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ABSTRACT

Kania, Adhe
Addressing challenges of real-world lot sizing problems with interactive multi-
objective optimization
Jyväskylä: University of Jyväskylä, 2023, 70 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 657)
ISBN 978-951-39-9637-6 (PDF)

Many real-world problems involve multiple conflicting objective functions to be
optimized simultaneously, including lot sizing problems, where we need to min-
imize costs while satisfying demand. A multiobjective optimization problem has
many so-called Pareto optimal solutions reflecting different trade-offs. A decision
maker (DM) is needed to select one of them to be applied in practice represent-
ing best his/her preferences. Interactive methods, that iteratively incorporate the
DM’s preferences, are beneficial in supporting the DM, and therefore, in this the-
sis, we focus on solving lot sizing problems with interactive methods.

This thesis tackles challenges in modeling and solving lot sizing problems
inspired by real challenges. First, we consider a single-item lot sizing problem
under demand uncertainty and propose a safety order time concept that can effi-
ciently handle high fluctuations on demand. Second, we focus on a single-item lot
sizing problem under demand and lead time uncertainties, and propose a prob-
ability of product availability formula to assess the quality of safety lead time.
Third, we integrate a lot sizing problem and a minimum order quantity (MOQ)
determination and propose a MOQ level formula to measure the quality of MOQ
in satisfying demand. Besides, we also propose multiobjective optimization mod-
els to solve these problems. Last, we address a challenge in multi-item lot sizing
problems by proposing a decision support approach, called DESMILS. DESMILS
enables any single-item multiobjective lot sizing models to be applied in solving
multi-item problems by accommodating different preferences from the DM.

As a proof of concept, we utilized real data from a company to demonstrate
the applicability of the proposed models and approaches. We supported the sup-
ply chain manager of the company, as the DM, to find his most preferred solutions
by solving the proposed single-item lot sizing models, with interactive methods
or the hybridization of methods that we propose. We then demonstrate that,
with DESMILS, the DM found Pareto optimal lot sizes for 94 items by solving
a single-item multiobjective lot sizing problem for only ten representative items.
The DM found all concepts, models, interactive decision making processes, and
results useful in his daily operations. These successful applications demonstrate
the practical value of the research, which can also benefit others in lot sizing.

Keywords: Inventory management, multi-item, demand uncertainty, lead time
uncertainty, minimum order quantity, decision support
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Kania, Adhe
Ratkaisuja todellisten toimituserän mitoitusongelmien haasteisiin interaktiivisen
monitavoiteoptimoinnin avulla
Jyväskylä: University of Jyväskylä, 2023, 70 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 657)
ISBN 978-951-39-9637-6 (PDF)

Monissa tosielämän ongelmissa on useita optimoitavia tavoitefunktioita, jotka ovat
ristiriidassa keskenään. Esimerkiksi tuotantoyritysten varaston ohjauksessa on toi-
mituseriä mitoitettaessa minimoitava kustannuksia ja samalla varmistettava ni-
mikkeiden riittävyys sekä tarpeiden mukainen varastotaso. Monitavoiteoptimoin-
tiongelmilla on monia ns. Pareto-optimaalisia ratkaisuja, jotka kuvastavat tavoi-
tefunktioiden välisiä vaihtosuhteita. Tarvitaan päätöksentekijä valitsemaan yksi
niistä käytäntöön vietäväksi päätökseksi, joka parhaiten kuvasta hänen mielty-
myksiään. Iteratiivisesti mieltymykset huomioon ottavat interaktiiviset menetel-
mät tukevat päätöksentekijää tehokkaasti. Siksi tässä väitöskirjassa tuetaan inte-
raktiivisten menetelmien avulla toimituserän kokoon ja ajoitukseen liittyvää pää-
töksentekoa varaston ohjauksessa.

Väitöskirja mallintaa ja ratkaisee käytännön haasteista nousevia toimituse-
rän mitoitusongelmia. Ensin yhden nimikkeen toimituserää optimoidaan kysyn-
nän vaihdellessa ja esitellään uusi käsite, varmuusaika. Sitten yhden nimikkeen
toimituserää optimoidaan, kun kysyntää on vaikea hallita ja toimitusajat ovat
epävarmat. Esiteltävä uusi kaava määrittää varmuusajan nimikkeen riittävyyden
todennäköisyydelle. Kolmanneksi yhdistetään toimituserän mitoitus ja minimi-
toimituserän määrittely. Kaikkien näiden kolmen haasteen ratkaisemiseksi muo-
toillaan monitavoiteoptimointiongelmat ja ratkaistaan ne. Lopuksi esitellään uusi
päätöksenteon tukimenetelmä DESMILS usean nimikkeen toimituserän optimoin-
tiin. Sen avulla mitä tahansa yhden nimikkeen monitavoitteinen toimituserän mi-
toitusmalli voidaan tehokkaasti laajentaa usealle nimikkeelle päätöksentekijän miel-
tymykset huomioiden.

Mallien ja menetelmien soveltuvuutta havainnollistetaan tuotantoyrityksen
datalla. Päätöksentekijänä toiminutta yrityksen toimitusketjun johtajaa tuettiin löy-
tämään parhaat ratkaisut eri ongelmiin käyttäen interaktiivisia menetelmiä tai nii-
den yhdistelmiä. Lisäksi DESMILS auttoi päätöksentekijää mitoittamaan Pareto-
optimaaliset toimituserät 94 nimikkeelle niin, että hänen täytyi mitoittaa vain 10
huolella valitun nimikkeen tilausmäärät. Päätöksentekijästä kaikki käsitteet, mal-
lit, interaktiiviset ratkaisuprosessit ja ratkaisut olivat hyödyllisiä ja tukivat päivit-
täisiä toimintoja. Onnistuneet tulokset havainnollistavat tutkimuksen käytännön
arvoa ja hyötyä myös muiden toimituserän optimointiongelmien ratkaisemisessa.

Avainsanat: varaston hallinta, vaihtelevat toimituserät, kysynnän epävarmuus,
toimitusajan epävarmuus, minimitoimituserä, päätöksenteon tuki
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1 INTRODUCTION

In today’s highly competitive market, many companies face challenges in man-
aging their production and inventory efficiently. Lot sizing plays a significant
role to improve efficiency in inventory management. The purpose of lot sizing
is to determine the optimal quantity of item(s) to be ordered to meet the needs
of manufacturing in the period(s) considered and minimizing costs at the same
time. Economic order quantity [25] is the first model proposed to solve a simple
lot sizing problem. After this invention, numerous variants and extensions of lot
sizing models have been proposed in the literature (see e.g. the surveys [6, 19]).

Minimizing costs while satisfying demand in lot sizing problems naturally
introduces conflicting objective functions. Nevertheless, this problem is often
modeled as a single objective model. For example, some studies combine all ob-
jective functions into a single objective function as a weighted sum, while others
select one of the objective functions to be optimized and set others as constraints
[13]. In this way, information regarding interdependencies among the objective
functions may be lost and this may affect the validity of the solutions obtained.
Even though a solution is an optimal solution for the single objective problem,
it may not be the best possible solution for the original problem. Therefore, the
problem with multiple conflicting objective functions should be treated as a mul-
tiobjective optimization model (see e.g. [36]), where all objective functions are
considered simultaneously. Some studies have utilized multiobjective optimiza-
tion to address various topics in lot sizing [7], such as supplier selection [48],
perishability issues [4], and sustainability concerns [8]. This thesis studies the
benefits that multiobjective optimization can offer in solving real-world lot sizing
problems.

In optimization problems with multiple conflicting objective functions, iden-
tifying a single optimal solution that optimizes all objective functions is typically
impossible. Instead, a multiobjective optimization problem has many solutions,
called Pareto optimal solutions, at which an improvement in one objective func-
tion value is only possible at the expense of impairment in the value(s) of, at least,
one of the others. Without any additional information, these solutions are equally
good and mathematically incomparable, but one solution needs to be selected



16

among them to be applied in practice. This places a significant responsibility on
a decision maker (DM), who is an expert in the problem domain, to provide pref-
erence information used to find his/her most preferred solution as a final one.
This means that the final solution of a multiobjective optimization problem is the
most preferred (Pareto optimal) solution for the DM.

Finding the most preferred solution among many alternative solutions can
be a challenging task for the DM without any support. Therefore, methods that
offer support to the DM to learn about the trade-offs among the objective func-
tions and adapt his/her preferences while learning, can increase the confidence
and satisfaction of the DM with the final solution. Interactive methods (see e.g.
[38, 42]), which iteratively incorporate the DM’s preferences during the decision
making process, provide such support. These methods allow the DM to take an
active role in the decision making process and gain a better understanding of the
trade-offs among different objective functions. By iteratively adjusting his/her
preferences and exploring various solutions, the DM can gain insights into the
problem and make more informed decisions. As a result, interactive methods can
improve the quality of the final solution and increase the possibility of its success-
ful application. Over the years, many interactive methods have been developed
[36, 38] and have provided promising solutions in various fields of application.
However, only few studies have applied interactive methods in lot sizing prob-
lems [27]. For these reasons, we concentrate on interactive methods in this thesis.

When utilizing interactive methods, we often observe two phases on the
DM: a learning phase and a decision phase [42]. In the learning phase, the DM
explores various solutions that reflect different preferences and increases his/her
understanding of the problem until he/she identifies a region of interest. Then,
in the decision phase, the DM refines the solutions within the region of interest
until he/she finds his/her most preferred solution. Depending on the problem to
be solved, a single method may be used for both phases, or some methods can be
hybridized to combine their strengths in different phases to efficiently determine
the most preferred solution for the DM.

Various challenges are often encountered when dealing with real-world mul-
tiobjective optimization problems [2]. One of them is modeling the problem accu-
rately. The process of formulating the problem can be a complex task. The choice
of objective functions to be optimized can depend on several factors, such as data
availability, the needs of the stakeholders, or key performance indicators of the
company. This formulation process can even evolve during the decision making
process. Additionally, in modeling the problem, usually, not all formulas can be
found in the literature, especially when tackling new challenges that have not
been considered previously. Then, a novel formula also needs to be formulated.

Furthermore, finding a suitable method to support the DM in determining
his/her most preferred solution for the model formulated can be challenging as
well [1]. Even if an interactive method is to be applied, there are many methods
available to choose from. Among them, we cannot say that one method is gener-
ally superior to all the others, but every method has its own strengths [42]. The
selection of the method usually depends on the problem to be solved, as well as



17

desire of the DM and his/her experiences in solving multiobjective optimization
problems. Thus, careful consideration is necessary when selecting the appropri-
ate objective functions and the method(s) to address the specific multiobjective
optimization problem. Additionally, many real wold problems, including lot siz-
ing problems, are known to be computationally expensive [3, 11]. This presents
an additional challenge, since long computational times in solving these prob-
lems potentially cause significant delays that can frustrate the DM. Thus, it is
important to minimize the waiting time of the DM in the decision making pro-
cess in order to ensure that he/she can efficiently provide his/her preferences to
find the final solution.

This thesis is a collection of four articles [PI]-[PIV], which are published
or submitted in scientific journals and conference proceedings. Inspired by real
challenges in lot sizing, we develop models for various real needs and then pro-
pose appropriate interactive multiobjective optimization methods to be applied
to solve the corresponding problems. Specifically, we tackle the four following
challenges:

C1 How do we solve a single-item lot sizing problem together with a strategy
to handle uncertainty on demand efficiently?

C2 How do we solve a single-item lot sizing problem and simultaneously de-
termine a safety stock and a safety lead time to handle demand and lead
time uncertainty?

C3 How do we integrate a single-item lot sizing problem with a minimum or-
der quantity determination problem?

C4 How can we use single-item lot sizing models to solve multi-item lot siz-
ing problems that accommodate different preferences from the DM for dif-
ferent items without exhausting the DM with too many decision making
processes?

Challenges C1-C3 are tackled in articles [PI]-[PIII], respectively, and discussed in
Chapters 3 and 4. Challenge C4 is addressed in article [PIV] and introduced in
Chapter 5.

In article [PI], we focus on lot sizing under demand uncertainty to tackle
challenge C1. In this problem, a safety stock, as a traditional model to handle
demand uncertainty (see e.g. [22, 23, 44]), cannot handle high fluctuations in de-
mand [9], and the dynamic safety stock [28, 46] is unsuitable for problems with
a large number of decision variables and constraints [57]. Therefore, we propose
a safety order time concept that keeps additional stock based on time, together
with the safety stock, to handle the stochasticity of demand efficiently. We also
propose a multiobjective optimization model and modify the existing formulas to
adapt the safety order time in the proposed model. In article [PII], we formulate
a multiobjective optimization model to solve a lot sizing problem under demand
and lead time uncertainty to tackle challenge C2. We use a safety lead time [59]
to handle lead time uncertainty but lack the formula to measure the quality of
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safety lead time. To overcome this, we propose the probability of product avail-
ability formula and use it as one of the objective functions in the proposed model.
Similarly, in article [PIII], when integrating lot sizing with the minimum order
quantity determination problem to tackle challenge C3, there is no formula avail-
able in the literature to measure the quality of the minimum order quantity in
satisfying demand. Hence, we propose a minimum order quantity level formula
as well as a multiobjective optimization model to address this challenge. All the
proposed models are described in Chapter 3.

This thesis is an instance of data-driven decision support, where multiobjec-
tive optimization is applied. Our proposed models are inspired by real challenges
in lot sizing. We use real data as a proof of concept to demonstrate the applicabil-
ity of the proposed models. Our motivation is to bridge the gap between theory
and practice. All data used in this thesis is provided by a (manufacturing) com-
pany, and the supply chain manager of the company acted as the DM to provide
his preferences in the decision making processes based on his expertise in real
life. These case studies are presented in Chapter 4.

To solve the multiobjective optimization problems, which are formulated in
the proposed models, as said, it is important to find suitable method(s) to support
the DM to determine the most preferred solution for each of the problems de-
fined. In articles [PI]-[PIII], we used variants of NAUTILUS methods [41]. These
methods start from the worst possible objective function values and iteratively
improve all objective functions based on preference information provided by the
DM. In this way, the DM is able to find his/her most preferred solution with-
out having to trade-off among the objective functions. This also allows the DM
to avoid anchoring around the starting point, where he/she may be reluctant to
move from the starting point due to the difficulty of sacrificing in at least one
objective function to find a new Pareto optimal solution [14].

In solving a multiobjective optimization problem with a real DM, the DM
must understand the meaning of each piece of information given to him/her in
each iteration before providing his/her preferences. The DM in this thesis did not
have any previous experience with multiobjective optimization in the beginning,
and the case study in article [PI] was the first experience for the DM to conduct
a supported decision making process. For this first experience, we suggested the
DM use the E-NAUTILUS method [50], which is a variant of NAUTILUS meth-
ods, where in each iteration, the DM is presented with some solutions (with dif-
ferent objective function values) to be compared. In this way, the DM can easily
understand the meaning of the information provided, and he gains an improve-
ment in all the objective function values from iteration to iteration until a Pareto
optimal solution is reached. We demonstrate in Chapter 4 that the DM success-
fully found his most preferred solution to solve challenge C1 with E-NAUTILUS.

After experiencing E-NAUTILUS, the DM understood more about multi-
objective optimization, and we suggested using NAUTILUS Navigator [49] in
article [PII], where the DM needs to provide a desirable value for each objective
function at the beginning of the decision making process. This method then uses
navigation ideas [26] to direct the movement, based on these desirable values,
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from the worst starting point to a Pareto optimal solution as the final solution.
During the navigation process, the DM can navigate by changing his/her desir-
able values, the movement speed, or even go back, until he finds his most pre-
ferred solution. In Chapter 4, we also demonstrate how we support the DM to
find the most preferred solution for him to solve challenge C2 with NAUTILUS
Navigator.

In article [PIII], we propose a hybridization of methods that combines the
strength of two interactive methods: NAUTILUS Navigator [49] and NIMBUS
[40]. We use the synchronous NIMBUS method, as its type of providing prefer-
ence information in terms of classification was regarded preferable by the DM.
However, providing a good starting point for NIMBUS is important, as it greatly
affects the final solution [14]. To achieve a good starting point for NIMBUS, we
propose to use the NAUTILUS Navigator method. With this method, the DM
can find a preferred Pareto optimal solution that can serve as a starting point for
NIMBUS. In this way, NAUTILUS Navigator may support the DM in the learning
phase to gain insights into the problem and enable navigation without trading-
off until he/she obtains a solution representing the region of his/her interest.
Then, NIMBUS supports him/her in the decision phase to refine the solution un-
til his/her most preferred solution is obtained. We demonstrate in Chapter 4 that
the DM appreciated the hybridization of methods that helped him to find his
most preferred solution in an easier way to solve the problem addressing chal-
lenge C3.

In order to address the computational challenge of lot sizing problems, in all
articles included in this thesis, we generated a large number of solutions that rep-
resented Pareto optimal solutions using an evolutionary method. The generation
processes of these solutions, which can be time-consuming because of the expen-
sive functions, were done before the interactive decision making processes, that
involved the DM, were conducted. Then, the decision making processes were
conducted by utilizing this representative set to reduce waiting times on the DM.

Many lot sizing studies only focus on a single item [13], yet in practice, com-
panies must determine order quantities for numerous items. In this condition,
repeating the decision making process for every single item is laborious. Further-
more, the few studies that focus on multi-item lot sizing problems treat each item
similarly by combining the objective function(s) of all items into a sum. In this
way, different preferences from the DM in lot sizing decisions for different items
cannot be accommodated. This fact motivates us in challenge C4, to extend the
single-item lot sizing model to be used to solve multi-item lot sizing problems in
such a way that the DM is allowed to provide different preferences for different
items. To address this challenge, we propose a decision support approach, called
DESMILS in article [PIV], that we discuss in Chapter 5.

DESMILS allows the DM to provide his/her preferences to solve a single-
item multiobjective lot sizing problem for a small number of selected items that
have different preferences in lot sizing decisions. These items are carefully se-
lected to represent a large number of items. The preferences obtained from the
DM for the selected items are then accommodated in deriving lot sizes for the
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other items that have similar preferences. Therefore, the need of repeating a de-
cision making process for each item separately is avoided, but we can accommo-
date different preferences for different items. DESMILS enables applying inter-
active multiobjective optimization methods in solving multi-item lot sizing prob-
lems. It can also be applied to any variant of single-item multiobjective lot sizing
models. In the case study of Chapter 5, we demonstrate that the DM found lot
sizes for 94 items with only 10 decision making processes.

The DM appreciated many benefits that he gained from the studies in this
thesis. The single-item lot sizing models proposed in articles [PI]-[PIII], allow
him to consider different important indicators simultaneously as objective func-
tions in various lot sizing problems to measure the success of his day-to-day op-
erations. Additionally, he found the usefulness of the safety order time concept
proposed in article [PI] for his inventory control because it responds faster than
safety stock, especially when demand fluctuates rapidly. Moreover, he gained
valuable insights to be used in negotiations with the supplier with the proposed
model and concept in article [PIII]. Furthermore, he really appreciated DESMILS
which saved his time and effort in solving his lot sizing problems for a large
number of items, where he was able to obtain the solutions that best represent his
preferences by spending an acceptable amount of his time.

The rest of the thesis is structured as follows. Chapter 2 establishes the
background concepts of multiobjective optimization used in this thesis. Chap-
ters 3 and 4 introduce articles [PI]-[PIII], where the proposed lot sizing models
are discussed in Chapter 3 followed by the case studies in Chapter 4. Chapter
5 introduces article [PIV], which describes DESMILS and the related case study.
Finally, we provide our conclusions and put forward some future research direc-
tions in Chapter 6, followed by the author’s contributions in the included articles
and the final thoughts.



2 SOME CONCEPTS OF MULTIOBJECTIVE
OPTIMIZATION

In this chapter, the concepts and terminologies related to multiobjective optimiza-
tion to be used in this thesis are provided. Subsequently, we present some inter-
active methods for solving multiobjective optimization problems.

2.1 Basic Concepts

Multiobjective optimization problems can be modeled mathematically as:

minimize f (x) = ( f1(x), . . . , fk(x))T

subject to x ∈ S.
(1)

Here, k ≥ 2 objective functions, fi : S → R, i = 1, . . . , k, are to be optimized
simultaneously. For generality, we consider all the objective functions to be min-
imized. If some of the objective functions fi are to be maximized, they can be
transformed to minimize − fi.

A decision variable vector x consist of the decision variables (x1, . . . , xn)T.
These vectors are feasible if they belong to the feasible region S, which is a subset
of the decision space Rn. The feasible region is formed by constraints, which
can be equality and inequality constraints and/or lower and upper bounds for
the decision variable vectors. For a feasible decision variable vector x ∈ S, the
corresponding vector z = f (x) is called a feasible objective vector, which consists
of objective function values calculated at x. The feasible objective vector belongs
to the feasible objective region Z = f (S), which is a subset of the objective space
Rk. In what follows, we use the term ‘solution’ to refer to an objective vector.

The objective functions fi, i = 1, . . . , k are (at least partly) conflicting with
each other. Therefore, there is no single optimal solution of multiobjective op-
timization problems (1) where all objective functions achieve their individual
optima. To describe solutions of (1), we define the concept of dominance and
nondominance as follows.
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Definition 1 (Dominance and nondominance). Let z1 and z2 be two feasible solu-
tions. We say that z1 dominates z2 if z1

i ≤ z2
i for all i = 1, . . . , k and z1

j < z2
j for at

least one index j. The solutions that do not dominate each other are called nondominated
solutions.

The solutions of (1) are a set of so-called Pareto optimal solutions defined as
follows:

Definition 2 (Pareto optimality). A feasible solution z′ ∈ Z and its corresponding
decision variable vector x′ ∈ S are Pareto optimal if no other feasible solution z ∈ Z
dominates z

′
.

Note that nondominated solutions are not always Pareto optimal, but Pareto
optimal solutions must be nondominated. The set of all Pareto optimal solutions
is called a Pareto optimal front. To describe the ranges of objective function values
in the Pareto optimal front, we define its lower and upper bounds, which is called
an ideal point z∗ and a nadir point znad, as follows.

Definition 3 (Ideal point). An ideal point represents the best values that objective func-
tions can achieve in the Pareto optimal front. The components of the ideal point can be
determined by minimizing each objective function individually, that is z∗i = minimize

x∈S
fi(x), i = 1, . . . , k

Definition 4 (Nadir point). A nadir point represents the worst values of objective func-
tions in the Pareto optimal front.

In practice, the nadir point is difficult to calculate when the Pareto opti-
mal front is unknown, and no reliable procedure is available to calculate it for
problems with more than two objective functions [36]. Therefore, it is commonly
approximated (see e.g. [10, 18, 32]). For computational reasons, we also define a
utopian point z∗∗, which is strictly better than the ideal point. The components of
the utopian point are formed by z∗∗i = z∗i − ϵ, i = 1, . . . , k, where ϵ is a relatively
small positive scalar.

All Pareto optimal solutions are equally acceptable mathematically. There-
fore, additional information from a decision maker (DM) is needed to select one
Pareto optimal solution as the final solution to be used in practice. A DM is an
expert in the problem domain who has responsibility for making a decision in the
application area; for example, in lot sizing, he/she is a supply chain manager in a
company. The DM is responsible for providing preference information by relying
on his/her deep knowledge of the problem.

Solving a multiobjective optimization problem means supporting the DM
to find his/her most preferred solution among the Pareto optimal solutions. The
process of finding the solution by the DM is called a decision making process.
Besides the DM, another important role in solving a multiobjective optimization
problem is an analyst, who is responsible for helping the DM to find the best solu-
tion based on his/her preferences. The analyst should have knowledge regarding
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the multiobjective optimization methods and has responsibility for the mathe-
matical aspects of the model and making preparations for the decision making
process.

Numerous methods have been proposed in the literature to solve multiob-
jective optimization problems (see e.g. [36, 37, 42]). In [36], these methods are
divided into four classes according to the role of the DM in the decision making
process. The classes are:

• no-preference methods, where no preference information from the DM is
used;

• a priori methods, where the DM is first asked to specify his/her preferences,
and a Pareto optimal solution that satisfies the preferences as well as possi-
ble is then found;

• a posteriori methods, where a (representative) set of Pareto optimal solu-
tions is first generated and presented to the DM, and then he/she is ex-
pected to choose the most preferred one among them; and

• interactive methods, where the DM provides his/her preferences iteratively
during the decision making process.

The DM can express his/her preferences in different ways [36]. One of them is
using a reference point, which is defined as follows.

Definition 5 (Reference point). A reference point z̃ ∈ Rk is a vector consisting of
aspiration levels. Aspiration levels z̃i, i = 1, . . . , k, are the desirable values for each
objective function given by the DM.

Other ways to elicit preference information from the DM, for example, are using
classification (e.g., which objective(s) to be improved and which one(s) to be im-
paired) or selecting one preferred solution from a set of Pareto optimal solutions.

2.2 Scalarizing Function

Scalarizing functions s : Rn → R are often used in many multiobjective opti-
mization methods to transform multiobjective optimization problems into single
objective problems:

minimize s( f (x))
subject to x ∈ S.

(2)

Any appropriate single objective optimization method can be used to optimize
(2). The optimal solution of (2) is a solution of problem (1), and some scalarizing
functions guarantee the Pareto optimality of the solution obtained [62]. Scalar-
izing functions typically include the preference information from the DM, for
example, by using the reference point.

Different scalarizing functions have been suggested in the literature to be
used in different multiobjective optimization methods [39]. The achievement
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scalarizing function (ASF), which is introduced in [60], is a widely used scalar-
izing function. The basic principle of ASF is to find the closest Pareto optimal
solution to the reference point. This function works well to find a Pareto optimal
solution for the multiobjective optimization problem (1) for any reference point
z̃ ∈ Rk, regardless of whether it is in the feasible objective region or not.

Different variants of ASFs have been introduced in the literature [39, 45].
One of them, which is used in this thesis, can be written as follows:

s( f (x)) = max
i=1,...,k

{
fi(x)− z̃i

znad
i − z∗∗i

}
+ ρ

k

∑
i=1

fi(x)
znad

i − z∗∗i
, (3)

where ρ > 0 is a relatively small positive scalar. By solving problem (2) with the
ASF (3), a Pareto optimal solution for problem (1) can be obtained, and different
Pareto optimal solutions can be found by changing z̃ [36, 37].

2.3 Interactive Methods

Among the four classes of multiobjective optimization methods, interactive meth-
ods have been found useful in supporting the DM to find his/her most preferred
solution [38]. The benefits of these methods have been discussed in several stud-
ies (see e.g. [1, 38, 42, 61]). These methods provide possibilities for the DM to
learn about the problem and the relationship among the objective functions. Dur-
ing the decision making process, the DM is allowed to explore different solutions
and change his/her preferences until he/she finds the best solution for him/her.
In this way, the DM should be more aware of the nature of the problem before
deciding on one Pareto optimal solution as the final solution. These methods are
efficient from both computational and cognitive points of view, because the DM
can concentrate on the solutions that are interesting for him/her and only these
interesting solutions need to be generated.

In general, interactive methods start by presenting some information to the
DM, such as ideal and nadir points. Then, the DM is asked to provide some
preference information (e.g., a reference point). One or more (Pareto optimal) so-
lution(s) are then generated corresponding to the DM’s preferences and shown
to the DM. If several solutions are generated, the method asks the DM to se-
lect the best solution so far. The DM is then iteratively asked to provide his/her
preferences, for example, by providing a reference point or selecting one solu-
tion among the generated Pareto optimal solutions, depending on the method in
question, and new Pareto optimal solution(s) are generated according to the DM’s
preferences and presented to the DM. These iterative processes are repeated until
the DM has found the most preferred solution.

Many interactive methods have been proposed in the literature using differ-
ent ways in eliciting preference information from the DM and various techniques
in generating Pareto optimal solutions [36, 38]. In what follows, we explain three
of them which are used in this thesis. They are the E-NAUTILUS method [50],
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the NAUTILUS Navigator method [49], and the synchronous NIMBUS method
[40]. Graphical user interfaces for these methods are available in the DESDEO
framework [43], which is an open-source software implemented in Python.

2.3.1 E-NAUTILUS

The enhanced NAUTILUS (E-NAUTILUS) method is introduced in [50]. This is
a variant of NAUTILUS methods [41], which were designed to avoid trading-off
among the objective functions. According to the prospect theory [30], people do
not respond equally to gains and losses; instead, they tend to fear losses more
than desire gains. Therefore, the DM may fail to find his/her desirable solution
because moving from one Pareto optimal solution to another one may cause some
decisional stress to the DM [33]. Following this philosophy, NAUTILUS methods
do not start from the Pareto optimal solution(s) as most other interactive meth-
ods do, but from the nadir point as the worst objective function values. Then,
in each iteration, all objective function values are improved from the previous it-
eration until the preferred Pareto optimal solution is found as the final solution.
In this way, the DM can have a free search without requiring any trade-offs and,
iteratively, gain in all objective functions.

The E-NAUTILUS method is suitable for computationally expensive prob-
lems. This method has the three following stages:

1. pre-processing stage, where a set of (Pareto optimal) solutions is generated;
2. interactive decision making stage, where the DM gives his/her preferences

iteratively until he/she obtains a preferred solution (among the pre-generated
set) in the last iteration; and

3. post-processing stage, which is needed to ensure the Pareto optimality of
the final solution, when the method used in the first stage cannot guarantee
it.

The pre-processing stage is the most time-consuming part of E-NAUTILUS, es-
pecially for computationally expensive problems. However, it is done without
the involvement of the DM. Any a posteriori methods can be used in this stage
to generate a set of Pareto optimal solutions or a set of nondominated solutions
that approximates Pareto optimal solutions. We denote this set as P(0). Here,
an analyst should have knowledge of an appropriate (a posteriori type) method
to generate a sufficient number of solutions. Then, the (estimated) ideal and the
nadir points are calculated in this stage by finding the best and the worst values
of each objective function from the solutions in P(0).

The DM is only involved in the second stage, called the interactive decision
making stage. This stage uses the generated solutions P(0) without solving the
original multiobjective optimization problem that can be computationally expen-
sive. Therefore, there are no time-consuming computations involved, and the
decision making process can be conducted without waiting times. At the begin-
ning of this stage, the estimated ideal and nadir points (z∗ and znad) are presented
to the DM, and he/she is asked to provide the number of iterations NI and the
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number of candidates NS that he/she wants to compare at each iteration. We re-
fer to a candidate as a vector in the objective space Rk, which does not necessarily
correspond to any decision variable vector.

The decision making process is conducted in NI iterations, and three kinds
of information are provided to the DM in each iteration. They are: NS candidates,
the best reachable values of each candidate, and the closeness of the candidates to
the Pareto optimal front. We define the concept of a reachable solution as follows.

Definition 6 (Reachable solution). Let z′ ∈ Rk be a candidate. A feasible solution
z ∈ Z and the corresponding decision variable vector x ∈ S, are reachable from z′ if z
dominates z′.

The best reachable values of candidate z′ are the best values of each objective
function that can be achieved by reachable solutions of z′. The DM is then asked
to select one preferred candidate in each iteration (z(h)), after comparing NS can-
didates based on information provided to him/her. The set of reachable solutions
(P(h)) is then updated by deleting solutions that are not reachable from (z(h)).

The candidates of iteration h, z(h, i), i = 1, . . . , NS are calculated based on
the previous preferred candidate z(h − 1), with the starting point z(0) = znad.
Each candidate represents different directions to move toward the Pareto opti-
mal front, and selecting one preferred candidate directs him/her to the direction
that he/she likes. For each candidate, the worst objective function values of its
reachable solutions is the candidate itself, and the best reachable values are cal-
culated by solving the following ε-constraint problem [24] for r = 1, . . . , k:

minimize fr(x)
subject to f j(x) ≤ zj(h, i), j = 1, . . . , k, j ̸= r

x ∈ P(h).

