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ABSTRACT Information loss is generally related to power consumption. Therefore, reducing information 

loss is an interesting challenge in designing digital systems. Quaternary reversible circuits have received 

significant attention due to their low-power design applications and attractive advantages over binary 

reversible logic. Multiplexer and demultiplexer circuits are crucial parts of computing circuits in ALU, and 

their efficient design can significantly affect the processors' performance. A new scalable realization of 

quaternary reversible 4×1 multiplexer and 1×4 demultiplexer, based on quaternary 1-qudit Shift, 2-qudit 

Controlled Feynman, and 2-qudit Muthukrishnan-Stroud gates, is presented in this paper. Moreover, the 

corresponding generalized quaternary reversible n×1 multiplexer and 1×n demultiplexer circuits are proposed. 

The comparison, with respect to the current literature, shows that the proposed circuits are more efficient in 

terms of quantum cost, the number of garbage outputs, and the number of constant inputs. 

INDEX TERMS Circuit Optimization, Demultiplexer, Multiplexer, Quantum Computing, Quaternary, 

Reversible Logic, Scalable Realization. 

I. INTRODUCTION 

A significant barrier to future circuit design is its high 

energy consumption. In 1961, Landauer proved that 

traditional irreversible gate leads to energy dissipation in 

circuit design [1]. Zhirnov et al. demonstrated that it would 

be impossible to remove heat from CMOS because of power 

dissipation [2]. According to Bennett's research, power 

dissipation can be prevented in circuit design by using 

reversible gates [3]. Recovering the input vectors from the 

output vectors in reversible gates is possible because the 

number of inputs equals the number of outputs. 

Moreover, the output vectors are recoverable from the 

input vectors [4-6]. These circuits are also not permitted to 

have feedback or fan-out [6]. The inherent reversibility 

makes quantum technology a promising technology for 

future computer systems [7, 8]. 

Quantum computing could reduce the computational 

complexity of many problems and be much more efficient 

than classical computing. For instance, exploiting quantum 

algorithms, only √(N) steps are required instead of the N 

steps needed in classical algorithms to search an unstructured 

database [9-11]. Multiple-valued logic has received 

considerable attention as future challenges for binary logic 

are expected to be massive due to severe thermal and 

reliability problems [12]. With respect to reversible binary 

logic, reversible multiple-valued logic is more secure in 

quantum cryptography [13-15] and more potent in quantum 

information processing [16]. Moreover, it exhibits a lower 

interconnection complexity [17] and a lower power 

consumption, and it is more error tolerant for quantum 

computations [18, 19]. Even though ternary logic is one of 

the most successful types of multiple-valued logic and many 

important works in this field [19-30], a limitation is that 

conventional binary logic functions cannot be easily 

represented in ternary logic. In quaternary logic, two bits can 

be grouped into quaternary values to express binary logic 

functions [31]. The memory unit is a qudit in quantum 

quaternary logic, and the possible states for a qudit are |0〉, 
|1〉, |2〉, and |3〉. Each of these states is represented by a 4×1 

vector in (1):  

|0〉 = [

1
0
0
0

]       |1〉 = [

0
1
0
0

]      |2〉 = [

0
0
1
0

]      |3〉 = [

0
0
0
1

]     (1) 
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Recently, many essential circuits have been presented 

based on quaternary reversible logic, such as comparators, 

parallel adders, full adders, half adders, subtractors, and 

decoders [32-40]. 

Demultiplexer and multiplexer circuits are essential 

components of computers, arithmetic logic units, 

communication systems, memory systems, and converters 

[40]. This work proposes a new realization of quaternary 

reversible multiplexer and demultiplexer circuits. This paper 

aims to synthesize quantum quaternary circuits that are more 

efficient than the existing designs in the literature [40-42]. 

Moreover, we present the characteristics of the proposed 

circuits in terms of quantum cost, number of garbage outputs, 

and number of constant inputs, which are described as 

follows: 

Quantum cost is the number of quaternary reversible 1-

qudit Shift gates and 2-qudit Muthukrishnan-Stroud gates 

exploited for implementing the circuit. Circuit designers try to 

decrease the quantum cost as much as possible [40, 45]. 

The number of garbage outputs refers to the unutilized 

outputs added to the circuit to make it reversible. Increasing 

the number of these outputs enhances the information loss in 

reversible circuits [40, 44]. 

The number of constant inputs refers to inputs that must 

be held constant at a value of either 0, 1, 2, or 3 to synthesize 

the specified logic function. Increasing the number of these 

inputs enhances the lines in reversible circuits [40, 43]. 

In quantum quaternary logic, circuits are synthesized by 

minimizing these important parameters for better efficiency. 

The proposed quaternary circuits have better quantum cost, 

number of garbage outputs, and number of constant inputs 

compared with the existing designs in the literature [40-42].  

This paper is structured as follows. The basic concepts of 

quaternary Galois field and quaternary reversible gates are 

explained in Section 2. Our proposed scalable realization of 

the quaternary reversible multiplexer and demultiplexer is 

presented in Section 3. In Section 4, the evaluation of the 

proposed circuits and comparison results are discussed. 

Finally, the conclusion of this work is provided in Section 5. 

 
II. BASIC CONCEPTS 

This section shows the background on quaternary Galois 

Field and quaternary reversible gates, exploited in the 

subsequent sections. 

 

A. QUATERNARY GALOIS FIELD LOGIC  

The algebraic structure of the Galois Field (GF4) in quaternary 

logic consists of the set of values Q =  {0, 1, 2, 3}, the 

addition (⊕), and multiplication (⨀) operations, which are 

displayed in Table I and Table II. These are associative and 

commutative operations. Moreover, multiplication is 

distributive over addition [46].  

