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Dynamic Community Detection for Brain
Functional Networks during Music Listening with

Block Component Analysis
Yongjie Zhu, Jia Liu, and Fengyu Cong, Senior Member, IEEE

Abstract— The human brain can be described as a com-
plex network of functional connections between distinct
regions, referred to as the brain functional network. Re-
cent studies show that the functional network is a dy-
namic process and its community structure evolves with
time during continuous task performance. Consequently,
it is important for the understanding of the human brain
to develop dynamic community detection techniques for
such time-varying functional networks. Here, we propose
a temporal clustering framework based on a set of network
generative models and surprisingly it can be linked to Block
Component Analysis to detect and track the latent commu-
nity structure in dynamic functional networks. Specifically,
the temporal dynamic networks are represented within
a unified three-way tensor framework for simultaneously
capturing multiple types of relationships between a set of
entities. The multi-linear rank-(Lr, Lr, 1) block term decom-
position (BTD) is adopted to fit the network generative
model to directly recover underlying community structures
with the specific evolution of time from the temporal net-
works. We apply the proposed method to the study of the
reorganization of the dynamic brain networks from elec-
troencephalography (EEG) data recorded during free music
listening. We derive several network structures (Lr commu-
nities in each component) with specific temporal patterns
(described by BTD components) significantly modulated
by musical features, involving subnetworks of frontopari-
etal, default mode, and sensory-motor networks. The re-
sults show that the brain functional network structures
are dynamically reorganized and the derived community
structures are temporally modulated by the music features.
The proposed generative modeling approach can be an
effective tool for describing community structures in brain
networks that go beyond static methods and detecting the
dynamic reconfiguration of modular connectivity elicited by
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I. INTRODUCTION

THE functional architecture of the human brain can be
characterized as a neuronal-synchronized network of

interconnected brain regions [1], [2]. Many studies of elec-
trophysiological brain networks have provided new insights
into human behavior and cognition [3]–[5]. Early research
focused on static functional connectivity (FC) patterns over
time based on the stationary assumption. Recently, growing
evidence has shown temporal dynamics of FC networks over
multiple time scales during continuous task performance and
resting states [6]–[8]. These network dynamics are critical to
brain functions [9], [10] and dysfunctions [11]–[13]. Although
brain networks dynamically fluctuate over time, FC networks
tend to be temporally clustered into a finite number of putative
connectivity states, that is, distinct connectivity modules (com-
munities or subnetworks) that transiently form and dissolve
during continuous task performance [14]–[16]. Most of the
research on dynamic FC states concentrates on the transition
among whole-brain network profiles only considering con-
nectivity edges [14], [17], [18]. However, few studies focus
on temporally switching in the topological organization of
functional brain networks such as the modular or community
structure.

Evidence from network neuroscience studies demonstrates
complex topological structures of both structural and func-
tional brain networks [19], [20], where the brain networks can
be decomposed into clusters of densely interconnected nodes
(referred to as modules or communities) that are relatively
sparsely connected with nodes in other communities/modules.
These topological communities typically correspond to clus-
ters of anatomically neighboring and/or functionally related
brain regions which are involved in specialized functional
components [18], [20], [21]. Numerous community detection
algorithms have been developed for identifying underlying
community structures in brain networks. The most widely
used method in neuroimaging analysis is to apply modularity
maximization to the static brain networks, where nodes are
partitioned into non-overlapping and densely inter-connected
modules by maximizing an objective function of modularity
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[22]. Most of them are only suited for analysis of static or
single-layer networks to define candidate communities at a
fixed time [23], but characterizing time-evolving networks
with community structures has received less attention.

The related studies for time-evolving networks primarily
focus on identifying clusters of a set of snapshots, i.e. network
connectivity patterns, that repeat themselves across time [14],
[15]. For example, Ou and his colleagues introduced an
approach based on statistical state modeling to identify the
network states through hierarchical clustering followed by a
Hidden Markov Model (HMM) [24]. In a similar manner, Ma
et al. identified the network states and their transitions through
independent vector analysis and Markov modeling [25]. Vidau-
rre and colleagues have recently developed multiple methods
based on HMM and applied them to neuroimaging data,
suggesting that functional networks transiently reorganize on
the timescale of milliseconds [15], [16], [26], [27]. Under the
subspace modeling approaches, principal component analysis
(PCA) [28] and independent component analysis [29] are used
to extract the FC patterns, where it is assumed that brain
networks are composed of eigenconnectivities or independent
components. An alternative popular approach is based on k-
means clustering of dynamic functional connectivity networks
(dFCNs) across time to identify the FC-states during rest,
where it is assumed that a finite number of FC patterns recur
across time [14]. Although these methods were beneficial to
summarize the overall dynamic brain activity, they failed to un-
cover the topological properties of the whole-brain networks.