(4)

The ranges between the best and worst objective function values are called reach-
able ranges.

During the iterations, the candidates get closer to the Pareto optimal front,
and the reachable ranges become smaller. The closeness of each candidate to
the Pareto optimal front is shown to the DM as a percentage and calculated as
follows:

d(h, i) =
∥z(h, i)− znad∥
∥z̄(h, i)− znad∥ × 100%, i = 1, . . . , NS. (5)

The result of the interactive decision making stage is z(NI) ∈ P(0), which is a
nondominated solution that best represents the DM’s preferences.

The Pareto optimality of z(NI) depends on the a posteriori method used
in the first stage. However, some methods, such as evolutionary methods, can-
not guarantee that their solutions are Pareto optimal. Therefore, the last stage is
needed in this case, to ensure the Pareto optimality of the final solution. To get a
final Pareto optimal solution, z(NI) is projected onto the Pareto optimal front by
minimizing ASF (3) with z(NI) as a reference point. A more detailed algorithm of
the E-NAUTILUS method can be seen in [50], and an explanation of the interface
for E-NAUTILUS can be found in [PI].
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2.3.2 NAUTILUS Navigator

The NAUTILUS Navigator method [49] is another variant of NAUTILUS meth-
ods [38]. All methods in the NAUTILUS family enable the DM to have a free
search without trading-off by starting from the worst objective function values,
but they differ in the way used to interact with the DM to find the final solution
and how solutions are generated in each iteration. NAUTILUS Navigator uses
navigation ideas elaborated in [26] to direct the movement from the worst objec-
tive function values as the starting point to a Pareto optimal solution as the final
solution.

Similar to the E-NAUTILUS method, NAUTILUS Navigator needs a set of
Pareto optimal solutions or a set of nondominated solutions that approximates
Pareto optimal solutions to be generated before the navigation process starts.
This makes NAUTILUS Navigator suitable for computationally expensive prob-
lems, because the process of generating solutions, which may take time because
of expensive functions, is done without involving the DM. Therefore, the DM is
allowed to navigate in real time without waiting times. The concept of the reach-
able range is also used in this method, where, during the navigation process, the
DM can see the ranges between the best and the worst objective function values
of the reachable solutions.

At the beginning of the navigation process, the estimated ideal and nadir
points, which are derived from the pre-generated set of solutions, are presented
to the DM, to see the reachable ranges of each objective function in the first step.
The DM specifies his/her preferences by providing a reference point as a search
direction to direct the movement towards desired Pareto optimal solutions. Each
component of the reference point provided by the DM (aspiration level), must lie
within the reachable ranges.

The navigation process continue from step to step unless the DM stops it,
and there are 100 steps by default until a Pareto optimal solution is reached. The
DM can change the speed of movement from 1 (minimum speed) to 5 (maximum
speed), which means the number of steps taken per second by the algorithm.
During the navigation process, the connection to the decision space is temporarily
loose, but at the end, a Pareto optimal solution and the corresponding decision
variable vector in the decision space are presented to the DM.

NAUTILUS Navigator moves towards the Pareto optimal front from step
to step in the direction specified by the DM and at the speed he/she defines.
The DM can see the changes in the reachable ranges while they shrink from step
to step in the direction of the reference point. Whenever he/she wants to change
direction, he/she can stop at any step and go back to any previous step to provide
a new reference point. The DM also can specify bounds for the objective functions
that must not be exceeded. The DM can navigate until he/she finds his/her most
preferred Pareto optimal solution at the end of the navigation process, where the
reachable ranges shrink to a single point.

Similar to E-NAUTILUS, the Pareto optimality of the solution obtained de-
pends on the method used to generate the set of solutions before the navigation
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process. Therefore, the last stage of E-NAUTILUS, where we project the solu-
tion onto the Pareto optimal front, can be applied here if needed. The detailed
algorithm of the NAUTILUS Navigator method can be seen in [49].

2.3.3 Synchronous NIMBUS method

Different from NAUTILUS methods, the synchronous NIMBUS method [40] is a
trade-off based method where the DM needs to deal with trade-offs in each it-
eration to move from a Pareto optimal solution to another one to find the most
preferred Pareto optimal solution. In this method, the DM gives her/his prefer-
ences by using a classification, which is a natural way of expressing preference
information [35], without any artificial concepts needed. Many studies have ap-
plied this method to support the DM in solving various real-world problems (see
e.g. [51, 52, 55]).

Before starting the interactive process, NIMBUS needs a Pareto optimal so-
lution to be provided, e.g. by the DM, as a starting point. Otherwise, a Pareto
optimal solution located approximately in the middle of the Pareto optimal front
can be used as a starting point. This point, called a neutral compromise solution,
can be calculated by solving the ASF (3) with aspiration levels z̃i = (znad

i + z∗∗i )/2,
i = 1, . . . , k.

In the first iteration, the starting point is presented to the DM together with
the ideal and nadir points. The DM then needs to indicate what kind of changes in
the objective function values of the current solution are needed to obtain a more
preferred Pareto optimal solution. Therefore, in each iteration, he/she is asked to
classify each of the objective functions into one of the five following classes:

1. I<: if he/she wants to improve the current value,

2. I≤: if he/she wants to improve the current value to a certain level,

3. I=: if he/she wants to keep the current value,

4. I≥: if he/she allows to impair the current value until a certain bound, and

5. I⋄: if he/she lets the current value change freely.

To move from a Pareto optimal solution to another, at least one objective function
must be impaired to get better value(s) of other objective function(s). Therefore,
a classification is feasible only if I< ∪ I≤ ̸= ∅ and I≥ ∪ I⋄ ̸= ∅, and all objective
functions have been classified (I< ∪ I≤ ∪ I= ∪ I≥ ∪ I⋄ = {1, . . . , k}). If classes I≤

and/or I≥ are selected, the bounds must be specified.
After having provided the classification information, the DM can specify

the maximum number of solutions (one to four) that he/she wants to consider
and compare. Then, the desired number of new Pareto optimal solutions, that
reflect the DM’s preferences as well as possible, are generated by using different
scalarizing functions. The new Pareto optimal solutions are then presented to the
DM, and he/she selects one preferred solution among them. If he/she is satisfied
with this solution, he/she can stop with it as the final solution. Otherwise, he/she
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can continue to the next iteration and use this solution as the starting point of a
new classification. The DM may also request a desired number of intermediate
solutions to be generated between any two interesting solutions obtained so far.
Further details about the Synchronous NIMBUS method can be seen in [40].



3 SINGLE-ITEM MULTIOBJECTIVE LOT SIZING
MODELS

To bridge the gap between theory and the challenges of real industrial problems,
in this thesis, we solve lot sizing problems that are integrated with different prob-
lems. These problems are motivated by real challenges in a manufacturing com-
pany. In this chapter, we first define the general assumptions and notations which
are used throughout this thesis. We then present several lot sizing models that we
proposed in the different articles constituting this thesis ([PI]-[PIII]).

3.1 General assumptions and notations

We consider a single-item multi-period lot sizing problem, which means that
more than one period is considered, and an order should be placed in each pe-
riod. The replenishment process follows a periodic review policy, where orders
are reviewed over discrete time periods t = 1, . . . , T. In each period t, the order
quantity Q(t) is reviewed at the beginning of the period, and the order arrives af-
ter a certain lead time L. The lead time is assumed to be stochastic for the model
in Section 3.3 and constant for the others.

We make the following assumptions in general, while the specific assump-
tions are explained in each subsection if needed.

1. All the input data are assumed to be ready to use.

2. The predicted demand during period t, denoted by D(t), is assumed to be
stochastic, independent of other periods, and follows a normal distribution
with a mean µ and a standard deviation σ.

3. The cost to place one order is c, without any capacity limit.

4. No backorder cost is considered in the models.
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5. There is a requirement from the supplier to place an order with a mini-
mum order quantity moq, and it must be rounded up by a rounding value
r because of the packaging size. Therefore, we can only place an order by
following the formula moq + a r, for any integer a ≥ 0.

The notations used in this paper are defined as follows (note that, here, moq is a
decision variable representing the amount of MOQ).

t index of time period, t = 1, . . . , T
p price to purchase one unit of item
c cost to place one order
h cost to hold one unit of item for one period
L lead time

D(t) predicted demand during period t
µ average demand
σ standard deviation of demand for one period

moq minimum order quantity
r rounding value

Q(t) lot size or order quantity at period t
Y(t) order indicator
I(t) inventory position at the end of period t

The value Y(t) follows the formula:

Y(t) =

{
0, if Q(t) = 0
1, otherwise,

while the value of I(t) follows the formula:

I(t) = I(t − 1) + Q(t − ⌊L⌋)− D(t),

where ⌊L⌋ is the biggest integer lower than or equal to L.

3.2 Lot sizing with safety strategy placement

In article [PI], we study lot sizing in a stochastic environment on demand. Many
companies usually use a safety stock (SS) to protect against demand uncertainty
(see e.g. [22, 23, 44]). A SS is defined as a level of the item that is kept in their
inventory as a buffer to avoid stockout when demand exceeds the forecast. How-
ever, a static SS that keeps a fixed level of stock regardless of demand fluctuation
can lead to stockout during periods of high demand [9]. Some researchers used
a dynamic SS that can be changed dynamically from period to period to handle
high fluctuations in demand [28, 46]. However, a dynamic SS is not suitable for
lot sizing problems with large numbers of decision variables and various types
of practical production constraints [57].
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We propose a so-called safety order time (SOT) as another way to handle
demand uncertainty. With a SOT, the stock that is kept to handle demand un-
certainty is calculated based on time. For example, one week’s worth of demand
is always kept in the inventory when we set SOT as one week. Because the de-
mands fluctuate, the stock is also changed dynamically. Therefore, we can better
manage high peaks of demand with SOT. In this way, a SOT fills the need of hav-
ing dynamic stock in an easy and efficient way so that it can be applied to lot
sizing problems with large numbers of decision variables and constraints. In the
model proposed in article [PI], we use both SS and SOT as a safety strategy to
increase the preparedness of handling demand uncertainty.

We formulate a multiobjective optimization model with four objective func-
tions to solve the defined lot sizing problem. The objective functions are: mini-
mize purchasing and ordering cost (POC), minimize holding cost (HC), maximize
cycle service level (CSL), and maximize inventory turnover (ITO). The proposed
model [PI] can be written as:

minimize POC = ∑
t

Q(t) p + ∑
t

Y(t) c,

HC = ∑
t

I(t − 1) + I(t)
2

h,

maximize CSL = F

(
SS + µ SOT

σ

)
,

ITO = ∑
t

D(t) + σ

(I(t − 1) + I(t))/2
,

subject to FR =
I(t − 1) + ∑t

i=t−⌊L⌋ Q(i)− SS

∑t+⌊P⌋
j=t D(j) + (P − ⌊P⌋)D(⌈P⌉)

≥ 1 , for t = 1, . . . , T,

Q(t) = Y(t) (moq + a r) , for any integer a ≥ 0 and t = 1, . . . , T,
I(t) ≥ SS + SOT D(t) , for t = 1, . . . , T,
SS ≥ 0 and SOT ≥ 0,

(6)

where P = L + SOT. By solving model (6), the DM can determine the optimal
order quantity for each period Q(t), t = 1, . . . , T, simultaneously with SS and
SOT, with his/her most preferred solution that best balances among POC, HC,
CSL, and ITO.

The cost functions are adapted from the dynamic economic order quantity
model [58], but we separate POC and HC as the first and the second objective
functions because they show different behavior in the inventory system [47].
Therefore, there is a clear trade-off between POC and HC. For instance, when
considering the same total order quantity over the period considered, ordering
more frequently results in higher POC but lower HC compared to ordering less
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frequently. Furthermore, POC and HC typically serve different purposes, where
POC focuses on procurement efficiency and HC is related to warehousing man-
agement. Considering them as separate objective functions enables the DM to
align his/her strategies with specific goals and priorities.

The CSL is set to be the third objective function to evaluate the effectiveness
of the proposed safety strategy in dealing with unexpected demand within one
period. A CSL is defined as the probability of not having a stockout in a replen-
ishment cycle [15]. We modify the CSL formula defined in [56] to cover both SS
and SOT. In this case, to cover unpredicted demand for one period, we have ad-
ditional stock in the amount of SS and the average demand for SOT time units.
The CSL has trade-offs with POC and HC. Maximizing CSL requires purchasing
additional stock, which naturally increase both POC and HC.

The ITO is set to be the last objective function because it is an important
indicator of lot sizing in practice. It reflects the amount of an item sold or used
in production over a year, which provides insight into how quickly the company
is selling or using the item. With ITO, the DM can evaluate the effectiveness of
his/her inventory management strategies. ITO can be calculated as the ratio of
item usage to the average inventory level. In model (6), we modify the traditional
ITO formula [54] to be suitable for our problem.

From model (6), one can see a connection that maximizing ITO implies min-
imizing HC. Thus, it is possible to consider only one of them, if it is preferred
by the DM (since the problem formulation must have objective functions that
the DM in question has interest in). In this thesis, we consider both HC and
ITO as objective functions because they are both important indicators that can
provide different meanings for the DM. ITO is an indicator of the efficiency of
the inventory management system, while HC is an indicator of costs associated
with warehousing management. They both are needed when the DM as a supply
chain manager reports to the top management. By examining both indicators, the
DM can make informed decisions that strike a balance between operational and
warehousing efficiency.

3.3 Lot sizing with safety stock and safety lead time

In article [PII], we consider both demand and lead time uncertainty in a lot sizing
problem. Therefore, in this article, the lead time is assumed to be stochastic and
follows a normal distribution with a mean L and a standard deviation s. As men-
tioned earlier, a SS is widely used to handle demand uncertainty, and to handle
lead time uncertainty, an additional time period, called a safety lead time (SLT),
is commonly used [59]. With SLT, companies keep their stocks available to sat-
isfy the demand during the SLT period so that they can avoid stockout when the
order is delayed.

The problem of determining an optimal value for SS has been widely stud-
ied [20]. Various methods have been proposed to find an optimal SS that ensures
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a high service level while satisfying demand and minimizing costs [53]. How-
ever, finding an optimal value for SLT has not been studied as extensively, and,
to the best of our knowledge, there is no formula available for measuring the
quality of SLT.

We propose a formula called the probability of product availability (PPA) to
evaluate the quality of SLT. This formula calculates the probability of not having
stockout due to the late delivery. As said, orders are expected to arrive after a
stochastic lead time period L, and we ensure stock availability in this period as
well as an additional SLT period. Therefore, by maximizing the PPA formula
we aim to increase the probability of the actual order arrives during the period
L + SLT. The proposed PPA formula can be written as follows:

PPA = P(actual delivery time ≤ L + SLT)

= F(L + SLT, L, s) = F
(

SLT
s

)
.

(7)

We formulate a multiobjective optimization model with six objective func-
tions to solve the integration problem of lot sizing and determination of SS and
SLT. The objective functions are: minimize purchasing cost (PC), ordering cost
(OC), and holding cost (HC), as well as maximize CSL, PPA, and ITO. The multi-
objective optimization model proposed in [PII] can be written as:

minimize PC = ∑
t

Q(t) p,

OC = ∑
t

Y(t) c,

HC = ∑
t

I(t − 1) + I(t)
2

h,

maximize CSL = F
(

SS√
σ2(1 + SLT) + µ2s2

)
,

PPA = F
(

SLT
s

)
,

ITO = ∑
t

D(t)
(I(t − 1) + I(t))/2

,

subject to FR =
I(t − 1) + ∑t

i=t−⌊L⌋ Q(i)− SS

∑t+⌊P⌋
j=t D(j) + (P − ⌊P⌋)D(⌈P⌉)

≥ 1 , for t = 1, . . . , T,

Q(t) = Y(t) (moq + a r) , for any integer a ≥ 0 and t = 1, . . . , T,
I(t) ≥ SS + SLT D(t) , for t = 1, . . . , T,
SS ≥ 0 and SLT ≥ 0,

(8)
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where P = L + SLT.
Similar to model (6), in model (8), we adapt the cost functions from the

dynamic lot sizing problem [58]. However, we consider all of them as separate
objective functions here to see the trade-offs more clearly. We then consider CSL
to be maximized to prevent stockout due to demand uncertainty, and, to avoid
stockout due to late delivery, the PPA formula is considered to be maximized.
Furthermore, we maximize ITO in the last objective function to measure the ef-
fectiveness of the inventory system. By solving model (8), the DM can determine
the optimal order quantity for each period (Q(t), t = 1, . . . , T) simultaneously
with SS and SLT as the decision variables.

3.4 Lot sizing with minimum order quantity determination

Article [PIII] focuses on the integration of lot sizing and minimum order quantity
(MOQ). A MOQ is often imposed in practice by suppliers on their products to en-
sure their production and ordering process. This requirement is commonly set as
a constraint, such as in articles [PI] and [PII]. However, to the best of our knowl-
edge, there has been no study in the literature focused on the problem of deter-
mining a MOQ from the buyer’s perspective. Therefore, to support the DM as a
buyer in negotiating a preferred MOQ with the supplier, besides order quantities,
we also determine MOQ as a decision variable in the model that we proposed in
article [PIII].

As compensation of a MOQ, suppliers commonly offer quantity discounts
to pursue buyers to order in large quantities. There are many types of discounts
that have been considered in the literature (see e.g. [5, 63]). One of them is an
all-units discount that we use in this thesis. This type of discount reduces prices
for every unit purchased if the order quantity exceeds a threshold. In this thesis,
we use three prices (p1, p2, p3) for different order quantities, where a higher order
quantity, a lower price is applied to the order. The price function [63] can be
written as follows:

P(t) =





p1 if Q(t) < a1

p2 if a1 ≤ Q(t) < a2

p3 if Q(t) ≥ a2,

(9)

where p1 > p2 > p3 and a1 < a2.
To measure the quality of MOQ in satisfying demand, we propose the MOQ

level formula, which provides a ratio between the MOQ and the expected de-
mand, as follows:

ML =
moq

µ
.

Then, to solve the defined lot sizing problem, we formulate a multiobjective opti-
mization model [PIII] with five objective functions, that can be written as follows.
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minimize ML =
moq

µ
,

PC = ∑
t

Q(t) P(t),

OC = ∑
t

Y(t) c,

HC = ∑
t

I(t − 1) + I(t)
2

H(t),

maximize ITO = ∑
t

D(t)
(I(t − 1) + I(t))/2

,

subject to FR =
I(t − 1) + ∑t

i=t−⌊L⌋ Q(i)− SS

∑t+⌊L⌋
j=t D(j) + (L − ⌊L⌋)D(⌈L⌉)

≥ 1 , for t = 1, . . . , T,

Q(t) = Y(t) (moq + a r) , for any integer a ≥ 0 and t = 1, . . . , T,
SS ≥ 0 and moq ≥ 0.

(10)

In this model, the MOQ level formula is set as the first objective function.
Then, for the same reason as model (8), we set PC, OC, and HC in separate ob-
jective functions and consider ITO as one of the objective functions. The main
goal of this model is to find the order quantity for each period Q(t), t = 1, . . . , tn,
together with the optimal MOQ values (moq) with the best balance among the
objective functions.

The cost for holding one unit of the item is usually calculated as a percentage
of the price (see e.g. [25]). Because of different prices for different order quantities,
here, we calculate this cost proportionally by using the following formula:

H(t) = iir ∗ ∑t Q(t) P(t)
∑t Q(t)

, (11)

where iir is the internal interest rate for one period.

In the case study of article [PIII], we combine lot sizing models (6) and (10)
to be able to handle lot sizing simultaneously with MOQ, SS, and SOT. The mul-
tiobjective optimization model can be written as follows.
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minimize ML =
moq

µ
,

PC = ∑
t

Q(t) P(t),

OC = ∑
t

Y(t) c,

HC = ∑
t

I(t − 1) + I(t)
2

H(t),

maximize CSL = F

(
SS + µ SOT

σ

)
,

ITO = ∑
t

D(t)
(I(t − 1) + I(t))/2

,

subject to FR =
I(t − 1) + ∑t

i=t−⌊L⌋ Q(i)− SS

∑t+⌊P⌋
j=t D(j) + (P − ⌊P⌋)D(⌈P⌉)

≥ 1 , for t = 1, . . . , T,

Q(t) = Y(t) (moq + a r) , for any integer a ≥ 0 and t = 1, . . . , T,
I(t) ≥ SS + SOT D(t) , for t = 1, . . . , T,
SS ≥ 0, SOT ≥ 0, and moq ≥ 0,

(12)

where P = L + SOT.



4 REAL CASE STUDIES FOR SOLVING LOT SIZING
PROBLEMS

After introducing different lot sizing models, in this chapter, we demonstrate
their applicability in solving three real case studies from a manufacturing com-
pany. The company in question is a semi-heavy vehicle company which primar-
ily relies on high volume assembly line technology for its production. Material
management plays a crucial role within this company’s operations. The company
provided real data from its ERP system as input data. The supply chain manager
of the company acted as the DM in these case studies to provide his preferences
into the decision making processes based on his expertise, and ensure the validity
of the results.

4.1 Description of case studies

We investigate three different items, where one item is applied for one model in
Chapter 3. They are called item 1, item 2, and item 3, which are used in case
studies 1, 2, and 3, respectively, in this chapter. As additional information, item 1
is a pneumatic component, item 2 is a mechanical transmission component, and
item 3 is a fastener utilized for electric components. We visualize the demand
data for all items in Figure 1, while other input data are presented in Table 1. As
can be seen in this table, item 3 has different prices as compensated of a MOQ in
model (12) which is considered in case study 3.

All the items are reviewed in a weekly planning horizon. We consider 48
weeks for item 1, 41 weeks for item 2, and 24 weeks for item 3. The different
lengths of the periods are set based on the request from the DM for specific case
studies. During the lead time period, the company has made previous orders
(Q(t), t = 1, .., L): [420, 70, 140, 210, 140, 140] for item 1, [48, 119, 120, 120, 48,
96] for item 2, and [0, 0] for item 3. Here, the different lengths are caused by the
different lead time of each item.

The cost to hold one unit of the item for one period is ten percent of its price
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FIGURE 1 Demand data for each item

TABLE 1 Input data for the case studies

item 1 item 2 item 3

price per unit p e134 e91.18
e34.815 for Q(t) < 360
e27.85 for 360 ≤ Q(t) < 500
e23.21 for Q(t) ≥ 500

cost to place one order c e200 e200 e200
minimum order quantity moq 70 units 48 units -
rounding value r 14 units 48 units 20 units
opening inventory I(0) 596 units 312 units 600 units
lead time L 6 weeks 6 weeks 2 weeks

annually. For item 3 in case study 3, we use formula (11) with an internal interest
rate of 10% annually (iir = 10%/52).

4.2 Generating a set of nondominated solutions

As said, lot sizing problems have been identified as computationally challenging
problems [3, 11]. Therefore, in each case study, we generated a large number
of nondominated solutions that approximate the Pareto optimal front to ensure
that the decision making processes could be conducted without waiting time.
Because of the complexity of lot sizing problems, many researchers have used
evolutionary algorithms to solve various problems in this field [21, 29]. In the case
studies discussed in this chapter, we used NSGA-III [17], which is an a posteriori
multiobjective evolutionary algorithm to generate nondominated solutions. This
method is suitable for multiobjective optimization problems with more than three
objective functions. We applied an open-source framework called pymoo [12]
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because of its ability to consider integer variables and many constraints.
Generating a large number of nondominated solutions for the lot sizing

problems defined in Chapter 3 is challenging. Because of several constraints and
integer decision variables, the number of nondominated solutions generated by
a single run of NSGA-III is limited. To obtain more solutions, we run this method
several times using different sizes of the initial populations. We utilized the struc-
tured approach proposed in [16] to generate well-spaced initial populations. This
approach uses the number of partitions to determine the number of points to be
sampled, and we used the number of partitions from 1 to 20. We then combined
the generated solutions by deleting the recurring and dominated solutions.

Because the number of generated solutions was still relatively low for case
studies in Sections 4.4 and 4.5, we also rerun the NSGA-III method by varying
parameters of evolutionary operators that were available in the pymoo frame-
work. We applied different types of crossover operators for integer variables.
We used a crossover probability of 0.9 for simulated binary crossover, uniform
crossover, half uniform crossover, and four-point crossover, while, for the expo-
nential crossover, we used a probability of 0.95. For mutation, we used poly-
nomial mutation for integer variables with a mutation probability of 0.9. These
parameters were selected after several experiments, and we found that they were
suitable for our case studies. For other parameters, the default values in pymoo
were used.

4.3 Case study 1: Determining lot sizes and safety strategy with
E-NAUTILUS

In article [PI], we supported the DM to solve a lot sizing problem with safety
strategy placement for item 1. We solved model (6) by using the E-NAUTILUS
method. Before starting the decision making process, the DM wanted to limit the
solutions by setting an additional constraint as follows:

SOT +
SS
µ

≤ MS, (13)

where MS refers to the maximum number of periods that the safety strategy can
cover, and we set MS = 1 week for item 1.

As said, a set of nondominated solutions needs to be generated in the first
stage of E-NAUTILUS. Here, we ran NSGA-III several times, as described in sec-
tion 4.2, and obtained 651 nondominated solutions to be used in the interactive
decision making stage. We estimated ideal and nadir points by recording best
and worst values among these generated solutions and obtained z∗ = (747 820, 2
717.24, 1.0, 252.96) and znad = (1 046 028, 9 133.52, 0.5, 13.66), respectively.

We presented the ideal and nadir points to the DM and asked him to provide
the number of iterations to be conducted and the number of candidates to be
considered in each iteration. Because the range of objective function values in the
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TABLE 2 Summary of the decision making process with E-NAUTILUS for item 1

h
Candidates Best reachable values

POC HC CSL ITO POC HC CSL ITO

1

1 025 459.60 8 590.38 0.50 22.77 747 820 2 717.24 1.00 252.82
1 024 809.20 8 598.50 0.55 16.64 747 820 2 717.24 1.00 124.94
1 020 226.80 8 575.23 0.53 18 747 820 2 717.24 1.00 148.42
1 018 290.80 8,754.71 0.55 14.86 749 296 2 717.24 1.00 124.94

2

997 781.87 8 157.48 0.55 23.95 749 296 2 717.24 1.00 124.94
1 004 891.20 8 047.24 0.51 31.88 748 420 2 717.24 1.00 252.82
1 007 384.09 8 046.84 0.55 25.47 749 296 2 717.24 1.00 124.94
999 560.53 8 014.37 0.53 26.89 747 820 2 717.24 1.00 148.42

3

981 768.30 7 503.88 0.56 33.05 749 496 2 820.06 1.00 113.45
979 238.80 7 470.28 0.54 34.83 748 420 2 717.24 1.00 124.94
987 940.30 7 518.98 0.51 47.24 748 420 2 717.24 0.96 252.82
980 461.30 7 418.42 0.51 36.92 748 420 2 717.24 1.00 148.42

4

962 441.97 6 875.80 0.52 50.80 748 420 2 717.24 0.93 148.42
967 533.97 6 920.64 0.56 48.57 754 724 2 717.24 0.93 124.94
961 580.83 6 907.24 0.54 49.28 748 420 2 717.24 0.93 148.42
969 563.69 7 069.32 0.51 63.39 766 380 2 717.24 0.82 252.82

5

938 339.64 6 334.91 0.59 50.45 754 724 2 820.06 0.93 110.70
942 058.31 6 237.21 0.57 54.54 763 228 2 820.06 0.90 113.45
947 127.64 6 322.29 0.61 49.90 754 724 2 820.06 0.93 97.01
951 258.98 6 287.11 0.57 55.56 763 228 2 820.06 0.90 113.45

6

913 349.31 5 744.86 0.64 51.17 754 724 2 890.41 0.90 83.81
918 386.91 5 727.19 0.62 53.02 754 724 2 820.06 0.90 90.54
923 009.31 5 709.51 0.67 50.29 754 724 2 890.41 0.93 77.96
926 266.11 5 728.63 0.65 52.51 754 724 2 890.41 0.90 77.96

7

902 961.99 5 120.63 0.70 53.46 754 724 2 944.52 0.90 77.96
886 815.99 5 140.92 0.69 51.78 754 724 2 944.52 0.90 77.96
898 890.99 5 096.73 0.73 50.69 754 724 2 991.42 0.91 68.68
893 481.99 5 082.30 0.68 52.89 754 724 2 890.41 0.90 77.96

8

850 835.32 4 596.99 0.73 51.93 754 724 3 088.83 0.90 67.98
871 379.32 4 486.96 0.78 52.16 778 636 3 101.46 0.90 67.98
880 200.66 4 515.82 0.76 54.78 788 016 3 088.83 0.90 67.98
867 760.66 4 532.05 0.74 53.29 754 724 3 088.83 0.90 67.98

9

857 937.66 3 801.42 0.80 60.07 842 820 3 115.89 0.82 67.98
843 867.66 3 877.18 0.83 53.62 810 528 3 119.49 0.90 59.87
832 411.66 3 995.33 0.78 52.17 793 444 3 130.32 0.90 59.87
850 533.66 4 047.65 0.81 56.01 818 232 3 115.89 0.87 67.98

10

833 440 3 119.49 0.90 55.85
818 232 3 310.70 0.84 57.79
816 356 3 267.41 0.88 55.08
810 528 3 355.80 0.90 54.48

Pareto optimal front was wide, he preferred to conduct ten iterations, so that the
candidates would not approach the Pareto front too fast. He did not want to miss
some potentially interesting candidates during the decision making process. He
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wanted to consider four candidates in each iteration. In each iteration (h), the DM
was provided with four candidates as desired and their best reachable values,
which are presented in Table 2. The selected solution in each iteration is denoted
in bold.

Table 2 indicates that in iterations one to three, the DM focused on ITO when
he found the other objective function values acceptable. He selected the first can-
didate in the first iteration, the second candidate in the second iteration, and the
third candidate in the third iteration to obtain the best values of ITO while he still
had an opportunity to improve on the other objective functions in the next iter-
ations. In iterations four to seven, the DM changed the direction and paid more
attention to the CSL value because the current ITO values satisfied him. He pre-
ferred the second candidate in iteration 4 and the third candidates in iterations 5,
6, and 7 since all of them had the best CSL values.

In iterations eight and nine, the DM considered both ITO and CSL values.
He decided to select the second candidates in these iterations because they had
the best CSL and pretty good ITO values. Finally, in the last iteration, the DM was
satisfied with CSL and ITO values. He decided to consider both the cost values in
this iteration and selected the fourth candidate to get the best POC. He realized
that this candidate had the worst HC value, but it was relatively close to the other
candidates.

The last stage of E-NAUTILUS was conducted to ensure the Pareto opti-
mality of the final solution because we used an evolutionary algorithm in the
first stage. In this stage, we projected the nondominated solution selected from
the previous stage z(10) = (810 528, 3 355.80, 0.90, 54.48) onto the Pareto opti-
mal front. For this purpose, we minimized (3) with z(10) as a reference point.
We solved this optimization problem by using a branch and bound method [34],
which is commonly used for solving optimization problems with integer vari-
ables. We then obtained the final solution z f inal = (753 848, 2 329.41, 0.924, 89.18),
which improved from z(10).

