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ABSTRACT

Löytäinen, Topi
Exclusive Photoproduction of Heavy Vector Mesons in Ultraperipheral Nuclear Colli-
sions

This thesis investigates the possibility of describing coherent exclusive photopro-
duction of heavy-vector mesons in ultraperipheral heavy-ion collisions (UPCs) by
using inclusive collinearly factorizable parton distribution functions (PDFs). The
aim is to chart the scale dependence and the PDF-originated uncertainties of such
photoproduction cross sections, arising in the approximation where the generalized
parton distributions (GPDs) are simply approximated by their forward limit counter
parts, i.e., the PDFs. The introductory part presents the PDFs and GPDs in their
physics contexts, their connection to each other and to the nuclear ones, shows the
full leading order (LO) calculation of the photoproduction amplitude in perturbative
quantum chromodynamics (pQCD) and describes the way the quark contribution
arises at next-to-leading order (NLO). Furthermore, details of the required modeling
of the form factors and photon fluxes are described before finally collecting everything
together for the nucleus-nucleus UPCs.

The described framework is the basis on which most of the results of the
papers [PI, PII, PIII] rely. Article [PI] was the very first NLO pQCD study of rapidity
differential cross sections of coherent exclusive photoproduction of J/ψ mesons in
lead-lead UPCs. Article [PII] extended the results to the case of oxygen-oxygen
collisions and studied the possibility of constraining the strong scale dependence
of the results of article [PI] through suitably chosen ratios of cross sections. Then
finally in article [PIII] the framework was extended to the case of Υ mesons with the
addition of the skewing correction through the Shuvaev transform.

The results show the importance of the ERBL region for a strongly growing
gluon PDF but other than that no tight constraints for the gluons were found.
Surprisingly, sensitivity to the quark PDFs was discovered in the J/ψ case, due
to which the studied process may be a probe of the elusive strangeness content of
bound nucleons. The sensitivity originates from the cancelling nature of the LO and
NLO gluon contributions in the scattering amplitude. This thesis paves the way
towards including the studied exclusive processes as constraints in the global analysis
of PDFs and their nuclear counterparts.

Keywords: Particle interactions, particle phenomena, particle production, quantum
chromodynamics, relativistic heavy-ion collisions, strong interaction



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Löytäinen, Topi
Raskaiden vektorimesonien eksklusiivinen fototuotto ultraperifeerisissä ydintörmäyk-
sissä

Tässä väitöskirjassa tutkitaan mahdollisuutta kuvata prosesseja, joissa syntyy raskas
vektorimesoni fototuoton kautta koherentisti ja eksklusiivisesti raskaiden ionien
ultraperifeerisissä törmäyksissä (UPC) käyttämällä inklusiivisia kollineaarisesti fak-
toroitavissa olevia partonijakaumia (PDF). Tavoitteena on kartoittaa laskettujen
vaikutusalojen skaalariippuvuus ja PDF-epävarmuudet approksimaatiossa, jossa yleis-
tetyt partonijakaumat (GPD) korvataan niiden etusuunnan vastineilla eli PDF:llä.
Väitöskirjan johdannossa esitetään PDF:t ja GPD:t niiden fysikaalisissa kontek-
steissa sekä niiden yhteys toisiinsa ja niiden vastineisiin ytimissä. Johdanto käy läpi
fototuottoamplitudin alimman kertaluvun (LO) laskun kvanttiväridynamiikan häir-
iöteoriassa (pQCD) ja kuvaa kuinka kvarkkikontribuutio syntyy alinta seuraavassa
kertaluvussa (NLO). Tämän lisäksi johdannossa kuvataan ne yksityiskohdat, joita
tarvitaan muototekijöiden sekä fotonivuon laskemiseen ennen kuin kaikki nämä
tekijät yhdistetään ydin-ydin-UPC:lle.

Kuvattu viitekehys on se, jolla suurin osa artikkeleiden [PI, PII, PIII] tulok-
sista on saatu. Artikkeli [PI] oli ensimmäinen NLO-pQCD-tutkimus rapiditeetin
suhteen differentioiduista vaikutusaloista J/ψ:n koherentille eksklusiiviselle fototuo-
tolle lyijy-lyijy-UPC:ssä. Artikkeli [PII] laajensi tulokset happi-happi-törmäyksiin ja
tutki mahdollisuutta rajoittaa artikkelissa [PI] havaittua vahvaa skaalariippuvuutta
sopivasti valituilla vaikutusalasuhteilla. Artikkelissa [PIII] viitekehys laajennettiin
Υ-mesoneihin sekä lisättiin ns. skewness-korjaus Shuvaev-muunnoksen kautta.

Tulokset näyttävät ERBL-alueen tärkeyden voimakkaasti kasvavalle gluoni-
PDF:lle, mutta tämän lisäksi tutkimuksessa ei löydetty tiukkoja rajoitteita gluoneille.
Tuloksissa nähtiin yllättävä herkkyys kvarkkikontribuutioille J/ψ:n tapauksessa,
jonka vuoksi tarkasteltu prosessi saattaa tarjota mahdollisuuden tutkia vaikeasti
havaittavaa outokvarkkikontribuutiota sidotuissa ytimissä. Tämä herkkyys johtuu
sironta-amplitudin LO- sekä NLO-gluonikontribuutioiden tavasta kumota toisensa.
Tutkimus valaa toivoa sille, että tässä työssä käsiteltyjä prosesseja voitaisiin mah-
dollisesti käyttää tulevaisuudessa datarajoitteina PDF:lle sekä niiden vastineille
ytimissä.
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1 INTRODUCTION

Without justifying to the reader why quantum field theories (QFTs) are the best way
to describe the world around us, as is done in many excellent books on the subject [1–
11], we will just start with the assumption that such a framework is needed for the
description of the data available from modern-day particle accelerators. Moreover,
the physical world with its wonderful, bizarre and beautiful phenomena, more often
than not, can be described through the framework of some given symmetry. With
the choice of the symmetry group being SU(3), we arrive at the theory of Quantum
Chromodynamics (QCD) which is currently the best known theory to describe
the strong nuclear force, one of the four fundamental forces seen in nature. The
application of this theory to one particular example – out of a class of scattering
processes called exclusive processes – is the subject matter of this thesis.

1.1 Quantum dynamics

For a physicist the easiest way to define a given QFT is to state the underlying
Lagrangian density L describing the system. For QCD it is given by

LQCD =
∑
q
ψ̄jq(i /D)jkψ

k
q −mqψ̄

j
qψ

j
q −

1
4F

a
µνF

a,µν , (1)

where the sum over q runs over all possible quark and antiquark flavors, we use
the well known Einstein summation convention for the Lorentz indices µ and ν,
the indices j, k, a label color, ψq denotes the quark fields, F aµν is the field strength
tensor for gluons. For the QCD covariant derivative Dµ we used the Feynman
slashed notation /D = Dµγ

µ where γµ are the Dirac gamma matrices. The covariant
derivative in QCD is given by

(Dµ)jk = δjk∂µ − igstajkAaµ, (2)
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where gs is the strong coupling constant, Aµ = Aaµt
a is the gluon field and ta are the

generators of the SU(3) symmetry group. The field strength tensor is then given by

Fµν =
i

gs
[Dµ,Dν ] = ∂µAν − ∂νAµ − igs[Aµ,Aν ], (3)

where [·· , ··] denotes the commutator. For details on the SU(3) invariance, the
(anti)commutation relations and the Feynman rules for the free, non-interacting
fields, we will refer the interested reader to a few appropriate references [12–17].

In the studied photoproduction processes, we will also deal with a theory
describing electromagnetic interactions called Quantum Electrodynamics (QED).
Historically, QED was discovered before QCD and it is the simpler theory – due to
the simpler gauge symmetry group of U(1) – out of the two. Similarly as with QCD,
QED is defined through the underlying Lagrangian density

LQED =
∑
f

ψ̄f (i /D)ψf −mf ψ̄fψf −
1
4FµνF

µν , (4)

where f runs over all fermion fields which interact electromagnetically, ψf labels a
fermion field, mf is the mass of the fermion and the covariant derivative Dµ is now
given by

Dµ = ∂µ − ieAµ , (5)

where now with this sign choice the coupling constant e is positive definite i.e. e > 0.
The photon field strength tensor Fµν is then given by

Fµν = ∂µAν − ∂νAµ. (6)

Note that in the above we are lacking the term proportional to the commutator of
the photon field A due to its Abelian nature and that both in the QCD and the QED
Lagrangians we have deliberately left undefined the possible gauge-fixing terms. It is
these two theories which we would like to apply to the process of coherent exclusive
photoproduction of heavy-vector mesons V in ultra-peripheral collisions (UPCs) of
two heavy ions A, i.e. the process A+ A → A+ V + A. By ultraperipheral one
means that the scattering between the two heavy ions happens at a distance which
is greater than the sum of the radii of the nucleus A such that we can think of the
scattering to happen between the photon field of one of the ions with the other ion.

1.2 Tools of choice

In addition to defining the QCD and QED Lagrangians we also need some tools how
to calculate predictions out of our theory. Due to the complexity of the problems
associated with high-energy particle physics, computer driven methods and tools
have become ever more attractive over the years. In the context of this thesis, the
symbolic manipulation software FORM [18], programs generating Feynman diagrams
like QGRAF [19], programs reducing Feynman integrals to master integrals like
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REDUZE [20], Mathematica [21], and in particular the FeynCalc package of it [22],
deserve to be pointed out as well.

We will not dive too much into detail of the above tools even though some
aspects of all of them have been used in one form or another in this thesis or in the
results used by this thesis. The main tools adopted are those of pen and paper and
the programming languages C++ [23] and Python [24]. In addition to the results
presented in the articles [PI, PII, PIII], the main utility of this thesis comes from the
attempt to bridge the gap between the theoretical description – or maybe more aptly
the phenomenology of it – of the non-perturbative part of inclusive processes (parton
distribution functions, PDFs) and the theoretical description of the non-perturbative
part of exclusive processes (generalized parton distribution functions, GPDs) in the
context of heavy-ion collisions.

This thesis consists of an introductory part divided into six chapters and the
three articles [PI, PII, PIII]. First in chapter 2, we will present the QFT definitions
of the PDFs and GPDs and discuss the main motivation behind this work: nuclear
corrections to PDFs – namely nuclear PDFs (nPDFs). Then in chapter 3 we move
on to tackle the forward limit photoproduction calculation for the γ + p→ V + p

scattering process which will be sketched at leading order (LO) perturbative QCD. We
will also say a few words about the next-to-leading order (NLO) calculation [25] with
the quark contribution particularly in mind. The application of this calculation to the
heavy-nucleus case is then essentially just a matter of replacing the underlying GPDs
with their nuclear counterparts nPDFs, combined with a relatively straightforward
calculation of the form factor and of the photon flux which we will outline in chapter 4.
The main results of the papers [PI, PII, PIII], in addition to some extra analysis
which was left out of the original articles, is then presented in chapter 5. Finally,
in chapter 6 we will summarize the main results of this thesis with possible future
developments that could be carried out.



2 PDFs, nPDFs AND GPDs

It was aptly noted in the preface of [12] that “true tests of perturbative QCD often turn
out merely as tests of the author’s cleverness in parametrizing the nonperturbative
uncalculable part of the problem and not as actual tests of QCD” which alludes
to the challenges with which we are faced when working with PDFs, GPDs and
nPDFs. In this chapter we outline the theoretical basis on which the PDFs, GPDs
and nPDFs rely and how they are interconnected with each other. We will denote
both the PDFs and the GPDs with the capital letter F i where the upper index i
defines the type of the parton and distinction between the two comes from the fact
that PDFs take only one light-cone momentum fraction as an input, i.e. F i(x) is a
PDF, while GPDs take two light-cone momentum fractions and one Mandelstam
variable, i.e. F i(x, ξ, t) is a GPD. The dependence on the factorization scale µ is
then always left as implicit and, unless explicitly specified, the PDFs and the GPDs
always refer to that of a proton.

2.1 Factorization theorems

If you want the probability of one thing happening, which depends on the probabilities
of two non-correlated events, just multiply the two probabilities together! At its
heart, this is the whole idea behind the collinear factorization theorem in particle
collisions where we factor a process of interest, say a lepton-hadron collision, into
a perturbatively calculable part, which we call the hard-scattering part, and into
a perturbatively non-calculable part, which we call the soft-scattering part. To
state this explicitly, the factorization theorem in an inclusive process between a
lepton l and a hadron h, where we produce some final state l′ +X – we need to tag
the outgoing lepton l′ in order to know the exchanged momenta – of interest, i.e.
l+ h→ l′ +X, is usually given at the differential cross section level dσ where we
write [13, 26–28]

dσl+h→l
′+X(p, q) =

∑
i,X

F ih ⊗ dσ̂l+i→l
′+X(p, q) +O

(
Q−2

)
, (7)
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where p is the momentum of the hadron h, q is the momentum transferred by the
lepton, i.e. q = l− l′ such that −q2 = Q2 and i labels the parton which takes part
in the hard-scattering process. The symbol ⊗ denotes a convolution between the
PDF F ih and the perturbatively calculable hard-scattering cross section dσ̂, and it is
taken over x which is the fractional momentum of the hadron h as carried by the
parton i. The term O(Q−2) denotes the order at which we truncate our expansion
in powers of Q [9, ch. 32.4], and if such terms are neglected it is good to keep in
mind that we are technically dealing with an approximation.

The use of the theorem described by equation 7 is that through it we do not
need to be able to calculate the full process but only the hard-scattering part dσ̂ and
deduce the rest – the soft-scattering part F ih – from the experimentally measured dσ.
Then as long as the soft-scattering part stays the same, we can use those results in
combination of a hard-scattering calculation to predict some other process of interest.
All of this relies on the assumption that there is no a priori reason to believe that,
at least on average, the distributions of partons within e.g. protons differ from one
proton to another.

The above is the way factorization is traditionally formulated for PDFs which
historically have been determined only from inclusive scatterings. The situation is
slightly different for GPDs which arise in exclusive scatterings where we need to take
extra care to specify the process in which we are interested. The easiest process for
us might be the Deeply Virtual Compton Scattering (DVCS), i.e. γ∗(q) + p(p)→
γ(q′) + p(p′). There are differences in how the factorization theorem is presented for
GPDs, i.e. whether it is given through the invariant amplitudeM or in terms of
the hadronic tensor Tµν but when one takes into account all appropriate factors of i,
2π and the occasional delta functions, these formulations obviously agree with each
other [29–31]. We can write,

M(γ∗ + p→ γ + p) =
∑
i

T i(x, ξ,Q2)⊗ F i(x, ξ, t) +O(Q−1), (8)

where i is the flavor of the parton inside the proton, x is the light-cone momentum
fraction over which the convolution is taken, ξ, known as the skewness variable,
parametrizes the momentum transfer, the square of the momentum is Q2 = −q2 and
t is now the Mandelstam variable [32]. Moreover, T i labels the hard scattering part
and F i is the soft scattering, i.e. the GPD, part. Note that sometimes O(Q−1) is
replaced by O(Q′−1) where Q′2 = q′2 but this depends on the exact context [31].

The modification of equation 8 to the case where we produce a vector meson in
the final state from an on shell photon is the one which we need in this work. This
means that the amplitude for the process γ + p→ V + p′ is then factored into three
parts [31, 33],

M(γ + p→ V + p′) =
∑
i

F i(x, ξ, t)⊗ Tij(x, ξ, z,Q2)⊗ φjV (z) +O(Q
−1), (9)

where F i is the GPD for flavor i inside the proton p, Tij is the hard-scattering
function as initiated by the flavor i and φjV is the vector meson vertex which ties
two outgoing quarks of flavor j into the vector meson V . This factor φ is sometimes
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called the light-cone wavefunction because it is typically calculated in the context
of the leading approximation of the non-relativistic QCD (NRQCD) expansion [34].
The factors x, ξ and t are as in equation 8 and z can be interpreted in the scaling
limit as the minus-momentum fraction of the quark j inside the vector meson. Note
that the convolutions are taken over the variables x and z. Strictly speaking, the
factorization theorem for an exclusive production of a vector meson, as shown by
equation 9, has only been proven in the leptoproduction case [33, 35] but it is our
hope, as proposed in [25], that the photoproduction process can be factorized in a
similar manner due to the high mass of the produced heavy quark pair such that we
can simply replace Q by a scale which is of the order of the heavy quark mass.

2.2 Definition of the distributions

Deriving the QFT definitions of the PDFs and the GPDs in their full length goes
beyond the scope of this thesis but it is still of interest to us to give a rough sketch of
how they arise in the historical context in which they were discovered. For the PDFs
this discovery was made in the context of deep inelastic scattering (DIS) between
an electron and a proton i.e. e+ p→ e′ +X [36, 37]. The challenge in defining the
GPDs is that they emerge in the context of exclusive scattering where we have to
define carefully the process which we are studying i.e. what are the exact initial
and final states, what kinematical limits do we take, do we allow for the flip of the
helicity, do we consider spin dependent GPDs and so on. For the interested reader
there exists several good summaries on the vast theory of GPDs, see e.g. Refs. [31,
38–43]. This then raises the question: what GPDs will we eventually need in the
process of interest to us?

In the most general case there are altogether 16 quark and gluon leading
twist GPDs, each one depending on four variables [31, 44] and for example, in
the Virtual Compton Scattering (VCS) off a proton, γ∗ + p→ γ + p′, we still find
twelve distinct helicity amplitudes requiring twelve different GPDs for a complete
description [45, 46]. The DVCS is a special case of VCS where we impose the Bjorken
limit where the proton of momentum pµ absorbs a photon of momentum qµ such
that Q2 = −q2 → ∞, p · q → ∞ and Q2/p · q finite [47]. In this limit we are left
with only four GPDs: the vector current conserving the proton helicity and the one
flipping it and then the vector-tensor current conserving proton helicity and the
one flipping it. We will eventually be interested in the so called helicity-preserving
forward limit, the exact definition we will give later, in which we are left only with
one helicity conserving vector current. For the derivation of the GPDs from the
DVCS amplitude the reader is directed to the literature [33, 47–50].

2.2.1 PDFs from DIS

The theoretical and the experimental work around DIS are cornerstones of particle
physics and have been textbook material for many decades [4, 5, 9, 51–55]. The
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QFT definitions of the quark PDF F q, and the gluon PDF F g, in the A+ = 0 gauge,
A being the gluon field, are given by [4, p.466-467]

F q(x) =
1
2
∑
σ

1
2

∞∫
−∞

dλ

2πe
ix(p·z)〈pσ|ψ̄q

(
−1

2z
)

/n−ψq
(1

2z
)
|pσ〉

∣∣∣
z=λn−,A+=0

F g(x) =
1
2
∑
σ

1
xp+

∞∫
−∞

dλ

2πe
ix(p·z)〈pσ|G+µ

(
−1

2z
)
G +
µ

(1
2z
)
|pσ〉

∣∣∣
z=λn−,A+=0

,
(10)

where we have adopted the more contemporary notation of [25]. In equation 10 the
spin, note that we have explicitly written out the spin average, of the proton |pσ〉,
with momentum p, is labeled by σ, x is the fractional momentum of the parton, ψq
is the quark field of flavor q and nν− is a light-like 4-vector pointing opposite to the
direction of the proton’s momentum. Moreover, the definition has an implicit sum
over colors, G+µ is the gluon field strength tensor and we have left out the explicit
factorization scale dependence. Strictly speaking at LO we would only find the quark
PDF and not the gluon one because of the lack of direct coupling between a photon
and a gluon. The gluon distribution would then arise in a similar manner in NLO.

For our purposes we will be satisfied with the general statement of the factor-
ization in inclusive processes as given in equation 7, the definition of PDFs as given
in equation 10 and the less rigorous presentation of Ref. [9, ch. 32.5] where it is
argued that since the PDFs are interpreted as probabilities we should – given the
context of quantum mechanics – be able to write

F q(x) =
∑
X

∫
dΠX |〈X|ψq(0)|p(P )〉|2δ(xn · P − n · p), (11)

where we have left color and spin averaging implicit, P is the momentum of the
proton, p is the momentum of the parton inside the proton and n is the lightlike
vector to the direction opposite to the proton momentum. If we consider DIS in the
Breit frame (sometimes called the brick wall frame due to the electron simply flipping
its momentum in the collision) we could take n = (1, 0, 0, 1). The proton is then
moving in the direction n̄ = (1, 0, 0,−1). The above equation describes the overlap
that the proton state has, when we operate to it with a quark field operator ψ, over
all the possible states X such that the proton momentum P is split up to the parton
momenta p and the X state momenta pX i.e. P = p+ pX . We can then insert the
factor 1 =

∫
d4pδ(P − p− pX) to force the condition of momentum conservation and

write the delta function of equation 11 in a different manner

F q(x) =
∑
X

∫
dΠX

∫ dt

2πe
−itn·(xP−P+pX )|〈X|ψq(0)|p(P )〉|2. (12)

We can then open up the square, use the well known result of how the fields behave
under translations, ψ(x) = eix·P̂ψ(0)e−ix·P̂ , where P̂ is the momentum operator,
and sum over the final states – assuming completeness – to eventually find

F q(x) =
∫ dt

2πe
−itx(n·P )〈p(P )|ψ†q(tn/2)ψq(−tn/2)|p(P )〉. (13)
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We can insert ψ̄ in the above by noting that ψ̄ = ψ†γ0 and 1 = γ0γ0. Additionally,
for a massless quark, we know from the momentum space Dirac equation that /pψ = 0
which we can write as /̄nψ ≈ 0 if we first introduce a type of Sudakov decomposition
for p

pµ =
1
2(p · n̄)n

µ +
1
2(p · n)n̄

µ + pµ⊥, (14)

where p⊥ · n = p⊥ · n̄ = 0 and n2 = n̄2 = 0. Now /̄nψ = 0 implies 2γ0ψ = /nψ which
gives us our final form

F q(x) =
1
2

∫ dt

2πe
−itx(n·P )〈p(P )|ψ̄q(tn/2)/nψq(−tn/2)|p(P )〉, (15)

agreeing with equation 10 after one change of variables. This then completes our
rough sketch of how the PDFs arise in a given process. The principal idea being that
inclusive cross sections are linearly proportional to the PDFs.

2.2.2 GPDs from DVCS

The GPDs have been “discovered and rediscovered over the decades” ever since
the 1970’s starting with the Compton Scattering (CS) i.e. γ + p → γ + p, see e.g.
Ref. [31, ch. 1] and similarly to DIS, the Compton amplitude – mostly off an electron
– is an extremely well-known process in the literature [2, 4, 5, 9, 11, 53, 56]. As such
our only hope is to offer a context as to how GPDs arise in a given process. In
the electron case we naturally do not see how GPDs arise but it is the CS process
– in a suitable kinematical limit – off a proton where we find the GPDs of interest
to us. For us the easiest way to see the emergence of the GPDs is through DVCS,
i.e. γ∗(q) + p(p)→ γ(q− ∆) + p(p+ ∆), which is also a well known process in the
literature [29, 47, 50, 57–59]. The first obvious difference is that this is an exclusive
process which means that we cannot sum over the complete final states which was
essential in the derivation of the PDFs.

The definitions of the quark GPD F q and the gluon GPD F g are given by

F q(x, ξ, t) = 1
2

∞∫
−∞

dλ

2πe
ix(Pz)〈p′|q̄

(
−1

2z
)

/n−q
(1

2z
)
|p〉
∣∣∣
z=λn−

,

F g(x, ξ, t) = 1
Pn−

∞∫
−∞

dλ

2πe
ix(Pz)〈p′|G+µ

(
−1

2z
)
G +
µ

(1
2z
)
|p〉
∣∣∣
z=λn−

,
(16)

where we have again used the notation of [25]. Note that the GPDs have support
only in the range x ∈ [−1, 1] such that the parameter x can be interpreted as a
fractional momenta of the parton. The region |x| ∈ [ξ, 1] is known as the DGLAP
region and |x| ∈ [0, ξ] is known as the ERBL region. In the DGLAP region the GPDs
can be thought of as the generalizations of the more traditional PDFs and in the
ERBL region they should be thought of as generalizations of the meson distribution
amplitudes [31].

Since we are not interested in the DVCS process itself but only in the way that
the GPDs can be understood to arise at the amplitude level of an exclusive process,
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we will leave this process here and not develop it any further. The reader should
now have a rudimentary understanding of how PDFs and GPDs of a proton arise
in inclusive and exclusive processes. Our final goal is to apply all this formalism to
the case of nucleus-nucleus collisions where we need to take into account non-trivial
nuclear corrections.

2.2.3 Connection between PDFs and GPDs

Comparing then equations 10 and 16 we see that the link between a PDF and GPD
is such that we would need to set the initial momenta p and the final momenta p′
equal and average (sum) over the initial (final) state spins. The easiest way to think
about this is to Lorentz decompose the QFT definition of the GPDs F j(x, ξ, t) into
a vector part and a tensor-vector part

F j(x, ξ, t) = 1
2(Pn−)

[
Hj(x, ξ, t)ū(p′)/n−u(p)

+ Ej(x, ξ, t)ū(p′) iσ
αβn−α∆β

2mp
u(p)

]
,

(17)

where the index j = q, g refers to quarks or gluons, the momentum P is the average
of the incoming and outgoing momenta, i.e. (p+ p′)/2, u is the Dirac spinor solution
for a proton, iσαβ is given by (−1/2)[γα, γβ ] and Hj(x, ξ, t) and Ej(x, ξ, t) are some
scalar functions also collectively referred to as GPDs [31]. In the limit which we will
be working in, we ignore contributions arising from Ej(x, ξ, t) since it is multiplied by
the exchanged momenta ∆ = p′ − p. We also assume no helicity flip – i.e. incoming
and outgoing spins are the same – with which we get, using the well known spin
projections, the relation between the quark and the gluon distributions to be

F q(x, 0, 0) = F q(x) and F g(x, 0, 0) = xF g(x) for x > 0. (18)

In Ji’s parametrization [47] the fractional momentum x can also take negative values
but GPDs can be related back to the positive x region through the following symmetry
properties:

F q(x, 0, 0) = −F q̄(−x) and F g(x, 0, 0) = F g(−x) for x < 0. (19)

Equations 18 and 19 hold for the free proton PDFs and GPDs but we will assume
that such a limit holds equally for the nuclear distributions as well. In this way it is
good to keep in mind that any nuclear modifications that we apply will be applied
only onto the Hj(x, ξ, t) GPDs. Next, let us look at the nuclear corrections in more
detail.

2.3 Nuclear corrections to PDFs/GPDs

One additional and quite fundamental difference between PDFs and GPDs is that
whereas the PDFs can be thought of as particle densities – due to the fact that they
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appear at the cross section level – this interpretation is not equally clear for the
GPDs. The GPDs appear at the amplitude level and as such should be thought of
as probability amplitudes of finding a specified parton pair sandwiched between a
given initial and a final state. In this way the GPDs can be thought of as four point
functions. This fact in addition to the larger domain of the GPDs means that the
GPDs offer a more detailed image of the internal structure of the hadrons as has
been extensively discussed in the literature [31, 38, 40, 41, 60].

For the case of heavier elements, one is naturally lead to ask the question:
how does the environment of heavier nuclei affect the parton distributions? On a
superficial level the change from a PDF to a nPDF is not huge: instead of a proton
colliding with a proton we might have two nuclear beams – labeled by their mass
number A – colliding with each other, i.e., A+ A → X, which would mean that
equation 10 would be minimally modified to

F qA(x) =
1
2

∞∫
−∞

dλ

2πe
ix(P ·z)〈A|ψ̄q

(
−1

2z
)

/n−ψq
(1

2z
)
|A〉

∣∣∣
z=λn−,A+=0

F gA(x) =
1

xP+

∞∫
−∞

dλ

2πe
ix(P ·z)〈A|G+µ

(
−1

2z
)
G +
y

(1
2z
)
|A〉

∣∣∣
z=λn−,A+=0

,
(20)

where the proton state |p〉 has been swapped for a nucleus state |A〉 and we have left
the average over the spin σ implicit. More precisely, in the framework of collinear
factorization we imagine that the collision process takes place between two nucleons
that represent somehow an average nucleon inside the nucleus so that a more precise
labeling of the states might be |pA〉. This being said, one could imagine that there is
some spatial dependence to the way the partons are distributed within this larger
nucleus – for this avenue of research the reader is directed towards Refs. [61–66] –
but in our framework we will consider such corrections to be unimportant and work
only with spatially averaged distributions.

A lot of effort has been put to pin down the nuclear effects within a heavy
nucleus, see e.g. Refs. [67–77], and what has been discovered so far is that the
nucleus receives non-trivial corrections over the full range of the fractional parton
momentum x. The scale dependence of the distributions, free and bound proton
alike, is considered to be completely determined by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equation [78–81]. In short the corrections over x
are as follows: starting from zero and going all the way up to x . 0.03 we have a
suppression in the nPDFs as compared to their free counterparts and this effect is
known as shadowing of the distributions. Moving between x values of 0.03 . x . 0.3
we are in the so called antishadowing region where the nPDFs are enhanced as
compared to the PDFs. The nPDFs get suppressed again in the EMC (short for
European Muon Collaboration) region at 0.3 . x . 0.8 after which the nPDFs are
enhanced again due to the Fermi motion for x values approximately greater than
0.8. See [82] for a detailed summary of this.

In this work we will be interested especially in the EPPS16 [73] and EPPS21 [76]
parametrizations of the nPDFs where the bound PDFs are calculated from the free
proton PDFs after multiplying them with appropriate nuclear correction factors R.
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Moreover, in the EPPS framework the partonic content of neutrons is acquired from
protons through the approximate isospin symmetry and as such the nPDF for a
nucleus of mass number A and an atomic number Z is obtained from

F iA(x) =
Z

A
F ip/A(x) +

A−Z
A

F in/A(x), where F ip/A(x) = RiA(x)F
i
p(x). (21)

Here i labels the parton in question, F ip/A is the bound proton PDF, F in/A is the
bound neutron PDF and RiA is the nuclear correction to the flavor i in the nucleus
A. The values of F ip are determined from free proton collisions and the values of RiA
from heavier nucleus collisions via global analyses.

Nuclear effects on GPDs – unpolarized or polarized – have not attracted much
of main stream attention but the field might become more important in the future
as experimental setups become better and better. For a few references discussing
GPDs and nuclear corrections to them, see e.g. Refs. [60, 83–87]. For our purposes,
we will be working mostly with the unpolarized, spatially averaged distributions in
the kinematical limit of t ≈ 0 and ξ ≈ 0 such that the limits given by equations 18
and 19 are taken exactly and that the nuclear corrections are added e.g. like in
Eq. 21. Note that this also means that we will be ignoring any corrections arising
from the ERBL region and effectively we approximate the nGPDs arising in this
process exactly by their nPDF counterparts assuming that they follow the DGLAP
evolution equations. For literature developing the GPD modeling, see e.g. Refs. [42,
88–90].



3 PHOTOPRODUCTION BASELINE

Before continuing to the actual process of interest in this thesis we still need to
tackle the sub-process of it, namely the coherent exclusive photoproduction of heavy-
vector mesons: γ + p → V + p. As we know now, in exclusive scatterings we are
probing the GPDs but the interest in this process in the high-energy particle physics
community started some thirty years ago when Ryskin proposed that the cross section
of diffractive J/ψ electroproduction in the Leading Log Approximation (LLA) can
be written to be proportional to the square of the gluon PDF [91]. It was later
pointed out how in the LLA the distributions which we find in this process indeed
reduce to the usual gluon PDF at the kinematical point t = 0; for a nice summary,
see [31, ch. 8.1]. In what follows we will sketch the photoproduction calculation in
the forward limit t = 0 at LO perturbative QCD (pQCD).

The exclusive production of a vector meson contains an additional experimental
challenge which is not present in DIS or DVCS: we never actually see the produced
vector meson in our detectors but instead we see a spike in the production of two
back-to-back leptons, i.e. l+l−, at an invariant mass which matches that of the vector
meson. This means that we need to somehow tie the observed final state to the
intermediate heavy-vector meson state and the way this is usually done is through
the decay width of the meson. For a detailed account on the LO pQCD calculation
of J/ψ → l+l− decay widths and the helicity-basis approach – which we will employ
in the calculation below – see Ref. [92].

In our approach, in papers [PI] and [PII], we will take the high-energy forward
limit in which the GPDs reduce to their PDF counterparts such that over the full
range of the x domain they follow the DGLAP evolution of parton densities [78–81].
So to be absolutely clear, we will then neglect the ERBL region where the GPDs
follow the evolution of meson distribution amplitudes [93, 94]. On the soft part of
the calculation we will also ignore any non-forward contributions but it should be
pointed out that people have considered examples where this constraint has been
relaxed to see how much the off-forwardness contributes, see e.g. [84, 95, 96].

Before continuing on to the LO calculation let us explicitly state the kinematical
variables of the process γ(q) + p(p) → V (K) + p(p′). We will follow closely the
presentation given in Ref. [25] but the process has also been considered in detail in
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Ref. [97] and in a more general kinematical setting in Refs. [98, 99]. The momentum
of the incoming nucleon is labeled by p, the momentum of the incoming photon by q,
the momentum of the outgoing nucleon by p′ and the momentum of the heavy vector
meson by K. We will explicitly set all particles on their mass shell p2 = p′2 = m2

N ,
q2 = 0 and K2 = M2 where mN is the nucleon mass and M is the mass of the vector
meson. This means that the calculation is done in the approximation where the
spin states of the outgoing vector meson will match exactly those of the incoming
photon. Furthermore, in the calculation of the vector meson vertex we will explicitly
assume that the mass of the meson is two times the mass of the heavy quark mQ,
i.e. M = 2mQ. We can use these to define kinematical variables of interest

s = (p+ q)2 = W 2; p′ − p = ∆; t = ∆2; P =
p+ p′

2 ; ζ = M2

W 2 . (22)

Note that ζ is now the Bjorken-x equivalent of this exclusive process. Additionally,
in order to use the Sudakov decomposition, we introduce the light-cone vectors n+
and n−, which obey n2

+ = n2
− = 0 and n+ · n− = 1, such that any four-vector l can

be written as
lµ = l+nµ+ + l−nµ− + l⊥, l2 = 2l+l− − l2, (23)

where l⊥ = (0, 0, l), l is a two dimensional vector and for defining other light-cone
vectors we use the Kogut-Soper convention [100–103]. With the help of these ligh-cone
vectors, the momenta can be decomposed in a similar manner to Ji’s notation

p = (1 + ξ)Wn+ +
m2
N

2(1 + ξ)W
n−, q = W 2 −m2

N

2(1 + ξ)W
n−,

p′ = (1− ξ)Wn+ +
m2
N + ∆2

2(1− ξ)W n− + ∆⊥,

∆ = −2ξWn+ +

(
ξm2

N

(1− ξ)(1 + ξ)W
+

∆2

2(1− ξ)W

)
n− + ∆⊥,

(24)

where we have introduced the skewness parameter ξ which in the scaling limit of
s → ∞ quantifies the momentum transfer in the plus direction n+. This is easily
seen as follows:

p→ (1 + ξ)Wn+; p′ → (1− ξ)Wn+; ∆→ −2ξWn+

⇒ ξ =
p+ − p′+
p+ + p′+

.
(25)

The numerical value can be found from

W 2 = (K + p′)2 = M2 + 2K · p′ +m2
N

= M2 + 2m2
N − t+

1− ξ
1 + ξ

(W 2 −m2
N )− 2m2

N +m2
N

= M2 − t+ 1− ξ
1 + ξ

(W 2 −m2
N ) +m2

N

⇔ ξ =
M2

W 2 − t
W 2

2− M2
W 2 −

2m2
N

W 2 + t
W 2

,

(26)



14

where from going from the first line to the second line we used K = p+ q − p′,
then from the second line to the third line we just plugged in our decomposition of
momenta as given in equation 24 and then solved for ξ. The scaling limit is given
when we ignore the terms t/W 2 and m2

N/W 2 which gives us

ξ =
ζ

2− ζ ⇔ ζ =
2ξ

1 + ξ
. (27)

3.1 Leading order calculation

The desired scattering matrix element Sfi is acquired by sandwiching the scattering
matrix operator S, as defined by

S = T exp
[
i
∫
d4xLI(x)

]
, (28)

in between the initial state |i〉 and the final state |f〉. In equation 28 the term LI(x)
gives the interaction Lagrangian density and the way to derive this expression for S
is quite nicely summarized in [8]. For our particular process of interest, at this order
of the perturbation theory, the initial state |i〉, the final state |f〉 and the interaction
Lagrangian density LI are given by

|i〉 = |γ(q)p(p)〉; |f〉 = |V (K)p(p′)〉; LI = LI,QCD +LI,QED, (29)

where LI,QCD = ψ̄jQ(i/A)jkψ
k
Q is the QCD interaction term, LI,QED = ψ̄Q(i/Aγ)ψQ

is the QED interaction term and Q labels a heavy quark. To be explicit about what
we mean here is that we consider up, down and strange quarks to be massless and
charm and beauty to be the heavy quarks, and that the light quark flavors enter
the calculation only at O(g3

s) at the amplitude level. Note also that the coupling
constants e and gs are now implicitly in the definition of the gauge fields A and Aγ .

