
Olli Koskivaara

JYU DISSERTATIONS 623

Non-Equilibrium Quantum  
Phenomena in the Early Universe



JYU DISSERTATIONS 623

Olli Koskivaara

Non-Equilibrium Quantum  
Phenomena in the Early Universe

Esitetään Jyväskylän yliopiston matemaattis-luonnontieteellisen tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Ylistönrinteen salissa FYS1

huhtikuun 28. päivänä 2023 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Mathematics and Science of the University of Jyväskylä,
in Ylistönrinne, auditorium FYS1, on April 28, 2023 at 12 o’clock noon.

JYVÄSKYLÄ 2023



Editors
Ilari Maasilta
Department of Physics, University of Jyväskylä
Ville Korkiakangas
Open Science Centre, University of Jyväskylä

Copyright © 2023, by author and University of Jyväskylä

ISBN 978-951-39-9520-1 (PDF)
URN:ISBN:978-951-39-9520-1
ISSN 2489-9003

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-9520-1 



Luonnontutkija heräsi plastic-teltassaan aamun sarastaessa.
Hän oli täällä suuren järven ympäristössä tutkimassa eri-
laisia luonnonilmiöitä. Hän omisti paljon, suunnattoman
paljon tietoa ja tästä johtuen hän ei enää ajatellutkaan
samalla lailla kuin muut, tyhmemmät ihmiset.

— Veikko Huovinen, Kukin tavallaan
(Hirri, 1950)

iii



ABSTRACT

Koskivaara, Olli
Non-equilibrium quantum phenomena in the early universe

We develop and apply to physical problems non-equilibrium quantum field the-
ory techniques. With the mathematical framework provided by the 2PI effective
action formalism we write down quantum transport equations for spatially ho-
mogeneous and isotropic systems, including coherence effects. The equations
are based on the coherent quasiparticle approximation (cQPA), which predicts
that quantum coherence effects are condensed on a singular shell at k0 = 0 in
the phase space of the system. We verify the existence of this shell by con-
structing the two-point function of the fermionic system exactly for a specific
time-dependent mass profile, and give a comprehensive analysis of the phase
space structures. We also use the exact solution to study the range of validity of
the semiclassical approximation, finding out that its range of applicability may
be much larger than what is suggested by naïve estimates.

We derive simple moment equations for scalar systems in which the loop
interactions in the 2PI expansion are local. The equations are then used to study
the coupled evolution of one- and two-point functions in two different setups.
First, we study the Mexican hat -potential as a representative of a phase transi-
tion. Using the Hartree approximation in the 2PI loop expansion, we identify the
processes of spinodal decomposition and parametric resonance in the time evo-
lution of the coupled system. We discuss the processes in detail, finding out for
example that the spinodal effects can allow the one-point function to cross a clas-
sically forbidden potential barrier. The second setup considers a non-minimally
coupled spectator field during reheating after inflation. Similarly to the other
system we establish the existence of spinodal and parametric effects, this time
induced by the oscillating Ricci scalar. We compare the results to those obtained
earlier with adiabatic methods, finding out that the non-equilibrium quantum
effects can dramatically change the particle production efficiency.

Our results emphasize the important and intricate role quantum effects
play in non-equilibrium systems. The accurate description of phenomena such
as baryogenesis, early universe phase transitions in general and (p)reheating
demands for field theoretic techniques capable of treating these non-equilibrium
effects properly. Out methods provide new techniques to tackle this challenging
task.
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TIIVISTELMÄ (ABSTRACT IN FINNISH)

Koskivaara, Olli
Epätasapainokvantti-ilmiöitä varhaisessa maailmankaikkeudessa

Tässä väitöskirjassa kehitetään ja sovelletaan fysiikan ongelmiin kvanttikenttä-
teoreettisia tekniikoita epätasapainotilanteissa. Spatiaalisesti homogeenisille ja
isotrooppisille systeemeille johdetaan koherenssiefektit sisältävä kvanttikuljetus-
teoria, lähtien 2PI-formalismista efektiiviselle aktiolle. Teorian (koherentti kva-
sihiukkasapproksimaatio eli cQPA) mukaan kvanttikoherenssiefektit ilmenevät
systeemin faasiavaruudessa singulaarisella k0 = 0 -kuorella. Kuoren olemassao-
lo todennetaan ja faasiavaruusrakennetta tarkastellaan yleisemmin konstruoi-
malla fermionisen systeemin kaksipistefunktio eksaktisti tietyn ajasta riippuvan
massaprofiilin tapauksessa. Eksakteja ratkaisuja käytetään myös semiklassisen
approksimaation toiminta-alueen tutkimiseen. Approksimaation havaitaan toi-
mivan odotettua laajemmalla alueella.

Systeemeille, joissa silmukat 2PI-kehitelmässä ovat lokaaleja, johdetaan ska-
laarikenttien tapauksessa yksinkertaiset momenttiyhtälöt. Näitä yhtälöitä käyte-
tään yksi- ja kaksipistefunktioiden kytketyn kehityksen tutkimiseen kahdessa
eri asetelmassa. Ensimmäisessä tapauksessa tarkastellaan ”meksikolaishattupo-
tentiaalia” esimerkkinä faasitransitiosta. Silmukkakehitelmän Hartree-approksi-
maatiossa systeemin aikakehityksessä identifioidaan kaksi ilmiötä: spinodaali-
nen dekompositio ja parametrinen resonanssi. Ilmiöitä tarkastellaan yksityiskoh-
taisesti. Spinodaalisten efektien havaitaan muun muassa mahdollistavan tunne-
loitumisen klassisesti kielletyn potentiaalivallin läpi. Toisessa asetelmassa tut-
kitaan gravitaatioon epäminimaalisesti kytkettyä spektaattorikenttää inflaation
jälkeisen uudelleenlämmityksen aikana. Spinodaalisten ja parametristen efek-
tien olemassaolo todennetaan jälkeen, tällä kertaa oskilloivan Riccin skalaarin
aiheuttamina. Vertailemalla tuloksia aiemmin adiabaattisilla menetelmillä saa-
tuihin havaitaan, että epätasapainokvanttiefektit voivat dramaattisesti muuttaa
hiukkastuoton tehokkuutta.

Työn tulokset alleviivaavat kvanttiefektien tärkeää ja monimutkaista roo-
lia epätasapainosysteemeissä. Ilmiöiden kuten baryogeneesi, yleiset varhaisen
maailmankaikkeuden faasitransitiot sekä inflaation jälkeinen uudelleenlämmi-
tys tarkka kuvailu vaatii epätasapainoefektien käsittelyä kenttäteoreettisin me-
netelmin. Tässä työssä kehitetyt tekniikat tarjoavat uusia työkaluja tähän haas-
tavaan tehtävään.
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1 INTRODUCTION

The Standard Model (SM) of particle physics is arguably one of the most suc-
cessful scientific theories developed until the present day. It describes the inter-
actions of the known elementary particles via the strong, weak and electromag-
netic forces, thus encompassing three of the four fundamental forces. The fourth
one, gravity, is described by the equally triumphant theory of general relativity,
operating on the other end of the spectrum from micro- to macroscopic. The
predictions of the Standard Model have been experimentally verified to extreme
accuracy. The final missing piece included in the particle content of the Standard
Model, the Higgs boson, was discovered in 2012 by the ATLAS [1] and CMS [2]
experiments.

Despite its tremendous success, the Standard Model has also deficiencies.
Notable examples are its inability to explain the observed non-zero neutrino
masses, the existence of dark matter and dark energy and the abundance of
matter over antimatter. As mentioned above, it also does not explain gravity,
and combining the Standard Model and general relativity remains indeed the
Holy Grail of theoretical physics. These and other shortcomings of the model
have led to a rich field of so-called Beyond Standard Model theories, which try
to fill in the gaps either by extending the original model in various ways or by
taking some completely novel viewpoints.

The language of the Standard Model and of modern particle physics in gen-
eral is quantum field theory (QFT). In spite of its name, quantum field theory
is not actually a specific well-defined theory, but rather a vast toolbox of math-
ematical machinery and different physical principles. An important aspect of
research in theoretical physics is refining this toolbox and developing new the-
oretical methods and approaches required by different problems. This calls for
both conceptual and mathematical endeavours.

A specific theoretical branch that is under constant development and un-
derlies a great deal of this thesis’s subject matter is non-equilibrium quantum field
theory. The usual quantum field theory covered in standard textbooks and capa-
ble of modelling most particle physics scenarios at a satisfactory level assumes
that the quantum fields under examination are in their ground states, which
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Chapter 1. Introduction

means that they do not exhibit non-trivial time evolution. There are however
many phenomena in which the assumption of quantum states being in equi-
librium does not hold. Various examples can be found in cosmology (phase
transitions in the early universe, inflationary dynamics), in accelerator-based
particle physics (relativistic heavy ion collisions) as well as in condensed mat-
ter physics (Bose–Einstein condensation). This thesis concerns aspects of certain
non-equilibrium quantum field theory formalisms.

The structure of this thesis is as follows. In chapter 2 some early universe
scenarios are reviewed to motivate the study of non-equilibrium quantum dy-
namics. In chapter 3 the two-particle irreducible formalism of non-equilibrium
quantum field theory is summarized. This will lay out the basic mathematical
framework for the ensuing parts. In chapter 4 quantum transport equations at
different levels of approximation are introduced. Chapter 5 is devoted to ap-
plications of the presented formalism in specific scenarios. This chapter also
encapsulates the core results of the publications included in this thesis. Chap-
ter 6 collects the conclusions and the outlook of the thesis.

Throughout the thesis we use the “mostly-minus” convention for the signa-
ture of the Minkowski (and the FLRW) metric: ηµν = ηµν = diag(1,−1,−1,−1).
A space-time four-vector is in general denoted as x = (t, x) = (x0, x). Unless
otherwise specified, we work in natural units: c = h̄ = kB = 1.

2



2 PHYSICAL MOTIVATION

Basic cosmology and the arguments behind inflation are reviewed. Baryogenesis is
introduced.

2.1 Expanding universe

Cosmology is a branch of physics that studies the structure and evolution of
the universe as a whole. The modern widely accepted cosmology framework
successfully explains a wide variety of phenomena, starting from a hot and high
density state to the present universe. One of the basic properties of the observed
universe is its apparent homogeneity and isotropy: at large scales in every di-
rection and at every point the universe is essentially the same. Obviously this is
not the case at small scales – the universe is filled with complex structures from
organisms to galaxies – but at the scales exceeding a hundred million light-years
or so, the assumption of isotropy and homogeneity, called the cosmological prin-
ciple, holds already well [3–5]. In the early universe the principle was even more
accurate, as large structures had not formed yet, as can be directly seen in the
uniformity of the cosmic microwave background (CMB) radiation.

Mathematically a homogeneous and isotropic universe is most generally
described by the Friedmann–Lemaître–Robertson–Walker (FLRW) metric, which
with our signature convention is [6]

ds2 = dt2 − a2(t)
[

dr2

1 − Kr2 + r2dθ2 + r2 sin2(θ)dϕ2
]

. (2.1)

Here t is the cosmic (or proper) time, a(t) is the scale factor determining the time
evolution of spatial distances and (r, θ, ϕ) are comoving spherical coordinates. K
is a parameter describing the curvature of space: K = 0 corresponds to flat space
while K > 0 and K < 0 correspond to spaces with positive (closed) and negative
curvature (open), respectively. Observations have shown that our universe is
extremely close to flatness [7]. In this limit the above space-time line-element in
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Chapter 2. Physical motivation

Cartesian (x, y, x)-coordinates is simply

ds2 = gµνdxµdxν = dt2 − a2(t)
(
dx2 + dy2 + dz2), (2.2)

which defines the Cartesian flat-space metric tensor gµν. Finally, by defining
the conformal time η via adη

.
= dt, the line-element can be written simply

ds2 = a2(η)
(
dη2 − dx2). In this case the flat FLRW metric gµν is related to

the Minkowski metric ηµν by gµν = a2ηµν.
The evolution of the metric, and hence of the scale factor a, is dictated by

the Einstein equations [6]

Gµν
.
= Rµν −

1
2

gµνR =
8π
M2

Pl
Tµν, (2.3)

where Gµν is the Einstein tensor, Rµν is the Ricci curvature tensor, R .
= gµνRµν

is the Ricci scalar, Tµν is the energy-momentum tensor and MPl is the Planck
mass. These equations connect the geometry of the space-time (left-hand side)
and the energy content of the universe (right-hand side).1 In accordance with the
cosmological principle the energy-momentum tensor is assumed to be described
by an ideal fluid, in which case the Einstein equations (2.3) together with the flat
FLRW metric (2.2) imply the Friedmann equations [6](

∂ta
a

)2

=
8π

3M2
Pl

ρ, (2.4a)

∂2
t a
a

= − 4π
3M2

Pl
(ρ + 3p), (2.4b)

where ρ and p describe the energy density and pressure of the universe, respec-
tively. Equation (2.4a) has on the left hand side the Hubble parameter H .

= ∂ta
a

characterizing the rate of expansion of the universe.
The Friedmann equations (2.4) describe the evolution of the scale factor a

for a given energy-pressure-content, which has varied during the history of our
universe. From equation (2.4b) we see that a content with ρ + 3p < 0 leads
to an interesting situation: accelerated expansion, ∂2

t a > 0. This is not just a
curiosity of the equation – it is what the present state of the universe appears to
be. Several observations indicate that out universe is at the moment expanding
at an accelerating pace [7]. The cause of this acceleration, dubbed dark energy, is
an unknown component of the energy content of the universe. Explaining the
physical mechanisms giving rise to dark energy is one of the great challenges in
modern cosmology.

The present dark energy dominated era is not the only time we believe
accelerated expansion took place in the evolution of the universe. There are
reasons to believe that in its early stages the universe expanded acceleratingly

1 As J. A. Wheeler put it in his autobiography [8]: “Spacetime tells matter how to move; matter
tells spacetime how to curve.”
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2.2 Dynamics of inflation

during an epoch called inflation.

2.2 Dynamics of inflation

The motivation2 to conjure up a phase of accelerated expansion in the early uni-
verse originally stemmed from some oddities in the standard cosmology picture:
the horizon problem (why do seemingly causally disconnected regions share
the same temperature spectrum), the flatness problem (in a matter/radiation-
dominated universe the observed flatness requires an extreme fine-tuning of
initial conditions) and the lack of certain (topological) relics [13–18]. In addition
to reconciling these issues a major asset of the inflationary scenario has since
become its prediction of density perturbations, which can work as a seed for all
the structure created later in the universe [6, 19, 20].

The obvious question is: assuming an inflationary stage took place, what
caused it? The question remains open, but the simplest known solution would
be a single scalar field ϕ, generally called the in f laton field, with a suitable
potential V(ϕ) [21]. The action of such a generic scalar field is written as

Sϕ =
∫

d4x
√
−g
[
− 1

2
gµν(∇µϕ)(∇νϕ)− V(ϕ)

]
, (2.5)

where g .
= det(gµν) and ∇µ is the covariant derivative [6]. For a homogeneous

field ϕ(t) in a flat FLRW-space-time this action implies the following energy
density and pressure [22]:

ρϕ =
1
2
(∂tϕ)

2 + V(ϕ), (2.6a)

pϕ =
1
2
(∂tϕ)

2 − V(ϕ). (2.6b)

Therefore the condition for accelerated expansion, ρ + 3p < 0, is according to
equations (2.6) satisfied if the energy density and the pressure of the inflaton are
dominated by its potential energy: V(ϕ) > (∂tϕ)2. Qualitatively this condition
essentially means, that the slope of the potential should (at some region) be flat
enough for the inflaton to slowly roll towards its minimum without acquiring
enough kinetic energy to turn ∂2

t a negative. This is the idea behind the so-called
slow-roll inflation [14, 23], which, with various applications and extensions, has
to date probably remained the most popular model of inflation. Typically in
this scenario the inflaton field first slowly rolls down its potential in a region
with V(ϕ) ≫ (∂tϕ)2 – this is where the fluctuations observable in the CMB
are generated [22]. Gradually the field acquires more kinetic energy until the
equality V(ϕ) = (∂tϕ)2 is reached and inflation ends. The field continues to

2 It should be mentioned, that the predictive power of inflation has over the ages also been
subject to criticism by several scientists, see e.g. references [9–12].
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Chapter 2. Physical motivation

ϕ

V(ϕ)

r eheat in
g

V(ϕ) = (∂tϕ)2V(ϕ) ≫ (∂tϕ)2

FIGURE 1 A schematic picture of a generic potential for slow-roll inflation. Initially
the field rolls slowly in a region where its energy is dominated by the po-
tential. Gradually it acquires more kinetic energy, and inflation ends when
the kinetic energy starts to dominate. The field winds up oscillating around
the minimum of the potential and reheats the universe.

roll down the potential and finally ends up oscillating around a minimum in
a reheating phase. These generic features of slow-roll inflation are depicted in
figure 1.

While the accelerated expansion accounts for the large scale problems such
as horizon and flatness, the reheating phase following it becomes equally im-
portant. After inflation the universe is in a cold state3, and the oscillatory phase
provides a way to heat up the universe as the inflaton decays into other de-
grees of freedom. This is needed for the later standard evolution of the universe
(Big Bang Nucleosynthesis) to proceed [27]. The detailed dynamics of reheat-
ing are generally highly complicated and depend strongly on the specific model
and its particle content. Especially interesting are processes, in which the cou-
pling of the oscillating inflaton field to other particles creates effectively time-
dependent masses, which can lead to efficient particle production via paramet-
ric resonance [28–31] and spinodal instabilities [32–38]. These processes entail
complicated quantum dynamics, and their accurate description requires the use
of non-equilibrium quantum field theory techniques [39]. In section 5.2 we will
use our quantum transport methods to study a toy model exhibiting the main
qualitative features that appear in generic reheating scenarios.

Dynamics of fields other than the inflaton can also lead to interesting phe-
nomena during reheating. As an example in section 5.3 we study a scenario,
in which the oscillations of the inflaton during reheating result in spinodal and
parametric particle production of a subdominant scalar field coupled to the in-

3 There is an exception called warm inflation, in which particles are produced already during
inflation [24–26].
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2.3 Baryogenesis

flaton via the curvature scalar R. This spectator field serves as a candidate for
the observed dark matter abundance [35, 36, 40].

2.3 Baryogenesis

Another interesting early universe concept is related to the matter content of
the universe. In addition to usual matter consisting of (baryonic) particles the
Standard Model also predicts the existence of antimatter, or antiparticles. These
antiparticles are indeed seen in particle experiments and are present in cosmic
rays, but only in tiny amounts. This disproportionality between baryons and an-
tibaryons in the observable universe is usually quantified by the non-vanishing
of the baryon-to-photon ratio η, which has e.g. from CMB-measurements found
out to be [41]

η
.
=

nB

nγ
= (6.129 ± 0.039)× 10−10, (2.7)

where nB
.
= nb − nb̄ is the difference between baryon and antibaryon number

densities and nγ is the photon number density. The Standard Model does not
fundamentally bring forth any asymmetry between particles and antiparticles,
which poses the obvious question: why is there something instead of nothing?
This issue concerning the observed baryon asymmetry is one of the big unan-
swered questions in physics.

One could say the asymmetry is just an initial condition for our universe,
but this would not fit with the inflationary paradigm presented in the previ-
ous section: any initial abundance of baryons (or antibaryons, for that matter)
would have been diluted away during the epoch of exponential expansion that
stretched space by a factor of e60 at least [42]. Hence, assuming an inflationary
epoch indeed took place, there is a need for a post-inflationary mechanism that
produced the observed baryon asymmetry. Such a hypothetical mechanism is
generally called baryogenesis.

In 1967 the Russian physicist Andrei Sakharov published a paper [43], in
which he outlined three necessary ingredients that every successful baryogenesis
model has to include:

(i) Baryon number violation.

(ii) C- and CP-violation.

(iii) Interactions out of thermal equilibrium.

In the second condition C and P refer to charge and parity transformations,
respectively. These requirements, nowadays known as the Sakharov conditions,
are qualitatively fulfilled already within the Standard Model, but unfortunately
they fall quantitatively short of being able to produce the observed baryon abun-
dance. The electroweak phase transition, while providing non-equilibrium con-
ditions, is known to be a crossover instead of a (strongly) first order one for

7



Chapter 2. Physical motivation

Broken
phase

Symmetric
phase

Broken
phase

Symmetric
phase

Bubble
wall

FIGURE 2 Features of a first order phase transition. The transition proceeds through
nucleation and expansion of broken phase bubbles in the symmetric phase,
as shown in the left panel. Microscopic effects become important at the
bubble wall, where particles experience quantum reflection as illustrated in
the right panel.

the observed mass of the Higgs boson at 125 GeV [44, 45]. The non-equilibrium
conditions offered by such a transition are not sufficient for the needed baryon
asymmetry [46]. Secondly, even if the transition was of first order, the amount
of CP-violation induced by the CKM matrix is too small [47–49]. Baryon num-
ber is violated by anomalous non-perturbative (sphaleron) processes in the elec-
troweak sector [50, 51], but without the other two conditions this is not enough.
All in all, beyond Standard Model physics is needed for a working baryoge-
nesis model [52]. Many baryogenesis mechanisms have been developed over
time, but none of them has of yet been experimentally verified. Some of the
most notable ones include electroweak baryogenesis [53], leptogenesis [54], the
Affleck–Dine mechanism [55], and different GUT- and Planck-scale baryogene-
sis scenarios [42,56]. Our focus will be on the electroweak baryogenesis (EWBG),
whose accurate description requires quantum transport techniques such as the
ones developed in this thesis. Our techniques have also been applied to leptoge-
nesis [57, 58].

The electroweak baryogenesis relies on a strongly first order phase transi-
tion, which proceeds via nucleation of bubbles of the new (broken) phase in the
original (symmetric) phase, as illustrated in the left panel of figure 2. Condi-
tions near the bubble walls enable a way to generate a baryon asymmetry. The
rapid expansion of the phase transition front provides conditions for the depar-
ture from equilibrium. Combined with the CP-violating interactions this leads
to a chiral asymmetry in front of the transition wall, which drives the creation
of the baryon asymmetry via the anomalous sphaleron processes which are un-
suppressed in the symmetric phase (see e.g. reference [59]). The popularity of
the electroweak baryogenesis stems from its minimal extensions to the Standard
Model (most of the ingredients are already there) and from its testability (elec-
troweak scale physics is well reachable by modern particle accelerators), and a

8



2.3 Baryogenesis

variety of models have indeed been introduced [60–64].
Of crucial importance in actual calculations within electroweak baryogene-

sis are the particle interactions at the wall – this is where the source asymmetry is
generated. The situation, illustrated in the right panel of figure 2, is essentially
a quantum reflection problem, whose description requires advanced quantum
transport techniques in the presence of decohering collisions. There exist semi-
classical approaches [65–70], designed to work for thick bubble walls, but in
the thin wall limit the quantum effects become more dominant and more ad-
vanced techniques are needed. In this work we have developed non-equilibrium
quantum field theory techniques suitable for these purposes. Specifically in arti-
cle [PI] we studied a CP-violating wall as a toy model for the electroweak phase
transition, revealing novel quantum effects as well as studying the range of ap-
plicability of the semiclassical approach. Also the quantum transport equations
developed and used in articles [PII] and [PIII] are methodologically similar to the
techniques in article [PI] and therefore relevant for the electroweak baryogenesis
scenario.
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3 NON-EQUILIBRIUM QUANTUM FIELD THEORY
AND THE 2PI FORMALISM

The Schwinger–Keldysh formalism for out-of-equilibrium quantum systems is out-
lined. The 2PI effective action is introduced and equations of motion for the one-
and two-point functions are derived.