FIGURE 2 Optimized order quantities, demand, inventory level, and safety level for
item 1 in the time period considered
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The decision variable values corresponding to z f inal were SS = 28 units,
SOT = 1 day, and order quantities presented in Figure 2. In this figure, the blue
line represents the incoming order quantities for each week, which is Q(t − L)
for t = 7, .., 48 and the previous order data for t = 1, .., 6. For comparison, we
also present the demand data in the orange line. The inventory level and the
safety level are provided in the green and the red lines, respectively, presenting
that the inventory level is always larger than the safety level for every week.
Therefore, with this final solution, the company had sufficient stock to handle
demand uncertainty by at least the same amount as the safety level.

4.4 Case study 2: Determining lot sizes with safety stock and safety
lead time with NAUTILUS Navigator

In this case study, which is described in article [PII], we considered a lot sizing
problem with SS and SOT for item 2. We used NAUTILUS Navigator to support
the DM in finding his most preferred solution. In this case, the DM requested to
add bounds for SS and SLT because he was only interested in SS values lower
than the expected demand and SLT values below four days. He also requested
that at least one day’s worth of demand for SS or one day SLT be shown. Fur-
thermore, he was only interested in ITO values of at least ten and he preferred
to see the probability of product unavailability (PPU) rather than PPA. Therefore,
we switched the fifth objective to minimize PPU = 1 − PPA.

By running NSGA-III several times, as described in Section 4.2, we gener-
ated 1503 nondominated solutions that approximate the Pareto optimal front. We
estimated the ideal and nadir points from these solutions and obtained z∗ = (358
884.48, 1 000, 674.73, 0.9945, 0, 97.45) and znad = (367 637.76, 6 800, 4 782.04, 0.5,
0.5, 10.19). After presenting these points to the DM, the navigation process was
conducted. The summary of this process can be seen in Table 3. The first column
of this table (St) presents the step where the DM provided the reference point as
his preferences. Even though the DM was able to stop at any step to change his
preferences, in this case, he always let the navigation converge to a single solu-
tion. He then analyzed the reachable ranges before deciding to go back to define
a new reference point.

The DM initially preferred to set the ideal point as the reference point to
investigate how the navigation ran and which Pareto optimal solution he could
obtain. From the solution obtained, he observed that, the upper bounds for the
reachable values of CSL and ITO were significantly decreased in step 52. There-
fore, he decided to return to step 50 to provide new preferences.

After providing new preferences and finding a new solution, the DM found
that the CSL value was not satisfactory enough for him. He then decided to go
backwards to step 80 since the upper bound of the CSL’s reachable values started
to decrease at this step. However, after returning two times to step 80 with dif-
ferent preferences, he got the same solution that was not satisfied him. He then
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TABLE 3 Summary of the decision making process with NAUTILUS Navigator for
item 2

St Reference point Solution The DM’s decision

1
PC: 358 884.48
OC: 1 000
HC: 674.73

CSL: 0.9945
PPU: 0
ITO: 97.45

PC: 358 884.48
OC: 4 400
HC: 1 011.40

CSL: 0.7504
PPU: 0.1414
ITO: 47.67

The upper bounds
of the reachable CSL
and ITO significantly
decreased in step 52.
Then, go to step 50.

50
PC: 367 637.76
OC: 6 800
HC: 901.98

CSL: 0.9835
PPU: 0
ITO: 59.53

PC: 363 261.12
OC: 6 000
HC: 1 108.19

CSL: 0.8437
PPU: 0.0159
ITO: 39.25

The upper bound of the
CSL’s reachable values
started to decrease at
step 80, then return to
this step.

80
PC: 367 637.76
OC: 6 800
HC: 901.98

CSL: 0.9835
PPU: 0
ITO: 51.29

PC: 363 261.12
OC: 6 400
HC: 1 141.85

CSL: 0.9161
PPU: 0.0159
ITO: 37.68

Return to step 80 again
to provide new prefer-
ences in order to im-
prove CSL.

80
PC: 367 637.76
OC: 6 800
HC: 4 038.62

CSL: 0.9945
PPU: 0
ITO: 36.19

PC: 363 261.12
OC: 6 400
HC: 1 141.85

CSL: 0.9161
PPU: 0.0159
ITO: 37.68

No change in the so-
lution, then go back
much further to step 16,
when the HC started to
decrease.

16
PC: 367 637.76
OC: 6 800
HC: 4 782.04

CSL: 0.9945
PPU: 0
ITO: 48

PC: 363 261.12
OC: 6 400
HC: 1 183.94

CSL: 0.9366
PPU: 0.0159
ITO: 35.68

Return to step 75 when
the CSL was decreased,
and try to relax PPU to
get better CSL.

75
PC: 367 637.76
OC: 6 800
HC: 4 782.04

CSL: 0.9945
PPU: 0.5
ITO: 48

PC: 363 261.12
OC: 5 800
HC: 1 066.10

CSL: 0.9272
PPU: 0.1414
ITO: 42.69

Try to put these prefer-
ences from the first step
to get a better CSL and
an acceptable ITO.

1
PC: 367 637.76
OC: 6 800
HC: 4 782.04

CSL: 0.9945
PPU: 0.5
ITO: 40

PC: 367 637.76
OC: 5 800
HC: 1 061.90

CSL: 0.9945
PPU: 0.5
ITO: 42.94

The DM was pleased
with the solution.

decided to go further backwards to step 16 because the upper bounds for the
reachable values of ITO and HC were significantly decreased after this step.

In step 16, the DM provided new preferences and found some improvement
in the CSL value of the solution obtained, but it was not satisfactory enough for
him. He realized that CSL had a trade-off with PPU, and then he returned to step
75 when the CSL was decreased, to relax PPU for a better CSL value. However,
he did not get a better CSL in the solution obtained, even though he satisfied
with the improvement of ITO. He then decided to go to the very first step to set
his new preferences. He let the navigation converge to a single solution and was
very happy with the solution obtained. He found the CSL value was very good
and the other objective function values were acceptable. Therefore, he decided to
accept this solution as the final one.
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Similar to Case study 1, the Pareto optimality of this solution cannot be
guaranteed, because it was generated with an evolutionary algorithm. Therefore,
if desired, this solution could be projected onto the Pareto optimal front. How-
ever, in this case, the DM was satisfied with the solution obtained and chose to
keep it as a final one. From the experience in the previous case study, projecting
the solution onto the Pareto optimal front took a significant amount of time in
term of several days, because of the expensive functions. Therefore, we did not
conduct the projection when it was not necessary for the DM.

Corresponding to the final solution, we had order quantity for each period
as well as SS and SLT as the decision variables. The blue line in Figure 3 presents
the incoming order quantities for each week, which are the previously set or-
der data for t = 1, ..., 6 followed by the optimized order quantities Q(t − L) for
t = 7, ..., 41. The values of other decision variable were SS = 92 and SLT = 0.
With the same reason as case study 1, we also present demand, inventory level,
and safety level in this figure. Based on the inventory level in the green line, the
company had excess inventory during the first six weeks, which cannot be con-
trolled by the model due to the lead time. Then, the inventory level decreased
and followed the demand quantity to have a higher ITO.

FIGURE 3 Optimized order quantities, demand, inventory level, and safety level for
item 2 in the time period considered

4.5 Case study 3: Determining lot sizes with minimum order quan-
tity with hybridization of NAUTILUS Navigator and NIMBUS

In article [PIV], we propose a hybridization of methods combining the strengths
of a trade-off-free method NAUTILUS Navigator and a trade-off-based method
NIMBUS. As mentioned in Chapter 1, the idea of this hybridization of methods is
to use the result from NAUTILUS Navigator as a starting point for NIMBUS. In
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this case study, we solve the lot sizing problem with MOQ, defined in Section 3.4,
for item 3. We use model (12) in this case study, because the DM wanted to obtain
lot sizes for each period, simultaneously with MOQ, SS, and SOT. However, the
DM requested to see ML values in days, instead of weeks. Thus, we define MOQ
DoS (MD), which is calculated by dividing ML by five working days, and we
switched the first objective function to minimize MD.

Because of the computationally expensive problem, we generated nondom-
inated solutions as described in Section 4.2. We had 1554 nondominated solutions
to be used in both NAUTILUS Navigator and NIMBUS. First, we conducted the
decision making process with NAUTILUS Navigator. We presented the estimated
ideal and nadir points to the DM, which were derived from the pre-generated set
of nondominated solutions. The ideal point was z∗ = (1.34, 28 780.4, 400, 237.98,
68.07, 0.9996), and the nadir point was znad = (41.4, 44 563.2, 3 400, 544.74, 8.67,
0.9058).

The DM started the navigation process by setting all cost objective functions
(PC, OC, and HC) to their worst values, CSL to the best value, MD to 5, and ITO to
50. He let the navigation continue until the end and obtained the Pareto optimal
solution z = (4.01, 43 866.9, 3 000, 260.07, 43.34, 0.9883). This solution was rather
close to his preferences and had a much better value for HC than the desired
value that he provided. He was quite satisfied with this solution and wanted to
improve it with NIMBUS.

We then conducted the decision making process with NIMBUS with z =
(4.01, 43 866.9, 3 000, 260.07, 43.34, 0.9883) as the starting point. We present the
summary of the decision making process with NIMBUS in Table 4. The DM pro-
vided preference information in each iteration in the form of classification and he
wanted to see up to four solutions. The solutions generated based on the DM’s
preferences are referred to as z(i, j), where i is the iteration number and j is the
solution number. The selected solution in each iteration is presented in bold.

After providing his preferences in the first iteration, the DM was presented
with four different solutions. He found that they all had the same OC value and
he wanted to improve it. He realized that the preferences that he provided were
not reachable and, therefore, he decided to continue to the next iteration with
the first solution, which was the same as the starting point, to provide different
preferences.

In the second iteration, the DM provided different preferences and obtained
four different solutions. Among these solutions, the last one was the most satis-
factory for him because MD was only a slightly higher than the expected demand
for one period. With this solution, he also got lower PC and OC values, and the
HC value was acceptable. The CSL and ITO values in this solution were slightly
lower than his expectations, but they were still acceptable. The DM was pleased
with this solution, but he wanted to try a further iteration to potentially find a
better solution. He knew that NIMBUS provides the opportunity to save the so-
lution and, therefore, he could return to this solution if he could not find a better
solution in the next iteration.

The DM continued to the third iteration, and obtained four solutions, which
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TABLE 4 Summary of the decision making process with NIMBUS for item 3

Iteration
Preference
information

Solutions generated

0 starting point z(0) = (4.01, 43 866.9, 3 000, 260.07, 43.34, 0.9883)

1

MD: impaired until 5
PC: changed freely
OC: changed freely
HC: changed freely
ITO: improved
CSL: kept

z(1, 1)=(4.01, 43 866.9, 3 000, 260.07, 43.34, 0.9883)
z(1, 2)=(2.67, 43 170.6, 3 000, 237.98, 68.07, 0.9058)
z(1, 3)=(2.67, 43 170.6, 3 000, 250.03, 51.36, 0.9616)
z(1, 4)=(4.01, 43 170.6, 3 000, 251.37, 50.46, 0.9716)

2

MD: impaired until 5
PC: changed freely
OC: improved
HC: changed freely
ITO: impaired until 35
CSL: impaired until 0.98

z(2, 1)=(4.01, 41 220.2, 2 200, 280.87, 36.32, 0.9869)
z(2, 2)=(30.72, 31 379, 400, 517.45, 9.65, 0.9979)
z(2, 3)=(8.01, 37 459.3, 1 000, 325.01, 23.25, 0.9744)
z(2, 4)=(6.68, 37 136, 1 200, 329.12, 27.09, 0.9744)

3

MD: impaired until 7
PC: changed freely
OC: impaired until 1600
HC: changed freely
ITO: improved
CSL: kept

z(3, 1)=(5.34, 43 170.6, 1 600, 307.61, 33.39, 0.9744)
z(3, 2)=(2.67, 43 170.6, 3 000, 237.98, 68.07, 0.9058)
z(3, 3)=(4.01, 43 170.6, 2 600, 256.73, 48.31, 0.9576)
z(3, 4)=(5.34, 43 170.6, 2 200, 264.76, 44.57, 0.9576)

were very interesting for him, after providing his new preferences. He was pleased
with the MD values of the first and the last solutions that were close to what he
wanted. However, he did not want to risk his production with the low CSL value
in the last solution. Therefore, the first solution aligned perfectly with his prefer-
ences, and he decided to stop with it as the final one. Similar to Case study 2, in
this case, the DM did not see the need of projecting the solution onto the Pareto
optimal front, and wanted to keep this solution to be applied in practice.

FIGURE 4 Optimized order quantities, demand, inventory level, and safety level for
item 3 in the time period considered
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The decision variable values corresponding to the final solution were SS =
43 units, SOT = 0, MOQ = 80, and the lot sizes for each period considered
presented in Figure 4 in blue. Based on this result, orders are only needed a
few times to minimize OC and have a balance among the objective functions,
which follows the DM’s preferences. The inventory level, which is indicated by
the green line in Figure 4, shows that the company had excess inventory at the
beginning of the period that could satisfy the demand for nine periods. Similar to
the previous case studies, the high inventory level in the beginning of the period
could not be controlled by the model, and it then decreased when the model
was involved. The DM was pleased with this solution that could support him in
negotiations with his supplier.



5 A DECISION SUPPORT APPROACH FOR
MULTI-ITEM LOT SIZING

In reality, a supply chain manager of a company needs to solve his/her lot sizing
problem not only for a single item but for many items which can be thousands
of items for a big company. Conducting a decision making process for every
single item as presented in the previous chapter is laborious in this condition. In
article [PIV], we propose a decision support approach, called DESMILS, to tackle
this challenge. This approach enables any single-item lot sizing model, which
is formulated as a multiobjective optimization model, to be used in solving a
multi-item problem with a large number of items. In this chapter, we introduce
DESMILS, followed by a case study to demonstrate how DESMILS can be used
in practice.

5.1 DESMILS

The goal of solving a multiobjective optimization problem is finding a Pareto op-
timal solution that best represents the DM’s preferences. In [PI], we supported
the DM to find solutions of model (6) for two items with high and low demands,
with different preferences for them. Similarly, in [PIII], the DM expressed differ-
ent preferences when solving model (10) for two items with high and low MOQ
levels to obtain the lowest prices, and we supported him to find his most pre-
ferred solutions. From these experiences, we learned that the DM may have dif-
ferent preferences in solving a single-item lot sizing model for different items,
but the preferences may be similar for some items that have similarities in some
properties. We call the preference information that the DM provides for solv-
ing a single-item lot sizing model for a specific item as item-specific preference
information.

DESMILS extends a single-item multiobjective lot sizing model to be ap-
plied in solving the same lot sizing problem but with a large number of items.
Any variant of a single-item lot sizing model can be applied in DESMILS, as long



50

as it is modeled as a multiobjective optimization model. All models proposed in
Chapter 3 can be extended to solve the defined lot sizing problems with many
items. Before starting with DESMILS, we need to have a single-item lot sizing
model to work on and the data to solve it for all items that need to be considered.

DESMILS is designed for solving a multi-item lot sizing problem accommo-
dating item-specific preference information as much as possible without having
to conduct the decision making processes for every single item. As said, pref-
erence information from the DM can be similar or different depending on the
similarities of the items in some properties, such as demand, price, and/or phys-
ical size of the item. In DESMILS, m items are divided into c clusters based on
these properties, so that items within the same cluster can be assumed to have
similar item-specific preference information. Here c is clearly smaller than m,
and must be specified by the DM depending on his/her acceptable number of
decision making processes that he/she is willing to conduct. Each cluster has
one representative item, called a cluster center, and the other items, called cluster
members. Different clusters may have a different number of cluster members, and
it is possible that a cluster only has a cluster center without any cluster members.

Assuming that the items in the same cluster can be treated with similar item-
specific preference information, the decision making process is only needed to be
conducted for one representative item for each cluster, which is the cluster center.
Then, for each cluster, the preference information obtained from the DM for the
cluster center is transformed to find a reference point for each cluster member
in the same cluster. The reference point represents the desired point that the
DM wants to achieve for each cluster member, and the solution for each cluster
member is derived from this point.

There are four stages in DESMILS that can be described as follows:

1. clustering stage, where m items are divided into c clusters;
2. decision making stage, where the DM conducts c decision making processes

to solve the single-item lot sizing model for each cluster center, with an
interactive multiobjective optimization method;

3. deriving reference points stage, where, for each cluster member in each
cluster, a reference point is derived accommodating preference information
from the DM obtained for the corresponding cluster center; and

4. solution generation stage, where solutions for all cluster members in all
clusters are generated.

In the first stage, the DM is asked to define the properties that influence his/her
opinion in making lot sizing decisions. These properties are important to ensure
that items with similar item-specific preference information stay in the same clus-
ter. With these properties, we divide items into clusters by using the k-medoids
clustering technique [31]. This technique fits our purpose because it takes an
item that is nearest to the means of items as the center of the corresponding clus-
ter. This ensures that the cluster center is an item. Naturally, any other clustering
techniques can be used in this stage, as long as it provides one of the items in a
cluster as the cluster center and not, for example, some average.
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In the second stage, c decision making processes are conducted to solve the
single-item lot sizing model for each cluster center as a representative of the rest
of the items. Any appropriate interactive multiobjective optimization methods
can be utilized to solve the problem, as long as it has a starting point where the
DM starts from. The starting point is needed in the next stage to transform the
DM’s preference information for the cluster center to the preference information
for cluster members. In the case study, we used NIMBUS and set a neutral com-
promise solution as the starting point. After conducting c decision making pro-
cesses in this stage, for each cluster center, we have a starting point and a final
solution as the most preferred solution selected by the DM.

The preference information that the DM provides in solving lot sizing for
a cluster center in the second stage is interpreted as the direction from the start-
ing point to the final solution. This direction is called a reference direction, and
each cluster center has its own reference direction. In the third stage, for each
cluster member, a reference point is derived from the reference direction of the
corresponding cluster center. Since the same process is repeated for each cluster,
in what follows, we give an example of the solution process for a single cluster.

In solving a single-item lot sizing model for different items, the set of Pareto
optimal solutions is also different. This means that the cluster center and its clus-
ter members have different sets of Pareto optimal solutions and different feasible
objective regions. Therefore, the reference direction of the cluster center zr needs
to be transformed to the feasible objective regions of each cluster member. For
this purpose, we first normalize zr to a proportional position żr, and then denor-
malize żr to each feasible objective region of the cluster member. Each cluster
member then has its own reference direction yr as the result of this transforma-
tion and it is used to obtain a reference point y for each cluster member.

In order to calculate the reference direction yr for each cluster member, we
need a starting point (ys). The starting point is calculated in the same way as
the interactive multiobjective optimization method in the second stage does (e.g.,
since we use NIMBUS and a neutral compromise solution as the starting point
of the cluster center in the second stage, then we calculate a neutral compromise
solution as the starting point for each cluster member). The algorithm to gener-
ate a reference point for each cluster member, that we propose, is presented in
Algorithm 1, while symbols used in this algorithm can be seen in Table 5.

TABLE 5 List of symbols

Symbol Description
zs = (zs1, . . . , zs1) Starting point of the cluster center
z = (z1, . . . , z1) Final solution of the cluster center
zr = (zr1, . . . , zrk)

T Reference direction for the cluster center
żr = (żr1, . . . , żrk)

T Normalization of zr
ys = (ys1, . . . , ysk)

T Starting point of the cluster member
yr = (yr1, . . . , yrk)

T Reference direction for the cluster member
y = (y1, . . . , yk)

T Reference point for the cluster member
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Algorithm 1: Algorithm to derive reference points for each cluster
member for one cluster

Input: zs and z
Output: y for each cluster member

1 Calculate zr with the following formula:

zri = zi − zsi , i = 1, . . . , k.

2 Normalize zr to a proportional position żr where:

żri =
zri

zsi
, i = 1, . . . , k.

3 foreach cluster member do
4 Calculate a starting point of the cluster member (ys).
5 Calculate yr by denormalizing żr into the feasible objective region of

cluster member as follows:

yri = żri ysi , i = 1, . . . , k.

6 Calculate y where:
yi = yri + ysi , i = 1, . . . , k.

7 end

From the third stage, each cluster member has its own reference point y.
However, y may not be a Pareto optimal solution for the lot sizing problem of
the cluster member. To find a Pareto optimal solution as the final solution, in the
last stage, we minimize ASF (3) with y as the reference point. This process is then
repeated for each cluster member to find a final solution for each cluster member.
In this way, a Pareto optimal solution that represents the DM’s preferences is
found for each item considered.

5.2 Case study

A case study was presented in article [PIV] to demonstrate the applicability of
DESMILS. In this case, the supply chain manager as the DM needed to solve a
lot sizing problem with demand uncertainty, and model (6) was best suited for
this purpose. Therefore, in this section, we demonstrate how DESMILS extends
model (6) to be used in solving a multi-item lot sizing problem with uncertainty
on demand, but we present a different cluster.

There were 94 items that the DM needed to consider, and he was only able
to conduct the decision making processes for 7 to 12 items. The time period for
inventory planning was one week, and there were 24 weekly periods that he con-
sidered. Based on our discussion with the DM, it turned out that there are six
relevant properties that influence his decisions in lot sizing. They are: SS, SOT,
price, daily demand, transit time, and physical size of an item. The DM then
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provided the data of these six relevant properties for 94 items from the ERP sys-
tem of the company. The data needed for solving lot sizing model (6), which is
described in Section 3.2, for 94 items, is also provided from the same source.

5.2.1 Clustering stage

We used the k-medoids clustering technique in the first stage to divide items into
clusters and set the number of clusters from 7 to 12 clusters, as the acceptable
number of decision making processes provided by the DM. The DM then saw
and compared the clustering results (i.e, cluster centers and cluster members for
different numbers of clusters). He found that the result with 10 clusters was the
best for him, because, with this result, the items in the same cluster could be
treated with similar preferences. This clustering result of 10 clusters is presented
in Figure 5.

FIGURE 5 Result of clustering, where ten clusters are indicated by different colors

5.2.2 Decision making stage

In this stage, the DM conducted ten decision making processes to solve the lot
sizing model (6) for each cluster center. For compactness, here, we describe the
decision making process for one cluster center only, while the remaining ones
were treated in the same way. Different from the one presented in article [PIV],
in this thesis, we consider the cluster having items of high prices and low daily
demands. This cluster is shown in blue color in Figure 5 (cluster 1).

The data provided by the company showed that the cluster center of this
cluster has a price of e1890 and a lead time of five weeks. This item has a mini-
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mum order quantity of 2 units, and the rounding value is the same. The demand
data and the previous orders supposed to arrive during the lead time period of
this item are presented in Figure 6.

FIGURE 6 Demand and previous order data for the cluster center

We used the synchronous NIMBUS method to find the best lot sizes for the
cluster center simultaneously with SS and SOT. As described in Section 4.2, lot
sizing problems are computationally expensive, and therefore, we generated a
representative set that approximates Pareto optimal solutions in advance to re-
duce the waiting time of the DM. NIMBUS was then used to help the DM select
one of them as a final solution. This representative set is generated in the same
way as we did in the case studies described in the previous chapter.

By using the representative set, the DM conducted the decision making pro-
cess with NIMBUS. Before providing the first preferences in the form of classifi-
cation, the neutral compromise solution as a starting point was presented to the
DM, together with the ideal and nadir points. Table 6 presents a summary of
the decision making process for this item. In each iteration, the DM wanted to
compare up to four solutions. However, in iterations 2 and 3, he only got three
different solutions because two scalarizing functions resulted in the same solu-
tion. The selected solution in each iteration is presented in bold.

As presented in Table 6, in the first iteration, the DM was not really satisfied
with the CSL value of the starting point. He wanted to improve CSL until 0.95
and allowed ITO to decrease until 40, while POC and HC were allowed to change
freely. With this classification, he got four different solutions, and he preferred the
third solution that gave him a quite good CSL value, but the ITO value was still
acceptable. The DM was already rather satisfied with the current solution but he
decided to continue to the next iteration with this solution to explore whether he
could get a better one.

In the second iteration, the DM wanted to investigate what solutions he
could get if he wanted to improve CSL as much as possible. To get that high CSL,
he could sacrifice ITO until the worst value while POC and HC were still allowed
to change freely. He found three different solutions with this classification and
selected the second one that had the best ITO to continue to the next iteration.
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TABLE 6 Summary of the decision making process with NIMBUS for the cluster center

Iteration
Preference
information

Solutions generated

0 starting point z(0) = (77 000, 1 988.63, 0.5891, 74.57)

1

POC: changed freely
HC: changed freely
CSL: improved until 0.95
ITO: impaired until 40

z(1, 1)=(84 560, 2 048.77, 0.8163, 40.93)
z(1, 2)=(92 520, 2 186.22, 0.9643, 28.2)
z(1, 3)=(88 540, 2 130.38, 0.9426, 31.35)
z(1, 4)=(84 560, 2 065.95, 0.87, 37.81)

2

POC: changed freely
HC: changed freely
CSL: improved
ITO: impaired until 20

z(2, 1)=(92 520, 2 186.22, 0.9643, 28.2)
z(2, 2)=(91 520, 2 306.49, 0.9642, 24.15)
z(2, 3)=(92 320, 2 194.81, 0.9642, 27.93)

3

POC: changed freely
HC: changed freely
CSL: impaired until 0.95
ITO: improved until 50

z(3, 1)=(92 520, 2 186.22, 0.9643, 28.2)
z(3, 2)=(88 540, 2 113.2, 0.9118, 32.99)
z(3, 3)=(84 560, 2 048.77, 0.8163, 40.93)

In the third iteration, he allowed to impair CSL until 0.95 but wanted to
improve ITO until 50. He let the other objective functions change freely. After
comparing the solutions obtained, he preferred the first one, which was the same
solution as in the previous iteration. The DM was satisfied with this solution and
decided to stop with this as a final one.

FIGURE 7 Result for cluster center

Corresponding to the final solution, we had lot sizes for each period consid-
ered, as well as SS and SOT, as decision variables. Figure 7 presents the lot sizes
that arrive for each period in orange, where the first five weeks are the previously
set order data followed by the optimized lot sizes after week 5 (note that the lead
time was 5 weeks for this item). The final value of SS was 8 days and the SOT
value was zero. The inventory level indicated by the grey line shows that the
company had excess inventory due to the previous orders that could not be con-
trolled by the model. Therefore, the optimization result suggested no order until
week 15. Then, with the optimized lot sizes, the inventory level decreased but
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was still sufficient to keep the safety level high, following the DM’s preferences.
The DM was pleased with this improvement in the inventory level, which could
save money invested in the inventory with high safety level.

5.2.3 Deriving reference points stage

In the previous stage, the DM directed his preferences with NIMBUS from the
starting point zs = (77 000, 1 988.63, 0.5891, 74.57) towards his most preferred
solution z = (92 520, 2 186.22, 0.9643, 28.2) for the cluster center. Using this in-
formation, we calculated the reference direction of the cluster center as zr = (15
520, 197.59, 0.3752, -46.37), and then normalized it to obtain żr = (0.2016, 0.0994,
0.6368, -0.6218).

TABLE 7 Starting points and reference points for cluster members

Item
Starting points Reference points

POC HC CSL ITO POC HC CSL ITO
1 1 015 607 18 622.84 0.9075 11.02 1 078 310.2 8 242.28 0.9284 18.04
2 878 238 17 083.16 0.9186 11.04 932 460.18 7 560.83 0.9397 18.07
3 181 000 4 099.86 0.9 9.51 192 174.89 1 814.56 0.9207 15.57
4 647 428 9 628.77 0.9104 12.06 687 400.03 4 261.6 0.9313 19.73
5 782 222 12 390.21 0.9089 11.18 830 516.17 5 483.78 0.9298 18.3
6 639 654 11 123.38 0.9013 11.71 679 146.06 4 923.1 0.922 19.16
7 224 175 5 394.66 0.9079 7.86 238 015.5 2 387.62 0.9288 12.86
8 1 523 108 14 232.04 0.9021 17.29 1 617 144.3 6 298.96 0.9228 28.3
9 1 056 601 23 260.21 0.9002 9.96 1 121 835.3 10 294.7 0.9209 16.3
10 154 529.5 4 732.22 0.9043 11.39 164070.11 2 094.43 0.9251 18.64
11 1 593 158 26 020.07 0.9156 13.13 1 691 518.9 11 516.2 0.9366 21.49

There were 11 cluster members in this cluster, excluding the cluster center.
Following Algorithm 1, we needed to calculate starting points for these 11 cluster
members. Since we utilized NIMBUS and the neutral compromise solution as the
starting point for the cluster center, therefore, for each cluster member, we also
calculated a neutral compromise solution as the starting point. We then followed
the algorithm to obtain a reference point for each cluster member. The starting
and the reference points for each cluster member in this cluster are summarized
in Table 7.

5.2.4 Solution generation stage

From the reference points obtained in the previous stage, in this stage, we mini-
mized the ASF (3) to derive a solution for each cluster member. These solutions
are listed in Table 8. The DM accepted these solutions as well as the correspond-
ing lot sizes, SS, and SOT as the decision variables for each item. He appreciated
that he was able to obtain different solutions for 12 items in this cluster represent-
ing his preferences, with only one decision making process.

The processes from the decision making stage to the solution generation
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TABLE 8 Solutions for cluster members

Item POC HC CSL ITO
1 1 029 606.96 7 748 0.9351 45.6
2 884 692 7 107.21 0.9483 54.1
3 188 560 1 678.18 0.9455 26.4
4 654 480 2 624.34 0.9497 47.32
5 789 416 2 687.8 0.9453 50.64
6 647 716 3 395.89 0.9425 43.07
7 226 730 2 048.73 0.9355 24.91
8 1 531 700 5 013.21 0.9343 59.73
9 1 062 384.4 7 747.58 0.9328 69.68
10 159 675 3 205.93 0.9363 27.44
11 1 598 142.8 12 783.94 0.9359 70.94

stage was repeated for the remaining clusters. In the decision making stage, the
DM provided different preferences for the different cluster centers. He checked
all the solutions obtained with DESMILS, and he was satisfied with all solu-
tions and the corresponding decision variables of both cluster centers and cluster
members, which followed his preferences. The DM appreciated the benefit of
DESMILS to find solutions for 94 items that best represent his preferences, with
only 10 decision making processes.



6 CONCLUSIONS AND AUTHOR’S
CONTRIBUTIONS

In the final chapter of this thesis, we provide conclusions and future research di-
rections. Then, we elaborate on the author’s contributions in the included articles
[PI]-[PIV], followed by final thoughts at the end of this chapter.

6.1 Conclusions

The main focus of this thesis is to model and solve lot sizing problems inspired
by real challenges. We first focused on single-item lot sizing problems in three
various conditions. We then proposed three multiobjective optimization models
to address these challenges and solve them with appropriate interactive multiob-
jective optimization methods. Furthermore, we proposed DESMILS to extend the
application of these single-item models to be used to solve multi-item problems
that accommodate different preferences from the DM for different items without
having to conduct the decision making process separately for every single item.

In article [PI], we developed a multiobjective optimization model to address
the challenge of solving a single-item lot sizing problem under a stochastic envi-
ronment on demand. We introduced a new and practically viable way to handle
unpredicted demand, called safety order time, that can handle high fluctuations
of demand better than safety stock. The proposed multiobjective optimization
model had four objective functions, where both safety stock and safety order
time were used to increase the preparedness of handling demand uncertainty.
By using the proposed model, the optimal order quantities in the periods con-
sidered were simultaneously determined with the optimal values of safety stock
and safety order time.