We do not have terms coming from the full QCD Lagrangian from the F aµνF a,µν

term – which are proportional to gs or g2
s – because of color constraints or due to the

fact that they are higher up in the expansion in the strong coupling gs. That is, the
terms proportional to O(gs) would always end up being proportional to fabb and
terms proportional to O(g2

s) would need two additional interaction terms in order to
produce a connected graph i.e. the amplitude would end up being proportional to g4

s .
Notice also that terms giving the free theory are disregarded due to our formulation
of the S-matrix. Hence we expand the S-matrix up to the third term in LI ,

Sfi = 〈V (K)P (p′)|T
(

1 + i
∫
d4xLI(x) +

i2

2!

∫
d4xLI(x)

∫
d4yLI(y)

+
i3

3!

∫
d4xLI(x)

∫
d4yLI(y)

∫
d4zLI(z) +O(e2, g3

s)

)
|γ(q)P (p)〉.

(30)

The term proportional to one does not contribute at all since there is no way of
making a vector meson out of a photon without interactions. Terms proportional
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to O(e2, g3
s) we disregard as being small due to the high number of the coupling

constants. The term O(LI) does not produce connected diagrams and thus gets
ignored. The last term on the first line has terms proportional to e2, egs and g2

s

where the first one is disregarded as being too small. The term with g2
s does not have

QED interaction and thus we would not be able to connect the incoming photon to
the rest of the process. The mixing term proportional to egs also does not contribute
as it has only one gluon field and as such we cannot find the needed definitions for
the GPDs or the meson vertex as required by the factorization theorem [33]. That
leaves us with the term on the second line with three Lagrangians LI which has
terms proportional to e3, e2gs, eg2

s and g3
s . We ignore all the other terms except for

eg2
s being too high in the powers of the coupling. This means that we can write the

matrix element as

Sfi ≈ 〈V (K)P (p′)|T
(
i3

3!

∫
d4xLI(x)

∫
d4yLI(y)

∫
d4zLI(z)

)
|γ(q)p(P )〉

≈ 〈V (K)P (p′)|T
(
i3

3!
· 3
∫
d4xd4yd4z

(ψ̄aQ(i/Aγ)ψ
a
Q)x(ψ̄

b
Q(i/A)bcψ

c
Q)y(ψ̄

d
Q(i/A)deψ

e
Q)z

)
|γ(q)P (p)〉

(31)

after some relabeling of the integration variables. Note that now a, b, c, d and e

label color indices. For the color factors we know that each interaction term with a
gluon provides us with a ta and that the quark fields will be sandwiched between
the vacuum and the vector meson state and the gluon fields are sandwiched between
the hadron states – which force the color to be the same – which gives for each term
the color factor TR = Tr[tatb] = (1/2)δab.

By Wick’s theorem [104] the time ordered product can be expressed as a sum
of all possible contractions which in this case means a sum of zero, one, two, three
or four contractions. From these possibilities only the ones where we have two
contractions of quark fields contribute leaving two quark fields, the photon field and
the two gluon fields uncontracted. The two quark fields will be used to define the
vector meson vertex, the photon field operates to the incoming photon and the two
gluon fields will be used to define the GPD. We can move the time ordering operator
inside the integrals and consider only the product of operators which we are left with
after applying Wick’s theorem

T (x, y, z) = T ((ψ̄(i/Aγ)ψ)x(ψ̄(i/A)ψ)y(ψ̄(i/A)ψ)z)

= N
(
(ψ̄/A)zSF (z − x)/Aγ(x)SF (x− y)(/Aψ)y

+ (ψ̄/A)ySF (y− x)/Aγ(x)SF (x− z)(/Aψ)z
+ (ψ̄/Aγ)xSF (x− y)/A(y)SF (y− z)(/Aψ)z
+ (ψ̄/A)zSF (z − y)/A(y)SF (y− x)(/Aγψ)x
+ (ψ̄/A)ySF (y− z)/A(z)SF (z − x)(/Aγψ)x

+ (ψ̄/Aγ)xSF (x− z)/A(z)SF (z − y)(/Aψ)y
)

(32)

where the two first lines correspond to the term where both quark fields in the
interaction term evaluated at x have been contracted, the second two to the one
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where both quark fields at y have been contracted and last two to the one where both
fields at z have been contracted. We have also dropped the color indices and the
heavy quark label Q for readability and used the well known result that a contraction
between two fermion fields is the position space propagator

ψaα(x)ψ̄
b
β(y) = 〈0|T (ψaα(x)ψ̄bβ(y))|0〉 = SabF (x− y)αβ

= δab
∫ d4l

(2π)2 e
−il(x−y) i(/l +m)αβ

l2 −m2 + iε
= −ψ̄bβ(y)ψaα(x),

(33)

where |0〉 labels the vacuum state. As argued in the proof of the factorization
theorem, we know that the gluon fields will be used for the definition of the gluon
GPD and the quark fields will be used in the vector meson vertex [33]. This means
that the matrix element can be factored as

Sfi ∼ N
[
Tr

[
〈V (K)|ψψ̄Aµγ |γ〉P (· · · )µνη

]
〈P (p′)|AνAη|P (p)〉

]
(34)

where the trace is taken over the Dirac indices, P (. . . )µνη denotes the product of
the remaining gamma matrices and propagators and for simplicity we have left out
all extra labels. Given the photon field operator

Aµγ(x) =
∫ d3~k

(2π)3
√

2E~k

2∑
λ=1

(
a(k,λ)εµ(k,λ)e−ik·x + a†(k,λ)ε∗µ(k,λ)eik·x

)
, (35)

where a is the annihilation operator and a† is the creation operator obeying the
standard boson commutation relations, i.e. [a(~k,λ), a†(~k′,λ′)] = δλλ′(2π)3δ3(~k−~k′)
and zero otherwise. Moreover, ε and ε∗ are the photon polarization vectors. We can
then operate to the photon state |γ〉 which gives us

Aµγ(x)|γ(q,λ)〉 = εµγ(q,λ)e−iqx|0〉, (36)

where λ labels the helicity state of the photon. Note that the photon field operator
contains also a creation operator which also operates to this state but such terms do
not contribute here.

Each term in equation 32 has two uncontracted gluon fields and two uncon-
tracted fermion fields evaluated at one of the space-time points x, y or z. For the
first two rows in the normal ordered product in equation 32 we can use integration
over x to fix the two propagator loop momenta together with the photon momentum.
Similarly, we fix the next two through y integration and the last two through z inte-
gration. For the remaining integration variables, e.g. y and z on the first two rows, it
is helpful to do a change of variables to the “center-of-mass” frame i.e. y = R− r/2
and z = R+ r/2 (Jacobian is 1) which allows us – after a few translations of the
fields – to identify the overall momentum conserving delta function δ4(p+ q−K− p′)
through the R integral. This means that we have two four-dimensional integrals left:
the integral over r and the integral over the loop momenta introduced by one of the
propagators.

To be explicit, after the change of variables, the first term of P (· · · )νη =
εµP (· · · )µνη in equation 34 would be

γνSF (z − x)/εγSF (x− y)γη, (37)
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and so on for the remaining five. The proof that this can indeed be done – i.e. that
equation 34 holds – would amount to the actual proof of factorization which we will
just take as given in the literature. From the three terms in equation 34, let us first
deal with the piece with the vector meson in the final state. In a general Fock-state
expansion the V state can be written as

|V 〉 = ψ1|Q̄Q〉+ ψ2|Q̄Qg〉+ · · · , (38)

where Q labels a heavy-quark state and g labels a gluon state. We will take this
state in the non-relativistic (NR) limit and at the lowest Fock-state for the vector
meson [105–107] which means that for us the vector meson state is composed of a
pair of on-shell quarks, i.e. k2

1 = k2
2 = m2

Q, such that k1 + k2 = K [25, 33, 97, 98].
Moreover, the states |Q̄a〉 and |Qb〉 have to have the same color index a = b since we
only consider the state |Q̄Q〉 and neglect all higher-order terms i.e. terms with ψi 6=1.

The typical way of relating the produced vector meson state to the experimen-
tally observable lepton state is to relate the desired matrix element to the decay
width calculation where a similar matrix element arises. In order to do this, we need
the following spinor products [92]:

v(↑)ū(↑) = − 1√
2/ε∗V (↑)

(
/K +M

2

)
; v(↓)ū(↓) = − 1√

2/ε∗V (↓)
(

/K +M

2

)
1√
2
[v(↑)ū(↓) + v(↓)ū(↑)] = − 1√

2/ε∗V (0)
(

/K +M

2

)
,

(39)

where u and v refer to the free heavy quark spinors, εV is the vector meson polarization
vector and the arrows denote the helicity eigenstates. Note that equations 39 are
derived for a vector meson in the final state and the relation for the initial state,
used in the decay width calculation, one would need to take the complex conjugate
equation 39. With that in mind, we should point out that it is the Fourier transform
of the matrix element 〈V (K)|ψψ̄|0〉 – note the meson in the final state – which is
sometimes referred to as the wavefunction of the meson state and it quantifies our
ignorance of the soft QCD dynamics [41].

The problem of not being able to calculate the QCD dynamics in full has been
considered in the literature on multiple occasions [34, 108–111] and for our purposes
we will quantify our ignorance through the factor B as

〈V |ψψ̄|0〉 = B√
3

(
−1√

2

)
/ε∗V

(
/K +M

2

)
, (40)

where
√

3 is the color state normalization factor and the minus sign originates from
our spinor sign convention. This factor relates back to the decay width calculation
and the NRQCD element 〈O1〉V through

B2 =
MΓV→l

+l−

8πα2
QEDe

2
Q

, B2 =
1
3
〈O1〉V
M

(41)

where eQ is the fractional charge of the heavy quark and ΓV→l
+l− is the decay width

of the vector meson to the l+l− lepton channel. This is a good place to point out
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FIGURE 1 Diagrammatical presentations of the six different contributions in the LO
calculation of the coherent photoproduction amplitude. The first row corre-
sponds to the first two terms in equation 32, the second row to the third and
the fourth and the last row to the fifth and the sixth terms.
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to the reader how the development so far, i.e. equations 32, 34 and 40, can be
interpreted diagrammactically as shown in Fig. 1.

Before turning our attention to the product of the gluon fields in equation 34,
we need to consider what happens to the trace over the vector meson vertex and hard
scattering part P (· · · )νη. One can either do it by hand by expanding the gamma
matrices in a manner similar to the Sudakov decomposition or use the Feyncalc
package of Mathematica or the symbolic manipulation program FORM to calculate
the traces but the end result with all methods is

Tr

[
/ε∗V

(
/V +M

2

)
P (· · · )νη

]
=

16
mQ

gνη(ε
∗
V · εγ). (42)

This is actually a quite nice result as the product ends up being independent of the
momenta introduced by the propagators or the external momentum vectors. Because
of this, as the product of the gluon fields operates to hadron states on the light-cone,
we can use the loop momenta to identify a few delta functions, i.e. δ(r+) and δ2(r2

⊥),
which leaves us only with an integral over r− and an integral over the loop momenta
l+. Putting all this together we find that Sfi is now given by

Sfi =i(2π)4δ4(p+ q−K − p′) B√
3

(
−1√

2

)
16
mQ

gνη(ε
∗
V · εγ)πeQeαsTR∫

dr−
∫ dl+

2π e
ir−(l++∆+/2)〈p′|Aν

(−r
2

)
Aη

(
r

2

)
|p〉,

(43)

where e is the QED coupling constant and αs is related to the strong coupling
constant by 4παs = g2

s . Note that the above equation is not yet in Ji’s symmetric
notation, i.e. we have not yet explicitly applied the decomposition introduced in
Eq. 24, as often given in the literature, and in order to do this we need to do one
additional change of variables. Now instead of integrating over l we will integrate
over x such that l = (x+ ξ)p̄ where p̄ = (p+ p′)/2. In this way the momenta are
given in terms of the light-like vectors p̄ and n, for which p̄2 = n2 = 0 and p̄ · n = 1,
as

p = (1 + ξ)p̄; q = s

2(1 + ξ)
n; p′ = (1− ξ)p̄, (44)

from which we immediately see ∆ = −2ξp̄ and we think of p̄ to be on the plus
lightcone and n to be on the minus lightcone. Note how the above is the strict
forward limit of the decomposition presented in equation 24. In this basis we see
that the integration range for x will be [−1, 1] since the matrix element with the
product of the gluon fields inside is zero for partons with momenta greater than
that of the incoming parent hadron. Moreover, since the integration variable r is
pointing only in the minus direction we can do one additional change of variable, i.e.
r− = λn−, and integrate over λ to get

Sfi =i(2π)4δ4(p+ q−K − p′) B√
3

(
−1√

2

)
16
mQ

gνη(ε
∗
V · εγ)πeQeαsTR

1∫
−1

dx(p̄ · n)
∫ dλ

2πe
ix(r·p̄)〈p′|Aν

(−r
2

)
Aη

(
r

2

)
|p〉
∣∣∣∣∣
r=λn

.
(45)
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It was shown in [29, 112] that the gluon field Aµ(x) in the light-cone gauge n ·A = 0
can be expressed in terms of the gluon field strength tensor Gµν as

Aµ(x) =
∫
dtnνe−εtGµν(x+ nt), (46)

where ε is an infinitesimal parameter i.e. the above relation is to be thought in the
limit ε→ 0. By substituting this in for the gluon fields, translating the field strength
tensors, using the Schwinger parameter trick

i

A
=

∞∫
0
ds eisA, when Im(A) > 0, (47)

to do the t integral, we find that the invariant matrix element can be written as

Mfi =

(
−B√
3
√

2

)
8π
mQ

(ε∗V · εγ)eeQαs
1∫
−1

dx
F g(x, ξ, t)

(x+ ξ − iε)(x− ξ + iε)
, (48)

in accordance with our sign choice of

Sfi = δfi + i(2π)4δ4(pf − pi)Mfi. (49)

Note that the derivation of equation 48 is the proof of the factorization theorem as
presented in equation 9.

The expression of equation 48 agrees with the result presented in [25] with the
exception of the sign originating from a different spinor sign convention. The next
step would be to square this to get an expression for the t-differential cross section

dσ(p+ γ → V + p′)

dt
=
|M(p+ γ → V + p′)|2

16πλ(s, 0, 0) , (50)

where λ is the Källén function given by λ(x, y, z) = (x− y− z)2 − 4yz. In order to
do this, we need to be mindful of the spin sums, i.e. we are interested in unpolarized
scatterings so we average over initial states and sum over final state spins such that
the square of the product of the polarization vectors gives

1
2

1
2

∑
i,j=±1

|ε∗iV · εjγ |2 =
1
2, (51)

where one factor of 1/2 is for the incoming proton and the other is for the incoming
photon. The effect of the spin sums of the incoming and outgoing hadrons over
the GPD is nothing because of the forward limit that we enforce i.e. the Lorentz
decomposition of the amplitude defining the GPD gives us only the vector current
that is proportional to ū(p, s′)γµu(p, s) = 2δss′pµ. This allows us to write the square
of the averaged matrix element as

|M(γ + p→ V + p′)|2 =
B2

3 · 2
(8π)2

m2
Q

· e2e2
Qα

2
s|I(ξ, t = 0)|2, (52)
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where

I(ξ, t = 0) =
1∫
−1

dx
F g(x, ξ, t)

(x+ ξ − iε)(x− ξ + iε)
. (53)

Substituting the expression for B2 we find

|M(p+ q → K + p′)|2 =
16π
3 · 2

8πΓV→l
+l−

M

α2
s

αQED
|I(ξ, t = 0)|2, (54)

and further to the expression for the t-differential cross section

dσ(γ + p→ V + p′)

dt

∣∣∣∣∣
t=0

=
1
s2

8π
3 · 2

ΓV→l
+l−

M

α2
s

αQED
|I(ξ, t = 0)|2, (55)

where s is the Mandelstam variable. We are working in the limit s → ∞ and in
this limit the amplitude is argued to be mainly imaginary [31, 91]. We see that the
amplitude is composed of real numbers except for the values of the integral I. We
can then use the symmetry property of the gluon GPD, F g(x, ξ, t) = F g(−x, ξ, t),
and the Cauchy principal value prescription to find

I(ξ, t = 0) = 2
1∫

0
dx

F g(x, ξ, t)
(x+ ξ − iε)(x− ξ + iε)

= 2
P

 1∫
0
dx

F g(x, ξ, t)
(x+ ξ)(x− ξ)

− iπF g(ξ, ξ, t)2ξ

 .

(56)

We will then take the GPD in its forward limit and ignore the real part given by
P(· · · ) to get

dσ(γ + P → V + P ′)

dt

∣∣∣∣∣
t=0
≈ 1
s2

8π3

3 · 2
ΓV→l

+l−

M

α2
s

αQED
[F g(ξ)]2. (57)

Approximating 2ξ ≈ ζ we find

dσ(γ + P → V + P ′)

dt

∣∣∣∣∣
t=0
≈ 16π3

3
ΓV→l

+l−

M5
α2
s

αQED
[ξF g(ξ)]2, (58)

which agrees with the expression in [91] for the exception that the gluon PDF here
gets evaluated at ξ instead of 2ξ. This difference arises because of our replacement
of the GPDs by F g(x, 0, 0) = xF g(x). The term F g(ξ, ξ, t) corresponds to the most
asymmetric situation where incoming gluon carries 2ξ momentum and the outgoing
gluon carries zero. One may ask: does the GPD at this value probe the PDF at
the value of the skewness parameter like we have approximated or does it probe the
PDF closer to the Bjorken-x analog ζ? In our forward limit approximation we have
taken the former. The result in [91] is then recovered by making the substitution
F g(ξ, ξ, t)→ 2ξF g(2ξ).
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3.2 Quarks at next-to-leading order

For the full NLO calculation we refer the reader to the literature [25, 97–99] but it
is still of interest to us to say a few words especially about the quark part which
ends up having a rather important contribution to this process. We will follow
closely the notation of [25] and try to give a transparent description of what kind of
terms are neglected when the factorization theorem is applied to this process. In
NLO the calculational procedure itself stays exactly the same as for LO i.e. we just
keep on expanding the interaction Lagrangian and calculate the ever more complex
time-ordered products. The challenge comes from the fact that the interaction
Lagrangian has to be upgraded now to contain also the gluon self-interactions and
the light quark currents as well

LI,QCD = ψ̄jQ(i/A)jkψ
k
Q +LI,g + ψ̄jq(i/A)jkψ

k
q ,

LI,QED = ψ̄Q(i/Aγ)ψQ + ψ̄q(i/Aγ)ψq
(59)

where ψq now labels the light quark flavors and LI,g gives the self-interaction terms
for the gluons

LI,g = −
gs
4
(
fabc

{
∂µA

a
ν − ∂νAaµ,Aµ,bAν,c

}
+ gsf

abcfadeAbµA
c
νA

µ,dAν,e
)

, (60)

where {·· , ··} denotes the anti-commutator and fabc are the completely antisymmetric
SU(3) structure constants. One can clearly see that there will be a myriad of gluon
terms spawning for this process, see e.g. Refs. [25, 98] for Feynman diagrams, and
working them out by hand is most likely not the best course of action. We will not
develope the gluon initiated NLO part any further than this and turn our attention
now to the quark-current terms.

The reason why we keep the light and heavy quark currents separate like this
is that the quarks which we find inside the proton are assumed to be so light so
that we can treat them as being massless. We could also just forget about the
light-quark current for the QED Lagrangian since based on the factorization theorem
we will eventually neglect such contributions [33] i.e. the photon enters only the
hard scattering part of the process. However, this relies on the argument that the
scale of the process is big enough so that power counting arguments are valid. If
this is not the case, factorization starts to break down and there is no guarantee
what the results will be like. We will later demonstrate the strong scale dependence
of the amplitude so it is good to keep in mind these possible terms which need
to be considered if one starts to investigate possible ways of mitigating the scale
dependence.

In any case, we can then expand the S-matrix to higher-order terms in coupling
constants e and gs. We will still neglect terms proportional to O(e2) at the amplitude
level and we must have one QED coupling present so the terms that we end up
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neglecting in QCD coupling constant are O(g5
s). This gives us

Sfi = 〈V (K)P (p′)|T

 i4
4!

∫
d4xLI(x)

∫
d4yLI(y)

∫
d4zLI(z)

∫
d4wLI(w)

+
i5

5!

∫
d4xLI(x)

∫
d4yLI(y)

∫
d4zLI(z)

∫
d4wLI(w)

∫
d4vLI(v)

+O(e2, g5
s)

|γ(q)P (p)〉
(61)

for the NLO contribution with only quark current present. The term O(L4) does
not contribute here since we cannot leave the gluon fields uncontracted (otherwise
factorization theorem does not hold) and there would always be at least one gluon
field uncontracted. This is because one of the interaction terms always has to include
the QED interaction vertex since otherwise we are unable to have our final state.
This means that to a good approximation the NLO quark contribution is given by
what is left of∫

d4xLI(x)
∫
d4yLI(y)

∫
d4zLI(z)

∫
d4wLI(w)

∫
d4vLI(v), (62)

after sandwiching it between the intial and final states. Note that this product will
still produce gluon iniatiated processes i.e. terms which are propotional to the gluon
GPD but since we are interested in the quark initiated process we will require that all
gluon fields are contracted. Additionally, we require that one of the heavy currents is
a QED current, two of the remaining currents are heavy QCD currents and two are
light QCD currents. Any other choice would violate the factorization theorem. This
being said, there are five ways of choosing the QED interaction term and 3 · 2 = 6
ways of choosing pair of light flavors multiplied by pair of heavy flavors. After some
relabeling of the indices we find the expression

Sfi = 〈V (K)P (p′)|T

 i5
5!

5 · 3 · 2
∫
d4xd4yd4zd4wd4v(ψ̄Q(i/Aγ)ψQ)x

× (ψ̄Q(i/A)ψQ)y(ψ̄Q(i/A)ψQ)z(ψ̄q(i/A)ψq)w(ψ̄q(i/A)ψq)v

)
|γ(q)P (p)〉.

(63)

Comparing this expression to the equivalent LO one given in equation 31 we see
that it is essentially the same with the additional two light quark currents. The
next step in the process is to express the time ordered product as the sum of the
normal ordered products. We must have only one contraction between the light
quarks and this can happen in two ways: either ψq(w) contracts with ψ̄q(v) or then
ψ̄q(w) contracts with ψq(v) which gives us either a quark propagator or an antiquark
propagator.

The gluon fields that accompany the light flavor quarks have to be contracted
with the gluon fields with the heavy flavor currents because otherwise we would
again produce disconnected graphs. Then assuming that factorization holds in NLO
– i.e. as given by equation 9 – we find an expression which is similar to the one in LO
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– i.e. equation 34 – but now instead of the gluon fields we have a pair of the light
quark fields between the proton states. The quark initiated process can be visualized
diagrammatically as shown in Fig. 2 [98].

For the rest of the details of the NLO calculation we refer the reader to the
literature on it [25, 97–99] but we should still point out that at NLO one needs to
apply the tools of renormalization theory i.e. renormalization of the mass, the quark
fields and the strong coupling in addition to the scheme-dependent definitions of the
GPDs. After all the dust has settled, the invariant amplitude for this process – with
the GPDs taken in the modified minimal-subtraction (MS) scheme – can be written
as [25]

Mγ+P→V+P ′

NLO =
4π
√

4παQEDeQ(ε
∗
V · εγ)

3π

√√√√〈O1〉V
m3
Q

I(ξ, t). (64)

At NLO the integral I(ξ, t), in addition to a more complex gluon channel, receives
contributions also from the quark sector,

I(ξ, t) =
1∫
−1

dx[F g(x, ξ, t)Tg(x, ξ) + F q,S(x, ξ, t)Tq(x, ξ)], (65)

where we have intentionally suppressed the dependence on the factorization scale µF
and the renormalization scale µR from the hard scattering functions Ti. Here, F g is
the gluon GPD, F q,S is the quark singlet GPD given in terms of the quark GPDs
F q as

F q,S(x, ξ, t) =
∑

q=u,d,s,c
F q(x, ξ, t). (66)

Note that in our framework, we simply add the charm quark in as a massless particle
inside the nucleon – justifying this with the fact that we always consider factorization
scales above the mass threshold of the charm – but a rigorous treatment of this
would require a more indepth analysis of the effects of using different flavour-number
schemes [113, 114].

The hard-scattering coefficient functions Tg(x, ξ) and Tq(x, ξ) in equation 65
are given by

Tg(x, ξ) = ξ

(x− ξ + iε)(x+ ξ − iε)

[
αs(µR) +

α2
s(µR)

4π fg

(
x− ξ + iε

2ξ

)]
,

Tq(q, ξ) =
2α2

s(µR)

3π fq

(
x− ξ + iε

2ξ

)
,

(67)

where strictly speaking there are two kinds of ε’s in Tg. The one given as an
argument for fg arises when (in using the dispersion relation technique for solving
the amplitude) one continues the Mandelstam s to the complex plane and the ones
in the front appear from the gluon field to gluon field strength tensor connection as
was given in Eq. 46. For the exact forms of the functions fg and fq we will use those
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FIGURE 2 Diagrammatical presentations of the six different quark initiated contribu-
tions in the NLO calculation of the coherent photoproduction amplitude.
The diagrams arise in the same manner as the corresponding LO ones (see
equation 32) after applying the Wick’s theorem and the factorization theorem
to equation 63. The antiquark initiated ones are acquired by flipping the
spacetime points w and v.
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presented in [25]. The quark contribution is given by

fq(z) =

(
ln
(4m2

Q

µ2
F

))
(1 + 2z)

(
ln(−z)
1 + z

− ln(1 + z)

z

)
− π2 13(1 + 2z)

48z(1 + z)

+
2 ln(2)
1 + 2z +

ln(−z) + ln(1 + z)

1 + 2z + (1 + 2z)
(

ln2(−z)
1 + z

− ln2(1 + z)

z

)

+
3− 4z + 16z(1 + z)

4z(1 + z)
Li2(1 + 2z)− 7 + 4z + 16z(1 + z)

4z(1 + z)
Li2(−1− 2z),

(68)

where Li2(z) is the dilogatrithm function and z is to be thought of as a complex
number. For the gluon contribution we need to first define a few shorthands, the
first of which are the constants c1 and c2 as given by

c1 = CF =
N2
c − 1
2Nc

; c2 = CF −
CA
2 = − 1

2Nc
, (69)

where Nc is the number of colors, CF is the quadratic Casimir for the fundamental
presentation of SU(N) and CA is the quadratic Casimir for the adjoint presentation.
Then we also need the QCD beta function

β0 =
11Nc

3 −
2nf
3 , (70)

where nf is the number of active light quark flavors, alongside with the auxiliary
functions a1(z) and a2(z)

a1(z) =
c1
4

(
5 + 16z − 6

1 + z
+

1
(1 + 2z)2 −

5
1 + 2z

)

− c2
2

(
2 + 3

z
+ 8z − 1

1 + z

)
,

a2(z) =
c1
8

(
12 + 9

z
+ 64z − 2

(1 + z)2 +
21

1 + z
− 4

1 + 2z

)

− c2
4

(
8 + 3

z2 +
11
z

+ 32z − 2
(1 + z)2 +

9
1 + z

)
.

(71)
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With these one can write the gluon contribution as

fg(z) = 4(c1 − c2)(1 + 2z(1 + z))

(
ln(−z)
1 + z

− ln(1 + z)

z

)(
ln
(4m2

Q

µ2
F

)
− 1

)

+ β0 ln
(
µ2
R

µ2
F

)
+ 4(c1 − c2)(1 + 2z(1 + z))

(
ln2(−z)

1 + z
− ln2(1 + z)

z

)
− 8c1

− π2
(

2 + z(1 + z)(25 + 88z(1 + z))

48z2(1 + z)2 c1 +
10 + z(1 + z)(7− 52z(1 + z))

24z2(1 + z)2 c2

)

− ln(2)
(

1 + 6z(1 + z)(1 + 2z(1 + z))

z(1 + z)(1 + 2z)2 c1 +
(1 + 2z)2

z(1 + z)
c2

)

+ π

√
−z(1 + z)

z(1 + z)

(7
2c1 − 3c2

)

+ 2c2

√
−z(1 + z)

z(1 + z)

1 + 4z
1 + z

arctan
(√

−z
1 + z

)
+

3 + 4z
z

arctan
√1 + z

−z


−

arctan2
(√

−z
1+z

)
2z(1 + z)

(
(7 + 4z)c1 − 21 + 2z − 2z2

1 + z
c2

)

−
arctan2

(√
1+z
−z

)
2z(1 + z)

(
(3− 4z)c1 − 23 + 6z + 2z2

z
c2

)
+ 2a1(z) ln(−z)

+ 2a1(−1− z) ln(1 + z) + 2a2(z)Li2(1 + 2z) + 2a2(−1− z)Li2(−1− 2z).

(72)

Note that for fg(z) the input variable z is to be thought of as a complex number
just like for fq. Given these definitions we should still point out that the full NLO
expressions, as given in equation 67, obey the symmetry properties Tg(x, ξ) =
Tg(−x, ξ) and Tq(x, ξ) = −Tq(−x, ξ) which will be helpful when we implement the
results numerically.

In addition to the more complex hard scattering function, in NLO the NRQCD
element receives higher order contributions [25, 34, 109, 115]

ΓV→l
+l− =

2e2
Qπα

2
QED

3
〈O1〉V
m2
Q

[
1− 3αs(µR)

3π

]2
. (73)

We point out that the pQCD expansion of the decay width is somewhat questionable
as the NNLO correction is actually larger than the NLO one [115] but as we are
working in the NLO accuracy we are satisfied with the above equation. The squaring
of the NLO amplitude proceeds exactly as in the LO case with the exception that the
NLO integral I(ξ, t) is now considerably more complicated. This has also the effect
that the Cauchy principal value prescription, as shown in Eq. 56, for the integral
becomes difficult to handle.



4 UPCs IN NUCLEUS-NUCLEUS COLLISIONS

Next, we would like to apply the results of the previous section to the scattering
process which we set out to study, i.e., the case of nucleus-nucleus collisions A1 +
A2 → A1 + V + A2 where A1 and A2 denote some colliding nuclei and V is a
produced heavy vector meson. For example in [PI] we were interested in colliding
lead nuclei producing a J/ψ in the final state and it is the presentation therein which
we will follow closely here. Since in the final state we observe only the heavy vector
meson, it is very likely that the process was initiated by a quasi-real photon and that
the collision of the two nuclei was ultraperipheral. In particular we are considering
unpolarized beams, assume no spatial dependence of the partons inside the bound
nucleons and require that there are no hadron-hadron interactions [116–118].

4.1 Cross sections

We still need a few last ingredients – the photon flux, the form factor and an
expression for the photoproduction cross section – in order to put everything together
and start making predictions. In regards to the photon flux, the framework which we
will be working in is called the equivalent-photon approximation (EPA) (also known
as Weizsäcker-Williams approximation [119, 120]) where the total cross section for
the process σA1A2→A1V A2 is expressed as the following sum of two convolutions [116,
121, 122],

σA1A2→A1V A2 =
∫
dk−

dNA2
γ (k−)

dk−
σA1γ(k

−)→A1V

+
∫
dk+

dNA1
γ (k+)

dk+
σγ(k

+)A2→V A2 ,
(74)

where σA1γ→A1V and σγA2→V A2 are the photoproduction cross sections – which
we sketched in LO in chapter 3 – and dNAi

γ (k±)/dk± are the impact-parameter
integrated photon fluxes. One should note how this way of writing the cross section
is another example of factorization in the sense that we say that the full process can
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be divided into two parts: first the photon gets emitted from a nucleus and then it
collides with the target. The full result is then the product of these two integrated
over all possible values of energy. In this way we also neglect any interference
between the amplitudes where the photons are emitted by different nuclei which is
an important effect at smallest values of t but has negligible effect on the t-integrated
cross sections [123, 124].

The photon momentum in EPA is taken collinear with the colliding nuclei
such that the energies k± are given by k± = |~k1,2| i.e. k+ is the energy in the
plus direction as defined by the direction of A1 and k− is the energy in the minus
direction as defined by the direction of A2. Since we are interested in the process in
which p2

T �M2
V – i.e. the meson gets produced essentially parallel to the incoming

photon – we can express the photon momentum in terms of kinematical variables
of the process by setting everything collinear along the z-axis and expanding the
Mandelstam variable t as

t = (k− pV )2 = −2k · pV +M2
V = −2MV k

±(cosh y∓ sinh y) +M2
V , (75)

where k is the photon momentum, pV is the heavy-vector meson momentum, MV is
the mass of the meson and y is the rapidity of the meson. We are interested in the
case where |t| �M2

V (see [125] for a physical justification) so that we can shuffle the
above expression to find

2k± ≈MV e
±y. (76)

The experimental data available for nucleus-nucleus collisions from the large hadron
collider (LHC) [126–129] are given for rapidity differential cross sections so we still
need to differentiate the total cross section with respect to the vector meson rapidity
y. Since we know how the photon energy and the rapidity are related, i.e. equation 76,
we can simply use chain rule to write

dσA1A2→A1V A2

dy
=

[
k
dNA2

γ (k)

dk
σA1γ(k)→A1V

]
k=k−

+

[
k
dNA2

γ (k)

dk
σA1γ(k)→A1V

]
k=k+

,
(77)

for the rapidity-differential cross section.

4.1.1 Form factor and the photon flux

We assume that the invariant scattering amplitudeMγA→V A can be factored into the
product ofM being evaluated at t = 0 and multiplied by a nuclear form factor FA(t)
(also known as the two-gluon form factor [91]) which in the case of photon-nucleus
collisions gives [130]

MγA→V A(t,W ) = FA(t)MγN→V N
A (0,W ), (78)

where W is the center of mass (c.m.s.) energy for the photon-nucleon collision and
N indicates the per-nucleon amplitude in the nucleus A. We can then write the
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photoproduction cross section as an integral over t – where t is always negative and
we integrate from minus infinity to some non-zero small value – of the t-differetial
cross section such that

σγA→V A(W ) =
dσγN→V NA

dt

∣∣∣∣∣
t=0

∞∫
tmin

dt′|FA(−t′)|2,

dσγN→V NA

dt
=
|MγN→V N

A (t,W )|2

16πW 4 ,

(79)

after flipping the integration limits and doing the change of variables t = −t′. Note
that the square of the invariant amplitude MγN→V N

A has been first squared and
then averaged (summed) over the initial-state (final-state) spins. For the minimum
value of t we can derive that [131]

tmin ≈
(
M2
V

4kγL

)2
, (80)

which is acquired by keeping the incoming hadron mass non-zero, expanding to terms
up to O(s−4) and disregarding higher terms. In the above γL is the Lorentz factor –
i.e. giving the nucleon energy EN in terms of the nucleon mass mN as EN = γLmN

– which e.g. in the center of mass frame for LHC Run1 energy of √sNN = 2.76 TeV
is approximately 1500.