3.1 The Schwinger–Keldysh formalism

In the usual vacuum (zero temperature) quantum field theory, used to study
for example scattering processes, the asymptotic initial and final states of the
particles are assumed to exist and be free. This allows for the typicalol’“in-out”
computations of transition amplitudes between the states, and such a machinery
indeed works extremely well in the usual experimental setups such as particle
accelerators, where the energy of the particles is large compared to the sur-
rounding temperature and particle densities are typically modest: temperature
excitations do not affect the processes and asymptotic states can be reasonably
defined since there are not many particles interfering with each other. When
it comes to computing (time-dependent) expectation values, the old “in-out”
framework is obviously inadequate and one needs instead an “in-in” formalism.

If the temperature of the surroundings is comparable to the energy of the
particles, the usual zero temperature -formalism must be improved to be able
to treat thermal corrections. Some of the commonly used techniques are the
imaginary time formalism [71], the real time formalism [72] and thermo field
dynamics [73]. These finite temperature or thermal field theories assume that the
system is in thermal equilibrium, and allow for perturbative calculations much
in the same way as with the zero temperature quantum field theory.

If one wishes to go yet further and study non-equilibrium quantum sys-
tems, a different standpoint is needed. When we are interested in actual time
evolution of quantum fields out of equilibrium, the density operator describing
the state of the system is not known – we either wish to solve it or the n-point

10



3.1 The Schwinger–Keldysh formalism

functions defined by it. The Schwinger–Keldysh formalism, accompanied with
the 2PI effective action -methods introduced shortly, provides an “in-in” formal-
ism capable of handling with the corresponding time-dependent expectation
values.

3.1.1 Closed time-path

The Schwinger–Keldysh or the closed time-path (CTP) formalism is a technique for
calculating non-equilibrium expectation values of quantum objects, first devel-
oped by J. Schwinger for quantum mechanics [74], then refined to quantum field
theory by his students P. M. Bakshi and K. T. Mahanthappa [75–77] and inde-
pendently applied to statistical field theory by L. Keldysh [78]. Let us suppose
we are studying a non-equilibrium system and we are interested in the time evo-
lution of the expectation value of an observable O. Mathematically this is given
by

⟨O⟩ = Tr
[
ρO
]
, (3.1)

where ρ is the density matrix of the system, for which the normalization Tr[ρ] .
=

1 was assumed.4 In thermal equilibrium the analytic form of ρ is known, e.g.
ρ ∝ e−H/T. For out-of-equilibrium systems the particular form of ρ is unknown –
we can merely assume that we can specify it at some initial time tin. The objective
in non-equilibrium quantum field theory is then to find the time evolution of the
density matrix, or equivalently of all the n-point functions defined by its initial
value:

G(n)(x1, x2, . . . , xn)
.
= Tr

[
ρ̂ϕ̂(x1)ϕ̂(x2) · · · ϕ̂(xn)

]
, (3.2)

where ρ̂ and ϕ̂ are Heisenberg field operators and ϕ is an exemplary real scalar
field.

Let us now focus on the two-point function G(2) and demonstrate the need
for a closed time-path. We start by writing the propagator in terms of Schrödinger
field operators ϕ̂S:

⟨ϕ̂(x1)ϕ̂(x2)⟩ = Tr
[
ρ̂Û(tin, t1)ϕ̂S(x1)Û(t1, tin)Û(tin, t2)ϕ̂S(x2)Û(t2, tin)

]
, (3.3)

where Û(t1, t2) is the time evolution operator and ρ̂ = ρ̂(tin). We will utilize
a basis of field eigenstates |φa⟩ of the Schrödinger field operator, ϕ̂S(x)|φa⟩ =
φa(x)|φa⟩, which is complete and orthonormal:∫

[D φa]|φa⟩⟨φa| = 1, ⟨φa|φb⟩ = δ[φa − φb] = ∏
x

δ(φa(x)− φb(x)), (3.4)

where the functional integral measure is [D φ]
.
= ∏

x
dφ(x) [71, 79]. We shall also

4 The role of the trace operation is to reduce the number of degrees of freedom: from a mi-
croscopic variable O with a large number of degrees of freedom we obtain a macroscopic
quantity ⟨O⟩ with just a few. The density matrix ρ operates between these two.
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Chapter 3. Non-equilibrium quantum field theory and the 2PI formalism

Re[t]

Im[t]

C
tin + iε

tin − iε
tf

FIGURE 3 The Schwinger–Keldysh contour C, running from an initial time tin + iε to a
final time tf and back to tin − iε. The small imaginary parts ±iε are essential
for the convergence of the (path) integrals. For visualization purposes the
contour has been shifted clearly above and below the Re[t]-axis.

need the path integral representation of the transition amplitude:

⟨φb|Û(t2, t1)|φa⟩ =
∫
[Dϕ]

ϕ(t1,x)=φa(x)
ϕ(t2,x)=φb(x)

ei
∫ t2

t1
dt
∫

d3xL[ϕ(x)] .
=

φb∫
φa

[Dϕ] eiS [ϕ]t2t1 , (3.5)

where the integration in [Dϕ]
.
= ∏

x
dϕ(x) is restricted by the conditions ϕ(t1, x) =

φa(x) and ϕ(t2, x) = φb(x) [80].
Armed with these functional tools, together with the standard properties

Û(t1, t3)Û(t3, t2) = Û(t1, t2) and Û(t1, t2) = Û†
(t2, t1) of the time evolution oper-

ator, we can write the two-point function (3.3) as

⟨ϕ̂(x1)ϕ̂(x2)⟩ =
∫ 5

∏
i=1

[D φai ]⟨φa1 |ρ̂|φa2⟩⟨φa2 |Û(tin, t1)ϕ̂S(x1)|φa3⟩⟨φa3 |Û(t1, tf)|φa4⟩

× ⟨φa4 |Û(tf, t2)ϕ̂S(x2)|φa5⟩⟨φa5 |Û(t2, tin)|φa1⟩

=
∫ 5

∏
i=1

[D φai ]⟨φa1 |ρ̂|φa2⟩
φa2∫

φa3

[Dϕ1] eiS [ϕ1]
tin
t1 φa3(x1)

φa3∫
φa4

[Dϕ2] eiS [ϕ2]
t1
tf

×
φa4∫

φa5

[Dϕ3] eiS [ϕ3]
tf
t2 φa5(x2)

φa5∫
φa1

[Dϕ4] eiS [ϕ4]
t2
tin (3.6)

=
∫

∏
i∈{1,2,4}

[D φai ]⟨φa1 |ρ̂|φa2⟩
φa2∫

φa4

[Dϕ−] ϕ−(x1)e
iS [ϕ−]

tin
tf

φa4∫
φa1

[Dϕ+] ϕ+(x2)e
iS [ϕ+]

tf
tin

=
∫
[Dϕ+][Dϕ−]⟨ϕ+|ρ̂|ϕ−⟩ϕ−(x1)ϕ

+(x2)e
iS [ϕ+]

tf
tin

−i
(
S [ϕ−]

tf
tin

)∗ ∣∣∣∣
ϕ−(tf,x)=ϕ+(tf,x)

,

where the states |ϕ±⟩ correspond to ϕ±(tin, x). What we have obtained is a
familiar-looking path integral representation, but with two distinct time branches:
a forward branch for ϕ+ from tin to some final time tf, and a backward branch
for ϕ− from tf to tin. This corresponds to the Schwinger–Keldysh contour C,
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3.1 The Schwinger–Keldysh formalism

which is depicted in figure 3.
The point we wanted to make with the above calculation is that if we wish to

use the familiar path integral techniques in a non-equilibrium setting, the time-
integration has to be performed on a closed path. Although we here considered
the two-point function, the argument generalizes readily to other objects. In
what follows, all time-dependent objects are expected to live on the complex
time contour, unless otherwise specified. E.g. in integrations this is denoted by
a subscript C. We will also in general suppress operator hats from now on and
use the shorthand notation SC

.
= S [ϕ+]− S [ϕ−]

∗ for the CTP-action.

3.1.2 Propagators

For many applications the quantities of interest are related to the two-point func-
tion of the system. In the Schwinger–Keldysh formalism we can write a generic
propagator of a real scalar field as

i∆(u, v) = ⟨TC{ϕ(u)ϕ(v)}⟩, (3.7)

where TC denotes time-ordering along the contour C. When moving to real time
prescription the propagator then splits naturally into four pieces, depending on
which branches of the contour the time arguments lie on. To this end we define

i∆F(u, v) .
= i∆++(u, v) .

= ⟨T {ϕ(u)ϕ(v)}⟩, (3.8a)

i∆F(u, v) .
= i∆−−(u, v) .

= ⟨T {ϕ(u)ϕ(v)}⟩, (3.8b)

i∆<(u, v) .
= i∆+−(u, v) .

= ⟨ϕ(v)ϕ(u)⟩, (3.8c)

i∆>(u, v) .
= i∆−+(u, v) .

= ⟨ϕ(u)ϕ(v)⟩, (3.8d)

where T and T are the usual time- and anti-time-ordering operators. The su-
perscripts a, b ∈ {+,−} in ∆ab denote the location of the time arguments on the
contour: for example for ∆++(u, v) both u0 and v0 lie on the upper branch of
C, whereas for ∆+−(u, v) the second time argument v0 is situated on the lower
branch. The mixed cases ∆< = ∆+− and ∆> = ∆−+ are called the Wightman
functions.

Only two of the four propagators above are actually independent. Indeed,
by explicitly opening up the time-ordering one can write the Feynman and anti-
Feynman propagators in terms of the Wightman functions:

∆F(u, v) = θ(u0 − v0)∆>(u, v) + θ(v0 − u0)∆<(u, v), (3.9a)

∆F(u, v) = θ(v0 − u0)∆>(u, v) + θ(u0 − v0)∆<(u, v). (3.9b)

The above relations also establish the equality ∆F + ∆F = ∆> + ∆<. Even though
two propagators suffice, there is a great number of auxiliary propagators with
different interpretations and advantages in specific formulations. Two com-
monly used are the spectral and statistical propagator [81–83], which we define as
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Chapter 3. Non-equilibrium quantum field theory and the 2PI formalism

A(u, v) .
= 1

2⟨[ϕ(u), ϕ(v)]⟩ and F(u, v) .
= − i

2⟨{ϕ(u), ϕ(v)}⟩, respectively. Spectral
properties of the system are encoded in A, while F contains statistical informa-
tion such as occupation numbers [81]. These are again related to the Wightman
functions by A = i

2(∆
> − ∆<) and F = 1

2(∆
> + ∆<).

Another commonly used pair of two-point functions consists of the retarded
and advanced propagators ∆r and ∆a:

i∆r(u, v) .
= 2θ(u0 − v0)A(u, v)
= θ(u0 − v0)

[
i∆>(u, v)− i∆<(u, v)

]
(3.10a)

= i∆F(u, v)− i∆<(u, v),

i∆a(u, v) .
= −2θ(v0 − u0)A(u, v)
= θ(v0 − u0)

[
i∆<(u, v)− i∆>(u, v)

]
(3.10b)

= i∆F(u, v)− i∆>(u, v).

These are used e.g. in the cQPA-formalism, which will be discussed in sec-
tion 4.2. In the same context we also define the Hermitian propagator ∆H .

=
1
2(∆

r + ∆a), which then allows for the decomposition ∆r/a = ∆H −/+ iA.
All the definitions and decompositions above can be similarly done for

fermionic two-point functions, the only difference being a minus sign here and
there due to the anticommutativity of fermionic fields, c.f. references [69, 81].
Furthermore, the definitions will generalize to any other two-point objects intro-
duced later on, such as the self-energies Π and Σ.

3.2 The 2PI effective action

In the previous section we saw how the so-called Schwinger–Keldysh formalism
can be used to write non-equilibrium objects using path integrals. Next we shall
review the 2PI effective action methods, which provide a way to derive consistent
equations of motion for the one- and two-point functions of the system. The
need for such techniques stems from the fact that using ordinary perturbation
theory in non-equilibrium quantum field theory leads to certain problems such
as secularity (solutions contain spurious terms growing with powers of time)
and pinch singularities [81, 84].

We will work with a real scalar field ϕ (see e.g. reference [79] for the gen-
eralization to fermions). The starting point is the non-equilibrium generating
functional, defined as [81, 85]

Z[J1, J2]
.
= Tr

[
ρ̂ TC

{
ei
∫
C d4x ϕ(x)J1(x)+ i

2
∫
C d4x d4y ϕ(x)J2(x,y)ϕ(y)

}]
, (3.11)

where ρ̂ is an initial (non-equilibrium) density matrix and J1,2 are local and non-
local sources. Time-integration is performed along the Schwinger–Keldysh con-
tour C presented in the previous section, and TC is the accordant time-ordering
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3.2 The 2PI effective action

operator along the contour. Equivalently to classical statistical systems, Z con-
tains all the essential information of the non-equilibrium quantum field theory.
Especially the non-equilibrium n-point (Green’s) functions of equation (3.2) are
obtained as functional derivatives with respect to the local source J1:

G(n)(x1, x2, . . . , xn) =
δnZ[J1, J2]

iδJ1(x1) iδJ1(x2) . . . iδJ1(xn)

∣∣∣∣
J1=J2=0

, (3.12)

where the sources are set to zero in the end.
The derivation of the 2PI effective action from the generating functional (3.11)

proceeds by writing the functional in a path integral representation, assuming a
Gaussian form for the initial density matrix and double Legendre transforming
the generator of connected correlation functions W[J1, J2]

.
= −i ln(Z[J1, J2]) with

respect to the two sources. The derivation is lengthy, and its details can be found
e.g. in references [81,85]. For our purposes it suffices to know the final result for
the 2PI effective action [86]:

Γ2PI[φ, G] = SC [φ] +
i
2

TrC
[
ln
(

G−1
)]

+
i
2

TrC
[

G−1
0 G

]
+ Γ2[φ, G], (3.13)

where SC is the classical (CTP) action, φ(x) .
= ⟨ϕ(x)⟩ is the macroscopic field5

and G(x, y) is the connected two-point function, describing fluctuations around
φ. The trace involves integration over the Schwinger–Keldysh contour C of fig-
ure 3, and the classical inverse propagator is defined as

iG−1
0 (x, y; φ)

.
=

δ2SC [φ]

δφ(x)δφ(y)
. (3.14)

Finally, Γ2 consists of all 2PI (two-particle irreducible) vacuum graphs with lines
corresponding to the full propagator G and interaction rules read from the
shifted Lagrangian density L[ϕ → φ + ϕq], with ϕq being the quantum fluc-
tuation.

In the 2PI effective action Γ2PI both the one-point function φ and the two-
point correlation function G are dynamical variables. It therefore provides a way
to consistently study their coupled dynamics without resorting to standard per-
turbation theory techniques, which may be problematic in the non-equilibrium
setting. The method also generalizes to higher order n-particle irreducible (nPI)
effective actions, which can be formulated by adding more non-local sources to
the partition function (3.11). A higher order (in n) action does however not a pri-
ori provide a more accurate picture, as for example for a given m-loop expansion
all nPI effective actions with n ≥ m can be shown to be equivalent [87]. Typically
one of the lowest order actions already provides a complete and self-consistent
treatment for practical purposes [81].

For a chosen Γ2 the equations of motion for the one- and two-point func-

5 With many other names used in literature, such as the classical, mean, average and back-
ground field. We will mostly be referring to φ as the one-point function.
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G
=

G0
+

Π

FIGURE 4 A generic structure of a Schwinger–Dyson equation, corresponding to equa-
tion (3.18). G is the full two-point function, G−1

0 is the classical inverse
propagator and Π is the self-energy.

tions are obtained as the stationary conditions of the effective action:

δΓ2PI[φ, G]

δφ
= 0, (3.15a)

δΓ2PI[φ, G]

δG
= 0. (3.15b)

In particular, equation (3.15b) gives rise to the Schwinger–Dyson equation

G−1
0 (x, y) = G−1(x, y) + Π(x, y), (3.16)

where we defined the self-energy

Π(x, y) .
= 2i

δΓ2[φ, G]

δG(y, x)
(3.17)

via the interaction term Γ2. Multiplying the Schwinger–Dyson equation (3.16)
with G(y, z), integrating over y, and further multiplying the resulting equation
with G0(w, x) and integrating over x results in the often-used alternative form

G(w, z) = G0(w, z) +
∫
C

d4x d4y G0(w, x)Π(x, y)G(y, z) , (3.18)

which has the familiar graphical interpretation depicted in figure 4.
It is useful to divide the self-energy into a singular (local) and a non-

singular (non-local) part:

Π(x, y) = δ
(4)
C (x − y)Πsg(x) + Πnsg(x, y). (3.19)

If one now further assumes a standard form for the kinetic term of the action S
and writes

iG−1
0 (x, y) = −

[
□+ M2(x)

]
δ
(4)
C (x − y), (3.20)

and then defines an effective mass squared function as the entire singular por-
tion,

M2
eff(x) .

= M2(x) + iΠsg(x), (3.21)
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3.2 The 2PI effective action

the Schwinger–Dyson equation can be written in the transparent form

i
[
□x + M2

eff(x)
]

G(x, y) = δ
(4)
C (x − y) +

∫
C

d4z Πnsg(x, z)G(z, y), (3.22)

where the last term on the right is called the memory integral or the collision
term. Since in the 2PI setting both φ and G are dynamical variables, the above
equation is coupled to that of the one-point function, given by the stationarity
condition (3.15a),

δSC [φ]

δφ(x)
+

i
2

δ

δφ(x)
TrC

[
G−1

0 G
]
+

δΓ2[φ, G]

δφ(x)
= 0, (3.23)

via the self-energy terms. For example in the case of a Lagrangian density L =
1
2(∂µϕ)2 − V(ϕ) with a real polynomial potential V(ϕ) = ∑∞

n=1 ξnϕn we have[
□+

1
2

G(x, x)
∞

∑
n=3

n(n − 1)(n − 2)ξn φn−4(x)

+
∞

∑
n=1

nξn φn−2(x)
]

φ(x) =
δΓ2[φ, G]

δφ(x)
.

(3.24)

for the equation of motion for the one-point function.
So far we have written all the equations in contour notation, where it is

understood that all objects live on the complex time contour C. For further
calculations it is useful to also write down the evolution equations in real time,
i.e., explicitly for the components Gab defined in equations (3.8). In this branch
notation the Schwinger–Dyson equation (3.22) becomes [69]

i
[
□x + M2

eff(x)
]

Gac(x, y) = aδacδ(4)(x − y) + b
∫

d4z Πab
nsg(x, z)Gbc(z, y), (3.25)

where summation over b is implied, time-integration is still understood to be
limited to [tin, tf] and the self-energy function is given by

Πab(x, y) = 2iab
δΓ2[φ, G]

δGba(y, x)
= aδabδ(4)(x − y)Πsg(x) + Πab

nsg(x, y). (3.26)

In the following chapter we will use the Schwinger–Dyson equations and 2PI
methods introduced above to derive more applicable quantum transport equa-
tions.
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4 QUANTUM TRANSPORT EQUATIONS

The Schwinger–Dyson equations implied by the 2PI effective action are written
in the Wigner representation. The coherent quasiparticle approximation (cQPA)
is introduced in the spatially homogeneous and isotropic case. General moment
equations for local interactions are discussed.

4.1 Kadanoff–Baym, Wigner, and all that

The Schwinger–Dyson equations (3.22) derived from the 2PI effective action are
in principle still as general as the full quantum field theory itself. As such
they are therefore ineffective for solving any practical problems, and develop-
ing tractable approximation schemes is the first step towards realistic modelling
of actual physical phenomena. We will now study the equations a bit more,
most importantly writing them in a so-called Wigner representation. We will
first work with the fermionic case, as it is of interest for the application of our
approximation scheme introduced later in section 4.2. Section 4.3 deals with the
bosonic case, including a derivation of generic transport equations in terms of
moment functions.

As a starting point we take the fermionic version of the Schwinger–Dyson
equation (3.25), which can be written as∫

d4z S−1
0 (x, z)Sac(z, y) = aδacδ(4)(x − y) + b

∫
d4z Σab(x, z)Sbc(z, y), (4.1)

where Sab(x, y) and Σab(x, y) .
= −iδΓ2/δSba(y, x) are the fermionic two-point

function and self-energy, respectively [79]. The self-energy is defined with a dif-
ferent prefactor compared to the case of a real scalar (3.17) due to the Grass-
mann nature of fermionic path integrals. Studying equation (4.1) for different
branch indices explicitly and using the propagator definitions and relations of
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4.1 Kadanoff–Baym, Wigner, and all that

section 3.1.2 allows us to split it into two pieces:∫
d4z
[
S−1

0 (x, z)− Σa,r(x, z)
]
Sa,r(z, y) = δ(4)(x − y), (4.2a)∫

d4z
[
S−1

0 (x, z)− Σr(x, z)
]
S<,>(z, y) =

∫
d4z Σ<,>(x, z)Sa(z, y), (4.2b)

Equations (4.2a) are called the pole equations, containing information on spectral
properties of the system, while (4.2b) are called the kinetic or Kadanoff–Baym
equations, describing dynamics and statistical properties.

Equations (4.2) are still coupled integro-differential equations for the two-
point functions and self-energies, and as such often too complicated for practical
purposes. For deriving kinetic equations apt for tractable approximations it
is useful to introduce the Wigner transformation. For a generic function of two
arguments O(u, v) this is defined as6

O(k, x) .
=
∫

d4r eik·r O
(

x +
r
2

, x − r
2

)
, (4.3)

where r .
= u − v and x .

= 1
2(u + v) are the relative and average coordinates, re-

spectively, characterizing the internal (microscopic) and external (macroscopic)
behaviour of the system. In order to write equations (4.2) in a Wigner repre-
sentation, we will need the following identity: the Wigner transformation of a
generic convolution integral C(u, v) =

∫
d4w A(u, w)B(w, v) is given by [69]

C(k, x) = e−i♢{A(k, x)
}{

B(k, x)
}

. (4.4)

The diamond (Moyal) operator ♢ is for a pair of functions f (k, x) and g(k, x)
defined as the operation

♢{ f }{g} .
=

1
2
[
(∂x f ) · (∂kg)− (∂k f ) · (∂xg)

]
. (4.5)

The above definition can be used to construct ♢n for any n ∈ N, and e−i♢ is then
defined through a Taylor series.