 

 

TABLE I 

THE TRUTH TABLE OF GF 4 ADDITION OPERATION 

3 2 1 0 ⊕ 

3 2 1 0 0 

2 3 0 1 1 

1 0 3 2 2 

0 1 2 3 3 

 

 
TABLE II 

THE TRUTH TABLE OF GF 4 MULTIPLICATION OPERATION 

3 2 1 0 ⊙ 

0 0 0 0 0 

3 2 1 0 1 

1 3 2 0 2 

2 1 3 0 3 

B. QUATERNARY 1-QUDIT SHIFT GATES 

Any transformation of the qudit, in quaternary reversible logic, 

is represented by a 4×4 unitary matrix, as shown in Figure 1. 

Each unitary matrix in Figure 1 can be realized as a 1-qudit 

Shift gate [40, 47]. They are 1-input 1-output gates having the 

mapping (A) to (P= Z transform of A), where the input is A, 

and the output is P. Figure 2 shows the graphical 

representation of quaternary 1-qudit Shift gates.   

 

 

FIGURE 1. Quaternary 1-qudit unitary transforms.  

 

A Z P
 

FIGURE 2. The graphical representation of quaternary 1-qudit Shift 
gates.  

 

The relationship between the input and output of these 1-

qudit Shift gates is illustrated in Table III. These are 

elementary quaternary reversible gates that can be realized 

utilizing liquid ion trap quantum technology. Therefore, these 

gates have a quantum cost of 1 [49].  
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TABLE III  

THE TRUTH TABLE OF QUATERNARY 1-QUDIT SHIFT GATES 

Z(013) Z(123) Z(+3) Z(+2) Z(+1) Z(+0) A 

1 0 3 2 1 0 0 

3 2 2 3 0 1 1 

2 3 1 0 3 2 2 

0 1 0 1 2 3 3 

Z(031) Z(023) Z(012) Z(132) Z(032) Z(021) A 

3 2 1 0 3 2 0 

0 1 2 3 1 0 1 

2 3 0 1 0 1 2 

1 0 3 2 2 3 3 

Z(0132) Z(12) Z(0312) Z(0213) Z(01) Z(23) A 

1 0 3 2 1 0 0 

3 2 2 3 0 1 1 

0 1 0 1 2 3 2 

2 3 1 0 3 2 3 

Z(0321) Z(02) Z(0123) Z(13) Z(03) Z(0231) A 

3 2 1 0 3 2 0 

0 1 2 3 1 0 1 

1 0 3 2 2 3 2 

2 3 0 1 0 1 3 

 

C. QUATERNARY 2-QUDIT MUTHUKRISHNAN-STROUD 
GATES  

Muthukrishnan and Stroud [47] proposed a family of 2-qudit 

multiple-valued gates, which are realizable in liquid ion-trap 

quantum technology. The quaternary Muthukrishnan-Stroud 

(M-S) gate is basically a controlled 2-qudit gate with two 

inputs and two outputs that can be defined as: 

 IV= (A, B)  

OV= (P=A, Q=Z transform (1-qudit transform) of the 

controlled input B if the controlling input A is equal to 3; 

otherwise, the output Q is equal to the controlled input B), 

where IV is the input vector, and OV is the output vector. Hence 

the inputs are A and B, and the outputs are P and Q [47].  

Figure 3 illustrates the symbolic representation of the 

quaternary 2-qudit Muthukrishnan-Stroud gate. The quantum 

cost of this gate is equal to 1. 

 

B Z Q

A P

 

FIGURE 3. Symbolic representation of quaternary 2-qudit 
Muthukrishnan-Stroud gate. 

D. QUATERNARY 2-QUDIT CONTROLLED FEYNMAN 
GATE  

The quaternary Controlled Feynman gate is a 3-input 3-output 

gate having the mapping (A, B, C) to (P=A, Q=B, R= B⊕C if 

the input A is equal to 3; otherwise, the output R is equal to 

the input C), where the inputs are A, B, and C and, the outputs 

are P, Q, and R [48].  

Figure 4a displays the graphical representation of the 

quaternary Controlled Feynman gate. Figures 4b and 4c 

demonstrate different realizations of this gate using M-S gates. 

This gate has a quantum cost of 6. According to the second 

realization in Figure 4c, it is possible to remove the 2-qutrit M-

S gate in the red box if the input B is not needed at the output 

Q. Thus, the quantum cost can be reduced to 5, and the output 

Q is equal to B+2 if the input A=3. 

 

Q

R

P③ 

  

B

C

A

 
(a) 

 

B +2

A

C +1

+3 +1

+2 +3

Q

P

R  
(b) 

 

B +2

A

C +3

+1 +3

+2 +1

Q

P

R  
(c) 

FIGURE 4. Quaternary 2-qudit Controlled Feynman gate. a) Symbol. b) 
The first realization using M-S gates. c) The second realization using M-
S gates. 

III. PROPOSED QUATERNARY REVERSIBLE CIRCUITS 

In this section, we propose a scalable quaternary reversible 

4×1 multiplexer, and we use it to design the quaternary 

reversible 16×1 and n×1 multiplexers. Moreover, we 

introduce the new scalable quaternary reversible 1×4 to design 

1×16 and 1×n demultiplexers. We use quaternary 1-qudit Shift 

and 2-qudit controlled Feynman gates. The aim is to reduce 

the overall quantum cost, the number of constant inputs, and 

the number of garbage outputs. 

A. PROPOSED QUATERNARY REVERSIBLE 
MULTIPLEXER CIRCUIT 

Before discussing our proposed quaternary reversible 

multiplexer circuit, we provide the basic definitions and 

properties of the quaternary multiplexer. A quaternary 

multiplexer with 4𝑛 inputs, has n select lines to select which 

input should be sent to the output. Let A be a selector equal to 

0, 1, 2, or 3. In a 4×1 multiplexer, when A is equal to 0, 1, 2, 

or 3, the output equals I0, I1, I2, or I3, respectively. Table IV 

shows the truth table of the quaternary 4×1 multiplexer. 