At any given fixed W , equation 78 does not seem that shocking but if we let
both t andW vary then ab initio there is no guarantee that this type of a factorization
would work. This then raises the question of how to model the form factor FA(t)?
For the case of the photon colliding with a free proton we simply replace the the
square of the form factor with an experimentally determined exponential factor –
i.e. |FA(−t′)|2 = e−bt

′ in which case it is also typical to set tmin = 0 – which seems
to work rather reasonably with the available experimental data [132]. Sometimes
the slope parameter is taken to be constant, like in [25], but we apply the following
parametrization [98, 133],

b GeV2 = b0,V + 4α′P ln
(
W

W0

)
, (81)

where b0,V = 4.63 for V = J/ψ, b0,V = 4.9 for V = Υ, α′P = 0.06 andW0 = 90 GeV.
Then how about the case of a bound nucleon?

What the form factor should tell us is, roughly speaking, how momentum
is distributed – and by this token how it is transferred in the scattering process –
within the colliding nucleus. Our approach is the same as what has been in the
literature [134–136] where the form factor is described by a Fourier transform of the
underlying nuclear density distribution ρA(r),

FA(t) =
∫
d3rρA(r)e

i~q·~r, (82)

where |~q| =
√
|t|. This then changes the question to: how do we know the underlying

nuclear density distribution? Well, strictly speaking we do not know this either but
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a good approximation can be thought to be given by the charge density distribution
which historically has been measured from elastic electron-nucleus scatterings. There
exists a wide variety of different density distributions – e.g. Harmonic-oscillator,
Fourier-Bessel expansion, two-parameter Fermi (2pF), three-parameter Fermi (3pF),
three-parameter Gaussian etc – which have been fitted to the data for a wide variety
of different nuclei [137, 138]. In the context of this thesis we are mainly interested
in initial states where we have only lead or only oxygen nuclei colliding with each
other i.e. Pb+Pb or O+O collisions. For lead the distribution is 2pF (also know as
Woods-Saxon distribution [139]) and for oxygen the distribution is 3pF:

ρA(r, d,RA) =
ρ0

1 + e
r−RA

d

; ρA(r, d,RA,w) =
ρ0

(
1 +w

(
r
RA

)2)
1 + e

r−RA
d

(83)

where d is the skin-depth parameter, RA is the radius of the nucleus and w (sometimes
called the wine-bottle parameter [137]) is the one additional parameter introduced
when changing from 2pF to 3pF. All these parameter values can be checked from
the literature [137, 138] but the radius RA we will model with

RA/fm = 1.12 ·A1/3 − 0.86 ·A−1/3, (84)

as can be derived from the 2pF-distribution with the choices ρ0 = 0.17 fm−3 and
d = 0.54 fm [140].

For the photon flux kdN/dk for a nucleus with mass number A and an atomic
number Z we need two ingredients: number of equivalent photons of energy k at some
transverse distance b = |~b|, i.e. NA

γ (k,~b), and a factor ensuring that no hadronic
interaction takes place, which we denote by ΓAA(~b). The former we will calculate
from [116, 141–143]

NA
γ (k,~b) = Z2αQED

π2

∣∣∣∣∣
∞∫
0
dl⊥J1(bl⊥)

l2⊥F (l
2
⊥ + k2/γ2

L)

l2⊥ + k2/γ2
L

∣∣∣∣∣
2
, (85)

where J1 is the modified cylindrical Bessel function of the first kind, γL is the
Lorentz gamma factor and F is the form factor but now normalized to one i.e.
F (t) = FA(t)/A. We can model the hadronic interactions with a Poisson distribution
f – i.e. a Glauber-type probability [144] – in which case the factor Γ will correspond
to the case of n = 0 hadronic interactions

f(n; n̄NN (~b)) =
n̄NN (~b)

n

n!
e−n̄NN (b) ⇒ ΓAA(~b) = f(0; n̄NN (~b)) = e−n̄NN (b), (86)

where the average number of nucleon-nucleon collisions n̄NN (~b) is given as a product
of the total nucleon-nucleon cross section σNN (s) and the overlap function TAA(~b),

n̄NN (~b) = σNN (s)TAA(~b) = σNN (s)
∫
d2b1TA(~b)TA(~b−~b1), (87)

where TA in turn is known as the nuclear optical density and it is given by the
integral of the underlying nucleon density distribution,

TA(~b) =

∞∫
−∞

dzρA(
√
z2 +~b2). (88)



32

For the energy dependence of the total nucleon-nucleon cross section we use the
PDG parametrization [145]

σNN (s) = H log
(
s

sabM

)
+ P ab +Rab1

(
s

sabM

)−η1

−Rab2

(
s

sabM

)−η2

, (89)

where sabM = (2mp+M)2, mp being the mass of the proton, and the other parameter
values are given by

M = 2.1206 GeV;H = 0.272 mb; P ab = 34.41 mb
Rab1 = 13.08 mb; Rab2 = 7.394 mb; η1 = 0.4473; η2 = 0.5486.

(90)

Putting these terms together the photon flux can then be calculated from

k
dNA

γ (k)

dk
=
∫
d2~bNA

γ (k,~b)ΓAA(~b). (91)

Because the impact-parameter dependent flux contains the Bessel function, the
integrand of equation 91 oscillates at large values of b which makes the numerical
evaluation of the flux challenging. The way to mitigate this problem is to take
advantage of the fact that at large enough distances anything looks like a point like
particle. That is, we take the impact-parameter dependent flux for a point-like (pl)
particle [119, 146]

Npl
γ/Z(k,~b) = Z2αQED

π2
k2

γ2
L

(
K2

1 (ζR) +
1
γ2
L

K2
0 (ζR)

)
, (92)

where K0 and K1 are modified Bessel functions of the second kind and the ζR
parameter is given by

ζR =
kb

γL
. (93)

The trick is then to divide the integration region in equation 91 into two parts:
first in the range [0, bmin] and the second in [bmin,∞]. The first part we can do
numerically quite fast but the latter part is more challenging. To this end we will
add and subtract the transverse distance dependent flux for a point-like particle
inside the integral going from bmin to ∞, since we know that NA

γ (k,~b)ΓAA(~b) and
Npl
γ/Z(k,~b) end up cancelling to a large extent at large values of b. The question

then is: what is large enough b? By taking b to be slightly greater than the sum of
the nuclear radii seems already to be sufficient but we have chosen bmin = 30 fm
both for the lead and the oxygen to be extra conservative. With this method, we are
still left with an integral from bmin to infinity over Npl

γ/Z(k,~b) but that result is well
known in the literature [147],

k
Npl
γ/Z(k)

dk

∣∣∣∣∣
bmin

=

∞∫
bmin

d2~b Npl
γ/Z(k,~b)

=
2Z2αQED

π

[
ζRK0(ζR)K1(ζR)−

ζ2
R

2 (K2
1 (ζR)−K2

0 (ζR))

]
b=bmin

.

(94)
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Putting all this together means that the photon flux from a nucleus is calculated as

k
dNA

γ (k)

dk
=

bmin∫
0

d2~bNA
γ (k,~b)ΓAA(~b)

+

∞∫
bmin

d2~b
[
NA
γ (k,~b)ΓAA(~b)−Npl

γ/Z(k,~b) +Npl
γ/Z(k,~b)

]

= k
Npl
γ/Z(k)

dk

∣∣∣∣∣
bmin

+

bmin∫
0

d2~bNA
γ (k,~b)ΓAA(~b)

+

∞∫
bmin

d2~b
[
NA
γ (k,~b)ΓAA(~b)−Npl

γ/Z(k,~b)
]

≈ k
Npl
γ/Z(k)

dk

∣∣∣∣∣
bmin

+

bmin∫
0

d2~bNA
γ (k,~b)ΓAA(~b).

(95)

We should point out that the factor Γ essentially forces the values of the integral
on the last line in equation 95 to be zero in the range [0,R1 +R2] where Ri are the
radii of the colliding nuclei. For this reason the point-like approximation is a rather
good approximation for UPCs and the interested reader may see [116, 148, 149] for
studies on the differences between this method and the point-like approximation.

4.2 Numerical implementation

In the numerical implementation of the presented results, the most difficult part is
the implementation of the integral I(ξ, t = 0) as given in equation 65. To do this,
one might proceed as in [98] by carefully taking the analytical limits as ε→ 0 and
then write the code to match the analytical expression. Another way of doing this is
to simply have the complex integrals as they are given in equation 65 with a finite ε
present in the code. This finite-epsilon method is the way the results of this thesis
have been obtained.

Nothing out of the ordinary happens when one does complex integrals numeri-
cally since any complex function f(z) can always be written as

f(z) = u(z) + iv(z), (96)

where u(z) = Re(f(z)) and v(z) = Im(f(z)) are real valued functions. This means
that any integral of the function f(z) can be written as∫

dz f(z) =
∫
dz u(z) + i

∫
dz v(z). (97)

The implementation of this is done in C++ with the help of the standard libraries
such as <cmath> and <complex>, the GSL - GNU scientific library [150] and the
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LHAPDF6 library [151]. The question then arises: at what values of ε can we start
to trust our results?

If we take a large ε, we should not be surprised if our results are not valid. In
the leading-order calculation we know that the final result is essentially determined
by the value of the gluon distribution at x = ξ. This motivates us to make the
educated guess that we should somehow tie the value of ε to ξ. The full integral
can be thought to comprise of the LO gluon, the NLO gluon and the NLO quark
contributions. Out of the three the LO one is naturally numerically the most stable
one. For all of the integrals we use the symmetry properties, as described in previous
chapters, of the hard-scattering functions Tg and Tq and of the GPDs F g(x, ξ, t) and
F q(x, ξ, t) to write the full integral as

I(ξ, t) =
1∫

0
dx
[
2F g(x, ξ, t)Tg(x, ξ) + Tq(x, ξ)

(
F q,S(x, ξ, t)− F q,S(−x, ξ, t)

)]
.

(98)
The numerical NLO quark integral has a particularly poor convergence close to x→ 0
due to the fact that the amplitude is proportional to the fastly diverging q(x) + q̄(x).
This means that for the NLO quark contribution we have to go to smaller values of
ε than for the NLO gluon contribution when the integration routine approaches the
lower end of the [0, 1] interval. But on the other hand we cannot decrease ε too small
either because of numerical limitations and the fact that at some point we will start
to see numerical noise in our results. Additionally, the expressions for fq(z) and
fg(z), as given in equations 68 and 72, respectively, multiplied by the appropriate
PDFs do not converge individually term by term. For example one cannot blindly
take from fg(z) a term proportional to x−4, multiply it by xg(x) and expect the
result to converge on the interval [0, 1]. All this is to say that the hard scattering
functions have a delicate structure in which divergences cancel each other when
multiplied by the PDFs and integrated over [0, 1].

The choice of exact values of ε is decided by testing the numerical stability of
the results and we have checked that the results converge towards a specific value
over few orders of magnitude in ε. Eventually, the exact choices were ε = ξ · 10−8 for
the LO gluon and the NLO quark and ε = ξ · 10−5 for the NLO gluon. We have cross
checked these finite ε results against the analytically continued ones as given in [98]
and they are the same up to the numerical integration accuracy of one permille. This
gives us confidence to think that the finite epsilon method is a useful way to evaluate
numerically QFT expressions in the complex s-plane.

In addition to the hard scattering amplitude we need to implement numerically
the photon flux and the form factor calculations. The latter is simple enough through
the expressions given in the previous section but the photon flux requires slightly
more attention as explained in the previous section. In addition to coding the
required analytical expressions, the numerical implementation was done with the
help of the integration routines as provided by the GSL - GNU scientific library [150].
The photon flux calculation ended up being one of the more computationally heavy
ones so to streamline the full nucleon-nucleon calculation we created a look-up table
for the photon flux values as a function of the rapidity and called these values from
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a file in the main production code. The main production code then simply tied
everything together to produce the final result.



5 RESULTS AND DISCUSSION

One of the early motivations for studying the coherent exclusive photoproduction of
vector mesons was to find a new class of processes which could be used to experimen-
tally constrain the low-x behaviour of the gluon PDFs as originally proposed in [91].
The extension of this to the nuclear case was one of the main motivations behind
our work as well. The previous chapters summarized the theoretical background –
connection between the PDFs, GPDs and their nuclear counterparts and the pQCD
calculation of the photoproduction process – and the necessary modeling – imple-
mentation of the form factor and of the photon fluxes – before we could start to
investigate this possibility. In any case, the framework produced a lot of interesting
results, as reported in the papers [PI, PII, PIII], even if we cannot yet claim definitely
how useful this process will be in constraining the gluon PDFs. In this chapter we
will present a short summary of the main results of this work with some additional
analysis which was left out of the original papers.

5.1 Exclusive photoproduction of J/ψ

The first results which we obtained with our framework were reported in [PI]. Out of
these results the most surprising one was the clear dominance of the quark channel
in the rapidity-differential cross section at central rapidity as shown in Fig. 3. In the
figure we see the decomposition of the cross section to only quarks (dotted green),
only gluons (dashed red) and their interference (dashdotted red) at the Run2 energy
of √sNN = 5.02 TeV computed with the EPPS16 nPDF set at the corresponding
“optimal” scale of µ = µR = µF = 2.37 GeV. The optimal scale is the best rough fit
to the available Run1 and Run2 LHC data and it should be emphasized that there
is nothing special about the optimal scale per se. Nevertheless the factor of four
difference in the magnitude at central rapidity between the quark and gluon channels
was something unexpected.

This big difference can be traced to originate from the fact that the LO and
the NLO contributions have opposite signs, i.e., the LO amplitude is negative and
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FIGURE 3 The breakdown to only gluons (dashed orange), only quarks (dotted green)
and their interference (dashdotted red) of the full result (solid blue) of rapidity-
differential cross section of coherent exclusive J/ψ photoproduction in Pb+Pb
UPCs. The calculation was done with the scale choice µR = µF = 2.37 GeV
at the Run2 c.m.s. energy of 5.02 TeV. Figure from [PI].

the NLO contributions to the amplitude are positive. When one then sums together
the LO and the NLO contributions to get the gluon channel the value ends up being
less than that of the quark channel alone. Interestingly this behaviour holds true
for all scale values of µ in the range [mc,MJ/ψ]. This then casts some shadows of
doubt as to how useful the process will be in determining the low x behaviour of the
gluon PDFs.

However, we see that at forward and backward rapidities, in the so called
shoulder region of y ≈ ±4, the gluon channel dominates the differential cross section
with a similar factor of about 4. So even if the cross section at central rapidity cannot
be used to constrain the gluon PDF, maybe the shoulder regions might offer us a
handle here. One should also not underestimate the significance of the interference
term whose absolute magnitude is greater than that of the gluon in the central
rapidity and greater than that of the quarks at backward and forward rapidities.
This, in addition to the significant scale dependence of the results as discussed in [PI]
(Figs. 1, 2 and 3 and the discussion around them), means that it remains to be seen
how useful this process will be in constraining the gluon PDFs.

The quark dominance at central rapidity does not mean that much in itself
unless one takes into account the theoretical uncertainties of the calculation. If we
disregard all uncertainties related to the scale dependence, or the modeling of the
GPDs, form factors and photon fluxes and take our optimal scale prediction to be
spot on, what is the size of the PDF related uncertainties? This is shown in figure 4
with the EPPS16 [73] (solid blue) and nCTEQ15 [72] (dashed red) PDF sets for Run1
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FIGURE 4 The nPDF/PDF uncertainties in the rapidity-differential exclusive J/ψ photo-
production NLO cross sections at the c.m.s. energy of 2.76 TeV (upper panel)
and at 5.02 TeV (lower panel) Pb+Pb UPCs, computed at our “optimal” scale
µ = 2.37 GeV using the EPPS16+CT14NLO [73, 152] and nCTEQ15 [72]
error sets and compared to the Run1 data [128, 153, 154] and Run2 data [126,
127, 129]. The solid (dashed) line shows the EPPS16+CT14NLO (nCTEQ15)
central-set results and the corresponding uncertainty bands are explained in
the text. Figure from [PI].
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and Run2 energies. The uncertainties have been calculated using the asymmetrical
EPPS16 convention [73],

δO± =

√√√√∑
i

[
max
min {O(S+

i )−O(S0),O(S−i )−O(S0), 0}
]2

, (99)

where S0 is the central PDF set and S±i labels the error PDF sets. The EPPS16
related nuclear uncertainties are shown by the blue band, the CT14NLO [152]
related free proton uncertainties with the green band and the nCTEQ15 nuclear
uncertainties with the hashed red band. One should note that unlike the EPPS16
error set parametrization, the nCTEQ15 error sets contain only the uncertainties
arising from nuclear modeling.

The nuclear uncertainties for these two sets are in the range of twenty to fifty
percent at mid-rapidity, increasing slightly upwards when moving to backward and
forward rapidities. Interestingly, the free-proton uncertainties originating from the
CT14NLO set are orders of magnitude bigger than the nuclear uncertainties but
mostly through one single error set which in the EPPS16 error parametrization is the
“Set93”. This error set grows much faster at small values of x than the rest of the sets
and it ends up contributing sizeably to the real part of the LO gluon amplitude [PI].
One should therefore always keep in mind the free proton uncertainties even if
considering only nuclear prosesses.

Our results also confirmed the strong scale dependence of the studied J/ψ
process as pointed out already in [25]. For us the dependence was quantified by
considering the ratio of the results at µ = MJ/ψ and at µ = MJ/ψ/2 which at
central rapidity for the full NLO result for the rapidity differential cross section was
a factor of 50 for EPPS16 (see Fig. 3 in [PI]). This dependence gets slitgthly weaker
as one moves away from the central rapidity to backward and forward rapidities both
in LO and NLO (see Fig. 4 in [PI]). Furthermore, at LO we found that the cross
section is dominated by the imaginary part of the amplitude but that at NLO the
situation changes so that at backward and forward rapidities the real part actually
dominates the cross section and that at central rapidity it has a non-negligible effect
(see Fig. 6 in [PI]). Finally, we also studied the effect of turning on and off the
nuclear corrections on the underlying gluon and quark PDFs and found that at
central rapidity the effect of the nuclear corrections is not as quadratic as thought
before; see Figs. 7, 8 and 9, and the surrounding discussion in [PI], for further details.

The results of paper [PI] were obtained just before the publication of the
new, state-of-the-art nPDF sets EPPS21 [76] and nNNPDF3.0 [77] so as one of
the first tasks for the second paper [PII], we updated the results for the Pb+Pb
collisions with the EPPS21, nNNPDF3.0 and the corresponding state-of-the-art
nCTEQ15WZSIH [155] nPDF set from the CTEQ collaboration. The strong scale
dependence of the results did not disappear, as was expected, but what was rather
surprising was that the nCTEQ15WZSIH set, with the enhanced strangeness quark
distribution, was able to better describe simultaneously the central rapidity and the
forward/backward rapidity data both at Run1 and Run2 energies.

These updated results are shown in figure 5 for the c.m.s. energies of 2.76 TeV
(upper panel) and 5.02 TeV (lower panel) at the optimal scales µ = 2.39 GeV
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FIGURE 5 The nPDF/PDF uncertainties of the rapidity-differential exclusive J/ψ pho-
toproduction NLO cross sections at the √sNN energies of 2.76 TeV (upper
panel) and 5.02 TeV (lower panel) for Pb+Pb UPCs with three different
nPDF sets EPPS21 [76] (solid blue), nNNPDF3.0 [77] (dotted green) and
nCTEQ15WZSIH [155] (dashed red) at their optimal scales µ = 2.39 GeV,
2.22 GeV and 2.02 GeV, respectively. The error bands are explained in the
text and the experimental data points are as in figure 4. Figure from [PII].
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FIGURE 6 The EPPS16 [73] and EPPS21 [76] scale dependencies of the rapidity-
differential exclusive J/ψ photoproduction NLO cross sections at the c.m.s.
energies of 5.02 TeV (blue) and at 2.76 TeV (red) for Pb+Pb UPCs.

(EPPS21), 2.22 GeV (nNNPDF3.0) and 2.02 GeV (nCTEQ15WZSIH) which, again,
carry no special meaning other than that they give the best possible rough fit to the
Run1 and Run2 rapidity differential cross section data for each set at y = 0. The
EPPS21 and nCTEQ15WZSIH uncertainties are calculated using the asymmetrical
EPPS21 convention [76] and for the nNNPDF3.0 we used the 90% CL prescription [77].
We see that the full EPPS21 uncertainties are much better constrained than the
corresponding EPPS16 uncertainties because EPPS21 no longer contains the fast
growing gluon PDF error set which was present in EPPS16. The nNNPDF3.0 and
nCTEQ15WZSIH rapidity-differential cross section uncertainties are bigger simply
because the underlying error sets are not as tightly constrained as the EPPS21 ones.
One should note that the EPPS21 and nNNPDF3.0 uncertainties contain both the
nuclear and the free proton uncertainties whereas the nCTEQ15WZSIH contains
only the nuclear ones. Finally, because of the strong scale dependence, the usefulness
of these data as a constraint for the nPDFs is not clear.

The above mentioned scale dependencies of the NLO results for rapidity-
differential cross sections are presented as a function of rapidity y for the EPPS16
and EPPS21 nPDF sets presented in Fig. 6. The results for the Run2 energy of
5.02 TeV is shown with the solid blue curve for EPPS16 and with the dashdotted
blue curve for EPPS21. Similarly, the results for the Run1 energy of 2.76 TeV is
shown as dashed red for EPPS16 and as dotted red for EPPS21. In addition to
the observations we made above, we can make three additional remarks from this
figure: (1) At the higher Run2 energy, we see that for both EPPS16 and EPPS21 the
scale dependence is greater than at the lower Run1 energy, (2) The scale dependence
weakens for all energies and sets the higher we move in the absolute value of the
rapidity i.e. |y| and (3) Overall the newer set EPPS21 has a smaller scale dependence
than EPPS16.
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As discussed above, the scale dependence of the photoproduction cross section
in our framework ends up being rather sizeable. This fact was originally pointed out
already some twenty years ago in [25] even though in that work the authors modeled
the GPDs, basing them on the CTEQ6 PDF parametrization [156], differently in
the ERBL-region than what we have done here. The central-set predictions of the
CTEQ collaboration for the quark singlet PDFs have stayed more or less the same,
i.e. corrections are of the order of some tens of percents in the range x ∈ [10−7, 10−1]
and µ ∈ [mc,MJ/ψ], ever since CTEQ61 [157] was published going through the
CT10NLO [158], the CT14NLO [152] and the CT18ANLO [159] PDF sets. For the
gluons the situation is similar for the exception that there is more variation between
the sets since the CTEQ61 PDF set. In this way the qualitative comparison with
the results given in [25] are reasonable but a more detailed analysis would obviously
require the implementation of the GPD modeling in the ERBL region. Running the
photoproduction baseline calculation for the γ + p case, see figure 7, with any of the
aforementioned sets produces essentially the same result: charm mass scale result
stays constant as a function of W at about few nanobarns, increasing the scale to
e.g. 3MJ/ψ/4 increases the cross section so that it grows linearly from around zero
at W = 13 GeV to about 0.7 microbarns at W = 2000 GeV and increasing the scale
further results in a bigger slope of the cross section.

Keeping in mind the above, there are a few observations which are worth
mentioning when applying the photoproduction results to nucleus-nucleus collisions.
Firstly: if the gluon distribution differs from any of the above mentioned sets
noticeably starting from around x ≈ 10−3, as is the case with CTEQ6L1 [156]
or nNNPDF2.0 [75], then the cross section ends up growing much faster than
before due to the real part of the LO gluon amplitude from the ERBL region.
Secondly: if the strange quark distribution is strongly enchanced, like is the case with
nCTEQ15WZSIH [155], the cross section again grows faster as a function of W . As
was noted in [PI], the few very first datapoints – i.e. data in the range W ∈ [10, 100]
GeV – in the free proton photoproduction calculation are undershot with all scales
and the increase in the cross section means that these data are captured by the
prediction. But if we do this, it means that we overshoot the high W data – i.e.
data in the range W ∈ [500, 2000] GeV – considerably at the “optimal scale”.

Focusing a bit more on the small-energy region of W ∈ [10, 200] GeV, as shown
in figure 7 (close up of Fig. 2 in [PI]), we see how the scale uncertainty band is clearly
left below the data points. This is particularly important when one keeps in mind the
upcoming American based Electron-Ion-Collider (EIC) with the e+A c.m.s. energy
range of [20, 90] GeV [95]. In the figure, the solid red line gives us the “optimal”
scale result which bears no other special meaning except that it matches with the
rapidity differential cross section of the J/ψ photoproduction in nucleus-nucleus
collisions (see [PI] for further details). The dashed red line gives us the upper limit
of the scale uncertainty (µ = MJ/ψ) and the dotted red line gives us the lower limit
of the scale uncertainty (µ = mc). Note that we have a similar type of problem
arising in the case of Υ production where we do not match the energy dependence of
the photoproduction cross section in the conservative, physical mass scale range of
[mb,MΥ]; see figure 9 below.
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FIGURE 7 The NLO scale-choice uncertainty-envelope of the cross section of the exclusive
photoproduction process γ+ p→ J/ψ+ p as a function of the photon-proton
c.m.s. energy W in the low energy range juxtaposed with the H1 [162] and
ZEUS [163] collaboration results. All of the three lines shown in the figure
are calculated with the CT14NLO [152] PDFs where the solid (red) line is
the optimal scale as explained in the text. Close up of Fig. (2) in [PI].

All of this is to say that there is clearly a demand to study more in detail how
to mitigate the scale dependence. In addition to the obvious task of looking into
the NNLO corrections (and the resummation of higher order effects) one might first
want to systematically study the effect of the GPD modeling for example through
the DGLAP region specific skewness correction and the ERBL region specific meson
amplitude corrections. In particular it would be interesting to see if the discrepancy
between nNNPDF2.0 and EPPS16 nPDF sets could be mitigated by a more realistic
ERBL-region modeling for example as done in Ref. [88] and what exactly is the leading
source of discrepancy between our photoproduction baseline and the experimental
data. A similar test could then naturally be done for the nCTEQ15WZSIH PDF set
as well which might shed some light as to the relative importance between the gluon
and the quark distributions. One should also systematically look into the NRQCD
corrections [160, 161] to see if that would improve the match between the pQCD
prediction and the baseline photoproduction data.

Finally, we should point out that in a future work, if the scale and the nPDF
uncertainties have been constrained reasonably well, one might also want to consider
the uncertainties arising from the form factor and the photon flux. The 2pF and 3pF
distributions are widely used parametrizations for the underlying nuclear density
and we have applied the form of Ref. [140] without showing the uncertainties arising
from the experimental determination of the free parameters [137, 138]. These density
distributions go into both the form factor and the photon flux calculations, and in
particular, the application of the density distributions for the form factor might
require a more in depth look as discussed in Refs. [125, 164].
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5.2 Taming the scale dependence of J/ψ production

The Pb-Pb results are interesting in themselves but the main hope of the second
paper [PII] was to constrain the strong scale dependence of the cross section by
considering a suitable ratio between two different UPC processes. There is a plan
moving forward at the LHC that a short oxygen-oxygen (O-O) run would be performed
during Run3 [165–167] which opens up the possibility to consider the scaled ratio

RO/Pb =
(
APbZPb
AOZO

)2 dσO+O→O+V+O

dy

dσPb+Pb→Pb+V+Pb
dy

, (100)

where APb = 208 is the mass number of lead, ZPb = 82 is the atomic number of lead,
AO = 16 is the mass number of oxygen and ZO = 8 is the atomic number of oxygen.

Before considering the ratio of equation 100 we naturally had to implement
the oxygen form factor and photon flux which were relatively easy to do as the only
difference – in addition to the obvious differences in the mass number and the atomic
number – was that the underlying oxygen nuclear density distribution is described
by a three-parameter-Fermi (3pF) instead of the two-parameter-Fermi (2pF) of the
lead [PII]. We found that in the ratio RO/Pb at midrapidity with the same collision
energies (If there were no differences the ratio would naturally be equal to 1) we
should expect to see a factor of about 4.6 from the ratio of the integrals of the form
factors and a factor of about 1.3 from the ratio of the photon fluxes (see Figs. 1 and 2
in [PII]). The rest should then come from the differences in the nuclear corrections.

The results for the production of J/ψ in oxygen-oxygen collisions were very
similar to the ones for lead-lead: scale dependence is considerable, real part of the
scattering amplitude cannot be neglected and the quarks dominate at central rapidity
(see Figs. 5, 7 and 8 in [PII]). For the ratio shown in equation 100 it turned out,
as was the hope, that the scale dependencies cancelled out to a large extent, i.e.,
by a factor of ten for all three nPDF sets under consideration. In addition to the
scale uncertainties, we considered the PDF uncertainties in this ratio which are
superimposed over each other in figure 8. The figure shows the scaled ratio at central
rapidity for the three different nPDF sets EPPS21 (left), nNNPDF3.0 (center) and
nCTEQ15WZSIH (right) each on their optimal scale such that in the left panel
the Pb-Pb cross section is taken at Run1 energy and in the right panel the Pb-Pb
cross section is taken at Run2 energy. The capped blue (green) thin bars show the
PDF uncertainties when O-O cross section is taken at the c.m.s. energy of 6.37 TeV
(7.00 TeV) and the orange (red) thick bars show the scale uncertainties when the
O-O cross section is taken at the c.m.s. energy of 6.37 TeV (7.00 TeV).

The figure shows both the systematics of the results and the lack of them quite
nicely. As to the systematics: if we increase the energy of Pb-Pb collisions, the ratio
gets smaller and vice versa if we increase the energy of O-O collisions, the ratio gets
bigger. And then to the lack of systematic behaviour of the uncertainties: at Run1
energy the PDF uncertainties dominate over the scale uncertainties for EPPS21 but
for nNNPDF3.0 the PDF uncertainties dominate upwards and the scale uncertainties
downwards whereas for nCTEQ15WZSIH they seem to be of the same order. Then
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FIGURE 8 The scaled ratio of rapidity differential cross sections of oxygen-oxygen to
lead-lead with EPPS21, nNNPDF3.0 and nCTEQ15WZSIH nPDFs at their
optimal scales at midrapidity such that the cross sections are taken at different
energies. On the left panel Pb-Pb is taken at Run1 energy and on the right
panel it is taken at Run2 energy. Figure is from [PII].

at Run2 energy the scale uncertainties dominate upwards and PDF uncertainties
downwards for EPPS21 – vice versa for nNNPDF3.0 – and for nCTEQ15WZSIH the
scale uncertainties are smaller than the PDF uncertainties. In any case, the figure
shows that there is clearly some hope that the ratio could be used to constrain the
PDF uncertainties.

5.3 Exclusive photoproduction of Υ

Working still within the forward limit, in addition to J/ψ production, one can
consider the photoproduction of Υ mesons with the hope that the scale dependence
might be reduced because of the higher scale of the process. Unfortunately at the
scale interval of µ ∈ [mb,MΥ], where mb is the mass of the bottom quark and
MΥ is the mass of the Upsilon meson, we always seem to undershoot the available
photoproduction data from e-p and p-p collisions; see figure 9. We have to drop
down to scales of around mb/2 ≈ 2.37 GeV in order to get the central prediction to
go nicely through the data at high values of W . Moreover still, if one wants the scale
uncertainty to better cover all available experimental data, one has to drop down to
the scales of the charm mass mc ≈ 1.55 GeV.

It was partly for this reason why in [PIII] we ventured further from our forward
model and implemented the so called skewness correction through the Shuvaev
transform [168, 169] which is a well known way to solve the LO Q2 evolution of the
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FIGURE 9 The exclusive Υ photoproduction NLO cross sections with CT18ANLO based
GPDs and PDFs as a function of the c.m.s energy W compared with the data
from ZEUS [170], H1 [162], LHCb [171] and CMS [172] collaborations. The
figure is the same as Fig. (2) in [PIII] but with the additional µ = 1.55 GeV
PDF curve.

GPDs in the DGLAP region with appropriately chosen input PDFs1. For further
details of the transform, see [PIII] and references therein. The Shuvaev transform
does improve the situation slightly but we still seem to somewhat underestimate
the experimental data in the conservative range of µ ∈ [mb/2, 2mb]. Nevertheless,
one might be able to exploit the available data by using an ad hoc parametrization
to describe the W dependence of the cross section. This is exactly what was done
with the baseline photoproduction cross section in paper [PIII]. The CT18ANLO
based PDF and GPD curves, and the data driven result, are shown in figure 9 along
with comparison with the available data from the ZEUS [170], H1 [162], LHCb [171]
and CMS [172] collaborations. For the slope parameter b we used the Υ specific
parametrization with α′P = 0.06 and W0 = 90 GeV [PIII].

The Shuvaev transform does bring about a 20 percent increase to the photo-
production cross section at W ≈ 200 GeV when compared to the strict forward case
with µ = mb but otherwise the skewing of the PDFs to the GPDs does not affect
the qualitative results of the Υ production:

(1.) The imaginary part clearly dominates the scattering amplitude in the interval
µ ∈ [mb,MΥ].

(2.) The cross section is hugely dominated by the gluon distribution in the same
interval of µ ∈ [mb,MΥ].

(3.) The NLO scale dependence is opposite to that of the J/ψ case and slightly
more moderate.

1 The modeling of the GPDs does not belong to the scope of this thesis.
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FIGURE 10 The data-driven exclusive rapidity-differetial NLO cross section of Υ pho-
toproduction in Pb+Pb UPCs at √sNN = 5.02 TeV with EPPS21 based
nGPDs (blue) and EPPS21 nPDFs (red). The dotted curves show µ = mb/2,
dashed curves show µ = 2mb and dashdotted (solid) show µ = mb nGPD
(nPDF) results. The blue (hashed red) area shows the nGPD (nPDF) error.
The area between the vertical lines at |y| = 2 indicate the region in which
we can trust the fit σγp→Υp

fit . Figure is from [PIII].

It should be stressed that the observations (1.) and (2.) are in line with what has
been previously thought in the literature in the context of exclusive J/ψ photopro-
duction [91, 95, 135].

The general behaviour of the cross section as a function of the scale arises from
the fact that the NLO corrections have a different sign to that of the LO, see [PI] for
an in depth analysis for this in the case of J/ψ, when working in the scale range
of µ ∈ [mQ, 2mQ]. But in short the difference between the Υ and the J/ψ results
can be summarized as follows: Υ is probed at a higher scale and thus α(µR) is
always smaller leading to smaller NLO corrections, and the skewness variable ξ is
about a factor of 10 bigger in Υ production than in J/ψ production. The bigger
value of ξ means that the effective values at which the PDFs (or the GPDs) are
probed are bigger which in turn leads to a more moderate scale evolution (this was
already argued in [25]). Finally, the jump from the µ = mb/2 (dashed blue) curve to
µ = 1.55 GeV (densely dashdotted green) curve in figure 9, is in part explained by
the fact that the NLO corrections change sign and become negative when we drop
down to scales of µ ≈ 3 GeV and lower.