Using the identity (4.4) we can write the evolution equations (4.2) in the
Wigner representation as7

(
/k +

i
2

/∂x

)
Sa,r − e−i♢{Σa,r

m
}{

Sa,r} = 1, (4.6a)(
/k +

i
2

/∂x

)
S<,> − e−i♢{Σr

m
}{

S<,>} = e−i♢{Σ<,>}{Sa}, (4.6b)

6 Note the usual misnomer: we denote the Wigner (Fourier) transform with the same letter
as the original function.

7 Strictly speaking this requires sending tin → −∞ and tout → ∞ in the Schwinger–Keldysh
contour C due to the Wigner transformation. This does not affect the relevant properties
of our systems of interest [69].
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Chapter 4. Quantum transport equations

where we have assumed that all mass contributions from S−1
0 have been ab-

sorbed into the local parts of the self-energies Σr,a – this is denoted by Σr,a
m . We

also omitted the arguments (k, x) for a more compact notation. Equations (4.6)
are still as general as the original Schwinger–Dyson equation (4.1)8, but they
provide a good starting point for the derivation of kinetic transport equations
with different approximations. The cQPA, outlined in the next section, is an
example of such an approximation scheme.

Before going to more specific formulations, it is worthwhile to take a closer
look at the Wigner-transformed evolution equations (4.6), and especially of the
diamond expansion. As such the gradient exponential mixes derivatives incon-
veniently, and performing systematic gradient approximations might be tricky.
The situation can be elucidated by defining an out-transformed quantity as

Oout(k, x) .
=
∫

d4z eik·(x−z)O(x, z). (4.7)

This function can be shown to be related to the usual Wigner transform through
a differential exponential:

Oout(k, x) = e
i
2 ∂x·∂k O(k, x). (4.8)

Using the out-transformation a typical collision term can be written as

e−i♢
{

Σ(k, x)
}{

S(k, x)
}
= e−

i
2 ∂Σ

x ·∂k

[
Σout

(
k +

i
2

∂x, x
)

S(k, x)
]

, (4.9)

where the expression ∂Σ
x means a derivative operating solely on Σout [PI].

Using equation (4.9) we can write the Wigner-transformed equations as

/DSa,r − e−
i
2 ∂Σ

x ·∂k
[
Σa,r

m out
(D, x)Sa,r

]
= 1, (4.10a)

/DS<,> − e−
i
2 ∂Σ

x ·∂k
[
Σr

m out
(D, x)S<,>

]
= e−

i
2 ∂Σ

x ·∂k
[
Σ<,>

m out
(D, x)Sa

]
, (4.10b)

where all the propagators still have arguments (k, x) and we defined the differ-
ential operator D

.
= k + i

2 ∂x. This form of the Kadanoff–Baym equations, first
derived in article [PI], is extremely useful when it comes to gradient expansions
or integrating over k since, instead of the mixing diamond operator ♢, one has a
total derivative in k. Furthermore, the k-derivatives come paired with ∂Σ

x , so if the
self-energy Σ (and consequently Σout) varies slowly in the external coordinate x,
one obtains a controlled gradient expansion.

8 We assume that the kinetic term of the action if of a canonical form, leading to the generic
structure S−1

0 (u, v) =
[
i/∂u − f (u)

]
δ(4)(u − v).
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4.2 The cQPA for fermions

4.2 The cQPA for fermions

The coherent quasiparticle approximation (cQPA) is a comprehensive approxi-
mation scheme of the Kadanoff–Baym equations (4.2) (for bosons as well as for
fermions) for systems with certain symmetries. It was first introduced in refer-
ence [88] and subsequently applied and developed further in references [89–94],
with a recent extension to include finite width effects in reference [57]. At the
heart of the theory is the existence of a novel shell structure in the phase space
of the system: in addition to the usual mass shell solutions, there are singular
shells encoding quantum coherence effects in the system. In the spatially homo-
geneous and isotropic case (we are not considering flavour mixing here) there is
one such shell, situated at zero frequency (k0 = 0) between the usual k0 = ±ωk
-solutions, while for static cases with planar symmetry (i.e., with translation in-
variance lost in one spatial direction) it occurs at a momentum with kz = 0,
where z is the spatial coordinate orthogonal to the symmetry plane.

In this thesis we will stick to the spatially homogeneous and isotropic cQPA
and mostly concentrate on the non-interacting case, as it allows for phase space
studies and clear comparison for exact and semiclassical cases. As a background,
on top of which interactions can be added, we take a Lagrangian density of a
fermion with a time-dependent and complex mass:

L = iψ/∂ψ − m∗(t)ψRψL − m(t)ψLψR, (4.11)

where ψR,L
.
= PR,Lψ, PR

.
= 1

2

(
1 + γ5) and PL

.
= 1

2

(
1 − γ5). The time-dependence

(and more generally space-time-dependence) of the mass m(t) .
= mR(t) + imI(t)

can be generated for example by an interaction of the fermion field ψ with a
scalar field ϕ, i.e., through a Yukawa-type interaction LYukawa = −αψϕψ, where
the scalar field obtains a (space-)time-dependent complex vacuum expectation
value ⟨ϕ(x)⟩. The motivation for this kind of an effective Lagrangian density is
obtaining a toy model containing the qualitative requirements for baryogenesis.
With the model (4.11) in mind, we now proceed to establish the basic structure
of the cQPA.

The derivation of the cQPA is essentially a two-step procedure. First the
spectral structure of the two-point functions is obtained at the level of free equa-
tions of motion – this is where the novel coherence shell is found. After this the
shell structure is used as an ansatz for the full equations of motion, resulting
in evolution equations containing quantum coherence effects. We begin by con-
sidering the Wigner-transformed Kadanoff–Baym equation (4.6b) for the lesser
Wightman function S< (the case for S> is analogous). It can be shown [PI, 94],
that in the absence of gradient corrections and collision terms and with the La-
grangian density of equation (4.11) the Hermitian part of equation (4.6b) can be
written as

2k0S<
k (k0, t) =

{
Hk(t), S<

k (k0, t)
}

, (4.12)

where Hk(t)
.
= α · k + γ0[mR(t) + iγ5mI(t)

]
with αi .

= γ0γi for the space-like

21



Chapter 4. Quantum transport equations

gamma matrices, {◦, ◦} denotes the usual anticommutator and we defined the
barred two-point function S .

= iSγ0. We also introduced the notation Ok(k0, t)
for the Wigner transform in the spatially homogeneous and isotropic case, as
the spatial part of the transformation reduces to the usual Fourier transforma-
tion. Note that equation (4.12) contains no derivatives (they appear in the anti-
Hermitian part) – it instead contains information on the phase space structure of
the system and is accordingly called the constraint equation. Our goal is then to
reveal the possible phase space structures allowed by the equation, and to this
end we introduce a convenient parametrization of the Wightman function.

We define the helicity and energy projection operators as

P (4)
hk

.
=

1
2

(
1+ hĥk

)
, P ε

k
.
=

1
2

(
1+ ε

Hk

ωk

)
, (4.13)

where ωk
.
=
√
|k|2 + |m(t)|2 and ĥk

.
=
(
α · k̂

)
γ5 is the helicity operator with k̂ .

=
k/|k|. The helicity h and the on-shell energy sign index ε take values {−1, 1},
and it is straightforward to show that ĥkP (4)

hk = hP (4)
hk and HkP ε

k = εωkP ε
k. Most

importantly, it can be shown that the eight matrices

Bε1ε2
hk

.
= P (4)

hkP
ε1
k γ0P ε2

k (4.14)

with h, ε1, ε2 ∈ {−1, 1} span the Dirac subalgebra of a spatially homogeneous
and isotropic system [57, 94]. Accordingly, we can with no loss of generality
parametrize out two-point function as

S<
k (k0, t) .

= ∑
h, ε1, ε2

Bε1ε2
hk (t) Dε1ε2

hk (k0, t), (4.15)

where Dε1ε2
hk (k0, t) are eight unknown coefficient functions.

Inserting the decomposition (4.15) into the constraint equation (4.12) and
using the properties of the projection operators one can derive the following
equations for the coefficient functions:(

k0 − εωk
)

Dε ε
hk(k0, t) = 0, (4.16a)

k0 Dε(−ε)
hk (k0, t) = 0. (4.16b)

These equations admit the distributional solutions

Dε ε
hk(k0, t) = 2π

εωk

mR
f mε
hk δ(k0 − εωk), (4.17a)

Dε(−ε)
hk (k0, t) = 2π f cε

hk δ(k0), (4.17b)

where f mε
hk (t) and f cε

hk(t) are called the mass-shell and coherence functions, re-
spectively. The odd-looking normalization for f mε

hk in equation (4.17a) is chosen
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|k|

k0
particles

antiparticles

coherence

FIGURE 5 The general phase space structure of the spectral cQPA two-point functions
in the (k0, |k|)-space. The particle (violet) and antiparticle (orange) solutions
follow the familiar mass-shells at k0 = ±

√
k2 + |m|2, while their mutual

coherence (brown) is situated at k0 = 0.

in such a way that when the entire Wightman function

S<
k (k0, t) = 2π∑

h, ε

[
Bεε

hk
εωk

mR
f mε
hk δ(k0 − εωk) + Bε(−ε)

hk f cε
hk δ(k0)

]
(4.18)

is compared to the standard thermal propagator [72], the mass-shell functions

correspond to the familiar Fermi–Dirac distributions: f mε
hk

thermal−−−−→ nFD(εωk),

where nFD(k0)
.
=
(
ek0/T + 1

)−1 [94].
Equation (4.18) is for our later purposes the most important result of this

section. It shows the cQPA phase space structure we described already earlier: in
addition to the familiar mass shells ∼ δ(k0 ∓ ωk) there is a zero frequency shell
∼ δ(k0). The information carried by this shell is interpreted as the quantum
coherence between positive and negative frequency (particle and antiparticle)
states [88,91]. Figure 5 illustrates the full phase space structure of the correlator.
The existence of the novel singular shell at k0 = 0 is exceptional, which is why
in section 5.1 we study the phase space of the Wightman function in an exactly
solvable system, not relying on the cQPA-methods. This allows us to ultimately
verify the shell structure beyond the cQPA-formalism.

Although the shell structure is the aspect of most interest for the purpose
of this thesis, for the cQPA-method it is just the first step. As already men-
tioned earlier, the second step is to use the cQPA two-point function (4.18) as an
ansatz in the anti-Hermitian part of equation (4.6b), this time with all the gra-
dients and interactions included. This eventually results in transport equations
for the phase space densities ∂t f (m,c)ε

hk . Here we just quote the final result from
article [PI]:

∂t f mε
hk =

ε

2 ∑̃
ε

Ξε̃
hk f cε̃

hk +
εωk

mR
Tr
[
CcollBεε

hk

]
, (4.19a)

∂t f cε
hk = − 2εiωk f cε

hk + ξkΞ−ε
hk

(
mR

ωk
f cε
hk −

1
2 ∑̃

ε

ε̃ f mε̃
hk

)
+ ξk Tr

[
CcollB(−ε)ε

hk

]
, (4.19b)
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where the collision term is

Ccoll = ∑
h,ε

{[
1
2

Σ<
k (εωk)− f mε

hk ΣA
k (εωk)

]
Bεε

hk − f cε
hk ΣA

k (εωk)Bε(−ε)
hk

}
+ H. c. (4.20)

with H. c. denoting the Hermitian conjugate of the first term and we have de-
fined

Ξε
hk

.
= ∂t

(
mR

ωk

)
+ i

εh|k|
ω2

k
∂tmI, ξk

.
=

ω2
k

ω2
k − m2

R
. (4.21)

The barred self-energies are defined with the γ0-matrix positioned oppositely
to the barred propagators, Σ< .

= iγ0Σ< and ΣA .
= γ0ΣA, but the splitting to

Wightman and spectral components is equivalent.
Even though equations (4.19) might look complicated on the surface, the

problem has been reduced to first order differential equations for the phase
space densities with the time-dependent mass and self-energies from chosen
interactions as input. In the article [PI] we applied these equations to solve the
phase space densities for certain exemplary self-energies.

4.3 General moment equations for scalars

The cQPA is an approximative method, whose advantage lies in its high appli-
cability to interacting theories while maintaining information on quantum co-
herence effects. In certain cases and for certain quantities the Schwinger–Dyson
equation (3.22) coupled to the equation of motion of the one-point function (3.23)
can however be solved exactly with surprisingly compact methods. The key idea
is to turn the Schwinger–Dyson equations into moment equations, as will be de-
tailed next. We will work with bosonic equations, as they will be relevant for the
applications considered later in sections 5.2 and 5.3.

The first step in using the 2PI action (3.13) to study any realistic model
is choosing the diagram or diagrams that are included in the interaction part
Γ2 – this will depend on the type of interactions present in the model and on
the accuracy to which one wishes to study it. Suppose that the chosen Γ2 con-
sists of solely local diagrams, rendering also the self-energy of equations (3.17)
and (3.19) local (Πnsg = 0). In this case the bosonic Schwinger–Dyson equation
is simply

i
[
□x + M2

eff(x)
]

G(x, y) = δ
(4)
C (x − y), (4.22)

where the effective mass function is defined in equation (3.21). By definition
Meff in general depends on G itself via the self-energy, but this does not affect
the structure of the equations we develop. If we furthermore assume again that
the system is spatially homogeneous and isotropic, the corresponding equation
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4.3 General moment equations for scalars

in Wigner space and for the lesser Wightman function can be shown to be[
1
4

∂2
t − k2 − ik0∂t + e−

i
2 ∂M

t ∂k0 M2
eff(t)

]
G<

k (k0, t) = 0, (4.23)

where the time derivative ∂M
t in the exponential only acts on the effective mass

function M2
eff. On top of this there is in general also an equation for the one-point

function from equation (3.23), which couples through the effective mass function
which can be a function of both the one- and the (local) two-point function.

Equation (4.23) is still highly complicated due to the infinite tower of t- and
k0-derivatives arising from the exponential. We can however cast its essential
features into a much simpler form by considering the moment functions defined
by G<

k :

ρnk(t)
.
=
∫ dk0

2π
kn

0 G<
k (k0, t). (4.24)

The trick is that since the t- and k0-derivatives in equation (4.23) come in pairs,
integrations over k0 will give rise to neglectable surface terms, truncating the
gradient exponential. Indeed, first splitting equation (4.23) into real and imagi-
nary parts: [

k2 − 1
4 ∂2

t − cos
(

1
2 ∂M

t ∂k0

)
M2

eff(t)
]

G<
k (k0, t) = 0, (4.25a)[

k · ∂t + sin
(

1
2 ∂M

t ∂k0

)
M2

eff(t)
]

G<
k (k0, t) = 0, (4.25b)

and then integrating both equations over k0 and furthermore integrating equa-
tion (4.25b) weighted by k0 gives rise to the following equations for the three
lowest moments: (

1
4

∂2
t + |k|2 + M2

eff

)
ρ0k − ρ2k = 0, (4.26a)

∂tρ1k = 0, (4.26b)

∂tρ2k −
1
2

[
∂t

(
M2

eff

)]
ρ0k = 0. (4.26c)

As we can see, the equation for ρ1k decouples at this level, and the remaining
equations for ρ0k and ρ2k form a closed set of simple coupled differential equa-
tions.

In spite of their simplicity, equations (4.26) are still completely exact per se
– the only approximation has been the choice that Γ2 consists of local diagrams,
which dictates the form of the effective mass function M2

eff. This mass func-
tion will eventually in general be a function of the one-point function φ(t) and
the local two-point function G(t, t), which coincides with the three-momentum
integral of the zeroth moment function:

G(t, t) =
∫ d3k

(2π)3 ρ0k(t). (4.27)
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Chapter 4. Quantum transport equations

Because the local two-point function is a divergent quantity, the definition of
M2

eff requires a careful renormalization procedure, which is carried out in detail
in article [PII].

The simple form of equations (4.26) is deceiving. For a given model they
are to be solved along with the equation (3.23) for the one-point function φ,
and all the equations are further coupled through the effective mass function
M2

eff(φ(t), G(t, t)), which itself generally depends on the (local) two-point func-
tion and accordingly has to be solved from a gap equation. The moment func-
tions obtained as solutions are not as general as the full two-point function
G<(x, y) we began with due to the k0-integration. Yet they contain all the in-
formation relevant for the quantities we are usually mostly interested in, such as
the local two-point function G(t, t), particle and energy densities and currents
and the evolution of the one-point function.

4.3.1 Friction

Finally, we mention adding friction to the moment equations. Even though equa-
tions (4.26) as such only hold in the collisionless case (i.e., for a local self-energy),
they can rather easily be generalized to include phenomenological dissipative
terms. Similar moment equations with collision terms were studied in refer-
ence [90] with a refined cQPA-analysis given in reference [93]. Our purpose with
the applications considered later is not to perform first principles calculations of
collision integrals from interactions, but we do wish to study the effects of fric-
tion qualitatively. To this end it is enough to know the general structure of the
moment equations (4.26) with collision terms, which according to reference [90]
is (

1
4

∂2
t + |k|2 + M2

eff

)
ρ0k − ρ2k = −#1∂tρ0k, (4.28a)

∂tρ1k = −#2

(
ρ1k − ρ

eq
1k

)
, (4.28b)

∂tρ2k −
1
2

[
∂t

(
M2

eff

)]
ρ0k = −#2

(
ρ2k − ρ

eq
2k

)
, (4.28c)

where ρ
eq
ik are equilibrium moment functions, the form of which can be chosen

separately for each problem at hand, and #1,2 are coefficients that arise from the
collision terms. In general these coefficients #1,2 are some functions of three-
momentum and time, but for a phenomenological analysis they can be taken to
be constants.

The moment equations derived in this section provide a compact way to
study the coupled time evolution of the one- and the two-point functions in non-
equilibrium settings with the backreaction of the two-point function properly
accounted for. In articles [PII] and [PIII] we have used these equations to study
a model with spontaneous symmetry breaking potential and the evolution of a
spectator field during inflationary reheating. Although we have here restricted
ourselves to the spatially homogeneous and isotropic situation, which is the case
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in our applications, moment equations similar to the ones considered above can
also be derived in the planar symmetric case, where not time but one spatial
coordinate is non-trivial [90].
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5 APPLICATIONS

The phase space structure of the fermionic Wightman function is established and
compared to the cQPA in an analytically solvable case. The range of validity
of the semiclassical approximation is studied. The moment equations presented
in the previous chapter are applied to study the interplay of the one- and two-
point functions in two different setups. Section 5.1 is related to article [PI], while
sections 5.2 and 5.3 are related to articles [PII] and [PIII], respectively.

5.1 The kink-profile

In order to study in more detail the properties of the cQPA introduced in sec-
tion 4.2, we will now specify a certain form for the time-dependent mass profile
m(t). Namely, we will use a hyperbolic tangent function, the so-called “kink”
profile:

m(t) = m1 + m2 tanh
(
− t

τw

)
. (5.1)

Here both m1 = m1R + im1I and m2 = m2R + im2I are constant and in general
complex coefficients while the parameter τw determines the “width” of the pro-
file in time. This kind of a mass profile is frequently used in studies of phase
transitions and simple baryogenesis scenarios, as it is a smooth and easily scal-
able function interpolating between two different asymptotic values, such as two
distinct vacua [95–99]. For our purposes the main advantage of the profile (5.1)
is that the Dirac equation can be analytically solved for such a time-dependent
mass.

Indeed, the solutions for a space-dependent profile with real coefficients
were studied in reference [95] and extended to the case of perturbative imagi-
nary parts in reference [96]. The exact solutions in the case of a temporal profile
with general complex coefficients, such as the one in equation (5.1), were finally
derived in reference [97]. These solutions will serve as useful tools for us, as they
allow us to construct the Wightman function exactly in the collisionless case and

28



5.1 The kink-profile

compare the phase phase structure of the resulting object to that predicted by
the cQPA – this will be done in section 5.1.2. We will also use the kink-profile to
study the range of validity of the semiclassical approach in section 5.1.3. First we
will however review the exact solutions and construct the corresponding Wight-
man function out of them. For a more detailed presentation, see article [PI] and
reference [100].

5.1.1 Exact solutions

The Dirac equation implied by the Lagrangian density (4.11) is[
i/∂ − PRm(t)− PLm∗(t)

]
ψ = 0. (5.2)

We will now outline how to solve this equation for the mass profile of equa-
tion (5.1). In our spatially homogeneous and isotropic case the field can be
expanded with the usual (anti)commutation rules in terms of creation and an-
nihilation operators, âhk and b̂hk, and some time-dependent mode functions,
Uhk(t) and Vhk(t), as

ψ̂(t, x) = ∑
h

∫ d3k
(2π)32ω−

[
âhkUhk(t)eik·x + b̂†

hkVhk(t)e−ik·x
]
, (5.3)

where h ∈ {−1, 1} labels the helicity and we denote ω±
.
= ωk(t → ±∞). Since

helicity is conserved in the system [101], we further decompose the mode func-
tions as

Uhk(t) =
[

ηhk(t)
ζhk(t)

]
⊗ ξhk, (5.4a)

Vhk(t) =
[

ηhk(t)
ζhk(t)

]
⊗ ξhk, (5.4b)

where ξhk is the helicity two-eigenspinor, obeying
(
σ · k̂

)
ξhk = hξhk with σ

.
=

(σ1, σ2, σ2) consisting of the three Pauli matrices σi.9 Substituting the expan-
sion (5.3) with the decompositions (5.4) to the Dirac equation (5.2) results after
some algebra in the following equations for the one-dimensional mode func-
tions:

i∂tηhk + h|k|ηhk = mζhk, (5.5a)
i∂tζhk − h|k|ζhk = m∗ηhk, (5.5b)

from which the equations for the antiparticle functions ηhk and ζhk are obtained
by performing the replacements h → −h and m → −m∗.

So far we have not utilized the specific time-dependence of the mass func-

9 We work in the chiral (or Weyl) basis, in which the Dirac gamma matrices are γ0 = σ1 ⊗12,
γi = iσ2 ⊗ σi and γ5 = −σ3 ⊗ 12 [80]. In this case the helicity operator defined below
equation (4.13) is ĥk = 12 ⊗

(
σ · k̂

)
.
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tion. For general mass profiles equations (5.5) have to be solved numerically, but
as already mentioned earlier, for the kink-profile (5.1) an analytical solution can
be found. The derivation of the solutions can be found in reference [97], and here
we will just quote the main result. By introducing a further decomposition of the
mode functions as ϕ±

hk(t) =
1√
2

[
ηhk(t)± ζhk(t)

]
and ϕ±

hk(t) =
1√
2

[
ηhk(t)± ζhk(t)

]
it turns out that the solutions can be written in terms of Gauss hypergeometric
functions:

ϕ±(1)
hk = C±(1)

hk zα(1 − z)β
2F1(a±, b±, c; z), (5.6a)

ϕ±(2)
hk = C±(2)

hk z−α(1 − z)β
2F1(1 + a± − c, 1 + b± − c, 2 − c; z), (5.6b)

where C±(1)
hk and C±(2)

hk are constants, the superscripts (1) and (2) label the two
linearly independent solutions and we have defined

z .
=

1
2

[
1 − tanh

(
− t

τw

)]
, α

.
= − i

2
τwω−, β

.
= − i

2
τwω+,

a±
.
= 1 + α + β ∓ iτwm2R, b±

.
= α + β ± iτwm2R, c .