In article [PII], we considered a single-item lot sizing problem under a stochas-
tic environment on demand and lead time. We used a safety stock to handle
uncertainty on demand and a cycle service level formula to measure the quality
of safety stock. To handle uncertainty on the lead time, we used a safety lead
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time, and we proposed the probability of product availability formula to mea-
sure the quality of safety lead time. We integrated the lot sizing problem with the
problem of determining the optimal values of safety stock and safety lead time by
proposing a multiobjective optimization model. This model contains six objective
functions, including cycle service level and probability of product availability, to
find the optimal order quantity in each period, as well as the optimal values of
safety stock and safety lead time.

Furthermore, in article [PIII], we integrated a single-item lot sizing prob-
lem with the problem of determining a minimum order quantity to support a
company as a buyer. We developed a multiobjective optimization model with
five objective functions and proposed a minimum order quantity level formula
as one of the objective functions to assess the quality of minimum order quantity
in satisfying demand. By solving the proposed model, the DM could simultane-
ously determine an optimal minimum order quantity with the optimal lot sizes
for each period. The insight gained in the decision making process can be used
in a negotiation with a supplier related to a minimum order quantity.

Real data from a manufacturing company was utilized to demonstrate the
applicability and usefulness of the proposed lot sizing models and concepts. A
supply chain manager from the said company acted as the DM to provide his
domain expertise in the decision making processes. We applied interactive meth-
ods to solve the problems since these methods had many benefits in supporting
the DM to determine his most preferred solution. We used different interactive
methods to solve the proposed models based on the wishes of the DM and the
models to be solved. Before the decision making processes, we generated a set
of nondominated solutions approximating Pareto optimal solutions to avoid in-
troducing waiting times on the DM because of lengthy computation times. We
applied the E-NAUTILUS method in article [PI] and the NAUTILUS Navigator
method in article [PII]. They allowed the DM to find preferred solutions with-
out thinking of sacrifices and trade-offs. In article [PIII], we proposed to apply a
hybridization of methods combining the strengths of NAUTILUS Navigator as a
trade-off-free method and NIMBUS as a trade-off based method.

We then extended the research in article [PIV] by proposing DESMILS to
enable the single-item lot sizing models from articles [PI]-[PIII], as well as other
single-item multiobjective lot sizing models, to be applied in multi-item prob-
lems with a large number of items. This approach solves the single-item lot sizing
model with an interactive method only for few selected items. The preferences
obtained from the DM for these selected items are then used to derive optimal lot
sizes for the other items that can be treated with similar preferences in the lot siz-
ing decision. In this way, optimal lot sizes that represent the DM’s preferences are
obtained for all items without the need for the DM to repeat the decision making
process for each item separately. By using real data from a manufacturing com-
pany, we demonstrated how, with DESMILS, Pareto optimal solutions reflecting
the DM’s preferences could be found for 94 items, and the DM only needed to
solve the lot sizing problem for 10 selected items.

From the decision making processes and the results reported in this thesis,
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we can conclude that the DM appreciated the benefit of using multiobjective op-
timization in solving real-world lot sizing problems. He found all the concepts,
models, interactive solution processes, and results useful in his daily operations.
He was also satisfied with all the solutions as well as the corresponding decision
variables. To be more specific, the DM highlighted the benefits and insight that
he gained from the studies included in this thesis as follows:

1. Multiobjective optimization allows the DM to consider different important
indicators as objective functions simultaneously and understand the trade-
offs among them. He gained valuable insight from the proposed models,
compared with the previous way, where he was only able to optimize one
objective function and set others as constraints.

2. During the interactive decision making processes, he was able to compare
different solutions reflecting different preferences that allowed him to gain
insights into the problem and obtain his most preferred solution. Thus, he
could train his team members and other stakeholders of the company about
benefits of simultaneously considering multiple objective functions in his
problem.

3. He appreciated that the solutions obtained in this thesis improved inven-
tory planning and control in his company. It is presented in the case study
that inventory value, which is a critical indicator for top management, was
reduced for all items considered.

4. Time saving is a crucial issue in daily operations. Compared to the previous
way, where he needed to determine lot sizes item by item, DESMILS signif-
icantly reduced his time and effort. In DESMILS, the number of decision
making processes to conduct is decided by the DM, and therefore, he could
control the effort needed to solve the problem for all items that he had.

5. DESMILS also reduces the risk of human error. When processes are not
controlled only by humans, the risk of unintentional forgetting is reduced.
It in turn supports production needs when the right amount of items is
available at the right time.

There are still several challenges for future research from this thesis. For example,
we assumed that demand data follows a normal distribution. One could explore
different distributions based on the data and modify the models to adapt them.
Furthermore, we also assumed that the cost to place one order is static with no
backorder cost. Relaxing assumptions by considering a backorder cost or having
a dynamic ordering cost are other possible future research topics.

DESMILS is the first approach that can solve multi-item lot sizing problems
incorporating a DM’s preferences in deciding lot sizes for different items. Thus,
testing this approach with different types and characteristics of the problems and
with different numbers of items are also topics of future research extending this
study. Furthermore, in this study, we did not consider any information about
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connectivity and dependency among items, which presents another potential di-
rection for future research. Lastly, our focus in this thesis was on supporting a
single DM. Supporting multiple DMs who may have conflicting preferences is a
future research direction.

6.2 Author’s Contribution

The author was interested in the application of multiobjective optimization to
solve real-world problems since the beginning of her doctoral studies. The choice
of lot sizing was suggested by her supervisor, Prof. Kaisa Miettinen, who then
introduced her to Juha Sipilä, a senior lecturer in production management and
materials management, and Jussi Lehtimäki, a supply chain project manager in a
manufacturing company. The challenges considered in this thesis were motivated
by real-world problems that were brought up in the discussions with them. In the
beginning, the author did not have any experience in lot sizing. Thus, the author
conducted a literature survey to learn the background concepts of lot sizing and
the connection of this problem domain to multiobjective optimization. She also
studied in the literature what the typical objective functions in lot sizing are so
that they could be utilized together with the models developed by her. Besides,
she developed her understanding of lot sizing problems by having more discus-
sions with Juha Sipilä and Jussi Lehtimäki.

In article [PI], the idea of the safety order time concept came from Jussi
Lehtimäki, based on a real concept in his company. The author proposed the first
version of the multiobjective optimization model, and it was then modified in
the discussions with Jussi Lehtimäki to be able to adapt the safety order time in
a better way. The idea of considering inventory turnover as one of the objective
functions came from Juha Sipilä and was agreed upon by Jussi Lehtimäki, as
the DM, since it was an important indicator in his company. Giovanni Misitano
developed the graphical user interface for the E-NAUTILUS method in this paper
and made it available online. He also contributed in writing about it and editing
this article.

The main idea of the probability of product availability formula as well as
the model proposed in article [PII], came from the author. This idea arose because
of the different understanding of the term ’safety time’ in the discussion of article
[PI]. This term meant safety order time for Jussi Lehtimäki in his daily operations,
but it referred to safety lead time for the author, based on her literature survey.
After this, the author initiated to continue study about safety lead time to solve
the lot sizing problem with uncertainty on demand and lead time. The idea of
dividing purchasing cost and ordering cost into different objective functions came
in the decision making process, when Jussi Lehtimäki, as the DM, found difficult
to recognize whether the high purchasing and ordering cost objective function
was caused by purchasing cost or ordering cost.

The integration problem of lot sizing and the minimum order quantity de-
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termination problem in article [PIII] was originally requested by Jussi Lehtimäki
based on real needs in his company. The author studied this problem from the lit-
erature and got the idea of the proposed minimum order quantity level formula
and the corresponding lot sizing model. The idea of hybridization of methods to
solve this problem was initiated by Prof. Kaisa Miettinen, after Jussi Lehtimäki,
as the DM, found difficulty in finding his most preferred solution by using one
method. The author then matured the idea by experimenting with real data.

The idea of creating the decision support approach for multi-item lot sizing
problems in article [PIV] arose in the discussions with Jussi Lehtimäki. He has
thousands of items in his company, and it is impossible to do the decision mak-
ing processes for every single item. The author then tested different ideas and
experimented with several methods to develop an approach that can accommo-
date different preferences from the DM in lot sizing decisions for different items.
Discussions and suggestions from her supervisors, Prof. Kaisa Miettinen and Dr.
Bekir Afsar, helped her develop DESMILS.

The author is the main contributor in all the included articles. She is the
one who formulated the problems and developed the proposed models. She then
implemented all the models by experimenting with several interactive methods
and analyzed the results. In some cases, good results were challenging to be ob-
tained, and some iterations of the processes were needed. She needed to modify
the problem formulations and the models, explore other methods, and find ap-
propriate solvers that are applicable to solve these problems. She applied mod-
ules available in DESDEO, but this needed a lot of work since she had to tailor the
modules to the specific needs of the DM. Her supervisors, Prof. Kaisa Miettinen
and Dr. Bekir Afsar helped her very much in all the processes during the regular
supervision meeting by giving valuable suggestions.

The author wrote most parts of the included articles. Her supervisors edited
her writing and gave valuable comments to improve the writing. Juha Sipilä
helped the author in analyzing the results from a practical point of view and
wrote few paragraphs in the articles, while Jussi Lehtimäki shared his domain
expertise and acted as the DM.

6.3 Final Thoughts

Inspired by real challenges in a manufacturing company, we believe that the stud-
ies in this thesis are useful for other companies as well. Those who have similar
problems can easily apply the proposed models with their own data. Further-
more, DESMILS can be implemented for any single-item multiobjective lot sizing
models, therefore it can be a valuable tool for those who want to optimize their
lot sizes for a large number of items.

The aim of this thesis is to explore the benefits provided by multiobjec-
tive optimization and interactive methods in solving real lot sizing problems.
Throughout this thesis, we have said that the DM gained benefits, not only with
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the concepts, models, and solutions reported in this thesis, but gained insights
while learning about the problem during the interactive decision making pro-
cesses. We hope that this thesis will provide a guidance to anyone who wishes
to use interactive multiobjective optimization in other real-world lot sizing prob-
lems. Furthermore, we also plan to make all codes we developed openly available
online. We hope that this will increase the impact of this thesis and facilitate the
replication and extension of our work by others.

To be more general, by bridging the gap between theory and practice, we
emphasize the need of research to address real-world problems. We believe that
conducting research on practical problems provides valuable insights for both re-
search and practice. Our hope is that our findings will inspire more researchers
to take on these challenges and contribute to provide a greater impact in the prac-
tical life.



YHTEENVETO (SUMMARY IN FINNISH)

Toimituserän mitoitusongelmissa on yleensä useita ristiriitaisia tavoitefunktioita,
joita tulisi optimoida samanaikaisesti. Täten, näiden ongelmien käsitteleminen
monitavoiteoptimointimallien avulla ja niiden ratkaiseminen soveltuvilla mene-
telmillä on tärkeää, jotta löydetään käytäntöön soveltuvia optimiratkaisuja. Täs-
sä väitöskirjassa käsiteltiin haasteita, joita ilmenee käytännön toimituserän mi-
toitusongelmissa eri tilanteissa. Työssä tarkasteltiin sekä yhden että useamman
nimikkeen toimituserien mitoitusta. Yhden nimikkeen toimituseriin liittyen käsi-
teltiin kolmea tilannetta: kun kysyntä on epävarmaa, kun sekä kysyntä että toi-
mitusaika ovat epävarmoja ja kun halutaan määrittää minimitoimituserän suu-
ruus. Lisäksi esiteltiin päätöksenteon tukimenetelmä DESMILS usean nimikkeen
toimituserien mitoittamiseen.

Jokaiseen käsiteltyyn tilanteeseen esiteltiin monitavoitteinen toimituserän
mitoitusmalli, joissa oli mukana uusia muotoiluja ja käsitteitä ja täten täytettiin
kirjallisuudessa olevia aukkoja. Ensin esiteltiin varmuusajan käsite kysynnän epä-
varmuuden kattamiseksi. Toiseksi esiteltiin uusi nimikkeen varastoriittävyyden
todennäköisyyttä kuvastava kaava, joka määrittää turvallisen toimitusajan käsit-
teen käsiteltäessä toimitusajan epävarmuutta. Kolmanneksi esiteltiin kaava mini-
mitoimituserälle, jotta tilaus vastaa tarvetta. Lisäksi DESMILS-menetelmän avul-
la näitä yhden nimikkeen toimitusmäärän mitoitusmalleja voidaan soveltaa suur-
ten nimikemäärien käsittelyyn. Tämän menetelmän ansiosta riittää, että päätök-
sentekijä mitoittaa toimitusmäärät interaktiivisella menetelmällä vain muutamal-
le valitulle nimikkeelle ja muiden nimikkeiden toimitusmäärät päätellään pää-
töksentekijän antamien mieltymysten avulla.

Esiteltyjen mallien ja käsitteiden soveltuvuutta ja käyttökelpoisuutta ha-
vainnollistettiin käyttäen todellista teollisuusyrityksen dataa. Kyseisen yrityksen
toimitusketjun johtaja käytti päätöksentekijänä omaa asiantuntemustaan ratkai-
suprosesseissa. Häntä tuettiin löytämään parhaat ratkaisut kuhunkin käsiteltyyn
ongelmaan hyödyntäen interaktiivisia menetelmiä kuten E-NAUTILUS, NAUTI-
LUS Navigator ja esitettyä kahden menetelmän yhdistelmää. Lisäksi DESMILS-
menetelmän avulla päätöksentekijää tuettiin määrittämään Pareto-optimaaliset
toimituserät 94 nimikkeelle niin, että ne kuvastavat hänen esittämiään mielty-
myksiä yrityksen materiaalinohjauksen tavoitteisiin liittyen. Menetelmän ansios-
ta hän pystyi tähän ratkaisemalla yhden nimikkeen toimitusmäärän optimoin-
tiongelma vain 10 valitulle nimikkeelle.

Päätöksentekijä arvosti monitavoiteoptimoinnin hyötyjä todellisten toimi-
tusmäärän mitoitusongelmien ratkaisemisessa. Hänen mielestään käytetyt käsit-
teet, mallit, interaktiiviset ratkaisuprosessit ja väitöskirjassa esitetyt tulokset oli-
vat hyödyllisiä hänen päivittäisiä toimintojaan ajatellen. Monitavoiteoptimoinnin
avulla hän pystyi käsittelemään useita tärkeitä indikaattoreita tavoitefunktioina
samanaikaisesti sekä ymmärtämään niiden välisiä riippuvuuksia ja vaihtosuhtei-
ta. Interaktiivisten päätöksentekoprosessien aikana hän pystyi vertailemaan eri-
laisia ratkaisuja, jotka kuvastivat hänen mieltymyksiään. Tämä lisäsi hänen ym-
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märrystään toimituserän mitoitusongelmista, ja auttoi löytämään hänelle parhaat
ratkaisut. Hän arvosti väitöskirjassa saatuja tuloksia, jotka paransivat yrityksen
varaston suunnittelua ja hallintaa. Menetelmät säästivät merkittävästi hänen va-
raston suunnitteluun ja ylläpitoon käyttämäänsä aikaa ja vaivaa.
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A B S T R A C T

We address challenges of unpredicted demand and propose a multiobjective optimization model to integrate

a lot sizing problem with safety strategy placement and optimize conflicting objectives simultaneously. The

novel model is devoted to a single-item multi-period problem in periodic review policy. As a safety strategy, we

use the traditional safety stock concept and a novel concept of safety order time, which uses a time period to

determine the additional stock to handle demand uncertainty. The proposed model has four objective functions:

purchasing and ordering cost, holding cost, cycle service level and inventory turnover. We bridge the gap

between theory and a real industrial problem and solve the formulated problem by using an interactive trade-

off-free multiobjective optimization method called E-NAUTILUS. It is well suited for computationally expensive

problems. We also propose a novel user interface for the method. As a proof of concept for the model and

the method, we use real data from a manufacturing company with the manager as the decision maker. We

consider two types of items and demonstrate how a decision maker can find a most preferred solution with

the best balance among the conflicting objectives and gain valuable insight.

1. Introduction

To achieve a competitive advantage, many companies strive to

reduce their inventory values. Their main goal is to store a proper

quantity of items in order to satisfy demand but concurrently avoid

shortages and excess inventory. This problem, known as a lot sizing

problem, has been considered in the literature for decades using eco-

nomic order quantity (EOQ) (Harris, 1913; Wagner & Whitin, 1958).

Recently, researchers have shown an increased interest in this area

by considering more complex situations, see e.g. Andriolo, Battini,

Grubbström, Persona, and Sgarbossa (2014), Bahl, Ritzman, and Gupta

(1987), Glock, Grosse, and Ries (2014).

A lot sizing problem becomes more challenging when uncertainty is

considered in the model. The uncertainty mostly comes from demand

which can be affected by many conditions, such as weather, economy

and market competition (Zipkin, 2000), as well as supplier reliability.

A safety stock (SS) has been widely used to protect against demand

uncertainty (Graves, 1988; Guide & Srivastava, 2000; New, 1975). A SS

is described as a level of item, which is usually called a stock keeping

unit (SKU), that is kept in inventory in order to manage the unpredicted

demand. A SKU is defined as an individually identifiable item stored in

inventory (Sawaya & Giauque, 1986). The problem of determining the

∗ Correspondence to: University of Jyvaskyla, Faculty of Information Technology, P.O. Box 35 (Agora), FI-40014 University of Jyvaskyla, Finland.

E-mail address: adhe.a.kania@student.jyu.fi (A. Kania).

amount of a SS to hold is called safety stock placement. Even though

lot sizing and safety stock placement have been investigated in many

research studies, they are typically managed separately. A SS is usually

calculated by defining a desired service level and the lot sizing problem

is then solved using some optimization methods (Zipkin, 2000). The

integration of a lot sizing problem and safety stock placement was

proposed in Kumar and Aouam (2018). The authors formulated a single

objective optimization model to minimize system-wide production and

inventory costs with a service level requirement constraint, and pro-

posed an extension of an existing safety stock replacement algorithm

to solve it.

SS plays an important role in industrial management and has been

used for half a century to handle demand uncertainty (New, 1975).

However, as a static method, SS is not suitable when demand fluctuates

a lot (Açıkgöz, Çağıl, & Uyaroğlu, 2020). Some researchers use dynamic

SS that can be dynamically changed from period to period (Inderfurth

& Vogelgesang, 2013; Rafiei, Nourelfath, Gaudreault, De Santa-Eulalia,

& Bouchard, 2015). However, when a lot sizing problem has large

sizes of decision variables and various types of practical production

constraints, it is difficult to solve the problem by using a dynamic

SS (Tavaghof-Gigloo & Minner, 2021).

https://doi.org/10.1016/j.cie.2022.108731
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The basic problem in lot sizing is to determine an order quantity

to minimize costs but satisfy demand and prevent shortages, which

are naturally conflicting with each other. Therefore, multiobjective

optimization (Miettinen, 1999) is needed to solve this problem. Mul-

tiobjective optimization has been studied to solve different topics in

lot sizing problems (Aslam & Amos, 2010), such as supplier selec-

tion (Rezaei & Davoodi, 2011; Ustun & Demirtas, 2008), perishability

issues (Amorim, Antunes, & Almada-Lobo, 2011) and sustainability

issues (Azadnia, Saman, & Wong, 2015). Integrating a lot sizing prob-

lem with safety stock placement gives additional conflicting objectives,

because keeping a high amount of safety stock introduces a trade-

off between costs and service level (Chan & Chan, 2006). By using

multiobjective optimization, a decision maker can clearly see the trade-

offs between objectives before he/she selects the final solution that best

represents his/her preferences.

Multiobjective optimization problems usually have many solutions,

called Pareto optimal solutions, which reflect trade-offs among the

conflicting objectives. Pareto optimal solutions are incomparable from

a mathematical point of view, and the final solution is the one that best

represents a decision maker’s preferences, who is an expert in the prob-

lem domain. Interactive methods (Miettinen, Hakanen, & Podkopaev,

2016), which iteratively incorporate the decision maker’s preferences,

are viable methods to find a solution that satisfies the decision maker’s

preferences. In interactive methods, the decision maker can learn about

the trade-offs and adapt one’s preferences while learning. This increases

confidence and satisfaction with the final solution. So far, however,

there have only been few articles proposing or applying interactive

methods to solve their lot sizing problems (Agrell, 1995; Bouchery,

Ghaffari, Jemai, & Dallery, 2012; Heikkinen, Sipilä, Ojalehto, & Mietti-

nen, 2021; Ustun & Demirtas, 2008), and none of them were designed

for computationally expensive problems.

This paper is an instance of data-driven decision support, where

multiobjective optimization is applied. Starting with real data, we pro-

pose a multiobjective optimization model inspired by real challenges

on a lot sizing problem in a manufacturing company. To bridge the

gap between theory and practice, we verify the model with the supply

chain manager of the said company to ensure the model is applicable.

We consider a single-item lot sizing problem in multiple time pe-

riods. By considering stochastic demands, we propose an additional

way to handle the uncertainty of demand, which is called a safety

order time (SOT), in addition to the SS. The idea of SOT is to keep

additional stock based on time. For example, by setting SOT as one

week, additional SKUs to cover one week’s worth of demand are

always kept in the storage and can be used to accommodate demand

uncertainty. The proposed SOT fills the need of having dynamic stock

to handle unpredicted demand efficiently. We combine SS and SOT

in the model in order to manage the stochasticity of demand. The

problem of determining the amount of SS and SOT is defined as a

safety strategy placement. Integrating a lot sizing problem and a safety

strategy placement to decide the optimal order quantity of SKUs for

each period, as well as the best combination of the SS and SOT, are

our aims in this research. Therefore, we propose a novel model that

integrates a lot sizing problem not only with a SS placement but also

with a SOT placement.

Compared to other relevant studies on lot sizing, contributions of

this paper are summarized in Table 1. In this table, SOP stands for op-

timization problems with a single objective function and MOP for mul-

tiobjective optimization problems. The second row is not an exhaustive

list but provides examples of studies. There are many multiobjective

lot sizing studies which do not utilize interactive methods (Aslam &

Amos, 2010). The table shows that this paper, for the first time, uses

multiobjective optimization considering an integration of a lot sizing

problem with both SS and SOT, and applies an interactive method to

solve it.

To solve the defined lot sizing problem, we propose a multiobjective

optimization model with four objective functions to characterize differ-

ent perspectives of lot sizing decision. We adapt the cost objectives from

the dynamic EOQ model (Wagner & Whitin, 1958) as the first and the

second objectives. However, we separate the purchasing and ordering

cost in the first objective and the holding cost in the second objective,

because they show different behavior of inventory system (Rashid,

Bozorgi-Amiri, & Seyedhoseini, 2015). The holding cost has a posi-

tive gradient and the other costs have negative gradients when the

order quantity is increased. Thus, we enable studying this trade-off.

Furthermore, we consider cycle service level as the third objective to

measure the capability of the proposed safety strategy to deal with the

stochasticity of demand. And lastly, we have the inventory turnover

in the fourth objective as the primary performance measurement in

inventory management (Silver, Pyke, & Thomas, 2017) to measure the

effectiveness of this model in managing inventory. These four objectives

can maximize the effectiveness of inventory with minimal costs and

sufficient safety strategy to maximally handle demand uncertainty.

We apply the trade-off-free interactive method E-NAUTILUS (Ruiz,

Sindhya, Miettinen, Ruiz, & Luque, 2015), for the first time in this

field, to solve the proposed problem. The strength of this method is

that it starts from the worst possible objective function values and

iteratively improves all objectives, allowing the decision maker to find

his/her most preferred solution without having to trade-off among

the objectives. Sometimes, decision makers tend to anchor around the

starting point because of trading-off (Buchanan & Corner, 1997) and,

thus, fail to find preferred solutions. Thanks to the structure of the

method, this is avoided. Lot sizing problems have been identified as

computationally challenging problems in many articles (Alem, Curcio,

Amorim, & Almada-Lobo, 2018; Bitran & Yanasse, 1982), and de-

mand uncertainty increases the complexity of the problem (Efthymiou,

Mourtzis, Pagoropoulos, Papakostas, & Chryssolouris, 2016). The E-

NAUTILUS method is designed for solving computationally expensive

problems, which makes it an adequate choice to solve the lot sizing

problem defined in this research. Furthermore, we develop a novel web-

based user interface for E-NAUTILUS, which can be freely accessed and

is made available as open-source software.

As said, as a proof of concept, we consider a real case study and the

supply chain manager who acted as the decision maker found the model

and the results useful. We demonstrate that the E-NAUTILUS method

can be successfully applied to solve our integrated computationally

expensive lot sizing problem for the real case study of two SKUs. From

the managerial perspective, the parallel exploitation of SS and SOT is a

welcomed addition to traditional inventory management models. The

decision maker appreciated the benefit of SOT to manage additional

stocks dynamically in an efficient way. He was satisfied with the results

and willing to adopt the model more widely for inventory planning and

control, especially for critical SKUs.

To sum up, the main contributions of this paper can be written as

follows:

(1) Proposing a novel concept of safety order time (SOT) to handle

demand uncertainty.

(2) Introducing a multiobjective optimization model which inte-

grates a lot sizing problem and the safety strategy placement.

(3) Applying an interactive trade-off-free method E-NAUTILUS that

is appropriate for computationally expensive lot sizing problems.

(4) Developing a new web-based user interface for E-NAUTILUS (as

a free and open-source software).

(5) Solving the problem successfully and finding a final solution that

best represents the decision maker’s preferences by using the

E-NAUTILUS method.

The rest of the paper is organized as follows. Section 2 describes

the main concepts of multiobjective optimization and the E-NAUTILUS

method. Section 3 presents the assumptions, notations, objective func-

tions and constraints of the proposed multiobjective optimization

model, while details of the developed web-interface implementation

are discussed in Section 4. In Section 5, a real case study with data

from a manufacturing company is considered with results and analysis

of the decision making process using the E-NAUTILUS method. Finally,

we conclude our work and discuss future directions in the last section.
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Table 1

Comparison with other relevant studies on lot sizing.

Source SOP/MOP SS SOT Interactive

Kumar and Aouam (2018), Tavaghof-Gigloo and Minner (2021) SOP Yes No No

Rezaei and Davoodi (2011), Amorim et al. (2011), Azadnia et al. (2015), survey Aslam and Amos (2010), and more MOP No No No

Agrell (1995), Ustun and Demirtas (2008), Bouchery et al. (2012), Heikkinen et al. (2021) MOP No No Yes

This paper MOP Yes Yes Yes

2. Background in multiobjective optimization

2.1. Basic concepts

We consider multiobjective optimization problems of the following

form:

minimize 𝒇 (𝒙) = (𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑘(𝒙))𝑇

subject to 𝒙 ∈ 𝑆,
(1)

where 𝑓𝑖 ∶ 𝑆 → R for 1 ≤ 𝑖 ≤ 𝑘 and 𝑘 ≥ 2 are the objective

functions which are to be optimized simultaneously. The vector of

decision variables 𝒙 = (𝑥1,… , 𝑥𝑛)𝑇 is bounded by the feasible region

𝑆, which is a subset of the decision space R
𝑛. The feasible region is

formed by constraints, which can be lower and upper bounds for 𝒙

and/or equality and inequality constraints. The image of the feasible

region 𝑍 = 𝒇 (𝑆) is called a feasible objective region, which is a subset
of the objective space R

𝑘. A vector 𝒛 = 𝒇 (𝒙) = (𝑓1(𝒙),… , 𝑓𝑘(𝒙))𝑇 ,
𝒛 ∈ 𝑍, which is called an objective vector, consists of objective values

calculated at 𝒙 ∈ 𝑆.

Objective functions are usually conflicting with each other. There-

fore, it is impossible to find one solution where each objective achieves

its individual optimum. A multiobjective optimization problem (1)

usually has several solutions which are called Pareto optimal solutions.

For two objective vectors 𝒛1, 𝒛2 ∈ 𝑍, 𝒛1 is said to dominate 𝒛2 if 𝑧1
𝑖
≤ 𝑧2

𝑖

for all 𝑖 = 1,… , 𝑘 and 𝑧1
𝑗
< 𝑧2

𝑗
for at least one 𝑗 = 1,… , 𝑘. Otherwise, 𝒛1

and 𝒛2 are nondominated. A decision vector 𝒙′ and its corresponding

objective vector 𝒛′ are Pareto optimal if there does not exist another

decision vector 𝒙 ∈ 𝑆 such that 𝒛 = 𝒇 (𝒙) dominates 𝒛′. The set of Pareto
optimal solutions in the decision space is called a Pareto optimal set,

and its image in the objective space is known as a Pareto optimal front.

The ranges of the objective function values in the Pareto optimal

front may provide useful information for the decision maker. Lower

and upper bounds of the Pareto optimal front are represented in an

ideal point 𝒛∗ and a nadir point 𝒛𝑛𝑎𝑑 , respectively. They represent

the best and the worst values that can be achieved by each objective

function in the Pareto optimal front. The ideal point can be calculated

by minimizing each of the objective functions individually, while the

nadir point is more difficult to obtain because it depends on the whole

Pareto optimal front which is usually not fully known. There is no

reliable procedure for calculating the nadir point with more than two

objectives (Miettinen, 1999), but it can be approximated for example

by using a payoff table (Benayoun, de Montgolfier, Tergny, & Laritchev,

1971).

Pareto optimal solutions are incomparable mathematically, thus we

need some additional information from a decision maker to determine

the most preferred solution as the final one. A decision maker is

an expert who is responsible for making a strategic decision in the

problem domain. In lot sizing, he/she is usually a supply chain manager

in a manufacturing company. Besides the decision maker, solving a

multiobjective optimization problem involves an analyst, who supports

the decision maker in mathematical aspects. The analyst is assumed

to know multiobjective optimization methods and is responsible for

the mathematical model and making preparations before the decision

maker is involved.

Based on the role of the decision maker during the solution process,

methods to solve multiobjective optimization problems can be divided

into four classes (Miettinen, 1999). The first class is no-preference

methods. These methods do not use any preference from the decision

maker. Then, in the second class, called a priori methods, preference

information from the decision maker is first required and a Pareto

optimal solution reflecting this information is then found. In contrast,

several Pareto optimal solutions are first generated and presented to the

decision maker in the third class, which is called a posteriori methods,

and he/she then has to select the most preferred one. The last class is

interactive methods, where the decision maker is actively involved to

give his/her preferences iteratively.

Interactive methods are regarded as promising methods to get a

final solution that best satisfies the decision maker (Miettinen & Haka-

nen, 2009; Miettinen, Ruiz, & Wierzbicki, 2008). In interactive meth-

ods, the decision maker does not need any global preference structure

about the problem, but he/she is able to learn about the interrela-

tionships among the objectives during the solution process. In each

iteration, some information is presented and the decision maker is

asked to express his/her preferences by answering some relevant ques-

tions. Then, the preferences are accounted for to improve the solutions

in the following iteration. There are many ways to inquire preference

information from the decision maker (Miettinen et al., 2016).

In this paper, we use the E-NAUTILUS method developed by Ruiz

et al. (2015), where the decision maker iteratively approaches the

Pareto optimal front and can avoid trading-off by improving in all

objectives simultaneously. The reason for using this method is its ability

of handling computationally expensive problems, which is appropriate

for lot sizing problems, and the possibility to avoid anchoring and find

the most preferred solution without trading-off.