 
TABLE IV 

THE TRUTH TABLE OF QUATERNARY 4×1 MULTIPLEXER 

A O 

0 I0 
1 I1 

2 I2 

3 I3 

 

The realization of our proposed quaternary reversible 4×1 

multiplexer circuit is illustrated in Figure 5a. As shown in the 

figure, we used four quaternary 1-qudit Shift gates and four 

quaternary 2-qudit Controlled Feynman gates. In this 
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realization, the main inputs are I0 to I3, and one 0 constant 

input is required. The selector is A, and the main output is O. 

The circuit produces five garbage outputs that are Q0 to Q3 

and P. The output P is equal to the selector A, and the outputs 

Q0 to Q3 are equal to the inputs I0 to I3, respectively. In this 

circuit, when the selector A is equal to 0, the controlling value 

of the first Controlled Feynman gate is 3, and the output O is 

equal to I0. If A is equal to 1, the second Controlled Feynman 

gate is 3, and the output O is I1. 

Moreover, when the selector is equal to 2 and 3, the output 

O is equal to I2 and I3, respectively. The realization of this 

circuit using quaternary Shift and M–S gates is shown in 

Figure 5b. In this figure, red boxes depict quaternary 

Controlled Feynman gates. Generally, four quaternary Shift 

gates and twenty-four quaternary Muthukrishnan–Stroud 

gates were used. Therefore, the quantum cost of the proposed 

quaternary reversible 4×1 multiplexer circuit is 28. It is worth 

mentioning that, in a multiplexer circuit, it is not necessary to 

restore the input I at the output Q. So, we can remove the red 

Muthukrishnan and Stroud gates in this realization. The 

quantum cost can be decreased by 24. In both suggested ways, 

the number of constant inputs is 1, and the number of garbage 

outputs is 5. 

 

I0

I1

I2

I3

0

A +3 +1 +3 +1
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Q1

Q2

Q3

O

P③ ③ ③ ③ 
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FIGURE 5. The proposed quaternary reversible 4×1 multiplexer circuit. 
a) Symbol. b) The realization using M-S and Shift gates. 

 

Our proposed quaternary reversible 4×1 multiplexer can be 

used to construct a 16×1 multiplexer. For designing this 

multiplexer, 16 inputs, two selectors, and one output are 

necessary. The truth table of this circuit is shown in Table V. 

Only the selected input is gated to the output O for a given 

selector combination of A and B.  

Figure 6a shows the logical architecture of the proposed 

quaternary 16×1 multiplexer using 4×1 multiplexer. As 

shown, five 4×1 quaternary multiplexers are required. In this 

design, the first inputs of the first-row multiplexers are 

activated when input B is equal to 0. Activation of the second 

inputs of multiplexers occurs when input B is equal to 1. If B 

is equal to 2 and 3, the third and fourth inputs of multiplexers 

are activated, respectively. 

 
TABLE V 

THE TRUTH TABLE OF QUATERNARY 16×1 MULTIPLEXER 

Selectors 

(AB) 

Output 

(O) 

00 I0 

01 I1 
02 I2 

03 I3 

10 I4 
11 I5 

12 I6 

13 I7 
20 I8 

21 I9 

22 I10 
23 I11 

30 I12 

31 I13 
32 I14 

33 I15 

 

Moreover, the output of the first multiplexer is gated on the 

main output O when the selector A is equal to 0. If A is equal 

to 1, the main input is sent to the main output by the second 

multiplexer. When A is equal to 2 and 3, the output of the third 

and the fourth multiplexers are gated on the output O, 

respectively. Figure 6b illustrates the realization of the 

proposed quaternary reversible 16×1 multiplexer using a 4×1 

multiplexer. The red boxes indicate our proposed quaternary 

reversible 4×1 multiplexer. In this circuit, there are five 

constant inputs, which are 0, and sixteen main inputs, which 

are shown by I0 to I15. The selectors are A and B. The main 

output is O, and the garbage outputs are P1, P2, O0 to O3, and 

Q0 to Q15. The outputs P1 and P2 are equal to A and B, 

respectively. Generally, the first realization of quaternary 2-

qudit Controlled Feynman gates is used when inputs need to 

be restored. In this case, 20 quaternary Shift gates and 120 

quaternary Muthukrishnan–Stroud gates are inserted in the 

circuit. Therefore, the quantum cost is 140. However, in 

multiplexer circuits, the inputs I0 to I15 are unnecessary as 

outputs, so it is possible to use the second realization of 

quaternary-controlled Feynman gates. Therefore, the second 

realization of quaternary-controlled Feynman gates can be 

used, and the quantum cost is 120.  

We could also combine some gates in designing a 

quaternary reversible 16×1 multiplexer and present a circuit 

with a lower quantum cost. As shown in Figure 6c, an 

optimized multiplexer circuit can be realized. Eight quaternary 

Shift gates are used along with twenty quaternary Controlled 

Feynman gates. Due to the use of the second realization of 

Feynman gates, eight quaternary Shift gates and 100 

quaternary Muthukrishnan–Stroud gates were used in total. 

This results in a quantum cost of 108. This innovative 

combination provides improvement over the first realization 

regarding the quantum cost. Moreover, in both realizations, 
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the number of constant inputs is five, and the number of 

garbage outputs is 22. 

Based on our proposed quaternary reversible 4×1 

multiplexer, we proposed a generalized quaternary reversible 

n×1 multiplexer circuit, shown in Figure 7. Hence, our design 

is scalable. A quaternary n×1 multiplexer circuit consists of 

𝑛 = 4𝑚 inputs, m selectors, and only one output. In this 

circuit, m rows of 4×1 multiplexers are needed. The first row 

requires 4𝑚 − 1 multiplexers, the second row requires 4𝑚 −

2 multiplexers, and the m row requires one multiplexer. 