= 1 + 2α.
(5.7)

The solutions for ϕ±
hk are obtained by simply switching h → −h in equations (5.6).

In the derivation of these solutions the imaginary part of m2 has been removed
by a global rotation of the fermion fields [97], and the remaining imaginary
part of the mass will be denoted by mI. For a general t the functions (5.6) are
mixtures of positive and negative frequency solutions, but asymptotically they
reduce to one or the other: ϕ±(1)

hk
t→−∞−−−→ C±(1)

hk e−itω− and ϕ±(2)
hk

t→−∞−−−→ C±(2)
hk eitω− .

This makes it simple to construct different initial states, representing particles or
antiparticles in the asymptotic limit, for later analysis.

5.1.2 Phase space structure and quantum coherence

Now that we have the exact mode functions at hand, we turn back to the phase
space structure of the two-point function predicted by the cQPA-formalism. As
implied in section 4.2, we expect that due to the particle-antiparticle correlations
generated by the changing mass there exists a shell-like structure located at
k0 = 0. Using the exact solutions we can now verify this with no approximations
included. Since both of the Wightman functions S< and S> contain qualitatively
the same features, it suffices to concentrate on either one of them. We choose to
work with S>.

Using the expansion of the spinor field (5.3), the (anti)commutation proper-
ties of the creation and annihilation operators, the decompositions of the mode
functions (5.4) and the definition of the larger Wightman function iS>(u, v) =
⟨ψ(u)ψ(v)⟩, we can write

S>(u, v) = ∑
h

∫ d3k
(2π)3 e−ik·(u−v)Mhk(u0, v0)⊗ ξhkξ†

hk, (5.8)
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where we defined

Mhk(u0, v0)
.
=

1
2ω−

[
ηhk(u0)η

∗
hk(v0) ηhk(u0)ζ

∗
hk(v0)

ζhk(u0)η
∗
hk(v0) ζhk(u0)ζ

∗
hk(v0)

]
. (5.9)

The next step would be to Wigner-transform this Wightman function to get to
the phase space picture. There is however one delicate point which we wish
to discuss first. The exact mode functions found above are solutions to the free
Dirac equation (5.2), i.e., there are no decohering interactions. As the integra-
tion in the Wigner transformation (in our spatially homogeneous and isotropic
case) correlates for each t structures at ± r0

2 with r0 ∈ [−∞, ∞], there are non-
zero correlations coming from arbitrarily large time differences in the free case.
Although this is a perfectly consistent result, in any realistic scenario there are
interactions suppressing such broad correlations. In a complete treatment these
interactions would have to be taken into account by solving the full Kadanoff–
Baym equations, which is an important research topic but not relevant for our
current purposes – we are merely interested in the qualitative phase space struc-
tures around the transition region. We will instead take the effect of decohering
interactions into account by adding a temporal damping factor Γ in the Wigner
transformation:

S>
Γ (k, x) .

=
∫

d4r eik·r−Γ|r0| S>
(

x +
r
2

, x − r
2

)
(5.10)

(see article [PI] for reasoning on how this kind of a damping structure arises nat-
urally in the interacting case). Transforming the constructed Wightman function
of equation (5.8) accordingly results in

S>
Γ (k, t) = ∑

h

∫
dr0 eik0r0−Γ|r0| Mhk

(
t +

r0

2
, t − r0

2

)
⊗ ξhkξ†

hk

.
= ∑

h
Whk(k0, t)⊗ ξhkξ†

hk, (5.11)

where in the second equality we defined Whk(k0, t) to separate the relevant time-
dependent part of the Wigner transformation.

Figure 6 shows the absolute value of the (1, 1)-component of Whk(k0, t),
constructed using the exact solutions (5.6) and performing the Wigner transfor-
mation numerically, for sets of parameters specified in the caption. The other
components exhibit the same qualitative behaviour. The initial state has been
chosen to represent a positive frequency solution. In all three cases the shell
structure predicted by the cQPA is evident: after the initial positive frequency
solution has gone through the mass change (centered around t = 0), it splits into
a mixture of positive and negative frequency solutions and their mutual coherence
at k0 = 0. In the uppermost case the damping factor Γ is the largest, resulting in
a relatively strong smearing of the shells. In the midmost case we chose a smaller
Γ, and the shell structure is accordingly sharper. We also used a larger magni-
tude of the three-momentum |k|, which causes the antiparticle shell emerging
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FIGURE 6 Absolute value of the (1, 1)-component of the Wightman function Whk(k0, t)
defined in equation (5.11). All cases have m1R = 0.5, m2R = 2, mI = 0.5 and
τw = 5 and the values for Γ and |k| are indicated above the plots. Adapted
from article [PI] under the license CC BY 4.0.

after the mass change to be less pronounced, as the initial energy is in this case
relatively larger compared to the mass change.

In the bottom case of figure 6 the value of Γ is the smallest. The particle,
antiparticle and coherence shells are again correspondingly sharper, but on top
of this there are structures not seen in the two other cases. Peaking at the mass
change around t = 0 are two shell-like structures, located at roughly k0 ≃ 0.5
and k0 ≃ 2.1. These novel structures originate from non-local correlations across
the wall: the early time positive frequency solution is correlated with the late
time positive and negative frequency solutions. The location of the structures
in frequency space is indeed at k0 = 1

2(ω− ± ω+), corresponding to the possi-
ble mixtures of the early and late time solutions. The emergence of these new
shell structures for sharp wall profiles can also be verified analytically by exam-
ining a step function mass profile [100], and in the limit Γ → 0 they actually
completely dominate the phase space of the system. The cQPA does not predict
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5.1 The kink-profile

them, since the ansatz (4.18) is entirely spanned by the local correlation function
(see equation (5.16) below). The non-local features we are observing are indeed
examples of memory effects, relevant in systems with little or no dissipation. It
is hard to say how much physical significance these solutions carry, as in a real-
istic setting interactions are expected to inhibit such long-range correlations, but
their existence is nevertheless an interesting and to our knowledge previously
unobserved phenomenon in the Wigner space context.

5.1.3 Range of validity of the semiclassical approximation

In the previous section we verified the phase space structure predicted by the
cQPA using the exact solutions constructed from the mode functions. Next we
will make use of the exact solutions to compute local currents and compare them
to those obtained using the semiclassical approximation. Similarly to the cQPA,
the semiclassical approximation is a method to compute quantities of interest
in situations with a varying background, for example in the context of baryo-
genesis or phase transitions in general. For space-dependent backgrounds the
formalism was introduced in references [65–68] and extended to include ther-
mal corrections in reference [70], while the treatment of time-dependent systems
can be found in reference [69]. Our focus is naturally on the temporal case,
and especially on the expected range of validity of the formalism: the semiclas-
sical method is on general grounds expected to work for |k|-values satisfying
2π
|k| < τw [PI].

A generic fermionic current jO(x) .
= ⟨ψ(x)Oψ(x)⟩ can be written in terms

of the Wigner-transformed Wightman function as

jO(x) =
∫ d4k

(2π)4 Tr
[
O iS<(k, x)

]
. (5.12)

We will in particular be interested in the axial charge density jγ0γ5 .
= j05 related

to particle asymmetries via the axial anomaly [50, 97]. Its Fourier transform in
our spatially homogeneous and isotropic case can be written as

j05
k (t) = ∑

h
j05
hk(t)

.
= ∑

h

∫ dk0

2π
Tr
[
γ0γ5 iS<

hk(k0, t)
]
. (5.13)

With the exact solutions (5.6) at hand it is easy to construct j05
k for the kink-

profile (5.1).
On the other hand, the semiclassical method predicts that for a general

time-dependent mass m = |m|eiθ the current for a given helicity is given by the
formula

j05
hk(t) =

ω− j−hk

ωk(t) + h |m(t)|2∂tθ(t)
2|k|ωk(t)

, (5.14)

where j−hk
.
= j05

hk(t → −∞) [PI, 97]. For the kink-profile (5.1) and with the posi-
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FIGURE 7 The axial charge density j05
k (t) from the exact solutions (blue) and from

the semiclassical approximation (red) for |k| ∈ {0.1, 0.4, 0.8, 1.5}. The other
parameters in each panel are m1R = 0.1, m2R = 1, mI = 0.1, τw = 5 and
Γ = 0.2.

tive frequency initial solution chosen in the previous section this results in the
following helicity-summed expression:

j05
k (t) =

mIm2R

τw ω3
k(t) cosh2(t/τw)

. (5.15)

Using this result we can compare the semiclassical method to the exact results
for different momentum scales.10

Before heading into the comparison we make an important remark on the
cQPA: in the collisionless limit the cQPA is exact for local quantities, such as the
current of equation (5.13). At first sight this might seem surprising, since the
cQPA ansatz (4.18) relies on a truncation of gradients in the full equation. At the
integrated level however a one-to-one correspondence between the cQPA shell-
functions f (m,c)ε

hk and the components of the local Wightman function S<
hk(t, t) can

be established [PI, 94]. This relation can be seen by integrating both the Wigner-
transformed Wightman function and the cQPA-function of equation (4.18):∫ dk0

2π
S<

k (k0, t) =
∫ dk0

2π

∫
dr0 eik0r0S<

k

(
t +

r0

2
, t − r0

2

)
= S<

k (t, t)

= ∑
h, ε

[
Bεε

hk
εωk

mR
f mε
hk + Bε(−ε)

hk f cε
hk

]
,

(5.16)

10 Equation (5.15) as well as the currents in the following figure 7 have a different overall
sign compared to those in the article [PI], which had an incorrect sign for the initial value
j−hk. This has no effect on the actual results of the article.
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+ + + + + · · ·

FIGURE 8 The first few terms contributing to Γ2 in the ϕ4-theory. Including just the
first (local) diagram is called the Hartree approximation.

where the second line followed from equation (4.18). This relation parametrizes
the local Wightman function in terms of the cQPA distribution functions f mε

hk
and f cε

hk. Note that adding the damping factor Γ in the Wigner transformation
does not affect the above equality in any way. In the article [PI] this feature of
the cQPA was confirmed also numerically when studying the local currents. It
therefore suffices to compare the exact and semiclassical cases.

Figure 7 displays the axial charge density j05
k (t) of equation (5.13), com-

puted using the exact results and the semiclassical approximation (5.15) for
|k| ∈ {0.1, 0.4, 0.8, 1.5}. The other parameters are given in the caption. Start-
ing from the lower right panel, we see that for |k| = 1.5 the semiclassical re-
sult matches nearly perfectly the exact solution. This is not that surprising, as
the condition 2π/|k| < τw is manifestly fulfilled. For smaller |k| the agreement
is weakened, as the exact result develops oscillations completely absent in the
semiclassical current. For |k| = 0.1 the approximation predicts a peak reach-
ing well above the actual result, and we are clearly outside the validity range
of the method. However, for the intermediate values |k| ∈ {0.4, 0.8} the initial
peak and the average value of the consequential oscillation in the exact result
are quite well caught by the semiclassical result, even though for the smaller |k|-
value only a third of a wavelength fits inside the wall width. This suggests that
the semiclassical approximation might be applicable even for relatively abrupt
transitions.

5.2 Spinodal quantum dynamics in the ϕ4-theory

In this and the following section we will employ the general moment equations
derived in section 4.3 in two different scenarios. First we shall consider a scalar
field in a static Minkowski background with the well known Mexican hat poten-
tial, defined by a Lagrangian density with a negative mass term:

L =
1
2
(∂µϕ)2 +

1
2

µ2ϕ2 − λ

4!
ϕ4. (5.17)

Such a potential is typically used as an example of spontaneous symmetry break-
ing in phase transitions [102–104]. We will be working in the lowest non-trivial
loop expansion of the 2PI effective action, the so-called Hartree approximation. In
this truncation the interaction part Γ2 consists solely of the figure-eight-diagram
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depicted as the first one in the series of figure 8:

Γ2 = −λ

8

∫
d4x ∆2(x, x), (5.18)

where we have denoted the two-point function by ∆(x, y) for consistency with
the articles [PII, PIII]. We assume that the system is spatially homogeneous and
isotropic.

With the above choices for the potential and Γ2 the system is found [PII]
to obey the moment equations (4.28) (or (4.26) in the frictionless case) with the
effective mass function

M2
eff(t) = M2

eff(φ, ∆) = −µ2 +
λ

2

[
φ2(t) + ∆(t, t)

]
. (5.19)

Note that this is actually a gap equation for the mass function: the local correlation
function ∆(t, t) depends on M2

eff. The equation for the one-point function (3.23)
in the Hartree approximation is[

∂2
t + M2

eff(t)
]

φ(t) =
λ

3
φ3(t). (5.20)

These equations allow us to study the coupled evolution of the one- and two-
point functions numerically, taking properly into account the quantum backreac-
tion from the out-of-equilibrium modes of the two-point function. Especially in-
teresting are the spinodal instabilities present in the system: for certain |k|-modes
the combination ω2

k
.
= |k|2 + M2

eff will tend negative due to the occasional neg-
ativity of the effective mass squared function M2

eff, resulting in instabilities and
particle production.11 This process has been studied widely in reference to early
universe phase transitions, as it may play an important role in e.g. inflationary
particle production [34, 39, 103–106].

In article [PII] the system was studied extensively with several scenarios.
The article also includes a detailed renormalization of the system, which we do
not repeat here (the renormalized quantities are denoted with a subscript R).12

We identified and studied particle production both via parametric resonance and
spinodal instabilities and examined the role of different effective potentials that
can be defined for the system. We also included the phenomenological friction
terms, and finally used the equations to study the self-thermalization of the
system. Here we will show some exemplary results to illustrate the qualitative
features present in the system and point the reader to the article [PII] for a more

11 In terms of plane waves: for a set of modes ωk turns imaginary, and the oscillatory solu-
tions ∼ e±iωkt split into exponentially growing and decaying parts. In the literature the
terms spinodal and tachyonic are used interchangeably when referring to these instabilities.

12 The article contains an erroneous treatment of the renormalization factor Z(2) which was
incorrectly set to unity. A proper calculation [107] yields a marginal correction: in equa-
tions (3.24a) and (4.4d) of the article [PII] the derivative terms become multiplied by a

factor # = 1
18

(
3
√

1 + 27λR
32π2 − 1

)
. Although this does not affect the main results, the figures

in this thesis are produced with the corrected factor.
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FIGURE 9 The one-point function φR (left panel) and the effective mass function M2
eff

(right panel). The parameters used were mR = 100 GeV and λR = 1 with
the initial values φin

R = 310 GeV and ∂t φin
R = 0 GeV2. The results are for the

collisionless case: #i = 0 GeV.

thorough analysis. The units in all figures of this section are (some powers of)
GeV.

In figure 9 we show the one-point function φR and the effective mass func-
tion M2

eff as functions of time. The mass parameter was given the value mR = 100
GeV, characteristic for an electroweak phase transition, while the coupling was
chosen to be λR = 1. The one-point function was initialized as φin

R = 310 GeV
and ∂t φin

R = 0 GeV2, while the moment functions ρik were initialized to their
vacuum values:

ρvac
0k

.
=

Θk

2ωk
, ∂tρ

vac
0k

.
= 0, ρvac

1k
.
= −1

2
and ρvac

2k
.
=

ωk

2
Θk, (5.21)

where the Heaviside theta function Θk
.
= θ

(
ω2

k(t)
)

excludes spinodal modes
from the vacuum. These forms for the moment functions follow straightfor-
wardly by inserting in the definition (4.24) the thermal propagator iG<

eq(k) =
2π sgn(k0)nBE(k0)δ

(
k2 − m2), where nBE(k0)

.
=
(
ek0/T − 1

)−1 is the Bose–Einstein
distribution function [69,72]. Finally, in this case we assumed no friction, setting
#i = 0 in equations (4.28). In the figure we see that the one-point function os-
cillates at a decaying amplitude, as does also the effective mass function. While
the average value of the effective mass squared stays positive during the evolu-
tion, at early times the function obtains negative values during the oscillations.
This causes spinodal instabilities, whose role can be seen in the behaviour of the
two-point function described next.

Figure 10 shows the fluctuation contribution of the finite (renormalized) lo-
cal two-point function δ∆F(t, t) and the momentum structure of the correspond-
ing zeroth fluctuation moment δρ0k(t) as a function of time. The fluctuation is

37



Chapter 5. Applications

FIGURE 10 The fluctuation part of the two-point function δ∆F (left panel) and the
momentum structure of the zeroth fluctuation moment δρ0k (right panel)
for the same values of parameters as in figure 9.

defined by subtracting the vacuum contribution of equation (5.21):

δ∆F(t, t) =
∫ d3k

(2π)3 δρ0k
.
=
∫ d3k

(2π)3

(
ρ0k − ρvac

0k
)
. (5.22)

We can see that at initial times, for roughly t ∈ [0, 0.3], the (average value of
the) two-point function grows strongly. This is due to the spinodal instability,
as can be seen by comparing with the effective mass function of figure 9: this is
the stage during which M2

eff gets periodically negative. For later times the mass
function remains positive, oscillating with a decaying amplitude. The two-point
function in figure 10 is seen to continue growing during this period, while the
momentum space structure of δρ0k exhibits clear band-like “Moby-Dick” struc-
tures. These bands and the corresponding growth in the two-point function are
due to parametric resonance caused by the oscillating mass – a phenomenon
familiar from reheating scenarios [29, 102, 108] and systems with external oscil-
lation frequencies in general [109, 110].

In the above case most of the time evolution was dominated by the para-
metric resonance. To see the spinodal instabilities better in effect, we show in
figure 11 again the evolution of the one-point function and the effective mass
function, but this time with a smaller initial value for the field: φin

R = 246
GeV. We also included non-zero friction terms, #i = 0.4 GeV, and assumed that
the corresponding interactions drive the system to a vacuum state by choosing
ρ

eq
ik = ρvac

ik . The other parameters are the same as in the earlier example. The
evolution of the one-point function, shown in solid blue in the left panel, is dras-
tically different to the previous case. Due to the smaller initial value, the field
does not cross to the other side of the potential on the first oscillation, but does
spend a longer time at the spinodal region. On the second oscillation cycle it
however penetrates slowly to the other side of the potential, with the effective
mass function staying close to zero, and then spends the rest of the time evo-
lution oscillating around the other minimum. This is an example of a spinodal
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FIGURE 11 The full evolution of the one-point function φR (left panel, solid blue) and
the vacuum evolution (left panel, dotted black) along with the effective
mass function M2

eff (right panel). The parameters used were mR = 100
GeV, λR = 1 and #i = 0.4 GeV with the initial values φin

R = 246 GeV and
∂t φin

R = 0 GeV2.

tunneling, where the unstable modes excited during the first oscillation allow
the field to cross the classically forbidden potential barrier. To better illustrate
this, we have also plotted the evolution of the one-point function with just the
vacuum contributions taken into account, meaning that we set by hand δ∆F = 0
in the mass function in equation (5.20). This evolution is shown as the black dot-
ted line in the left panel of figure 11 and, as expected, the field simply oscillates
around the positive minimum in a fixed potential.

In figure 12 we show, similarly to figure 10, the fluctuation contributions
to the local two-point function and the zeroth moment for the parameters used
in figure 11. The strong spinodal instability can be seen in the left panel in
the evolution of the two-point function as a rapid growth at initial times. The
spinodal nature of the growth is more transparent in the heat plot in the right
panel, where we can see that all the generated structure in the momentum space
of δρ0k is concentrated at small |k|-values. These are the modes that spend the
longest time in the spinodal region where M2

eff tends negative, or for which ω2
k

is negative the longest.
The main objective in this section has been to underline the existence, im-

portance and complicated dynamics of backreaction effects on the coupled evo-
lution of the one- and two-point functions. It is clear that methods with a fixed
background, like using the standard effective potential, are not adequate to cap-
ture these effects [20]. There are ways to treat these non-equilibrium systems to
some degree without resorting to the 2PI methods, like the mode function ap-
proaches of references [103, 104], but the non-linearity of the equations makes
the situation complicated. In the next section we employ our moment equation
methods within inflationary reheating.
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FIGURE 12 The fluctuation part of the two-point function δ∆F (left panel) and the
momentum structure of the zeroth fluctuation moment δρ0k (right panel)
for the same values of parameters as in figure 11.

5.3 Particle production during reheating with quantum backreac-
tion

In the previous section we discussed the complicated dynamics of the coupled
one- and two-point functions in a toy model exhibiting spinodal instabilities, us-
ing the methods introduced in section 4.3. Now we will study similar dynamics
in a more specific setting, as explored in article [PIII].

The model studied in the article consists of a scalar spectator field χ which
is indirectly coupled to an inflaton field ϕ via the curvature scalar R:

Sχ
.
=
∫

d4x
√
−g
[

1
2

gµν(∇µχ)(∇νχ)− 1
2

m2χ2 +
1
2

ξRχ2 − λ

4
χ4
]

. (5.23)

Originally this setup was introduced in references [35,36] as a mechanism to pro-
duce dark matter during reheating, with the following principal idea. The scalar
χ is assumed to stay energetically subdominant to the inflaton ϕ, whose evolu-
tion (with the quadratic form V(ϕ) = 1

2 m2
ϕϕ2 for the potential) is then dictated

classically by its equation of motion [6] coupled to the Friedmann equation (2.4)
as

∂2
t ϕ = −3H ∂tϕ − m2

ϕϕ, (5.24a)

H2 =
8π

6M2
Pl

[
(∂tϕ)

2 + m2
ϕϕ2
]
, (5.24b)

with H = ∂ta
a . Furthermore, the curvature scalar R, obtained as a trace of the

Einstein tensor, reads in terms of ϕ as

R =
8π
M2

Pl

[(
∂tϕ
)2 − 2m2

ϕϕ2
]
. (5.25)
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During reheating the inflaton ϕ will oscillate around the minimum of its poten-
tial. This will in turn cause the curvature R to oscillate between positive and
negative values according to the above equation, and through the ξRχ2-term
in the scalar action (5.23) the χ-field will periodically have a negative effective
mass squared. These spinodal instabilities (M2

eff < 0) can lead to efficient pro-
duction of χ-particles, which could then constitute the observed dark matter
abundance [35, 36].