The results of the baseline Υ photoproduction are interesting in themselves
but our desire was to predict how the results would translate to the nuclear case of
Pb+ Pb → Pb+ Υ + Pb. The above three observations hold also for the nuclear
case, see Figs. 2, 3, 4 and 6 in [PIII], but maybe slightly surprisingly the effect of the
skewing of the nPDFs is very weak as shown in figure 10. In order to get these results,
we used the data driven baseline photoproduction result to better parametrize the
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W dependence of the photoproduction cross section:

σγ+Pb→Υ+Pb =

(
σγ+Pb→Υ+Pb

σγ+p→Υ+p

)
pQCD

σγ+p→Υ+p
fit , (101)

where σγ+Pb→Υ+Pb and σγ+p→Υ+p are standard NLO pQCD predictions and σγ+p→Υ+p
fit

is a fit to the available e+ p data. This fit is based on data for W approximately
between 100 GeV to 2000 GeV which in terms of the rapidity translates to roughly
|y| ≤ 2. The data-driven rapidity differential photoproduction cross sections in
Pb + Pb UPCs were then obtained by folding the data-corrected pQCD cross sec-
tions, i.e. equation 101, with the photon fluxes and form factors of the colliding
nuclei. For more details on the data driven method, see [PIII].

At y = 0 the agreement between nGPD and nPDF results for scale choices
µ = mb and µ = mb/2 is of the order of numerical integration accuracy of 10−3. At
this central rapidity, only with the scale µ = 2mb, do we see a difference of around 4
percents. The difference increases the higher we go in rapidity so that the the biggest
difference is seen with µ = mb/2 raising up to around 20 percents at |y| = 4. The
biggest difference of the data driven approach to the standard pQCD one is that the
latter is about a factor of 2-2.5 smaller than the former. Moreover, the shapes of
the distribution for the standard NLO pQCD result and the data driven result are
roughly the same. As expected, in taking the Pb-to-p ratios of pQCD cross sections
(equation 101), the scale dependence indeed reduces significantly [PIII]. This is
a promising result for the eventual goal to use the exclusive heavy vector meson
photoproduction processes as a possible data constraint in global nPDF analysis.



6 CONCLUSIONS

We have presented a systematic summary of our pQCD framework for calculating
predictions for coherent exclusive photoproduction of heavy-vector mesons in UPCs.
We started chapter 1 by defining the theories with which we work – QCD and QED –
and segued to give a short account of how our inability to completely solve these
theories is parametrized and quantified in terms of the experimentally determinable
parton distributions in chapter 2. Chapter 3 sketched the calculation of the well
known photoproduction amplitude at leading order pQCD which was then applied
in chapter 4 to the actual process of interest i.e. A+A→ A+ V +A.

All of this development first lead to the results presented in article [PI] where the
main conclusions were that the Pb+ Pb→ Pb+ J/ψ+ Pb process is surprinsingly
sensitive to the quark distributions and that the scale dependence of the cross section
is considerable. Moreover, we found that the predictions are also very sensitive to
the underlying nPDF sets, most notably the discrepancy between the EPPS16 and
the nNNPDF2.0 results. The difference was traced to originate from the rapidly
growing real part of the LO gluon contribution in the case where one encounters
very steeply rising small-x gluon PDFs. The conclusion of the study was that the
process might not be as good a probe of the gluon distributions or of their nuclear
corrections as previously thought.

The scale dependence can be mitigated by considering appropriate ratios of
cross sections and this is exactly what was done in article [PII] for the case of J/ψ
production where we considered two initial states: lead-lead collisions and oxygen-
oxygen collisions. In our framework the switch from one initial state to another is
rather easy as it essentially boils down to switching the underlying nPDFs which
we take from the LHAPDF-interface [151]. That is, in addition to making sure that
one uses the correct form factor and the photon flux. We found the reduction in the
scale dependence to always be an order of magnitude regardless of the nPDF set
which we used.

Then finally in article [PIII] we applied our framework to the production of
the Υ meson and found out that the scale dependence is sligthly milder in this case
due to the fact that we probe the process at a higher scale. Moreover, the scale
dependence for Υ production is not as straightforward as in the J/ψ case. That



50

is, for J/ψ increasing the scale meant that we increase the absolute cross section
prediction but for Υ the cross section either increases or decreases depending on
the exact values of W and µ. Since for the photoproduction cross section of Υ,
with the forward limit approximation of papers [PI, PII], we are always below the
experimental data of γ + p→ V + p, we applied the well known Shuvaev transform
to take into account skewness corrections. In addition to this, we introduced a data
driven procedure where the baseline NLO pQCD cross sections were fitted to the
e+ p data. Along with the reduction in the scale dependence, we learned that the
rapidity differential cross section for producing Υ mesons is dominated by the gluon
distributions and the imaginary part of the scattering amplitude. The difference
between the final data driven predictions, computed with the nGPDs and the nPDFs,
of the rapidity-differential cross section of Pb+ Pb→ Pb+ Υ + Pb was discovered
to be negligible.

This work then presents the very first steps in systematic studies that should be
done when investigating the usefulness of exclusive heavy vector meson photoproduc-
tion processes as data constraints for the nPDFs. Even though the scale dependence
is considerable, one can find an optimal scale which descibes the Run1 and Run2 data
for J/ψ production in lead-lead collisions, as shown in [PI, PII], creating some hope
that the data could possibly be used in future as constraints. Also the usefulness
of the Υ production remains to be seen in the future as discussed in [PIII]. The
next obvious steps to do would be to update the results of the papers [PI, PII]
with the “off-forwardness” property of the GPDs for example through the Shuvaev
transform and to consider how the modeling of the ERBL region affects the results
presented in all three articles [PI, PII, PIII]. These corrections apply already on
the free proton level but one should also keep in mind the interesting question of
whether the nuclear corrections to GPDs propagate in a different manner than to
the nPDFs. That is, how do nuclear corrections on GPDs depend on ξ and t? How
does the scale evolution change if the generalized GPD evolution equations are used
to evolve the distributions? Are there any non-trivial nuclear corrections to GPDs
that are different from nuclear corrections to PDFs? Questions like these related to
the GPDs, in addition to the ones relating to our pQCD framework, such as the role
of the NRQCD corrections, need to be answered in future studies.
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We present the first next-to-leading-order (NLO) perturbative QCD (pQCD) study of rapidity-differential
cross sections of coherent exclusive photoproduction of J/ψ mesons in heavy-ion ultraperipheral collisions
(UPCs) at the CERN Large Hadron Collider (LHC), dσ/dy(Pb + Pb → Pb + J/ψ + Pb). For this, we account
for the photon-nucleon NLO cross sections at the forward limit, the t dependence using a standard nuclear
form factor, and the photon fluxes of the colliding nuclei. Approximating the generalized parton distributions
with their forward-limit parton distribution functions (PDFs), we quantify the NLO contributions in the cross
sections, show that the real part of the amplitude and quark-PDF contributions must not be neglected, quantify
the uncertainties arising from the scale choice and PDFs, and compare our results with ALICE, CMS, and LHCb
J/ψ photoproduction data in Pb + Pb UPCs, exclusive J/ψ photoproduction data from HERA, and LHCb data
in p + p. The scale dependence in dσ/dy(Pb + Pb → Pb + J/ψ + Pb) is significant, but we can find a scale
choice that reproduces the Pb + Pb UPC data at both 2.76 and 5.02 TeV collision energies. This process has
traditionally been suggested to be a direct probe of nuclear gluon distributions. We show that the situation
changes rather dramatically from LO to NLO: the NLO cross sections reflect the nuclear effects of both gluons
and quarks in a complicated manner, where the relative signs of the LO and NLO terms in the amplitude play a
significant role.

DOI: 10.1103/PhysRevC.106.035202

I. INTRODUCTION

Ultraperipheral collisions (UPCs) are collisions of hadrons
or nuclei which take place at large impact parameters in
such a way that only the electromagnetic field of one of the
colliding particles interacts with the other particle [1–3]. Co-
herent photoproduction of J/ψ heavy vector mesons in UPCs
of lead nuclei at the CERN Large Hadron Collider (LHC),
the exclusive process Pb + Pb → Pb + J/ψ + Pb, has been
suggested to be an efficient direct probe of collinear nuclear
gluon distributions, gPb(x, Q2), at factorization scales of the
order of the vector-meson mass, Q2 = O(M2

V ), and small
longitudinal-momentum fractions x = O(M2

V /W 2), where W
is the photon-nucleon center-of-momentum-system (c.m.s.)
energy [4–11]. This exciting possibility derives from the
fact that in such an exclusive process of no hadronic ac-
tivity, one of the colliding nuclei serves as a source of
equivalent real Weizsäcker-Williams photons which probe a
color-singlet gluon- or quark-initiated ladder from the other
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nucleus via formation of a heavy quark-antiquark pair. As
first discussed by Ryskin in Ref. [12] in the context of the
free-proton process γ + p → J/ψ + p, in the leading order
(LO) perturbative QCD (pQCD) only the gluon-ladder pro-
cesses contribute, and, neglecting the longitudinal-momentum
imbalance (skewedness) in the ladder and the subleading real
part of the amplitude, the forward scattering amplitude factor-
izes into a calculable hard part and gp(x, Q2). Thus the cross
section of J/ψ becomes proportional to [gp(x, Q2)]2, making
the process a very promising one for probing the gluon distri-
bution. This idea has then been transferred to ultraperipheral
nucleus-nucleus collisions (UPCs) in, e.g., Refs. [4,5]. Also
Monte Carlo event simulations of this process in the UPCs
have been developed, such as STARLIGHT [13] and SUPER-
CHIC [14]. Exclusive photoproduction of J/ψ has also been
widely studied in the dipole picture, especially in the high-
energy color-glass-condensate approximation of QCD; see,
e.g., Refs. [15–25].

With the experimental data being released from the LHC,
the situation is becoming ever more interesting. First, the
exclusive coherent J/ψ photoproduction cross sections in-
volving real photons have been measured in electron-proton
collisions at the DESY-HERA collider by the H1 [26] and
ZEUS [27] Collaborations, and extracted also from the LHCb
measurements of the process p + p → p + J/ψ + p at the
LHC [28,29]. For detailed next-to-leading order (NLO) pQCD
studies of these, see, e.g., Refs. [30–35]. From the view-
point of the UPCs, these data sets offer also an importantly

2469-9985/2022/106(3)/035202(21) 035202-1 Published by the American Physical Society
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long lever arm in the photon-proton c.m.s. energy W for
cross-checking the pQCD calculations and understanding
the necessary modeling input. Secondly, in Pb + Pb UPCs
at the LHC, the ALICE Collaboration has measured the
rapidity-differential cross section of Pb + Pb → Pb + J/ψ +
Pb both at midrapidity [36,37] and at forward/backward ra-
pidities [38,39] at nucleon-nucleon c.m.s. energies

√
sNN =

5.02 and 2.76 TeV. The CMS Collaboration has performed
the corresponding measurement at

√
sNN = 2.76 TeV in one

off-central rapidity bin that lies conveniently just between
the ALICE rapidity bins [40]. The LHCb Collaboration re-
cently released their 5.02 TeV data at forward/backward
rapidities [41], overlapping with the ALICE rapidity re-
gion. Very interestingly, however, the ALICE and LHCb
forward/backward-rapidity 5.02 TeV data sets do not seem
to be fully compatible with each other, which clearly calls for
further analyses.1

Until now, exclusive J/ψ photoproduction in ultraperiph-
eral nuclear collisions has been studied only to LO pQCD.
Now that the LHC experiments are measuring these cross
sections to an increasing accuracy, and hopefully also for other
UPC systems than Pb + Pb in the future [43], it is clearly of
high priority to extend the theory calculations to NLO pQCD.
In particular we wish to study whether/how this process
could be included in the global analyses of nuclear PDFs,
such as in Refs. [44–48], in the future. These are the main
motivations for our present NLO study. Also interestingly, so
far the LO pQCD, or dipole picture, calculations have not
been able to reproduce simultaneously the midrapidity and
forward/backward-rapidity data; see, e.g., [36]. This, together
with the mentioned incompatibility between the LHCb and
ALICE data, serves also as further motivation for our current
NLO pQCD study.

The NLO pQCD calculation of cross sections for exclusive
photoproduction of heavy vector mesons V off the free proton,
σ (γ + p → V + p), using collinear factorization at the am-
plitude level, was performed first by Ivanov et al. in Ref. [30],
followed then by other groups in Refs. [31,35,49–51]. To be
exact, collinear factorization here refers to the factorization
of the amplitude to calculable NLO pQCD pieces and to the
generalized parton distributions (GPDs) [52] which at the for-
ward limit relax into the usual PDFs [53]. If such a limit is not
assumed, then the GPDs have to be modeled in some way, e.g.,
as suggested in Refs. [54–61]. As shown already in Ref. [30],
the full NLO calculation of coherent exclusive photoproduc-
tion of J/ψ mesons in γ + p collisions, which includes both
the imaginary and real parts of the amplitude precisely as
they are, and assumes a certain model for the gluon and
quark GPDs [56], depends rather heavily on the choice of the
renormalization/factorization scale, Q = O(MJ/ψ ), while for
the photoproduction of ϒ mesons, which probes a higher scale
Q = O(Mϒ ), the situation improves somewhat. Discussion of
a systematic procedure for diminishing the scale dependence
in the NLO calculation of exclusive J/ψ photoproduction in
γ + p collisions can be found in [32–35], but in the present

1New LHCb data [42] have appeared after the completion of the
current paper.

exploratory NLO study for the nuclear UPCs we do not follow
this avenue.

In the current paper, we present the first NLO pQCD
study of exclusive photoproduction of J/ψ mesons in ul-
traperipheral Pb + Pb collisions at the LHC, with collinear
factorization at the amplitude level. Exploiting the analytic
results of the impressive calculation of Ref. [30], we have
built a numerical code of our own for the rapidity-differential
J/ψ photoproduction UPC cross sections, dσ/dy(Pb +
Pb → Pb + J/ψ + Pb). These consist of a rather nontrivial
numerical evaluation of the differential NLO forward pho-
toproduction cross sections dσ/dt (γ + Pb → J/ψ + Pb) at
vanishing Mandelstam variable t based on Ref. [30], sup-
plemented with a straightforward computation of the nuclear
form factor to account for the t dependence of the cross sec-
tion, as well as a nontrivial numerical evaluation of the photon
fluxes from the colliding lead nuclei based on Refs. [62,63].
In the current exploratory NLO study we adopt the simplest
possible, forward-limit, approximation for the GPDs where
they become just the usual PDFs. With such a “bare bones”
GPD/PDF NLO framework, our goal is to test as transpar-
ently as possible, and without any additional normalization
factors (which typically appear in LO studies) or modeling,
how directly and efficiently the exclusive photoproduction of
J/ψ mesons in Pb + Pb UPCs at the LHC actually probes the
nuclear gluon distributions.

In what follows, we will first chart the scale dependence
of the NLO cross sections, and compare the situation with the
LO case, too. Even though the scale dependence of the NLO
cross sections is known to be quite strong [30], we will show
that, interestingly, a reasonable “optimal” scale choice can
be found, with which we can, perhaps contrary to our initial
expectations, simultaneously reproduce the 5.02 TeV ALICE
midrapidity [36] and the LHCb forward-rapidity [41] data,
and also the 2.76 TeV ALICE [37,39] and CMS [40] data.
We will also study the corresponding NLO cross sections in
photon-proton collisions, as well as their scale dependence,
against the HERA and LHCb data.

We will also break down the NLO calculation into the
contributions from the imaginary and real parts, as well from
the gluon and quark PDFs, and show (in accordance with
Ref. [30]) that the real part of the amplitude as well as the
quark contributions both have a sizable contribution and hence
must not be neglected. This result indicates that, contrary
to what is often claimed based on the LO results, exclusive
J/ψ photoproduction in UPCs is not as direct a probe of the
gluon distributions as perhaps previously thought. We will
chart, by comparing the predictions obtained with the EPPS16
[45] nuclear PDFs and CT14NLO free proton PDFs [64],
and nCTEQ15 [44] and nNNPDF2.0 [46] nuclear PDFs, how
the gluon and quark PDFs manifest themselves in the J/ψ
photoproduction UPC cross sections at different rapidities. In
particular, using EPPS16, we will show that the manifestation
of the nuclear effects is nontrivial and influenced especially
by the relative signs of the different contributions in the am-
plitude. Finally, as one of the main goals of the paper, we
will study how the uncertainties of the nuclear and free-proton
PDFs propagate into the J/ψ photoproduction UPC cross
sections.
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The rest of this paper will proceed as follows: To make
our study more accessible especially for the heavy-ion com-
munity and non-GPD-experts in general, we will recapitulate
the theoretical NLO framework with collinear factorization
and GPDs/PDFs in Sec. II. Also the calculation of the photon
fluxes and evaluation of the necessary nuclear form factors are
presented there. The main results of the paper, the numerical
evaluation of the coherent exclusive J/ψ photoproduction
cross sections in Pb + Pb UPCs at the LHC, their analysis,
and comparison with the experimental data, are presented
in Sec. III. Finally, a discussion and outlook are given in
Sec. IV.

II. THEORETICAL FRAMEWORK

A. Differential cross section

In this section, we recapitulate the theoretical framework
we use in our calculations for the exclusive process

A1(p1) + A2(p2) → A1(p′
1) + V (p′

3) + A2(p′
2),

where A1,2 denote the colliding nuclei and V is some
vector meson (in this paper V = J/ψ). The initial-state
momenta are labeled by pi and the final-state momenta
by p′

i. Within the equivalent-photon (Weizsäcker-Williams)
approximation [3,65,66], the total cross section can be
expressed as

σ A1A2→A1VA2 =
∫

dk+ dNA1
γ (k+)

dk+ σγ (k+ )A2→VA2

+
∫

dk− dNA2
γ (k−)

dk− σ A1γ (k− )→A1V , (1)

where dNAi
γ (k)/dk is the centrality-integrated distribution (or

flux) of photons from the nucleus Ai as a function of photon
energy k, and σγ (k+ )A2→VA2 and σ A1γ (k− )→VA1 are the cross
sections for the photoproduction processes

γ (k1) + A2(p2) → V (p′
3) + A2(p′

2),

A1(p1) + γ (k2) → A1(p′
1) + V (p′

3).

In the equivalent-photon approximation the photon momenta
k1,2 are considered to be collinear with colliding nuclei, and
|k1,2| = k±, where the boldface denotes a three-vector. The
experimental data in Pb-Pb collisions [36,38,40,41] are dif-
ferential with respect to the rapidity y of the vector meson.
At fixed rapidity and transverse momentum pT of produced
vector meson, the photon energy can be expressed as

k± = M2
V − t

2MTe∓y
, (2)

where t refers to the square of the momentum transferred to
the target nucleus, t = (k1,2 − p′

3)2, and MT =
√

M2
V + p2

T is
the transverse mass. In the typical case |t | � M2

V and p2
T �

M2
V (see, e.g., Ref. [67]) so that to a very good approximation

k± ≈ MV e±y

2
. (3)

It then follows that

dσ A1A2→A1VA2

dy
=

[
k

dNA1
γ (k)

dk
σγ (k)A2→VA2

]
k=k+

+
[

k
dNA2

γ (k)

dk
σ A1γ (k)→A1V

]
k=k−

. (4)

Finally, we note that Eq. (4) above neglects the interference
between the amplitudes where the photons are emitted by
different nuclei. As discussed in [68] for heavy-ion collisions
and in [69] for p + p and p + p̄, however, such interference
becomes important only at the very smallest values of t and
can thus be safely neglected when considering the t-integrated
cross sections as we do here.

B. Photoproduction cross section

We will assume that the invariant matrix element Mγ A→VA

for the photoproduction process can be factored into two parts,
the matrix element evaluated at t = 0 and a nuclear form
factor FA(t ) (also called the two-gluon form factor [12]) [70],

Mγ A→VA(W, t ) = Mγ N→V N
A (W, 0)FA(t ), (5)

where N labels a bound nucleon and W is the c.m.s. energy of
the photon-nucleon collision. It follows that the photoproduc-
tion cross section then becomes

σγ A→VA(W ) = dσ
γ N→V N
A

dt

∣∣∣∣
t=0

∞∫
tmin

dt ′|FA(−t ′)|2, (6)

dσ
γ N→V N
A

dt
= |Mγ N→V N

A |2
16πW 4

, (7)

where |Mγ N→V N
A |2 is the square of the per-nucleon matrix

element averaged (summed) over the initial-state (final-state)
polarizations. The minimum momentum transfer squared is
given by tmin = [M2

V /(4kγL)]2, where γL is the Lorentz fac-
tor, which is approximately 1500 for Pb + Pb collisions at
nucleon-nucleon c.m.s. energy

√
sNN = 2.76 TeV and approx-

imately 2700 for Pb + Pb collisions at nucleon-nucleon c.m.s.
energy

√
sNN = 5.02 TeV. We model the form factor as the

Fourier transform of the Woods-Saxon distribution [71],

FA(t ) =
∫

d3rρA(r)eiq·r, (8)

ρA(r) = ρ0

1 + e
r−RA

d

, (9)

taking |q| = √|t |. We take d = 0.546 fm [72] for the skin
depth and for the nucleus radius RA we use the parametrization
(see, e.g., [73]),

RA/fm = 1.12 × A1/3 − 0.86 × A−1/3. (10)

The normalization ρ0 is fixed by requiring that FA(0) = A.
When considering the γ + p collisions we take the photo-

production cross section to be of the form [30]

σγ p→V p(W ) = dσγ p→V p

dt

∣∣∣∣
t=0

∫ ∞

0
dt ′e−bt ′

(11)
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with [35],

b/GeV−2 = 4.9 + 4α′
P ln

(
W

W0

)
, (12)

where W0 = 90 GeV and α′
P = 0.06. This parametrization

grows more slowly with W than that in Ref. [74], but is still
compatible with the HERA data for exclusive J/ψ photo-
production. We have chosen the slope parameter α′

P to be
compatible with Model 4 of [75], which fits a wider variety
of elastic pp data.

C. Photoproduction amplitude

The NLO expressions for the matrix element
Mγ N→V N

A (W, t ) for photoproduction are well established
in the literature [30,76] and the more recent electroproduction
results [35,50,51] coincide with these in the limit of an
on-shell photon. In these calculations the vector meson is
considered as a composite particle of two heavy quarks
in the nonrelativistic approximation with zero relative
velocity [77–80]. The invariant matrix element can be
written as

Mγ N→V N
A =4π

√
4παQEDeQ(ε∗

V · εγ )

3ξ

√
〈O1〉V

m3
Q

I (ξ, t )

=C

ξ
I (ξ, t ), (13)

where αQED is the fine-structure constant, mQ the mass of
the heavy quark, eQ the fractional charge of the heavy
quark, εV the polarization vector of the produced vector me-
son, εγ the polarization vector of the incoming photon, and
〈O1〉V is a nonrelativistic QCD matrix element associated
with the vector meson. Equation (13) defines the factor C
which we will use later. The value of 〈O1〉V is solved from
the NLO expression for the vector-meson leptonic decay
width [30,81–83],

�(V → l+l−) = 2e2
Qπα2

QED

3

〈O1〉V

m2
Q

[
1 − 8αs(μR)

3π

]2

, (14)

where αs(μR) is the QCD coupling at a renormalization scale
μR. The variable ξ that appears in Ji’s parametrization of
momenta [84] is the so-called skewedness parameter. In the
t � M2

V limit,

ξ = ζ

2 − ζ
, where ζ =

(
MV

W

)2

. (15)

The function I (ξ, t ) is given by

I (ξ, t ) =
1∫

−1

dx[Tg(x, ξ )F g(x, ξ , t, μF )

+ Tq(x, ξ )F q,S (x, ξ , t, μF )], (16)

where Tg(x, ξ ) and Tq(x, ξ ) are the hard-scattering co-
efficient functions corresponding to gluon and quark

contributions [30],

Tg(x, ξ ) = ξ

(x − ξ + iε)(x + ξ − iε)

×
[
αs(μR) + α2

s (μR)

4π
fg

(
x − ξ + iε

2ξ

)]
,

Tq(x, ξ ) = 2α2
s (μR)

3π
fq

(
x − ξ + iε

2ξ

)
. (17)

Here the term proportional to αs(μR) in Tg is the purely
gluonic LO contribution and the rest in Tg and the whole
Tq constitute the NLO contributions. The exact forms of the
functions fg and fq are given in Refs. [30,35,76] and we will
be using specifically those of Ref. [30]. The parameter ε is
positive and the function I (ξ, t ) is understood to be evaluated
in the limit ε → 0. Finally, F g(x, ξ , t, μF ) is the gluon GPD
and F q,S (x, ξ , t, μF ) is the quark singlet GPD given by

F q,S (x, ξ , t, μF ) =
∑

q=u,d,s,c

F q(x, ξ , t, μF ), (18)

where μF denotes the factorization scale. As we will consider
factorization scales above the charm mass threshold, also the
charm quarks are included in the above sum in conjunction
with GPDs/PDFs defined in variable-flavor-number schemes.
As indicated in Eq. (6), we will calculate the amplitude in
the approximation in which t = 0. In addition, in the current
exploratory study we will approximate the GPDs by their
values at ξ = 0 so that we effectively replace the GPDs with
PDFs,

F g(x, 0, 0, μF ) = F g(−x, 0, 0, μF ) = xg(x, μF ),

F q(x, 0, 0, μF ) = q(x, μF ),

F q(−x, 0, 0, μF ) = −q̄(x, μF ), (19)

where x ∈ [0, 1], and g(x, μF ) and q(x, μF ) are the gluon
and quark PDFs. In the cross sections computed here the
scale uncertainties will be much larger than the expected
effects from a detailed GPD modeling presented, e.g., in
Refs. [54–61]. Therefore, we leave the inclusion of the GPD
modeling as future work. As long as the value of ξ remains
sufficiently small (as it does here2), the DGLAP (Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi) region |x| > ξ dominates the
x integral of Eq. (16) and the above approximation provides
a reasonable baseline. In the ERBL (Efremov-Radyushkin-
Brodsky-Lepage) region |x| < ξ , which contributes only in
the subleading real part of the amplitude, the GPDs can be
expected to deviate more from the PDFs especially towards
the smallest x [56,61]. The largest contribution in the real
part comes, however, from the region near x = ξ where the
ERBL-region GPDs connect continuously to the DGLAP-
region ones, and hence Eq. (19) again offers a relevant starting
point for the present first study.

2For example, ξ (y = 0) ≈ 3.1 × 10−4 and ξ (y = 4) ≈ 5.6 ×
10−6 (1.7 × 10−2) for W + (W −) at

√
sNN = 5.02 TeV.
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The differential cross section can then be written as

dσγ N→V N

dt

∣∣∣∣
t=0

=
∣∣Mγ N→V N

A

∣∣2

16πW 4

= 1

W 4

4π2αQEDe2
Q

9ξ 2

( 〈O1〉V

m3
Q

)
|I (ξ, t = 0)|2,

(20)

where

|I (ξ, t = 0)|2 =
∣∣∣∣
∫ 1

0
dx

[
2xg(x, μF )Tg(x, ξ )

+ Tq(x, ξ )
∑

q

[q(x, μF ) + q̄(x, μF )]

]∣∣∣∣
2

.

(21)

We take all constants, such as the mass and the decay width
of the J/ψ , from the Particle Data Group listing [85]. The
value of αs(μR) is taken from the LHAPDF interface [86] so that
the coupling is taken consistently to be the same as the one
used in defining the PDF values. The QED coupling, αQED,
is evaluated throughout the work up to one loop accuracy. In
our framework, following Ref. [30], we explicitly set MV =
2mQ, which is an inherent assumption in our nonrelativistic
approximation of the J/ψ wave function. In the square of the
integral |I|2 we consistently include both the real part and the
imaginary part in the results. The integrals in Eq. (21) are
evaluated numerically by keeping the parameter ε finite but
small enough so that the results are independent of its exact
value. We have cross-checked our numerical implementation
against the method used in Ref. [35]. The factorization and
renormalization scales are taken to be equal, μ = μF = μR,
and we consider scale variation between μ ∈ [mQ, 2mQ].

D. Photon flux

The number of equivalent photons of energy k at a fixed
transverse distance b = |b| from the center of a nucleus A with
Z protons can be written as [3,13,62,63]

NA
γ (k, b) = Z2αQED

π2

∣∣∣∣
∫ ∞

0
dk⊥

k2
⊥F (k2

⊥ + k2/γ 2
L )

k2
⊥ + k2/γ 2

L

J1(bk⊥)

∣∣∣∣
2

,

(22)
where F is the Fourier transform of the form factor in Eq. (8)
normalized to 1, F (q) = FA(q)/A, and J1 is the cylindrical
modified Bessel function of the first kind. To obtain the
minimum-bias flux appearing in the expression for the cross
sections, e.g., in Eq. (1), we integrate over the entire impact-
parameter plane multiplying NA

γ (k, b) by the Glauber-type
probability [87] of having no hadronic interaction,

k
dNA

γ (k)

dk
=

∫
d2bNA

γ (k, b)�AA(b), (23)

�AA(b) = exp[−σNN (s)TAA(b)], (24)

where σNN (s) is the total (elastic + inelastic) hadronic
nucleon-nucleon cross section for which we use 90 (80) mb
at

√
sNN = 5.02 (2.76) TeV [85], and TAA(b) is the nuclear

overlap function

TAA(b) =
∫

d2b1TA(b1)TA(b − b1), (25)

where TA(b) is the nuclear thickness function,

TA(b) =
∫ ∞

−∞
dz ρA(r), (26)

with r2 = z2 + b2 and z being the longitudinal coordinate. The
integrand in Eq. (23) oscillates very rapidly at large values
of b, and to improve the convergence we follow Ref. [88] by
making use of the flux of photons from a point-like particle. In
this case one takes the nuclear density to be a delta function,
ρpl(r) = δ3(r), which leads to [5,89]

Npl
γ /Z (k, b) = Z2αQED

π2

k2

γ 2
L

(
K2

1 (ζR) + 1

γ 2
L

K2
0 (ζR)

)
, (27)

where K0 and K1 are modified Bessel functions of the second
kind, and

ζR = kb

γL
. (28)

The integral over the impact-parameter plane with a condition
|b| > bmin is also well known [90],

k
dNpl

γ /Z (k)

dk

∣∣∣∣∣
bmin

=
∫ ∞

bmin

d2bNpl
γ /Z (k, b)

= 2Z2αQED

π

[
ζRK0(ζR)K1(ζR)

− ζ 2
R

2

[
K2

1 (ζR) − K2
0 (ζR)

]]
b=bmin

. (29)

We now rewrite Eq. (23) by adding and subtracting the flux of
photons from a pointlike particle,

k
dNA

γ (k)

dk
=

∫
d2bNA

γ (k, b)�AA(b)

+ k
dNpl

γ /Z (k)

dk

∣∣∣∣∣
bmin

− k
dNpl

γ /Z (k)

dk

∣∣∣∣∣
bmin

= k
dNpl

γ /Z (k)

dk

∣∣∣∣∣
bmin

+
∫ bmin

0
d2b NA

γ (k, b)�AA(b)

+
∫ ∞

bmin

d2b [
NA

γ (k, b)�AA(b) − Npl
γ /Z (k, b)

]
.

(30)

By taking bmin = 30 fm or higher, the last term will be
negligible. Differences between this result and the point-like
approximation have been studied, e.g., in Refs. [3,88].

III. RESULTS

A. Absolute magnitude and scale sensitivity of cross sections

First, we chart the uncertainty arising from the choice
of the factorization/renormalization scale in the exclusive
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FIG. 1. Upper panel: The scale-choice uncertainty-envelope of the rapidity-differential exclusive J/ψ photoproduction cross section in
ultraperipheral Pb + Pb collisions at

√
sNN = 5.02 TeV, as a function of the J/ψ rapidity y, calculated to NLO pQCD with the EPPS16 nPDFs

[45] and compared with the experimental data from Refs. [38] (ALICE Forw), [36] (ALICE Cent), and [41] (LHCb Forw). The experimental
data points are mirrored with respect to y = 0, and their error bars are obtained by adding the statistical and systematic errors in quadrature.
The solid (red) curve shows the NLO result with our “optimal” scale explained in the text. Lower panel: The same but at

√
sNN = 2.76 TeV

and with experimental data from Refs. [39] (ALICE Forw), [37] (ALICE Cent), and [40] (CMS Cent). For the errorbars of the data, all given
errors are added in quadrature.

rapidity-differential J/ψ photoproduction cross sections in
ultraperipheral Pb + Pb collisions. Figure 1 shows the un-
certainty envelopes that result from varying the scale μ =
μF = μR from MJ/ψ/2 to MJ/ψ at

√
sNN = 5.0 TeV (upper

panel) and 2.76 TeV (lower panel), using the central set of the
EPPS16 nPDFs [45]. For comparison, the figure also shows
the experimental LHC data measured at these energies at for-
ward rapidities by ALICE [38,39], LHCb [41] and CMS [40],
and at central rapidities by ALICE [36,37]. The solid (red)
lines in the middle parts of the envelopes show the results with
μ = 0.76MJ/ψ = 2.37 GeV, a scale we have iteratively ob-
tained by requiring a rough simultaneous fit to the data at both

collision energies. In what follows we call this the “optimal”
scale, emphasizing, however, that its precise number bears no
special significance but it depends, e.g., on the assumed the
GPD modeling details and nPDFs in general.

On the one hand, as expected based on Ref. [30], we ob-
serve that the scale uncertainty remains quite large also here
in the nuclear case. On the other hand then, it is interesting
and quite encouraging that already with our current “bare
bones” GPD/PDF framework the NLO cross sections with
entirely feasible scale choices μ = O(MJ/ψ ) not only are of
the correct order of magnitude but actually some scale choices
can be found with which we can rather well reproduce the data
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FIG. 2. The scale-choice uncertainty-envelope of exclusive J/ψ photoproduction NLO cross sections in ep and pp collisions as a function
of the photon-proton c.m.s. energy W , computed to NLO pQCD with the CT14NLO [64] PDFs and compared against the experimental HERA
data from H1 [26] and ZEUS [27], and LHC data from LHCb [28,29]. The solid (red) line corresponds to the “optimal” scale explained in the
text.

at all rapidities and both collision energies. Earlier, especially
with (ad hoc normalized) LO cross sections and the forward
ALICE data at 5.02 TeV, this seemed not to be the case [36].

Second, as a further check of our UPC results from the
“bare bones” GPD/PDF framework, we study in Fig. 2 to
what extent we can reproduce the exclusive J/ψ photopro-
duction cross sections measured in ep collisions at HERA and
in pp collisions at the LHC.3 The NLO cross sections here
are, for consistency, computed with the CT14NLO PDFs [64],
which is the free-proton PDF set that the EPPS16 nPDFs are
based on. The envelope shows again the uncertainty arising
from varying the scale μ between MJ/ψ/2 and MJ/ψ . The
HERA data in the figure are from H1 [26] and ZEUS [27],
and the LHC data from LHCb [28,29]. The solid (red) line
in the middle of the envelope is again the NLO cross sec-
tion computed with our “optimal” scale which reproduced
the nuclear data. As expected based on Ref. [30] and other
previous NLO studies of this process [31–35], the scale de-
pendence is indeed large, and especially towards larger values
of the photon-proton c.m.s. energy W the data easily fall
within the envelope. From the point of view of the nuclear
UPCs the most relevant c.m.s.-energy region here is W =
10–700 GeV (see the second x axis in Fig. 5 ahead). Interest-
ingly, our framework with the “optimal” scale leads to a rather
reasonable overall agreement with the HERA/LHC ep/pp
data as well, except perhaps for the very lowest W points.
As suggested by earlier work [30–35], there is room for GPD
modeling testable against the ep/pp data, but, given the large
scale and PDF uncertainties (discussed in Fig. 13 ahead),
and also the exploratory nature of the present NLO study
for UPCs of nuclei, we leave this as a future improvement.