Although dynamic community detection technique [30] has
recently emerged as a powerful tool for tracking the topo-
logical reconfiguration of brain networks [18], [31]–[33], it is
still not straightforward for module detection for time-varying
networks within or across multiple subjects. We thus con-
sider the tensor decomposition (or tensor component analysis)
based methods for such dynamic community detection [18],
[31], [34]–[37] since the tensor decomposition enables multi-
timescale dimensionality reduction both within and across
temporal evolution for multiple subjects in a purely data-driven
method. Tensor decomposition has recently been regarded as
an extension of PCA for dynamic brain network analysis
across subjects, where time-frequency vectorized adjacency
matrices were formed into a tensor and decomposed into com-
ponents characterizing brain network patterns with spectral-
temporal features [9], [38]–[40] or temporal features [41],
[42]. However, in this case, the topological organization of
brain networks is unable to be directly revealed in the resulting
components. For such community detection in temporal brain
networks, tensor-based approaches typically model a network
as a three-way tensor and apply low-rank tensor decomposition
to extract latent components [42], [43]. Each component is
made up of three factors named “loading factors”. Two of the
factors relate to nodes and are used to generate a community
with clustering or binary classification [43]. The other loading
factor contains temporal information for tracking the temporal
evolution [42]. Despite that these tensor-based methods have
achieved success in dynamic community detection for brain
network analysis, further analysis, such as k-means clustering
or classification of node loading factors, is required after

tensor decomposition to generate the community [34], [36].
Additionally, these approaches with tensor decomposition fail
to provide a good generative model for the dynamic brain
networks; more precisely, the physical interpretations of the
factors related to nodes and the temporal dimension are
unclear.

In this paper, to overcome the limitations mentioned above,
we introduce a framework based on a latent network generative
model and block term decomposition (BTD) [44], a variant
of tensor decomposition [45]–[47], for detecting dynamic
community evolution in time-varying brain networks during
music listening. We first formulate a generative model to
characterize community structure in time-varying brain net-
works, quantified by envelope correlation of EEG recorded
during free music listening. Then, we show how to link
the generative model to BTD and use it to learn the la-
tent community structures. Specifically, temporal concatenated
connectivity matrices are organized into a three-way tensor.
Then, BTD with rank-(Lr, Lr, 1) term is applied to extract
the underlying community structures with a specific temporal
mode. Different from previous tensor decomposition such
as CANDECOMP/PARAFAC (CP) model for brain network
analysis, the factors with rank Lr are able to characterize
Lr communities after the multi-linear rank-(Lr, Lr, 1) BTD,
which can discover the topological structures of brain net-
works. Actually, the CP model can be considered as rank-
(1, 1, 1) decomposition and it is unable to reveal the com-
munity structures so further analysis is needed for the loading
factors related to the node. After BTD, time series of five long-
term acoustic features were extracted from the audio stimuli
by music information retrieval techniques used in previous
studies [9], [48]. Finally, we analyzed the correlation between
temporal factors and the musical feature time series to identify
underlying community structures of brain networks modulated
by musical features.

The main contributions of this work are three-fold. First,
we propose a generative model to characterize the temporal
community evolution for dynamic brain functional networks.
Second, we show the proposed generative model can be
fitted with multilinear rank-(Lr, Lr, 1) BTD to learn the
latent community structures in the time-varying brain networks
without further analysis of the resulting BTD components.
Third, the proposed framework is then used for EEG networks
during naturalistic music listening to identify music-modulated
community structures, which demonstrate its effectiveness in
time-varying modular detection for brain networks.

II. MATERIALS AND METHODS

A. Notation
In this paper, scalars are denoted by lowercase letters

(a, b, · · · ), vectors are denoted by boldface lowercase letters,
such as (a,b, · · · ), matrices are written in boldface uppercase
letters (A,B, · · · ), and high order tensors by boldface calli-
graphic letters (A,B, · · · ). Operator ◦ represents outer product
of vectors, ⊗ denotes the partitionwise Kronecker product, ⊙
represents Khatri–Rao product and ⊙c denotes columnwise
Khatri–Rao product [49]. The superscripts ·T and ·† indicate
the transpose and Moore–Penrose pseudoinverse, respectively.
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B. Data Description and Preprocessing

EEG data from 14 right-handed adults between the ages
of 20 and 46 were used in the current study. No participant
reported a history of hearing loss or neurological disease and
none of them had music expertise. This research was approved
by the local ethics committee and has no conflicts of interest.
We presented subjects with a piece of music, which was played
via audio headphones. The used music was a 512-second
long musical segment of modern tango, which had a suitable
duration for the experimental setting due to its high range
of fluctuation in several musical features [9], [50]. EEG data
were collected at a sampling rate of 2048 Hz with BioSemi
electrode caps of 64 channels when participants were naturally
listening to the continuous musical segment.