In reference [36] the model was studied using adiabatic methods to treat
the spinodal effects. Our formalism introduced in section 4.3 can be straight-
forwardly applied to the setup with quantum backreaction effects properly in-
cluded, and this was done in article [PIII]. We will now summarize the analysis
and its main outcomes. First of all, defining the scaled field σ

.
= aχ the scalar

action Sχ can in conformal time η be written in an effectively Minkowski-space-
time form

Sσ =
∫

dη d3x
{

1
2
(∂ησ)2 − 1

2
(∇σ)2 − 1

2
a2
[

m2 −
(

ξ − 1
6

)
R
]

σ2 − λ

4
σ4
}

, (5.26)

where the scale factor a and the curvature scalar R give the σ-field an effective
time-dependent mass. Working again in the Hartree approximation (see figure 8)
we have Γ2 = −3λ

4

∫
dη d3x ∆2, where ∆ is the local two-point function of the σ-

field. The system then obeys in the spatially homogeneous and isotropic case
the moment equations (4.26) with the effective mass function given by [PIII]

M2
eff(η)

.
= a2(η)

[
m2 −

(
ξ − 1

6

)
R(η)

]
+ 3λ

[
σ2(η) + ∆(η, η)

]
, (5.27)

and the equation of motion of the one-point function (3.23) is[
∂2

η + M2
eff(η)

]
σ(η) = 2λσ3(η). (5.28)

We again refer the reader to the article [PIII] for the details on the renormaliza-
tion of the equations – and again we will use a subscript R to denote a renor-
malized parameter.

Solving the moment equations together with the one-point function nu-
merically is in principal straightforward, albeit they are again strongly coupled
through the effective mass function. They are solved simultaneously with the
equations for the inflaton (5.24a) and the scale factor (5.24b), although since the
scalar χ is energetically subdominant at all times, the inflaton sector merely acts
as a varying background via the curvature term. We will now show solutions
from the equations for an exemplary set of parameters. To be specific, we ini-
tialize the inflaton field at ϕin = 15MPl with a mass of mϕ = 1.5 · 1013 GeV,
while for the spectator field χ we set mR = 150 GeV and use Minkowski vac-
uum initial values (5.21) for the two-point sector. We also give a small non-zero
initial value for the one-point function σR to allow for its evolution, and choose
ξR = 50 for the non-minimal coupling, so that we can compare with the results
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FIGURE 13 The fluctuation contribution δ∆F to the two-point function (left panel) and
the effective mass function M2

eff (right panel) for the self-coupling values
λR = 10−7 (blue), λR = 10−4 (red) and λR = 10−1 (yellow). From arti-
cle [PIII], reproduced under the license CC BY 4.0.

of reference [36].
Figure 13 shows the time evolution of the fluctuation part of the two point

function δ∆F defined in equation (5.22) for the values of the coupling λR ∈
{10−7, 10−4, 10−1}, along with the corresponding effective mass functions M2

eff.
The negativity of the effective mass function at initial times is evident (note that
the scale is logarithmic) – this is the spinodal stage caused by the oscillating
curvature contribution at the onset of reheating. In the fluctuation of the local
two-point function δ∆F this is reflected as successive periods of growth at the
spinodal stages. After this the two-point function exhibits more non-trivial be-
haviour, especially for λR ∈ {10−4, 10−1}. This, together with the difference in
the behaviour for different values of the coupling, can be elucidated by scruti-
nizing the mass functions more thoroughly.

We can split the effective mass function M2
eff into three pieces, depending

on the contributing sector:

M2
R

.
= −a2(ξ̄R − 1

6

)
R (curvature), (5.29a)

M2
∆

.
= 3λRδ∆F (fluctuations), (5.29b)

M2
σ

.
= M2

eff − M2
R − M2

∆ (field and background). (5.29c)

Figure 14 shows the time evolution of these three components along with the
full effective mass function for the three couplings considered earlier. There
are essentially two competing elements: the curvature contribution ⟨M2

R⟩osc and
the fluctuation contribution ⟨M2

∆⟩osc, where the angle brackets ⟨⟩osc stand for
averaging over oscillation. In all cases the background contribution M2

σ stays
subdominant during the evolution. Looking first at the case with λR = 10−7,
we can see that the contribution from the two-point function ⟨M2

∆⟩osc actually
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FIGURE 14 The effective mass function M2
eff (blue) and its components M2

R (red), M2
σ

(yellow) and M2
∆ (violet) defined in equations (5.29) for the self-coupling

values λR ∈ {10−7, 10−4, 10−1}. From article [PIII], reproduced under the
license CC BY 4.0.

does not reach that coming from the curvature. Typically one would assume
the spinodal growth to terminate once the positive definite contribution from
the two-point function overrides the curvature part: ⟨M2

∆⟩osc ≃ ⟨M2
R⟩osc [34, 36].

Here we can see that the situation is a bit more delicate: the growing two-point
function is still the reason behind the termination of the spinodal stage, but
instead of making the effective mass function entirely positive, its contribution
renders the spinodal windows M2

eff < 0 so narrow that there is simply no time
for coherent growth. Comparing with reference [36] we find that this leads to an
order of magnitude smaller final value for the two-point function.

For λR ∈ {10−4, 10−1} the situation is different, as the larger couplings
allow ⟨M2

∆⟩osc to reach ⟨M2
R⟩osc, closing the spinodal windows entirely. This

is however not the end of the dynamics, as the backreacting two-point function
leads to a subsequent period of parametric resonance. This can be seen as lumps
in the two-point function δ∆F and the effective mass function M2

eff before and
around a/a0 ≃ 10, and more illuminatingly in figure 15 where we show the
full momentum structure of the zeroth fluctuation moment δρ0k (the two-point
function δ∆F is the k-integral of δρ0k). The horizontal |k|-bands result from
the parametric resonance caused by the backreacting fluctuation, and looking
back at figure 13 we see that this actually gives the dominant contribution to
the final value of the two-point function for λR ∈ {10−4, 10−1}. This effect is
not captured at all in the adiabatic treatment of reference [36], which results in
an order of magnitude larger final values in our case. Interestingly, figure 15
shows resonance-like bands also for λR = 10−7, which are inevitably due to the
curvature contribution as it dominates the mass function in that case. Even in
that case particle production is hence a combination of spinodal and resonant
effects. Finally, we note that the initial vertical stripes present in figure 15 near
a/a0 ≃ 2, corresponding to the first spinodal instabilities, are essentially the
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Chapter 5. Applications

FIGURE 15 The momentum structure of the zeroth fluctuation moment δρ0k for the
self-coupling values λR ∈ {10−7, 10−4, 10−1}. From article [PIII], repro-
duced under the license CC BY 4.0.

same for all values of the coupling. This is as expected, since the evolution is
then completely dominated by the curvature term ⟨M2

R⟩osc which is independent
of the coupling.

Overall, the system exhibits strongly non-linear behaviour. Describing the
spinodal instabilities and parametric resonances, which are seen to partly co-
exist and whose driving forces can couple in intricate ways, is a complicated
task. A full description of the picture with a proper inclusion of backreaction
effects is however necessary if one wishes to make reliable calculations within
such systems. Indeed, we saw that in the example studied above a transient res-
onant phase following the initial spinodal stages can completely dominate the
generated final values – an effect that was entirely missed in the earlier simpler
analysis [36]. Our 2PI approach offers a straightforward yet comprehensive way
of dealing with these phenomena. The natural next step would be to couple
the spectator χ to other matter fields which could be described with the cQPA-
equations of section 4.2. It would be also interesting to include a full quantum
treatment of the inflaton field ϕ.
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6 CONCLUSIONS AND OUTLOOK

We have developed non-equilibrium quantum field theory techniques for dy-
namical systems in which quantum effects play an important role. There are
various examples of such systems in nature, emerging in the early universe as
well as in condensed matter physics. We have applied our methods to the study
of (early universe) phase transitions and reheating after inflation.

The coherent quasiparticle approximation (cQPA) [88–94] is a comprehen-
sive approximation scheme for quantum transport equations derived from the
2PI effective action. For certain space-time symmetries the cQPA predicts for
the two-point function a novel singular phase space structure encompassing
quantum coherence effects. We have shown the emergence of this structure
in an analytically solvable spatially homogeneous and isotropic fermionic sys-
tem with a time-dependent mass term by constructing the two-point function
exactly from analytical solutions for the mode functions. We also studied the
effects of damping on the phase space structures, demonstrating how in systems
with very weak interactions additional non-local shell structures emerge around
the transition region.

With the exact solutions at hand we also studied the range of validity of
the semiclassical approximation [65–70], which is an approximation scheme ex-
pected to hold for smooth mass profiles. By computing local currents for dif-
ferent momenta we found out that the semiclassical method can be surprisingly
accurate: the agreement with the exact result was rather good even when only
one third of a wavelength fit inside the transition region. We also pointed out
that for non-interacting systems the cQPA is formally exact for local quantities.

The cQPA is an approximative formalism, whose true strength lies in its
capability to treat interacting systems without losing information on quantum
coherence effects. Another very closely related approach suitable for studying
similar quantum transport problems is using moment functions. For scalars we
have shown that for spatially homogeneous and isotropic systems with the 2PI
loop expansion consisting of local diagrams the coupled evolution of the one-
and two-point functions can be described by a closed set of simple moment
equations. We then used these equations to study two different setups, using
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6. Conclusions and outlook

the Hartree approximation for the loop hierarchy.
First, we considered the Mexican hat -potential as a simple phase transition

model. Solving the coupled system and studying the phase space structure of
the moment functions we identified the processes of spinodal decomposition and
parametric resonance taking place. The spinodal effects, emerging due to the ef-
fective mass squared taking negative values, were seen to strongly influence the
behaviour of the system. We also studied the effect of adding phenomenological
friction terms to the moment equations.

In the second setup we analyzed a spectator field coupled non-minimally to
gravity during the reheating stage after inflation. The oscillations of the inflaton
field translate into an oscillating Ricci scalar, which causes the effective mass
squared of the spectator field to attain negative values. This results again in
spinodal instabilities, which are further accompanied and followed by a stage
of parametric resonance. The interplay of these effects can cause the final value
of the two-point function to differ easily by an order of magnitude compared
to the results obtained earlier in the literature using adiabatic methods [36].
Altogether we saw that the non-linear backreaction of the two-point function
leads to highly complicated and delicate dynamics that could not be captured
with the usual simpler approximations.

There are several ways to further refine and apply the methods presented
in this thesis. In regards to the cQPA, it is a long-term objective within our re-
search group to generalize the current formalism to planar symmetric systems
with one non-trivial spatial coordinate z. It is known, that in that case the co-
herence information condenses onto a zero-momentum shell kz = 0 [88,90], and
this could be verified using exact solutions similarly to the time-dependent case
of section 5.1. The z-dependent cQPA formalism could be directly applied to
compute reflection problems within the baryogenesis scenario. Another future
application of the cQPA would be to study neutrino oscillations in an inhomo-
geneous background.

An obvious generalization of the moment equation methods would be to go
beyond local diagrams. An interesting example on this would be to couple the
scalar to one or more fermions via Yukawa-type interactions, which would then
allow one to calculate the friction terms in equations (4.28) from first principles.
The tools for doing this already exist within the cQPA formalism [PI,88,93]. Fur-
thermore, combining the cQPA for fermions with the moment equations would
for example allow one to study the spectator setup of section 5.3 with decays
into fermionic degrees of freedom included.

Though this be madness, yet there is method in ’t.
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bHelsinki Institute of Physics, University of Helsinki,

P.O. Box 64, FI-00014 Helsinki, Finland
cTheoretical Physics Department, CERN,

1211 Geneva 23, Switzerland

E-mail: henri.a.jukkala@student.jyu.fi, kimmo.kainulainen@jyu.fi,

olli.a.koskivaara@student.jyu.fi

Abstract: We study the phase space structure of exact quantum Wightman functions in

spatially homogeneous, temporally varying systems. In addition to the usual mass shells,

the Wightman functions display additional coherence shells around zero frequency k0 = 0,

which carry the information of the local quantum coherence of particle-antiparticle pairs.

We find also other structures, which encode non-local correlations in time, and discuss

their role and decoherence. We give a simple derivation of the cQPA formalism, a set of

quantum transport equations, that can be used to study interacting systems including the

local quantum coherence. We compute quantum currents created by a temporal change

in a particle’s mass, comparing the exact Wightman function approach, the cQPA and

the semiclassical methods. We find that the semiclassical approximation, which is fully

encompassed by the cQPA, works surprisingly well even for very sharp temporal features.

This is encouraging for the application of semiclassical methods in electroweak baryogenesis

with strong phase transitions.

Keywords: Thermal Field Theory, CP violation, Quantum Dissipative Systems

ArXiv ePrint: 1910.10979

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2020)012

mailto:henri.a.jukkala@student.jyu.fi
mailto:kimmo.kainulainen@jyu.fi
mailto:olli.a.koskivaara@student.jyu.fi
https://arxiv.org/abs/1910.10979
https://doi.org/10.1007/JHEP01(2020)012


J
H
E
P
0
1
(
2
0
2
0
)
0
1
2

Contents

1 Introduction 1

2 Wightman functions and cQPA 3

2.1 cQPA-solution in a spatially homogeneous system 4

3 Constructing the exact Wightman function 7

3.1 Non-interacting Wightman function 7

3.2 Including damping 8

3.3 Explicit solutions for mode functions 9

4 Phase space of the exact Wightman function 12

4.1 Non-local coherence in time 14

4.2 Physical and practical significance of the phase space structures 15

5 Currents and connection to the semiclassical limit 15

5.1 Collisionless case 16

5.2 Semiclassical approximation 17

5.3 Range of validity of the different formalism 18

6 cQPA with collisions 20

6.1 A numerical example 22

7 Conclusions and outlook 23

1 Introduction

Quantum coherence plays an important role in many physical problems in cosmology. Ex-

amples include CP-violating particle-wall interactions during the electroweak phase tran-

sition, out-of-equilibrium decay of nearly degenerate heavy neutrinos during leptogenesis,

particle production during phase transitions and reheating at the end of inflation. The key

quantity in the analysis of such intrinsically quantum systems is the two-point correlation

function, whose evolution is described by the Schwinger-Dyson equations [1, 2], or in the

phase space picture by the Kadanoff-Baym equations [3–5]. The phase space picture in

particular has provided a useful basis for deriving approximate transport formalisms, the

prime example being the standard Boltzmann theory.

In this paper we study an exact, damped, spatially homogeneous and isotropic two-

point correlation function of a fermion with a possibly complex, time-varying mass term.

We show that the mixed representation correlation function contains novel shell structures

which carry information about different types of quantum coherences. For example we find

– 1 –



J
H
E
P
0
1
(
2
0
2
0
)
0
1
2

a shell at k0 = 0, which encodes the information of a coherently mixing particle-antiparticle

system. This shell was previously seen in the context of the coherent quasiparticle approxi-

mation (cQPA) [6–12] in the spectral limit, but our derivation is more general, being exact

in the non-interacting case. In addition we find also other shell-structures, corresponding

to non-local (in the relative time coordinate), long range correlations.

All phase space structures depend sensitively on the existence and the magnitude of

damping. In the non-interacting case non-local coherences dominate the system, prevent-

ing a free particle interpretation of the phase space structure in non-trivial backgrounds.

Damping suppresses the non-local coherences and leads to the emergence of a local limit

for time intervals ∆t > 1/Γ, where Γ is the damping width. For small enough Γ the

local correlation function can be well approximated by a spectral ansatz, leading to the

cQPA-picture mentioned above.

We will introduce a new, elegant way to reorganise the gradient expansion in the

mixed representation Kadanoff-Baym equations. We then use it to give a simple derivation

of the cQPA equations complete with explicit collision integrals for arbitrary types of

interactions. These equations are one of the main results of this paper: they generalise

the usual Boltzmann transport theory to systems including coherent particle-antiparticle

states. In particular we argue that the cQPA completely encompasses the well known

semiclassical effects. Possible applications of these equations include baryogenesis during

phase transitions and particle production during and after inflation.

We compute the axial current densities using the exact mixed representation correlation

functions as well as their cQPA counterparts and compare these to the ones obtained in

the semiclassical approximation. We find that the semiclassical methods work reasonably

well even in systems where the relevant modes have a wavelength as small as half of the

wall width.1 This is encouraging for the application of semiclassical methods in the related

problem of electroweak phase baryogenesis with very strong electroweak phase transitions.

These typically create sharp transition walls and are often encountered in the context of

models producing large, observable gravitational wave signals [13–18].

This paper is organised as follows: in section 2 we first review the derivation of the

cQPA formalism including the spectral Wightman functions. In section 3 we construct

the exact free Wightman function from mode functions, generalised to account for the

damping. Some numerical examples for the phase space solutions are shown in section 4.

In section 5, we compute and compare currents in different approximations in the non-

interacting case. In section 6 we present cQPA transport equations in the interacting case

with explicit expressions for collision terms and compute cQPA currents with interactions.

Finally, in section 7, we give our conclusions.

1Throughout this paper we use the word ‘wall’ to refer to the temporal transition in the mass, see e.g.

figure 2a.
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2 Wightman functions and cQPA

We are using the Schwinger-Keldysh formalism [1, 2] of finite temperature field theory.

The key quantities are the two-point Wightman functions

iS<(u, v) =
〈
ψ(v)ψ(u)

〉
,

iS>(u, v) =
〈
ψ(u)ψ(v)

〉
,

(2.1)

which describe the quantum statistical properties of the non-equilibrium system.2 We also

need the retarded and advanced correlation functions iSr(u, v) = 2θ(u0 − v0)A(u, v) and

iSa(u, v) = −2θ(v0 − u0)A(u, v), where the spectral function is A ≡ 1
2〈{ψ(u), ψ(v)}〉 =

i
2(S> + S<) = i

2(Sr − Sa).

To get a phase space description of the system we perform the Wigner transformation

S(k, x) ≡
∫

d4r eik·rS

(
x+

r

2
, x− r

2

)
, (2.2)

where r ≡ u− v and x ≡ 1
2(u+ v) are the relative and average coordinates, corresponding

to microscopic and macroscopic scales, respectively. In this mixed Wigner representation

correlation functions obey the Kadanoff-Baym equations [3](
/k +

i

2
/∂

)
Sp − e−i♦{Σp}{Sp} = 1, (2.3)(

/k +
i

2
/∂

)
Ss − e−i♦{Σr}{Ss} = e−i♦{Σs}{Sa}, (2.4)

where s = <,> and p = r, a refer to the retarded and advanced functions, respectively, Σ

is the fermion self-energy and ♦{f}{g} ≡ 1
2 [∂xf · ∂kg − ∂kf · ∂xg] is the Moyal product.

Note that we absorb the mass terms into the singular parts of Σr,a, unless explicitly stated

otherwise.

Moyal products are not the optimal way for organising the gradient expansions, and

we find it useful to introduce another self-energy function:

Σout(k, x) ≡
∫

d4z eik·(x−z)Σ(x, z) = e
i
2
∂Σ
x ·∂Σ

k Σ(k, x). (2.5)

Using equation (2.5) we can rewrite Moyal products in a form that reorganises the gradients

into total k-derivatives controlled by the scale of variation of Σ, while all dependence on

(dynamical) gradients acting on S is fully accounted for by iterative resummation:

/̂KSp − e−
i
2
∂Σ
x ·∂k [Σp

out(K̂, x)Sp] = 1, (2.6)

/̂KSs − e−
i
2
∂Σ
x ·∂k [Σr

out(K̂, x)Ss] = e−
i
2
∂Σ
x ·∂k [Σs

out(K̂, x)Sa], (2.7)

where K̂ ≡ k+ i
2∂x. This form of the Kadanoff-Baym equations is particularly well suited

for obtaining finite order expansions and iterative solutions. The mass operator is included

in the singular part Σsg of the retarded/advanced self-energy functions:

Σr,a(k, x) = Σsg(x) + ΣH
nsg(k, x)∓ iΣA(k, x), (2.8)

2Note that we define the Wightman function S< with a positive sign. We also suppress Dirac indices

when there is no danger of confusion.
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where ΣH
nsg is the non-singular Hermitian part and ΣA is the anti-Hermitian part of the

self-energy. To be specific, we consider a fermion field with a complex, spacetime-dependent

mass m(x):

L = iψ/∂ψ −m∗(x)ψRψL −m(x)ψLψR, (2.9)

where ψL,R ≡ 1
2(1 ∓ γ5)ψ. In the Wigner representation the spacetime-dependent mass

gives rise to an operator:

(m̂R + iγ5m̂I)S(k, x) ≡ e−
i
2
∂mx ·∂k

{
[mR(x) + iγ5mI(x)]S(k, x)

}
, (2.10)

where mR(x) and mI(x) are the real and imaginary parts of m(x), respectively.

Equations (2.6) and (2.7) are practically impossible to solve exactly and one needs to

find approximation schemes that maintain the essential physics at hand. The cQPA devel-

oped in refs. [6–12] is one such scheme, which allows to study particular non-equilibrium

systems with quantum coherence. The crux of the cQPA is to solve equations (2.6) and (2.7)

in two steps. First one solves for the phase space structure of the system at the lowest

order in gradients and ignoring collision terms. This leads to spectral solutions for both

pole and Wightman functions, where the latter contain new coherence shells in addition to

the usual mass shell solutions. In the second step, one inserts these solutions back to the

full equations, which are then reduced to a set of Boltzmann-like equations for generalised

particle distribution functions [10, 11].

2.1 cQPA-solution in a spatially homogeneous system

Let us consider a spatially homogeneous and isotropic system, where m(x) → m(t) in

equations (2.9) and (2.10). The Wigner transform (2.2) with respect to spatial coordinates

then reduces to a Fourier transform, and we will denote the Wigner transform S(k, x) as

Sk(k0, t). We also consider explicitly only the equation for S<, as the derivation for S> is

completely analogous. At first we will ignore interactions and work to the lowest order in

gradients. The Hermitian part of equation (2.7) for S< ≡ iS<γ0 then reduces to

2k0S
<
k (k0, t) = {Hk(t), S<k (k0, t)}, (2.11)

where Hk(t) ≡ α · k + γ0[mR(t) + iγ5mI(t)] is the free Dirac Hamiltonian.

In spatially homogeneous and isotropic systems the Wightman functions have 8 inde-

pendent components and can be parametrised without any loss of generality as follows:

S<k (k0, t) ≡
∑
h,±,±′

P (4)

hkP
±
k γ

0P±
′

k D±±
′

hk (k0, t), (2.12)

where the helicity and energy projection operators are defined, respectively, as

P (4)

hk ≡
1

2

(
1 + hα · k̂γ5

)
, P±k ≡

1

2

(
1± Hk

ωk

)
, (2.13)

with k̂ ≡ k/|k| and ωk ≡
√
k2 + |m(t)|2. Inserting the parametrisation (2.12) to equa-

tion (2.11) gives algebraic constraints to the time- and energy-dependent coefficient func-

tions D±±
′

hk (k0, t):

(k0 ∓ ωk)D±±hk (k0, t) = 0,

k0D
±∓
hk (k0, t) = 0.