Therefore, we can determine the number of 4×1 multiplexers 

needed to design our proposed n×1 multiplexer using 

geometric series formulas. The number of multiplexers is 

shown by P in (2): 

 

𝑃 =  ∑ 4𝑖𝑚−1
𝑖=0 = 

4𝑚−1

3
 =  

𝑛−1

3
           (2) 
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FIGURE 6. The proposed quaternary reversible 16×1 multiplexer circuit. a) The logical architecture b) The primary realization. c) The optimized 
realization. 

 

The quantum cost of a quaternary reversible n×1 

multiplexer is 24((𝑛 − 1)/3), and it requires (𝑛 − 1)/3 

constant inputs and produces (3𝑚 + 4𝑛 − 4)/3  garbage 

outputs. We can combine the quaternary 1-qudit Shift gates in 

each row according to the mentioned optimization approach in 

the last part. In this way, we have four 1-qudit Shift gates in 

each row. We also have 4𝑚 − 1  and 4𝑚 − 2  Controlled 

Feynman gates in the first and the second row, respectively. 

Moreover, in the last row, four Controlled Feynman gates are 

needed. Therefore, it can be concluded that in the proposed 

quaternary reversible n×1 multiplexer, 4((n − 1)/3)  
Controlled Feynman gates and 4m 1-qudit Shift gates are 

required, where n is the number of inputs and m is the number 

of selectors. Since we used the second realization of the 

Controlled Feynman gate, the total quantum cost of this 

optimized circuit is 20((𝑛 − 1)/3) + 4𝑚. 
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FIGURE 7. The logical architecture of the proposed quaternary reversible n×1 multiplexer circuit.  
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B. PROPOSED QUATERNARY REVERSIBLE 
DEMULTIPLEXER CIRCUIT 

A demultiplexer performs the opposite function of a 

multiplexer. A quaternary demultiplexer of 4n outputs has n 

select lines to send the input to the output. In a 1×4 

demultiplexer, when the selector A is equal to 0, 1, 2, or 3, the 

output O0, O1, O2, or O3 is equal to I, respectively. Table VI 

shows the truth table of the 1×4 quaternary demultiplexer. 

 
TABLE VI 

THE TRUTH TABLE OF QUATERNARY 1×4 DEMULTIPLEXER 

A O0 O1 O2 O3 

0 I 0 0 0 
1 0 I 0 0 

2 0 0 I 0 

3 0 0 0 I 

 

In Figure 8a, we show the realization of our quaternary 

reversible demultiplexer circuit. Four quaternary 1-qudit Shift 

gates and four quaternary 2-qudit Controlled Feynman gates 

are exploited in this design. The main input is I, which requires 

four constant inputs, all of which are 0. The selector is A. O0 

to O3 are the main outputs, and P and Q are the garbage 

outputs are equal to A and I, respectively. The first Controlled 

Feynman gate with a controlling value of 1 is applied when 

the selector is equal to 0, and the input I is sent to O0. This 

circuit applies the controlling value of the second Controlled 

Feynman gate when the selector A is equal to 1, and the input 

I is sent to O1. If the selector is equal to 2 or 3, the outputs O2 

and O3 are equal to the input I, respectively. Figure 8b shows 

how the proposed circuit is realized using quaternary Shift and 

M–S gates. In this design, quaternary Controlled Feynman 

gates have shown by red boxes.  
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FIGURE 8. The proposed quaternary reversible 1×4 demultiplexer 
circuit. a) Symbol. b) The realization using M-S and Shift gates.  

 

Four quaternary 1-qudit Shift gates and twenty-four 

quaternary 2-qudit Muthukrishnan–Stroud gates are generally 

used. As a result, the quantum cost of the proposed quaternary 

reversible 1×4 demultiplexer circuit is 28. Considering that, in 

the multiplexer circuit, the input I does not need to be restored 

at the output Q, the red box can be removed, and the quantum 

cost is decreased by 24. In both cases, the number of constant 

inputs is four, and the number of garbage outputs is two. 

We can also use our proposed quaternary 1×4 demultiplexer 

to construct 1×16 demultiplexer. In this kind of demultiplexer, 

one input, two selectors, and 16 outputs are needed. The truth 

table of this circuit is shown in Table VII. The input is gated 

to the selected output based on a given combination of 

selectors of A and B. 

The logical architecture of the proposed quaternary 

reversible 1×16 demultiplexer, using 1×4 demultiplexer, is 

shown in Figure 9a. As can be seen, it requires five quaternary 

1×4 demultiplexers. In this design, when the selector A is 

equal to 0, the main input is gated on one of the outputs in the 

first demultiplexer. One output of the second multiplexer is 

gated when selector A is equal to 1. In the third and fourth 

multiplexers, one output is gated if selector A is equal to 2 and 

3, respectively. When the input B is equal to 0, the first input 

of the second row demultiplexers is activated. If the input B is 

equal to 1, then the second input of demultiplexers is activated. 

Moreover, when B is equal to 2 and 3, demultiplexers' third 

and fourth inputs are activated, respectively.  

The realization of the proposed quaternary reversible 1×16 

demultiplexer using 1×4 demultiplexer is shown in Figure 9b. 

In the figure, red boxes show our proposed quaternary 

reversible 1×4 demultiplexer. The main input is I, and it 

requires twenty constant inputs, which are 0. The selectors are 

A and B. The main outputs are O0 to O15, and it produces 

seven garbage outputs that are P1, P2, I, and from R0 to R3. 