In this paper, we studied five well-known long-term acoustic
features consisting of tonal and rhythmic features, which were
computed by using a frame-by-frame analysis technique [48],
[50]. we set the length of each frame as three seconds and
the overlap between adjacent frames as two seconds. Thus, a
time course with 510 samples was created for each musical
feature with a sampling rate of 1 Hz. The five acoustic features
include two tonal musical features, Mode and Key Clarity, and
three rhythmic features, consisting of Fluctuation Centroid,
Fluctuation Entropy, and Pulse Clarity.

In preprocessing steps, EEG data were re-referenced by
common average electrodes and were visually inspected to
reject typical artifacts. We interpolated bad channels with a
mean value of their spherical adjacent channels. We used a 50
Hz notch filter to remove powerline interference. High-pass
and low-pass filters with 2 Hz and 35 Hz cutoffs were then
applied since our previous investigation of the frequency range
revealed that no useful information was observed in higher
frequencies [48], [51]. Finally, we down-sampled the EEG
data to 256 Hz. Independent component analysis (ICA) was
applied to individual EEG data to remove EOG artifacts (e.g.
eye blinks) [52].

The schematic diagram of subsequent data processing is
shown in Figure 1. Following data preprocessing, we estimated
the forward model and inverse model using a MATLAB-based
toolbox Brainstorm [53]. The symmetric boundary element
method (BEM) was applied to compute the forward model
with a default MNI MRI template (Colin 27). To solve the
inverse model, we used weighted minimum-norm estimate
(wMNE) [54]. The reconstructed cortical surface was deci-
mated to 4098 evenly distributed vertices per hemisphere with
4.9 mm spacing. Depth-weighted L2-minimum-norm estimate
was computed for all current dipoles with a loose orientation
of 0.2. The inverse solution was noise-normalized. Then, the
cortical surface was parcellated into 68 anatomical regions
based on the Desikan-Killiany Atlas (DKA) [55]. For each
parcel, we performed a principal component analysis to extract
orthogonal components that describe the activity, ordered by
amount of variance explained. We selected the first principal
component as a representation of the parcel’s time course of
activity. Thus, for each subject, a source-level data matrix
P was created with dimension n × nt, where n = 68
represents the number of anatomical regions and nt represents

the number of samples.

C. Dynamic Functional Connectivity Network
Construction

We attempt to obtain an all-to-all whole-brain FC network
by computing connectivity between all pairs of DKA regions.
In M/EEG, a significant confound of electroencephalography
source connectivity is that the ill-posed inverse problem and
inaccuracies in the forward solution lead to a degree of
spatial ambiguity and mislocalization of source [29], [56].
In other words, two source-level time signals (e.g. from two
brain regions) might be significantly correlated, merely due
to ‘signal leakage’ [17]. The obtained connectivity between
spatially separate brain areas might be inaccurate without
careful control. To solve this issue, we performed the or-
thogonalization of source-reconstructed signals, a widely used
technique for leakage reduction [29]. Following signal leakage
correction, the Hilbert transformation was applied to extract
the amplitude envelopes of the time courses. The dynamic
FC networks were constructed for each subject by calculating
the Pearson correlation, X ∈ Rn×n, between different n = 68
DKA regions using a sliding window approach [14]. The rect-
angular window length was set as 3 seconds and the overlap
was 2 seconds between two adjacent windows, resulting in
a sampling rate of 1 Hz in the temporal dimension. This
sampling rate was in line with the musical feature time series.

For each subject, a sequence of functional brain networks
G = {Gt(V,Et)|t = 1, · · · , τw} is constructed, where Gt

is the network snapshot at time t, V = {vi}ni=1 is a set of
n nodes and Et is the set of edges at time step t. Here,
the nodes are the 68 DKA regions (n = 68), and the edges
Et are constructed with Xt, which is the adjacency matrix
representing the network at time step t. τw = 510 is the
total number of time windows. The adjacency matrices were
temporally concatenated across subjects, resulting in a group-
level functional brain network G with τ = τw ×np, where np

is the number of subjects.