(2.14)
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Figure 1. The shell structure of the cQPA Wightman function S<
k (k0, t), showing the particle shell

where k0 = ωk (purple), the antiparticle shell where k0 = −ωk (orange) and the particle-antiparticle

coherence shell where k0 = 0 (brown).

Functions D±±hk (k0, t) ∝ δ(k0 ∓ ωk) correspond to the usual mass shell excitations, while

D±∓hk (k0, t) ∝ δ(k0) are the new coherence functions found in refs. [7–11]. The spectral

cQPA-solution can then be written as:

S
<
k (k0, t) = 2π

∑
h,±

[
Pm±hk fm±hk δ(k0 ∓ ωk) + P c±hk f

c±
hk δ(k0)

]
. (2.15)

where we defined the projection operators

Pm±hk ≡ ±
ωk

mR
P (4)

hkP
±
k γ

0P±k = P (4)

hkP
±
k ,

P c±hk ≡ P
(4)

hkP
±
k γ

0P∓k = P (4)

hk

(
γ0 ± mR

ωk

)
P∓k .

(2.16)

With this normalisation the mass shell functions fm±hk (t) coincide with the usual Fermi-

Dirac distributions in the thermal limit: fm±hk → feq(±ωk), where feq(k0) ≡ (ek0/T + 1)−1.

Note that due to the Hermiticity of S<hk(k0, t) the shell functions obey (fm±hk )∗ = fm±hk and

(f c±hk )∗ = f c∓hk . The phase space structure of the cQPA Wightman functions is shown in

figure 1.

The cQPA evolution equations are then obtained by inserting the spectral ansatz (2.15)

to the anti-Hermitian part of equation (2.7), now including all gradients and interaction

terms, and integrating over the energy. However, let us again first consider this equation

in the non-interacting limit and to lowest order in gradients:

i∂tS
<
k (k0, t) =

[
Hk, S

<
k (k0, t)

]
. (2.17)

Substituting the spectral solution (2.15) for S
<
k (k0, t) to equation (2.17) and integrating

over k0 it is easy to derive the leading behaviour of the shell-functions:

∂tf
m±
hk = . . . ,

∂tf
c±
hk = ∓2iωkf

c±
hk + . . . ,

(2.18)
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where the ellipses denote terms proportional to gradient terms (and eventually self-energy

terms when interactions are included).

The point we wish to make here is that the coherence shell solutions f c±hk are oscillating

rapidly with frequencies that are not suppressed by gradients. Anticipating this oscillation

was the reason for our careful organisation of gradient terms in equations (2.6) and (2.7):

whenever the operator K̂0 = k0 + i
2∂t is acting on a coherence shell function f c±hk , one must

replace K̂0 → k0 ± ωk as the effective momentum argument of the operator, at the lowest

order in gradients. Indeed, in cQPA:∫
dk0

2π
e−

i
2
∂Σ
x ·∂k

[
Σout,k

(
k0 +

i

2
∂t

)
S
<
hk(k0, t)

]
=
∑
±

∫
dk0 Σout,k

(
k0 +

i

2
∂t

)[
Pm±hk (t)fm±hk (t)δ(k0 ∓ ωk) + P c±hk (t)f c±hk (t)δ(k0)

]
'
∑
±

∫
dk0

[
Σout,k(k0)Pm±hk (t)fm±hk (t)δ(k0 ∓ ωk) + Σout,k(k0 ± ωk)P c±hk (t)f c±hk (t)δ(k0)

]
=
∑
±

Σout,k(±ωk)
[
Pm±hk (t)fm±hk (t) + P c±hk (t)f c±hk (t)

]
(2.19)

for a generic self-energy function Σ. That is, coherence shell projections are not evaluated

at the shell k0 = 0, but on the mass shells instead. It would be straightforward to include

higher order gradient corrections to shell positions generated by the K̂0-operator, but doing

so consistently, we should also solve the cQPA-ansatz to higher order in gradients. The

gradient corrections to collision terms arising from such an expansion (collisional source

terms) were studied in ref. [19] for the electroweak baryogenesis problem using semiclassical

methods. They were in general found to be very small and we shall not pursue them here

further. For the same reason we shall, in what follows, set Σout,k → Σk, dropping the

corrections coming from the expansion of the Σout-function in equation (2.5).3

We will also work with the vacuum dispersion relations, setting ΣH
nsg → 0 and Σsg →

mR + iγ5mI. Furthermore, we shall drop the term ∝ SHΣ<, as this is required by the

consistency of the spectral limit with respect to the pole equations [7]. With these simpli-

fications it is now straightforward to show that the full cQPA equations can be written as

∂tf
m±
hk = ± 1

2

∑
s

Φ̇s
hkf

cs
hk + Tr

[
CcollP

m±
hk

]
, (2.20a)

∂tf
c±
hk = ∓ 2iωkf

c±
hk + ξkΦ̇∓hk

[
mR

ωk
f c±hk −

1

2

(
fm+
hk − f

m−
hk

)]
+ ξk Tr

[
CcollP

c∓
hk

]
, (2.20b)

where

Ccoll =
∑
h,s

[(
1

2
Σ<
k (sωk)− fmshk ΣAk (sωk)

)
Pmshk − f cshk ΣAk (sωk)P cshk

]
+ h.c. (2.21)

3Note however that the expansion of Σout,k may contain lowest order gradients that need to be resummed

in the same way as we did above in equation (2.19). This is the case whenever the self-energy function

contains an internal propagator containing the coherence function connected to the external leg in the

diagram. For more details see refs. [11, 12].
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and we defined

Φ̇±hk ≡ ∂t
(
mR

ωk

)
± i

h|k|
ω2
k

∂tmI, ξk ≡
ω2
k

ω2
k −m2

R

. (2.22)

We shall return to study interacting theories in section 6. For now, we shall take a closer

look into the phase space structure of the exact non-interacting Wightman functions.

3 Constructing the exact Wightman function

In the previous section we showed that Wightman functions may acquire novel phase space

structures in the spectral limit. The new coherence functions f c±hk on the k0 = 0 shell

describe quantum coherence in correlated particle-antiparticle states. These correlations

can be interpreted in terms of squeezed states and the functions f c±hk can be related to

Bogolyubov coefficients [12]. Condensation of the coherence information onto a sharp

phase space shell is still surprising. It is therefore of interest to see how such structures

arise in an exactly solvable system.

3.1 Non-interacting Wightman function

The Lagrangian density (2.9) provides a suitable system for our study. In the spatially

homogeneous case it implies the equation of motion

i/∂ψ −m∗(t)ψL −m(t)ψR = 0. (3.1)

We quantise this model with the usual canonical procedure. Because three-momentum k

and helicity h are conserved, the field operator ψ̂(x) may be expanded in terms of mode

functions as

ψ̂free(t,x) =
∑
h

∫
d3k

(2π)32ω−

[
âhkUhk(t)eik·x + b̂†hkVhk(t)e−ik·x

]
, (3.2)

where ω− =
√
k2 + |m(−∞)|2. The vacuum state is annihilated as âhk|Ω〉 = b̂hk|Ω〉 = 0

and our normalisation is such that

{âhk, â†h′k′} = (2π)32ω−δ
(3)(k − k′)δhh′ ,

{b̂hk, b̂†h′k′} = (2π)32ω−δ
(3)(k − k′)δhh′ ,

(3.3)

while all other anticommutators vanish. The normalisation of the spinor ψ̂free is chosen to

be such that

{ψ̂free,α(t,x), ψ̂†free,β(t,y)} = δαβδ
(3)(x− y), (3.4)

with the mode functions Uhk and Vhk normalised accordingly. The particle and antiparticle

spinors can be decomposed in terms of helicity as follows:

Uhk(t) =

[
ηhk(t)

ζhk(t)

]
⊗ ξhk, Vhk(t) =

[
ηhk(t)

ζhk(t)

]
⊗ ξhk, (3.5)
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where ξhk are the eigenfunctions of helicity satisfying

(σ · k̂)ξhk = h ξhk, h = ±1, (3.6)

and ηhk, ζhk, ηhk and ζhk are yet unknown mode functions that depend on m(t).4 The

particle mode functions ηhk and ζhk satisfy the equations

i∂tηhk + h|k|ηhk = m(t)ζhk, (3.7a)

i∂tζhk − h|k|ζhk = m∗(t)ηhk, (3.7b)

while the equations for the antiparticle mode functions ηhk and ζhk contained in Vhk(t)

can be obtained from equations (3.7) by the replacements h→ −h and m→ −m∗.
The exact Wightman functions for the non-interacting system can now be constructed

as expectation values of field operators in the vacuum defined by our annihilation opera-

tors. While both Wightman functions S> and S< contain the same degrees of freedom,

the positive energy solutions, which we shall be using as an example below, are most

straightforward to identify from S>. Continuing to work in the helicity basis we find

iS>hh′k(k0, t) =

∫
d4r eik0r0−ik·r〈Ω∣∣ψ̂h,free

(
x+

r

2

)
ψ̂h′,free

(
x− r

2

)∣∣Ω〉. (3.8)

Using the definition (3.2) (with ψ̂free ≡
∑

h ψ̂h,free), decompositions (3.5) and spatial trans-

lation invariance, this can be written as

S>hh′k(k0, t) = δhh′

∫ ∞
−∞

dr0 eik0r0M>
hk

(
t+

r0

2
, t− r0

2

)
⊗ P (2)

hk , (3.9)

where P (2)

hk = ξhkξ
†
hk = 1

2(1 + hσ · k̂) and only the chiral component matrix M>
hk depends

on the mode functions:

M>
hk

(
t+

r0

2
, t− r0

2

)
≡ 1

2ω−

[
ηhk
(
t+ r0

2

)
η∗hk
(
t− r0

2

)
ηhk
(
t+ r0

2

)
ζ∗hk
(
t− r0

2

)
ζhk
(
t+ r0

2

)
η∗hk
(
t− r0

2

)
ζhk
(
t+ r0

2

)
ζ∗hk
(
t− r0

2

)] . (3.10)

When the component mode functions are solved, it is straightforward to construct the

Wightman function using fast Fourier transform methods.

3.2 Including damping

In the absence of dissipative processes, the free particle solutions (3.9) are correlated over

arbitrarily large time intervals, because the Wigner transform correlates mode functions

over all relative times ± r0
2 at each value of t. This is of course a physical result. However,

our typical applications concern interacting systems, where such correlations are naturally

suppressed by decohering interactions.

Taking interactions completely into account would require solving the full Kadanoff-

Baym equations, which is beyond the scope of this paper. However, one can account for

4We are using the chiral basis, where the Dirac matrices are given by γ0 = ρ1 ⊗ 1, γi = iρ2 ⊗ σi and

γ5 = −ρ3 ⊗ 1. Here both ρi and σi are just the usual 2 × 2 Pauli matrices. The former encode the chiral

and the latter the helicity degrees of freedom of a given spinor.
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their most important effect for the phase space structure in a rather simple manner. We

observe that the information encoded in the relative coordinate must be damped by the

rate of interactions that measure the state of the system (in this case whether the system is

a particle or an antiparticle). If we denote this rate by Γhk for each mode with momentum

k and helicity h, then the appropriately damped correlation function should be

S>hk,Γ(k0, t) ≡
∫

d4r eik0r0−ik·r−Γhk|r0|
〈
Ω
∣∣ψ̂h,free

(
x+

r

2

)
ψ̂h,free

(
x− r

2

)∣∣Ω〉γ0

=

∫ ∞
−∞

dr0 eik0r0−Γhk|r0|M>
hk

(
t+

r0

2
, t− r0

2

)
⊗ P (2)

hk

≡W>
hk,Γ(k0, t)⊗ P (2)

hk . (3.11)

The only difference to the exact free case (3.9) is the introduction of the exponential

damping factor e−Γhk|r0|, where the damping rate Γhk is the imaginary part of the pole of

the full propagator. The exponential accounts for the most relevant effect of interactions

here. Taking the self-energy fully into account would also modify the matrix M>
hk, which

we here approximate with the free result. Equation (3.11) is thus reasonable in the usual

weak coupling limit, where particles are assumed to propagate freely between relatively

infrequent collisions.5 When collisions occur they affect “measurements” of the quantum

state, which over time leads to a loss of coherence.

The appearance of the exponential damping factor in equation (3.11) can also be

motivated by studying the case of thermal equilibrium, where the full correlation function

in Wigner representation is given by S>hk(k0, t) = 2Ahk(k0, t)(1 − feq(k0)). (Remember

that S>hk + S<hk = 2Ahk). The damping factor in this case arises from the absorptive self-

energy corrections to the single particle poles of the pole propagators Sr,a
hk . When neglecting

gradient corrections one can show that in the small coupling limit

S>hk(k0, t) '
∫

dr0 eik0r0−Γhk(t)|r0|S>0,hk

(
t+

r0

2
, t− r0

2

)
, (3.12)

where

S>0,hk

(
t+

r0

2
, t− r0

2

)
=
∑
±

e∓iωk(t)r0
[
1− feq

(
±ωk(t)

)]
P (4)

hkP
±
k (t) (3.13)

is the two-time representation of the free thermal correlation function (derived using the

usual plane wave mode functions). We have only kept the absorptive corrections to the

single particle poles of Sr,a
hk(k0, t), which are then located at k0 = ωk(t) ∓ iΓhk(t). The

damping factor in equation (3.11) relates the free correlation function to the full one in

exactly the same way as in equation (3.12), generalising the latter into the case of a non-

thermal system with coherence structures.

3.3 Explicit solutions for mode functions

We shall now study the correlation function (3.11) explicitly in a simple toy model. For

quantitative results we must define the mass function m(t). We assume that it approaches

5In fact we are accounting also for the soft interactions with the background fields that lead to the

time-varying mass term. It would be straightforward to extend this to other dispersive processes by the

use of quasiparticle eigenstates.
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Figure 2. Left panel (a): the real part of the mass profile m(t) of equation (3.15), with parameters

m1 = 0.5 + 0.005i, m2 = 2 and τw = 5, in arbitrary units. Right panel (b): the positive energy

eigenvalue ωk(t) =
√
k2 + |m(t)|2 with the same mass function as in the left panel and with both

|k| = 1 and 0.4.

asymptotically constant values m∓ at early and late times, respectively, and that it changes

between the asymptotic values over a characteristic time interval τw around time t = 0. This

is the situation e.g. in a phase transition interpolating between the broken and unbroken

phases. At early and late times such solutions approach asymptotically plane waves (with

spinor normalisation U †hkUhk = V †hkVhk = 2ω−):

U∞hk =

[√
ω− − h|k|√
ω− + h|k|e−iθ

]
⊗ ξhke−iω−t, (3.14a)

V∞hk =

[ √
ω− + h|k|

−
√
ω− − h|k|eiθ

]
⊗ ξhkeiω−t, (3.14b)

where θ is the phase of the constant mass in the asymptotic limit: m → |m±|eiθ± . To

be specific, we use the following mass profile for which the mode functions can be solved

analytically [20]:

m(t) = m1 +m2 tanh

(
− t

τw

)
, (3.15)

where m1 = m1R + im1I and m2 = m2R + im2I are constant complex coefficients and τw

is a parameter describing the width of the transition in time. At early times (t → −∞)

we then have m → m− = m1 + m2 and at late times (t → ∞) m → m+ = m1 −m2. For

solving the mode functions, the imaginary part of m2 is removed by a global rotation of

the spinors (see ref. [20] for details), which of course does not change the dynamics of the

system. The remaining imaginary part is simply denoted by mI. Figure 2 illustrates the

shape of the mass function and the corresponding energy for representative parameters.
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Equations (3.7) with the mass profile (3.15) were solved in ref. [20] and here we just

quote the results relevant for our purposes. Defining a new basis for the mode functions,

φ±hk(t) ≡ 1√
2

[
ηhk(t)± ζhk(t)

]
, (3.16a)

φ±hk(t) ≡ 1√
2

[
ηhk(t)± ζhk(t)

]
, (3.16b)

one can show that the solutions can be written in terms of Gauss’ hypergeometric functions:

φ
±(1)
hk = C

±(1)
hk zα(1− z)β 2F 1(a±, b±, c; z), (3.17a)

φ
±(2)
hk = C

±(2)
hk z−α(1− z)β 2F 1(1 + a± − c, 1 + b± − c, 2− c; z), (3.17b)

where C
±(1,2)
hk are constants and

z =
1

2

[
1− tanh

(
− t

τw

)]
, α = − i

2
τwω−, β = − i

2
τwω+,

ω∓ =
√
k2 +m2

I + (m1R ±m2R)2,

a± ≡ 1 + α+ β ∓ iτwm2R, b± ≡ α+ β ± iτwm2R, c ≡ 1 + 2α.

(3.18)

Superscripts (1) and (2) label the two linearly independent solutions. The solutions for

φ±hk can be obtained by changing the sign of helicity in equations (3.17), h→ −h. (Helicity

enters the solution through the boundary conditions as will be seen below.)

Using the properties of the hypergeometric functions it is easy to check that at early

times

φ
±(1)
hk

t→−∞−−−−→ C
±(1)
hk e−itω− , φ

±(2)
hk

t→−∞−−−−→ C
±(2)
hk eitω− . (3.19)

At late times these solutions split into mixtures of positive and negative frequency states:

φ
±(1)
hk

t→∞−−−→ C
±(1)
hk

Γ(c)Γ(c− a± − b±)

Γ(c− a±)Γ(c− b±)
eitω+ + C

±(1)
hk

Γ(c)Γ(a± + b± − c)
Γ(a±)Γ(b±)

e−itω+ , (3.20)

which manifests the fact that a varying mass mixes particle and antiparticle states. Indeed,

in systems without time-translation invariance the division to particles and antiparticles is

not unique. Locally a clear identification can be made however, and with the asymptotic

limits given above we can construct different initial and final states we wish to study.

Let us now specify our initial state as a positive frequency particle, i.e. the solu-

tion (3.17a), corresponding to the constant mass one-particle state (3.14a) at t → −∞.

This determines the constants

C
±(1)
hk =

1√
2

(√
ω− − h|k| ±

√
ω− + h|k|e−iθ−

)
, (3.21)

where θ− = Arg(m1R +m2R + imI). Figure 3 shows these solutions for a representative set

of parameters. It is evident that the solutions asymptote to plane waves very quickly on

each side of the transition region.
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Figure 3. Shown are the real and imaginary parts of the exact free mode functions φ
±(1)
hk , defined

in equation (3.17a), across the transition defined by the mass profile (3.15). We used the initial

conditions (3.21) and the same parameters as in figure 2a with
∣∣k∣∣ = 0.4 and h = 1.

4 Phase space of the exact Wightman function

Having solved the mode functions, we can now calculate the Wightman functions Sshk and

Sshk,Γ. It suffices to concentrate on one type of them, say S>, since both functions exhibit

the same phase space structures. We evaluate the Wightman functions by inserting the

mode functions solved from equations (3.16) and (3.17) with the boundary conditions (3.21)

into the matrix M>
hk (3.10) and performing the integral over the relative coordinate in

equation (3.11) numerically for each k-mode. Results of these computations for varying

parameter sets are shown in figures 4–6.

Figure 4 shows the absolute value of the (1, 1)-component of the function W>
hk,Γ(k0, t),

defined in equation (3.11), for a system initially prepared to a pure positive frequency

state. (Other three chiral components are qualitatively similar.) The surface plot in the

left panel displays a clearly peaked structure, where the initial particle peak branches at

the transition region to three separate peaks corresponding to particle and antiparticle

solutions at k0 = ±ωk(t) and a coherence peak at k0 = 0. This reproduces the cQPA-

shell structure predicted in the previous section. Note that the coherence shell solution is

rapidly oscillating in time as predicted by the cQPA equation (2.18). The feature is slightly

obscured by the absolute value, but it shows up in the “digitised” structure of the coherence

solution in the projected plot on the right panel. Due to a rather large interaction rate

Γ the shell structures are wide enough in frequency to overlap a little, which can after

the transition be seen as a leakage of the coherence shell oscillations into the mass shells.

At early times the sole positive frequency shell contains no oscillations. Physically, what

we are seeing, is particle production by a temporally changing mass parameter and the
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Figure 4. Shown is the absolute value of the (1, 1)-component of the exact free Wightman function

W>
hk,Γ defined in equation (3.11), for parameters h = 1, |k| = 0.4, m1R = 0.5, m2R = 2, mI =

−0.005, τw = 5 and Γ = 0.4. Note that time flows from bottom to top in the right panel.

Figure 5. The same as in figure 4, but for parameters h = 1, |k| = 0.7, m1R = 0.5, m2R = 2,

mI = −0.005, τw = 5 and Γ = 0.1.

fundamental relation of the phenomenon to the quantum coherence between positive and

negative frequency states.

In figure 4 we assumed a quite large damping factor and correspondingly the shell struc-

tures were rather broad in frequency. In figure 5 we show for comparison a solution with a

smaller wavelength and a much smaller damping coefficient. As expected, the shell struc-

ture gets more sharply peaked because of the smaller width.6 At the same time the antipar-

ticle shell after the transition becomes much less pronounced, reflecting the fact that a larger

initial energy is less affected by the mass change. (The same qualitative behaviour would

of course be obtained by increasing the width of the wall, leading to less efficient particle

production.) Indeed, for a very large |k| the whole novel shell structure vanishes, making

way for a single shell following a classical energy path such as the ones shown in figure 2b.

Right at the transition region one can distinguish additional fine-structures, which are

not related to the cQPA solution of equation (2.15). This is partly because our derivation of

cQPA assumed lowest order expansion in gradients. It would be interesting (and possible)

to generalise cQPA to a singular higher order expansion in gradients and check if the

emerging discrete sequence of shells could reproduce the structures seen here. However,

6In fact it is easy to show in an even simpler toy model, where the mass-function is replaced by a step-

function, that the peaks become Breit-Wigner-functions in frequency [21]. The spectral cQPA-solution can

then be seen explicitly as the Breit-Wigner forms approach delta functions in the limit Γ → 0.
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Figure 6. The same as in figure 4, but for parameters h = 1,
∣∣k∣∣ = 0.4, m1R = 0.5, m2R = 2,

mI = −0.005, τw = 5 and Γ = 0.02.

these structures may also reflect the onset of the new non-local correlations that we shall

turn to next.7

4.1 Non-local coherence in time

In figure 6 we again plot |W>
hk,Γ,11| with the same parameters as in figure 4, but with a much

smaller decay term. The shells become even more peaked as expected, but in addition a

much richer phase space structure emerges, extending well outside the transition region.

From the projection plot one recognises that two new spectral shells have entered the play,

together with a rich network of secondary fine-structures around the transition region.

From the surface plot it is evident, compared to the earlier cases, that the cQPA-shells

are suppressed near the transition region, while the new shells grow in amplitude there.