The outputs P1 and P2 are equal to the selectors A and B, 

respectively. Generally, since input restoration is not 

necessary, the second realization of quaternary Controlled 

Feynman gates can be exploited. In this way, the proposed 

circuit includes 20 quaternary Shift gates and 100 quaternary 

Muthukrishnan–Stroud gates, and the quantum cost is 120. 

We also could use a lower number of gates for designing 

the quaternary reversible 1×16 demultiplexer and present a 

lower quantum cost demultiplexer circuit. The realization of 

the proposed optimized circuit is shown in Figure 9c. As can 

be seen, twenty quaternary Controlled Feynman gates and 

eight 1-qudit Shift gates are used. Since inputs restoration is 

not necessary, the second realization of quaternary Controlled 

Feynman gates is used, and there are eight quaternary Shift 

gates and 100 quaternary Muthukrishnan–Stroud gates in the 

proposed design, so the quantum cost is 108. Compared to our 

first proposed quaternary 1×16 demultiplexer, we improved 

the quantum cost using this innovative combination. The 

numbers of constant inputs and garbage outputs for both 

realizations are 20 and 7, respectively. 
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TABLE VII 

THE TRUTH TABLE OF QUATERNARY 1×16 DEMULTIPLEXER 

Selectors Outputs 

AB O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 

00 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

01 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

02 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 

03 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

B
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FIGURE 9. The proposed quaternary reversible 1×16 demultiplexer circuit. a) The logical representation. b) The primary realization. c) The optimized 
realization. 

 

In addition, our proposed quaternary demultiplexer is 

scalable. A generalized quaternary reversible 1×n 

demultiplexer circuit, based on quaternary reversible 1×4 

demultiplexer, is suggested. In a quaternary 1×n demultiplexer 

circuit, there are one input, m selectors, and 𝑛 = 4𝑚 outputs. 

Generally, m rows of 1×4 demultiplexers are needed. It is 

necessary to use one demultiplexer in the first row, four 

demultiplexers in the second row, and 4𝑚 − 1 demultiplexers 

in the last row. Figure 10 shows the logical structure of the 

proposed 1×n demultiplexer. We also can use the geometric 

series formula to determine the number of 1×4 demultiplexers 

that are needed to design our proposed 1×n demultiplexer. 

Using (3), we can determine the number of demultiplexers, 

represented by Q. 

 

𝑄 =  ∑ 4𝑖𝑚−1
𝑖=0 = 

4𝑚−1

3
 =  

𝑛−1

3
                (3) 
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FIGURE 10. The logical architecture of the proposed quaternary reversible 1×n demultiplexer circuit. 
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The proposed quaternary reversible 1×n demultiplexer 

circuit requires 4((𝑛 − 1)/3)  constant inputs and produces  

(𝑛 + 3𝑚 − 1)/3 garbage outputs, with a quantum cost of 

24((𝑛 − 1)/3). Based on the optimization approach 

discussed in the previous section, the quaternary 1-qudit Shift 

gates in each row can be combined. As a result, each row 

contains four 1-qudit Shift gates. There are four and sixteen 

Controlled Feynman gates in the first and the second row, 

respectively, and 4𝑚 − 1  Controlled Feynman gates in the 

last row. Therefore, it can be concluded that there are 4((𝑛 −
1)/3) Controlled Feynman gates and 4𝑚 1-qudit Shift gates 

in the proposed quaternary reversible 1×n demultiplexer, with 

n outputs and m selectors. Since we use the second realization 

of the Controlled Feynman gate, this optimized circuit has a 

total quantum cost of 20((𝑛 − 1)/3) + 4𝑚. 

 

IV. RESULTS AND EVALUATIONS  

In this section, we analyze our proposed realizations of 

quaternary reversible multiplexer and demultiplexer circuits 

and calculate the improvement rate with respect to the best 

results in the literature. We also compare the proposed circuits 

with the existing designs in [40-42] in terms of quantum cost, 

number of garbage outputs, and number of constant inputs, 

which are the most critical parameters in reversible circuit 

design and are used to evaluate reversible circuits. Lower 

values of these parameters lead to a more efficient circuit 

design.  

In the following parts, the first comparison is for our proposed 

quaternary reversible demultiplexer, and the second 

comparison is for our proposed quaternary reversible 

demultiplexer. According to Table VIII, whereas both designs 

of quaternary reversible 4×1 multiplexer circuits have the 

same number of garbage output and constant input, the 

proposed circuit outperforms the existing design presented in 

[41] in terms of quantum cost because of its lower values for 

this parameter. Table VIII also illustrates that our proposed 

quaternary reversible 16×1 multiplexer circuit has great 

improvement in terms of quantum cost, the number of garbage 

outputs and the number of constant inputs compared with its 

counterparts in [40-42]. Therefore, it can be concluded that our 

proposed design of the 16×1 multiplexer in this paper is also 

much more efficient than the previous designs in [40-42]. 

 
TABLE VIII 

EVALUATION OF QUATERNARY REVERSIBLE MULTIPLEXER CIRCUITS 

 Quantum 

Cost 

Constant 

Input 

Garbage 

Output 

Proposed 4×1 multiplexer 24 1 5 

4×1 multiplexer in [41] 70 1 5 
Improvement percentage 65% -- -- 

Proposed 16×1 multiplexer 108 5 22 

16×1 multiplexer in [42] 580 17 34 
16×1 multiplexer in [41] 368 8 25 

16×1 multiplexer in [40] 174 17 33 

Improvement percentage  37% 37% 12% 

 

Table IX shows the comparison between our proposed 

quaternary reversible 1×4 demultiplexer and its counterpart in 

[41]. As can be seen, although both 1×4 demultiplexer circuits 

require four constant inputs and produce two garbage outputs, 

our proposed design has a quantum cost of 24, and the 

demultiplexer realization in [41] has a quantum cost of 58. 