D. Generative Model for Dynamic Functional Networks

To allow module detection, we here extend the temporal
clustering model under the CP framework in [34] to a gener-
ative model under the BTD framework. We model a dynamic
network functional brain networks G = {Gt(V,Et)|t =
1, · · · , τ} as a mixture of R generative models{Sr}Rr=1. Sr

contains the same set of nodes V , for r = 1, · · · , R, with
Lr communities (or subnetworks/modules) {Cr

lr
}Lr

lr=1. We
assume that the probability that a node i ∈ V belongs to a
community Cr

lr
in Sr follows a Bernoulli distribution, denoted

as P (i ∈ Cr
lr
) = arilr . At time step t, the lth community in

the rth generative model Sr generates the connection between
two nodes i, j with probability arilra

r
jlr

λr
t , where λr

t is defined
as an connection-generating rate or strength. λr

t changes
throughout time and can be modeled as a time series, which
here represents the temporal evolution of the communities.
Consequently, the rth generative model Sr generates the edge
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Fig. 1. Analysis pipeline. EEG data were recorded during continuous music listening and then source-localized with wMNE. Source-localized
data were parcellated into 68 ROIs based on an anatomical brain template. After signal leakage correction, the Hilbert transformation was applied to
extract the amplitude envelopes of the ROIs’ time courses. An adjacent matrix was thus obtained by computing the correlation between the envelope
of separate regions for each time window. Then a three-way tensor was formed including two node modes and a temporal mode. Nonnegative BTD
decomposition was applied to the temporally concatenated tensor across subjects. The node factor matrix of extracted components with rank-Lr

is able to characterize the topological structures of the latent network patterns, which encodes Lr communities or node clusters, and the temporal
courses represent the time evolution of the modular patterns. On the other hand, musical features were extracted using acoustic feature extraction.
The temporal courses of decomposed components and musical feature time series were analyzed to examine the modulated brain networks.

with the sum across Lr communities at time step t:

(aril1a
r
jl1+· · ·+arilra

r
jlr+· · ·+ariLr

arjLr
)λr

t =

Lr∑
lr=1

(arilra
r
jlr )λ

r
t

(1)
which could be considered as the expected number of connec-
tions generated between i and j in Sr at time t.

Align and compact adjacency matrices, Xt, temporally into
the third mode of a third-order tensor, namely X::t = Xt,
t = 1, · · · , τ . Element Xijt can be interpreted as the number
of connections (the strength of connections) observed between
node i and j at time step t. Thus, the model approximates Xijt

by summing the Eq. (1) across R generative models as follow:

Xijt ≈
R∑

r=1

(

Lr∑
lr=1

(arilra
r
jlr )λ

r
t ) (2)

In other words, the dynamic community detection problem
is here to find R network generative models Sr (or latent
source components), their temporal evolution (connection-
generating) λr

t , and the probability that node i belongs to
the one of communities in the generative source Sr, arilr ,
for r = 1, · · · , R; t = 1, · · · , τ ; lr = 1, · · · , Lr; and
i = 1, · · · , n. We can thus formulate the objective function
as follow:

min
∑
i,j∈V

∑
t

∥Xijt −
R∑

r=1

(

Lr∑
lr=1

(arilra
r
jlr )λ

r
t )∥2F

s.t. 0 ≤ arilr ≤ 1; for i = 1, · · · , n
λr
t ≥ 0

(3)

We suppose that the number of the generative components
R and the community number Lr, r = 1, · · · , R in each
component are given here merely for simplicity of exposition.

E. Learning Dynamic Community Structures with
Rank-(L, L, 1) BTD Model

To estimate the community structure in Eq. (3), we rewrite∑R
r=1(

∑Lr

lr=1(a
r
ilr
arjlr )λ

r
t ) in Eq. (3) to

∑R
r=1(a

r
ia

rT
j λr

t )

with vector format, where ar
i ∈ RLr . The optimization

problem in Eq. (3) can further be rewritten as,

min
Ar,cr

∥X −
R∑

r=1

(Ar ·AT
r ) ◦ cr∥2F

s.t. 0 ≤ Ar ≤ 1; for r = 1, · · · , R
cr ≥ 0

(4)

where Ar := [ar
1 · · ·ar

n] ∈ Rn×Lr , cr := [λr
1 · · ·λr

τ ]
T ∈ Rτ .