Far away from the transition region the situation is reversed and the new shells (which are

also oscillating) fade away, making room for the usual cQPA-shells that allow for a clear

particle and antiparticle identification.

The new shells correspond to non-local correlations between the early- and late-time

solutions across the wall; in the particle interpretation the system appears to become

aware of the change in its energy levels already before the transition occurs. This is

completely expected behaviour for a quantum system and, again, these shells can also be

seen analytically in the simple step-function model [21]. One can show, and also observe

in the projection plot, that the new shells coincide with the average frequencies

k0 =
1

2

(√
k2 + |m−|2 ±

√
k2 + |m+|2

)
, (4.1)

which reveals that they correspond to particle-particle and particle-antiparticle correlations

across the wall. The reason why these solutions are suppressed at large time differences is

the damping; the information about the transition can be propagated only up to a distance

7Let us clarify our use of the notion of (non-)locality in this paper: first, by non-local coherence we mean

coherence over the relative coordinate in the two-point correlation function. Then, by local limit, we mean

the limit where the two time-arguments in the correlation function are the same. The local correlation

function still supports the particle-antiparticle coherence, which is non-local in the sense that creating it

requires coherent evolution over a finite interval in the average time uninterrupted by collisions, which

differentiate particles from antiparticles.
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∆t ∼ 1/Γ in the relative coordinate. Beyond this time interval only local correlations can

survive. Decreasing Γ further makes the non-local coherence structures ever more promi-

nent and if one removes damping entirely, the system becomes completely overwhelmed

by them. In this limit the system is intrinsically quantum; local particle-like solutions are

irrelevant and the system is globally sensitive to the initial conditions and the size of the

time-domain.

4.2 Physical and practical significance of the phase space structures

We have seen that a quantum system with negligible damping is strongly correlated over

large time intervals. However, in interacting systems damping suppresses non-local correla-

tions, eventually reducing correlation functions to the local limit. This decoherence enables

the quasiparticle picture and eventually the Boltzmann limit in slowly varying backgrounds.

In the language of a direct space Kadanoff-Baym approach, damping removes contributions

from memory integrals over long relative time differences. Note however, that damping does

not destroy the coherence shell at k0 = 0; spectral cQPA shells get finite widths, but the

coherence between particles and antiparticles survives. Of course, equations (2.6) and (2.7)

contain also other (hard) collisions terms, which we have omitted so far. If these collisions

depend on the particle-antiparticle nature of the state, they constitute measurements which

destroy this coherence. A complete treatment of particle production in phase transitions,

for example, should account for this effect as well, as was indeed done for example in

refs. [7, 8] in the cQPA context.

From a practical point of view our solutions show that in the weakly interacting limit

τwΓ � 1, a complete phase space solution of the interacting problem would require very

fine resolution in frequency space in order to account for all the fine-structures in the

transition region. In this region, because of the large number of transient shell structures,

the quasiparticle picture appears impractical.8 On the other hand, even for a moderately

strongly interacting system τwΓ & 0.5, the phase space structure is smoothed out and the

coherent quasiparticle picture of refs. [6–12] should provide a good description of the system.

5 Currents and connection to the semiclassical limit

In the previous sections we showed that the phase space of a system with a varying mass

profile has non-trivial phase space structures, whose intricacy depends on the size of the

mode momentum k and the damping strength Γ. We also argued that the quasiparticle

picture may provide a reasonable description of the system (even for very small τwΓ). We

now change slightly our perspective, and ask how our results compare with the semiclassical

treatment, which should be applicable when τw|k| � 1. Semiclassical methods have been

8The situation is not as bad as one might think even in the limit τwΓ� 1. Let us consider the problem

from the point of view of the cQPA method, which includes local coherence shells but ignores the non-local

structures. Because the quasiparticle picture is appropriate far from the transition region and one expects

only few interactions within the transition area, the evolution of the quasiparticle distributions may be only

weakly sensitive to the new transient structures (the evolution of the quasiparticle functions is affected by

the new shells only through the collision integrals). If the physics one is interested in is sensitive only to

the late time correlations, it should be rather well described by the cQPA.
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widely used to describe CP-violating dynamics in electroweak baryogenesis models [5, 19,

22–30]. While we are dealing with a purely time-dependent system here, the results should

be qualitatively representative.

To be specific, we shall compare different methods for computing the expectation

values of fermionic currents. A generic current corresponding to a Dirac operator O can

be computed as

jOhk(t) ≡
∫

d3r

(2π)3
eik·r〈ψ̂h(t,x+ r

)
Oψ̂h

(
t,x
)〉

=

∫
dk0

2π
Tr
[
O iS<hk(k0, t)

]
. (5.1)

In particular, we will be interested in the axial charge density

j5,hk(t) ≡
∫

d3r

(2π)3
eik·r〈ψ̂h(t,x+ r

)
γ0γ5ψ̂h

(
t,x
)〉

, (5.2)

which is related to particle asymmetries.

With the exact solutions (3.17) at hand it is a simple numerical task to compute j5,hk
for the kink profile using equation (5.1). Furthermore, in cQPA it can be calculated in

terms of the shell functions f
(m,c)±
hk as follows:

jcQPA
5,hk =

∑
s=±

[
−sh|k|

ωk
fmshk +

(
h|k|mR

ω2
k

+
ismI

ωk

)
f cshk

]
. (5.3)

5.1 Collisionless case

We first point out that currents computed with the exact Wightman function fully agree

with the cQPA currents in the collisionless limit. This may look surprising, because cQPA

relies on a spectral ansatz derived to lowest order in gradients. Yet, at the integrated

level the collisionless cQPA is in fact exact and cQPA shell functions are in one-to-one

correspondence with the local limit of the correlation functions [12], and the correspondence

is not affected by the introduction of a damping term. This can be illustrated explicitly

e.g. with equations (3.12) and (2.15): integrating equation (3.12) over k0 gives∫
dk0

2π
S<hk,Γ(k0, t) =

∫
dk0

2π

∫
dr0 eik0r0−Γhk|r0|S<hk

(
t+

r0

2
, t− r0

2

)
= S<hk(t, t)

cQPA−→
∑
±

[
Pm±hk fm±hk + P c±hk f

c±
hk

]
, (5.4)

where in the last line we used the cQPA-ansatz (2.15). Thus, the essential feature of

the cQPA is not the expansion in gradients or the ensuing spectral approximation, but

the assumption that non-local degrees of freedom are not dynamical. In particular this

result shows that cQPA retains the full quantum information relative to the average time

coordinate t.

Finally, let us stress the delicate role the decay width Γ plays in the emergence of the

cQPA-scheme. On one hand, we have seen that if Γ was vanishing, non-local temporal cor-

relations would dominate the correlation function; the quality of the local approximation

then crucially depends on a non-zero damping. Yet, the spectral limit formally corresponds
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to taking Γ→ 0. That is, Γ must be large enough to ensure that non-local correlations can

be neglected, and yet small enough so that a spectral quasiparticle picture is valid. Fortu-

nately this is typically the case. We shall elaborate more on these issues in a forthcoming

publication [31].

5.2 Semiclassical approximation

While the cQPA is designed to capture the local quantum effects in a generic evolving

background, a different method exists for systems in slowly varying backgrounds. The

semiclassical approximation was introduced in refs. [22–25] for systems with spatial inho-

mogeneities, and the details for temporally varying systems can be found in ref. [5]. The

semiclassical approximation is also local, but in contrast to cQPA, one applies the gradient

expansion directly to the unintegrated equations of motion, eliminating off-diagonal chiral

degrees of freedom. This leads to a loss of information in comparison to cQPA.

We do not get into the details of the derivation, but merely quote the results relevant

for our purposes. The Wightman function is decomposed into a helicity block-diagonal form

2iγ0S<hk(k0, t) = σagahk(k0, t)⊗ P (2)

hk , (5.5)

where a ∈ {0, 1, 2, 3}, σ0 ≡ 1, σi are the Pauli matrices, and gah are the unknown coef-

ficient functions to be solved. The main outcome of the semiclassical formalism is that,

when considered to the first order in the gradients of a time-dependent mass m = |m|eiθ,

the axial part of the helicity correlation function g3hk is found to be living on a shifted

energy shell: g3hk ∼ δ
(
k2

0 − ω2
3hk

)
, with

ω3hk ≡ ωk(t) + h
|m|2∂tθ(t)
2|k|ωk(t)

. (5.6)

The shift has an opposite sign for particles with opposite helicities, and it obviously vanishes

for translationally invariant systems.9

Defining the integrated phase space densities

fahk(t) ≡
∫

dk0

2π
gahk(k0, t) (5.7)

one finds the following collisionless equation of motion for the axial density f3hk [5]:

[ω3hk∂t + Fhk∂k0 ] f3hk = 0, (5.8)

where Fhk is the semiclassical force

Fhk =
∂t|m|2

2ω3hk
+ h

∂t(|m|2∂tθ)
2|k|ωk

. (5.9)

This process of going from quantum equations (cQPA) to the semiclassical force is anal-

ogous to going from the Schrödinger equation to a spin-dependent force when calculating

9For problems with a spatially varying mass a similar shift occurs for the zeroth component g0, and is

proportional to the spin of the particle [24, 25].
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an electron’s movement in a magnetic field (the Stern-Gerlach experiment). Noticing that

Fhk = ∂tω3hk, one can see that the collisionless equation (5.8) is solved by

f sc
3hk(t) =

ω−f
−
3hk

ω3hk(t)
, (5.10)

where f−3hk ≡ f3hk(t→ −∞) is determined by the desired initial conditions. These formulae

are valid for an arbitrary form of the mass function. Note that the definition of the

phase space function f3hk exactly coincides with our definition of the current j5,hk in

equations (5.1) and (5.2).

5.3 Range of validity of the different formalism

Let us now compare the axial quantum currents to their semiclassical approximation in

different kinematical regions. We use the initial conditions described in section 3.3, which

correspond to choosing f−3hk = h|k|/ω− in equation (5.10). In cQPA the equivalent initial

configuration for S< is fm−hk (−∞) = 1 with other shell functions vanishing. In this case the

semiclassical approximation gives the following form for the helicity-summed axial density

of our kink-mass system:

jsc
5,k(t) =

∑
h

f sc
3hk(t) = − mIm2R

τw ω3
k(t) cosh2(t/τw)

. (5.11)

In figure 7 we show the helicity summed axial density j5,k ≡
∑

h j5,hk as a function

of time for a few representative values for |k|, computed from the semiclassical equa-

tion (5.11), using our exact solutions with equation (5.1) and using the cQPA methods via

equation (5.3). As explained above, the full cQPA-currents coincide with the exact cur-

rents in the collisionless limit. In this case the cQPA-current is pure coherence, since the

cQPA-solution restricted to mass shells (green dashed lines) gives a vanishing axial current.

The general comparison to the semiclassical approximation is as expected: prominent

oscillations appearing in the exact solutions for small |k| are absent in the semiclassical

solution. This is as it should be, since quantum coherence effects are included in the

semiclassical formalism only in an average sense. However, the oscillations turn off quickly

for large |k|, such that already for |k| = 1.5 the semiclassical and quantum currents are

practically identical. Moreover, the semiclassical current captures the average of the exact

solution very well for |k| = 0.8 and reasonably well even for |k| = 0.4. The broad range of

validity of the semiclassical approximation is slightly surprising. On general grounds one

would assume it to work when at least one wavelength fits to the wall width, corresponding

to 2π
|k| < τw. However, our results suggest that it works quite well even when the wall width

is but a fraction of the wave length of the mode.

The validity of the semiclassical approximation is even more pronounced when one

considers the integrated current

j5(t) ≡ 1

2π2

∫
d|k|k2

∑
h

j5,hk(t). (5.12)
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Figure 7. The helicity summed axial charge density j5,k from the exact solutions (red dashed

line), and from the semiclassical approximation (black line). Blue solid line (exactly matching the

red dashed line) is the full cQPA solution and the green line is cQPA solution restricted to the

mass shells. In each figure we have m1R = 0.1, m2R = 1, mI = 0.1, τw = 5 and Γ = 0.2, while

|k| = 0.1, 0.4, 0.8 and 1.5 in different panels as indicated.
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Figure 8. Shown is the integrated number density n+
1 of positive helicity particles (left graph)

and the integrated axial charge density j5 (right graph) for a vacuum initial condition in the non-

interacting case. We used the same set of mass parameters as in figure 7.

In the right panel of figure 8 we show the result of the calculation of j5(t) for the same set

of parameters as considered in figure 7. Apart from the oscillations right after the mass

change, the semiclassical solution follows the full solution quite well. In the left panel we

show the behaviour of the integrated number density n+
1 of positive helicity particles. (The

individual number densities are defined below in section 6.) Indeed, oscillations tend to

be much larger in the individual components, but they mostly cancel out at the level of

currents.
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Our results in the non-interacting case are qualitatively similar to those of ref. [20]; the

semiclassical approximation captures the mean trend of the currents quite well. However,

while ref. [20] emphasized the fact that the semiclassical approximation misses the late

time oscillations, we do not think that this is necessarily a significant problem. First, we

see that the oscillations damp quite quickly. Second, a typical application of a calculation

presented here would be to compute the particle-antiparticle asymmetry arising from the

transition. The axial current would then be closely related to the source of the asymmetry.

In such a case the effect of oscillations around the mean would tend to cancel out, leaving

a mean effect that could be well captured by the semiclassical result.

Let us emphasize that the cQPA result for the current indeed contains and generalises

the semiclassical result. This is so despite the fact that the cQPA-dispersion relation was

derived formally to lower order in gradients than the semiclassical one. The reason for this

apparently contradicting result was already emphasized in the beginning of this section:

at the integrated level the non-interacting cQPA is in fact exact. Similarly then, the in-

teracting cQPA-equations (2.20) constitute a generalisation of the interacting semiclassical

Boltzmann theory to the fully quantum case. We now turn to study such interacting sys-

tems in the context of cQPA. This requires that we define explicitly the collision terms in

equations (2.20).

6 cQPA with collisions

Let us now assume that the self-energy satisfies the KMS-relation Σ> = eβk0Σ<. This

is perhaps the most often recurring application, so we write down the full single flavour

interacting cQPA-equations (2.20) explicitly for this case. After some algebra we find:

∂tn
±
hk =

1

2

∑
s

Φ̇s
hk f

cs
hk −

∑
s

[(
nshk − nseq

)
T hs±mm + f cshk T

hs±
cm

]
, (6.1a)

∂tf
c±
hk = ∓2iωkf

c±
hk + ξkΦ̇∓hk

[
mR

ωk
f c±hk +

1

2

(
1− n+

hk − n
−
hk

)]
(6.1b)

− ξk
∑
s

[(
nshk − nseq

)
T hs±mc + f cshk T

hs±
cc

]
,

where Φ̇±hk and ξk were defined in equation (2.22) and we replaced the mass shell functions

by the number densities n+
hk ≡ fm+

hk and n−hk ≡ 1 − fm−hk (these are the usual 1-particle

Boltzmann distribution functions) and nseq ≡ feq(+ωk). Finally, the T hs±ab -functions encode

the collision terms for generic thermal interactions. In the spatially homogeneous and

isotropic system the most general form of the self-energy function can be expanded as

ΣAk (k0, t) ≡
∑
i

cAi (k, t)σi(k). (6.2)

Here σi(k) are the Dirac structures given in the leftmost column of table 1 and cAi (k, t)

are some four-momentum- and possibly time-dependent functions.10 Interaction terms

10Note that the last four rows in table 1 contain redundant information. For example, using the fact that

/kPhk = (k0γ
0 − h|k|γ0γ5)Phk, one finds that (T/k)hss

′
ab = ωk(Tsgn(k0)γ0)hss

′
ab − h|k|(Tγ0γ5)hss

′
ab . It is easy to
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σi (Ti)hss
′

mm (Ti)hss
′

cm (Ti)hss
′

mc (Ti)hss
′

cc

1 2sδss′
mR
ωk

s′/ξk s/ξk 2sδss′
mR
ωk
/ξk

γ5 −2isδss′
mI
ωk

s′Bs
hk sB−s

′

hk −2isδss′
mI
ωk
/ξk

sgn(k0)γ0 2sδss′ 0 0 2sδss′/ξk

γ0γ5 2sδss′h
|k|
ωk

−s′Ashk −sA−s′hk 2sδss′h
|k|
ωk
/ξk

/k 2sδss′
|m|2
ωk

s′h|k|Ashk sh|k|A−s′hk 2sδss′
|m|2
ωk

/ξk

/kγ5 0 ωkA
s
hk −ωkA

−s′
hk 0

1
2 [γ0, /k] 2isδss′h|k|mI

ωk
−s′h|k|Bs

hk −sh|k|B−s′hk 2isδss′h|k|mI
ωk
/ξk

1
2 [γ0, /k]γ5 −2sδss′h|k|mR

ωk
−s′h|k|/ξk −sh|k|/ξk −2sδss′h|k|mR

ωk
/ξk

Table 1. Collision term coefficients for different self-energy components σi(k) of Σk.

corresponding to equation (6.2) are given by

T hss
′

mm (|k|, t) =
∑
i

cAi (s)(Ti)hss
′

mm(|k|),

T hss
′

cm (|k|, t) =
∑
i

[
cAi (s) + cAi (−s)

2
− ss′ c

A
i (s)− cAi (−s)

2

]
(Ti)hss

′
cm (|k|),

T hss
′

mc (|k|, t) =
∑
i

cAi (s)(Ti)hss
′

mc (|k|),

T hss
′

cc (|k|, t) =
∑
i

cAi (s)− cAi (−s)
2

(Ti)hss
′

cc (|k|),

(6.3)

where cAi (s) ≡ cAi (sωk, |k|, t) and the functions (Ti)hss
′

ab can be read from table 1, where we

further defined

Ashk ≡ h
|k|mR

ω2
k

+ is
mI

ωk
, (6.4)

Bs
hk ≡ sh

|k|
ωk

+ i
mRmI

ω2
k

. (6.5)

The collision terms of equations (6.3) together with table 1 allow for completely general

coefficient functions ci(k, t) of the self-energy (6.2). However, in thermal equilibrium the

functions ci(k, t) are typically either even or odd functions of k0. As an example, we

consider a thermal self-energy with a chiral interaction given by

ΣAk (k0) = (a/k + b/u)PL, (6.6)

check that this relation is satisfied by the entries of table 1. Similarly 1
2
[γ0, /k]Phk = −h|k|γ5Phk, which

implies that the last two rows are just −h|k| times the first two lines in reverse order. However, rather than

being minimalistic, we give a complete list of the possible structures.
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where uµ is the fluid four-velocity. We further assume that, in the rest frame of the thermal

plasma where /u → γ0, the coefficient a = a(k0, |k|) is an odd and b = b(k0, |k|) an even

function of k0. Using table 1, we then get the following collision terms for equations (6.1):

T hss
′

mm (|k|, t) =

[
|m|2

ωk
ak +

(
1− sh |k|

ωk

)
bk

]
δss′ ,

T hss
′

cm (|k|, t) =
s′

2

[
(ωk − s′h|k|)ak + bk

]
Ashk,

T hss
′

mc (|k|, t) =
s

2

[
(ωk + sh|k|)ak + bk

]
A−s

′

hk ,

T hss
′

cc (|k|, t) =
1

ξk

[
|m|2

ωk
ak + bk

]
δss′ .

(6.7)

Here ak ≡ a(ωk, |k|), bk ≡ b(ωk, |k|) and we used the parity properties a(sωk, |k|) = sak
and b(sωk, |k|) = bk. Also, given that ak, bk > 0, note how T hss

′
mm and T hss

′
cc are always

positive.

Let us finally point out that it is easy to generalise equations (6.1) to the case with a

non-thermal self-energy that does not obey the KMS-relation. One just needs to replace

the two terms involving the equilibrium distribution function nseq as follows:

(nshk − nseq)T hss
′

ma (|k|, t)→
∑
i

s

(
fmshk c

A
i (s)− 1

2
c<i (s)

)
(Ti)hss

′
ma (|k|, t) (6.8)

for a = m, c, where we defined iΣ<
k (k0, t) ≡

∑
i c
<
i (k, t)σi(k). We remind, however, that

evaluating the self-energy diagrams involving coherent propagators as internal lines requires

special techniques developed in refs. [11, 12].

6.1 A numerical example

In figure 9 we show a result of a model calculation with a non-vanishing interaction rate

using a self-energy of the form (6.6) with ak = 0.03 and bk = 0. The left panels, where we

imposed the vacuum initial conditions n±hk = f c±hk = 0, correspond to the interacting version

of the case studied in figure 8. Initially, the particle number approaches smoothly the

thermal value. At the onset of the transition it again starts oscillating, but the amplitude

is strongly damped in comparison to the non-interacting case. In the right panels we show

the analogous calculation with equilibrium initial conditions n±hk = n±eq with T = 1 in the

units we are working with and f c±hk = 0. Now the particle number stays unchanged until

the onset of the transition, after which it oscillates approaching asymptotically the same

post-transition equilibrium value as in the case with vacuum initial conditions. Pushing

the starting point further away from the transition region would make the later evolution

indistinguishable in the two cases.

The main difference to the non-interacting case is that the left-chiral interaction, in

connection with the coherent CP-violating oscillations, creates a temporary non-zero av-

erage chiral current after transition. This is due to the fact that the chiral interaction

term (6.6) breaks the helicity symmetry. The average current is well captured at late times

by the pure mass shell contribution, shown in green dashed line in figure 9. However at
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Figure 9. Shown is the integrated number density n+
1 of positive helicity particles (the upper

panels) and the integrated axial charge density j5 (the lower panels) in interacting cQPA. The

left panels correspond to the vacuum initial condition and the right panels to the thermal initial

condition with T = 1. We used the same set of mass parameters as in figure 7.

the transition point the main peak is still pure coherence. While the current eventually

equilibrates to zero, the region where it is non-vanishing could act as a seed for example

for a particle-antiparticle asymmetry creation in such a transition.

The calculation we presented here was just a toy model whose sole purpose was to show

how to implement the method and display some of the effects of interactions. There are

several interesting applications for the formalism that we shall pursue in the future. One

avenue is the study of baryogenesis in abrupt spatially homogeneous phase transitions in the

early universe, such as the models considered in the context of the cold baryogenesis [32–34].

Another application is to study the reheating phase after inflation. It is straightforward to

couple equations (6.1) with an equation of motion for the inflaton and model the reheating

phase including all quantum effects and interactions. Our formalism, extended to the

flavour mixing case [12], can also be applied to the study of leptogenesis. It is of particular

interest to compare our approach with several other transport theory formulations that

also employ the closed time path (CTP) methods, such as those presented in refs. [35–42].