2.2. E-NAUTILUS method

The E-NAUTILUS method (Ruiz et al., 2015) is a variant of NAU-

TILUS methods (Miettinen & Ruiz, 2016). These methods are motivated

by the prospect theory (Kahneman & Tversky, 1979), saying that people

do not react similarly to gains and losses, but they fear losses more

than they desire gains. Based on this philosophy, instead of starting

with some Pareto optimal solution as most other interactive methods

do, NAUTILUS methods choose the worst objective function values as

the starting point, that is, the nadir point. Thereafter, new candidates

are generated where objective function values are improved iteratively,

and the preferred Pareto optimal solution will be the final solution. In

this way, the decision maker can have a free search without requiring

any trade-offs, and he/she always experiences an improvement in all

of the objective values at every iteration until the Pareto optimal front

is reached.

An important concept in NAUTILUS methods is reachable values of

objective functions referring to values of each objective function that

still can be reached from the current candidate without sacrifices in

other objectives. The decision maker is given information on the lower

bounds of reachable values. Upper bounds of reachable values are given

by the candidate. Naturally, the range of reachable values gets smaller

during the iterations that is, when the candidates get closer to the

Pareto optimal front. In E-NAUTILUS, several candidates are shown

to the decision maker at each iteration. Each candidate represents

different directions to move towards the Pareto optimal front. The

decision maker selects the candidate, that is, the direction, one likes

as preference information. Information of reachable values from each

candidate can help the decision maker in order to not loose sight of

the Pareto optimal front at any iteration during the solution process.

In the E-NAUTILUS method, three kinds of information are provided to
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the decision maker: several candidates, lower bounds of corresponding

reachable values, to be referred to as their best reachable values and

closeness of the candidates to the Pareto optimal front.

The E-NAUTILUS method is particularly developed to handle com-

putationally expensive problems. This method consists of three stages:

pre-processing, interactive decision making and post-processing stages.

Solving the original multiobjective optimization problem, which can be

computationally expensive, is done without involvement of the decision

maker in the pre-processing stage. In this stage, a set of Pareto optimal

solutions 𝑃 is generated using any a posteriori method. Therefore,

an analyst who has knowledge on an appropriate (a posteriori type)

method is needed here to generate a sufficient number of Pareto

optimal solutions. In addition, to know the ranges of the Pareto optimal

front, the nadir point and the ideal point are estimated based on 𝑃 .

The second stage is the main part of the E-NAUTILUS method. This

is the only part that needs the involvement of the decision maker. The

candidates which are presented to the decision maker in each iteration,

are calculated based on the data generated in the previous stage. The

original computationally expensive problem is not solved in this stage,

which reduces the waiting time of the decision maker in each iteration.

This interactive stage can be described in the following steps:

(1) The ranges of the objective functions are shown to the decision

maker by showing the estimated ideal point 𝒛∗ and nadir point

𝒛𝑛𝑎𝑑 .

(2) The decision maker is asked to provide the number of iterations

𝑁𝐼 and the number of candidates 𝑁𝑆 that he/she wants to see

at each iteration.

(3) Set the starting point 𝒛(0) = 𝒛𝑛𝑎𝑑 , current iteration ℎ = 1 and
current set of Pareto optimal solutions 𝑃 (ℎ) = 𝑃 .

(4) Select 𝑁𝑆 solutions that well represent solutions in 𝑃 (ℎ) by
dividing 𝑃 (ℎ) into 𝑁𝑆 subsets and determine a representative

solution of each, denoted by 𝒛̄(ℎ, 𝑖), 𝑖 = 1,… , 𝑁𝑆 .

(5) Calculate 𝑁𝑆 candidates, denoted by 𝒛(ℎ, 𝑖), 𝑖 = 1,… , 𝑁𝑆 , which

lie on the line segment joining the previous preferred candidate

𝒛(ℎ−1) and each representative solution 𝒛̄(ℎ, 𝑖) with the following
formula:

𝒛(ℎ, 𝑖) = 𝑖𝑡(ℎ) − 1
𝑖𝑡(ℎ)

𝒛(ℎ − 1) + 1
𝑖𝑡(ℎ)

𝒛̄(ℎ, 𝑖), (2)

where 𝑖𝑡(ℎ) = 𝑁𝐼−ℎ+1 is the number of iterations left (including
the current iteration).

(6) Calculate the best reachable values for each candidate as by

solving the following 𝜀-constraint problem (Haimes, Lasdon, &

Wismer, 1971) for 𝑟 = 1,… , 𝑘:

minimize 𝑓𝑟(𝒙)
subject to 𝑓𝑗 (𝒙) ≤ 𝑧𝑗 (ℎ, 𝑖), 𝑗 = 1,… , 𝑘, 𝑗 ≠ 𝑟

𝒙 ∈ 𝑃 (ℎ).
(3)

(7) Calculate the closeness of each candidate to the Pareto optimal

front, which is shown as a percentage, as follows:

𝑑(ℎ, 𝑖) = ‖𝒛(ℎ, 𝑖) − 𝒛𝑛𝑎𝑑‖‖𝒛̄(ℎ, 𝑖) − 𝒛𝑛𝑎𝑑‖ × 100%, 𝑖 = 1,… , 𝑁𝑆. (4)

(8) Show the 𝑁𝑆 candidates together with their best reachable

values and closeness information to the decision maker. Ask

him/her to select his/her most preferred solution among the

candidates as the current preferred candidate, denoted by 𝒛(ℎ).
(9) Set ℎ = ℎ + 1, and update 𝑃 (ℎ) by deleting the Pareto optimal

solutions which cannot be reached without trade-offs from 𝒛(ℎ).
(10) Repeat step 4–9 until ℎ = 𝑁𝐼 + 1.

From the interactive decision making stage, we have 𝒛(𝑁𝐼 ) as the
most preferred candidate selected by the decision maker. The Pareto

optimality of this candidate depends on the a posteriori method used

in the first stage. Some a posteriori methods, for example evolutionary

methods, cannot theoretically prove the Pareto optimality of the solu-

tions. Thus, to ensure the Pareto optimality of the final solution 𝒛𝑓𝑖𝑛𝑎𝑙,

the post-processing stage can be needed. In this stage, we project 𝒛(𝑁𝐼 )
onto the Pareto optimal front by minimizing an achievement scalarizing

function (Wierzbicki, 1980) with 𝒛(𝑁𝐼 ) as a reference point. For further
details of the methods, see Ruiz et al. (2015).

3. Multiobjective optimization model

As mentioned in the introduction, we consider a lot sizing problem

with a safety strategy to handle uncertainty on demand. Traditionally,

a SS is used to reserve a certain amount of stock to prepare for

unpredicted surges of demand. By assuming a constant lead time, a

SS only depends on the standard deviation of demand and the desired

service level (Talluri, Cetin, & Gardner, 2004). For instance, high and

low demand SKUs could have the same amount of SS, if they have the

same demand deviation and service level. Therefore, in real life, supply

chain managers need to think about a certain time period that can be

covered with a SS. For example, they sometimes convert a SS into days

by dividing it with the daily demand.

In this paper, we propose a SOT as an additional safety strategy,

which keeps additional stock in the inventory based on time. When an

order is placed, instead of considering demand along lead time as a

typical way to solve a lot sizing problem, with this strategy, additional

SOT days/weeks are also considered. For example, by setting a SOT as

one week and having lead time as two weeks, demand for three weeks

is considered for each period, but an order will arrive after two weeks.

Therefore, the additional SKUs to cover demand for one following week

are always kept in the inventory and can be used to accommodate

demand uncertainty.

With SS, we keep the same amount of stock along the period

considered, while demand can fluctuate a lot. This may increase the

risk of running out of stock in case of high demand. On the other

hand, SOT keeps stock based on demand in the following period, which

can be higher for high demand and lower for low demand. Thus,

instead of a constant amount of stock, SOT adapts to the demand of

the following period and handles cases of high peak of demand better

than SS. Because SS has an advantage in handling deviation of demand,

the combination of SS and SOT increases the preparedness for demand

uncertainty. For this reason, we use both SS and SOT in our proposed

model.

SS and SOT are both usable indicators for inventory management

when managing unpredictable fluctuation in demand. SS is a static

method and, thus, reacts with a delay to changes in demand. Because

of that, if demand increases, the SS coverage in days on hand decreases.

This may result in stock out situations as the SS adequacy is less sat-

isfactory. Thus, more certainty is required and, therefore, we propose

SOT in our model. Unlike SS, SOT is more dynamic and, thus, serves

the needs of management for stock planning purposes. This becomes

clear in the context of our case study, as the decision maker states. The

novelty value of SOT is essential because, as said, SOT is a dynamic

factor and does not require as frequent updates as SS. Typically, a

manufacturing company has a considerable number of SKUs to manage,

and it is time-consuming to recalculate SKU stock control data, such as

SS, continuously. SOT does not need to be updated that often and, thus,

it supports management in an efficient way.

To solve the defined lot sizing problem, we formulate a multiobjec-

tive optimization problem with four objective functions and four con-

straints. The assumptions and notations which are used throughout the

paper are defined before the multiobjective optimization formulation is

introduced in this section.



A. Kania et al.

3.1. Assumptions

We consider a single-item multi-period lot sizing problem with

stochastic demand. We work in discrete time, so we review the lot size

over 𝑚 time periods 𝑡 = 1,… , 𝑚 and the replenishment process follows

a periodic review policy. The decision maker reviews the ordered

quantity 𝑄(𝑡) at the beginning of each period, and the order will arrive
after a constant lead time 𝐿.

The idea of a SOT is shown in Fig. 1. For each order, we do not

only consider the demand needed until the order arrives, but also an

additional 𝑆𝑂𝑇 time unit is considered. Hence, the order is actually

needed after 𝐿+𝑆𝑂𝑇 time units, but it comes earlier after 𝐿 time units.

With this strategy, we always have excess SKUs in the amount of the

predicted demand during a 𝑆𝑂𝑇 time unit, besides a 𝑆𝑆. The excess

can be used if unpredicted demand occurs.

We make the following assumptions.

(1) All of the data is ready to use (which means checking correctness

and reliability of the data).

(2) Demand is normally distributed with a mean 𝜇 and a standard

deviation 𝜎. We define 𝐷(𝑡) as the total of predicted demand

from the beginning of period 𝑡 until the end of this period.

Demands in different time periods are independent of each other.

(3) There is no capacity limit in ordering SKU, which means that the

cost for one order is 𝑐, regardless of the quantity of SKUs in the

order.

(4) There is no backorder cost.

(5) Every order can be placed with a minimum order quantity 𝑚𝑜𝑞

and it rounds up by a rounding value 𝑟. The multiplication of 𝑟 is

increased after 𝑚𝑜𝑞. It means that the order can only be placed

by following the formula 𝑚𝑜𝑞 + 𝑎 𝑟 for any integer 𝑎 ≥ 0.

3.2. Notation

The following notations are used in this paper.

Index

{𝑡|𝑡 = 1,… , 𝑚} index of time period

Data

𝑝 price to purchase one SKU

𝑐 cost to place one order

ℎ cost to hold one SKU for one period

𝑇 length of one period

𝐿 lead time

𝐷(𝑡) predicted demand during period 𝑡

𝜎 standard deviation of demand for one period

𝜇 average demand

𝑚𝑜𝑞 minimum order quantity (for lot size)

𝑟 rounding value (for lot size)

Decision variables

𝑄(𝑡) lot size at period 𝑡

𝑆𝑆 safety stock

𝑆𝑂𝑇 safety order time

Dependent variables

𝑌 (𝑡) order indicator,

𝑌 (𝑡) = 1 if the order is placed (𝑄(𝑡) > 0),
otherwise 𝑌 (𝑡) = 0

𝐼(𝑡) inventory position at the end of period 𝑡

(sum of inventory position at the end of the

previous period and incoming order at period 𝑡

decreased by the demand during period 𝑡),

𝐼(𝑡) = 𝐼(𝑡 − 1) +𝑄(𝑡 − ⌊𝐿⌋) −𝐷(𝑡)
Other Notations⌊𝑢⌋ the greatest integer less than or equal to u⌈𝑢⌉ the least integer greater than or equal to u

Fig. 1. Illustration of SOT in periodic review policy.

3.3. Objective functions

As mentioned, we have four objectives to consider simultaneously.

Cost functions are as the first and the second objectives. According

to the literature, in a lot-sizing problem, a purchasing manager must

consider three types of cost (Chopra & Meindl, 2016): purchasing cost,

ordering cost and holding cost. Most of the research considers total

cost as one objective function. However, in this paper, we propose to

separate it as two different cost functions. It is interesting to see holding

cost individually, because it may show different behavior from the

other costs (Rashid et al., 2015). Therefore, we minimize purchasing

and ordering cost as the first objective and minimize holding cost

as the second objective. Then, the adequacy of the safety strategy

in handling unpredicted demand is measured in the third objective

function. We maximize the cycle service level for this purpose. Lastly,

maximizing inventory turnover, which is an important measurement in

lot-sizing (Grant, Lambert, Stock, & Ellram, 2006), is considered in the

last objective.

Purchasing cost is the expense of buying SKUs from a supplier. The

price 𝑝 is assumed to be fixed and no discount rate is applied. Ordering

cost is the cost of placing one order, regardless of the number of SKUs in

the order. It is fixed based on our assumption. In the first objective, we

minimize the purchasing and ordering cost (POC) that can be written

as follows:

𝑃𝑂𝐶 =
∑
𝑡

𝑄(𝑡) 𝑝 +
∑
𝑡

𝑌 (𝑡) 𝑐. (5)

A holding cost (HC) is the expense for holding SKUs, which can

be calculated using several formulas (Alfares & Ghaithan, 2019). In

this research, we calculate holding cost at one period by multiplying

quantity of SKUs at this period and the cost for holding one SKU for one

period ℎ. For simplicity, the quantity of SKUs in one period is calculated

as the average amount of inventory in this period. The formula of HC,

which is treated as the second objective to be minimized, can be written

as follows:

𝐻𝐶 =
∑
𝑡

𝐼(𝑡 − 1) + 𝐼(𝑡)
2

ℎ. (6)

A cycle service level (CSL) is the probability of not having a stockout

in a replenishment cycle (Chopra & Meindl, 2016). It measures how

the safety strategy deals with the unpredicted demand during one

replenishment cycle. One replenishment cycle is defined as one cycle

that needs to be covered by one order, which is one period in our

case. With the proposed safety strategy, we have a SS and demand for

SOT time units to cover unpredicted demand in one period. Thus, we

propose the CSL formula as follows to be maximized:

𝐶𝑆𝐿 = 𝐹

(
𝑆𝑆 + 𝜇 𝑆𝑂𝑇

𝜎

)
, (7)

where 𝐹 is the standard normal distribution function.

An inventory turnover (ITO) is a measurement for inventory perfor-

mance that is quite important from a practical point of view. It means

the number of times inventory turns over annually, which indicates
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how fast a company is selling the SKU or using it in the production.

The ITO can be measured as the ratio between SKU usage and average

inventory. We do not exactly know the demand in future periods, but

we define the SKU usage as the addition of the predicted demand

and the demand deviation which represents the SKU usage from the

unpredicted demand. Hence, we propose to maximize the ITO formula

as follows:

𝐼𝑇𝑂 =
∑
𝑡

𝐷(𝑡) + 𝜎

(𝐼(𝑡 − 1) + 𝐼(𝑡))∕2
. (8)

3.4. Constraints

We propose four kinds of constraints to be considered in the multi-

objective optimization model. To guarantee the availability of SKUs to

cover the predicted demand, we set the fill rate as the first constraint.

The second constraint aims to impose the order quantity policy, while

the third constraint enforces the availability of safety inventory to cover

the unpredicted demand. Finally, in the last constraint, we set the lower

bounds of 𝑆𝑆 and 𝑆𝑂𝑇 .

A fill rate (FR) is the fraction of demand which is satisfied from

the inventory (Chopra & Meindl, 2016; Teunter, Syntetos, & Babai,

2017). This constraint is defined to ensure that the inventory in each

period (excluding SS) can cover the predicted demand. As previously

described, the consideration period for one order is 𝑃 = 𝐿 + 𝑆𝑂𝑇 .

Hence, a FR constraint for each period 𝑡 = 1,… , 𝑚 can be written as:

𝐹𝑅(𝑡) =
𝐼(𝑡 − 1) +

∑𝑡

𝑖=𝑡−⌊𝐿⌋ 𝑄(𝑖) − 𝑆𝑆

𝐷𝑃

≥ 1, (9)

where 𝐷𝑃 is demand during 𝑃 , which can be defined as:

𝐷𝑃 =
𝑡+⌊𝑃 ⌋∑
𝑗=𝑡

𝐷(𝑗) + (𝑃 − ⌊𝑃 ⌋)𝐷(⌈𝑃 ⌉). (10)

Based on the order policy, an order can be placed with a certain

minimum order quantity 𝑚𝑜𝑞 and multiplication of a rounding value 𝑟.

It is common in practice and typically based on an agreement between

a supplier and a company (Zhu, Liu, & Chen, 2015). Hence, for each

period 𝑡 = 1,… , 𝑚, the following constraint must be fulfilled:

𝑄(𝑡) = 𝑌 (𝑡) (𝑚𝑜𝑞 + 𝑎 𝑟), (11)

for any integer 𝑎 ≥ 0.
To ensure the availability of the safety strategy in the inventory, for

each period 𝑡 = 1,… , 𝑚, the following constraint must be fulfilled:

𝐼(𝑡) ≥ 𝑆𝑆 + 𝑆𝑂𝑇 𝐷(𝑡). (12)

Finally, to eliminate negative values, lower bounds of SS and SOT

must be defined as follows:

𝑆𝑆 ≥ 0 and 𝑆𝑂𝑇 ≥ 0. (13)

In conclusion, the proposed multiobjective optimization model can

be written as:

minimize (𝑃𝑂𝐶,𝐻𝐶,−𝐶𝑆𝐿,−𝐼𝑇𝑂)𝑇

subject to (9), (11), (12), (13)
(14)

4. Interactive E-NAUTILUS graphical user interface

As part of this paper, we developed a web-based graphical user

interface (for short, interface) to ease the interaction between the deci-

sion maker and the interactive stage of E-NAUTILUS. The E-NAUTILUS

interface was built on top of a computational back-end implementing

the numerical steps of the interactive stage of E-NAUTILUS described

in Section 2.2. The back-end was implemented as part of the latest iter-

ation of the open-source DESDEO software framework (Ojalehto & Mi-

ettinen, 2019). Both the back-end and the interface were implemented

using Python.

The E-NAUTILUS interface was developed for visualizing informa-

tion related to a multiobjective optimization problem to a decision

maker. We used the Dash platform (https://dash.plotly.com/) to build

the interface. The reasons to use Dash were manifold:

(1) Dash is implemented in Python, which means that utilizing

DESDEO in conjunction with Dash is seamless.

(2) Dash can be utilized with plotly, which is another Python library

for building visualizations. Usage of plotly is desirable because it

offers a wide variety of different interactive visualizations types.

(3) Applications using Dash can be used in any modern web-browser

by having the application running either locally or on a remote

web-server. This makes the application very accessible.

(4) Dash comes with an open-source variant, which allows for the

free and unconstrained distribution of applications build using

the said variant.

In the developed E-NAUTILUS interface (see Fig. 2), the deci-

sion maker is shown three distinct visualizations (Miettinen, 2014) to

present the different candidates computed by E-NAUTILUS. These are:

(i) a spider plot (Figs. 2 and 3), (ii) a value path plot (Fig. 2), and (iii)

tabulated objective values (Fig. 2). In the spider plot and the tabulated

objective values views, the candidates of each iteration are visualized

alongside the candidate best reachable values, which is named as

candidate best in the interface for simplicity. However, the value paths

plot shows only the objective values of the current candidates because

visualizing the reachable values in the value paths plot can result

in excess visual clutter. The currently selected candidate is always

highlighted in red in the value paths. Furthermore, in the spider plot,

the decision maker is also able to select which of the candidates he/she

wishes to simultaneously view. This can facilitate the comparisons of

different candidates.

Each of the three described views is also linked. This means that

by selecting one of the candidates shown in an iteration using the

radio button seen in Fig. 2, the same candidates are then highlighted

in each of the views. Having different visualizations of the same can-

didates, and linking the visualizations allows the decision maker to

easily explore the available information which can aid him/her to learn

about the problem (Roberts, 2007). Linking is evident in Fig. 2, where

the third candidate has been selected. The same candidate is then

automatically shown in the spider plot view, highlighted as a red line in

the value path view, and highlighted as the blue rows in the tabulated

values view. As the decision maker changes the currently selected

candidate, each of the views is updated accordingly in real-time.

Moreover, the candidate chosen in the previous iteration is also

shown in the spider plot view. This is not part of the original description

of E-NAUTILUS. This feature was the result of a wish presented by the

decision maker in the case study discussed in Section 5. By visualizing

the previously selected candidate, the decision maker is able to com-

pare the newly computed candidates to the previous candidate and see

how each of the objectives has improved. This may also aid the decision

maker in exploring and learning about the problem.

As described in Section 2.2, the E-NAUTILUS method also shows

closeness information of the candidates to the Pareto optimal front.

However, this option was not used in this paper. Instead, the infor-

mation about the number of iteration left is provided to the decision

maker to give an estimation about the closeness of the candidates to

the Pareto optimal front.

The source code of the web-based graphical user interface devel-

oped for E-NAUTILUS is available as open-source code on GitHub https:

//github.com/industrial-optimization-group/desdeo-dash. Furthermore,

the interface discussed in this section is also available online in https:

//desdeo.it.jyu.fi/dash.
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Fig. 2. The main dashboard shown to the decision maker in the E-NAUTILUS interactive. (1) Number of iterations left and short instructions to guide the decision maker. (2)

Radio-buttons for selecting a candidate and the ITERATE-button to proceed to the next iteration with the selected candidate. (3) Spider plot view. See Fig. 3 for a more detailed

description. (4) Value path view of candidates. (5) Tabulated values view. Top table: the candidates’ individual objective values. Bottom table: the best reachable values from each

candidate. The highlighted rows show the candidate selected with the radio-buttons shown in (1). The arrows shown next to the objective names (POC, HC, CSL and ITO) across

the dashboard indicate whether an objective is to be minimized (down arrow) or maximized (up arrow).

Fig. 3. The spider plot view in the E-NAUTILUS interface. The decision maker is able

to select (by clicking on the legend on the right of the plot) one or multiple candidates

to be shown simultaneously for comparison. Candidates 2 and 3 have been selected

for comparisons in the figure. The best reachable values of each candidate (written as

candidate best) are also shown by the dashed line. Also, the candidate selected in the

previous iteration is shown (as the black dashed lines in the figure). The names of the

objective functions are shown on the outer radius of the plot, where an arrow shows if

the objective is to be either minimized (down arrow) or maximized (up arrow). Each of

the candidates and their best reachable values can be moused over, which will display

detailed numerical information.

5. Computational results

As a proof of concept, in this section, we present the results of solv-

ing the proposed model using real data from a manufacturing company.

As mentioned in the introduction, our model is particularly suited for

problems with various types of constraints and many decision variables

and, this case study demonstrates the need of having a dynamic stock to

handle demand uncertainty in a better way. After introducing the case

study, we demonstrate how a supply chain manager from the company,

acting as the decision maker, found the most preferred solution for him

using the developed E-NAUTILUS interface.

5.1. Case study

Real data of two different types of SKUs are analyzed: one with high

demand (called SKU 1) and another with low demand (called SKU 2).

The time period for inventory planning is one week, and we consider

lot sizes for 48 weeks. Therefore, the multiobjective optimization model

Fig. 4. Demands for SKU 1 (top line) and SKU 2 (bottom line).

involves 50 decision variables. The data was received from the ERP

system of the company.

Based on the data, the price of SKU 1 is e134 which is almost four
times less than that of SKU 2 with a price of e483.85, but the demand is
on average more than ten times higher than SKU 2 (see Fig. 4). A high

volume order must be placed for SKU 1 with a minimum of 70 units

and rounding by 14 units for one order, while SKU 2 can be ordered

with a minimum of 3 units and the same rounding value.

The case company utilizes a pre-order method with these SKUs. A

scheduled order for the supplier is placed one year ahead for separate

weekly deliveries. The method consists of a frozen zone and a liquid

zone planning times. During the frozen zone, no changes can be done

in the pre-ordered amounts, but changes can be made during the liquid

zone. Based on this fact, we set the lead time as the frozen zone, which

is six weeks for both SKU 1 and SKU 2. The historical data shows that

during this six week period, the company has made previous orders

(420, 70, 140, 210, 140, 140) for SKU 1 and (6, 9, 9, 9, 12, 6) for

SKU 2, with the opening inventory 596 and 75 for SKU 1 and SKU 2,

respectively.

After introducing the idea to the decision maker, an additional

constraint was defined as a request from him. With this additional

constraint, the proposed multiobjective optimization model has five

constraints. In this case, the SS and the SOT as the safety strategy must

be limited. Without this limitation, the stock level can be significantly

high to make a near-perfect CSL, but it makes the holding cost sig-

nificantly high and the ITO significantly low, which is not reasonable
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for the decision maker. The decision maker is only interested in a

combination of the safety strategy under the following constraint:

𝑆𝑂𝑇 + 𝑆𝑆

𝜇
≤ 𝑀𝑆, (15)

where MS is maximum number of periods that can be covered by the

safety strategy. We set 𝑀𝑆 = 1 week for SKU 1 and 𝑀𝑆 = 1.4 weeks
for SKU 2.

5.2. Pre-processing stage

As previously described, the E-NAUTILUS method starts by gener-

ating a large number of Pareto optimal solutions using any a posteriori

method. We applied an evolutionary method called NSGA-III (Deb &

Jain, 2014) by using the pymoo framework (Blank & Deb, 2020). It has

been developed for problems with four or more objectives. We selected

an evolutionary method since they do not set requirements on the type

of functions involved and can handle integer variables. However, as

mentioned in Section 2.2, they cannot guarantee the Pareto optimality

of solutions. All we know is that the solutions are nondominated,

that is, not dominated by each other. Thus, also the third stage of

E-NAUTILUS was needed in the solution process.

Because of the computational cost, it is a challenge to generate

a large number of nondominated solutions for the defined lot sizing

problem. In addition, integer decision variables and five constraints

limit the number of nondominated solutions. Therefore, a single run

of NSGA-III could not generate enough nondominated solutions even

though the size of the initial population was increased to get more

solutions. Naturally, increasing the number of solutions increases the

computation time exponentially. To overcome this issue, we generated

the solutions iteratively using different sizes for the initial populations

and combined the generated solutions by deleting the recurring and

dominated solutions. More detailed information can be seen in B. As a

result, we obtained 651 nondominated solutions for SKU 1 and 518

nondominated solutions for SKU 2 to be used in the next stage of

E-NAUTILUS.

From these nondominated solutions, the ideal and nadir points were

calculated to approximate the ranges of the Pareto optimal front. The

best-found objective function values were set as the ideal point and the

worst values found were set as the nadir point.

5.3. Interactive decision making stage

The novel E-NAUTILUS interface was applied to support the deci-

sion maker in solving the two problems involving the two SKUs. As

discussed in Section 2.2, the decision maker was shown solution candi-

dates to compare with some additional information and was asked to

provide preference information at each iteration. The goal of this stage

is to find a nondominated solution that best represents the decision

maker’s preferences. The step-by-step decision making process for both

SKUs is described in detail below.

5.3.1. SKU 1

First of all, the estimated ideal and nadir vectors, as shown in

Table 2, were presented to the decision maker. Then, he was asked

to provide the number of iterations to be carried, and the number of

candidates to be shown in each iteration. He noticed that the Pareto

optimal front has a wide range. If he chose the number of iterations

too low, the candidates would approach too fast to the final solution

and he might lose some of the potentially interesting candidates during

the decision making process. Therefore, the decision maker ultimately

decided to select ten iterations and four candidates to consider in each

iteration.

In each iteration, the decision maker was provided with four candi-

dates and their best reachable values. Using the E-NAUTILUS interface

with three types of visualizations, the decision maker could easily

Table 2

Ideal and nadir points of SKU 1.

POC HC CSL ITO

Ideal point 747 820 2 717.24 1.0 252.96

Nadir point 1 046 028 9 133.52 0.5 13.66

compare the candidates before selecting one of the available candi-

dates. In what follows, each iteration is reported, while more detailed

information on the candidates, the corresponding reachable values, and

the selected candidate for each iteration can be seen in Table A.1 of

Appendix A.

Iteration 1. In the first four candidates shown, their reachable values

were basically still the whole Pareto optimal front and, thus, taking

a step from the estimated nadir point to any of the candidates would

not limit the objective values much. The decision maker initially paid

more attention to ITO than the other objectives. He decided to select

the candidate 𝒛(1) = 𝒛(1, 1) = (1 025 459.60, 8 590.38, 0.50, 22.7) to

get the best values of ITO and had a chance to improve on the other

objectives.

Iteration 2. The second iteration showed a variation of the reachable

values, especially in POC and ITO. The decision maker chose the

candidate 𝒛(2) = 𝒛(2, 2) = (1 004 891.20, 8 047.24, 0.51, 31.88). He

noticed that it had the worst CSL value, but it was pretty close with

the others and he had the best ITO with this choice.

Iteration 3. In this iteration, the decision maker was still interested

in pursuing the best ITO value, hence he chose the candidate 𝒛(3) =
𝒛(3, 3) = (987 940.30, 7 518.98, 0.51, 47.2). He realized that his choice
had the worst CSL, but in his opinion, the reachable values for this

candidate were quite good.

Iteration 4. The decision maker changed the direction to get the

better CSL value in this iteration. He decided to select the candidate

𝒛(4) = 𝒛(4, 2) = (967 533.97, 6 920.64, 0.56, 48.57) which had the best
CSL. Even though this candidate had the worst ITO, he needed to take

care of the CSL.

Iteration 5. The CSL was still the main focus of the decision maker in

this iteration. He preferred the candidate 𝒛(5) = 𝒛(5, 3) = (947 127.64,

6 322.29, 0.61, 49.9) to achieve the best value in CSL. He noticed that

this candidate had the worst ITO but he was satisfied enough with the

ITO values of all candidates.

Iteration 6. In this iteration, the decision maker still paid more

attention to the CSL value, because he was satisfied with the current

ITO value. The candidate he liked most in this iteration was 𝒛(6) =
𝒛(6, 3) = (923 009.31, 5 709.51, 0.67, 50.29) which had the best CSL

value.

Iteration 7.With the same considerations as in the previous iteration,

in this iteration the decision maker’s selected candidate was 𝒛(7) =
𝒛(7, 3) = (898 890.99, 5 096.73, 0.73, 50.6) which had the best CSL

value.

Iteration 8. This iteration became more interesting to the decision

maker because the reachable values of CSL and ITO were exactly the

same for all candidates. After considering the candidates, he preferred

to select the candidate 𝒛(8) = 𝒛(8, 2) = (871 379.32, 4 486.96, 0.78,

52.1) due to the best CSL and pretty good ITO values.

Iteration 9. Among the candidates shown in this iteration, the de-

cision maker liked most the candidate 𝒛(9, 2) which had the best CSL
value. Then, we set 𝒛(9) = 𝒛(9, 2) = (843 867.66, 3 877.18, 0.83, 53.6)

as the selected candidate of this iteration.

Iteration 10. Finally, in the last iteration, the decision maker consid-

ered both the cost values in his choice, because he was satisfied with

CSL and ITO values. He selected the candidate 𝒛(10) = 𝒛(10, 4) = (810

528, 3 355.80, 0.90, 54.48) to get the best POC. The HC value was the

worst in this candidate but it was pretty close to the other candidates.
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Table 3

Ideal and nadir points of SKU 2.

POC HC CSL ITO

Ideal point 220 829.40 770.44 1.0 107.02

Nadir point 428 949.50 4 284.86 0.5 11.40

5.3.2. SKU 2

As mentioned, the interactive decision making process for SKU 2

was started by presenting the ideal and nadir vectors, shown in Table 3,

to the decision maker. He observed that the ideal and nadir points for

the SKU 2 were generally lower than for SKU 1, except for the CSL.