Surprisingly, the optimization problem in Eq. (4) can be solved
by using the BTD framework with rank-(Lr, Lr, 1) [44]. The
multilinear rank-(Lr, Lr, 1) terms decomposition factorizes a
three-way tensor into a sum of R low multilinear rank terms,
each of which can be written as the outer product of a rank Lr

matrix and a vector as shown in Eq. (4). Loading matrix Ar

with rank-Lr is able to characterize the modular structures of
the latent network pattern, which encodes Lr communities or
node clusters since the elements represent the probability that
the n nodes belong to which communities. The node cluster
of each community can be obtained by the largest entry in the
corresponding row of Ar. That is, if k = argmaxj{(Ar)ij},
then node vi belongs to kth node cluster. cr characterizes the
temporal evolution of the community structures (see Fig. 1).
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Like CP-based tensor decomposition, there are many ap-
proximate algorithms for rank-(Lr, Lr, 1) BTD decomposi-
tion, such as multiplicative updating (MU) method, alternating
least squares (ALS) and hierarchical alternating least squares
(HALS) [57]. Here, we use the structured data fusion ALS
implementation by the Tensorlab [58], which is so far the most
widely used computation scheme for the BTD model. The
ALS algorithm applies a gradient descent method to solve the
minimization problem in Eq. (4) iteratively. At each iteration,
one of the factor matrices is updated while other factor
matrices are fixed. We define A := [A1 · · ·AR] ∈ Rn×R̂,
C := [c1 · · · cR] ∈ Rτ×R̂, where R̂ =

∑R
r=1 Lr. For brief

illustration, consider estimating A, fixing C, resulting in the
following update rule:

A← arg min
0≤A≤1

∥X −
R∑

r=1

(Ar ·AT
r ) ◦cr∥2F , for fixed C

(5)
It can be estimated as a linear least-squares problem and
has a closed-form solution. The update procedure for A
and C is summarized in Algorithm 1. The detailed solution
of rank-(Lr, Lr, 1) terms decomposition using ALS and its
convergence analysis can be found in [44], [49].

Algorithm 1: ALS
Input: ALS(X ∈ Rn×n×τ , R, L1, L2, · · · , LR)
Output: A ∈ Rn×R̂,C ∈ Rτ×R̂

1 begin
2 initiazation for A,C
3 repeat
4 Update A:
5 Ã = [(A⊙C)† · (A⊙C) ·AT ]T+
6 for r = 1 to R do
7 Ãr = QR QR-factorization
8 Ar ← Q
9 end

10 A = [A1 · · ·AR]
11 Update C:
12 T = (A1 ⊙c A1)1L1

· · · (AR ⊙c AR)1LR

13 C← [T† ·T ·CT ]T+
14 until convergence;
15 end;

F. Model Order Selection

When estimating the multi-linear rank-(Lr, Lr, 1) BTD
model, a natural question follows: how to select R and Lr

from the experimental data? So far there is unfortunately still
no gold standard method for model order selection of the
BTD model in the literature [59]. A common practice is to
determine R and Lr that result in rational decomposition
results according to the data fitting values and the prior
knowledge of data features. Here, we use the model fitting
method, based on the measurement of the data fitting, as a
reference to choose the model order. Data fitting is computed
based on model reconstruction error and the explained variance
of data. Let component number R ∈ [1,R] and the rank
Lr ∈ [1,L], where R and L are the empirically maximal

number of latent components and rank. The data fit can be
obtained as

Fit(R,Lr) = 1−
∥X −

∑R
r=1(Ar ·AT

r ) ◦ cr∥2F
∥X∥2F

(6)

We can fix one of them, R or Lr to examine the changes
in the data fitting. Unlike PCA, the estimation of BTD may
have local minima (suboptimal solution), and not guarantee
that optimization routines will converge to the global optimal
solution. Thus, we run the ALS optimization procedure at
each component number R or each rank value Lr 20 times
from random initial conditions. Generally, the candidate model
order R̃ and rank L̃r can be thought of as the appropriate
selection when the data fitting no longer increases as the
number increases.