Owing to using lower values of quantum cost, our proposed 

quaternary reversible 1×4 demultiplexer is more efficient than 

the existing design in [41]. The results given in Table IX show 

that our proposed quaternary reversible 1×16 demultiplexer 

has 20 constant inputs, even garbage outputs, and a quantum 

cost of 108. It is obvious, by Table IX, that our proposed 

design has a less quantum cost, garbage output, and constant 

input than the previous designs in [40-42]. Since reversible 

circuits are more efficient when these parameters are 

minimized, the quaternary reversible 1×16 demultiplexer in 

this study is more efficient than its counterparts in [40-42]. 

It is to be noted that there is no overhead in the proposed 

designs. One of the advantages of the proposed designs is that 

they have no overhead. In addition, the proposed approaches 

have applications in designing arithmetic circuits (e.g., ALU). 

 
TABLE IX 

EVALUATION OF QUATERNARY REVERSIBLE DEMULTIPLEXER CIRCUITS 

 Quantum 

Cost 

Constant 

Input 

Garbage 

Output 

Proposed 1×4 

demultiplexer 

24 4 2 

Existing 1×4 

demultiplexer in [41] 

58 4 2 

Improvement percentage 58% -- -- 

Proposed 1×16 

demultiplexer 

108 20 7 

Existing 1×16 

demultiplexer in [42] 

580 32 19 

Existing 1×16 

demultiplexer in [41] 

308 23 10 

Existing 1×16 

demultiplexer in [40] 

174 33 20 

Improvement percentage 37% 13% 30% 

 

V. CONCLUSION 

A new quaternary reversible 4×1 multiplexer circuit, based on 

quaternary 1-qudit Shift gates, 2-qudit Muthukrishnan–

Stroud, and 2-qudit Controlled Feynman gates, has been 

presented in this paper. The proposed 4×1 multiplexer has 

been exploited to design a quaternary reversible 16×1 

multiplexer circuit. The proposed design is scalable for n×1 

multiplexer. Moreover, we have introduced a new scalable 

realization of 1×4 demultiplexer to design our proposed 

quaternary reversible 1×16 and 1×n demultiplexers. The 

proposed quaternary reversible circuits in the present study 

significantly decrease quantum cost, the number of constant 

inputs, and the number of garbage outputs. Since designing a 

reversible circuit with lower values of these parameters leads 

to increased efficiency, it can be concluded that our proposed 

multiplexer and demultiplexer circuits are more efficient with 

respect to their existing counterparts. Our designs have no 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3274118

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 9 

overhead compared to the existing designs to be reported. An 

interesting future work is the study of possible applications of 

our proposed circuits in designing complex systems. 

CONFLICT OF INTEREST 

The authors declare no conflicts of interest.  

REFERENCES 

 
[1] R. Landauer, ‘‘Irreversibility and heat generation in the 

computing process,’’ IBM journal of research and development., 

vol. 5, no. 3, pp. 183-191, Jul. 1961. 

[2] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, 

“Limits to binary logic switch scaling-a gedanken model,” 

Proceedings of the IEEE., vol. 91, no. 11, pp. 1934-1939, 

Nov.2003. 
[3] C. H. Bennett, “Logical reversibility of computation,” IBM 

journal of Research and Development., vol.17, no. 6, pp. 525-532, 

Nov. 1973.  
[4] M. Perkowski, L. Jozwiak, P. Kerntopf, A. Mishchenko, A. Al-

Rabadi, A. Coppola, and M. H. A. Khan, “A general 

decomposition for reversible logic,” Aug. 2001, 
[5] M. Perkowski, and P. Kerntopf, “Reversible logic,” Invited 

tutorial. Proc. Euro-Micro., Sep 2001. 

[6] A. Mishchenko, and M. Perkowski, Logic synthesis of reversible 
wave cascades. International Workshop on Logic and Synthesis, 

New Orleans, Louisiana, June. 2002. 

[7] M. Sultana, A. Chaudhuri, D. Sengupta, A. Chaudhuri, “Toffoli 

Netlist and QCA implementations for existing four variable 

reversible gates: a comparative analysis,” Microsystem 

Technologies, vol. 25, no. 5, pp. 1987-2009, May. 2019. 
[8] M. A. Nielson, and I. L. Chuang, “Quantum computation and 

quantum information,” Cambridge University Press, vol.2, no. 8, 

pp.23, 2000.  
[9] L. K. Grover, “A fast quantum mechanical algorithm for database 

search,” In Proceedings of the twenty-eighth annual ACM 

symposium on Theory of computing, Jul 1996, pp. 212-219.  
[10] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on 

quantum searching,” Fortschritte der Physik: Progress of Physics, 

vol. 46, no. 4‐5, pp. 493-505, Jun. 1998. 
[11] C. Zalka, “Grover’s quantum searching algorithm is optimal,” 

Physical Review A., vol. 60, no. 4, pp. 2746, Oct. 1999. 

[12] Z. T. Sandhie, J. A. Patel, F. U. Ahmed, and M. H.  Chowdhury, 
“Investigation of multiple-valued logic technologies for beyond-

binary era,” ACM Computing Surveys (CSUR)., vol. 54, no. 1, 

pp. 1-30, Jan. 2021. 
[13] H. Bechmann-Pasquinucci, and A. Peres, “Quantum cryptography 

with 3-state systems,” Physical Review Letters., vol. 85, no. 15, 

pp. 3313, Oct. 2000. 
[14] M. Bourennane, A. Karlsson, and G. Björk, “Quantum key 

distribution using multilevel encoding,” Physical Review A., vol. 

64, no. 1, pp. 012306, Jun. 2001. 
[15] R. W. Spekkens, and T. Rudolph, “Degrees of concealment and 

bindingness in quantum bit commitment protocols,” Physical 

Review A., vol. 65, no. 1, pp. 012310, Dec. 2001. 
[16] A. D. Greentree, S. G. Schirmer, F. Green, L. C. Hollenberg, A. 