3The photoproduction cross sections are extracted from the LHC
pp data through rather minimal modeling [28,29].

With Fig. 2, it is also worth emphasizing that in the previous
LO UPC studies one has typically normalized the LO cross
sections to the HERA/LHC ep/pp data and carried the ob-
tained normalization factor then over to the UPC study, while
in our current NLO study there are no ad hoc normalization
factors.

Third, we investigate the stability of the rapidity-
differential J/ψ photoproduction cross sections in Pb + Pb
UPCs, i.e., the changes in the magnitude and shape, and in
the scale-dependence of the cross sections, when moving from
LO to NLO in pQCD. These questions are answered by Fig. 3,
where we show the rapidity-differential cross sections com-
puted with various fixed scales μ between MJ/ψ/2 and MJ/ψ in
the LO and NLO cases (upper and lower panels, respectively).
To be exact, the LO here refers to the purely gluonic Born-
term contribution which enters the full NLO result. For the
computation, we again use the EPPS16 nPDFs. We observe
that the overall effect of the NLO terms is to reduce the LO
cross sections rather significantly, at the “optimal” scale by a
factor of 2.3 at midrapidity, and by a factor of 3.3 at y = ±4.
We also see that the studied scale variation causes about a
factor of 20 change in the LO case while in the full NLO
result the change is about a factor of 50. These results confirm
the expectations based on Ref. [30] also now in the nuclear
UPC case, that at the low scales of μ = O(MJ/ψ ) the NLO
contributions do not stabilize the results, yet, but bring the
cross sections nevertheless into the right direction. Interest-
ingly, as seen in Fig. 3, also the whole shape of both the LO
and the NLO results is quite sensitive to the scale μ, and again
perhaps even more so at NLO, in this scale range. In the LO
case, the strong scale dependence can be traced back mainly
to the rapidly changing gluon distributions, while in the NLO
terms the scale μ resides both in the pQCD matrix elements
and in the PDFs. In particular, as we will soon see, in the NLO
cross sections the rapidly evolving small-x quark PDFs start

035202-7



K. J. ESKOLA et al. PHYSICAL REVIEW C 106, 035202 (2022)

FIG. 3. Upper panel: Rapidity-differential exclusive J/ψ photoproduction cross sections in Pb + Pb UPCs at
√

sNN = 5.02 TeV, as a
function of the rapidity y, computed at LO pQCD with the EPPS16 nPDFs at various fixed scales μ. The lowest- and highest-scale results here
give the envelope shown in Fig. 1. The result with our “optimal” scale is shown by the solid curve. Lower panel: The same but at NLO pQCD.

to play a surprisingly important role, and at midrapidities even
a dominant one.

To analyze the scale dependence of our LO and full NLO
results and their interrelation further, we plot in Fig. 4 the
computed rapidity-differential cross sections at fixed rapidi-
ties y = 0 and at y = ±4 as a function of the scale μ. As we
see, at y = 0 the scale dependence at low scales is stronger
in the NLO than in the LO results, but towards higher scales
it actually becomes weaker. At y = ±4 we see the scale de-
pendence being stronger in NLO at all scales studied. Thus,
whether the scale dependence is improved (tamed) when go-
ing from LO to NLO depends on the rapidity y and potentially
also the scale-choice region. Another interesting observation
is that our “optimal” scale μ = 2.37 GeV is right in the region
where the scale dependence at y = 0 turns from stronger to
weaker relative to LO, i.e., where the LO and NLO results are
closest to each other. At y = ±4, however, we do not find a

similar taming effect to take place. This figure also shows how
the NLO/LO ratio (“K factor”) is not a constant as a function
of the scale, and certainly not a constant as a function of the
J/ψ rapidity.

B. Complex structure of the cross section

Next, we discuss the very interesting consequences of the
complex structure of the rapidity-differential J/ψ photopro-
duction cross sections in 5.02 TeV Pb + Pb UPCs. First,
in Fig. 5 we study the k± contributions in Eq. (4) to the
rapidity-differential J/ψ photoproduction NLO cross sec-
tion in 5.02 TeV Pb + Pb UPCs, computed with EPPS16 at
our “optimal” scale. The photon-proton c.m.s. energy corre-
sponding to the photon energies k± in Eq. (4) are denoted
by W ± in what follows. As indicated by the second x axis
at the top of Fig. 5, W + (W −) increases to the right (left). As
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FIG. 4. The NLO (crosses and stars) and LO (filled circles and boxes) rapidity-differential cross sections of Fig. 3 at y = 0 (solid lines)
and y = ±4 (dashed lines), as a function of the scale choice μ.

we saw in Fig. 2 above, the photoproduction cross section in
the k± terms of Eq. (4) increases as a function of W ±, corre-
spondingly. The photon flux, however, decreases rapidly as a
function of the energy W ± (see, e.g., Fig. 3 of [63]), causing
the nonmonotonic behavior of the two symmetric contribu-
tions, as seen in Fig. 5. Looking at the W + curve (dashed, red)
we see that first at backward-most rapidities the photon flux is
high enough to produce a noticeable cross section in spite of
the smallness of the photoproduction cross section there. Also
the t integral of the squared form factor of Eq. (8) reaches
non-negligible values by y ≈ −4, which also contributes to
the initial rise of the cross section at backward-most rapidities.

Then in the “shoulder” region the decrease of the photon flux
wins over the increase of the photoproduction cross section,
causing the small dip seen in the figure. Approaching then
midrapidities, the increase of the photoproduction cross sec-
tion now wins over the decrease of the photon flux, until
eventually towards forward-most rapidities the photon flux
decrease again dominates and the resulting cross section dies
out. For the W − component (dotted green curve), the behavior
is a mirror image of this, and the final result (solid blue curve)
is a combination of the W ± contributions as seen in the figure.

Second, we quantify the contributions from the imaginary
and real parts of the amplitude. The decomposition of the

FIG. 5. Contributions from the W + (dashed, red curve) and W − (dotted, green curve) terms in Eq. (4) to the NLO exclusive rapidity-
differential J/ψ photoproduction cross section in 5.02 TeV Pb + Pb UPCs as a function of the J/ψ rapidity y, computed using EPPS16 nPDFs
and with our “optimal” scale. The second x axis on the top shows the values of W + corresponding to each y.
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FIG. 6. Upper panel: Contributions from the real part (dotted green curve) and imaginary part (dashed red curve) of the amplitude to the LO
exclusive rapidity-differential J/ψ photoproduction cross section in 5.02 TeV Pb + Pb UPCs (solid blue curve) as a function of the rapidity,
computed using the EPPS16 nPDFs at our “optimal” scale. Lower panel: The same but in NLO.

full result (∝ |M|2) into the contributions from the real part
(∝ |Re(M)|2) and the imaginary part (∝ |Im(M)|2) for both
the LO and NLO cross sections is shown in Fig. 6. These
results are again obtained with the EPPS16 nPDFs and fixing
μ to our “optimal” scale. The LO here again refers to the Born
term contributions entering the full NLO result. As the upper
panel shows, in the LO case where only gluons contribute,
we confirm—at least for gluon PDFs of a modest small-x
rise, such as those in EPPS16/CT14NLO—the general claim
that the contribution from the imaginary part of the amplitude
clearly dominates at all rapidities. However, as the lower panel
shows, the situation changes rather dramatically for the NLO
cross sections: At midrapidity the contribution from the real
part of the amplitude is about a quarter, which clearly is no
longer negligible. Towards forward/backward rapidities the
real-part contributions become even more important and, as
seen in the figure, there is a region at large/small rapidities

where they dominate over the imaginary-part contributions.
These findings are also consistent with those of Ref. [30];
see Fig. 17 there. The message from Fig. 6 is clear: both the
imaginary and real parts of the amplitude must be accounted
for in the calculation of these cross sections.

Third, in Fig. 7, we investigate the breakdown of the com-
puted J/ψ photoproduction NLO cross section in 5.02 TeV
Pb + Pb UPCs into the quark and gluon contributions, using
EPPS16 and our “optimal” scale. The solid (blue) curve la-
beled “Full |M|2” is the full NLO cross section of Fig. 6,
while the dashed red (dotted green) curve labeled “Only
Gluons” (“Only Quarks”) is obtained by setting the quark
(gluon) distributions to zero. The dashed-dotted curve labeled
“Interference” corresponds to the remaining contribution from
the cross section pieces that contain both quarks and gluons.
As shown by Fig. 7, at midrapidity the quarks-only contri-
bution dominates over the gluons-only by a factor of 4, and
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FIG. 7. Decomposition of the exclusive rapidity-differential J/ψ photoproduction cross section, computed with EPPS16 nPDFs at our
“optimal” scale, in 5.02 TeV Pb + Pb UPCs (solid blue curve “Full |M|2”) into the contributions with zero quark distributions (dashed orange
curve “Only Gluons”), with zero gluon distributions (dotted green curve “Only Quarks”) and the one with a mixing of the quark and gluon
distributions in the square of the full NLO amplitude (red dashed-dotted curve “Interference”).

the quark-gluon term over the gluons-only by a factor of 3.
Towards forward/backward-most rapidities the gluons-only
contributions become the dominant ones, and we can see that
the gluon-quark term also changes its sign when going from
midrapidity to forward/backward rapidities.

Recalling the original attraction of the exclusive J/ψ
photoproduction in electron-proton collisions and in nuclear
UPCs as an exceptionally efficient probe of small-x gluon dis-
tributions, the results in Fig. 7 appear at first sight somewhat
surprising. Especially the quark dominance at midrapidity
seems to be in direct contradiction with the original LO-based
gluon-probe suggestion, and in fact also with our expectation
that small-x gluons should after all dominate also the NLO
contributions.

A better understanding of this clearly calls for a more
detailed look at the individual contributions in the LO and
NLO amplitudes. For this purpose, we write the full NLO
amplitude in terms of the LO gluon part MLO

G and NLO gluon
and quark parts MNLO

G and MNLO
Q ,

M = MLO
G + MNLO

G + MNLO
Q , (31)

so that the squared amplitude entering the cross section be-
comes

|M|2 = ∣∣MLO
G + MNLO

G

∣∣2 + ∣∣MNLO
Q

∣∣2

+ 2
[
Re

(MLO
G + MNLO

G

)
Re

(MNLO
Q

)
+ Im

(MLO
G + MNLO

G

)
Im

(MNLO
Q

)]
. (32)

The gluons-only contribution in Fig. 7 comes from the term

∣∣MLO
G + MNLO

G

∣∣2 = [
Re

(MLO
G

) + Re
(MNLO

G

)]2

+ [
Im

(MNLO
G

) + Im
(MNLO

G

)]2
(33)

and the quarks-only contribution from∣∣MNLO
Q

∣∣2 = [
Re

(MNLO
Q

)]2 + [
Im

(MNLO
Q

)]2
, (34)

while the gluon-quark interference contribution corresponds
to the third term on the right-hand side of Eq. (32).

Figure 8 shows the above real and imaginary parts of the
amplitude, multiplied with the factor ξ/C [(see Eq. (13)],
as a function of the rapidity corresponding to W +.4 This
figure finally reveals exactly what is behind the quark and
gluon contributions in Fig. 7: In their absolute values, the
LO and NLO gluon amplitudes MLO

G and MNLO
G indeed do

clearly dominate over the quark contribution MNLO
Q both in

the real and imaginary parts. However, due to their opposite
signs, the LO and NLO gluon amplitudes cancel to a large
degree in both the real and imaginary parts. The exact effi-
ciency of the cancellation depends on the rapidity (W +), and
Im(MLO

G ) + Im(MNLO
G ) changes its sign from plus to minus

when approaching backward rapidities, which causes the sign
change of the quark-gluon mixing term in Fig. 7. Let us look
at the following three example-rapidities:

(i) At y = 0, where the W ± components contribute
equally (see Fig. 5), the cancellation of the gluon
terms is coincidentally (that is, with these PDFs) al-
most perfect in the imaginary part, so that[

Im
(MLO

G + MNLO
G

)]2 �
[
Re

(MNLO
Q

)
]2

<
[
Re

(MLO
G + MNLO

G

)]2

� [
Im

(MNLO
Q

)]2
, (35)

which makes the imaginary part of the quark am-
plitude dominate the cross section in Fig. 7. In the

4Recall that the photon flux and form factor do not enter here.
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FIG. 8. Upper panel: The ξ/C-scaled real parts of the full amplitude M (solid blue curve), LO gluon term MLO
G (dashed orange), NLO

gluon term MNLO
G (dashed dotted green), sum of the LO and NLO gluon terms MLO

G + MNLO
G (solid purple with filled circles), and NLO quark

term MNLO
Q (dotted red), as a function of the J/ψ rapidity y, for the contribution W +. For the definition of the scaling factor, see Eq. (13).

Lower panel: The same but for the imaginary parts of the amplitudes. Notice the different vertical scale.

quark-gluon mixing term then the product of the
imaginary parts dominates over the product of the
real parts, and due to the large Im(MNLO

Q ) the quark-
gluon contribution dominates over the gluons-only
term.

(ii) At y ≈ −3, Fig. 5 indicates that the W ± contribu-
tions are equally important, so that Fig. 8 should be
read both at y ≈ −3 and y ≈ +3. The squared am-
plitude is larger for y = 3 but the rapid decrease of
the W −-component’s photon flux and nuclear form
factor towards negative rapidities now suppresses the
W − component so that it becomes of the same magni-
tude as the W + component whose squared amplitude
is smaller but whose photon flux is correspondingly
larger. As seen in Figs. 6 and 7, as a result of these

competing effects the real and imaginary parts of
the amplitude, as well as quarks and gluons, then
contribute equally to the rapidity-differential cross
section at y ≈ −3.

(iii) At y ≈ −4, where the cross section is dominated by
the W + component as seen in Fig. 5, the LO and
NLO gluon terms cancel to a much smaller degree
both in the real and imaginary parts, and the hierarchy
becomes

[
Re

(MNLO
Q

)]2 � [
Re

(MLO
G + MNLO

G

)]2

�
[
Im

(MNLO
Q

)]2

� [
Im

(MLO
G + MNLO

G

)]2
, (36)
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FIG. 9. Rapidity-differential exclusive J/ψ photoproduction cross section in 5.02 TeV Pb + Pb UPCs, computed with the EPPS16 nPDFs
(solid orange curve), with CT14NLO PDFs (dashed blue curve), with CT14NLO gluons and EPPS16 quarks (dotted-dashed green curve),
and with CT14NLO quarks and EPPS16 gluons. Notice that turning off the nuclear effects in gluons reduces the cross section at y = 0; for
explanation, see the text.

causing the gluons-only terms to dominate over the
quarks-only by almost a factor of 4. In this case,
the sizable quark-gluon mixing term is deeply nega-
tive because of the large negative term Im(MLO

G ) +
Im(MNLO

G ). It is again the negative sign of this
term that in the full amplitude causes [Re(M)]2 �
[Im(M)]2, seen in Fig. 8 and in the lower panel of
Fig. 6 at y = −4 to − 3.

As shown by Figs. 5–8, the full NLO cross section thus
has a very detailed complex structure with interplays between
the photoproduction cross section, the photon flux, and the nu-
clear form factor, between the W ± components, and especially
between the various contributions from the real and imaginary
parts of the amplitude. The key to understand the obtained
rapidity-differential cross sections is the degree of cancella-
tion of the LO and NLO gluon contributions of opposite signs.
We have also checked that the situation is qualitatively the
same for the 2.76 TeV collision energy, and that the real part
contributions become slightly more important for all values of
y than for the 5.02 TeV case. We have also checked that, in the
case of no nuclear effects, the situation remains qualitatively
the same.

C. Nuclear effects and PDF uncertainties in the cross section

Next, we analyze how the nuclear modifications of the
PDFs as well as the uncertainties of the nuclear and free-
proton PDFs propagate into the exclusive rapidity-differential
J/ψ photoproduction cross sections.

Figure 9 compares the rapidity-differential cross sec-
tions at 5.02 TeV obtained at our “optimal” scale with
the EPPS16 nPDFs (solid orange curve) and the one ob-
tained with the CT14NLO free-proton PDFs (dashed blue)
which are the baseline for EPPS16. As seen in the figure, at

midrapidity, where the W ± terms contribute equally, the cross
sections show a reduction of a factor of 0.76 from CT14NLO
to EPPS16. Towards backward/forward rapidites, i.e., in the
regions where the W ± terms contribute significantly and probe
the nuclear effects in different x regions, the net nuclear
effects are slightly increasing. Finally at the backward-most
(forward-most) rapidities, where the single W + (W −) contri-
bution dominates and one enters the antishadowing region, the
nuclear effects essentially die out.

The general behavior and magnitude of the nuclear effects
here can be understood as follows:

(i) First, we recall from Figs. 7 and 8 that it is the
imaginary part of the quark amplitude that domi-
nates the cross section at y = 0. Recalling that ξ (y) =
ζ (y)/[2 − ζ (y)], where ζ (y) = M2

J/ψ/W 2 and W 2 =
MJ/ψey√sNN , we have ξ (y = 0) ≈ 3 × 10−4. This
is deep in the shadowing region of nPDFs, and in
EPPS16 at this x and our “optimal” scale the average
nuclear sea-quark (gluon) modification is about 0.68
(0.74). The fact that there seems to be a weaker than
quadratic dependence on the PDF’s nuclear modi-
fication factor follows, to our understanding, from
two reasons: First, in the NLO amplitudes one in-
tegrates the parton distributions over x from zero to
one: At x � ξ shadowing is about a constant factor
(in EPPS16) while at x � ξ shadowing diminishes, so
that the net effect of the x integration is a taming of the
nuclear effect from that at x = ξ . Second, and most
importantly, as discussed in detail below, it is again
the surprisingly complicated interplay of the different
parts of the amplitude and in particular the mutual
cancellation of the LO and NLO gluon amplitudes
that causes the quark-gluon mixing term to actually
cancel some of the nuclear effects.
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(ii) Towards backward rapidities there are competing nu-
clear effects as W + decreases, the probed values
of ξ increase and the nuclear modifications thereby
decrease, and, as simultaneously W − increases, the
probed values of ξ decrease and the nuclear modifica-
tions thereby increase (and towards forward rapidities
conversely). And, as seen in Fig. 7 also quarks and
gluons compete over the dominance of cross section,
the quark dominance turning into a gluon one towards
backward/forward rapidities.

(iii) At the backward rapidity y = −4 then, we recall that
the W + contribution (Fig. 5) and the NLO real part
of the full amplitude (Figs. 6 and 8) dominate the
cross section, and from Fig. 7 we again see that both
quarks and gluons contribute here. Now ξ (y = −4) ≈
1.7 × 10−2 and the EPPS16 gluon (quark) modifica-
tion is a factor of 0.88 (0.86) while the net nuclear
effect is about a factor of 0.68, i.e., surprisingly large.
In this region the integration over x does not tame the
nuclear effects to the same degree as at small values of
x, and in particular the large and negative quark-gluon
mixing term drives the efficiency of nuclear effects up
here.

Given the complex intertwined structure of the
cross section, it is also useful to analyze what happens
if we start from the EPPS16 result and separately turn
off the nuclear effects from gluons and quarks, one at
the time.

(iv) First turning off the nuclear effects (suppression) in
the gluon PDFs results in the dashed-dotted (green)
curve labeled “Gluons with CT14NLO” in Fig. 9,
which shows a reduction in the cross section rel-
ative to the EPPS16 result (solid orange curve) at
midrapidity. This seems again quite counterintuitive,
as we would naively expect a removal of suppres-
sion to cause an increase instead. Such a behavior
can, however, be again understood by studying the
real and imaginary parts of the amplitude: In their
absolute values, Re(MLO

G ), Re(MNLO
G ), Im(MLO

G ),
and Re(MNLO

G ) all behave as expected, i.e., their
absolute values indeed grow when the nuclear shad-
owing (suppression) is removed. However, nuclear
modifications of the PDFs affect the LO and NLO
amplitudes in a slightly different manner. Hence,
the degree of the cancellation of Re(MLO

G ) against
Re(MNLO

G ) and of Im(MLO
G ) against Im(MNLO

G )
changes when switching the PDFs from EPPS16 to
CT14NLO. With the CT14NLO gluons at this scale,
the cancellation of Im(MLO

G ) against Im(MNLO
G )

happens to be practically perfect. This in turn elimi-
nates the previously large contribution 2[Im(MLO

G ) +
Im(MNLO

G )]Im(MNLO
Q ) in the quark-gluon mixing

term, causing the suppression that we see in Fig. 9
at midrapidity.

(v) Then, turning off the nuclear effects in the quark
distributions but leaving them on in the gluon con-
tribution results in the dotted black curve, which lies
rather close to the pure CT14NLO case of no nuclear
PDF effects at all. This time this is an obvious result,

as at midrapidity the quark part Im(MNLO
Q ) dominates

the cross section and removing the suppression in
the PDFs just increases the cross section as expected.
Figure 9 thus underlines the quark dominance demon-
strated earlier in Fig. 7.

Because of the rather counterintuitive results above, and
since there is the integration over x from zero to one in the
NLO amplitude, we would like to confirm that NLO exclusive
photoproduction of J/ψ in Pb + Pb UPCs at the LHC in-
deed probes the small-x shadowing region (x � 0.03–0.04 in
EPPS16), and not the antishadowing region (0.03–0.04 � x �
0.3 in EPPS16) in the nPDFs. If the process indeed probes the
quark and gluon distributions at x = O(ξ ), and ξ (y = 0) ≈
3 × 10−4, then the biggest effect to the final result (relative
to the CT14NLO result above) should be attained by turning
on only the nuclear corrections in the shadowing region. We
have checked that this is indeed the case: Running the code
with ad hoc modified nPDFs that coincide with EPPS16 in the
shadowing region and with CT14NLO elsewhere, the results
are essentially (within 6%) the same as the EPPS16 results.

Next, we investigate how sensitive the studied cross sec-
tions are to the choice of the nPDFs. Figure 10 shows the
rapidity-differential cross sections obtained with the cen-
tral sets of the EPPS16 (solid orange curve), nCTEQ15
(dashed green), and nNNPDF2.0 (dotted blue) nPDFs. The
nCTEQ15 set gives essentially the same result as EPPS16
but there seems to be a huge difference in the nNNPDF2.0
set. The shape of the nNNPDF2.0 result is very different
from EPPS16/nCTEQ15, and the magnitude at forward and
backward rapidities is off by about a factor of 15. We have
traced the very fast growth of the cross section down to the
rapidly growing real part of the LO gluon amplitude, which
includes again the integration over x from 0 to 1 where the
small-x gluons (in the ERBL region x � ξ but near x ∼ ξ )
start to play a significant role with nNNPDF2.0. The real part
of the LO gluon amplitude is not as well numerically can-
celing against the real part of the NLO gluon amplitude with
nNNPDF2.0 as with EPPS16/nCTEQ15, which in turn makes
the forward/backward-y cross section again more sensitive to
the small-x gluon distributions, and this is what we see in
Fig. 10.

We plot in Fig. 11 the gluon distributions xg(x, μ) and
the quark singlet distributions F q,S = ∑

q[q(x, μ) + q̄(x, μ)]
from EPPS16, nCTEQ15, and nNNPDF2.0 nPDFs as they
enter our computation at the “optimal” scale. The figure con-
firms the similarity of the EPPS16 and nCTEQ15 PDFs and
shows that the nNNPDF2.0 quarks differ systematically from
these at x � 10−5 and the gluons at x � 10−4. In Fig. 10,
the increased small-x gluons of nNNPDF2.0 make the W −
component of the cross section the dominant one at y =
−3. For the W − contribution ξ (y = −3) = O(10−5), and at
these values of x, Fig. 11 indicates already a factor of three
difference between the nNNPDF2.0 and EPPS16/nCTEQ15
gluons.5 The square of this difference then explains the order

5With the nNNPDF3.0 set [48], published recently, this is no longer
the case.
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FIG. 10. Rapidity-differential exclusive photoproduction of J/ψ in 5.02 TeV Pb + Pb UPCs, computed at our “optimal” scale using the
EPPS16 [45] (solid orange curve), nCTEQ15 [44] (dashed green), and nNNPDF2.0 [46] (dotted blue) nPDFs.

of magnitude of the difference between the nNNPDF and
EPPS16/nCTEQ15 results seen in Fig. 10.

Next, we investigate the PDF uncertainties in the com-
puted rapidity-differential cross sections and compare them
with the existing data. We propagate the PDF/nPDF uncer-
tainties to the computed cross sections using the asymmetric
form [45]

δO± =
√∑

i

[max

min
{O(S+

i ) − O(S0),O(S−
i ) − O(S0), 0}]2

,

(37)
where S±

i labels the error sets for the given PDF. We plot the
error sets of EPPS16 + CT14NLO in Fig. 12 for the gluon
distributions xg(x, μ), and for the quark singlet distributions

F q,S , again at our “optimal” scale. As the figure shows, one
CT14-related error set, Set93, of the EPPS16 implementation
in LHAPDF [86] (error set 53 in CT14NLO), stands clearly
out at smallest values of x, and even more strongly than the
nNNPF2.0 PDFs did in Fig. 11, while the rest of the EPPS16-
related and CT14-related error sets show only rather moderate
variations with respect to the central sets. Similarly to the case
with the nNNPDF2.0 nPDFs above, the rapid growth of the
small-x gluon distributions in this error set induces again a
rapid growth of the real part of the LO gluon amplitude, and
hence the cross sections.

Figure 13 shows the uncertainties that are induced to the
rapidity-differential exclusive J/ψ photoproduction cross sec-
tions in 5.02 TeV (upper panel) and 2.76 TeV (lower panel)

FIG. 11. The nPDF gluon distributions xg(x, μ) and the quark singlet distributions F q,S = ∑
q[q(x, μ) + q̄(x, μ)] as given by EPPS16

(solid lines), nCTEQ15 (dashed), and nNNPDF2.0 (dotted) nPDFs at the “optimal” scale.
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FIG. 12. The error sets of EPPS16 and CT14NLO nPDFs and PDFs for the gluon (lower set of curves) and quark-singlet distributions
(upper set) as functions of x, at our “optimal” scale. Altogether 96 error sets are plotted, of which the numbers 1–40 in the LHAPDF setup [86]
of EPPS16 are for the nuclear effects and 41–96 for the CT14NLO free-proton PDFs. The CT14NLO-related Set93 is the one clearly standing
out from the rest at x � 10−4.

Pb + Pb UPCs by the PDF/nPDF uncertainties. The uncer-
tainties arising from the EPPS16 nuclear effects alone are
shown by the dark (blue) bands, while the full EPPS16 +
CT14NLO error bands (green) contain uncertainties from
both the nuclear effects and the free-proton baseline PDFs.
The results with EPPS16 and CT14NLO central sets are
shown by the solid (blue) curves. As expected based on
Fig. 12, “Set93” above entirely dictates the green error
bands. The EPPS16 + CT14NLO full uncertainty band at
mid-rapidity (not shown in the figure) goes up to some
150 (37) mb and at y ≈ ±2.2 as high as 1500 (170) mb for
the 5.02 (2.76) TeV collision energy. We also have checked
that without Set93 the CT14NLO uncertainties become of
the same order and slightly smaller than those for EPPS16.
For comparison with the EPPS16 results, we also plot the
uncertainty bands (hatched) arising from the nCTEQ15 error
sets. These now account for the uncertainties in the nuclear
effects only, and not in the free-proton PDFs. The central-set
results with nCTEQ15 are shown by the dashed (red) line. We
should also emphasize that the nCTEQ15 results here have
been obtained at our “optimal” scale, without further tuning
of the scale.

As we have already seen, the EPPS16 results produce a rel-
atively good fit to the experimental Run1 and Run2 data at our
“optimal” scale, and as seen in Fig. 13, so do the nCTEQ15
ones, too. The uncertainties arising from the nuclear effects
in EPPS16 and nCTEQ15 are of the same order of magnitude
mutually, and typically somewhat larger than the error bars of
the data. As the figure indicates, one must not forget the free-
proton PDF uncertainties when considering absolute cross
sections. Finally, regarding the tension between the ALICE
and LHCb data in the forward/backward direction, we can
see that at least at our “optimal” scale both the EPPS16 and
nCTEQ15 results (but obviously not the nNNPDF2.0) seem
to reproduce the LHCb data points better but that both data

sets can still be accommodated within the larger EPPS16
uncertainties.

IV. SUMMARY

We have presented the very first implementation of
exclusive rapidity-differential J/ψ photoproduction cross sec-
tions in ultraperipheral nucleus-nucleus collisions in the
framework of collinear factorization and NLO perturbative
QCD. We have developed our numerical code for the ultrape-
ripheral nuclear collisions based on the analytical NLO results
of Ref. [30], utilizing the experience obtained also in [35,49],
and following earlier literature in accounting for the photon
fluxes of the colliding nuclei [3,5,13,62,63,88–90] and for the
t dependence of the cross section with a standard nuclear
form factor. In this exploratory NLO study for the UPCs,
we approximate the GPDs involved in the process with their
forward-limit nuclear PDFs. Our default choice for the nPDFs
and their error sets is EPPS16 [45] but we also study the
nPDF sensitivity of our results by using nCTEQ15 [44] and
nNNPDF2.0 [46].

We have shown that, as expected based on Ref. [30], the
computed rapidity-differential NLO cross sections of J/ψ
photoproduction in 5.02 and 2.76 TeV Pb + Pb UPCs at the
LHC, as well as the corresponding photoproduction cross
sections in ep collisions at HERA, are both in their magni-
tude and in their shape quite sensitive to the scale choice.
As the scale sensitivity is much larger than the error bars
of the experimental data at the LHC, it makes it difficult
to make solid NLO predictions of the corresponding J/ψ
cross section for UPCs at other energies. Quite encouragingly,
however, we have found that a scale choice μ ≈ 0.76MJ/ψ ,
which lies in the physically reasonable range μ = O(MJ/ψ ),
can actually be determined, with which we can well reproduce
the ALICE [36–39], LHCb [41], and CMS [40] UPC data
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FIG. 13. Upper panel: Uncertainties originating from the nPDFs/PDFs in the rapidity-differential exclusive J/ψ photoproduction NLO
cross sections in 5.02 TeV Pb + Pb UPCs, computed at our “optimal” scale μ = 2.37 GeV using the EPPS16 + CT14NLO and nCTEQ15
error sets. The solid (dashed) line shows the EPPS16 + CT14NLO (nCTEQ15) central-set result, and the corresponding uncertainty bands are
explained in the text. The experimental data points are from Run2 and the same as in the upper panel of Fig. 1. Lower panel: The same but for√

sNN = 2.76 TeV and with the same Run1 data as in the lower panel of Fig. 1.

at these energies. We have also tested that the same scale
choice, called here the “optimal” scale, works well also with
the nCTEQ15 nPDFs. Interestingly, in studying the scale sen-
sitivity at a fixed value of y = 0, we noticed that towards the
upper end of the scales studied here the scale sensitivity of the
full NLO result becomes actually weaker than that of the LO
result, but towards the lower end of scales it becomes stronger
than in LO. Also interestingly, at midrapidity the “optimal”
scale becomes fixed right in the scale region where the NLO
contributions are the smallest relative to LO. In the future, it
will be interesting to see whether this “minimal-sensitivity”
feature remains there also after further modeling of the GPDs.

We have made an effort to analyze in sufficient detail
the surprisingly complex structure of the exclusive rapidity-
differential J/ψ photoproduction NLO cross sections in Pb +

Pb UPCs at 5.02 and 2.76 TeV. In particular, we have
shown how the computed NLO cross sections form under
various competing and intertwining effects: There are com-
peting contributions from the photon-nucleon c.m.s. energy
W ± components, from the real and imaginary parts of the full
amplitude, from the quark and gluon GPD/PDF contributions
which also mix in a nontrivial way in the squared amplitude,
and most importantly of all, from the gluonic LO and NLO
amplitudes which come with opposite signs and cancel each
other to a degree that nontrivially depends on the W ±. All
these competing contributions need to be taken into account
in the full NLO study, as is done in the current paper.

The main result of our NLO study with the EPPS16 nPDFs,
similar to the findings in Ref. [30] but now for UPCs, is
that due to the canceling LO and NLO gluon amplitudes it
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is predominantly the small-x quark GPDs/PDFs that exclu-
sive J/ψ photoproduction is probing in UPCs at midrapidity,
and not the gluon distributions as has been traditionally sug-
gested before based on LO. This is an important result not
addressed before, to our knowledge, in the UPC context. We
have also checked that this result is robust against the scale
variation studied here. We have also shown that towards the
forward/backward rapidities the gluon dominance is eventu-
ally recovered but because of the folding with the photon flux
(which kills one of the W ± contributions) the nuclear gluon
GPDs/PDFs become probed at larger values of x (where shad-
owing effects become smaller) than at midrapidity. Thus, our
conclusion is—at least in our current “bare bones” GPD/PDF
framework and with the EPPS16 and nCTEQ15 nPDFs—that
the exclusive rapidity-differential J/ψ photoproduction cross
sections at the LHC are not as a direct and efficient probe of
the small-x nuclear gluon PDFs as thought before, but that
they are primarily probed (at midrapidity at least) through the
DGLAP evolution of the quark GPDs/PDFs. Another impor-
tant observation is that at midrapidity the dependence of the
computed NLO cross sections on the nuclear effects in PDFs
is not as quadratic as thought before in the LO gluon context.
The taming of the net nuclear effects follows partly from the x
integration in the NLO amplitude but predominantly from the
behavior of the interference term in the squared amplitude,
which mixes the quark and gluon contributions in a nontrivial
way.

We have also investigated the dependence of our results
on the uncertainties of the PDFs. The nCTEQ15 central-set
results are essentially the same as those with the central set of
EPPS16. At midrapidity, where the quark contributions dom-
inate, these two sets show very similar error bands when the
uncertainties of the nuclear effects in the PDFs are propagated
into the NLO cross sections. Towards forward/backward ra-
pidities where gluons dominate, the EPPS16 uncertainties
become slightly larger, which follows from the more realistic
(due to having more freedom in the gluon PDF shape there)
estimates of the gluon nPDF uncertainties than in nCTEQ15.
In any case, in the current “bare bones” GPD/PDF frame-
work, we observe that both the forward ALICE [38] and
LHCb [41] data can be accommodated within the nuclear PDF
error bands, while the results with the central sets of EPPS16
and nCTEQ15 agree better with the LHCb data.

Finally, we have observed that if there is a very rapid rise
in the small-x gluon distributions, such as in the nNNPDF2.0
central set and the error set 53 in the CT14NLO free-proton
PDFs [64] (93 in EPPS16 at LHAPDF), then the smallest-
x contribution to the real part of the gluon LO amplitude
starts to dominate the cross sections. Concretely, in our results
when the EPPS16 nuclear errors and the CT14NLO errors
are appropriately combined, the CT14NLO error set 53 (93

in EPPS16 at LHAPDF) dictates the upper boundaries of
the very large uncertainty band on our central result. In our
“bare bones” GPD/PDF framework, such a growth seems
to be ruled out by the UPC data considered here. However,
before we can make any further conclusions on this point,
uncertainties arising from the modeling of GPDs should be
quantified.

The current paper is meant as a baseline for systematic
further studies of exclusive photoproduction of vector mesons
in ultraperipheral nucleus-nucleus collisions, in collinear fac-
torization and NLO pQCD. An obvious next task is to repeat
the NLO study for the photoproduction cross sections of ϒ

mesons, to investigate in particular how much the scale de-
pendence changes and check exactly what happens with all
the intertwined effects at the higher scales μ = O(Mϒ ). On
the basis of Ref. [30], we would expect to see a reduced scale
sensitivity and a stronger dependence on the gluon PDFs also
in the UPC case.