The decision maker made the same choice of four candidates and

ten iterations for this SKU for the same reason as for SKU 1. The details

of the decision making process are described below, and all of the

information provided to the decision maker for this SKU is presented

in Table A.2 of Appendix A.

The decision maker applied a different strategy for SKU 2. He

considered both CSL and ITO values and selected the best balance

between these values from the beginning until the third iteration. In

the first iteration, he selected 𝒛(1) = 𝒛(1, 4) = (410 144.51, 3 959.10,

0.54, 14.15) which did not have the best CSL and ITO values but was

sufficiently good compared to the others. In the second iteration, out of

the four candidates, he compared 𝒛(2, 2) and 𝒛(2, 4) which had the best
CSL and chose 𝒛(2) = 𝒛(2, 4) = (393 180.29, 3 661.26, 0.59, 15.93) to

obtain the better ITO. For the next iteration, he was interested in 𝒛(3, 1)
and 𝒛(3, 4) and he preferred 𝒛(3) = 𝒛(3, 4) = (374 301.64, 3 333.05,

0.63, 19.39) which had pretty good ITO and CSL values in his point of

view.

The CSL was the main consideration for the decision maker in the

fourth and fifth iteration. He liked most the candidate 𝒛(4, 4) = (362

466.02, 3 065.26, 0.69, 20.15) due to the best CSL among all of the

candidates. He realized that this candidate had the worst ITO value, but

the same objective values for ITO can be reached from all candidates.

Next, the candidates 𝒛(5, 2) and 𝒛(5, 4) attracted his attention due to the
best CSL values. He then decided to select 𝒛(5) = 𝒛(5, 4) = (342 446.86,

2 766.30, 0.73, 22.10) to get the better ITO value.

The decision maker changed the direction by considering ITO values

in the sixth iteration. He chose the candidate 𝒛(6) = 𝒛(6, 4) = (326

281.74, 2 416.54, 0.76, 27.01) in order to achieve the best ITO value.

He realized that the CSL value of this candidate was not the best, but

the difference was not significant. After this iteration, the ITO value

seemed acceptable for the decision maker in all of the candidates, and

he was more interested in directing the search towards solutions that

require the highest CSL in the next three iterations. Hence, he decided

to continue with the candidate 𝒛(7) = 𝒛(7, 3) = (314 984.16, 2 117.72,

0.82, 27.79).

In the next iteration, the candidates 𝒛(8, 1) and 𝒛(8, 3) had the

highest CSL, therefore he selected the candidate 𝒛(8) = 𝒛(8, 3) = (300

516.80, 1 826.81, 0.87, 29.53) to get a better ITO. Then, he selected

the candidate 𝒛(9) = 𝒛(9, 4) = (277 440.15, 1 466.81, 0.94, 31.11) in

the ninth iteration. Besides the CSL, this candidate had a reasonable

value for holding cost and ITO for him. Finally, in the last iteration,

the decision maker was very happy for the improvement of all the

candidates. He looked at all of the solutions, which had good values,

especially in CSL and ITO. Then, he decided to select the candidate

𝒛(10) = 𝒛(10, 3) = (276 936.75, 1 074.71, 0.99, 34.33).

5.4. Post-processing stage

As described in Section 2.2, the post-processing stage is needed to

assure the Pareto optimality of the final solution if an evolutionary

algorithm is used in the first stage. In this stage, we used the pre-

ferred candidate of the interactive decision making stage 𝒛(10) as a
reference point and project it onto the Pareto optimal front to get

the final solution 𝒛𝑓𝑖𝑛𝑎𝑙. The corresponding optimization problem was

Fig. 5. Result for SKU 1.

solved by using a branch and bound method (Land & Doig, 1960),

which is commonly used for solving optimization problems with integer

variables.

We had 𝒛(10) = (810 528, 3 355.80, 0.90, 54.48) as the reference

point for SKU 1, and the final solution improved to 𝒛𝑓𝑖𝑛𝑎𝑙 = (753 848,

2 329.41, 0.924, 89.18). The lot sizes corresponding to 𝒛𝑓𝑖𝑛𝑎𝑙 can be

seen in Fig. 5. The other decision variables were 𝑆𝑆 = 28, 𝑆𝑂𝑇 = 1
day. In the figure, the orange line represents incoming lot sizes for

each week, which is 𝑞(𝑡 − 𝐿) for 𝑡 = 7,… , 48 and the previous order
data for 𝑡 = 1,… , 6. The demand data is illustrated by the blue line
for comparison. We also provide the inventory level and the safety

level in the gray and the yellow lines, respectively, to show that the

inventory level is larger than the safety level for every week. It indicates

that, by using the final solution obtained by applying E-NAUTILUS, the

company always had SKUs to cover unpredicted demand at least the

same amount as the safety level.

Fig. 5 shows that the company could improve inventory man-

agement with the final solution obtained. Before using the proposed

optimization model, the company had excess inventory at the beginning

of the period. The inventory level could not be controlled by the model

before week seven because of the lead time. By using the final solution,

zero orders were set for the first three weeks, which can be seen in the

incoming lot sizes for weeks seven to nine in the figure. Because the

decision maker was more interested in ITO than the other objectives

for this SKU, after that period, the final solution suggested to order in

similar amounts as the demand data. With this strategy, the company

will have the possibility to balance between the inventory planning

conflicts, namely meeting the unpredicted demand and keeping the

inventory value controlled. At the end of the period, one can see

a decrease in the demand. In this situation, buying SKUs in similar

amounts as demand did not meet the minimum order quantity and

would increase the ordering cost. Therefore, in the final solution, the

company was suggested to order more SKUs in week 44 so that no order

in week 45 was needed. Then, the company should order more SKUs

in week 46 to satisfy demand until the end of the period considered.

For SKU 2, the reference point was 𝒛(10) = (276 936.75, 1 074.71,

0.99, 34.33), and the final solution improved by the projection to

𝒛𝑓𝑖𝑛𝑎𝑙 = (225 332.50, 722.98, 0.997, 54.12). The corresponding lot sizes
can be seen in Fig. 6. The other decision variables were SS= 3, SOT= 3
days. For this SKU, the decision maker was more interested in CSL than

the other objectives, which made the safety level higher and almost

similar to the inventory level and the demand. As in the case of SKU

1, the company had excess inventory at the beginning of the period

considered, and because of the lead time, the effects of the final solution

can be only seen after week eight. The decision maker was then more

interested in ITO values than both of the cost objectives. Therefore, in

the final solution, the lot sizes were in similar amounts as the demand

until week 44. At the end of the period, for the similar reason as for SKU

1, no order in weeks 45, 47 and 48 was needed because the demand

for these weeks had been satisfied by the previous order. Thanks to the

minimum order quantity.
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Fig. 6. Result for SKU 2.

The presented results showed that multiobjective optimization is a

valuable tool for solving the integrated lot sizing problem with safety

strategy placement. We managed to find a final solution for each SKU

which was confirmed to be the most preferred solution by the decision

maker. The decision maker was very happy with the interactive E-

NAUTILUS method, which helped him in making a good decision that

reflected his preferences well. He realized that an improvement can

be made in his inventory management system by implementing our

proposed multiobjective optimization model and solving it with an

appropriate method. He appreciated the fact that the method enabled

him to think of improvements in objectives rather than focusing on

trade-offs.

In particular, the decision maker highlighted the usefulness of SOT

for inventory control. SOT supports measuring the success of his day-

to-day operations because it responds faster than SS. The usefulness

of SOT is particularly pronounced in an industrial environment, where

demand fluctuates rapidly. More generally, SOT provides a quick way

to assess the relevance of inventory control and, thus, serves the needs

of the management well.

6. Conclusions

In this paper, we developed a multiobjective optimization model to

solve a single-item multi-period lot sizing problem in periodic review

policy under stochastic environment on demand. We proposed the

concept of SOT which can handle high fluctuation of demand better

than SS. The combination of SS and SOT increased the preparedness

of handling demand uncertainty. We then proposed a multiobjective

optimization model with four objectives and four constraints to solve

this problem. By using the proposed model, we determined the optimal

order quantity in each period and simultaneously decided the optimal

values of SS and SOT.

As a proof of concept, two SKUs, one with high demand and

another with low demand, were studied with real data from a man-

ufacturing company to demonstrate the performance and applicability

of the proposed model. Even though interactive methods have many

desirable properties, they have not been applied widely in lot sizing.

For the first time in this field, we used the trade-off-free interactive

E-NAUTILUS method, designed for solving computationally expensive

problems. A novel web-based graphical user interface was developed in

this research to help the decision maker in finding his most preferred

solution using the E-NAUTILUS method. By applying this method, the

decision maker could avoid thinking of sacrifices and trade-offs as most

other multiobjective optimization methods would have necessitated.

The decision maker provided different preferences for the two SKUs,

and was satisfied with both results.

The decision maker, who was a supply chain manager of the com-

pany, found the model and SOT useful in his daily operations. He

greatly appreciated SOT that efficiently handles dynamic stock to man-

age the demand stochasticity. He also appreciated the proposed model

and the interactive E-NAUTILUS method, as well as the user interface,

that allowed him to consider POC, HC, CSL and ITO simultaneously

without having to trade-off among the objectives. He was pleased with

the objective function values and the corresponding order quantities, SS

and SOT. He found the model, the interactive solution process and the

results useful and was willing to adopt them more widely for inventory

planning and control in his company. This demonstrates the strengths

of the model and the interactive method applied.

Some assumptions have been made in this research: no capacity

limit and no backorder cost. Including them in the model is a future

research direction to extend its applicability. Moreover, the number

of SKUs to be considered in this research is limited since the decision

maker needs to repeat the interactive solution process for each SKU.

Considering many SKUs is a further possibility to extend this work. In

addition, considering additional uncertainties in the model, such as lead

time uncertainty, is another future direction. It would make the model

more realistic, but computationally more demanding.
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Appendix A. Detailed steps of interactive decision making stage

The detailed steps of the decision making process in every iteration

of SKU 1 and SKU 2 can be seen in Tables A.1 and A.2, respectively.

In each iteration (ℎ), four candidates were shown to the decision

maker, together with the best reachable values from each candidate.

The decision maker then selected one candidate among them, which is

shown in bold face, to proceed with in the next iteration.

Appendix B. Details of the pre-processing stage

The pre-processing stage is the most time-consuming part in apply-

ing the E-NAUTILUS method. As mentioned in Section 5.2, the NSGA-III

method was used to generate nondominated solutions in this stage.

Because of the challenge of generating a sufficient number of non-

dominated solutions, we needed to rerun the method for several times

with different sizes of the initial population. We used the structured

approach described in Das and Dennis (1998) with the number of

partitions from 1 until 20. The reason of having different sizes of initial
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Table A.1

Interactive decision making stage of SKU 1.

h Candidates Best reachable values

POC HC CSL ITO

1 𝒛(1, 1)=(1 025 459.60, 8 590.38, 0.50, 22.77) 747 820 2 717.24 1.00 252.82
𝒛(1, 2)=(1 024 809.20, 8 598.50, 0.55, 16.64) 747 820 2 717.24 1.00 124.94
𝒛(1, 3)=(1 020 226.80, 8 575.23, 0.53, 18) 747 820 2 717.24 1.00 148.42
𝒛(1, 4)=(1 018,290.80, 8,754.71, 0.55, 14.86) 749 296 2 717.24 1.00 124.94

2 𝒛(2, 1)=(997 781.87, 8 157.48, 0.55, 23.95) 749 296 2 717.24 1.00 124.94
𝒛(2, 2)=(1 004 891.20, 8 047.24, 0.51, 31.88) 748 420 2 717.24 1.00 252.82
𝒛(2, 3)=(1 007 384.09, 8 046.84, 0.55, 25.47) 749 296 2 717.24 1.00 124.94
𝒛(2, 4)=(999 560.53, 8 014.37, 0.53, 26.89) 747 820 2 717.24 1.00 148.42

3 𝒛(3, 1)=(981 768.30, 7 503.88, 0.56, 33.05) 749 496 2 820.06 1.00 113.45
𝒛(3, 2)=(979 238.80, 7 470.28, 0.54, 34.83) 748 420 2 717.24 1.00 124.94
𝒛(3, 3)=(987 940.30, 7 518.98, 0.51, 47.24) 748 420 2 717.24 0.96 252.82
𝒛(3, 4)=(980 461.30, 7 418.42, 0.51, 36.92) 748 420 2 717.24 1.00 148.42

4 𝒛(4, 1)=(962 441.97, 6 875.80, 0.52, 50.80) 748 420 2 717.24 0.93 148.42
𝒛(4, 2)=(967 533.97, 6 920.64, 0.56, 48.57) 754 724 2 717.24 0.93 124.94
𝒛(4, 3)=(961 580.83, 6 907.24, 0.54, 49.28) 748 420 2 717.24 0.93 148.42
𝒛(4, 4)=(969 563.69, 7 069.32, 0.51, 63.39) 766 380 2 717.24 0.82 252.82

5 𝒛(5, 1)=(938 339.64, 6 334.91, 0.59, 50.45) 754 724 2 820.06 0.93 110.70
𝒛(5, 2)=(942 058.31, 6 237.21, 0.57, 54.54) 763 228 2 820.06 0.90 113.45
𝒛(5, 3)=(947 127.64, 6 322.29, 0.61, 49.90) 754 724 2 820.06 0.93 97.01
𝒛(5, 4)=(951 258.98, 6 287.11, 0.57, 55.56) 763 228 2 820.06 0.90 113.45

6 𝒛(6, 1)=(913 349.31, 5 744.86, 0.64, 51.17) 754 724 2 890.41 0.90 83.81
𝒛(6, 2)=(918 386.91, 5 727.19, 0.62, 53.02) 754 724 2 820.06 0.90 90.54
𝒛(6, 3)=(923 009.31, 5 709.51, 0.67, 50.29) 754 724 2 890.41 0.93 77.96
𝒛(6, 4)=(926 266.11, 5 728.63, 0.65, 52.51) 754 724 2 890.41 0.90 77.96

7 𝒛(7, 1)=(902 961.99, 5 120.63, 0.70, 53.46) 754 724 2 944.52 0.90 77.96
𝒛(7, 2)=(886 815.99, 5 140.92, 0.69, 51.78) 754 724 2 944.52 0.90 77.96
𝒛(7, 3)=(898 890.99, 5 096.73, 0.73, 50.69) 754 724 2 991.42 0.91 68.68
𝒛(7, 4)=(893 481.99, 5 082.30, 0.68, 52.89) 754 724 2 890.41 0.90 77.96

8 𝒛(8, 1)=(850 835.32, 4 596.99, 0.73, 51.93) 754 724 3 088.83 0.90 67.98
𝒛(8, 2)=(871 379.32, 4 486.96, 0.78, 52.16) 778 636 3 101.46 0.90 67.98
𝒛(8, 3)=(880 200.66, 4 515.82, 0.76, 54.78) 788 016 3 088.83 0.90 67.98
𝒛(8, 4)=(867 760.66, 4 532.05, 0.74, 53.29) 754 724 3 088.83 0.90 67.98

9 𝒛(9, 1)=(857 937.66, 3 801.42, 0.80, 60.07) 842 820 3 115.89 0.82 67.98
𝒛(9, 2)=(843 867.66, 3 877.18, 0.83, 53.62) 810 528 3 119.49 0.90 59.87
𝒛(9, 3)=(832 411.66, 3 995.33, 0.78, 52.17) 793 444 3 130.32 0.90 59.87
𝒛(9, 4)=(850 533.66, 4 047.65, 0.81, 56.01) 818 232 3 115.89 0.87 67.98

10 𝒛(10, 1)=(833 440, 3 119.49, 0.90, 55.85)
𝒛(10, 2)=(818 232, 3 310.70, 0.84, 57.79)
𝒛(10, 3)=(816 356, 3 267.41, 0.88, 55.08)
𝒛(10, 4)=(810 528, 3 355.80, 0.90, 54.48)

Table A.2

Interactive decision making stage of SKU 2.

h Candidates Best reachable values

POC HC CSL ITO

1 𝒛(1, 1)=(409 483.89, 3 968.73, 0.51, 15.60) 220 829.40 770.44 1.00 91.65
𝒛(1, 2)=(410 619.97, 4 022.61, 0.55, 12.53) 220 829.40 770.44 1.00 91.65
𝒛(1, 3)=(414 679.15, 3 972.64, 0.50, 18.23) 220 829.40 770.44 1.00 107.02
𝒛(1, 4)=(410 144.51, 3 959.10, 0.54, 14.15) 220 829.40 770.44 1.00 91.65

2 𝒛(2, 1)=(393 319.35, 3 658.46, 0.55, 19.08) 220 829.40 770.44 1.00 91.65
𝒛(2, 2)=(389 615.57, 3 752.13, 0.59, 14.92) 220 829.40 770.44 1.00 91.65
𝒛(2, 3)=(391 339.51, 3 638.77, 0.58, 17.20) 220 829.40 770.44 1.00 91.65
𝒛(2, 4)=(393 180.29, 3 661.26, 0.59, 15.93) 220 829.40 770.44 1.00 91.65

3 𝒛(3, 1)=(375 340.31, 3 388.36, 0.64, 17.08) 221 680.95 866.74 1.00 60.95
𝒛(3, 2)=(376 916.86, 3 355.38, 0.59, 22.04) 220 829.40 770.44 1.00 91.65
𝒛(3, 3)=(372 305.76, 3 391.15, 0.59, 19.53) 220 829.40 770.44 1.00 91.65
𝒛(3, 4)=(374 301.64, 3 333.05, 0.63, 19.39) 221 680.95 866.74 1.00 60.95

4 𝒛(4, 1)=(355 244.20, 3 010.63, 0.66, 22.56) 221 680.95 866.74 1.00 60.95
𝒛(4, 2)=(354 829.47, 3 045.72, 0.68, 20.71) 221 680.95 866.74 1.00 60.95
𝒛(4, 3)=(357 053.34, 2 994.08, 0.64, 23.94) 221 680.95 866.74 1.00 60.95
𝒛(4, 4)=(362 466.02, 3 065.26, 0.69, 20.15) 221 680.95 866.74 1.00 60.95

5 𝒛(5, 1)=(342 204.94, 2 733.74, 0.71, 23.72) 221 680.95 866.74 1.00 54.55
𝒛(5, 2)=(349 562.69, 2 781.89, 0.73, 21.20) 221 680.95 866.74 1.00 54.55
𝒛(5, 3)=(344 315.60, 2 714.43, 0.69, 25.34) 221 680.95 866.74 1.00 60.95
𝒛(5, 4)=(342 446.86, 2 766.30, 0.73, 22.10) 221 680.95 866.74 1.00 54.55

6 𝒛(6, 1)=(330 966.70, 2 486.05, 0.78, 22.98) 221 680.95 866.74 1.00 54.55
𝒛(6, 2)=(318 783.99, 2 453.66, 0.76, 24.09) 221 680.95 866.74 1.00 54.55
𝒛(6, 3)=(322 427.71, 2 467.34, 0.78, 24.06) 221 680.95 866.74 1.00 54.55
𝒛(6, 4)=(326 281.74, 2 416.54, 0.76, 27.01) 221 680.95 866.74 1.00 54.55

7 𝒛(7, 1)=(304 210.42, 2 107.25, 0.81, 28.16) 223 732.50 866.74 1.00 50.42
𝒛(7, 2)=(304 936.19, 2 081.43, 0.78, 30.66) 223 932.50 866.74 1.00 54.55
𝒛(7, 3)=(314 984.16, 2 117.72, 0.82, 27.79) 223 732.50 866.74 1.00 50.42
𝒛(7, 4)=(312 243.94, 2 068.87, 0.77, 32.60) 223 932.50 866.74 1.00 54.55

8 𝒛(8, 1)=(289 121.59, 1 805.41, 0.87, 28.94) 223 732.50 971.42 1.00 42.53
𝒛(8, 2)=(290 706.47, 1 757.02, 0.83, 33.06) 223 932.50 866.74 0.99 50.42
𝒛(8, 3)=(300 516.80, 1 826.81, 0.87, 29.53) 223 732.50 971.42 1.00 42.53
𝒛(8, 4)=(286 502.34, 1 812.85, 0.85, 30.21) 223 932.50 866.74 1.00 50.42

9 𝒛(9, 1)=(277 440.15, 1 427.73, 0.92, 34.48) 230 738.70 996.54 0.98 42.53
𝒛(9, 2)=(265 027.75, 1 514.96, 0.89, 32.29) 223 932.50 971.42 1.00 42.53
𝒛(9, 3)=(269 256.63, 1 503.10, 0.92, 30.57) 228 687.15 996.54 1.00 42.53
𝒛(9, 4)=(277 440.15, 1 466.81, 0.94, 31.11) 230 138.70 1 007.71 1.00 39.44

10 𝒛(10, 1)=(238 196.45, 1 099.83, 0.97, 35.27)
𝒛(10, 2)=(254 363.50, 1 028.65, 0.97, 39.44)
𝒛(10, 3)=(276 936.75, 1 074.71, 0.99, 34.33)
𝒛(10, 4)=(252 911.95, 1 211.49, 0.99, 30.24)
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populations is to get more different solutions (Deb & Jain, 2014). We

then combined all of the generated solutions and deleted the dominated

ones.

In NSGA-III, we used simulated binary crossover for integer vari-

ables with crossover probability 0.9 and polynomial mutation for inte-

ger variables with mutation probabilities 0.9. We found that these pa-

rameters are good enough for our needs after several experiments. More

detailed information related to these operators can be seen in Deb,

Sindhya, and Okabe (2007). For other parameters, we used the default

values in pymoo (Blank & Deb, 2020).
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Abstract. In this paper, we integrate a lot sizing problem with the
problem of determining optimal values of safety stock and safety lead
time. We propose a probability of product availability formula to assess
the quality of safety lead time and a multiobjective optimization model
as an integrated lot sizing problem. In the proposed model, we optimize
six objectives simultaneously: minimizing purchasing cost, ordering cost,
holding cost and, at the same time, maximizing cycle service level, prob-
ability of product availability and inventory turnover. To present the
applicability of the proposed model, we consider a real case study with
data from a manufacturing company and apply the interactive NAU-
TILUS Navigator method to support the decision maker from the com-
pany to find his most preferred solution. In this way, we demonstrate
how the decision maker navigates without having to trade-off among the
conflicting objectives and could find a solution that reflects his preference
well.

Keywords: Inventory management · Uncertain demand · Uncertain
lead time · Interactive decision making · NAUTILUS Navigator.

1 Introduction

Lot sizing has emerged as one of the key factors for the effective supply chain
management. The purpose of lot sizing is to determine an optimal order quantity
that minimizes costs while satisfying demand. After Harris’s economic order
quantity concept for solving a simple lot sizing problem [10], there has been a
dramatic increase in interest over the last century in developing lot sizing models
to adapt to more complex situations [1,8].

Uncertainties complicate lot sizing problems. In fact, predicting the exact
demand for future needs is challenging. Commonly, many companies hold a
certain amount of stock, known as a safety stock (SS), as a buffer to cope when
demand exceeds the prediction [31]. Another source of uncertainty is the delivery
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lead time [24]. Companies usually have an agreement with their suppliers for the
delivery time, but for many reasons, there can be delays. To overcome this issue,
an additional time period, known as a safety lead time (SLT), is defined [31].
During the SLT period, companies keep their stocks available to satisfy the
demand.

The problem of determining an optimal SS value has been studied by many
researchers [9]. Various methods have been developed [26] to find an optimal
value of SS that should be small enough to reduce costs while satisfying demand
and guaranteeing a high service level. Most studies expand the cycle service level
(CSL) formula [23] to adapt to various conditions. When lead time is uncertain,
the CSL formula takes into account the average and standard deviation of the
lead time [28]. On the other hand, the problem of finding an optimal SLT value
is not as popular as the previous one [7]. In [12], inventory costs are minimized
subject to a service level constraint to find an optimal SLT, and an optimization
model based on Markov Chain is proposed in [6]. However, there is a lack of
formula to control the quality of SLT.

The relationship between lot sizing problems with SS and SLT has been
studied in [22]. Keeping stock for SS and SLT increases order quantity, which
also increases the costs. Some researchers have studied lot sizing problems with
uncertainty on demand and lead time [7]. However, they mostly use statistical
tools to handle uncertainty in lot sizing models, but not simultaneously find SS
or SLT. Some of them use simulation to find an optimal SS and SLT. There
is a lack of integration of a lot sizing problem and problems of determining SS
and SLT values in the literature. The problem of integrating lot sizing and SS
determination is proposed in [18], but they consider SLT as the input value.

Lot sizing problems naturally include a conflict between minimizing costs and
satisfying demand simultaneously. Additional problems of determining SS and
SLT increase the conflict because holding more stock for SS and SLT makes the
costs higher. For this reason, multiobjective optimization [19] is a good tool to
solve lot sizing problems [2]. A multiobjective optimization problem has several
mathematically incomparable solutions, called Pareto optimal solutions. Solving
a multiobjective optimization problem can be understood as finding the most
preferred solution for a decision maker (DM), who has expertise in the problem
domain. Interactive methods [20] are regarded as promising because the solution
process is iterative and they allow the DM to gain insight into the problem and
change his/her preferences during the solution process, thanks to learning. So
far, however, there have been a few studies applying interactive multiobjective
optimization in lot sizing problems [29].

In this research, we consider a single item multi period lot sizing problem
with uncertainty on demand and lead time. The main contributions of this paper
are threefold. First, we propose a novel formula, named probability of product
availability (PPA), for measuring the quality of SLT to handle unpredicted lead
time. Second, we develop a multiobjective optimization model that determines
the optimal lot sizes for each period and simultaneously finds the optimal values
of SS and SLT. Last but not least, we support a DM to find the most preferred
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solution for the optimization model by applying an interactive NAUTILUS Nav-
igator method [25].

The proposed multiobjective optimization model has six objectives to opti-
mize simultaneously. Three of them are minimizing cost functions, i.e. purchas-
ing cost (PC), ordering cost (OC), and holding cost (HC). We consider them
separately to see trade-offs between objectives. The CSL is maximized to im-
prove safety against demand uncertainty. We propose a PPA formula to assess
the quality of SLT to buffer lead time uncertainty, which is maximized in the
model. Lastly, inventory turnover (ITO) as the primary performance indicator
for inventory management [27] is maximized to measure the effectiveness of this
model in handling the inventory system.

Most lot sizing problems are difficult to solve because of their complexity [14].
In this paper, we use the interactive NAUTILUS Navigator method [25]. The
strength of this method in handling computationally expensive problems meets
the need of this kind of problem. Another strength of this method is allowing the
DM to find his/her most preferred solution without sacrifices, which meets the
needs of the DM. In this, the strategy is starting from a bad point and improving
all objectives simultaneously. We use real data from a manufacturing company
and a real DM to prove the validity of our proposed model. Finally, we support
the DM to find the most satisfying solution for him by using this method.

The remainder of the paper is organized as follows. Section 2 reviews the basic
concepts of multiobjective optimization and the NAUTILUS Navigator method.
Then, the proposed multiobjective optimization model is presented in Section 3.
In Section 4, the case study together with the real data from a manufacturing
company is described, following by results and analysis of the decision mak-
ing process using NAUTILUS Navigator. Finally, conclusions and discussions of
possible extensions are presented.

2 Background on Multiobjective Optimization

In this section, we briefly review the basic concepts and definitions related to
multiobjective optimization, followed by the NAUTILUS Navigator method.

2.1 Basic Concepts and Definitions

A multiobjective optimization problem can be formulated in the following form:

minimize f(x) = (f1(x), ..., fk(x))
T

subject to x ∈ S,
(1)

where k ≥ 2 objective functions, fi : S → R for 1 ≤ i ≤ k, are simultaneously
optimized. The vector of decision variables x = (x1, ..., xn)

T belongs to the
feasible region S ⊂ R

n, which is formed by constraints. The image of the feasible
region Z = f(S), Z ⊂ R

k is called a feasible objective region, which is formed
by the vectors of objective values z = f(x) = (f1(x), ..., fk(x))

T , z ∈ Z, x ∈ S.
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Because of the conflicting objectives, a multiobjective optimization problem
(1) has several different solutions, called Pareto optimal solutions, which reflect
the trade-offs among the conflicting objectives. A solution z1 ∈ Z is said to
dominate another solution z2 ∈ Z if z1i ≤ z2i for all i = 1, ..., k and z1j < z2j for
at least one j = 1, ..., k. A solution z ∈ Z is called a Pareto optimal solution if
z is not dominated by any other solution. The lower and upper bounds of the
Pareto optimal solutions are called an ideal point z∗ and a nadir point znad,
respectively, which reflect the best and the worst values that each objective
function in the Pareto optimal solutions can achieve.

Pareto optimal solutions are incomparable mathematically. Additional pref-
erence information from a DM is needed to identify the most preferred solution
as the final solution. A DM is an expert who has a responsibility to make a
decision in the problem domain, who is usually a supply chain manager in lot
sizing. The preference information from the DM can be incorporated before the
optimization process (a priori methods), after having generated a representative
set of Pareto optimal solutions (a posteriori methods), or during an iterative
optimization process (interactive methods) [19]. The advantages of interactive
methods, which allow the DM to learn different aspects of the problem during
the solution process and change their preferences during the solution process
if desired, are the main reasons we chose this type of methods. Many interac-
tive methods have been developed [20]. In this paper, we apply the NAUTILUS
Navigator method [25] because of its ability in handling computationally expen-
sive problems and the possibility to find the most preferred solution without
trading-off. This is important since DMs sometimes get anchored around the
initial solution and a trade-off free method avoids anchoring.

2.2 NAUTILUS Navigator

The NAUTILUS Navigator method combines the idea of NAUTILUS methods
[21] to avoid trading-off and navigation ideas elaborated in [11]. Due to the fact
that people do not respond similarly to losses and gains [15], trading-off among
Pareto optimal solutions causes some decisional stress to the DM [17]. Motivated
by this fact, NAUTILUS methods start from the worst possible objective func-
tion values and iteratively gain in all objectives without sacrificing any of the
current values. Methods in the NAUTILUS family [21] differ in the way used
to interact with the DM to find the final solution. NAUTILUS Navigator uses
navigation to direct the movement from the worst starting point, which is the
nadir point or any undesirable point provided by the DM, to a Pareto optimal
solution as the final solution. In this process, the DM specifies a desirable value
for each objective function, which are the components of a reference point, as
a search direction to direct the movement towards desired Pareto optimal solu-
tions. During the navigation process, the DM can change the reference point,
the movement speed, or even go backwards if he/she wishes so.

To handle computationally expensive problems, a set of Pareto optimal so-
lutions is generated before the interactive process starts. The generation may
take time because of expensive functions, but it is done without involving the
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DM. Any a posteriori methods can be used to generate a set of Pareto optimal
solutions or a set that approximates Pareto optimal solutions. When involv-
ing the DM, the navigation process takes place using this set without solving
the original computationally expensive problem. This allows showing real-time
movement without waiting times to the DM. The detailed algorithm can be seen
in [25].