G. Temporal Modulation of the Community Structure by
Musical Features

To examine how musical features temporally modulate the
topological (module) structures of brain functional networks,
we here adopt temporal modulation analysis for each musical
feature, time courses of modular structures (components), and
subject. Previous studies have shown that the topological
organization of functional networks temporally evolves to
support ongoing cognitive function [14], [29]. We here attempt
to perform a correlation analysis between the temporal courses
of modular patterns and musical time series, by assessing
the statistical significance of temporal correlations based on
a surrogate permutation procedure [9], [29]. We obtain R
BTD components with two loading factors, characterizing
the temporal evolution (represented by cr) and topological
structures of brain networks (represented by Ar with rank Lr).
The temporal factor matrix C (C ∈ Rτ×R) is first reshaped
as a three-way tensor C (C ∈ Rτw×np×R). which consists of
an individual time course for each BTD component. For each
BTD component and each subject, we calculate the correlation
coefficients between each musical feature time series and time
courses as the modulation scores. We then evaluate which BTD
component is significantly modulated by examining whether
its modulation score is significantly different from the scores
of surrogate data. We generate the surrogate data with a phase-
randomization procedure [60], which randomizes the intrinsic
phase and retains the properties of the temporal course in
the spectral domain. The phase-randomization procedure is
repeated 5000 times for each BTD component. We compute
the correlation coefficients between musical feature time series
and phase-randomized time courses to generate a distribution
of modulation scores from surrogate data. The 95th percentile
(p = 0.05) of surrogate modulation scores are chosen as
the threshold (the control modulation score for comparisons)
for each subject. This significant level was corrected based
on Bonferroni correction for multiple comparisons across
the multiple components i.e., pcorrect = 0.05/R. For each
component, we finally use two-tailed t-tests for the modulation
score of each musical feature to determine which component
(brain network pattern) is modulated significantly differently
at pcorrect = 0.05/R level from the defined threshold.
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Fig. 2. Results of simulation data. Left: the modular structures and temporal profiles of three synthetic brain network patterns. Right: the
corresponding modular structures and temporal profiles of reconstructed brain patterns. I, II, and III represent the three components respectively.
Note that the scale of the amplitude is different between simulated and reconstructed temporal profiles due to the scaling indeterminacy in tensor
decomposition.

III. RESULTS

A. Simulation Results
We first validated the proposed approach with simulation

data, which provided the instruction to study the performance
of the methodology. The performance of the Pearson corre-
lation of the envelope with signal leakage reduction, as a
metric to investigate functional connectivity at the source level,
has been well validated in a previous study [29]. Therefore,
we would not test the performance of connectivity metrics
repeatedly in the current study. We only validated the ability
of rank-(Lr, Lr, 1) BTD, for dynamic functional networks, to
extract the community structures and the temporal evolving
over time scales of minutes.

We constructed dynamic functional networks with adja-
cency matrices (n = 68 nodes, τ = 200 time points). The
tensor representation of the networks was obtained by the outer
product of adjacency matrices and temporal profiles. That is,
Msim = Ssim+Nsim =

∑R
r=1(A

r
simAr

sim
T )◦crsim+Nsim,

where Nsim ∈ Rn×n×τ is a noise tensor with dimensions
same as Ssim. We predefined three community structures
(R = 3) and each of them included four communities or
node clusters (Lr = 4, r = 1, 2, 3). We generated binary
networks by using the node clusters. Their temporal evolution
was modulated by triangle, square, and sine waves (Fig. 2). We

showed the case under the signal-to-noise ratio (SNR) of 10dB.
One can observe that the three latent brain network patterns
with distinct topological structures and temporal modes were
successfully extracted using multilinear rank-(Lr, Lr, 1) BTD.

B. Rsults from EEG data recorded during music listening
The proposed method was applied to dynamic functional

networks constructed from the naturalistic music listening
EEG dataset to detect the community structures across sub-
jects. Fig. 3 shows the estimated brain network with spe-
cific modular patterns from BTD components: their modular
structure profiles and their modulation scores by five musical
features. The mean and standard deviation of the modulation
score were reported across subjects. Here, R = 5 components
(with 4 community clusters for each, that is, Lr = 4, r =
1, ..., R) were extracted by BTD based on data fitting analysis
(see Fig. 4), and we presented 3 components that showed
significant musical feature modulation. We observed unilateral
auditory modular subnetworks (modules 2 and 4 in Row I of
Fig. 3) and two bilateral frontoparietal functional subnetworks
(modules 1 and 3 in Row I of Fig. 3). The auditory sub-
networks showed strong clustering in the temporal lobe. The
regions involved by the frontoparietal subnetworks were part
of the frontoparietal network (FPN), which here was composed
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Fig. 3. Results from music-listening data. A. For each subject, the modulation scores are estimated from the correlation analysis of temporal
courses of BTD components and music features (see Section II-G). Error bars display the standard errors of the mean across subjects. An asterisk
shows that the BTD component is modulated significantly differently (p < 0.05; corrected) from the surrogate data. B. The modular patterns of
3D visualization. Each dot/node indicates one brain region of the DKA atlas and nodes in the same community have the same color. The node
cluster or community is obtained from the Ar matrix with rank Lr , which encodes the node membership information. Row I shows two unilateral
auditory modules, sensorimotor and frontoparietal modules; row II indicates strong frontotemporal and temporoparietal modules; row III shows
frontotemporal and frontoparietal subnetworks.