R. Hamilton, and R. G. Clark, “Maximizing the Hilbert space for 
a finite number of distinguishable quantum states,” Physical 

review letters., vol. 92, no. 9, pp. 097901, Mar. 2004. 

[17] D. Bundalo, Z. Bundalo, and B. Đorđević, “Design of quaternary 
logic systems and circuits,” Facta universitatis-series: Electronics 

and Energetics., vol. 18, no. 1, pp. 45-56. 2005. 

[18] E. Knill, “Fault-tolerant postselected quantum computation: 
Schemes,” Feb 2004, arXiv preprint quant-ph/0402171.  

[19] D. M. Miller, and M. A. Thornton, “Multiple valued logic: 

Concepts and representations,” Synthesis lectures on digital 
circuits and systems., vol. 2, no. 1, pp. 1-127, Jan. 2007. 

[20] M. A. Asadi, M. Mosleh, and M. Haghparast, “Towards designing 

quantum reversible ternary multipliers,” Quantum Information 

Processing., vol. 20, no. 7, pp. 1-27, Jul. 2021. 
[21] M. A. Asadi, M. Mosleh, and M. Haghparast, “Toward novel 

designs of reversible ternary 6: 2 Compressor using efficient 

reversible ternary full-adders,” The Journal of Supercomputing., 
vol. 77, no. 5, pp. 5176-5197. May. 2021. 

[22] M. A. Asadi, M. Mosleh, and M. Haghparast, “A novel reversible 

ternary coded decimal adder/subtractor,” Journal of Ambient 
Intelligence and Humanized Computing., vol. 12, no. 7, pp. 7745-

7763, Jul. 2021. 

[23] M. M. Panahi, O. Hashemipour, and K. Navi, “A novel design of 
a multiplier using reversible ternary gates,” IETE Journal of 

Research., vol. 67, no. 6, pp. 744-753, Nov. 2021. 

[24] S. M. Ghadamgahi, R. Sabbaghi-Nadooshan, and K. Navi, “Novel 

ternary adders and subtractors in quantum cellular automata,” The 

Journal of Supercomputing., pp. 1-43. Jun. 2022. 

[25] M. Haghparast, R. Wille, and A. T. Monfared, “Towards quantum 
reversible ternary coded decimal adder,” Quantum Information 

Processing., vol. 16, no. 11, pp. 1-25, Nov. 2017. 

[26] M. Ilyas, S. Cui, and M. Perkowski, “Ternary Logic Design in 
Topological Quantum Computing,” Apr 2022, arXiv preprint 

arXiv:2204.01000. 

[27] P. Mercy Nesa Rani, and P. L. Thangkhiew, “An Overview of 
Different Approaches for Ternary Reversible Logic Circuits 

Synthesis Using Ternary Reversible Gates with Special Reference 
to Virtual Reality,” Advances in Augmented Reality and Virtual 

Reality., pp. 73-90. Jan. 2022. 

[28] A. T. Monfared, and M. Haghparast, “Quantum ternary 
multiplication gate (QTMG): toward quantum ternary multiplier 

and a new realization for ternary toffoli gate,” Journal of Circuits, 

Systems and Computers, vol. 29, no. 05, pp. 2050071, Apr. 2020. 
[29] S. M. Ghadamgahi, R. Sabbaghi-Nadooshan, and K. Navi, “Novel 

single-trit comparator circuits in ternary quantum-dot cellular 

automata,” Analog Integrated Circuits and Signal Processing., 
vol. 111, no. 3, pp. 353-370, Jun. 2022. 

[30] G. Chen, Y. Wang, L. Jian, Y. Zhou, and S. Liu, “Ternary 

Quantum Key Distribution Protocol Based on Hadamard Gate,” 
International Journal of Theoretical Physics., vol. 61, no. 2, pp. 1-

13, Feb. 2022. 

[31] M. M. M. Khan, A. K. Biswas, S. Chowdhury, M. Tanzid, K. M. 
Mohsin, M. Hasan, and A. I. Khan, “Quantum realization of some 

quaternary circuits,” In TENCON 2008-2008 IEEE Region 10 

Conference, Nov. 2008, pp. 1-5). IEEE. 
[32] M. H. Khan, “Synthesis of quaternary reversible/quantum 

comparators,” Journal of Systems Architecture., vol. 54, no. 10, 

pp. 977-982. Oct. 2008. 

[33] A. Taheri Monfared, M. Haghparast, and K. Datta, “Quaternary 

quantum/reversible half-adder, full-adder, parallel adder and 

parallel adder/subtractor circuits,” International Journal of 
Theoretical Physics., vol. 58, no. 7, pp. 2184-2199. Jul. 2019. 

[34] M. Haghparast, and A. T. Monfared, “Designing novel quaternary 

quantum reversible subtractor circuits,” International Journal of 
Theoretical Physics., vol. 57, no. 1, pp. 226-237. Jan. 2018. 

[35] M. H. Khan, “A recursive method for synthesizing 

quantum/reversible quaternary parallel adder/subtractor with 
look-ahead carry,” Journal of Systems Architecture., vol. 54, no. 

12, pp. 1113-1121, Dec. 2008. 

[36] A. Norouzi Doshanlou, M. Haghparast, and M. Hosseinzadeh, 
“Novel quaternary quantum reversible half adder and full adder 

circuits,” IETE Journal of Research., vol. 68, no. 2, pp. 1525-

1531. Mar. 2022. 

[37] A. Norouzi Doshanlou, M. Haghparast, M. Hosseinzadeh, and M. 

Reshadi, “Efficient binary to quaternary and vice versa 

converters: embedding in quaternary arithmetic circuits,” The 
Journal of Supercomputing., vol. 77, no. 12, pp. 14600-14616, 

Dec. 2021. 