Fig. 1. GUI of the NAUTILUS Navigator method

A graphical user interface (GUI) is important for NAUTILUS Navigator to
visualize the navigation process. Figure 1 shows the available GUI that can be
freely downloaded from https://desdeo.it.jyu.fi. The DM provides his/her
preferences using the sliders on the left side or inputs values in text boxes at
the top. The green area in the graph shows the reachable ranges, which are
the best and the worst objective function values, that each objective can reach
from the current step without sacrifices in any objectives. Thus, the reachable
ranges shrink when approaching Pareto optimal solutions. Whenever the DM
wants to change his/her preference, he/she can stop the process and change the
reference point. The black lines in the middle of the graphs show the positions
of the components of the reference point. The DM is allowed to jump to any
previous step using the radio button in the bottom right. He/she then needs to
provide which step to go to and re-specify his/her preferences in order to define
a new direction. The DM can navigate until he/she finds his/her most preferred
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Pareto optimal solution at the end of the solution process. In that case, the
ranges shrink to a single point.

3 Problem Formulation

We study a lot sizing problem for a single item with a single supplier and in mul-
tiple time periods. We follow a periodic review policy, where orders are reviewed
over discrete time periods t = 1, ..., T . The order quantity (Q(t)) is reviewed at
the beginning of period t, and the order arrives after a stochastic lead time. The
following assumptions are made throughout this paper.

1. The predicted demand during period t (D(t)) follows a normal distribution
with a mean μ and a standard deviation σ. The demand in each period is
independent of other periods.

2. The lead time follows a normal distribution with a mean L and a standard
deviation s.

3. The price for purchasing one unit of item (p) is constant in all time periods
and does not depend on the order quantity.

4. The cost for a single order is c without any capacity limit.
5. The cost of holding one unit of item (h) is constant throughout all time

periods.
6. There is no backorder cost involved.
7. There is an agreement between the company and the supplier that the com-

pany must order with a minimum order quantity moq and it rounds up by
a rounding value r. Therefore, the order can only be placed by following the
formula moq + a r for any integer a ≥ 0.

3.1 Safety Stock and Safety Lead Time Formulation

As said, we focus on the lot sizing problem with uncertainty in demand and lead
time. Many researchers have utilized a SS to protect against demand uncertainty
and a SLT to handle lead time uncertainty [16]. A SS means keeping more stocks
as a buffer against demand fluctuations. To control the amount of SS, the cycle
service level (CSL) formula is applied [4]. CSL is the probability of not hitting
a stockout in a replenishment time (RT). A RT is a time needed to refill the
stock, that is from the arrival of one order to the arrival of the next one. We set
RT = 1+SLT since we order in each period and prepare for late delivery in the
SLT period. To prevent stockout during a RT, the difference between an actual
demand (D∗

RT ) and a predicted demand (DRT ) must be less than SS. We adopt
the CSL formula for demand and lead time uncertainty [28] with our definition
of RT, which can be written as follows:

CSL = P (D∗
RT ≤ DRT + SS)

= F (DRT + SS,DRT , σRT ) = F

(
SS

σRT

)
,

(2)
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where F is the standard normal distribution function and σRT is the stan-
dard deviation of demand during a RT, which can be formulated as σRT =√
σ2(1 + SLT ) + μ2s2.
A SLT is assigned to handle unpredicted lead time. During the SLT period,

the availability of stock to cover predicted and unpredicted demand must be
guaranteed. Therefore, we consider an additional SLT period in the fill rate (FR)
constraint to secure the availability of the stock during SLT to cover the predicted
demand. A SLT period is also considered in CSL to buffer unpredicted demand
during SLT. However, if the order arrives after the SLT period, the stockout
may occur. Therefore, it is important to decide an optimal SLT value with a
low possibility of having stockout. In this paper, we propose the probability
of product availability (PPA) formula to measure the quality of SLT. PPA is
defined as the probability of not having stockout because of the late delivery,
which occurs when the actual order arrives during the period L+SLT . The PPA
formula can be written as follows:

PPA = P (actual delivery time ≤ L+ SLT )

= F (L+ SLT,L, s) = F

(
SLT

s

)
.

(3)

This formula can be used to find the SLT value by defining an appropriate PPA
level.

3.2 Multiobjective Optimization Model

As said, we propose a multiobjective optimization model with six objectives,
three to minimize and three to maximize. The main goal of this model is to find
the order quantity of each period (Q(t), t = 1, ..., tn) together with SS and SLT
values with the best balance between the objective functions. We define I(t) as
the inventory level at the end of period t where I(t) = I(t−1)+Q(t−�L�)−D(t),
and Y (t) as the order indicator where Y (t) = 1 if the order is placed (Q(t) > 0),
otherwise Y (t) = 0. The proposed optimization model can be written as follows.

min PC =
∑
t

Q(t) p, OC =
∑
t

Y (t) c, HC =
∑
t

I(t− 1) + I(t)

2
h,

max CSL (2), PPA (3), ITO =
∑
t

D(t)

(I(t− 1) + I(t))/2
,

s.t.
I(t− 1) +

∑t
i=t−�L� Q(i)− SS∑t+�P�

j=t D(j) + (P − �P �)D(	P 
).
≥ 1 , for t = 1, ..., T, (4)

Q(t) = Y (t) (moq + a r) , for any integer a ≥ 0 and t = 1, ..., T, (5)

SS ≥ 0 and SOT ≥ 0. (6)
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Following the dynamic lot sizing problem [14,30], three types of cost are
considered: PC, OC, and HC. We consider them separately to see the trade-offs.
Minimizing PC implies minimizing HC, but OC has a trade-off with HC because
ordering the same amounts of items many times makes OC higher and HC lower.
For inventory management purposes, it is important to understand both HC and
OC. In order to prevent partial optimization, which could be the case if only
total costs were measured, it is important to separate them. When targeting at
low HC only, one can be misled, as then there could be a temptation to order
more often, resulting in higher OC.

We maximize CSL to prevent stockout because of the demand uncertainty
and maximize PPA to avoid stockout due to late delivery. Keeping a high value
of SS raises the CSL but PC and HC increase, which is a conflict as we need to
maximize CSL but minimize OC and HC. Having a long SLT increases the PPA
but decreases CSL with the same SS value. Then PPA has a trade-off with CSL,
PC and HC. Maximizing ITO is our last objective function. To have a high ITO,
the order must be as close to the demand as possible in order to hold less stock,
which has a trade-off with OC. Furthermore, ITO has a trade-off with CSL and
PPA as less stock is needed to have a high ITO, but CSL and PPA need more
stock to have better safety in handling uncertainties.

FR represents customer service for an inventory control system. It is defined
as the fraction of orders that are filled from stock [13]. It is an important indicator
in daily operations. In the proposed model, FR is the first constraint (4) to fulfill
the predicted demand. In each period, we guarantee that our stock (excluding
SS) can satisfy the predicted demand. The consideration period for one order
(P) in the periodic review policy is 1 + L [4], but an additional SLT period
is also considered to ensure the stock availability during SLT. Thus, we set
P = 1 + L + SLT . FR is a fraction between available stock without SS and
the predicted demand during P. When FR is at least one, the stock availability
to handle the predicted demand is guaranteed. Furthermore, we ensure that all
orders follow the agreement of minimum order quantity and rounding value in
constraint (5), while constraint (6) is defined to confine the lower bounds of SS
and SLT.

4 Computational Results

We consider a case study from a manufacturing company to demonstrate the
applicability of the proposed model. We apply the interactive NAUTILUS Nav-
igator method to support the supply chain manager of the said company, acting
as the DM, to find his most preferred solution without trading-off.

4.1 Information about the Case

We review a weekly single item lot sizing problem for 41 weeks. Thus, the opti-
mization model has 43 integer decision variables, including weekly order quan-
tities, SS and SLT. We received data of an item, which is a component of the
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company’s product. The data is generated from the company’s planning system.
The data contains current inventory information for the item as well as a con-
sumption projection according to the company’s production plan. Based on the
data, the price to purchase one unit of the item is e91.18, the cost for a single
order is e200, and the cost of holding one unit of item is ten percent of the
price annually. The lead time for this item is 6 weeks, with a standard deviation
s = 0.93 days. The company has made a prediction for the weekly demand data
based on its historical data, which varies with a mean μ = 116.22 and a standard
deviation σ = 29.04. The opening inventory is 312 units and the company has
made previous orders for the next six weeks, which are (48, 119, 120, 120, 48, 96).
Based on the agreement between the company and the supplier, the company
must place an order with a minimum of 48 units and round by 48 units.

As a request from the DM, bounds for SS and SLT were defined as additional
constraints. The DM was only interested in SS values lower than μ and SLT
values below four days. He also requested to see at least one day SLT or one
day’s worth of demand for SS, which is μ/5. Furthermore, low ITO values below
ten were not interesting for the DM.

As said, a GUI plays an important role in NAUTILUS Navigator. A few
modifications of the available GUI were done in this research to make the GUI
more useful for the DM in this case. The DM preferred to see the probability of
product unavailability (PPU) rather than PPA. Thus, we switched to minimize
PPU = 1−PPA in the fifth objective. Furthermore, the DM wanted to see the
information of days of stock (DoS). DoS is an inventory performance indicator
describing the number of days needed to sell an item. DoS is calculated as the
number of days in one year (we use 254 working days) divided by ITO.

4.2 Computational results

As described in Section 2.2, the starting point of the NAUTILUS Navigator
method is a set of pre-generated solutions. As said, lot sizing problems are com-
putationally expensive problems. Because of their complexity, many researchers
use metaheuristic methods, like evolutionary algorithms, to solve various prob-
lems of lot sizing [14]. In this paper, we applied NSGA-III [5] by using the pymoo
framework [3] because of its ability to solve constrained multiobjective optimiza-
tion problems with integer variables. Evolutionary algorithms cannot guarantee
Pareto optimality but can generate sets of solutions where no solution dominates
the others.

Some strategies were needed to generate a large amount of nondominated
solutions. Because a single run of NSGA-III was not able to generate enough
solutions, we ran the algorithm several times with different initial populations.
Furthermore, to get more solutions, various parameters of evolutionary opera-
tors were used that were available in the framework. Finally, all solutions were
combined, dominated solutions were deleted, and 1503 nondominated solutions
were obtained that approximate Pareto optimal solutions.

The DM started the navigation process by investigating the reachable ranges
for the first step, which were represented by the ideal point and the nadir point
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initially derived from the set. With the bounds defined by the DM, the ideal
point was z∗ = (358 884.48, 1 000, 674.73, 0.9945, 0, 97.45) and the nadir
point was znad = (367 637.76, 6 800, 4 782.04, 0.5, 0.5, 10.19) (remember that
the fourth and sixth objectives are to be maximized and the others are to be
minimized). Initially, the DM wanted to set the ideal point as the reference point
to investigate how the navigation ran and which Pareto optimal solutions can
be found if he wanted all the objectives to navigate towards their best values.

Fig. 2. A Pareto optimal solution for the ideal point as the reference point

Because of the trade-offs among the objectives, getting the best possible val-
ues for all objectives is naturally impossible, but, the DM navigated till the
Pareto optimal solution z = (358 884.48, 4 400, 1 011.40, 0.7504, 0.1414, 47.67)
was reached. Thus, the reachable range was finally a single point. Figure 2 shows
this navigation. The DM analyzed that, in step 52, there was a significant de-
crease of the upper bound for the reachable CSL values to 0.8116, and the ITO
reachable range shrunk with the upper bound 59.53. Because of this, the DM
decided to go backwards to step 50 and provided new preferences.

The DM wanted to keep the ITO in the best value at this step, which was
59.53. He then set the components of the reference point for PC and OC to
their worst values, and keep the other components as their best reachable values
at this step. Therefore, the new reference point was (367 637.76, 6 800, 901.98,
0.9835, 0, 59.53). He let the navigation continue until the end to check the Pareto
optimal solution that could be reached. The Pareto optimal solution obtained
was z = (363 261.12, 6 000, 1 108.19, 0.8437, 0.0159, 39.25). He found the CSL
value better but it was not satisfactory enough for him. He learned that the
upper bound of the CSL’s reachable values started to decrease at step 80. He
then decided to return to this step to set a new reference point.
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The DM navigated with different desired values of ITO to observe how much
he needed to sacrifice in ITO to get better values for CSL. He returned to step
80 a few times with different desired values for ITO, but he only got 0.9041 as
the best value for CSL. He decided to go further backwards to step 16 because
the upper bound of ITO and HC in reachable values had a significant decrease
after this step. He set all cost objectives in their worst reachable values, CSL and
PPU in their best reachable values, and ITO=48. He let the reachable ranges
shrink till the Pareto optimal solution z = (363 261.12, 6 400, 1 183.94, 0.9366,
0.0159, 35.68). The DM found that the CSL value was not satisfactory enough.

The DM realized that CSL had a trade-off with PPU, and he needed to relax
PPU to get better CSL. He decided to return to step 75 when the CSL decreased.
He then relaxed the ITO value to the worst reachable value, and got the Pareto
optimal solution z = (363 261.12, 5 800, 1 066.10, 0.9272, 0.1414, 42.69). He was
happy with the improvement of ITO but was still curious to find a better CSL
value.

The DM wanted to investigate how much he needed to sacrifice in ITO when
he desired to improve CSL. He then decided to go to the very first step and set his
preferences at the best reachable value for CSL and the worst reachable values
for costs and PPU. For ITO, he set 40 as the desired level. He let the navigation
converge to a single solution. He got the best CSL value and the Pareto optimal
solution was z = (367 637.76, 5 800, 1 061.90, 0.9945, 0.5, 42.94). He was very
happy with this solution. He thought that the CSL value was very good and the
other objective values were acceptable. He decided to accept this solution as the
final one.

Fig. 3. The decision variables corresponding to the final solution

The decision variables corresponding to the final solution for order quantities
can be seen in Figure 3. The other decision variables were SS = 92 and SLT = 0.
The green line in Figure 3 shows the incoming order quantities for each week,
which are the previously set order data for t = 1, ..., 6 and the optimized order
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quantities Q(t − L) for t = 7, ..., 41. The inventory level in the blue line shows
that during the first six weeks, which cannot be controlled by the model due
to the lead time, the company had excess inventory. The inventory level then
decreased and followed the demand quantity to have a higher ITO, which is a
useful indicator for inventory management and planning purposes.

By deepening his understanding of the interdependencies between conflicting
objectives, the DM learned a lot from his own area of responsibility as a supply
chain manager and also gained the confidence to modify his original preferences.
At first, he was not willing to sacrifice on any objectives, but during the deci-
sion making process, there was a growing awareness that not everything can be
achieved, but sacrifices have to be made. These included, among other things,
the CSL and ITO. However, in his day-to-day operations, ITO is a goal set by
the company’s top management. Therefore, deviating from this objective must
be strongly justified to the management.

As a result of the learning process, the DM gained confidence in setting his
preferences, and thus multiobjective optimization and NAUTILUS Navigator
supported his understanding and ability to justify his decisions. The DM greatly
appreciated the fact that as the decision making process progressed, he con-
stantly saw the navigator’s results and understanding of achieving objectives,
which guided him in setting his preferences. The possibility to stop the process
at any time and the feature to go backwards in the navigator, were, in his view,
excellent opportunities to make decisions easily. The GUI of the navigation and
the real-time updating of the results also supported his decision making. The
navigator graphs and the sliders for setting the reference point were, in the DM’s
view, a clear advantage in support of decision making. The whole process was
so instructive and professionally useful.

As can be seen in Figure 3, the inventory level was significantly reduced from
its original level. The DM commented that this is a typical example of decisions
being made in the past ”for the sake of certainty”, where typically stock levels
tend to rise. NAUTILUS Navigator as a method responded precisely to the
need for decisions to be based on calculations rather than assumptions. The
DM was pleased with the result of the objective function values, as well as the
corresponding decision variables. Overall, the DM was satisfied with the results
and operation of NAUTILUS Navigator and found an interactive method very
suitable for learning. He is willing to adopt the method more widely for inventory
planning and control, especially for critical items.

5 Conclusions

In this paper, we considered a single item multi period lot sizing problem in a
periodic review policy under a stochastic environment on demand and lead time.
We used a SS to handle uncertainty on demand and CSL to measure the quality
of SS. To handle uncertainty on lead time, a SLT was used and we proposed
the PPA formula to measure the quality of SLT. The aim of this paper was
to integrate the lot sizing problem with the problem of determining the optimal
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values of SS and SLT. We developed a multiobjective optimization model to solve
the integrated lot sizing problem. Six objectives were optimized simultaneously
to find the optimal order quantity in each period and at the same time determine
the optimal values of SS and SLT.

Real data from a manufacturing company was used to demonstrate the ap-
plicability and usefulness of the proposed model. A supply chain manager from
the said company acted as the DM to draw managerial insights into the decision
making process. The interactive NAUTILUS Navigator method was successfully
applied to solve our integrated computationally expensive lot sizing problem.
The DM appreciated the navigation process that allowed him to learn during
the decision making process and find the most satisfying solution for him. He
confirmed the validity of the solution and found it useful for his daily operation.

For future research, considering many items would present more computa-
tional challenges but meet the needs of real industrial problems. A company may
have thousands of items that are impossible to consider separately. Another pos-
sible future research topic is to address the variation of price based on the order
quantity, or integrating the model with the problem of determining minimum
order quantity and rounding value.
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Abstract
We propose a decision support approach, called DESMILS, to solve multi-item lot sizing problems with a large number of
items by using single-item multiobjective lot sizing models. This approach for making lot sizing decisions considers multiple
conflicting objective functions and incorporates a decision maker’s preferences to find the most preferred Pareto optimal
solutions. DESMILS applies clustering, and items in one cluster are treated utilizing preferences that the decision maker has
provided for a representative item of the cluster. Thus, the decision maker provides preferences to solve the single-item lot
sizing problem for few items only and not for every item. The lot sizes are obtained by solving a multiobjective optimization
problem with an interactive method, which iteratively incorporates preference information and supports the decision maker in
learning about the trade-offs involved. As a proof of concept to demonstrate the behavior of DESMILS, we solve a multi-item
lot sizing problem of a manufacturing company utilizing their real data. We describe how the supply chain manager as the
decision maker found Pareto optimal lot sizes for 94 items by solving the single-item multiobjective lot sizing problem for
only ten representative items. He found the solutions acceptable and the solution process convenient saving a significant
amount of his time.

Keywords Lot sizes · Inventory management · Interactive method · Multiple criteria optimization · NIMBUS

Introduction

In a strategic buyer–supplier relationship, both buyer and
supplier aim to create a benefit in order to gain a competi-
tive advantage (Tanskanen & Aminoff, 2015). Lot sizing is
central to the cost-effectiveness of inventory management
in manufacturing companies and, therefore, it has motivated
much research in production planning and control. Beginning
with the economic order quantity concept of Harris (1913)
in 1913, numerous variants and extensions of lot sizing mod-
els have been proposed in the literature [see e.g. the surveys
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(Andriolo et al., 2014; Glock et al., 2014)]. Integrating a
lot sizing problem to other related problems has also been
studied, such as integration with scheduling (Copil et al.,
2017), supplier selection (Aissaoui et al., 2007), cutting stock
problem (Melega et al., 2018), manufacturing and remanu-
facturing (Naeem et al., 2013), or safety strategy placement
(Kania et al., 2022).

Lot sizing problems focus on the trade-off of meeting cus-
tomer demand while minimizing cost. It naturally introduces
conflicting objective functions even though many studies in
the literature consider it as a single objective optimization
problem and set demand as a constraint. Dealing with more
complex situations such as demand and lead time uncertainty
or integrating lot sizing problems with other problems intro-
duce more conflicting objective functions. Therefore, some
studies consider more than one objective function in their lot
sizing problems [see e.g. Aslam Amos (2010), Heikkinen et
al. (2021) and Kania et al. (2021)].

Tools that support optimization of multiple (conflicting)
objective functions belong to the field of multiobjective opti-
mization (Miettinen, 1999). Because of multiple objective
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functions to be optimized simultaneously, a multiobjective
optimization problem typically does not have one optimal
solution, but a set of compromise solutions, called Pareto
optimal solutions. A solution is Pareto optimal if none of the
objective functions can be improved without impairing at
least one of the others. The goal of multiobjective optimiza-
tion is to support a decision maker (DM), who is an expert
in the problem domain, to find his/her most preferred solu-
tion among the Pareto optimal solutions. Interactive methods
(Miettinen et al., 2016), which iteratively incorporate the
DM’s preferences, are regarded as promising to find a most
preferred solution for the DM. These methods allow the DM
to learn about the problem and trade-offs among the objective
functions during the decision making process. The DM is also
allowed to adjust his/her preferences and improve the solu-
tion until he/she finds the most preferred solution for him/her.
So far, however, as shown in the survey in Heikkinen et al.
(2021), there have been only few studies applying interactive
multiobjective optimization in lot sizing problems.

Most studies in lot sizing consider a single item only
(Brahimi et al., 2017), but in reality, companies need to decide
order quantities for many items, or even thousands of items
for a big company. Therefore, some studies focus on multi-
item lot sizing problems. However, most of them model their
problem as an optimization problem with a single objective
function. In Absi et al. (2013), a multi-item capacitated lot
sizing problem with setup times and lost sales is studied.
The objective function to be optimized in this paper is the
total cost that aggregates production, setup, inventory and
shortage costs. In Li et al. (2012), a multi-item capacitated
dynamic lot sizing problem is considered and a framework
proposed to minimize a single objective function represent-
ing total costs, including production cost, inventory holding
cost and fixed setup cost. A multi-item capacitated lot siz-
ing problem with remanufacturing is dealt with in Cunha
et al. (2019). The authors propose a method to solve their
mixed integer lot sizing problem to minimize the total pro-
duction/remanufacturing, setup and holding costs.

Only few researchers used multiobjective optimization
to solve their multi-item lot sizing problems. A multi-item
capacitated lot sizing problem with setup times, safety stock
and demand shortage costs were studied in Mehdizadeh et al.
(2016). The authors modeled an optimization problem with
two objective functions to minimize total costs and simul-
taneously minimize required storage space. In Ammar et al.
(2020), a multi-item capacitated lot sizing problem with con-
sideration of setup times and backlogging was addressed, and
an optimization problem with two objective functions was
solved to minimize total costs and total inventory level of
items.

To the best of our knowledge, the literature in multi-
item lot sizing problems has considered a sum of functions
(e.g., total costs) for all items as one objective function (e.g.,

minimizing total costs). This kind of a model treats each
item similarly and cannot accommodate different preferences
from the DM in lot sizing decisions for different items. In fact,
the DM may have different preferences in his/her lot sizing
decision e.g., for items with a low and a high demand or items
with a low and a high price. It is demonstrated in Kania et al.
(2022) that the DM had different preferences for two items
with a high and a low demand. In the case considered, he paid
more attention to inventory turnover values for the item with
a high demand and a low price, but was more concentrated
on cycle service level for the item with a low demand and a
high price.

A single decision making process cannot accommodate
difference preferences in deciding lot sizing for different
items. However, repeating the decision making process for
every single item is laborious. In machine learning, cluster-
ing divides a set of objects into clusters, such that objects in
the same clusters are more similar to each other than objects
in the different clusters [see e.g. Xu and Tian (2015) and Xu
and Wunsch (2005)]. This clustering idea has inspired us to
divide items into clusters, so that one cluster can be con-
sidered with similar preference information, and, therefore
the decision making process is only conducted once for each
cluster. The aim is to decrease the amount of effort required
from the DM.

In this paper, we propose an approach, called DESMILS,
to support decision making in multi-item multiobjective lot
sizing problems. This approach expects the DM to solve
a single-item multiobjective lot sizing problem for a small
amount of selected items. Then the preferences obtained
from the DM are accommodated in deriving lot sizes for
the other items. Therefore, the need of repeating a deci-
sion making process for each item separately is avoided.
DESMILS enables applying interactive multiobjective opti-
mization methods in solving multi-item lot sizing problems.
It can also be applied for any variant or extension of single-
item lot sizing models (mentioned earlier).

The idea of the novel approach is to cluster items so that
items in the same cluster can be treated with similar pref-
erences in the lot sizing decision. Hence, the DM is only
required to do the decision making process for one repre-
sentative item of each cluster, instead of every single item.
The DM can choose the number of clusters which implies
the number of decision making processes that he/she is con-
venient to conduct (for the representatives of each cluster).
Finally, the preference information from the DM is utilized
to find the optimal lot sizes for remaining items.

As a proof of concept, we demonstrate the approach with
a real problem in a manufacturing company. The supply
chain manager from the company acted as the DM. In the
case study, we use the lot sizing problem integrated with
safety strategy placement proposed in Kania et al. (2022).
We demonstrate that DESMILS could successfully support
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the DM in finding the most preferred lot sizes for 94 items.
The DM appreciated the benefit of DESMILS to find solu-
tions that best represent his preferences without having to
conduct 94 decision making processes individually. Instead,
he only needed to repeat the decision making process for few
times (an acceptable number for him). This saved much time
and effort.

For measuring the performance of supply chain manage-
ment in lot sizing, key performance indicators (KPIs) are
widely used (Akyuz & Erkan, 2010). Managerial insight
here is that objective functions are as such useful KPIs as
they are the metrics used in day-to-day operations for per-
formance evaluation purposes. By considering the KPIs, the
DM verified that the results were satisfying and highlighted
the usefulness of this approach in his daily operations.

The rest of the paper is organized as follows. First,
some background information of multiobjectove optimiza-
tion is given in section “Background on multiobjective opti-
mization”, while the proposed decision support approach
DESMILS to solve a multi-item lot sizing problem is
described in section “DESMILS: decision support for a mul-
ti-item lot sizing problem”. Our case study and the obtained
results are described in section “Case study”. Finally, con-
clusions and future research ideas are given in section
“Conclusions”.

Background onmultiobjective optimization

Basic concepts

We consider multiobjective optimization problems formu-
lated as follows:

minimize f (x) = ( f1(x), . . . , fk(x))T

subject to x ∈ S,
(1)

where k ≥ 2 is the number of objective functions. The
objective functions fi : S → R, i = 1, . . . , k, which
are at least partly conflicting with each other, are to be
optimized simultaneously. The set S ⊆ R

n is the feasible
region formed by constraints. A vector of decision variables
x = (x1, . . . , xn)T ∈ S is called a feasible solution and the
corresponding vector z = f (x) = ( f1(x), . . . , fk(x))T is
called a feasible objective vector, which belongs to the fea-
sible objective region Z = f (S) ⊆ R

k .
In consequence of the conflicting objective functions, mul-

tiobjective optimization problems (1) do not typically have
any solution where all objective functions can achieve their
individual optima. Instead, there are several so-called Pareto
optimal solutions that represent trade-offs among the con-
flicting objective functions. A decision variable vector x′
and the corresponding objective vector z′ = f (x′) are Pareto

optimal if there does not exist any z = f (x), x ∈ S such
that zi ≤ z′

i for i = 1, . . . , k and z j < z′
j for at least

one j = 1, . . . , k. We define an ideal point z∗ and a nadir
point znad of problem (1) which represent the lower and
upper bounds of the ranges of the objective function values
among the Pareto optimal solutions, respectively. We also
define a vector that is strictly better than the ideal point,
which is called a utopian point z∗∗ = (z∗∗

1 , . . . , z∗∗
k )T where

z∗∗
i = z∗

i −ε, i = 1, . . . , k and ε is a relatively small positive
scalar.

As the final solution of problem (1), one of the Pareto
optimal solutions needs to be selected. The expertise of the
DM, who has knowledge about the problem and is responsi-
ble for making decisions in the problem domain, is needed in
this process. Solving a multiobjective optimization problem
means helping the DM in finding his/her most preferred solu-
tion. Besides the DM, solving a multiobjective optimization
problem involves an analyst. The analyst supports the DM in
the mathematical aspects of the problem and is responsible
for making preparations of the multiobjective optimization
method before the DM is involved.

Many methods have been developed to solve multiobjec-
tive optimization problems and they can be classified based
on how the DM’s preferences are considered in the meth-
ods (Miettinen, 1999). No-preference methods do not use
any preferences from the DM, a priori methods ask the DM’s
preferences before running the optimization algorithm, a pos-
teriori methods ask the DM’s preferences after having found
a representative set of Pareto optimal solutions, and interac-
tive methods ask the DM’s preferences iteratively during the
decision making process. Among these methods, interactive
methods are regarded as promising because they allow the
DM to learn during the decision making process and change
his/her preferences until he/she finds the best solution for
him/her (Miettinen & Mäkelä, 2006; Xin et al., 2018).

Scalarizing functions

Many methods suggested for solving multiobjective opti-
mization problems utilize scalarizing functions (Miettinen,
1999). Via scalarizing functions, the multiple objective func-
tions are transformed into a single objective function and
the resulting problem is solved with an appropriate single
objective optimization method. Scalarizing functions must
be selected carefully, e.g., to guarantee the Pareto optimality
of the solution obtained. The scalarizing functions typically
include preference information obtained from the DM. There
are many ways to ask this information (Miettinen, 1999). One
of them is asking for desirable values for each objective func-
tion z̃1, . . . , z̃k . They are called aspiration levels. The vector
z̃ consisting of aspiration levels is called a reference point.

Several scalarizing functions have been introduced in the
literature (Miettinen & Mäkelä, 2002). One of the widely
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used scalarizing functions is the achievement scalarizing
function (ASF) (Wierzbicki, 1980). An ASF finds the closest
Pareto optimal solution to the reference point. This function
works well both with feasible and infeasible reference points
to find a Pareto optimal solution for the multiobjective opti-
mization problem (1). The ASF which is used in DESMILS
can be written as follows:

minimize max
i=1,...,k

{
fi (x) − z̃i

znad
i − z∗∗

i

}
+ ρ

k∑
i=1

fi (x)

znad
i − z∗∗

i

subject to x ∈ S,

(2)

where ρ > 0 is a relatively small scalar that guarantees the
Pareto optimality of the solutions to (1) (Miettinen, 1999).

Synchronous NIMBUSmethod

The synchronous NIMBUS method (Miettinen & Mäkelä,
2006) is an interactive method that has been used in many
applications [see e.g., Saccani et al. (2020), Sindhya et al.
(2017) and Ruotsalainen et al. (2010)]. We summarize it here
since it will be applied in the case study. In this method, the
DM gives her/his preferences with a so-called classification
and several scalarizing functions are formulated by using
the preference information from the DM to get new Pareto
optimal solutions following the preferences.

NIMBUS needs a starting point (a Pareto optimal objec-
tive vector), and the DM gives his/her preferences to indicate
what kind of changes in the objective function values would
lead to a more preferred solution. The starting point can
be specified by the DM or it can be a so-called neutral
compromise solution which is located, roughly speaking,
approximately in the middle of the Pareto optimal set. The
neutral compromise solution is calculated by solving the
ASF (2) with z̃i = (znad

i + z∗∗
i )/2 as aspiration levels for

i = 1, . . . , k. The starting point is presented to the DM in
the first iteration, together with the ideal and nadir points.
Then, in each iteration, the DM gives his/her preferences by
classifying each objective function (with the current value)
into up to five classes by indicating whether he/she wants to:

1. improve the current value (I <),
2. improve the current value to a certain aspiration level (I ≤),
3. keep the current value (I =),
4. impair the current value until a certain bound (I ≥), or
5. let the current value change freely (I 	).

When a classification is feasible (i.e., some objective
functions are to be improved and some are allowed to get
worse), up to four different scalarizing functions are utilized
to generate new Pareto optimal solutions reflecting the DM’s
preferences as well as possible. The DM gives an upper bound
for how many solutions he/she wants to see and compare. The

new Pareto optimal solutions are then presented to the DM
who chooses one solution to continue to the next iteration
(use it as the starting point of a new classification) or stop
with this solution as the final one, if he/she is satisfied with
it. There is also a possibility to generate a desired number
of intermediate solutions between any two Pareto optimal
solutions. Further details about the synchronous NIMBUS
method can be seen in Miettinen and Mäkelä (2006).