There are also several ways the current framework could
and should be improved. Our strategy for the current
exploratory study is that, as the scale- and PDF-related un-
certainties are so large, we may leave the GPD modeling
(such as in Ref. [56]) as a future challenge. Next, given the
studied “bare bones” GPD/PDF baseline, it will be interesting
to study how the nPDF uncertainties propagate to the GPDs
and via them to the NLO cross sections. As far as we can
see, based, e.g., on Refs. [54,91], the skewedness corrections
to the GPD quark distributions in the DGLAP region can be
expected to be larger for quarks than for gluons, which would
further strengthen our conclusion of the quark dominance at
midrapidity. Towards forward/backward rapidities, the gluon
dominance would then correspondingly kick in more slowly.
Particularly interesting here would be to study the role of
the nuclear effects in the ERBL region, where the PDFs are
known not to be an optimal approximation but which in the
current study turned out to be important essentially only with
PDF sets that have rapidly growing small-x distributions. Fu-
ture improvements would also include nonrelativistic QCD
corrections into the vector meson wave function [92–94].
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Next-to-leading order perturbative QCD predictions for exclusive J/ψ photoproduction in
oxygen-oxygen and lead-lead collisions at energies available at the CERN Large Hadron Collider
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We present predictions for the cross sections of coherent J/ψ photoproduction in lead-lead and oxygen-
oxygen ultraperipheral collisions (UPCs) as a function of the J/ψ rapidity at the LHC in the framework of
collinear factorization at next-to-leading order (NLO) in perturbative QCD. Taking generalized parton distribu-
tion functions in their forward limit and using the EPPS21, nNNPDF3.0, and nCTEQ15WZSIH nuclear parton
distribution functions, we update our recent results for Pb-Pb collisions, make detailed predictions for O-O
collisions for several beam energy configurations, and examine the ratio of O-O and Pb-Pb UPC cross sections.
We show that the latter observable allows one to significantly reduce the scale uncertainty of NLO predictions
for this process.

DOI: 10.1103/PhysRevC.107.044912

I. INTRODUCTION

Traditionally, parton distribution functions (PDFs) and
their nuclear counterparts, nuclear PDFs (nPDFs), have been
determined from inclusive processes such as lepton-hadron
deep inelastic scattering (DIS) and the production of leptons
pairs (Drell-Yan process), light and heavy mesons, dijets, and
gauge bosons in hadron-hadron scattering, see Refs. [1–4]
for recent reviews. The determination of proton and nuclear
PDFs has become an active branch of phenomenological ap-
plications of quantum chromodynamics (QCD), for recent
examples of global fits of PDFs and nPDFs, see Refs. [5–13].
However, despite the dramatic progress in the methodology of
PDF extraction from the available data, including an account
of higher-order (up to next-to-next-to-leading order, NNLO)
perturbative QCD corrections, effects of heavy (charm and
bottom) quark masses and small-x resummation and the re-
liance on sophisticated statistical and computational methods
(Bayesian and Hessian error estimates and neural networks),
the resulting PDFs and nPDFs still suffer from significant
uncertainties.

As a consequence, there is a continuing interest to explore
novel kinematics, processes, and observables, which would
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allow one to obtain additional constraints on the PDFs. In
particular, it has been discussed that the exclusive photopro-
duction of J/ψ mesons on the proton and nuclear targets
in the so-called ultraperipheral collisions (UPCs) allows one
to probe the gluon density of the target at small momen-
tum fractions x ∼ 10−5–10−3 and resolution scales μ2 ≈
3 GeV2 [14–19] (photoproduction of other quarkonium states,
ψ ′ and ϒ , has also been considered). This is based on the early
observation that in the leading logarithmic approximation, i.e.,
to the leading order (LO) of perturbative QCD (pQCD), the
cross section of this process is directly proportional to the
gluon density squared [20]. However, it was later found that
the next-to-leading order (NLO) QCD corrections involving
both gluon and quark distributions are very large [15,21],
which questions the common interpretation in terms of the
gluon density. While several methods to stabilize the NLO
results have been proposed [16,22,23], further theoretical and
phenomenological studies are still required.

We recently performed a detailed study of the cross sec-
tion of exclusive photoproduction of J/ψ mesons in Pb-Pb
UPCs at the Large Hadron Collider (LHC) as a function of
the J/ψ rapidity y in the framework of collinear factorization
and NLO pQCD, and confirmed the dramatic role of the NLO
effects [24]. In particular, we found that at central rapidities
the cross section is dominated by the quark contribution since
the gluon one largely cancels in the sum of the LO and the
NLO terms. Additionally, even though the scale dependence
of our results turned out to be, as expected, rather sizable,
we determined an optimal scale allowing for a simultaneous
reasonable description of the available Run 1 and Run 2
LHC data on this process. In addition, we observed that the
amplitude for this process is predominantly imaginary in a
broad range of rapidities with a small window at forward and
backward rapidities, where the real part gives the dominant
contribution.
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The purpose of this work is to extend the analysis of
Ref. [24] by (i) updating our previous results for Pb-Pb col-
lisions with three different state-of-the-art nPDF sets, namely,
EPPS21 [11], nNNPDF3.0 [12], and nCTEQ15WZSIH [8],
(ii) making detailed predictions for the O + O → O + J/ψ +
O rapidity differential cross section for the planned oxygen
run at the LHC [25,26], and (iii) presenting predictions for
the ratio of the J/ψ rapidity distributions in Pb-Pb and O-O
UPCs. This allows us not only to better control the theoretical
uncertainties associated with the nPDFs, but also to tame (re-
duce) the scale dependence of our NLO results by considering
the ratio of J/ψ production with different nuclear collision
systems. For the recent predictions of J/ψ photoproduction
in O-O UPCs at the LHC in the color dipole framework, see
Ref. [27].

The rest of the paper is organized as follows. In Sec. II, we
recapitulate the framework of NLO pQCD coherent exclusive
photoproduction of J/ψ in nucleus-nucleus UPCs, pointing
out specific extensions to the oxygen beams. Section III
contains our results, which include updated predictions for
dσ (Pb + Pb → Pb + J/ψ + Pb)/dy with the most recent
sets of nPDFs and their comparison to all available LHC data
on this process, detailed predictions for dσ (O + O → O +
J/ψ + O)/dy for the oxygen run with an analysis of the scale
dependence and the decomposition into the imaginary and real
parts as well as into the gluon and quark contributions, and,
finally, predictions for the ratios of the J/ψ rapidity distribu-
tions in O-O and Pb-Pb UPCs with an exhaustive analysis of
the scale and energy dependence. We discuss and summarize
our findings in Sec. IV.

II. COHERENT J/ψ PHOTOPRODUCTION IN
NUCLEUS-NUCLEUS UPCS IN NLO PQCD

In the equivalent photon approximation the cross section of
coherent J/ψ photoproduction in UPCs of nuclei (ions) A1

and A2, as a function of the J/ψ rapidity y, reads [28]

dσ A1A2→A1J/ψA2

dy
=

[
k

dNA1
γ (k)

dk

]
k=k+

σγ A2→J/ψA2 (W +)

+
[

k
dNA2

γ (k)

dk

]
k=k−

σ A1γ→A1J/ψ (W −),

(1)

where kdNA
γ (k)/dk is the flux of equivalent quasireal pho-

tons emitted by ions A1 and A2, k is the photon energy and
σγ A→VA(W ) is the cross section of coherent (without nuclear
breakup) J/ψ photoproduction on a nuclear target with W
being the collision energy of the photon-nucleon system. The
two terms in Eq. (1) represent two possibilities to arrive at
the same final state corresponding either to ion A1 emitting a
photon interacting then with ion A2 or ion A2 being a source of
photons interacting with ion A1. We define the positive rapid-
ity y in the direction of the ion A1, from which one obtains that
the relation between the photon energies k± and the rapidity
y is k± = (MJ/ψ/2)e±y, where k+ and k− refer to ions A1

(positive longitudinal momentum) and A2 (negative longitu-
dinal momentum), respectively, and MJ/ψ is the mass of J/ψ .

The corresponding photon-nucleon system energies are W + =√
2MJ/ψeyE2 and W − = √

2MJ/ψe−yE1, where E2 and E1 are
the per nucleon energies of beams A2 and A1, respectively. For
symmetric UPCs, we have E2 = E1 = √

sNN/2, where
√

sNN

is the nucleon-nucleon center-of-mass system (c.m.s.) energy.
The interference between the amplitudes, where the photons
are emitted by different nuclei, is important only at very small
values of the momentum transfer t (very small values of the
J/ψ transverse momentum) [29] and hence can be safely
neglected in the case of the UPC cross section integrated over
t , which we consider.

The flux of equivalent photons emitted by a relativistic ion
in UPCs is given by a convolution of the impact parameter
dependent photon flux NA

γ (k, �b) and the nuclear suppression

factor �AA(�b),

k
dNA

γ (k)

dk
=

∫
d2�b NA

γ (k, �b)�AA(�b), (2)

where �b is a two-dimensional impact parameter vector de-
noting the distance between the centers of colliding nuclei
in the transverse plane. Furthermore, the impact parameter
dependent photon flux NA

γ (k, �b) of a relativistic nucleus A with
Z protons can be readily calculated in QED [30],

NA
γ (k, �b) = Z2αe.m.

π2

∣∣∣∣∣
∫ ∞

0
dk⊥

k2
⊥F̃A

(
k2
⊥ + k2/γ 2

L

)
k2
⊥ + k2/γ 2

L

J1(|�b|k⊥)

∣∣∣∣∣
2

,

(3)
where αe.m. is the fine-structure constant, γL is the nucleus
Lorentz factor, J1 is the cylindrical modified Bessel func-
tion of the first kind, and F̃A(t ) is the nucleus form factor
normalized to one, i.e., F̃A(t ) = FA(t )/A. The nuclear form
factor FA(t ), accompanied with the normalization condition
FA(0) = A, is in turn given by the standard Fourier transform
of the nuclear density ρA(r),

FA(t ) =
∫

d3r eiq·rρA(r), (4)

where t = −|q|2.
The nuclear density is well known from measurements

of elastic electron-nucleus scattering and is usually pa-
rameterized in the form of two-parameter Fermi model
(also called Woods-Saxon model) and three-parameter Fermi
model (3pF) [31]. The former is typical for heavy nuclei,
for lead, see Ref. [24], and latter is usually employed for
medium-heavy nuclei. In particular, in this work we use the
3pF parametrization for oxygen

ρO(r) = ρ0
(
1 + w

(
r

RA

)2)
1 + e(r−RA )/d

, (5)

with the free parameters determined from nuclear charge-
density measurements [31],

d = 0.513 fm and w = −0.051. (6)

For lead we use d = 0.546 fm and w = 0. The effective
nuclear radii are here taken from the following empirical
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parametrization (see, e.g., Ref. [32])1

RA/fm = 1.12 A1/3–0.86 A−1/3. (7)

Further, in Eq. (2), the nuclear suppression factor �AA(�b)
represents the probability of having no hadronic interactions
at impact parameter �b, which can be evaluated using the
Glauber model for nucleus-nucleus scattering

�AA(�b) = exp[−σNN (sNN )TAA(�b)], (8)

where σNN (sNN ) is the total nucleon-nucleon cross sec-
tion [33] and TAA(�b) = ∫

d2 �b′TA( �b′)TA(�b − �b′) is the nuclear
overlap function with TA(�b) = ∫

dzρA(�r). In Eq. (2), the effect
of �AA(b) is to suppress the contribution of the |�b| < 2RA

region.
For the cross section of coherent J/ψ photoproduction on

nuclei A we use the form where the t dependence governed
by the nuclear form factor squared |FA(t )|2, is factorized from
the cross section of J/ψ production on bound nucleons N of
the nuclear target, i.e., dσ

γ N→J/ψN
A /dt (this is indicated by the

subscript),

σγ A→J/ψA(W ) = dσ
γ N→J/ψN
A

dt

∣∣∣∣
t=0

∫ ∞

|tmin|
dt ′|FA(−t ′)|2, (9)

where |tmin| = [M2
J/ψ/(4kγL )]2. In the case of the t-integrated

cross section, the factorized form of Eq. (9) approximates with
a several-percent precision a more accurate expression that
takes into account the correlation between t and x, i.e., the cor-
relation between the momentum transfer and the magnitude of
nuclear effects (nuclear shadowing) affecting dσ

γ N→J/ψN
A /dt ,

see the discussion in Refs. [34,35].
The QCD dynamics of the process is contained in

the dσ
γ N→J/ψN
A /dt (t = 0) cross section. In the framework

of collinear factorization for exclusive processes in NLO
perturbative QCD and using the nonrelativistic (static) ap-
proximation for the charmonium wave function, the cross
section reads (see Refs. [21,24] for details and references)

dσ
γ N→J/ψN
A

dt

∣∣∣∣
t=0

= 1

W 4

4π2αe.m.e2
c〈O1〉V

9ξ 2m3
c

|I (ξ, t = 0)|2,
(10)

where the reduced scattering amplitude is given by a con-
volution of the gluon and quark hard scattering coefficient
functions Tg(x, ξ , μR, μF ) and Tq(x, ξ , μR, μF ) with the cor-
responding gluon and quark generalized parton distribution
functions (GPDs) F g(x, ξ , t, μF ) and F q,S (x, ξ , t, μF ) of the
bound nucleons,

I (ξ, t = 0) =
∫ 1

−1
dx[Tg(x, ξ , μR, μF )F g(x, ξ , t = 0, μF )

+ Tq(x, ξ , μR, μF )F q,S (x, ξ , t = 0, μF )].

(11)

1For the oxygen case this means that the radius, as given in Eq. (7),
is taken in the approximation w = 0 with the same parameter values
as for lead.

In Eq. (10), ec = 2/3 and mc = MJ/ψ/2 is the charm quark
mass in the nonrelativistic limit, 〈O1〉V is the nonrelativis-
tic QCD matrix element associated with the J/ψ → l+l−
leptonic decay, ξ = ζ/(2 − ζ ) is the so-called skewness pa-
rameter with ζ = M2

J/ψ/W 2 being an analog of Bjorken
x in inclusive DIS. Note that the quark contribution in
Eq. (11) contains a singlet combination of quark GPDs of four
active flavors, F q,S (x, ξ , t = 0, μF ) = ∑

q=u,d,s,c F q(x, ξ , t =
0, μF ). In our analysis we take the factorization and renor-
malization scales to be equal, i.e., μ = μF = μR, which sets
the term ∼β0 ln(μ2

R/μ2
F ) in the NLO gluon contribution to

zero, see Eq. (3.72) in Ref. [21]. This choice corresponds
to the BLM scale setting prescription [36]. We quantify the
dependence of our results on the scale choice by varying the
scale in the mc � μ � 2mc interval.

In general, GPDs are complicated nonperturbative distribu-
tions depending on two light-cone momentum fractions x and
ξ and the momentum transfer t as well as the factorization
scale μF . However, in the high-energy limit the skewness
parameter is very small (ξ  1) and its effect on GPDs is
expected to be rather moderate. In particular, in the calcu-
lation of the dσ

γ N→J/ψN
A /dt (t = 0) cross section, theoretical

uncertainties associated with detailed modeling of GPDs are
expected to be much smaller than the scale and nPDF uncer-
tainties. Therefore, as a first approximation, we neglect the
skewness effect and take GPDs in the forward limit, where
they can be identified with the usual PDFs,

F g(x, ξ , t =0, μF ) = F g(−x, ξ , t = 0, μF )→xgA(x, μF ),

F q(x, ξ , t = 0, μF ) → qA(x, μF ),

F q(−x, ξ , t = 0, μF ) → −q̄A(x, μF ), (12)

where now 0 � x � 1. The distributions gA(x, μF ), qA(x, μF )
and q̄A(x, μF ) are the usual gluon, quark, and antiquark
nPDFs per nucleon. They encode nuclear modifications of
bound nucleon PDFs, the most relevant being small-x nu-
clear shadowing and antishadowing. In our analysis, we use
the recent nPDF sets EPPS21 [11], nNNPDF3.0 [12], and
nCTEQ15WZSIH [37].

III. RESULTS

A plan is moving forward that an oxygen-oxygen (O-O)
run would be performed at the LHC in Run 3 [25,26,38].
In addition to shedding light on the soft QCD dynamics and
studying hard scattering with small nuclear systems, it might
help to address open questions relating to forward scattering
physics. From the point of view of UPC studies, as we pointed
out in Sec. I, an analysis of coherent J/ψ photoproduction
in O-O UPCs and a comparison to the case of Pb-Pb UPCs
can be used to constrain theoretical uncertainties of our NLO
pQCD predictions for this process. At the time of writing of
this paper, it is not yet completely clear at which nucleon-
nucleon c.m.s. energy

√
sNN the O-O run will be completed.

Therefore, we will consider four scenarios with
√

sNN = 2.76,
5.02, 6.37 [38], and 7 TeV [25], which will help us to better
understand the energy dependence of our results.
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FIG. 1. The scaled photon flux (1/Z2)kdNA
γ (k)/dk as a function of the rapidity y in the plus direction for the oxygen and lead beams for

four different values of the c.m.s. energy
√

sNN = 2.76, 5.02, 6.37, and 7 TeV.

A. Photon fluxes and nuclear form factors

The results for the kdNA
γ (k)/dk photon flux obtained

through Eq. (2), where k = (MJ/ψ/2)ey, i.e., positive rapidity
y corresponds to large photon energies k, for oxygen and lead
beams for four different values of the invariant collision en-
ergy

√
sNN are presented in Fig. 1. In the figure, the blue solid

curves correspond to the oxygen case and the orange dashed
curves to the lead case. In order to conveniently compare the
two cases, we normalized the fluxes by the factor of 1/Z2 with
ZO = 8 for oxygen and ZPb = 82 for lead.

One can see from the figure that at negative rapidi-
ties (small photon momenta) the photon flux of the lead
beam is much larger than that for the oxygen beam,
[kdNPb

γ (k)/dk]/[kdNO
γ (k)/dk] ≈ Z2

Pb/Z2
O ≈ 100. At the same

time, since the effective nuclear radius of lead is almost three
times as large as that of oxygen, the spectrum of equivalent
photons of lead falls off more rapidly when y is increased
(corresponding to an increase in k) than that of oxygen. Even-
tually, for large values of rapidity y � 4.4 corresponding to
k � 120 GeV, the photon flux for oxygen becomes bigger than
that of lead.

We have numerically checked that setting w = 0 in Eq. (5),
i.e., assuming the two-parameter Fermi (2pF) model for oxy-
gen with the same d and RA parameters, leads to a relative
difference of under four percent in the photon flux for the
photon energies up to k ≈ 50 GeV corresponding to the J/ψ
rapidities |y| � 3.5. In addition, we have checked that the
photon flux is not sensitive to the exact value of σNN used
in �AA(�b), see Eq. (8). For example, at

√
sNN = 6.37 and

7 TeV, calculations for the photon flux with σNN = 95 mb
and σNN = 100 mb differ by less than 1% all the way up to

|y| = 4. Thus, we conclude that the major difference between
the scaled photon fluxes of the oxygen and lead ions originates
from the different effective radii RA of these nuclei.

In the left panel of Fig. 2 we show the results for the
oxygen and lead form factors scaled by the corresponding
mass number A as they are given by Eq. (4). The values of
the scaled form factors approach one due to our normalization
constraint FA(0) = A but, as we move to higher values of t ,
we see that the scaled oxygen form factor is the dominant
one except for the oscillations at very high values of t . But
again, since APb � AO, the absolute magnitude of the form
factor of lead is the bigger one. Then, in the photoproduction
cross section σγ A→VA, we have an integral over the square
of the absolute value of the form factor. The right panel of
Fig. 2 shows the values of this integral scaled by the square of
the mass number A for both the oxygen (solid blue) and the
lead (dashed orange) cases. Similarly to the photon flux, this
ratio gets intertwined in the ratios of the cross sections, but at
central rapidities y = 0 corresponding to |tmin| ≈ 10−6 GeV2,
we should expect to see a factor of 4.6 from the ratio of the
integrals.

B. Rapidity-dependent cross sections in Pb-Pb UPCs
and comparison with the LHC data

Based on the NLO pQCD theoretical framework
outlined in Sec. II, we present below our predictions for
the dσ (Pb + Pb → Pb + J/ψ + Pb)/dy cross section of
coherent J/ψ photoproduction in Pb-Pb UPCs as a function
of the J/ψ rapidity y at

√
sNN = 2.76 TeV (Run 1) and√

sNN = 5.02 TeV (Run 2) at the LHC and compare them
with all available LHC data on this process. We performed our
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FIG. 2. Left: Form factors scaled by the corresponding mass number A for oxygen and lead as a function of t . The scaled oxygen form
factor reaches out farther in t than the corresponding lead one. Right: The values of the integral of the absolute value of the form factor squared
scaled by the square of the corresponding mass number A given as a function of the lower limit tmin of the integral. At small enough values of
tmin, the ratio between the oxygen and the lead results is about 4.6.

calculations using the most recent EPPS21 [11],
nNNPDF3.0 [12], and nCTEQ15WZSIH [37] sets of nPDFs,
which updates our predictions in Ref. [24].

Figure 3 demonstrates the variation of our predictions due
to the choice of the scale μ, which is allowed to vary in
the mc � μ � 2mc interval (mc = MJ/ψ/2 = 1.55 GeV in the
nonrelativistic limit that we use): the top dashed curves corre-
spond to μ = 3.1 GeV, while the bottom dotted curves are for
μ = 1.55 GeV. The solid curve in each panel corresponds to
an optimal scale, which is chosen to simultaneously describe
the central rapidity data available from Run 1 (left panels) and
Run 2 (right panels) at the LHC. The Run 1 data at

√
sNN =

2.76 TeV include the ALICE data at the central rapidity
|y| < 0.9 [39] (labeled “ALICE Cent”) and at the forward
rapidity 2.6 < |y| < 3.6 [40] labeled “ALICE Forw”) as well
as the CMS data in the rapidity interval 1.8 < |y| < 2.3 [41]
(labeled “CMS Forw”). The Run 2 data taken at

√
sNN =

5.02 TeV are the ALICE data at midrapidity |y| < 0.8 [42]
(labeled “ALICE Cent”), the ALICE data at forward rapidities
2.5 < |y| < 4 [43] (labeled “ALICE Forw”), the LHCb data at
forward rapidities 2 < |y| < 4.5 [44] (labeled “LHCb 2015”)
and their recent update [45] (labeled “LHCb 2018”). The three
rows of panels correspond to the results of our calculations
using three different sets of nPDFs: EPPS21 [11] (top row),
nNNPDF3.0 [12] (middle row), and nCTEQ15WZSIH [37]
(bottom row). Our analysis shows that the resulting optimal
scales μ slightly differ for different nPDF sets: μ = 2.39 GeV
for EPPS21, μ = 2.22 GeV for nNNPDF3.0, and μ =
2.02 GeV for nCTEQ15WZSIH.

A comparison of the results presented in Fig. 3 with our
results in Ref. [24] shows that the difference between our

calculations using EPPS21 and EPPS16 is very small with a
very similar value of the optimal scale and the same shape of
the y dependence as well as the matching magnitude of the
scale dependence and the quality of the data description. To
be exact, at central rapidity y = 0, for Run 1 there is a factor
of about 22 between the highest scale and the lowest scale
results and for Run 2 energy this factor is about 55.

The improvement, when moving from nNNPDF2.0 [46]
(Fig. 10 of Ref. [24]) to the newer nNNPDF3.0 set, is
rather dramatic. We find that the shape of the dσ (Pb + Pb →
Pb + J/ψ + Pb)/dy cross section at the optimal scale μ =
2.22 GeV is qualitatively similar to that obtained with EPPS16
or EPPS21. Simultaneously, however, the correspondence
with the data is slightly worse: while the data at y ≈ 0 is
reproduced by construction, the solid curve somewhat under-
estimates the data at |y| �= 0. Note that the good agreement
with the data at y ≈ 0 is important for the comparison of the
Pb-Pb and O-O UPC data; see the discussion in Sec. III D. The
ratio between the highest scale and the lowest scale at central
rapidity is about 17 for Run 1 and about 26 for Run 2.

In contrast to EPPS21 and nNNPDF3.0, we find that the
newest nCTEQ15WZSIH nPDF set actually does better on
all accounts. The scale dependence at central rapidity is only
about a factor of 10 for Run 1 and about a factor of 12
for Run 2. The curve corresponding to the optimal scale of
μ = 2.02 GeV goes through the central rapidity data points
in addition to the forward/backward data both at Run 1 and
Run 2 energies. Moreover, the nCTEQ15WZSIH nPDF set
favors the ALICE forward data [43] and the newer LHCb
2018 data [45] over the 2015 LHCb data [44]. We have
checked that the better agreement of our calculations using
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FIG. 3. The scale dependence of the NLO pQCD predictions for the dσ (Pb + Pb → Pb + J/ψ + Pb)/dy cross section as a function of
the rapidity y for Run 1 (

√
sNN = 2.76 TeV, left column) and Run 2 (

√
sNN = 5.02 TeV, right column) at the LHC and a comparison with the

corresponding Run 1 [39–41] and Run 2 [42–45] data, the statistical and systematic errors added in quadrature. The data have been mirrored
with respect to y = 0. The scale-dependence envelope spans the results corresponding to μ = 3.1 GeV (top dashed curve) and μ = 1.55 GeV
(bottom dotted curve); the solid curve corresponds to the optimal scale. The three rows of panels correspond to EPPS21 (top), nNNPDF3.0
(middle), and nCTEQ15WZSIH (bottom) nPDFs.

the nCTEQ15WZSIH nPDF set with the UPC data is due to
the very strongly enhanced strange quark distributions, see
Fig. 4 in Ref. [47]. Thus, this process may give an interesting
opportunity to obtain new constraints on the elusive strange
quark distribution in the proton and nuclei.

For all three sets, when considering the full range of scales
μ ∈ [mc, MJ/ψ ], the scale uncertainty decreases slightly—as
was with the earlier EPPS16 set—as we move farther away
from the central rapidity towards backward and forward ra-
pidities. This is partly because at very large values of rapidity,

i.e., |y| > 3, the photoproduction amplitude receives a large
contribution from the W -component corresponding to small
values of k, which in turn means that we are probing the
underlying GPDs at high values of x, where the scale depen-
dence is constrained rather well. In any case, it is interesting
to notice that this rapidity dependence seems to be a common
property for both the old and the new nPDF sets (see Fig. 4 in
Ref. [24]).

To estimate the PDF uncertainty of our predictions due
to the EPPS21 and nCTEQ15WZSIH nPDFs, we used the
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FIG. 4. The PDF uncertainties of the NLO pQCD predictions for the dσ (Pb + Pb → Pb + J/ψ + Pb)/dy cross section as a function of y
for Run 1 (top) and Run 2 (bottom) at the LHC, and a comparison with the corresponding Run 1 [39–41] and Run 2 [42–45] data, mirrored with
respect to y = 0 and with the statistical and systematic errors added in quadrature. The results corresponding to the central sets of nPDFs are
shown by the blue solid (EPPS21), red dashed (nCTEQ15WZSIH), and green dotted (nNNPDF3.0) curves, respectively, and the error bands
are represented by the corresponding shaded regions. All calculations are performed at the indicated values of the optimal scale μ.

following asymmetric form for the uncertainty δO± [9]:

δO± =
√∑

i

[max

min {O(S+
i ) − O(S0),O(S−

i ) − O(S0), 0}]2
,

(13)
where O(S0) denotes the predictions with the central set for
the observable O and O(S±

i ) correspond to the values calcu-
lated with the plus and minus PDF error sets. In the case of
nNNPDF3.0, we used the 90% confidence level (CL) interval
prescription [12]. All PDF uncertainty calculations are per-
formed at the corresponding values of the optimal scale μ.

Figure 4 illustrates the uncertainty of our predictions for
the dσ (Pb + Pb → Pb + J/ψ + Pb)/dy cross section due to
errors of nPDFs and compares it with the Run 1 (top panel)
and Run 2 (bottom panel) LHC data. The calculations us-
ing the central sets of nPDFs are given by the blue solid
(EPPS21), red dashed (nCTEQ15WZSIH), and green dotted
(nNNPDF3.0) curves and the error bands are represented by
the corresponding shaded regions. One can see from the fig-
ure that within the PDF uncertainties the framework of NLO
pQCD describes the data rather well; the agreement with the
data is very good at central rapidity for all three nPDF sets (by
construction), continues to be good for nCTEQ15WZSIH in
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FIG. 5. The NLO pQCD results for the rapidity differential cross section of coherent J/ψ photoproduction in O-O UPCs as a function of
the rapidity y, obtained with the EPPS21 nPDFs at

√
sNN = 2.76, 5.02, 6.37, and 7 TeV. The different lines show the results for ten choices of

the scale μ ranging from μ = mc (lowest curve) to μ = MJ/ψ (highest curve) with a step of mc/8. The μ = 2.39 GeV optimal scale prediction
lies in the middle of this scale-uncertainty envelope.

the entire range of measured y, but becomes somewhat worse
at higher |y| for EPPS21 and NNPDF3.0.

A comparison of our EPPS21 results with the previous
EPP16 ones [24] shows that the full PDF uncertainty band,
which receives contributions from varying the parameters of
nPDFs and the baseline free proton PDFs, has come down to
the order of few millibarns. As we discussed in Ref. [24], the
free proton CT14nlo PDFs accompanying the EPPS16 nPDFs
contain a particular error set dramatically growing at small
x, which results in an abnormally large small-x uncertainty.
In the new EPPS21 nPDFs, where the nuclear effects are
correlated with the baseline CT18ANLO [5] free proton PDF
error sets, this behavior no longer persists.

One can clearly see from Fig. 4 that the EPPS21
nPDFs correspond to significantly smaller uncertainties
than nNNPDF3.0 and CTEQ15WZSIH. In particular, the
nNNPDF3.0 uncertainties, which also account for the free
proton PDF errors, at central rapidity rise up to around 8
mb at Run 1 and up to around 13.5 mb at Run 2. The
nCTEQ15WZSIH uncertainties, which account for the nPDF
errors only, are smaller both for Run 1 and Run 2 at cen-
tral rapidities than at y ≈ ±2.0, which leads to a valleylike
structure. For instance, for Run 2, the uncertainty rises up to
around 8.5 mb at y = 0 and then to its maximum of approxi-
mately 18 mb at y ≈ ±2.5. As with EPPS21, no single error
PDFs set stands out in the nCTEQ15WZSIH and nNNPDF3.0
parametrizations, but the larger uncertainty bands are sim-
ply the result of a wider distribution in the underlying
error sets.

C. Predictions for rapidity-dependent cross sections
in O-O UPCs at the LHC

In this section, we present detailed predictions for the
dσ (O + O → O + J/ψ + O)/dy cross section of coherent
J/ψ photoproduction in NLO perturbative QCD as a function
of the J/ψ rapidity y in oxygen-oxygen UPCs at the LHC. As
mentioned above, since the exact energy of O-O collisions is
not yet determined, we consider four scenarios with

√
sNN =

2.76, 5.02, 6.37, and 7 TeV. In addition to studying the energy
dependence of our predictions, this choice enables a direct
comparison to the case of Pb-Pb UPCs at

√
sNN = 2.76 TeV

(Run 1) and
√

sNN = 5.02 TeV (Run 2), see the discussion in
Sec. III D.

Figure 5 illustrates the scale dependence of our predictions
and shows our results for dσ (O + O → O + J/ψ + O)/dy
with the EPPS21 nPDFs at ten different values of the scale
μ ranging from μ = mc up to μ = MJ/ψ for the four different
values of

√
sNN . One can see from the figure that the O-O UPC

cross section is approximately 1000 times smaller than that in
the Pb-Pb case primarily due to the much smaller photon flux.
On the other hand, the shape of the y dependence is similar in
the O-O and Pb-Pb cases: it is rather broad at midrapidity with
sloping shoulders at forward and backward rapidities; higher
scales correspond to larger dσ (O + O → O + J/ψ + O)/dy,
which also tend to develop a valleylike structure at the highest
scales of μ ≈ MJ/ψ .

To quantify the magnitude of the scale dependence, we
consider the ratio between the μ = MJ/ψ and μ = mc results
at y = 0, which we denote by Rscale. One can see from Fig. 5
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FIG. 6. Separation of the NLO pQCD predictions for the dσ (O + O → O + J/ψ + O)/dy cross section of coherent J/ψ photoproduction
in O-O UPCs as a function of the rapidity y into the W + (dashed orange curve) and W − (dotted green curve) components; the solid blue line
is their sum. The calculation employs the EPPS21 nPDFs at μ = 2.39 GeV. The different panels correspond to

√
sNN = 2.76, 5.02, 6.37, and

7 TeV.

that Rscale is of the same order of magnitude as in Pb-Pb
collisions starting at Rscale ≈ 16 at

√
sNN = 2.76 TeV and

rising up to Rscale ≈ 35 at
√

sNN = 7 TeV. We have checked
that with nCTEQ15WZSIH the scale dependence is of the
same order as with EPPS21: Rscale ≈ 12 at

√
sNN = 2.76 TeV

and increasing to approximately Rscale = 20 at
√

sNN = 7 TeV.
At the same time, for nNNPDF3.0 the scale dependence is
considerably stronger: Rscale ≈ 800 at

√
sNN = 2.76 TeV and

increases up to Rscale ≈ 2700 at
√

sNN = 7 TeV. This huge
scale dependence is due to the nearly perfect cancellation
between the LO and the NLO contributions in both the real
and the imaginary parts of the amplitude at the lowest scale
of μ = mc. At forward and backward rapidities over the full
range μ ∈ [mc, MJ/ψ ], the scale dependence is not as strong
for all three nPDF sets under consideration.

Figure 6 shows the separate contributions of the two terms
to dσ (O + O → O + J/ψ + O)/dy in Eq. (1), labeled “W +”
(dashed orange) and “W −” (dotted green), along with their
sum labeled “Full” (solid blue). The calculation is carried
out using the EPPS21 nPDFs at μ = 2.39 GeV, which is the
optimal scale in the Pb-Pb case. The results are qualitatively
similar to those for the Pb-Pb collision system [24]. Looking
only at the W + contribution, we observe a small bump at back-
ward rapidities caused by the interplay of the large photon
flux with the increasing photoproduction cross section and the
integral of the nuclear form factor squared. This increase in
the differential cross section is momentarily halted and then
decreases as one moves from y ≈ −4 to y ≈ −2 (i.e., at Run 1√

sNN and slightly differently for the other energies). Then the
growth of the photoproduction cross section forces an increase
of the absolute magnitude of the UPC cross section until

around y ≈ 2, when the decrease in the photon flux eventually
forces the cross section to zero. One can see that this holds
for all four energies and we have checked that the results
are qualitatively similar for all the three nPDF sets studied
here.

Figure 7 quantifies the contributions of the imaginary and
real parts of the γ + A → J/ψ + A amplitude to the dσ (O +
O → O + J/ψ + O)/dy UPC cross section: the dashed or-
ange curve gives the result, when only the imaginary part
is included, the dotted green curve shows the result, when
only the real part is included, and the solid blue curve is
their sum. One can see from the figure that with increasing√

sNN , the imaginary part becomes more important at central
rapidity and, when moving from 2.76 to 6.37 TeV, the dip
in the imaginary part at around y ± 3 seen at

√
sNN = 2.76

TeV actually rises above the real part, i.e., the imaginary part
becomes the dominant contribution at all values of rapidity.
Qualitatively, the results are the same for the other two nPDF
sets nNNPDF3.0 and nCTEQ15WZSIH.