of the dorsolateral prefrontal cortex and posterior parietal
cortex. Such community structures were temporally modulated
by the Mode and Pulse Clarity features. Row II of Fig. 3
showed the sensorimotor networks (module 4), frontotemporal
subnetworks (modules 1 and 2), and temporoparietal subnet-
works (module 3), which seemed to be related to the anterior
higher-order cognitive brain networks in accordance with

previous literature [27]. The involved regions were part of the
default mode network (DMN) which here contains temporal
poles, the ventromedial prefrontal cortex, and the posterior
cingulate cortex. They also involved Broca’s area which was
often associated with semantic integration. The time course
of this modular pattern was significantly modulated by the
Fluctuation Centroid. There were three modules detected in

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2023.3277509

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2023

Row III, showing strong clusters in the visual subnetworks,
frontotemporal and frontoparietal subnetworks. This modular
pattern was significantly modulated by the Pulse Clarity.

IV. DISCUSSION

In this study, we proposed a BTD-based framework applied
to EEG data, which enabled us to characterize the dynamic
topological properties of electrophysiology brain networks
during natural music listening. We formed a three-way tensor
including temporal evolution of functional connectivity at
the source level and then applied multilinear rank-(Lr, Lr, 1)
decomposition to detect the modular structures of time-varying
brain networks. We derived large-scale brain network topo-
logical structures during freely listening to music, which was
characterized by BTD components. Such BTD component,
we referred to as a modular pattern, was represented with
a distinct topological pattern of functional networks across
the set of predefined atlas regions spanning the whole brain.
These modular patterns of topology-specific envelop-coupling
were found to be temporally modulated by musical features
and corresponded to plausible brain functional sub-systems,
consisting of auditory, sensorimotor, and higher-order cog-
nitive subnetworks. To the authors’ knowledge, this might
be the first complete formulation of a BTD-based generative
model method for module detection of electrophysiology brain
networks using ongoing EEG.

Simulation results showed the effectiveness of the proposed
method for the detection of community structure in time-
varying brain functional networks. When applied to the EEG
data recorded during the continuous music listening task,
the proposed approach identified more diverse community
structures in addition to the typical assortative organization
in brain networks, which was related to auditory and semantic
information processing as well as higher-order cognitive func-
tions. These types of network architecture seemed to be asso-
ciated with music perception and were temporally modulated
by the acoustic musical feature extracted from music. Their
topological structures might allow the network to engage in
a wider functional repertoire, e.g., integration of information
across different brain regions in higher-order cognitive pro-
cesses. Different from CANDECOMP/PARAFAC(CP)-based
methods, our proposed method allowed the mutual existence
of multiple communities (modules or subnetworks) in the same
components (brain patterns) due to the multi-linear rank de-
composition. For example, we found bilateral frontotemporal
communities (modules 2 and 4 of Row II in Fig. 3) involved
a subdivision of the DMN network that subserves a semantic
integration and the ventromedial prefrontal cortex was typi-
cally specialized for emotion regulation. The subnetworks also
involved Broca’s areas, which are typically related to language
processing. Previous studies demonstrated that brain functional
networks engaged in music processing have strict similarities
with that of language processing [61], [62]. Thus, the nodes
of the subnetwork including Broca’s areas could be implicated
during continuously listening to music. These subnetworks
were also identified in the previous study with two independent
CP components based on CP-based methods [9].

We also observed bilateral frontoparietal communities
(modules 1 and 3 of Row I in Fig. 3) in the FPN network that
subserved an integrative function between periphery commu-
nities in the left and the right hemisphere during auditory or
semantic comprehension and unilateral auditory subnetworks
(modules 1 and 3 of Row I). This asymmetry modules 2 and
4 might be associated with the language network that displays
some degree of hemispheric lateralization. The nodes of the
language network would be implicated during naturalistic
language comprehension task performance. Indeed, this left
lateralized subnetwork is anchored in the angular gyrus with
extensions to the inferior frontal gyrus, inferior temporal
gyrus, and a number of nodes spanning the inferior to superior
precentral gyrus. These regions are consistent with previous
accounts of semantic cognition [61], [62]. The parietal module
(module 4 of Row II in Fig. 3) was related to the motor
networks and it was believed that perception and execution of
actions are strongly coupled in the brain as a result of learning
a sensorimotor task, which facilitated not only predicting
the action of others but also interacting with them [63].
During music listening, a tight coupling emerged between
the perception and production of sequential information in
hierarchical organization [9], [63]. Brain regions associated
with motor networks could be involved due to imitation
and synchronization during musical activities (e.g. ensemble
playing or singing). These subnetworks involved in auditory
areas (Row III in Fig. 3) played an important function in music
perception in agreement with previous studies [9], [50].