DESMILS: decision support for a multi-item
lot sizing problem

The idea of DESMILS is to extend a single-item multiobjec-
tive lot sizing model to be applied in multi-item lot sizing
with a large number of items. This approach can be imple-
mented in any variant of a single-item lot sizing problem,
which is intended to be extended to a multi-item problem,
if the single-item problem is modeled as a multiobjective
optimization problem. As examples, this approach is appro-
priate for the lot sizing problem under demand uncertainty in
Kania et al. (2022), the lot sizing problem with safety stock
and safety lead time in Kania et al. (2021), and the lot siz-
ing problem with supplier selection in Ustun and Demirtas
(2008). DESMILS enables single-item lot sizing models to
be used in case of a large number of items without having
to conduct the decision making process separately for every
single item.

As said, in multiobjective optimization, the final solu-
tion depends on preference information provided by the
DM during the decision making process. If the decision
making process is considered separately for each item, the
DM may provide different preferences in deciding lot sizes
for different items. However, repeating the decision mak-
ing process for each item is laborious in case of a large
number of items. To address this concern, we propose a deci-
sion support approach that can accommodate item-specific
preference information from the DM without a need of
repeating the decision making process for each item sepa-
rately. Here, we refer to item-specific preference information
as the preference information that the DM provides for solv-
ing a single-item lot sizing problem for a specific item. The
proposed approach is called DESMILS as an abbreviation of
Decision Support for Multi-Item Lot Sizing Problem.

Considering a large number of items, the DM typically
does not have totally different item-specific preference infor-
mation for all the items. He/she may have similar preferences
for some items. He/she usually gives his/her preference infor-
mation in the lot sizing problem based on some properties,
such as price, demand, size, and/or location of the supplier.
For example, he/she avoids holding stocks for expensive or
large items but carries more stocks (for instance in safety
stock) for the items with a high demand. DESMILS divides
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Fig. 1 Flowchart of DESMILS

the items into clusters based on the properties that influ-
ence the DM’s opinion in making lot sizing decisions. In
this way, we assume that the items in the same cluster have
similar item-specific preference information, and therefore,
the DM only needs to give preference information for one
item which is representative of the cluster. Then, this infor-
mation is extended to other items in the same cluster that are
similar enough to the representative one.

DESMILS has four stages, as shown in Fig. 1. We assume
that the total number of items is m. In the first stage, these
items are divided into c clusters, where c is clearly smaller
than m. Each cluster has one or more items with one item
regarded as the representative of the cluster. The representa-
tive of each cluster is called a cluster center. In the second
stage, the decision making process is conducted c times with
an interactive method, where the DM gives his/her prefer-
ences to find preferred lot sizes for each cluster center. The
remaining items in the cluster are called cluster members. We
propose an approach in the third stage to find reference points
for these items by using the preference information that the

DM provided for the corresponding cluster center and repeat
this for each cluster. Finally, we obtain the solutions for the
cluster members using these reference points in the last stage.

The involvement of a DM is needed in the clustering
stage and the decision making stage. In the clustering stage,
the DM is asked to provide the number of decision making
processes he/she wants to conduct and check the clustering
results. In the decision making stage, the DM provides his/her
preferences to solve the single-item lot sizing problem for
c cluster centers. The other stages do not involve the DM.
There are two kinds of data needed in DESMILS: properties
that influence lot sizing decisions, and data needed as input
for solving single-item lot sizing problems. For example, in
the case study considered in section “Case study”, properties
that influence lot sizing decisions are SS, SOT, purchasing
price, transit time, daily average demand, and physical size
of the item. Furthermore, demand data for 24 periods, price,
lead time, previous order data, minimum order quantity and
rounding value are the input data used to solve the single item
lot sizing problems in the case study, where the company
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needs to solve a multiobjective lot sizing problem described
in Appendix A.

In what follows, we give details of each stage.

Clustering stage

As said, the DM’s lot sizing decisions are usually influenced
by certain properties, and they are used in this stage to divide
items into clusters. Therefore, investigating the DM’s reason-
ing in making his/her decision is important in this stage to
ensure items with similar item-specific treatment are placed
in the same cluster. The analyst can interview the DM to
investigate which properties influence his/her lot sizing deci-
sions.

The purpose of the clustering stage is to assign m items
into c clusters so that the items in the same cluster can be
treated with similar preferences. By using the properties that
influence the DM’s lot sizing decisions, we divide items into
clusters, where each cluster has one representative item as
a cluster center and the remaining items as cluster mem-
bers. Naturally, any appropriate clustering technique, which
is usually used in machine learning, can be used in this
stage. However, it is important to select a clustering tech-
nique that provides one of the items as the center of the
cluster and not, for example, some average. Therefore, in this
research, we use the k-medoids clustering technique (Kauf-
man & Rousseeuw, 1990). The idea of taking an item which
is nearest to the means of items as the center of the corre-
sponding cluster fits our purpose.

In some clustering methods, including k-medoids, the
number of clusters c is required to be specified as input. This
enables the DM to decide the number of the decision making
processes that he/she prefers to do. The methods that have
been developed to determine the optimal number of clusters,
such as the elbow method (Thorndike, 1953), which is the
oldest and most widely used method in cluster analysis, can
also be used to give a suggestion to the DM. However, the
number of clusters needs to be confirmed by the DM and the
items of each clusters need to be checked by the DM so that
items in the same cluster can be treated similarly.

Decisionmaking stage

In the previous stage, c cluster centers were identified to
represent all the other items. Therefore, we need to conduct
c decision making processes in this stage to solve the single-
item lot sizing problem for each cluster center. The data used
in this stage depends on the single-item lot sizing problem to
be solved.

Any appropriate multiobjective optimization methods can
be applied to find the most preferred lot sizes for each cluster
center. However, to be able to reflect the preference informa-
tion from the DM to be used for the next stage, the method
used in this stage should have a starting point. In the case
study considered in this paper, we used the interactive NIM-
BUS method as its type of providing preference information
was preferred by the DM in question. In NIMBUS, we used
a neutral compromise solution (as defined in Sect. 2.3) as a
starting point, which helps us to reflect the preference infor-
mation from the DM to be used for the next stage. The final
solutions and the starting points for each cluster center are
output of this stage and they are needed in the next stage.

Deriving reference points stage

After obtaining solutions for all cluster centers in the pre-
vious stage, we need to determine optimal lot sizes for all
cluster members by utilizing the preference information that
the DM provided for the corresponding cluster center. In this
stage, we derive a reference point for each cluster member
and use them to obtain the solution in the next stage. The ref-
erence point represents the desired values that the DM wants
to achieve for each objective function based on his/her pref-
erence information for the cluster center. Since DESMILS
repeats the same task for each cluster, in what follows, we
describe the solution process for one cluster as an example.

The preference information from the DM is interpreted
as the direction from the starting point to the most preferred
solution that the DM selected for the cluster center. We call it
a reference direction. Figure 2 illustrates the idea how to use
this reference direction to get a reference point for one cluster
member (the reference points for other cluster members are
obtained in the same way). A starting point for the cluster
member is needed and it can be calculated in the same way

Fig. 2 The idea of finding a reference point to obtain the solution for the cluster member
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as in the interactive method that was used in the previous
stage. By moving from the starting point in the direction of
the reference vector, a reference point for the cluster member
is obtained.

We need to emphasize that each item has its own set
of Pareto optimal solutions, which means that the cluster
center and cluster member have different feasible objective
regions. Therefore, transformation is needed to make the
reference direction of the cluster center appropriate for the
cluster member. For this purpose, we first normalize the refer-
ence direction of the cluster center to a proportional position,
and then denormalize the proportional position of the refer-
ence direction to the region of the cluster member. After the
normalization and denormalization processes, the reference
direction can be used to find a reference point for the cluster
member. Algorithm 1 outlines the general idea of this stage
and the details of the algorithm are given afterwards.

Algorithm 1: Algorithm to derive reference points for
each cluster member

Input: The starting point of the cluster center zs and final
solution of the cluster center z

Output: The reference point for each cluster member
1 Calculate the reference direction for the cluster center zr
2 Normalize zr to a proportional position żr
3 foreach cluster member do
4 Calculate the starting point of the cluster member ys
5 Denormalize żr into the feasible objective region of cluster

member, denoted by yr
6 Calculate the reference point y
7 end

From the previous stage, for the cluster center, the starting
point zs and the final solution z have been obtained. They are
used to calculate the reference direction for the cluster center
zr = (zr1, . . . , zrk)

T , where zri = zi − zsi , i = 1, . . . , k.
This reference direction is then normalized to a proportional
position żr = (żr1, . . . , żr k)

T using the following formula:

żr i = zri

zsi
, i = 1, . . . , k.

To avoid the division by zero, when zsi = 0 for at least one
i , the feasible objective region can be shifted, for example,
by one unit. This means that one unit is added to all values of
the reference direction and the starting point (zri = zri + 1
and zsi = zsi + 1 for i = 1, . . . , k).

The normalized reference direction żr is utilized for all
cluster members in this cluster to find a reference point
for each cluster member. In what follows, we describe the
process to find the reference point for one member, as an
example.

The starting point for the cluster member, denoted by
ys = (ys1, . . . , ysk)

T , is calculated in the same way as in the

second stage for the cluster center. The reference direction
for the cluster member yr = (yr1, . . . , yrk)

T is then calcu-
lated by denormalizing żr into the feasible objective region
of the cluster member using the following formula:

yri = żr i ysi , i = 1, . . . , k.

To find the reference point for the cluster member, the
starting point ys is directed to follow the preference infor-
mation from the DM which is represented in the reference
direction yr . The reference point y = (y1, . . . , yk)

T is then
obtained with the following formula:

yi = yri + ysi , i = 1, . . . , k.

Solution generation stage

Reference points found in the previous stage represent the
preferred solutions that the DM wants to achieve for each
cluster member. However, y may not be a Pareto optimal
solution of the lot sizing problem of the cluster member.
Therefore, we find the closed Pareto optimal solution by min-
imizing the ASF(2) with y as the reference point. In this way,
a Pareto optimal solution which represents the DM’s prefer-
ence is found for each item.

Case study

In this section, we demonstrate how the proposed approach
DESMILS can provide decision support in solving a real lot
sizing problem in a manufacturing company. To be more
specific, the company is a semi-heavy vehicles company.
The company considered needed to determine the optimal
lot sizes for 94 items. From the ERP system of the company,
we received two kinds of data needed in DESMILS: prop-
erties that influence lot sizing decisions, and data needed as
input for solving single-item lot sizing problems.

The company deals with a multi-item lot sizing problem
within periodic review policy under stochastic environment
on demand. To handle demand uncertainty, they hold extra
stock with the combination of safety stock (SS) and safety
order time (SOT). For performance measurement, the com-
pany uses KPIs. Among these KPIs, they selected purchasing
and ordering costs (POC), holding cost (HC), cycle ser-
vice level (CSL) and inventory turnover (ITO) as the most
important KPIs for lot sizing decisions. They found the mul-
tiobjective lot sizing model described in Kania et al. (2022) to
best match their needs, where their KPIs are objective func-
tions to be optimized. Thus, the model has four objective
functions: minimizing POC, minimizing HC, maximizing
CSL and maximizing ITO. Details of the multiobjective opti-
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mization problem, which is solved in this section, are given
in Appendix A.

In this case, the time period for inventory planning was
one week, and the company wanted to determine the opti-
mal order quantity for 24 weeks and simultaneously decide
the optimal values of SS and SOT. In the beginning of each
period, the company needs to place an order for each item,
and the order arrives after a constant lead time. The company
has agreements with suppliers limiting the orders: they are
only able to order at least a certain minimum order quantity
and multiples of a rounding value. The minimum order quan-
tities, rounding values, and lead times vary for different items
and these are specified as input of the optimization problem.
Besides that, the predicted demand data for the following 24
weeks, the previous orders that are supposed to arrive during
the lead time period, the price to purchase one unit of item,
and the cost to place an order were also needed as input of
the optimization problem (see Appendix A).

The supply chain manager of the company is responsible
for making lot sizing decisions and he was the DM in this
study. He agreed with the model described in Appendix A,
but wanted to add bounds for CSL and ITO as additional con-
straints. The minimum value of CSL which was acceptable
for him was 0.9. For ITO, the DM appreciated high value but
values higher than 80 were not reasonable for him.

Clustering stage

First, we interviewed the DM to understand which properties
influence his decisions in lot sizing. The DM said that there
are six relevant properties: SS, SOT, purchasing price, transit
time, daily average demand, and physical size of the item.
SS and SOT are the results of optimization, but the company
predicts them for production planning purposes and they are
used by the DM to set desired values for CSL. The purchas-

ing price is important in deciding POC and HC, transit time
influences his desires in CSL and ITO, while daily average
demand is necessary for all objective functions. To consider
the physical size of an item, the DM has access to data on the
‘number of units in one handling unit’. It shows the number
of units of an item that can be packed in one handling unit,
for example, a pallet. One handling unit can store many units
of an item if it is a small item, otherwise, it is only able to
store few units of a big item. This data affects his decisions
in deciding HC and CSL.

As said, we received data from the ERP system of the
company containing information about the six properties that
influence the DM’s lot sizing decisions. The data was used to
cluster the 94 items with the k-medoids clustering technique.
To help in determining the number of clusters, an elbow graph
was presented to the DM showing the distortion of the sum of
square error values of the distances between cluster centers
and cluster members. The best number of clusters is usually
found if there is an ‘elbow’ in the curve, that is, where the
distortion of the following cluster does not decrease much.
However, in this case, the distortion basically decreased when
the number of cluster increased, but there was no elbow vis-
ible. Therefore, the decision of the number of clusters relied
on the DM.

According to the DM, an acceptable number of clusters
for 94 items was between 7 and 12 clusters. Therefore, he
wanted to see the clustering results in this range (i.e, cluster
centers and cluster members for different numbers of clus-
ters). After comparing the clustering results of 7–12 clusters,
the DM decided that the appropriate number of clusters was
10. The reason was that with 10 clusters, the items in the
same cluster could be best treated with similar preferences.
The result of the clustering with 10 clusters is presented in
Fig. 3, where different colours represents different clusters.
Therefore, the DM needed to complete a total of 10 decision

Fig. 3 Result of clustering (ten clusters indicates by different colours)
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making processes, and this number was acceptable for him.
(This number is clearly lower than repeating the process for
each of the 94 items.)

Decisionmaking stage

For compactness, we here describe the solution process for
one cluster only (the other clusters were treated in the same
way). The considered cluster is shown in red colour in Fig. 3
(cluster 10). Items in this cluster have low purchasing prices,
low transit times, and quite low values for the other elements.
Based on the data from the company, the cluster center of
this cluster has the price of 57.09 and the lead time of four
weeks. The minimum order quantity and the rounding value
of this item are both 45 units, while the demand data and the
previous orders that are supposed to arrive during the four
week lead time period, can be seen in Fig. 4.

The DM wanted to use the interactive NIMBUS method to
find the best lot sizes for the cluster centers since he preferred
to give his preferences in the form of a classification and he
loved the way NIMBUS handles classification. However, the
lot sizing problem to be solved is computationally expensive
(Kania et al., 2022), and therefore solving one scalarizing
function spends several minutes and NIMBUS needs to solve
up to four scalarizing functions on each iteration. To reduce
the waiting time of the DM, we generated a representative
set to approximate Pareto optimal solutions in advance, and
used NIMBUS to help the DM select one of them.

Because of the complexity of lot sizing problems, evolu-
tionary algorithms, have become popular and efficient tools
to approximate the set of Pareto optimal solutions in these
problems (Goren et al., 2010). In this case, we applied an evo-
lutionary method called NSGA-III (Deb & Jain, 2014), which
has been developed for multiobjective optimization problems
with more than three objective functions. We applied the
implementation of NSGA-III in a framework called pymoo
(Blank & Deb, 2020), because it can handle integer variables
and many constraints. Details of generating the representa-
tive set for the cluster center are presented in Appendix B.

A graphical user interface is important in decision making
processes with interactive methods to facilitate interaction
between the DM and the method. We used DESDEO (Misi-
tano et al., 2021), an open source Python framework, which
provides implementations and graphical user interfaces for
various interactive multiobjective optimization methods,
including NIMBUS. The feature of having a pre-generated
set of solutions is also provided in this framework.

As mentioned in Sect. 2.3, in the first iteration of NIM-
BUS, the starting point together with the ideal and nadir
points are presented to the DM to support providing the first
classification. Figure 5 shows the corresponding screenshot
of NIMBUS in DESDEO. In this case, the starting point
(objective vector) for the cluster center was (146 066.8,

525.1, 0.98, 44.65), while the ideal and nadir points were
(144 466.8, 332.42, 1, 79.42) and (152 604.9, 2 989.05, 0.906,
9.89), respectively. The objective function values in the start-
ing point are indicated by pink bars in Fig. 5. The graphical
user interface supports the DM in remembering the direction
of improvement. The first and the second objective functions
are to be minimized (pink bar starts from the left) and the
others are to be maximized (pink bars start from the right);
and the shorter the pink bar, the closer the current value is to
the ideal value.

In the first iteration, the DM wanted to improve ITO
until 60, and allowed CSL to decrease until 0.91, while the
other objective functions were allowed to change freely. He
wanted to compare up to four solutions, but he only got two
different solutions because of the same results in optimiz-
ing some of the scalarizing functions. The solutions were
(147 266.8, 332.42, 0.9258, 79.42) and (147 266.8, 361.61,
0.9747, 72.37). The solutions were visualized for the DM
in DESDEO to help comparisons. The DM chose the second
solution since it had a better CSL value. The ITO value of this
solution was worse than in the first one, but it was acceptable
for the DM. The DM continued to the next iteration with the
selected solution.

The DM was already rather satisfied with the current
solution, but he wanted to explore whether he could get
a better solution. (He appreciated the feature of NIMBUS
that allowed him to go back to the previous solution if the
solutions of the next iterations are not getting better. Thus,
there was no risk of losing the previous solution by trying
new preferences.) For the second iteration, he allowed to
impair ITO until 25, but he wanted to improve CSL until
0.99 and let the other objective functions change freely. The
solutions obtained in this iteration were (151 004.9, 729.45,
0.999999995, 26.92), (146 866.8, 455.03, 0.996, 52.55),
(149 035.85, 615.6, 0.999997, 32.7) and (152 604.9, 565.97,
0.999999994, 34.67). The DM selected the second solution,
where he got the best values for POC, HC and ITO, and the
CSL value was acceptable. When compared to the solution of
the first iteration, the current solution had a better CSL value
and an acceptable value for ITO, hence the DM decided to
continue with the current solution for the next iteration.

The DM was satisfied with the CSL and ITO values and
wanted to improve HC as much as possible in this iteration.
Because of trade-offs, he had to allow impairment in at least
one other function, and he preferred to sacrifice ITO a bit
until 50. He allowed POC to change freely and kept CSL in
the current value. He wanted to see up to four solutions but he
only got three different ones. The solutions were (150 035.85,
405.4, 0.997, 55.91), (147 266.8, 332.42, 0.926, 79.42) and
(147 466.8, 390.81, 0.995, 58.51). He selected the first one
with the best CSL value and an acceptable ITO value. He was
planning to stop with this solution. However, when he saw
the corresponding decision variable values, he found SS and
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Fig. 4 Demand and previous order data for the cluster center

Fig. 5 Graphical user interface of NIMBUS in DESDEO

SOT values unacceptable, and wanted to start the decision
making process again from the beginning to get a better CSL
value.

The DM was again shown the information in Fig. 5. He
wanted to improve CSL until 0.9999, sacrifice ITO to 40 and
let POC and HC change freely. He wanted to see up to four
solutions but got these two solutions: (150 035.85, 498.82,

0.999993, 40.89). Based on the previous experiences and
learning there, he wanted to play safe with CSL and chose
the first one with a better CSL value.

In the second iteration, he preferred to improve HC until
400 and sacrifice on ITO to 35. He let POC change freely
and kept CSL in the current value. He was then presented
with these four solutions: (150 035.85, 498.82, 0.999993,
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Fig. 6 Result for cluster center

40.89), (149 835.85, 492.99, 0.999991, 41.13), (149 835.85,
411.24, 0.997, 55.02) and (150 035.85, 405.4, 0.997, 55.91).
The second solution was the best for the DM and he decided
to stop with it as the final one. The DM was very pleased
with the final solution as well as the corresponding decision
variable values.

The lot sizes that arrive for each planning period can be
seen in Fig. 6 in red. The previously set order data for the
first four weeks are followed by the optimized lot sizes after
week 4 (the lead time was 4 weeks in this cluster). The fig-
ure shows that no order is needed for weeks 5, 8, and 22.
Following the DM’s preferences in the decision making pro-
cess, we do not need to order in every single period to have a
balance between POC and HC. In this case, orders for weeks
5, 8, and 22 are unnecessary to save on ordering costs. The
final SS and SOT values were 74 units and one day, respec-
tively. The inventory level indicated by the green line shows
that the company had excess inventory during the lead time
period, and it then decreased and followed the demand quan-
tity with the optimized lot sizes. Thus, the company saved
money invested in the inventory. The DM was pleased with
the improvement in the inventory level but keep the safety
level high, following his preferences.

Deriving reference points stage

From the previous stage, we got the final, optimized solu-
tion for the cluster center z = (149 835.85, 492.99, 0.999991,
41.13) while the starting point of the interactive solution pro-
cess was zs = (146 066.8, 525.1, 0.98, 44.65). With these
points, we calculated the reference direction of the cluster
center as zr = (3 769.05, −32.11, 0.012132, −3.53) and the
normalization of zr was żr = (0.0258, −0.0612, 0.01228,
−0.07896).

This cluster had 14 cluster members (besides the cluster
center). As described in section “Deriving reference points
stage”, we calculated starting points for each cluster mem-
ber. Because we used NIMBUS and the neutral compromise
solution as the starting point for the cluster center, we cal-
culated neutral compromise solutions as starting point for
cluster members. We then followed Algorithm 1 to calcu-
late the reference point for each cluster member. The starting
points and the reference points for the cluster members in
this cluster can be seen in Table 1.

Solution generation stage

For each cluster member, we considered the correspond-
ing reference point, minimized the ASF (2) and derived a
solution. These solutions are presented in Table 2. The DM
accepted them and appreciated that each item had its solu-
tions following his preferences. He was able to find solutions
for the cluster with 15 items with only one decision making
process, thanks to DESMILS.

The steps from the decision making stage until the solution
generation stage were repeated for other clusters. The DM
provided different preferences in the decision making process
for the different cluster centers and he was pleased with the
results of both cluster centers and cluster members, which
followed his preferences.

Compared with the traditional method used in the com-
pany (without any decision support tool), the DM emphasized
the following benefits in using DESMILS.

1. The DM can consider different KPIs simultaneously and
understands the trade-offs among them, when he is able
to compare different solutions and change his preferences
during the decision making process. Thus, he can train his
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Table 1 Starting points and
reference points for cluster
members

Item Starting points Reference points

POC HC CSL ITO POC HC CSL ITO

1 202 451.84 1 778.92 0.912 21.68 209 396.1 554.38 0.924 54.79

2 110 688.96 1 232.14 0.965 13.99 114 485.68 383.98 0.978 35.38

3 248 950 2 875.84 0.926 13.34 257 489.19 896.22 0.938 33.73

4 142 384.4 1 570.19 0.999 12.96 147 268.3 489.33 1.014 32.75

5 216 751.6 2 724.29 0.922 12.83 224 186.36 848.99 0.935 32.44

6 256 988.32 2 483.68 0.977 19.08 265 803.23 774.01 0.991 48.24

7 178 282 1 229.85 0.939 21.63 184 397.22 383.27 0.952 54.68

8 158 921 2 510.89 0.906 10.61 164 372.12 782.49 0.919 26.82

9 139 796 2 495.98 0.923 11.65 144 591.12 777.84 0.935 29.45

10 296 462.4 4 069.06 0.956 13.45 306 631.3 1268.08 0.969 34.01

11 166 792.35 1 597.38 0.914 17.46 172 513.46 497.81 0.927 44.14

12 172 367.85 1 873.49 0.902 16.24 178 280.21 583.85 0.915 41.05

13 214 529.6 2 672.44 0.965 14.83 221 888.14 832.84 0.978 37.49

14 176 194.6 1 896.18 0.933 15.46 182 238.22 590.92 0.946 39.09

Table 2 Solutions for cluster members

Item POC HC CSL ITO

1 205 331.2 330.48 0.939 77.92

2 112 688.96 458.07 0.973 38.13

3 251 550 690.96 0.942 78.21

4 144 784.4 652.87 0.999 32.79

5 221 748.84 591.29 0.947 66.14

6 265 234.88 571.19 0.990 62.16

7 180 882 524.75 0.951 55.34

8 161 321 870.53 0.950 50.54

9 142 589.12 341.04 0.945 60

10 298 862.4 1 071.85 0.975 64.02

11 169 749.9 482.91 0.953 79.99

12 175 525.4 397.89 0.945 79.99

13 220 466 515.15 0.991 64.8

14 179 509.68 539.97 0.956 79.96

team members and other stakeholders of the company on
this aspect of lot sizing for better results.

2. The optimal lot sizes provided by DESMILS improve
inventory planning and control in his company. The inven-
tory value, which is a core KPI for the top management,
was reduced for all items in this case study.

3. Saving time is a significant issue in daily operations. Com-
pared with the previous way, where it is mostly done item
by item, DESMILS save a significant amount of time and
effort. DESMILS also allows the DM to decide the num-
ber of clusters, and therefore, he can control the effort
needed to solve his multi-item lot sizing problems.

4. DESMILS also reduces the risk of human error. When
processes are not controlled only by traditional methods,

the risk of unintentional forgetting is reduced. It in turn
supports production needs when the right amount of mate-
rial is available at the right time.

As said, the company already had KPIs in use, and the
suitable ones were selected as the objective functions. In this
way, the results of the optimization were used as a source
of information to KPIs, for example, for reporting purposes
to senior management. Based on the KPI information in the
objection functions, he confirmed that the results are accept-
able and reflect his preferences well. This allows him to focus
on nurturing and developing company’s buyer–supplier rela-
tionships and developing lot sizing processes there.

Being a good buyer with convincing and predictable
lot sizing planning is a good method to successful buyer–
supplier relationship when creating competitive advantage.
Naturally, our approach does not only focus on the develop-
ment of the activities of the company in question. Production
companies in general could improve their inventory manage-
ment with our approach.

Conclusions

In this paper, we have introduced DESMILS, a decision sup-
port approach to solve multi-item lot sizing problems. Our
motivation is to enable any single-item lot sizing model,
which is formulated as a multiobjective optimization prob-
lem, to be applied in multi-item problems with a large number
of items. Our approach applies an interactive multiobjective
optimization method to solve a single-item lot sizing prob-
lem for few selected items. It then accommodates preferences
obtained from the DM so that the DM does not need to repeat
the decision making process for each item separately. The
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preferences are used to derive optimal lot sizes for the other
items.

The idea of DESMILS is to divide items into clusters using
properties that influence the DM’s lot sizing decisions, with
the reasoning that items in the same cluster can be treated with
similar preferences in the lot sizing decision. Therefore, we
only need to conduct the decision making process, where the
DM provides his/her preferences, for one representative item
for each cluster. We then translate the preference information
to derive Pareto optimal lot sizes for the remaining items in
the same cluster. In this way, optimal lot sizes that represent
the DM’s preferences are obtained for all items.

As a proof of concept, a real lot sizing problem from
a manufacturing company was solved to demonstrate the
applicability of the proposed approach. Lot sizes were to be
determined for 94 items and with DESMILS, Pareto optimal
solutions reflecting the DM’s preferences were found for all
items. However, the DM had to solve only a limited num-
ber of lot sizing problems. The DM was satisfied with all of
the solutions and the corresponding decision variables. He
appreciated that he could find lot sizes for each item reflect-
ing his preferences with a limited amount of effort from his
side.

Solving multi-item lot sizing problems incorporating a
DM’s preferences in deciding lot sizes for different items
was proposed for the first time in this research. Hence, test-
ing this approach with different types and characteristics of
the problems and with different numbers of items are topics
of future research extending this work. In our case study, the
elbow method failed to help the DM in setting the number of
clusters. Therefore, our future work includes finding better
support the DM in this. Furthermore, in the case considered,
there is no information about connections and dependencies
between items, but it can be a possible future research direc-
tion.
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Appendix A: Multiobjective optimization
model

Based on the needs of the real case study, we used the lot
sizing model proposed in Kania et al. (2022) to consider
single-item lot sizing. This model follows a periodic review
policy, where orders are reviewed over discrete time peri-
ods t = 1, . . . , T . This is a single-item lot sizing model to
determine the optimal order quantity (Q(t)) for each period
considered and simultaneously decide the optimal values of
SS and SOT . There are four objective functions and four
constraints in the model. The two objective functions related
to costs (i.e., POC and HC) are considered as different objec-
tive functions here, because there is trade-off between them
and the DM wants to study the trade-off.

min P OC =
∑

t

Q(t) p +
∑

t

Y (t) c,

HC =
∑

t

I (t − 1) + I (t)

2
h,

max C SL = F

(
SS + μ SOT

σ

)
,

I T O =
∑

t

D(t) + σ

(I (t − 1) + I (t))/2
,

s.t.
I (t − 1) + ∑t

i=t−
L� Q(i) − SS∑t+
P�
j=t D( j) + (P − 
P�)D(�P
)

≥ 1,

for t = 1, . . . , T ,

Q(t) = Y (t) (moq + a r) , for any integer a ≥ 0

and t = 1, . . . , T ,

I (t) ≥ SS + SOT D(t) , for t = 1, . . . , T ,

SS ≥ 0 and SOT ≥ 0,

where

p price to purchase one unit of the item
c cost to place one order
h cost to hold one unit for one period
L lead time

D(t) predicted demand during period t
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σ standard deviation of demand D(t)
μ average demand D(t)

moq minimum order quantity (for lot size)
r rounding value (for lot size)

Y (t) order indicator (Y (t) = 1 if Q(t) > 0, otherwise
Y (t) = 0)

I (t) inventory position at the end of period t
(I (t) = I (t − 1) + Q(t − 
L�) − D(t))

P the consideration period for one order (P = L +
SOT ).

Appendix B: Details of generating solutions
for the decisionmaking stage

As said, the lot sizing problem to be solved in the case study is
a computationally expensive problem. Therefore, generating
many solutions to approximate Pareto optimal solutions is a
challenge. The minimum order quantity and rounding value
as well as constraints limit the range of feasible solutions.
Here, we applied NSGA-III by using the pymoo framework.
We combined solutions obtained with different initial popu-
lations and various parameters of evolutionary operators that
were available in the framework, to get more different solu-
tions (Deb & Jain, 2014).

We applied the structured approach described in Das and
Dennis (1998) with the number of partitions from 1 until
20 to generate initial populations. We also combined differ-
ent types of crossover operators for integer variables, i.e.,
simulated binary crossover, exponential crossover, uniform
crossover, half uniform crossover, and four point crossover.
We used crossover probability of 0.9 for all of them, except
exponential crossover where we used probability of 0.95. For
mutation, we used polynomial mutation for integer variables
with mutation probability 0.9. The parameters were selected
after several experiments and we found that these parame-
ters were good enough for our case. For other parameters,
we used the default values in pymoo (Blank & Deb, 2020).
In this way, we obtained 568 solutions for the cluster center
in Sect. 4.2 in almost 24 h. However, this process was done
without the involvement of the DM, and there was no com-
putational overhead involved in the interactive process.
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