Finally, in Fig. 8 we show the separate contributions of
different parton channels to the UPC cross section. The dashed
orange curve gives the gluon contribution, i.e., it corresponds
to the situation when the contribution of quarks is neglected,
the dotted green line gives the quark contribution, the red
dash-dotted curve is the interference term between the gluon
and quark contributions, and the solid blue curve is the
complete result. The calculation corresponds to the EPPS21
nPDFs and μ = 2.39 GeV. One can see from the figure that at
all four considered values of

√
sNN , the UPC cross section at

central rapidities is dominated by the quark contribution,
while the gluons begin to dominate at forward and backward
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FIG. 7. The contributions of the imaginary (dashed orange curve) and real (green dotted curve) parts of the γ + A → J/ψ + A amplitude
to the dσ (O + O → O + J/ψ + O)/dy cross section of coherent J/ψ photoproduction in O-O UPCs as a function of the rapidity y; the solid
blue curve is the full result. The calculation uses the EPPS21 nPDFs at μ = 2.39 GeV. The different panels correspond to

√
sNN = 2.76, 5.02,

6.37, and 7 TeV.

FIG. 8. The breakdown of the NLO pQCD predictions for the dσ (O + O → O + J/ψ + O)/dy cross section of coherent J/ψ photopro-
duction in O-O UPCs as a function of the rapidity y into the contribution of different parton channels: gluon (dashed orange curve), quark
(green dotted curve), and their interference (red dash-dot curve); the solid blue curve is the full result. The calculation uses the EPPS21 nPDFs
at μ = 2.39 GeV. The different panels correspond to

√
sNN = 2.76, 5.02, 6.37, and 7 TeV.

044912-10



NEXT-TO-LEADING ORDER PERTURBATIVE QCD … PHYSICAL REVIEW C 107, 044912 (2023)

FIG. 9. The NLO pQCD predictions using the EPPS21 nPDFs for the scaled ratio of cross sections of J/ψ photoproduction in O-O and
Pb-Pb UPCs as a function of the rapidity y for six different values of the scale μ at four different values of

√
sNN .

rapidities. We have checked that this trend also persists for the
nNNPDF3.0 and nCTEQ15WZSIH nPDFs.

Lastly, a few words about the feasibility of measurements
of this process in O-O UPCs. Experimentally the dσ coh

J/ψ/dy
rapidity differential cross section for the coherent photopro-
duction of J/ψ in the lepton channel l+l− is given by [39]

dσ coh
J/ψ

dy
= Ncoh

J/ψ

E�l+l−Lint�y
, (14)

where Ncoh
J/ψ is the yield, i.e., the number of observed J/ψ

particles, E is the combined acceptance and efficiency of
the detector, �l+l− is the branching ratio to the desired
final state l+l−, Lint is the integrated luminosity, and �y is
the width of the rapidity interval under consideration. By
considering only the central rapidity and the muon channel
with �l+l− = 5.961% [48] and taking the values given in
Ref. [39], E = 4.57%, �y = 1.8, and Ncoh

J/ψ = 250, together
with dσ coh

J/ψ/dy = 2 μb from Fig. 6, we can estimate the
required integrated luminosity Lint to be

Lint ≈ 25.5 × 103 1

μb
. (15)

It was discussed in Ref. [25] that in the high luminosity
O-O run at the LHC, the average luminosity would be
〈LAA〉 = 8.99 × 1030 cm−2s−1. This means that in a
specialized 24-hour O-O run at ALICE, the integrated
luminosity would be approximately 7.8 × 105 μb−1 resulting
in approximately 7.5 × 103 J/ψ’s making the experimental
data acquisition more than feasible. Unfortunately, at the
proposed short data acquisition during Run 3, one would most

likely acquire only the integrated luminosity of 500 μb−1,
which means that one expects to see only five events [25].

D. Ratios of O-O and Pb-Pb UPC cross sections

Our results presented above indicate that the scale de-
pendence is considerable for both O-O and Pb-Pb collision
systems. To reduce it, we examine the following scaled ratio
of the O-O and Pb-Pb UPC cross section,

RO/Pb =
(

208ZPb

16ZO

)2 dσ (O + O → O + J/ψ + O)/dy

dσ (Pb + Pb → Pb + J/ψ + Pb)/dy
,

(16)
where the factor of [(208ZPb/(16ZO)]2 is introduced to re-
move the effects of the Z2 scaling of the photon flux and the A2

scaling of the nuclear form factor squared. Since the hard scat-
tering part is the same for both O-O and Pb-Pb scatterings, the
scale dependence, which we expect to see in this ratio, comes
from the underlying nPDF sets and the different weights of
the photon fluxes and the form factors, when we consider both
processes at the same

√
sNN . From a practical point of view,

the O-O run will most likely be done at a different
√

sNN ,
which generates an additional scale uncertainty due to the fact
that the O-O process will be probed at a smaller x value due
to the skewness parameter ξ becoming smaller.

Figures 9–11 present our NLO pQCD predictions for
RO/Pb evaluated at six different values of the scale μ rang-
ing from μ = 1.55 GeV to μ = 3.1 GeV using the EPPS21,
nNNPDF3.0 and nCTEQ15WZSIH nPDFs, respectively. One
can see from the figures that the relative scale uncertainty
seems to be the smallest for EPPS21 and nCTEQ15WZSIH
at y ≈ 0, which then grows slightly towards backward and
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FIG. 10. The same as in Fig. 9, but with the nNNPDF3.0 nPDFs.

forward rapidities. However, in the nNNPDF3.0 case the sit-
uation is reversed due to the almost exact cancellation of
the photoproduction amplitude for the O-O process at central
rapidity. Moreover, depending on the energy, the EPPS21
nPDF set produces a node at y ≈ ±1.1 or y ≈ ±1.8, where
all the scales except for the lowest μ = mc seem to agree

with each other. Such a node is missing in the results given
by nNNPDF3.0 or nCTEQ15WZSIH. In addition, we would
like to point out that our predictions for RO/Pb for each nPDF
set separately tend to cluster together at higher values of μ.

To quantify the magnitude of the relative scale dependence,
we consider the super-ratio of ratios RO/Pb at y = 0, which are

FIG. 11. The same as in Fig. 9, but with the nCTEQ15WZSIH nPDFs.
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TABLE I. The ratios RO/Pb(μ = MJ/ψ )/RO/Pb(μ = mc ) at y = 0
for EPPS21, nNNPDF3.0, and nCTEQ15WZSIH nPDFs for four
values of the collision energy

√
sNN , which is taken to be the same

for O-O and Pb-Pb runs.

√
sNN EPPS21 nNNPDF3.0 nCTEQ15WZSIH

2.76 TeV 0.7 51.5 1.2
5.02 TeV 0.6 86.1 1.5
6.37 TeV 0.5 90.6 1.7
7.00 TeV 0.5 91.4 1.8

evaluated at μ = MJ/ψ and μ = mc,

RO/Pb
scale = RO/Pb(μ = MJ/ψ )

RO/Pb(μ = mc)
. (17)

The results for RO/Pb
scale are presented in Table I. One can see

from the table that for all three sets of nPDFs, the scale
uncertainty of RO/Pb

scale is smaller by approximately a factor of 10
than that of the predictions for the individual Pb-Pb and O-O
UPC cross sections (the exact size of the reduction in the scale
dependence depends on the particular nPDF set and

√
sNN ).

The scale uncertainty also increases, when
√

sNN is increased,
since at higher energies one probes the nPDFs at progressively
smaller x, where the scale evolution of the nPDFs is faster.

One can see from the table that the scale uncertainty char-
acterized by the ratio RO/Pb

scale of Eq. (17) turns out to be very
large in the case of nNNPDF3.0 nPDFs. This is an artifact
of the cancellation between LO and NLO contributions to the
scattering amplitude at μ = mc that we discussed above. If in-

stead of μ = mc = 1.55 GeV, one selects, e.g., μ = 1.74 GeV
in the denominator of Eq. (17), the scale uncertainty becomes
dramatically reduced with RO/Pb

scale � 2.3 for all four considered
values of

√
sNN , while only moderately affecting the EPPS21

and nCTEQ15WZSIH results.
To better understand the scale and energy dependence of

the ratio of the O-O and Pb-Pb UPC cross sections, we
consider the ratio RO/Pb, when the numerator of Eq. (16),
the dσ (O + O → O + J/ψ + O)/dy cross section, is eval-
uated at

√
sNN = 6.37 and 7 TeV, and the denominator of

Eq. (16), the dσ (Pb + Pb → Pb + J/ψ + Pb)/dy cross sec-
tion, is evaluated at

√
sNN = 2.76 TeV (Run 1) and 5.02 TeV

(Run 2). Our results for the EPPS21, nNNPDF3.0, and
nCTEQ15WZSIH nPDF sets are presented in Figs. 12–14,
respectively. One can see from the figures that qualita-
tively the scale dependence is similar for nNNPDF3.0 and
nCTEQ15WZSIH, but in the case of EPPS21 for Pb-Pb UPCs
at

√
sNN = 2.76 TeV the node disappears and the systematics

of the scale dependence becomes similar for all three nPDF
sets.

The general effect of taking RO/Pb
scale at different energies

means that the scale dependence is increased as given in
Table II. As we take O-O consistently at a higher energy,
dσ/dy increases scale by scale, as was shown in Fig. 5.
For EPPS21 the situation is more involved since for the first
two entries the scale dependence is flipped, but the mag-
nitude of the dependence stays the same. For the last two
entries, i.e., Pb-Pb taken at

√
sNN = 5.02 TeV, the dependence

actually gets smaller. For nNNPDF3.0 the situation is the
worst: taking the ratio at different energies means that we
increase the scale dependence by a factor of three at worst.

FIG. 12. The scaled ratio of the NLO pQCD cross sections of J/ψ photoproduction in O-O and Pb-Pb UPCs as a function of the rapidity
y for six different values of the scale μ at nonequal values of O-O and Pb-Pb collision energies. The results are obtained with the EPPS21
nPDFs.
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FIG. 13. The same as in Fig. 12, but with the nNNPDF3.0 nPDFs.

For nCTEQ15WZSIH the factor is only about 1.6. However, if
we disregard the lowest scale and take μ = 1.74 GeV instead,
the scale dependence becomes smaller for all three sets. For
nNNPDF3.0 the drop is quite sizable again: at all energies the
scale dependence drops to less than a factor of 3.

Figure 15 illustrates the PDF uncertainties of our NLO
pQCD predictions for RO/Pb as a function of y for EPPS21,

nNNPDF3.0, and nCTEQ15WZSIH nPDFs. The calculations
using the central sets of the nPDFs at their corresponding opti-
mal scales are given by the blue solid (EPPS21), green dotted
(nNNPDF3.0), and red dashed (nCTEQ15WZSIH) curves.
The corresponding uncertainties are given by the shaded
bands. They are calculated by first finding the ratio RO/Pb

for each error set and then using the asymmetric form [see

FIG. 14. The same as in Fig. 12, but with the nCTEQ15WZSIH nPDFs.
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FIG. 15. The PDF uncertainties of NLO pQCD predictions for RO/Pb as a function of the rapidity y. The results corresponding to the central
nPDF sets at the optimal scales are shown by the blue solid (EPPS21), green dotted (nNNPDF3.0), and red dashed (nCTEQ15WZSIH) curves,
respectively. The corresponding uncertainties are shown by the shaded bands, see text for details. Different panels correspond to different√

sNN .

Eq. (13)] for EPPS21 and nCTEQ15WZSIH and the CL pre-
scription for nNNPDF3.0. Thus, the blue and green bands give
the full (free proton + nuclear) uncertainty of EPPS21 and
nNNPDF3.0 nPDFs, respectively, while the hashed red band
gives the nuclear uncertainty of the nCTEQ15WZSIH set.
We see that the predictions agree within the PDF uncertainty
bands.

One can see from the figure that as |y| is increased, the
uncertainty bands grow bigger for all three sets. It can be
understood by noticing that at higher positive rapidities, the
W + component gets probed at smaller and smaller values
of x (similarly for the W − component at negative rapidi-
ties). For the EPPS21 and nNNPDF3.0 sets, the band stays
always at positive values, but for nCTEQ15WZSIH, the un-
certainty band reaches negative values starting from

√
sNN =

5.02 TeV at large enough |y|. Interestingly the uncertainties in
nNNPDF3.0 are upward dominated and in nCTEQ15WZSIH
they are downward dominated.

TABLE II. The ratios RO/Pb(μ = MJ/ψ )/RO/Pb(μ = mc ) at y =
0 for the EPPS21, nNNPDF3.0, and nCTEQ15WZSIH nPDFs for
different values of

√
sNN in the numerator and denominator.

√
sOO/

√
sPbPb EPPS21 nNNPDF3.0 nCTEQ15WZSIH

6.37/2.76 1.4 156.1 1.9
7.00/2.76 1.5 166.5 1.9
6.37/5.02 0.7 104.6 1.7
7.00/5.02 0.7 111.7 1.7

A comparison of the PDF and scale uncertainties in RO/Pb

at y = 0 as a function of
√

sNN is shown in Fig. 16. The
PDF uncertainties are calculated at the corresponding op-
timal scales for the EPPS21 (left), nNNPDF3.0 (middle),
and nCTEQ15WZSIH (right) nuclear PDFs. The scale un-
certainty represents the range between the scales μ = mc

and μ = MJ/ψ . In absolute terms the EPPS21 PDF uncer-
tainty is typically smaller than the scale uncertainty, while
for nNNPDF3.0 and nCTEQ15WZSIH the scale uncertainty
is smaller than the PDF uncertainty. The figure also shows the
lack of uniformity between the uncertainties between different
sets. For instance, in the EPPS21 case, the scale uncertainty
dominates upward, whereas the PDF uncertainties dominate
downward. For nNNPDF3.0, the situation is reversed: PDF
uncertainties dominate the upward uncertainty and scale un-
certainties the downward uncertainty. Then interestingly for
nCTEQ15WZSIH, the set with the enhanced strange quark
contribution, the scale uncertainties are smaller than the PDF
uncertainties at all energies. The value of the ratio stays
approximately constant as a function of

√
sNN for all three

sets.
Figure 17 presents the nPDF uncertainties of the ratio

RO/Pb as a function of y, when the O-O and Pb-Pb UPC
cross sections are evaluated at different collision energies
(see our discussion above). The notation of the curves and
shaded bands is the same as in Fig. 15. A comparison with
Fig. 15 shows that the results in the two figures are similar. In
particular, at central rapidity for EPPS21 the ratio between the
upper bound and the lower bound for the PDF uncertainties
is about 2.2 for Pb-Pb taken at Run 1 energy and 1.8 for
Pb-Pb taken at Run 2 energy, which means that the PDF
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FIG. 16. Comparison of the PDF (thin blue) and scale (wide orange) uncertainties in the ratio of the NLO pQCD calculation of O-O to
Pb-Pb rapidity differential cross section at central rapidity, y = 0, for three different nPDF sets: EPPS21 (left), nNNPDF3.0 (center), and
nCTEQ15WZSIH (right). Here O-O and Pb-Pb are taken at same energy and all sets at their corresponding optimal scales.

FIG. 17. The scaled ratios for EPPS21 (solid blue), nNNPDF3.0 (dotted green), and nCTEQ15WZSIH (dashed red) at their optimal scales
as a function of the J/ψ rapidity. The blue band gives the EPPS21 uncertainty, the green band gives the nNNPDF3.0 90% CL uncertainty, and
the hatched red band gives the nCTEQ15WZSIH nuclear uncertainty. In the first row Pb-Pb has been taken at Run 1 energy and in the second
row at Run 2 energy. The O-O energies correspond to the two proposed energies of 6.37 TeV (left column) and 7 TeV (right column).
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FIG. 18. The scaled ratios of O-O to Pb-Pb rapidity differential cross sections for EPPS21, nNNPDF3.0, and nCTEQ15WZSIH at their
corresponding optimal scales at central rapidity, y = 0, where O-O and Pb-Pb have been taken at different

√
sNN energies. In the left panel the

Pb-Pb collision is taken at Run 1 energy and in the right panel at Run 2 energy.

uncertainty is slightly larger at all energies under considera-
tion than the scale uncertainty (see Table II). For nNNPDF3.0
the same ratio is around 6.7 for all energies and again the scale
uncertainty is clearly the dominating one, when considering
μ ∈ [mc, MJ/ψ ]. If we ignore the lowest scale μ = mc, we
find that the PDF uncertainty is again the larger one. For
nCTEQ15WZSIH the corresponding ratios are about 1.7 and
2.5 for Run 1 and Run 2 energies, respectively.

These results are summarized in Fig. 18, which shows
the RO/Pb ratio at y = 0 for EPPS21, nNNPDF3.0, and
nCTEQ15WZSIH for different configurations of collision en-
ergies as discussed above. The color-coded bars give the scale
(wide error bars) and PDF (thin error bars with caps) uncer-
tainties; the former are calculated using the central sets of
the respective nPDF fits and the latter are evaluated at the
respective values of the optimal scale μ. The left and right
panels correspond to the Run 1 and Run 2 energies of Pb-Pb
collisions, respectively. One can see from the figure that RO/Pb

at y = 0 and its uncertainties decrease as the Pb-Pb c.m.s. en-
ergy is increased and that RO/Pb at y = 0 and its uncertainties
increase as the O-O c.m.s. energy is increased. One can also
see that the different nPDF set predictions agree within the
PDF uncertainties.

Note that the issue of large NLO pQCD scale uncertainties
of the heavy quarkonium photoproduction cross section in
UPCs in the LHC kinematics has been identified to be re-
lated to the parametrically large corrections proportional to
log(1/ξ ). Possible ways to tame them by means of effective
small-x resummation have been investigated in the litera-
ture [15,22,49].

IV. CONCLUSIONS

This work continues our studies of J/ψ photoproduction
in nucleus-nucleus UPCs at the LHC within the framework of
collinear factorization and NLO perturbative QCD. In partic-
ular, we update our results for this process in Pb-Pb UPCs and
make predictions for the dσ (Pb + Pb → Pb + J/ψ + Pb)/dy
cross section as a function of the J/ψ rapidity y using the
state-of-the-art EPPS21, nNNPDF3.0, and nCTEQ15WZSIH
nPDF sets. Taking nuclear generalized parton distribution
functions in their forward limit, where they reduce to the
nPDFs, we obtain a good description of Run 1 and Run
2 LHC data on dσ (Pb + Pb → Pb + J/ψ + Pb)/dy. This is
achieved by choosing an optimal scale for each set of nPDFs:
μ = 2.39 GeV for EPPS21, μ = 2.22 GeV for nNNPDF3.0,
and μ = 2.02 GeV for nCTEQ15WZSIH.

Compared to our earlier calculations using EPPS16,
nNNPDF2.0, and nCTEQ15 nPDFs [24], we can make the
following observations. The results employing the central set
of the EPPS21 nPDFs are found to be similar to those with
the EPPS16 nPDFs with the corresponding optimal scale
μ = 2.37 GeV. In addition, with the EPPS21 set, the PDF
uncertainties have reduced significantly. At the same time,
our results with the nNNPDF3.0 nPDFs exhibit a much more
regular behavior than those corresponding to the nNNPDF2.0
nPDFs and, as a result, better reproduce the data. This is due
to the fact that the gluon distribution in nNNPDF3.0 grows at
small x much slower than that in nNNPDF2.0 nPDFs. The best
description of the data at both central and forward/backward
rapidities at Run 1 and Run 2 energies is achieved with

044912-17
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the nCTEQ15WZSIH, which also performs better than the
nCTEQ15 set. This is due to the strongly enhanced strange
quark content at small x. Thus, at least at NLO pQCD, this
process is a potential probe of the elusive strange quark PDFs.
It should be kept in mind that, because the scale dependence
is significant, the situation may still change at NNLO.

We also made detailed predictions for the O + O → O +
J/ψ + O rapidity differential UPC cross section in anticipa-
tion of the planned oxygen run at the LHC. Comparing with
Pb-Pb UPCs, we observe that the shape of the rapidity distri-
bution in the O-O case is qualitatively similar to that in Pb-Pb,
but the former begins to develop a valleylike structure around
y = 0 at high enough scales μ ≈ MJ/ψ . At central rapidity, the
scale dependence of our results for O-O corresponding to the
EPPS21 and nCTEQ15WZSIH nPDFs is slightly smaller than
that for Pb-Pb collisions, but it is still of the same order of
magnitude. For nNNPDF3.0, the situation is worse: the scale
uncertainty grows to the order of 103 due to the nearly perfect
cancellation of the sum of the LO and the NLO contributions
both in the real part and the imaginary parts of the amplitude
at the smallest scale of μ = mc.

The decomposition of the O-O results into the W ± com-
ponents, the imaginary and the real parts, and the gluon and
quark contributions did not differ significantly from the results
in the Pb-Pb case [24]. Namely, the W ± contributions exhibit
a two-bump structure; the imaginary part gives the dominant
contribution over a larger range of y, while the real part cannot
be neglected, especially for large values of |y|; the quark con-
tribution dominates at central rapidity, but the gluons become
important at backward or forward rapidities. Furthermore, the
interplay between the gluon and the quark contributions plays
an important role.

In order to reduce the significant scale and nPDF uncertain-
ties, we have studied the ratio of the J/ψ rapidity distributions
in O-O and Pb-Pb UPCs at different collision energies

√
sNN .

We found that for EPPS21 and nCTEQ15WZSIH, the scale
uncertainties in the ratio indeed became significantly smaller.
The reduction in the scale dependence is largest at central
rapidities and slightly smaller toward backward and forward
rapidities both when the ratio is taken at the same value of√

sNN and when taken at different values. For nNNPDF3.0,
the situation is the same at central rapidity, i.e., the ratio has

a smaller scale dependence when compared to the O-O case.
Interestingly, and contrary to EPPS21 and nCTEQ15WZSIH,
the scale dependence of the nNNPDF3.0 ratio at forward and
backward rapidities becomes even smaller since the LO and
NLO contributions in the O-O results no longer cancel to such
an exact degree.

The PDF uncertainties for the ratios of the rapidity
distribution in O-O to Pb-Pb UPCs were found to be the small-
est for EPPS21, then for nCTEQ15WZSIH, and lastly for
nNNPDF3.0. This is a direct consequence of the tightly con-
strained error sets in EPPS21, whereas in nCTEQ15WZSIH
and nNNPDF3.0, there is more variation. The comparison of
the PDF and scale uncertainties for the ratios taken at the
same energy shows that the scale uncertainty is the dom-
inant one for the EPPS21 and nNNPDF3.0 sets, while for
nCTEQ15WZSIH the situation is reversed. For the ratios
taken at different energies, the PDF uncertainties are of the
same magnitude for EPPS21 and nCTEQ15WZSIH, but for
nNNPDF3.0 the scale uncertainty still dominates because of
the cancellation at scale μ = mc.

Our analysis demonstrates that the large-scale uncertainty
of our NLO pQCD results can be tamed through suitably
considered ratios of rapidity differential cross sections. In
future work, it would be instructive to extend our analysis
to J/ψ photoproduction in p-Pb and p-O asymmetric UPCs
and also to photoproduction of ϒ mesons in nucleus-nucleus
UPCs. In addition, our framework could be improved through
a more detailed GPD modeling [50] and the inclusion of
the nonrelativistic QCD corrections to the charmonium wave
function [51–54].
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[3] K. Kovařík, P. M. Nadolsky, and D. E. Soper, Hadronic struc-
ture in high-energy collisions, Rev. Mod. Phys. 92, 045003
(2020).

[4] J. J. Ethier and E. R. Nocera, Parton Distributions in Nucleons
and Nuclei, Annu. Rev. Nucl. Part. Sci. 70, 43 (2020).

[5] T.-J. Hou et al., New CTEQ global analysis of quantum chro-
modynamics with high-precision data from the LHC, Phys. Rev.
D 103, 014013 (2021).

[6] R. D. Ball et al. (NNPDF Collaboration), The path to pro-
ton structure at 1% accuracy, Eur. Phys. J. C 82, 428
(2022).

[7] R. D. Ball et al. (PDF4LHC Working Group), The PDF4LHC21
combination of global PDF fits for the LHC Run III, J. Phys. G
49, 080501 (2022).
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Abstract We present predictions for the rapidity-

differential cross sections of exclusive Υ photoproduc-

tion in ultraperipheral collisions (UPCs) of lead ions

at the Large Hadron Collider (LHC). We work in the

framework of collinear factorization at next-to-leading

order (NLO) in perturbative QCD, modeling the gen-

eralized parton distributions (GPDs) through the Shu-

vaev transform of nuclear parton distribution functions

(nPDFs). While the effects due to the GPD modeling

turn out to be small, the direct NLO predictions still

carry significant nPDF-originating uncertainties and de-

pend strongly on the choices of the factorization and

renormalization scales. To tame the scale dependence

and to account for the fact that the NLO calculations

generally underpredict the photoproduction measure-

ments on protons, we also present alternative, data-

driven predictions. In this approach the underlying pho-

toproduction cross sections on lead are found by com-

bining their nuclear modifications calculated at NLO

with the measured photoproduction cross sections on

protons. The data-driven strategy reduces the uncer-

tainties associated with the scale choices, and essen-

tially eliminates the effects of GPD modeling thereby

leaving the cross sections sensitive mainly to the input

nPDFs. Our estimates indicate that the process is mea-

surable in Pb + Pb collisions at the LHC.
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1 Introduction

The exclusive production of heavy vector mesons V

in ultraperipheral collisions (UPCs) of heavy nuclei,

A1 + A2 → A1 + V + A2, has for a long time cap-

tured the interest of both the theoretical and experi-

mental high-energy physics communities. It allows one

to study not only the perturbative aspects of Quan-

tum Chromodynamics (QCD) but to also probe the

non-perturbative structure of nuclei [1,2,3,4]. These

ultraperipheral events are largely initiated by electro-

magnetic interactions as the short-range hadronic in-

teractions are strongly suppressed by the exclusivity

of the final state. The vector meson production then

effectively proceeds through an interaction of a quasi-

real photon from one nucleus with the other nucleus

such that the colliding nuclei remain intact and the

exclusivity of the vector meson production is main-

tained via a net-colourless production mechanism. At

leading order (LO) in perturbative QCD (pQCD) [5],

the production is mediated through a two-gluon ex-

change, while at next-to-leading order (NLO), there

is also a quark-pair initiated contribution [6]. The ex-

changed partons carry different longitudinal momen-

tum fractions depending on an additional off-forward

skewness parameter, ξ. This results in a factorization [7]

of the scattering amplitude into the perturbatively cal-

culable hard-scattering part and non-perturbative gen-

eralized parton distribution functions (GPDs) [8,9,10].

The first UPC measurements of exclusive J/ψ mesons

came from the PHENIX collaboration at the Relativis-

tic Heavy Ion Collider (RHIC) in Au+Au collisions

at the nucleon-nucleon centre-of-mass system (c.m.s.)

energy of
√
sNN = 200 GeV [11]. Subsequently, the

ALICE, CMS, and LHCb collaborations at the Large

Hadron Collider (LHC) have measured the same pro-
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cess in heavier Pb+Pb UPCs at
√
sNN = 2.76 and 5.02

TeV in a wide range of the J/ψ rapidities from y = 0

up to |y| ∼ 4.5 [12,13,14,15,16,17,18]. These data –

not forgetting the multitude of statistics anticipated in

the heavy-ion programme of the High Luminosity LHC

[19] – provide ample grounds for understanding the per-

turbative structure of QCD and the nuclear shadowing

phenomenon encoded e.g. in nuclear parton distribution

functions (nPDFs) [20,21,22,23], down to momentum

fractions of x ∼ (MV /
√
sNN ) exp(−|y|) ∼ 10−5 at res-

olution scales µ2 ∼ O(M2
V ), where MV is the mass of

the vector meson.

In our previous works [24,25], we studied the ex-

clusive photoproduction of J/ψ mesons in Pb + Pb

and O + O collisions to next-to-leading order (NLO)

in pQCD. By approximating the GPDs with PDFs, we

demonstrated the complicated interplay of the quark

and gluon contributions at NLO over the entire LHC

acceptance in rapidity, and showed that our theoretical

predictions agree with the experimental data for this

process [12,13,14,15,16,17,18] within the large theoret-

ical uncertainties associated with the choice of the fac-

torization/renormalization scales and nPDFs. Valuable

and complementary information on nPDFs at small mo-

mentum fractions x, in particular, on the scale depen-

dence of nuclear shadowing, can be obtained by study-

ing exclusive photoproduction of heavier vector mesons

such as Υ mesons consisting of a bottom quark and

its antiquark. To date, while there have been measure-

ments of the exclusive photoproduction of Υ in e + p

collisions at Hadron Electron Ring Accelerator (HERA)

[26,27,28], as well as in p+p [29] and p+Pb collisions at

the LHC [30], there has been no reported measurement

of the exclusive production of Υ mesons in heavy-ion

collisions.

In the work presented here, we make predictions for

the rapidity-differential cross sections of this process

at
√
sNN = 5.02 TeV in Pb + Pb collisions, extending

our previous framework to incorporate a more careful

GPD modeling by relating the nPDF to nuclear GPDs

through the so-called Shuvaev integral transform [31,

32,33]. Despite the larger interaction scale in compar-

ison to the J/ψ case, the theoretical uncertainties in

the case of Υ production are still sizable and – as was

already noticed in the pioneering work of Ref. [6] and

as we confirm in this work as well – natural choices of

the factorization/renormalization scales µ2 ∼ O(M2
Υ )

do not lead to a particularly good description of the

HERA data. This would then cast doubts also on our

direct NLO predictions in Pb + Pb. As a workaround,

we will adopt an alternative method in which we anchor

our predictions for the underlying γ+Pb→ Υ+Pb cross

sections on the HERA data on the γ + p→ Υ + p pro-

cess by using the NLO calculations only for the ratios

of cross sections between these two processes. We call

this method the data-driven approach. We also analyze

the nuclear modifications of the γ+ Pb→ Υ + Pb cross

sections due to nuclear effects in PDFs and show that

for ξ < 10−3, they coincide very closely with the gluon

nuclear modification factor squared.

The rest of the paper is organised as follows. In

Sec. 2.1, we summarize our theoretical framework for

the exclusive photoproduction of Υ in ultraperipheral

Pb + Pb collisions within NLO pQCD, and then dis-

cuss the modeling of GPDs in Sec. 2.2. The ingredients

of our data-driven approach are explained in Sec. 3. In

Sec. 4, we then present our results for the cross sections

and their nuclear modifications, discussing also how our

calculations build up from various components. Finally,

we draw our conclusions in Sec. 5, outlining also future

directions.

2 Theoretical framework

2.1 Exclusive Υ photoproduction in Pb + Pb UPCs at

NLO pQCD

Within the equivalent-photon approximation [1,2], the

rapidity-differential cross section for the process Pb +

Pb→ Pb + Υ + Pb can be written as

dσPb+Pb→Pb+Υ+Pb

dy
=

(
k
dNPb

γ (k)

dk
σγ(k)Pb→ΥPb

)
k=k+

(1)

+

(
k
dNPb

γ (k)

dk
σPbγ(k)→PbΥ

)
k=k−

,

where kdNPb
γ (k)/dk is the Weizsäcker-Williams (WW)

number density or flux of photons from the Pb nucleus

as a function of the photon energy k± = (MΥ /2) exp(±y)

with MΥ being the mass of the Υ meson. The cross sec-

tions for the underlying photoproduction subprocesses

are labelled by σPbγ(k−)→PbΥ and σγ(k+)Pb→ΥPb. The

two terms in Eq. (1) correspond to the right-moving

and left-moving photon sources, which results in a two-

fold ambiguity of the photon energy at a given value of

y 6= 0.

The WW flux is given by a convolution of the impact-

parameter dependent photon fluxNA
γ (k,~b) calculable in

QED [34] and the nuclear suppression factor ΓAA(~b),

k
dNA

γ (k)

dk
=

∫
d2~bNA

γ (k,~b)ΓAA(~b) . (2)

Here, ~b is the two-dimensional vector between the cen-

tres of the two colliding Pb nuclei in the transverse
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plane, and ΓAA(~b) encodes the Glauber-model proba-

bility of having no additional hadronic interaction in

the event; for details see [24].

The cross section for the photoproduction process

mediating the ultraperipheral Pb + Pb → Pb + Υ +

Pb reaction can be expressed in terms of the exclusive

photoproduction cross section per bound nucleon N ,

dσγN→ΥNA (W )/dt, and the nuclear form factor FA(t)

as

σγA→ΥA(W ) =
dσγN→ΥNA (W )

dt

∣∣∣∣
t=0

∫ ∞
|tmin|

dt|FA(−t)|2 ,

(3)

where

dσγN→ΥNA (W )

dt

∣∣∣∣
t=0

=
|MγN→ΥN

A |2

16πW 4
(4)

is the t-differential cross section evaluated at t = 0,

the variable t being the squared momentum transfer in

the process, W is the γ-N c.m.s. energy, and |tmin| =

m2
N (M2

Υ /W
2)2 is the minimal momentum transfer

squared with mN denoting the nucleon mass.

The nuclear form factor FA(t) is well known from

measurements of elastic electron-nucleus scattering and

for heavy nuclei it is typically given by the Fourier

transform of the two-parameter Woods-Saxon charge

distribution ρ(r) [35],

FA(t) =

∫
d3r eiq·rρ(r) , (5)

where

ρ(r) =
ρ0

1 + exp
(
r−RA

d

) , (6)

with |q| =
√
−t. We take d = 0.546 fm for the nucleus

skin depth and RA/fm = 1.12A1/3 − 0.86A−1/3 for the

nuclear radius. The normalization ρ0 ≈ 0.17 fm−3 is

fixed by requiring that FA(0) = A = 208 for Pb.

The hard scattering amplitude for exclusive Υ pho-

toproduction per nucleon N bound in the nucleus A can

be described at NLO in collinear factorization by [6],

MγN→ΥN
A (ξ, t = 0) =

4π
√

4παeb(ε
∗
Υ · εγ)

Nc

(
〈O1〉Υ
m3
b

)1/2

× I(ξ, t = 0) , (7)

where

I(ξ, t = 0) =

∫ 1

−1

dx

[
Tg(x, ξ, µR, µF )F g(x, ξ, t = 0, µF )

+ Tq(x, ξ, µR, µF )F q,S(x, ξ, t = 0, µF )

]
. (8)

In Eq. (7), eb = 1/3 and mb = MΥ /2 are the electric

charge and the mass of the bottom quark, respectively;

α is the fine-structure constant; Nc = 3 is the number

of colors; εγ and ε∗Υ are the polarization vectors of the

initial-state photon and the final-state vector meson, re-

spectively; 〈O1〉Υ is the non-relativistic QCD (NRQCD)

matrix element for the Υ → bb̄ transition, which is pro-

portional to the radial Υ wavefunction at the origin and

which is fixed by the experimental value of the Υ de-

cay width to a dilepton pair, see [36]. Note that in this

approach, MΥ = 2mb.

The reduced matrix element I(ξ, t = 0) is given by

a convolution of the gluon Tg(x, ξ, µR, µF ) and quark

Tq(x, ξ, µR, µF ) NLO coefficient functions with the gluon

F g(x, ξ, t, µF ) and quark singlet F q,S(x, ξ, t, µF ) ma-

trix elements involving the corresponding GPDs. Note

that the coefficient functions depend on the longitudinal

momentum fraction x, the skewness ξ = M2
Υ /(2W

2 −
M2
Υ ), the renormalization scale µR, and the factoriza-

tion scale µF . In our analysis, we set µ = µR = µF and

vary µ in the mb/2 ≤ µ ≤ 2mb interval.