Tensor decomposition especially with CP model analysis
methods has been applied for the multi-way neuroimaging
data in cognitive research since it enables multi-timescale
dimensionality reduction both within and across subjects or
conditions with unsupervised learning [9], [39], [48]. This
provides the possibility of module detection of dynamic time-
varying brain functional networks. The majority of studies for
brain networks typically applied the CP model to examine
the temporal, spectral, or spatial features of brain connectivity
networks, which is unable to detect the modular structure in
resulting CP components simultaneously. This results in the
requirement for further analysis such as clustering of the net-
work factor of CP components when looking at the topological
structure of the networks. To overcome this limitation, the
proposed methods adopted block component analysis, rank-
(Lr, Lr, 1) BTD. The resulting BTD components include the
node factor matrix with rank-Lr, which is able to characterize
the topological structures of the latent network pattern. That
is the rank-Lr encodes Lr communities or node clusters.
Actually, tensor decomposition with the CP model can be
considered a special case of rank-(Lr, Lr, 1) block term de-
composition (i.e., Lr = 1). Intuitively, the rank Lr of the node
factor matrix is capable of characterizing the membership of
nodes in the network. This, on the other hand, explains why
the tensor decomposition with the CP model fails to detect the
community structures (Lr = 1 one community left).

The key parameters for the BTD-based methods are the
determination of the component number and rank number,
which is less well prescribed and not a limitation of the
proposed approach directly. In the absence of theoretically
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Fig. 4. Data fitting curves in the function of the component number
and rank number. A. Fit versus component number R obtained by
computing the BTD of EEG data for Lr = 4, r = 1, ..., R. B. Fit
versus rank number Lr obtained by computing the BTD of EEG data for
R = 5.

motivated methods for parameter selection, we here opted
instead to repeat the data fitting analysis for different values
to select a relatively rational number. Fig. 4A shows the data
fitting with different component numbers when fixing the rank
Lr = 4. We can see the data fitting no longer increases or
increases slowly when R = 5. Fig. 4B shows the data fitting
with different rank numbers, indicating that data fitting almost
stays constant as Lr increases. Finally, we set the R = 5 and
Lr = 4 according to the data fitting analysis and previous
experience. Note that such data fitting analysis only provides a
reference and instruction and is not able to accurately estimate
the underlying true numbers of BTD components.

For the parcellation, we chose the DK atlas as the template
since the scalp electrodes are not very dense. Although beyond
the scope of the current work, the other atlas could also be
used in our method after source leakage correction. In addition,
note that the topological structure with specific four modules
is a whole pattern with one corresponding temporal evolution
instead of four independent module patterns.

V. CONCLUSION

We introduced a framework based on a latent network
generative model and related it to BTD for detecting dy-
namic community evolution in time-varying brain networks
during continuous music listening. It allows us to identify the
topological structures of dynamic brain networks and their
time evolution during naturalistic stimuli. The majority of
approaches for brain networks failed to reveal the topological
structures of time-varying networks. Here, we apply block
component analysis, rank-(Lr, Lr, 1) BTD, to the adjacent
tensor. The node factor matrix of BTD components with rank-
Lr is able to characterize the topological structures of the
latent network pattern, which encodes Lr communities or node
clusters. We validate the proposed method in simulation and
then apply it to the EEG data recorded during free music
listening. The identified brain patterns with distinct topological
structures were in line with those previously published in the
fMRI and EEG studies. The proposed method looks valuable
for the characterization of the temporal evolution of brain
networks with specific community structures during freely
listening to music or other naturalistic stimuli.
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and E. Brattico, “Large-scale brain networks emerge from dynamic
processing of musical timbre, key and rhythm,” NeuroImage, vol. 59,
no. 4, pp. 3677–3689, 2012.

[51] Y. Zhu, C. Zhang, H. Poikonen, P. Toiviainen, M. Huotilainen, K. Math-
iak, T. Ristaniemi, and F. Cong, “Exploring frequency-dependent brain
networks from ongoing eeg using spatial ica during music listening,”
Brain topography, vol. 33, no. 3, pp. 289–302, 2020.

[52] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms
and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[53] F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, “Brain-
storm: a user-friendly application for meg/eeg analysis,” Computational
intelligence and neuroscience, vol. 2011, 2011.

[54] F.-H. Lin, J. W. Belliveau, A. M. Dale, and M. S. Hämäläinen, “Dis-
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