In 2021 IEEE 11th Annual Com-

puting and Communication Workshop and Conference (CCWC), 0529–0535. https://doi.org/

10.1109/CCWC51732.2021.9376148.

Patrizio, Andy. 2020. ”5 ways cloud-native application testing is different from testing on-

premises software”. https://www.functionize.com/blog/5-ways-cloud-native-application-

testing-is-different-from-testing-on-premises-software.

44

https://books.google.fi/books?id=3V5qEAAAQBAJ
https://books.google.fi/books?id=3V5qEAAAQBAJ
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1145/3274694.3274720
https://doi.org/10.1145/3274694.3274720
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1007/978-3-030-58951-6_13
https://doi.org/10.1007/978-3-030-58951-6_13
https://doi.org/10.1109/CCWC51732.2021.9376148
https://doi.org/10.1109/CCWC51732.2021.9376148
https://www.functionize.com/blog/5-ways-cloud-native-application-testing-is-different-from-testing-on-premises-software
https://www.functionize.com/blog/5-ways-cloud-native-application-testing-is-different-from-testing-on-premises-software

Rangnau, Thorsten, Remco v. Buijtenen, Frank Fransen, and Fatih Turkmen. 2020. ”Con-

tinuous Security Testing: A Case Study on Integrating Dynamic Security Testing Tools in

CI/CD Pipelines”. In 2020 IEEE 24th International Enterprise Distributed Object Comput-

ing Conference (EDOC), 145–154. https://doi.org/10.1109/EDOC49727.2020.00026.

Sawant, Abhijit, Pranit Bari, and Pramila Chawan. June 2012. ”Software Testing Techniques

and Strategies”. International Journal of Engineering Research and Applications(IJERA) 2

(): 980–986. https : / /www. researchgate .net /publication /316510706_Software_Testing_

Techniques_and_Strategies.

Shu, Rui, Xiaohui Gu, and William Enck. 2017. ”A Study of Security Vulnerabilities on

Docker Hub”. In Proceedings of the Seventh ACM on Conference on Data and Applica-

tion Security and Privacy, 269–280. CODASPY ’17. Association for Computing Machinery.

ISBN: 9781450345231. https://doi.org/10.1145/3029806.3029832.

Siddiqui, Shadab Alam, and Tamanna Siddiqui. 2021. ”Non-Functional Testing Framework

for Container-Based Applications”. Indian Journal of Science and Technology 14 (47): 343–

344. https://doi.org/10.17485/IJST/v14i47.1909.

Siddiqui, Tamanna, and Riaz Ahmad. 2016. ”A review on software testing approaches for

cloud applications”. Recent Trends in Engineering and Material Sciences, Perspectives in

Science 8:689–691. ISSN: 2213-0209. https://doi.org/10.1016/j.pisc.2016.06.060.

Siddiqui, Tamanna, Shadab Alam Siddiqui, and Najeeb Ahmad Khan. 2019. ”Comprehen-

sive Analysis of Container Technology”. In 2019 4th International Conference on Infor-

mation Systems and Computer Networks (ISCON), 218–223. https : / / doi . org / 10 . 1109 /

ISCON47742.2019.9036238.

Sidqui, Shadab Alam, and Tamanna Siddiqui. 2021. ”Quantitative Data Analysis of Non-

Functional Testing in Container Applications”. In 2021 9th International Conference on Re-

liability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO),

1–6. https://doi.org/10.1109/ICRITO51393.2021.9596457.

Sultan, Sari, Imtiaz Ahmad, and Tassos Dimitriou. 2019. ”Container Security: Issues, Chal-

lenges, and the Road Ahead”. IEEE Access 7:52976–52996. https : / / doi . org / 10 . 1109 /

ACCESS.2019.2911732.

45

https://doi.org/10.1109/EDOC49727.2020.00026
https://www.researchgate.net/publication/316510706_Software_Testing_Techniques_and_Strategies
https://www.researchgate.net/publication/316510706_Software_Testing_Techniques_and_Strategies
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.17485/IJST/v14i47.1909
https://doi.org/10.1016/j.pisc.2016.06.060
https://doi.org/10.1109/ISCON47742.2019.9036238
https://doi.org/10.1109/ISCON47742.2019.9036238
https://doi.org/10.1109/ICRITO51393.2021.9596457
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732

Syed, Madiha H., and Eduardo B. Fernandez. 2020. ”The Secure Container Manager Pat-

tern”. PLoP ’18. Portland, Oregon: The Hillside Group. https://dl.acm.org/doi/10.5555/

3373669.3373676.

Wan, Zhiyuan, David Lo, Xin Xia, and Liang Cai. 2019. ”Practical and effective sandboxing

for Linux containers”. Empirical Software Engineering 24 (6): 4034–4070. ISSN: 1382-3256.

https://doi.org/10.1007/s10664-019-09737-2.

Wong, Annika, Eyasu Getahun Chekole, Martín Ochoa, and Jianying Zhou. 2021. ”Threat

Modeling and Security Analysis of Containers: A Survey”. ArXiv, https://doi.org/10.48550/

arXiv.2111.11475.

Zampetti, Fiorella, Salvatore Geremia, Gabriele Bavota, and Massimiliano Di Penta. 2021.

”CI/CD Pipelines Evolution and Restructuring: A Qualitative and Quantitative Study”. In

2021 IEEE International Conference on Software Maintenance and Evolution (ICSME),

471–482. https://doi.org/10.1109/ICSME52107.2021.00048.

46

https://dl.acm.org/doi/10.5555/3373669.3373676
https://dl.acm.org/doi/10.5555/3373669.3373676
https://doi.org/10.1007/s10664-019-09737-2
https://doi.org/10.48550/arXiv.2111.11475
https://doi.org/10.48550/arXiv.2111.11475
https://doi.org/10.1109/ICSME52107.2021.00048

Appendices

A Survey Questions

Attachment of the survey questions

47

48

49

50

51

	Introduction
	Background
	Software Testing
	Software Containers
	Securing Software Containers
	Testing Software Containers

	Research Methodology
	Research Background and Context
	Research Question and Hypothesis
	Research Method
	Survey Structure and Construction
	Participants and Data Collection
	Data Evaluation Process

	Results
	Demographics Section
	Tools Used in the Company
	Testing Software Containers
	Results of Testing
	Examples

	Discussion
	Interpretation of Results
	Implications of the Study
	Limitations and Weaknesses

	Conclusion
	Bibliography
	Appendices
	Survey Questions