In the leading-twist approximation and neglecting

the mass of the nucleons, the factors F g and F q,S in

the t = 0 limit can be expressed in terms of the helicity-

conserving gluon Hg(x, ξ, t, µF ) and quark singlet

Hq,S(x, ξ, t, µF ) GPDs as follows [10],

F g(x, ξ, t = 0, µF ) =
√

1− ξ2Hg(x, ξ, t = 0, µF ), (9)

F q,S(x, ξ, t = 0, µF ) =
√

1− ξ2Hq,S(x, ξ, t = 0, µF ) ,

with

Hq,S(x, ξ, t = 0, µF ) =
∑

q=u,d,s,c

[
Hq(x, ξ, t = 0, µF )

−Hq(−x, ξ, t = 0, µF )
]
. (10)

At ξ = t = 0, these GPDs reduce to the usual gluon,

quark, and antiquark PDFs of the (bound) nucleons,

Hg(±x, ξ = 0, t = 0, µF ) = xg(x, µF ) ,

Hq(x, ξ = 0, t = 0, µF ) = q(x, µF ) ,

Hq(−x, ξ = 0, t = 0, µF ) = −q̄(x, µF ) (11)

Hq,S(x, ξ = 0, t = 0, µF ) =
∑

q=u,d,s,c

[
q(x, µF ) + q̄(x, µF )

]
≡ qS(x, µF ) .

where x ∈ [0, 1].

In Eq. (8), each value of the skewness parameter ξ

entails an integration over the convolution variable x.

In the literature, see [10] for review, the |x| ≥ ξ interval

is called the DGLAP region since GPDs there can be

interpreted as parton distribution functions evolving in
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log(µ2
F ) according to the modified Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) evolution equations.

The |x| < ξ interval is called the ERBL region because

GPDs there resemble parton distribution amplitudes,

whose µF evolution is given by the modified Efremov-

Radyushkin-Brodsky-Lepage (ERBL) evolution equa-

tions. In this work, we employ the Shuvaev transform

at NLO to model the ξ dependence of GPDs and to

relate the GPDs to PDFs in the DGLAP region, see

details in Sec. 2.2. To counteract the possible invalidity

of the Shuvaev transform in the time-like ERBL region

of |x| < ξ, we convolute the GPDs with only the imag-

inary part of the gluon and quark coefficient functions

in Eq. (8), which vanish identically for |x| < ξ. We then

restore the real part via the high-energy dispersion re-

lation [37]

<eMγN→ΥN
A (ξ, t = 0)

=mMγN→ΥN
A (ξ, t = 0)

(12)

= tan

(
π

2

∂ ln(=mMγN→ΥN
A (ξ, t = 0)/(1/ξ))

∂ ln(1/ξ)

)
.

We have checked that this relation accurately repro-

duces the directly computed real part contribution for

W >∼ 40 GeV at a percent level in the case that GPDs

are approximated by PDFs. At smaller W the devia-

tion increases but, as will be discussed, our main data-

driven predictions will nevertheless be valid only for

W & 100 GeV.

To summarize, the standard pQCD approach to the

calculation of the σγA→ΥA(W ) cross section is based

on Eqs. (3) and (4), where the hard scattering nuclear

amplitude per bound nucleon MγN→ΥN
A (ξ, t = 0) is

calculated using the bound nucleon (nucleus) gluon and

quark GPDs, see Eqs. (7) and (8). Replacing the bound

nucleon by the free proton in these equations, one read-

ily obtains the NLO pQCD predictions for the proton

target. The cross section of exclusive Υ photoproduc-

tion on the proton reads [compare to Eq. (3)]

σγp→Υp(W ) =
1

BΥ (W )

dσγp→Υp(W )

dt

∣∣∣∣
t=0

, (13)

where BΥ (W ) is the energy-dependent slope of the t

dependence of the γ + p → Υ + p cross section, which

is assumed to be exponential; dσγp→Υp(W )/dt(t = 0)

is the differential cross section at t = 0, which is cal-

culated using Eqs. (4), (7) and (8) with nuclear GPDs

replaced by their free-proton counterparts.

The t dependence of the γ+p→ Υ +p cross section

has never been measured. Therefore, for the BΥ (W )

slope, we use the following parametrization motivated

by Regge phenomenology,

BΥ (W ) = B0 + 4α′IP ln

(
W

W0

)
, (14)

where B0 = 4.63 GeV−2, α′IP = 0.06 GeV−2, and W0 =

90 GeV. While the value of B0 is compatible with fits

to the t dependence of elastic J/ψ photoproduction on

the proton at HERA [26,38], the value of slope of the

Pomeron trajectory α′IP is fixed by Model 4 of [39],

which fits a wide variety of data on diffraction in proton-

proton scattering at the LHC.

2.2 GPD modeling

Generalized parton distributions naturally appear in

the framework of collinear factorization for hard ex-

clusive processes [7] and combine properties of usual

PDFs, distribution amplitudes and elastic form factors

[8,9,10]. Since GPDs depend on two light-cone momen-

tum fractions x and ξ, the invariant momentum transfer

squared t, and the factorization scale µF , their model-

ing and extraction from the available experimental data

has been notoriously challenging, see, e.g. [40]. How-

ever, at small values of the skewness ξ, GPDs rather

closely resemble usual PDFs in the |x| ≥ ξ DGLAP re-

gion and the |x| < ξ ERBL region plays typically only a

minor role. These facts significantly simplify the model-

ing of GPD-originating effects even if the experimental

constraints for the three-dimensional structure of GPDs

are weak.

One of the most widely used models of GPDs at

small ξ is based on the so-called Shuvaev transform,

which is a method to analytically solve the LO Q2 evo-

lution equations of GPDs [31,32,33]. It is a general-

ization of solving the usual DGLAP evolution equa-

tions using Mellin moments of PDFs. To briefly summa-

rize the method, one first defines effective PDFs, whose

Mellin moments are equal to the Gegenbauer (confor-

mal) moments of GPDs. One then inverts these rela-

tions and expresses GPDs as certain integrals of the

effective PDFs at any given factorization scale µF . Fi-

nally, using the condition of polynomiality of the con-

formal moments (see details in [32,41]), one argues that

the effective PDFs can be approximated by the usual

PDFs and obtains the desired connection between GPDs

at small ξ and PDFs. In other words, the input GPDs at

some low scale µ0 are assumed to be independent of ξ,

and the ξ dependence is then generated radiatively dur-

ing the scale evolution – this warrants to speak about

perturbative skewness. Moreover, since the mixing of

the conformal moments under the NLO Q2 evolution is

suppressed by powers of ξ, the Shuvaev transform can

also be safely used at NLO in the ξ � 1 limit [31].

As a phenomenological application of the method, it

was shown in NLO and next-to-next-to-leading order

(NNLO) analyses [42] that a flexible parametrization of

quark and gluon GPDs of the proton in terms of their
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conformal moments describes well the available HERA

data on deeply virtual Compton scattering (DVCS) on

the proton. In the case that the condition ξ � 1 is not

met, the Shuvaev transform should be substituted by

explicitly solving the GPD evolution equations [43,44].

In our work, we employ the Shuvaev transform at

NLO as a means to relate the GPDs to PDFs in the

DGLAP region. Thus, the quark and gluon GPDs are

obtained as integrals of the corresponding quark and

gluon PDFs,

Hq(x, ξ, t = 0, µF ) =∫ 1

−1

dx′
[

2

π
=m

∫ 1

0

ds

y(s)
√

1− y(s)x′

]
d

dx′
q(x′, µF )

|x′|
,

Hg(x, ξ, t = 0, µF ) = (15)∫ 1

−1

dx′
[

2

π
=m

∫ 1

0

ds (x+ ξ(1− 2s)

y(s)
√

1− y(s)x′

]
d

dx′
g(x′, µF )

|x′|
,

where the kernel of the transform is

y(s) =
4s(1− s)

x+ ξ(1− 2s)
. (16)

As we explained above, Eq. (15) is used only to calcu-

late the imaginary part of the hard scattering amplitude

MγN→ΥN
A (ξ, t = 0). The real part probing the ERBL

region is restored via the high-energy dispersion rela-

tion (12). In practice, the Shuvaev integrals in Eqs. (15)

involving derivatives of the input PDFs converge rather

slowly and have to be precomputed before evaluating

Eq. (8). To this end, we have computed the GPDs in a

three-dimensional x, ξ/x, µ2 grid using Eqs. (15). The

construction of the GPD grid is optimised such that

areas in the parameter space that result in a flat inter-
polation are not overly populated: having more points

around ξ/x ∼ 1 mitigates edge effects at the boundary

of the DGLAP and ERBL regions [41], while the inter-

polation in µ2 is relatively smooth and requires fewer

points.

In Fig. 1, we illustrate the effect of finite skewness in

GPDs by comparing the gluon and quark-singlet GPDs,

F g(x, ξ) and F q,S(x, ξ), obtained through the Shuvaev

transform, with their values at ξ = 0, xg(x) and qS(x),

as a function of x at the scale µF = mb. We have

used here the CT18ANLO proton PDFs [45] taken from

the LHAPDF library [46]. In these plots, we have fixed

ξ ≈ 10−3, which corresponds to the kinematic value of

the skewness parameter probed in Υ photoproduction

in Pb + Pb UPCs at 5.02 TeV and y = 0. The distri-

butions are plotted in a small interval of the DGLAP

region, x ∈ [ξ, 10−2], where the Shuvaev transform is

a reliable way to obtain the perturbatively generated

skewness of the GPDs. One can see from the figure that

the effect of skewness – the deviation between the blue

and orange curves – is rather small for most values of x,

but grows towards the point x = ξ, especially in the case

of quarks. At the same time, to compare with the com-

monly used skewness factor due to the Shuvaev trans-

form [32,47], we also show the gluon and quark singlet

PDFs evaluated at the x+ ξ point, (x+ ξ)g(x+ ξ, µF )

and qS(x + ξ, µF ). In this case, the effect of skewness

is noticeable (the deviation between the blue and green

lines is significant). However, in our NLO pQCD anal-

ysis the (x + ξ)g(x + ξ, µF ) and qS(x + ξ, µF ) PDFs

do not play any special role and we find that the nu-

merical effect of the skewness effects induced by the

Shuvaev transform in the calculated cross sections of Υ

photoproduction on the proton and a heavy nucleus is

small.

The effect of the Shuvaev transform is larger at

larger scales µF , where the effective power growth of

the partons becomes steeper and reflects the sensitiv-

ity of the Shuvaev transform to the slope of the in-

put PDFs through Eq. (15). The enhancement in the

quark singlet GPD is clearly larger than that in the

gluon one. However, our analysis shows that the contri-

bution of the quarks is subleading and so the overall ef-

fect of incorporating the skewness through the Shuvaev

transform is dictated by the gluon GPDs. Our results

for the differences between F g(x, ξ, µF ) and xg(x, µF ),

and F q,S(x, ξ, µF ) and qS(x, µF ), are qualitatively sim-

ilar to those presented in the DGLAP region at LO in

Fig. 3 of Ref. [43].

3 Data-driven approach

As discussed in our previous works in the context of
exclusive J/ψ photoproduction in Pb + Pb and O+O

UPCs [25,24], the photoproduction scattering ampli-

tudeMγN→ΥN
A (ξ, t = 0) introduced above suffers from

a large factorization/renormalization scale dependence.

While it is milder for the case of Υ photoproduction

considered here since the interaction scale is higher than

in the J/ψ photoproduction, it is still rather sizeable as

we will show later on in Sec. 4. In addition, the NLO

results will be shown to somewhat underpredict the

HERA and LHC data on the γ+p→ Υ+p cross section.

An approach to alleviate the strong scale dependence

through consideration of additional power corrections

∼ O(µ2
F /Q

2
0) arising in the so-called Q0 subtraction,

where Q0 is the PDF or GPD parametrization scale,

was advocated in [48,49,50,51,52] in the context of

p+ p and p+ Pb collisions. Instead of the Q0 subtrac-

tion, we adopt a data-driven pQCD approach, where

the γ + Pb → Υ + Pb cross section is given by the

product of the ratio between the Υ photoproduction

cross sections on the nucleus and the proton calculated
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Fig. 1 The gluon (left panel) and quark singlet (right panel) GPDs (blue curves) F g(x, ξ) and F q,S(x, ξ) with ξ ≈ 10−3

obtained through the Shuvaev transformation, compared with PDFs xg(x) and qS(x) (orange dashed curves) at µF = mb as a
function of x. In addition, we also present the distributions (x+ ξ)g(x+ ξ) and qS(x+ ξ) (green dotted curves).

in NLO in pQCD, and the γ + p → Υ + p cross sec-

tion fitted to the available HERA [26,27,28] and LHC

data [29],

σγPb→ΥPb(W ) =

[
σγPb→ΥPb(W )

σγp→Υp(W )

]
pQCD

σγp→Υpfit (W ) .

(17)

Using a simple power-like ansatz for σγp→Υpfit (W ) with

an additional factor parametrizing the behavior of the

cross section near the kinematic threshold [53], one ob-

tains [54]

σγp→Υpfit (W ) =
0.902 nb GeV−2

BΥ (W )

[
1− (MΥ +mN )2

W 2

]1.5

×

(
W 2

W̃ 2
0

)0.447

, (18)

with W̃0 = 100 GeV. Note that while the 2018 CMS

data [30] have not been included in the fit, they are

nevertheless well reproduced, see Fig. 2 ahead. One way

to interpret Eq. (17) is that we supplement the fitted

γ + p→ Υ + p cross sections by the theoretical nuclear

modification R(W ),

R(W ) =

[
σγPb→ΥPb(W )

σγp→Υp(W )

]
pQCD

, (19)

which can be anticipated to carry a reduced dependence

on the choice of the factorization scale and on the ex-

plicit modeling of GPDs. In the first approximation,

these effects cancel in R(W ) and it becomes mainly

sensitive to the PDFs of protons and nuclei. Alterna-

tively, one can interpret that in Eq. (17) one rescales the

calculated γ + Pb→ Υ + Pb cross sections by a factor

that is needed to match the calculated γ + p → Υ + p

cross sections with the experimental ones – an effec-

tive “K factor”. In what follows, we will call the cross

sections computed through Eq. (17) the “data-driven”

ones, in contrast to the “standard” pQCD predictions

calculated without any reference to experimental data.

The approach here is similar in spirit to the leading-

order pQCD analysis of the nuclear suppression factor

for exclusive J/ψ photoproduction in Pb+Pb collisions

introduced and discussed in Refs. [53,55,56].

4 Results

In this section, we present and discuss our results for

the Υ photoproduction process on the proton, γ + p→
Υ+p, and the rapidity-differential Υ spectra in Pb+Pb

UPCs, Pb + Pb → Pb + Υ + Pb. To estimate the

sensitivity of our predictions to higher-order pertur-

bative corrections, we adopt a standard, conservative

prescription and vary the factorization and renormal-

ization scales together in the interval of µF = µR ∈
{1/2, 1, 2} × mb. As input proton and nuclear PDFs,

we use CT18ANLO [45] and EPPS21 [21] PDFs, re-

spectively, from the LHAPDF interface [46]. The corre-

sponding GPDs are obtained using the Shuvaev trans-

form as discussed in Sec. 2.2. Note that we use the ver-

sion “A” of the CT18NLO analysis since this was the

free proton baseline used in the EPPS21 nPDF anal-

ysis. It differs from the default CT18NLO mainly in

the strange quark distributions. In the first instance we

make NLO predictions following the standard pQCD
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approach, and then subsequently compare and contrast

features of these predictions with those obtained from

the data-driven method explained in Sec. 3, as well as

with our earlier analyses [24,25] of J/ψ photoproduc-

tion in Pb + Pb UPCs.

4.1 Standard pQCD results for γ + p→ Υ + p cross

section

Figure 2 presents the σγp→Υp(W ) cross section of exclu-

sive Υ photoproduction on the proton, γ+p→ Υ+p, as

a function of the invariant photon-proton c.m.s. energy

W . The dashed, dot-dashed and dotted curves corre-

spond to the NLO pQCD predictions of Eq. (13), which

as input use either the proton GPDs obtained via the

Shuvaev transform (the curves labeled “GPD”) or the

usual proton PDFs, i.e., the ξ = 0 forward limit of the

GPDs (the curves labeled “PDF”). Each pair of predic-

tions is evaluated with three scale settings µ = µF =

µR ∈ {1/2, 1, 2} ×mb. The shaded band represents the

propagated uncertainty of the proton PDFs used for

the GPD-based predictions at µ = mb. These results

are compared with the available HERA [27,26,28] and

the LHC data [29,30] on this process. Note that it is

argued in [51] that the extracted values of σγp→Υp(W )

at the largest W from the LHCb rapidity-differential

measurements [29] should be shifted upwards because

the collaboration used a less accurate approximation for

the photon flux in their analysis. Finally, the black solid

line labeled “Fit” is the parametrization of Eq. (18).

One can see from the figure that while our NLO

pQCD predictions reproduce the trends of the W de-

pendence of the data, they underestimate the normal-

ization of the cross section, especially at larger values

of µ. A reliable description of the normalization would

thus require a better theoretical understanding of the

perturbative structure of the process including, e.g. the

relevance of unknown next-to-NLO corrections, signifi-

cance of the double logarithmic αs log(µ2
F /m

2
b) log(1/ξ)

terms present already in the NLO hard coefficient func-

tions Tg and Tq [6,57]1, and the size of the relativistic

corrections to the quarkonium wave function [58]. An

account of these effects is beyond the scope of this pa-

per and we will work around these issues through the

data-driven predictions.

The systematics of the NLO pQCD predictions in

Fig. 2 can be summarized as follows. First, as discussed

in Sec. 2.2, the effect of skewness is rather mild, i.e.,

the difference between the GPD-based and PDF-based

1Note that these terms should be more relevant at low ξ i.e. at
high W whereas the normalization seems to be an increasingly
serious issue towards low values of W .

predictions is small, especially at smaller values of µ.

Second, while the GPD-based predictions correspond

to higher values of σγp→Υp(W ) than the corresponding

PDF-based ones at µ = mb and µ = 2mb, this hierar-

chy of predictions is reversed at µ = mb/2. A detailed

examination indicates that this originates from a del-

icate interplay among the LO gluon and NLO gluon

and quark contributions in MγN→ΥN
A (ξ, t = 0) whose

relative signs vary depending on the scale choices. This

is further complicated by the fact that the magnitude

of the skewness effect generated by the Shuvaev trans-

form (15) depends on both W (through its dependence

on ξ) and µF controlling the slope of the x dependence

of the gluon and quark PDFs. Third, as a result of

scale-dependent sign differences of quark/gluon contri-

butions, the relative ordering of predictions from low to

high µ depends on W .

4.2 Standard pQCD results for

Pb + Pb→ Pb + Υ + Pb UPC cross section

In Fig. 3, we show our standard NLO pQCD predic-

tions for dσPb+Pb→Pb+Υ+Pb/dy as a function of the

Υ rapidity y at
√
sNN = 5.02 TeV, see Eqs. (1), (3),

(4) and (7). As input, we use the nuclear GPDs con-

structed using the Shuvaev transform and the EPPS21

nPDFs (central plus error sets). The three curves cor-

respond to the three different choices of the factoriza-

tion/renormalization scales µ = {mb/2,mb, 2mb}. The

shaded band gives the propagated uncertainty of the

EPPS21 nPDFs in the µ = mb case. As a useful refer-

ence, the upper x-axis shows the values of W+ corre-

sponding to each y, that is, W+ = (MΥ
√
sNNe

y)1/2.

Two features of the results in Fig. 3 deserve to be

mentioned. First, one can see from the figure that apart

from the very tails of the rapidity distribution, |y| > 3,

the central prediction with µ = mb does not lie between

the other scale choice predictions with µ = mb/2 and

µ = 2mb. This feature can be readily observed also

in the results for the proton cross section in Fig. 2.

Indeed, taking, for instance, y = 0 corresponding to

W ≈ 200 GeV, one can see that the predictions for

σγp→Υp(W ) with µ = mb lie below the corresponding

predictions at µF = mb/2 and µF = 2mb. Second, the

scale uncertainty is rather large and the prediction with

µ = mb/2 lies outside the nPDF uncertainty band. We

will show in Sec. 4.3 that both of these features can be

tamed through our data-driven approach.

In Figs. 4, 5 and 6, we show various decompositions

of dσPb+Pb→Pb+Υ+Pb/dy at µ = mb as a function of y.

Figure 4 presents the breakdown of the full cross section

into the quark, gluon and interference contributions. It

is clear that over the entire considered rapidity region,
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Fig. 2 The γ + p → Υ + p cross section as a function of W . The NLO pQCD GPD-based (red curves) and PDF-based (blue
curves) predictions evaluated at µ = {mb/2,mb, 2mb} are presented by the dashed, dot-dashed and dotted lines; the shaded
band is the propagated CT18ANLO PDF uncertainty for the GPD-based result at µ = mb. The HERA [27,26,28] and LHC
data [29,30] data on this process are shown as well, together with a fit [Eq. (18)] to the HERA data (the black solid line labeled
“Fit”).

Fig. 3 Standard NLO pQCD prediction for the rapidity-differential cross section for exclusive coherent Υ photoproduction in
Pb + Pb UPCs as a function of the Υ rapidity y at

√
sNN = 5.02 TeV. We use nuclear GPDs constructed from the EPPS21

nPDFs via the Shuvaev transform. The dashed-dotted curve represents the prediction with µ = mb, and the band indicates
the nPDF-originating uncertainty evaluated at the same scale. The predictions with µ = mb/2 (dashed) and µ = 2mb (dotted)
are also shown. The upper x-axis shows the values of W+ as a function of y.

the gluon contribution dominates the quark contribu-

tion, in dissimilarity to the analogous breakdown for

the J/ψ rapidity-differential cross section in Pb + Pb

UPCs in NLO pQCD shown in our previous studies [25,

24], where the quark contribution was shown to be the

dominant one around mid rapidity. One should note

that even if the quark contribution is small, it is not

zero or structureless and it leads to a visible contribu-

tion in the interference terms. One can speculate that

the interaction scale in the Υ photoproduction is al-

ready sufficiently large so that NNLO corrections will

not change the mutual hierarchy of quark/gluon con-

tributions. The situation could be very different in the

case of J/ψ photoproduction where the quark domi-

nance is a consequence of a coincidental cancellation

between the LO and NLO gluon contributions.

In Fig. 5, we show the W+ and W− decomposition

i.e. separately plot the two contributions in Eq. (1). The

situation is very similar to that in our J/ψ analysis,

see [24,25] for more details. For instance, the W− con-
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Fig. 4 Decomposition of the rapidity-differential Pb + Pb→ Pb + Υ + Pb cross section with µ = mb into the quark, gluon and
quark-gluon interference contributions, in our standard NLO pQCD approach.

Fig. 5 Decomposition of the rapidity-differential Pb + Pb→ Pb + Υ + Pb cross section with µ = mb into the W+ and W−

components, in our standard NLO pQCD approach.

tribution dominates at positive forward rapidities (large

W+) because there (kdNPb
γ /dk)k=k− � (kdNPb

γ /dk)k=k+ .

The situation is reversed in the region of backward ra-

pidities corresponding to small W+. The presence of

two terms in Eq. (1) complicates the extraction of the

small-x contribution from UPC cross sections at y 6= 0.

However, it is possible to separate theW+ andW− con-

tributions by studying UPCs accompanied by forward

neutron emission due to electromagnetic excitation of

one or both colliding nuclei [59]. Such an analysis in the

case of coherent J/ψ photoproduction in Pb+Pb UPCs

at 5.02 TeV was recently performed by the CMS collab-

oration [60], which allowed one to deepen the small-x

reach down to x ∼ 10−4.

Finally, Fig. 6 presents the decomposition of

dσPb+Pb→Pb+Υ+Pb/dy into the contributions of the real

and imaginary parts of MγN→ΥN
A (ξ, t = 0). The imag-

inary part clearly dominates over the entire range of

rapidity. Again, the situation was much more involved

in the case of J/ψ, where the interplay of the two was

highly non-trivial [24,25].

4.3 Data-driven pQCD predictions for the

Pb + Pb→ Pb + Υ + Pb UPC cross section

The data-driven pQCD prediction for the UPC cross

section dσPb+Pb→Pb+Υ+Pb/dy is given by Eq. (17), where

only the ratio of the nucleus and proton cross sections

R(W ) of Eq. (19) is calculated using our NLO pQCD

framework, while the absolute normalization is given

by σγp→Υpfit (W ) obtained from a fit to the proton data,

see Eq. (18). The results for the differential cross sec-

tion as a function of the Υ rapidity y are shown in

Fig. 7. The numerator and the denominator of the ra-
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Fig. 6 Decomposition of the rapidity-differential Pb + Pb→ Pb + Υ + Pb cross section with µ = mb into the contributions
from the real and imaginary parts, in our standard NLO pQCD approach.

tio R(W ) are calculated using the EPPS21-based and

the CT18ANLO-based GPDs, respectively; these curves

are labeled “nGPD”. For comparison, we also show the

results of the calculation, where we neglect the effect of

skewness and use the forward ξ → 0 limit for nuclear

and proton GPDs; these curves are labeled “nPDF”.

The blue dot-dashed curve represents our central pre-

diction at µ = mb with the blue shaded band quan-

tifying the propagation of the EPPS21 nPDF and the

CT18ANLO proton PDF uncertainties; their counter-

parts in the case, where GPDs are taken in the forward

limit, are given by the red solid curve and the cor-

responding red shaded band. The dotted and dashed

curves correspond to the ratio R(W ) evaluated at µ =

mb/2 and µ = 2mb, respectively. The uncertainties in

σγp→Υpfit (W ) are not included in our estimates. For ref-

erence, we give the values of W+ = (MΥ
√
sNN e

y)1/2

probed at a given rapidity y on the upper x-axis, and

also mark in the figure the points |y| = 2, beyond which

the σγp→Υpfit (W ) fit to the γ+p→ Υ+p photoproduction

data is an extrapolation: the HERA data are available

only for W ≥ 100 GeV (see Fig. 2), but for |y| ≥ 2 there

is a large contribution from W < 100 GeV, see Fig. 5.

It is important to contrast our results in Fig. 7

with the standard NLO pQCD predictions shown in

Fig. 3. First, while the shapes of the y distribution are

very similar, the normalization of the data-driven re-

sults is approximately a factor of 2 − 2.5 higher. This

is a straightforward consequence of the rescaling of the

cross section of exclusive Υ photoproduction on the pro-

ton to fit the available data. Second, the dependence on

the factorization/renormalization scale µ is now more

regular in the central rapidities: the central prediction

with µ = mb lies below the µ = mb/2 result and above

the µ = 2mb one. Most importantly, the scale depen-

dence has reduced significantly. Third, the effects of

GPD modeling are seen to largely cancel in the ratio

R(W ). As a result, the data-driven pQCD predictions

for dσPb+Pb→Pb+Υ+Pb/dy are here mainly sensitive to

the input PDFs. Note that for lower W , where the real

part restoration via Eq. (12) is less accurate, the behav-

ior of our results is less regular, but this lies in the tails

of the y distributions where our predictions anyhow lean

on an extrapolation of σγp→Υpfit (W ) into non-measured

values of W .

To quantify the magnitude of nuclear effects probed

in exclusive Υ photoproduction in Pb+Pb UPCs at the

LHC, it is convenient to consider separately the ratio

R(W ) in Eq. (19). Indeed, at a given value of the Υ

rapidity y 6= 0, the Pb + Pb UPC cross section con-

tains two terms leading to a two-fold ambiguity in the

photon-nucleon c.m.s. energy W±. As a consequence,

this mixes the low-x and medium-x contributions to

the UPC cross section and makes it challenging to ex-

tract the information on small-x physics, which is often

thought to be at the heart of the process under con-

sideration. This issue is absent in the case of R(W )

although it cannot be experimentally measured in a

model-independent way. In the upper panel of Fig. 8,

we show the ratio R(W ) as a function of W+. On the

x-axis at the top, we also give the corresponding values

of the skewness ξ+ = M2
Υ /[2(W+)2 −M2

Υ ]. The curve

corresponds to the central prediction at µ = mb shown

in Fig. 7, where the numerator and the denominator

of R(W ) are calculated using the EPP21-based nuclear

GPDs and the CT18ANLO-based free proton GPDs,

respectively. The shaded band is the result of the prop-

agation of the EPPS21 nPDF and the CT18ANLO pro-

ton PDF uncertainties. We see that the rescaling fac-

tor R(W ) depends strongly on W and its value can be
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Fig. 7 Data-driven NLO pQCD prediction for the rapidity-differential cross section for exclusive coherent Υ photoproduction
in Pb + Pb UPCs as a function of the Υ rapidity y at

√
sNN = 5.02 TeV. We use the nuclear and proton GPDs constructed

from the EPPS21 nPDFs and CT18ANLO proton PDFs, respectively, obtained via the Shuvaev transform (the curves labeled
“nGPD”). For comparison, we also show the results based on the ξ = 0 limit of the used GPDs (the curves labeled “nPDF”).
The blue dot-dashed line represents the central prediction with µ = mb and the blue band gives the propagated uncertainties
of the nuclear and proton PDFs. The predictions for µ = mb/2 (dotted) and µ = 2mb (dashed) are also shown. The upper
x-axis shows the values of W+ for each y. The vertical dashed lines denote the points |y| = 2, beyond which the results are

sensitive to low W where σγp→Υpfit (W ) is an extrapolation.

as large as several hundreds. The absolute value can,

however, be mostly explained through the proton and

nuclear form factors. To see this and to provide a closer

comparison with nuclear modifications of nPDFs, one

can eliminate the effects of the nuclear and the proton

form factors in the R(W ) ratio by rescaling it by the

factor of R′(W ),

R′(W ) =
1/BΥ (W )∫∞

|tmin| dt |FA(−t)|2
, (20)

where BΥ (W ) is the slope of the t dependence of the γ+

p→ Υ+p differential cross section in Eq. (14) and FA(t)

is the nuclear form factor in Eq. (5). Note that R′(W )

depends on W+ through |tmin| = m2
N (MΥ /W

+)4 and

BΥ (W+). In the lower panel of Fig. 8, we present the

scaled R(W ) ratio, i.e., the product R(W ) × R′(W ),

as a function of W+ by the red solid curve. The prop-

agated nuclear and free proton PDF uncertainties are

given by the red shaded band. One can see from the

figure that as a function of ξ+, R(W )×R′(W ) exhibits

significant suppression for small ξ+ < 0.05 and a ∼ 10%

enhancement at ξ+ ∼ 0.1. This behaviour reflects the

characteristic nuclear modifications of nPDFs associ-

ated with nuclear shadowing at small x and nuclear

anti-shadowing at x ∼ 0.1. To highlight the latter point,

we also show the squared EPPS21 nuclear modification

factors for the gluon and quark singlet,

R2
g(ξ, µF ) =

[
gA(ξ, µF )

gp(ξ, µF )

]2

, (21)

R2
q(ξ, µF ) =

[
qSA(ξ, µF )

qSp (ξ, µF )

]2

, (22)

as a function of ξ = ξ+, where gA (qSA) and gp (qSp ) are

the gluon (quark-singlet) distributions per nucleon in

the nucleus and the free proton, respectively. The cor-
responding shaded bands represent the EPPS21 nPDF

uncertainties of these ratios. One can see that the shape

and normalization of both R2
g(ξ) and R2

q(ξ) is similar

to those of R(W ) × R′(W ). Moreover, because of the

dominance of the gluon-initiated contribution over the

quark one, see Fig. 4, and the flat shape of the gluon

nuclear modifications at small x, the values of R(W )×
R′(W ) and R2

g(ξ) become very close for ξ+ ≤ 10−3

(W+ > 200 GeV).

4.4 Feasibility of the measurement of Υ

photoproduction in Pb + Pb UPCs at the LHC

Having now obtained an educated estimate for the Υ

cross section in Pb + Pb collisions, we will here check

to what extent an experimental measurement of the

process would be feasible. To this end, we lean on the

exclusive Υ p+Pb measurement by the CMS collabora-

tion [30] at
√
sNN = 5.02 TeV. This measurement with
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Fig. 8 Upper panel: The ratio R(W ) =
[
σγPb→ΥPb(W )/σγp→Υp(W )

]
pQCD

as a function of the c.m.s. energy W+ evaluated

using the EPPS21 nuclear and CT18ANLO free proton PDFs at µ = mb. The shaded band corresponds to the EPPS21 and
CT18ANLO PDFs uncertainties. The upper x-axis indicates the corresponding values of the skewness ξ+. Lower panel: the
rescaled ratio R′(W )×R(W ) as a function of W+. For comparison, the EPPS21 gluon and quark-singlet nuclear modifications
squared along with their uncertainties are overlaid. The shaded bands show the PDF-originated uncertainties.

an integrated luminosity of L(p+ Pb) = 32.6 nb−1 re-

ported ∼ 80 identified Υ (1S) particles and yielded a

total cross section σ(p+ Pb) = 94.8 nb in the rapidity

interval |y| < 2.2. If we desire a Pb + Pb measurement

that is as precise as the p+ Pb measurement (the same

number of events), and assume the same efficiency, the

condition is

σ(p+ Pb)L(p+ Pb) = σ(Pb + Pb)L(Pb + Pb) . (23)

From Fig. 7, we find a total cross section σ(Pb + Pb) ∼
52µb in the same rapidity interval −2.2 < y < 2.2.

It then follows that the required integrated luminosity

should be

L(Pb + Pb) = 0.06 nb−1 , (24)

to observe ∼ 80 events. Given that the recorded lumi-

nosity at the 2018 Pb + Pb run for CMS is as high

as 1.7 nb−1 [61], our counting would thus promise ∼
80 × (1.7/0.06) ≈ 2300 events. Moreover, in Run III

CMS aims for an integrated luminosity of 13 nb−1 [19],

so the measurement of exclusive Υ photoproduction in

Pb + Pb collisions looks more than feasible to be per-

formed at the CMS experiment.

5 Conclusions and Outlook

We presented the first study of the rapidity-differential

cross section of exclusive Υ photoproduction in ultrape-

ripheral lead-lead collisions at the LHC using collinear

factorization at NLO pQCD. In addition, we extended
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our previous framework in [25,24] by now including

explicit GPD modeling through the Shuvaev integral

transform. In our standard NLO pQCD approach, we

showed that the GPD effects are small, and unlike in

the J/ψ case, the imaginary part and gluon contribu-

tions dominate the amplitude. The scale uncertainties

are significantly reduced from the J/ψ case, but they

are still alarmingly large. In the γ + p case, the NLO

calculation was shown to underpredict the HERA data,

which calls for further improvements such as NNLO

pQCD and NRQCD corrections.

Using the γ + p→ Υ + p cross section from HERA

and the LHC as a baseline, we proposed a data-driven

pQCD approach to make more constrained predictions

for dσ(Pb + Pb → Pb + Υ + Pb)/dy and showed that

the resulting factorization/renormalization dependence

becomes smaller than that in the standard pQCD result

for this process. In addition, effects due to the explicit

GPD modeling largely cancel and most of the remaining

uncertainty is due to PDFs of free and bound nucleons.

This serves as a first step towards being able to include

heavy quarkonia UPC data in the global analyses of

nPDFs to provide constraints on partons inside nuclei

at moderate to low x. We also estimated that the pro-

duction cross sections are high enough for this process

to be measured in Pb+Pb collisions at the LHC. While

the theoretical situation nevertheless seems a little bet-

ter for the Υ production, the experimental statistics

obtainable may be sparser than that for J/ψ. Future

works can therefore include applying our data-driven

approach to exclusive J/ψ photoproduction in nucleus-

nucleus collisions, where also the statistical quality of

the baseline γ + p data is greater than for Υ produc-

tion. In the J/ψ case, the GPD modeling given by the

Shuvaev transform is surmised to have an even smaller

effect in comparison to the Υ photoproduction consid-

ered here, but to what extent the scale dependence can

be tamed, calls for a detailed analysis.
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