[38] A. Raja, K. Mukherjee, J. N. Roy, “Design of dual semiconductor 
optical amplifier structure based all-optical standard quaternary 

inverter and quaternary clocked SR flip-flop,” Optical and 

Quantum Electronics., vol. 54, no. 1, pp. 1-23, Jan. 2022. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3274118

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 9 

[39] A. Navidi, R. Sabbaghi-Nadooshan, M. Dousti, “Introducing an 

Innovative D Flip-Flop for Designing Quaternary QCA Register,” 

Journal of Intelligent Procedures in Electrical Technology., vol. 
13, no. 49, pp. 91-101, May. 2022. 

[40] M. Haghparast, and A. Taheri Monfared, “Novel quaternary 

quantum decoder, multiplexer and demultiplexer circuits,” 
International Journal of Theoretical Physics., vol. 56, no. 5, pp. 

1694-1707, May. 2017. 

[41] M. H. Khan, “Scalable architectures for design of reversible 
quaternary multiplexer and demultiplexer circuits,” In 2009 39th 

International Symposium on Multiple-Valued Logic, May 2009, 

pp. 343-348. IEEE 
[42] M. H. Khan, “Reversible realization of quaternary decoder, 

multiplexer, and demultiplexer circuits,” In 38th International 

Symposium on Multiple Valued Logic (ISMVL 2008), May 2008, 

pp. 208-213. IEEE 

[43] M. Mohammadi, and M. Eshghi, “Heuristic methods to use don’t 

cares in automated design of reversible and quantum logic 
circuits,” Quantum Information Processing., vol. 7, no. 4, pp. 175-

192, Aug. 2008. 

[44] D. Maslov, and G. W. Dueck, “Garbage in reversible design of 
multiple output functions,” In 6th International Symposium on 

Representations and Methodology of Future Computing 

Technologies, Mar 2003, pp. 162-170. 
[45] S. Lee, S. J. Lee, T. Kim, J. S. Lee, J. Biamonte, and M. 

Perkowski, “The Cost of Quantum Gate Primitives,” Journal of 
Multiple-Valued Logic & Soft Computing., vol. 12, no. 5-6, pp. 

561-574, Aug. 2006. 

[46] M. H. Khan, and M. A. Perkowski, (2007, May). “GF (4) based 
synthesis of quaternary reversible/quantum logic circuits,” In 37th 

International Symposium on Multiple-Valued Logic (ISMVL'07), 

May 2007, pp. 11-11). IEEE. 
[47] A. Muthukrishnan, and C. R. Stroud Jr, “Multivalued logic gates 

for quantum computation,” Physical review A., vol. 62, no. 5, pp. 

052309, Oct. 2000. 
[48] M. H. Khan, and H. Thapliyal, “Reversible logic-based mapping 

of quaternary sequential circuits using QGFSOP expression,” In 

2015 IEEE Computer Society Annual Symposium on VLSI, Jul 
2015, pp. 297-302. IEEE. 

[49] M. H. Khan, H. Thapliyal, and E. Munoz-Coreas, “Automatic 

synthesis of quaternary quantum circuits,” The Journal of 
Supercomputing., vol. 73, no. 5, pp. 1733-1759, May. 2017. 

 

 

ASMA TAHERI MONFARED received her 
B.Sc. in computer hardware engineering in 2011. 

She received her M.Sc. degree in computer 

system architecture in 2014.  
From 2015 to 2021, she affiliated with 

Department of Computer Science and 

Engineering as a lecturer, Abadan Branch, IAU 
University, Khuzestan, Iran. She is currently a 

PhD candidate in Computer Science at University 

of Milano. She has published several research papers in various international 
journals. Her research interests include reversible logic, circuit design, 

quantum circuit and emerging technologies. She is on the panel of reviewers 

for International Journal of Electronic Letters, Taylor & Francis. 
 

 

VALENTINA CIRIANI received the Laurea 

degree and the Ph.D. degree in Computer Science 
from the University of Pisa, Italy, in 1998 and 

2003, respectively. She is currently an Associate 

Professor in Computer Science with the 
Department of Computer Science of the 

University of Milano (Italy). She is co-responsible 
of the FALSE Lab (University of Milano). Her 

research interests include logic synthesis and testing for emerging 

technologies, VLSI design of low power circuits, and circuit design for 
security protocols. Dr. Ciriani has authored or coauthored more than 100 

research papers, published in international journals, conference 

proceedings, and books chapters. Valentina Ciriani is an IEEE Senior 

Member. 

 
 

TOMMI MIKKONEN received the Doctorate 

degree from the Tampere University of 

Technology, Finland. He is a Full Professor of 
software engineering at the University of 

Jyväskylä, Finland. His current research interests 

include the Quantum Computing, IoT, software 
engineering, and multi-device programming. 

 

 
 

 

 
MAJID HAGHPARAST received the B.Sc., 

M.Sc., and Ph.D. degrees in computer 

engineering, in 2003, 2006, and 2009, 
respectively. Since 2007, he has been affiliated 

with the Computer Engineering Faculty, IAU 

University, Tehran, where he was an Associate 
Professor. From April 2017 to January 2018, he 

has conducted his sabbatical with Johannes Kepler 

University, Linz, Austria, where he was also a 
Research Fellow. He is on the panel of reviewers 

for various international journals. Since 

September 2021, he has been with the Faculty of Information Technology, 
University of Jyväskylä, Jyväskylä, Finland. Dr. Haghparast has published 

more than 100 research papers in various international journals and 

conferences. He is an Associate Editor of the Cluster Computing (Springer) 

and Journal of Computational Electronics (Springer). He is also an Editorial 

Board Member of Optical and Quantum Electronics Journal (Springer). 

Majid is an IEEE Senior Member. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3274118

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