7 Conclusions and outlook

We have studied the phase space structure of a fermionic two-point function with a varying

complex mass. We computed the Wightman function of a non-interacting system for a

specific mass profile, and demonstrated that its phase space contains, in addition to the

usual mass shell solutions, a shell-like structure located at k0 = 0. This zero-momentum
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shell describes local-in-time quantum coherence between particles and antiparticles and it

was discovered earlier in the context of the cQPA-formalism [6–12]. However, our present

derivation did not rely on any approximations, but derived the free Wightman function

from the exact mode functions of the system.

In addition to the cQPA-solutions we found other, non-local coherence structures in

the exact Wightman function. These structures look peculiar, appearing to let the system

become aware of the transition before it actually takes place in the local time coordinate,

but of course they are just a reflection of the usual quantum non-locality in the phase

space picture. We argued that the non-local correlations would dominate the phase space

structure in large non-dissipative systems. However, when dissipation is included (modelled

here by a damping term coupled to the relative time coordinate), the non-locality gets

confined to the neighbourhood of the transition region. These results underline the delicate

role of dissipation in the emergence of the local (cQPA) limit, and eventually (in the nearly

translationally invariant systems) of the familiar Boltzmann transport theory.

In section 2 we introduced a new and particularly useful way to reorganise the gradi-

ent expansion in the mixed representation Kadanoff-Baym equations. Then, based on this

form, we gave a simple and transparent derivation of the cQPA equations. In section 6

we completed the analysis by providing explicit collision integrals for generic interaction

self-energies. The resulting equations (6.1) are one of the main results of this paper: they

generalise the Boltzmann transport theory to systems with local coherence between par-

ticles and antiparticles. In particular they fully encompass the well known semiclassical

effects. Such coherences may be relevant for example for baryogenesis during phase tran-

sitions and for particle production at the end of inflation.

We further computed axial phase space densities out of the Wightman functions and

compared these to the same quantities obtained from the semiclassical approximation. We

found out that the semiclassical methods work reasonably well even in systems where the

relevant modes have wavelengths down to a half of the wall width. This is encouraging for

baryogenesis studies in very strong electroweak phase transitions, often encountered in the

context of models producing large, observable gravitational wave signals [17, 18].

In this work we only considered a time-dependent mass. A natural follow-up, relevant

for the baryogenesis problem, would be to generalise the analysis to a mass depending

on one spatial coordinate. Part of this program is straightforward, but some new features

emerge as well, such as the tunneling solutions, whose proper description at the phase space

level is non-trivial. But there are practical applications of the time-dependent formalism as

well, which we shall be pursuing. One is the baryogenesis at a phase transition as discussed

in section 6 and already studied in the context of a simple toy model in ref. [11]. Another

immediate goal is to use equations (6.1), coupled to the one-point function of the inflaton,

to model accurately the reheating phase at the end of the inflation. Also, we are pursuing

a generalisation of the present formalism to the case with mixing fermion fields, in the

context of resonant leptogenesis [43].
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(2015).

[22] J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis, JHEP

07 (2000) 018 [hep-ph/0006119] [INSPIRE].

[23] J.M. Cline, M. Joyce and K. Kainulainen, Erratum for ‘Supersymmetric electroweak

baryogenesis’, hep-ph/0110031 [INSPIRE].

[24] K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, First principle derivation of

semiclassical force for electroweak baryogenesis, JHEP 06 (2001) 031 [hep-ph/0105295]

[INSPIRE].

[25] K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, Semiclassical force for

electroweak baryogenesis: three-dimensional derivation, Phys. Rev. D 66 (2002) 043502

[hep-ph/0202177] [INSPIRE].

[26] L. Fromme, S.J. Huber and M. Seniuch, Baryogenesis in the two-Higgs doublet model, JHEP

11 (2006) 038 [hep-ph/0605242] [INSPIRE].

[27] L. Fromme and S.J. Huber, Top transport in electroweak baryogenesis, JHEP 03 (2007) 049

[hep-ph/0604159] [INSPIRE].

[28] J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet

Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].

[29] J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter,

Phys. Rev. D 88 (2013) 055025 [Erratum ibid. D 92 (2015) 039906] [arXiv:1306.4710]

[INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevD.92.123009
https://doi.org/10.1103/PhysRevD.92.123009
https://arxiv.org/abs/1504.03291
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03291
https://doi.org/10.1103/PhysRevD.96.103520
https://doi.org/10.1103/PhysRevD.96.103520
https://arxiv.org/abs/1704.05871
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05871
https://doi.org/10.1103/PhysRevD.97.123513
https://arxiv.org/abs/1802.05712
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.05712
https://doi.org/10.1088/1475-7516/2017/05/052
https://arxiv.org/abs/1611.05874
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.05874
https://doi.org/10.1103/PhysRevD.95.123515
https://arxiv.org/abs/1611.02073
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.02073
https://doi.org/10.1016/j.aop.2004.06.001
https://arxiv.org/abs/hep-ph/0406140
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0406140
https://doi.org/10.1103/PhysRevD.87.083508
https://arxiv.org/abs/1301.4132
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.4132
https://doi.org/10.1088/1126-6708/2000/07/018
https://doi.org/10.1088/1126-6708/2000/07/018
https://arxiv.org/abs/hep-ph/0006119
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0006119
https://arxiv.org/abs/hep-ph/0110031
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0110031
https://doi.org/10.1088/1126-6708/2001/06/031
https://arxiv.org/abs/hep-ph/0105295
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0105295
https://doi.org/10.1103/PhysRevD.66.043502
https://arxiv.org/abs/hep-ph/0202177
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0202177
https://doi.org/10.1088/1126-6708/2006/11/038
https://doi.org/10.1088/1126-6708/2006/11/038
https://arxiv.org/abs/hep-ph/0605242
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0605242
https://doi.org/10.1088/1126-6708/2007/03/049
https://arxiv.org/abs/hep-ph/0604159
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0604159
https://doi.org/10.1088/1475-7516/2013/01/012
https://arxiv.org/abs/1210.4196
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.4196
https://doi.org/10.1103/PhysRevD.88.055025
https://doi.org/10.1103/PhysRevD.92.039906
https://arxiv.org/abs/1306.4710
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4710


J
H
E
P
0
1
(
2
0
2
0
)
0
1
2

[30] J.M. Cline, K. Kainulainen and D. Tucker-Smith, Electroweak baryogenesis from a dark

sector, Phys. Rev. D 95 (2017) 115006 [arXiv:1702.08909] [INSPIRE].

[31] H. Jukkala, K. Kainulainen and O. Koskivaara, in preparation.

[32] A. Tranberg, A. Hernandez, T. Konstandin and M.G. Schmidt, Cold electroweak baryogenesis

with Standard Model CP-violation, Phys. Lett. B 690 (2010) 207 [arXiv:0909.4199]

[INSPIRE].

[33] A. Tranberg and B. Wu, On using cold baryogenesis to constrain the two-Higgs doublet

model, JHEP 01 (2013) 046 [arXiv:1210.1779] [INSPIRE].

[34] A. Tranberg and B. Wu, Cold electroweak baryogenesis in the two Higgs-doublet model, JHEP

07 (2012) 087 [arXiv:1203.5012] [INSPIRE].

[35] M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Finite number density corrections

to leptogenesis, Nucl. Phys. B 838 (2010) 1 [arXiv:1002.1326] [INSPIRE].

[36] M. Beneke, B. Garbrecht, C. Fidler, M. Herranen and P. Schwaller, Flavoured leptogenesis in

the CTP formalism, Nucl. Phys. B 843 (2011) 177 [arXiv:1007.4783] [INSPIRE].

[37] B. Garbrecht and M. Herranen, Effective theory of resonant leptogenesis in the

closed-time-path approach, Nucl. Phys. B 861 (2012) 17 [arXiv:1112.5954] [INSPIRE].

[38] B. Garbrecht, Why is there more matter than antimatter? Calculational methods for

leptogenesis and electroweak baryogenesis, arXiv:1812.02651 [INSPIRE].

[39] B. Dev, M. Garny, J. Klaric, P. Millington and D. Teresi, Resonant enhancement in

leptogenesis, Int. J. Mod. Phys. A 33 (2018) 1842003 [arXiv:1711.02863] [INSPIRE].

[40] M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the

resonant regime, Annals Phys. 328 (2013) 26 [arXiv:1112.6428] [INSPIRE].

[41] A. Kartavtsev, P. Millington and H. Vogel, Lepton asymmetry from mixing and oscillations,

JHEP 06 (2016) 066 [arXiv:1601.03086] [INSPIRE].

[42] P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Kadanoff-Baym approach to

flavour mixing and oscillations in resonant leptogenesis, Nucl. Phys. B 891 (2015) 128

[arXiv:1410.6434] [INSPIRE].

[43] H. Jukkala, K. Kainulainen and P. Rahkila, in preparation.

– 27 –

https://doi.org/10.1103/PhysRevD.95.115006
https://arxiv.org/abs/1702.08909
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.08909
https://doi.org/10.1016/j.physletb.2010.05.030
https://arxiv.org/abs/0909.4199
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4199
https://doi.org/10.1007/JHEP01(2013)046
https://arxiv.org/abs/1210.1779
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.1779
https://doi.org/10.1007/JHEP07(2012)087
https://doi.org/10.1007/JHEP07(2012)087
https://arxiv.org/abs/1203.5012
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5012
https://doi.org/10.1016/j.nuclphysb.2010.05.003
https://arxiv.org/abs/1002.1326
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1326
https://doi.org/10.1016/j.nuclphysb.2010.10.001
https://arxiv.org/abs/1007.4783
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4783
https://doi.org/10.1016/j.nuclphysb.2012.03.009
https://arxiv.org/abs/1112.5954
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5954
https://arxiv.org/abs/1812.02651
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.02651
https://doi.org/10.1142/S0217751X18420034
https://arxiv.org/abs/1711.02863
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02863
https://doi.org/10.1016/j.aop.2012.10.007
https://arxiv.org/abs/1112.6428
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6428
https://doi.org/10.1007/JHEP06(2016)066
https://arxiv.org/abs/1601.03086
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.03086
https://doi.org/10.1016/j.nuclphysb.2014.12.003
https://arxiv.org/abs/1410.6434
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.6434


 

 
 
 

PII  
 
 
NON-EQUILIBRIUM DYNAMICS OF A SCALAR FIELD WITH 

QUANTUM BACKREACTION 
 
 
 
 

by 
 

Kimmo Kainulainen and Olli Koskivaara (2021) 
 

Journal of High Energy Physics, 12 190 
 
 

Reproduced with kind permission of Springer. 
 



J
H
E
P
1
2
(
2
0
2
1
)
1
9
0

Published for SISSA by Springer

Received: May 25, 2021
Revised: December 13, 2021

Accepted: December 20, 2021
Published: December 27, 2021

Non-equilibrium dynamics of a scalar field with
quantum backreaction

Kimmo Kainulainen and Olli Koskivaara
Department of Physics, University of Jyväskylä,
P.O. Box 35 (YFL), FI-40014 Jyväskylä, Finland
Helsinki Institute of Physics, University of Helsinki,
P.O. Box 64, FI-00014 Helsinki, Finland

E-mail: kimmo.kainulainen@jyu.fi, olli.a.koskivaara@student.jyu.fi

Abstract: We study the dynamical evolution of coupled one- and two-point functions of
a scalar field in the 2PI framework at the Hartree approximation, including backreaction
from out-of-equilibrium modes. We renormalize the 2PI equations of motion in an on-shell
scheme in terms of physical parameters. We present the Hartree-resummed renormalized
effective potential at finite temperature and critically discuss the role of the effective poten-
tial in a non-equilibrium system. We follow the decay and thermalization of a scalar field
from an initial cold state with all energy stored in the potential, into a fully thermalized
system with a finite temperature. We identify the non-perturbative processes of parametric
resonance and spinodal instability taking place during the reheating stage. In particular
we study the unstable modes in the region where the vacuum 1PI effective action becomes
complex and show that such spinodal modes can have a dramatic effect on the evolution
of the one-point function. Our methods can be easily adapted to simulate reheating at the
end of inflation.

Keywords: Nonperturbative Effects, Thermal Field Theory, Quantum Dissipative Sys-
tems

ArXiv ePrint: 2105.09598

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP12(2021)190

mailto:kimmo.kainulainen@jyu.fi
mailto:olli.a.koskivaara@student.jyu.fi
https://arxiv.org/abs/2105.09598
https://doi.org/10.1007/JHEP12(2021)190


J
H
E
P
1
2
(
2
0
2
1
)
1
9
0

Contents

1 Introduction 1

2 2PI effective action and equations of motion 2
2.1 Hartree approximation 4

3 Renormalization 5
3.1 Renormalized equations of motion 8
3.2 Effective potential and physical parameters 9
3.3 Finite temperature effective potential 10

4 Wigner space equations 13

5 Numerical results 15
5.1 Particle production and reheating via parametric resonance 16
5.2 Strong spinodal instability 18
5.3 Self-thermalization 21

6 Conclusions 25

A Numerical implementation 26

1 Introduction

Classical scalar fields coupled to quantum matter play an important role in various settings
in cosmology. They are used to study the creation of seed perturbations for structure
formation, reheating processes, particle production and the creation of baryon asymmetry.
Almost exclusively in these treatments it is assumed that the scalar field evolves in some
classical, possibly quantum corrected but fixed effective potential. One rarely accounts for
the backreaction of the non-equilibrium quanta that may be created during the dynamical
process. However, such quanta may be produced copiously during out-of-equilibrium phase
transitions [1, 2] by parametric resonance [3–7] or by spinodal instability [6, 8–13], and they
could significantly affect the evolution of the system [14–18]. In this paper we study the
effects of quantum backreaction on the scalar field evolution using two-particle irreducible
(2PI) effective action methods.

A crucial step in the rigorous analysis of the problem is performing a consistent renor-
malization of the equations of motion derived from the 2PI effective action. This is a
highly non-trivial task, because in any finite truncation of the 2PI expansion, a number of
auxiliary vertex and self-energy functions appear that require setting up consistent renor-
malization conditions [19]. Other works on the renormalization of 2PI-truncated theories

– 1 –
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include for example references [20–22]. In this paper we carefully go through the renor-
malization of our model using the method of cancellation of the sub-divergences [23–26].
We emphasize that while the renormalization counterterms are constants, the divergences
that get subtracted, and hence also the vacuum state of the system, depend on the infrared
physics, such as temperature, or even the shape of the non-equilibrium particle spectrum.

To be specific, we study a simple λφ4-model with a spontaneous symmetry breaking
tree-level potential. We work in the Hartree approximation and perform the auxiliary
renormalizations using the MS subtraction scheme. The renormalized equations of motion
and the 2PI effective action are however scale independent and completely specified in terms
of physical parameters. We present explicit results for the vacuum and finite temperature
effective potentials as well as for the vacuum potential in the presence of non-equilibrium
fluctuations. We stress that in the non-equilibrium case the effective potential can only be
constructed a posteriori and it is not in general a useful quantity for solving the equations
of motion.

With our renormalized equations we can follow in real time how the potential energy
of the classical field is transferred into quantum fluctuations by the non-perturbative pro-
cesses. We identify a strong parametric resonance, even though our self-coupled system
is too complicated to admit a comprehensive analytical stability analysis. We also show
that due to backreaction from spinodal instability the field can pass through a potential
barrier even when starting with less energy than the initial barrier height. We also follow
the full thermal history of a system that starts with pure potential energy, until it is fully
thermalized with nearly all of its energy stored in thermal plasma. We also show that at
the initial stages of reheating the quantum system is highly coherent, but the coherence is
gradually erased by interactions as the system thermalizes.

This paper is organized as follows. In section 2 we review the 2PI effective action
techniques and introduce our truncation scheme, the Hartree approximation. In section 3
we show how to self-consistently renormalize the 2PI equations of motion and express them
in terms of physical quantities. We also study both resummed vacuum and thermal effective
potentials in the Hartree case and compare them with other approximations. In section 4 we
write our equations of motion in the Wigner space in terms of moment functions following
references [27, 28], and also complement the equations with phenomenological friction
terms. Section 5 is dedicated to numerical results. We compute the evolution of various
quantities, such as the classical field, particle number and coherence functions using the
fully coupled 2PI equations. Finally, section 6 contains our conclusions.

2 2PI effective action and equations of motion

We will study the non-equilibrium dynamics of a scalar field theory with the potential
V (φ) = −1

2µ
2φ2 + 1

4!λφ
4 using the two-particle irreducible (2PI) effective action technique

of non-equilibrium quantum field theory [29, 30]. The 2PI effective action for this theory is

Γ2PI[ϕ,∆] = S[ϕ]− i
2TrC

[
ln(∆)

]
+ i

2TrC
[
∆−1

0 ∆
]

+ Γ2[ϕ,∆], (2.1)
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Figure 1. The Keldysh contour in the complex time plane, running from some initial time to an
arbitrary future time and back again.

where ϕ(x) is the classical field and ∆(x, y) is the classical connected two-point function
and the trace contains integration over the Keldysh contour [31] C of figure 1. Moving to
a real-time representation the classical action can be written as S[ϕ] =

∑
a=± aδ

abS[ϕb],
where a and b indicate the branch on the complex time-contour, and

S[ϕb] =
∫

d4x

[1
2(∂µϕb)2 + 1

2µ
2ϕ2

b −
1
4!λϕ

4
b

]
. (2.2)

Similarly, the inverse classical propagator is given by

i∆−1
0,ab(x, y;ϕ) = −

(
�x − µ2 + 1

2λϕ
2
a

)
δ(4)(x− y)δab. (2.3)

Finally, Γ2 consists of all 2PI vacuum graphs with lines corresponding to the full propagator
∆ and interactions inferred from the shifted action

Sint
[
ϕ, φq

]
= −

∑
a=±

aδab
∫

d4x

( 1
3!λϕbφ

3
qb + 1

4!λφ
4
qb

)
, (2.4)

where φ = ϕ+ φq and φq is the quantum field.
The stationarity conditions of Γ2PI will give the equations of motion for the one- and

two-point functions:
δΓ2PI
δϕa

= 0 and δΓ2PI
δ∆ab

= 0. (2.5)

When the classical solution to the latter equation, parametrized in terms of ϕ, is reinserted
back into the effective action, we formally recover the 1PI action Γ̂1PI[ϕ] = Γ2PI[ϕ,∆[ϕ]].
In the full dynamical case the two equations are however strongly coupled and should be
solved simultaneously, as we will do in our study. For the classical field ϕ+(x) = ϕ−(x)
and we may drop the branch index and find:[

�x − µ2 + 1
6λϕ

2(x) + 1
2λ∆(x, x)

]
ϕ(x) = δΓ2

δϕ(x) . (2.6)

We also left the branch indices out from the local correlation function ∆(x, x), which is the
same for all components of the two-point function ∆ab(x, y). The stationarity condition
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∼λ(0)
R + δ

(0)
λ

+

∼
(
λ

(1)
R + δ

(1)
λ

)2

+

∼
(
λ

(0)
R + δ

(0)
λ

)2

+

∼
(
λ

(1)
R + δ

(1)
λ

)4

+

∼
(
λ

(0)
R + δ

(0)
λ

) (
λ

(1)
R + δ

(1)
λ

)2

+ · · ·

Figure 2. The first few terms contributing to Γ2, including their precise coupling constant depen-
dences.

for ∆ab(x, y) leads to the Schwinger-Dyson equation[
�x − µ2 + 1

2λϕ
2(x)

]
i∆ac(x, y) = aδacδ(4)(x− y) + b

∫
d4zΠab(x, z)∆bc(z, y), (2.7)

where summation over b is implied and the self-energy function is given by

Πab(x, y) = 2iab δΓ2[ϕ,∆]
δ∆ba(y, x) = aδabδ(4)(x− y)Πsg(x) + Πab

nsg(x, y). (2.8)

To proceed we also have to specify an approximation for the interaction term Γ2.

2.1 Hartree approximation

The first few terms contributing to Γ2, arising from the action (2.4), are shown in figure 2
(the role of the indices in the couplings is related to renormalization and will be explained
in the next section). In this work we shall work in the Hartree approximation, which
includes only the first term in the series, given by

ΓH
2 = −λ8

∫
d4x∆2(x, x). (2.9)

In this case the self-energy has only a singular or local part:

Πsg(x) = − iλ
2 ∆(x, x), (2.10)

while Πab
nsg(x, y) = 0. Obviously ∂ΓH

2 /∂ϕ = 0 as well, so there is no contribution to
equation (2.6) in the Hartree approximation. We can now write the non-renormalized
equations of motion compactly as[

�x − µ2 + 1
6λϕ

2(x) + 1
2λ∆(x, x)

]
ϕ(x) = 0, (2.11a)[

�x − µ2 + 1
2λϕ

2(x) + 1
2λ∆(x, x)

]
i∆ab(x, y) = aδabδ(4)(x− y), (2.11b)

Eventually we will move to the Wigner space defined in section 4 and solve these equations
numerically in some example cases for homogeneous systems, but before we can do that,
we have to address the divergences in ∆ab and in particular in the local correlation function
∆(x, x).
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3 Renormalization

Systematic renormalization in the context of the 2PI expansion was thoroughly discussed in
reference [19]. Here we use the method introduced in reference [23], and later used in refer-
ences [24, 26], and we include also a connection to physical parameters. The key issue is that
any finite order truncation of Γ2[ϕ,∆] leads to an approximation for Γ̂1PI[ϕ] that contains
infinite resummations of 1PI diagrams and the associated counterterms. This gives rise to a
number of auxiliary n-point functions which need independent renormalization conditions.
These conditions can be defined by requiring that all sub-divergences cancel [23], but one
needs to introduce a different renormalized parameter for each different operator. To be
precise, all n-point functions can be classified in terms of the number of classical fields that
connect to them, and all functions that are connected also to propagator lines are auxiliary.

Below we shall first renormalize the auxiliary n-point functions in the MS-scheme and
show that the resulting 1PI action is independent of the renormalization scale. We start
by defining the renormalized fields, propagators, couplings and masses:

φ ≡ Z1/2
(2) φR, λ ≡ λ(I)

R + δλ(I),

∆ ≡ Z(0)∆R, µ2 ≡ µ2
R(I) − δµ2

(I),
(3.1)

where the index, I = 0, 1, 2, 4, follows the power of the classical field associated with the
n-point function. Written in terms of the renormalized quantities, the 2PI effective action
becomes:

Γ2PI[ϕR,∆R] = S[ϕR]− i
2TrC

[
ln(Z(0)∆R)

]
+ i

2TrC
[
∆−1

0R∆R
]

+ δS[ϕR] + i
2TrC

[
δ∆−1

0 ∆R
]

+ Γ2
[
ϕR,∆R;λ(I)

R + δ(I)
λ

]
,

(3.2)

where S[ϕR] is the same as in equation (2.2) with ϕ → ϕR, µ2 → µ2
R(2) and λ → λ(4)

R , and
∆−1

0R is the same as (2.3) with ϕ→ ϕR, µ2 → µ2
R(0) and λ→ λ(2)

R . Moreover we defined the
classical counterterm action

δS[ϕRb] ≡
∫

d4x

[
δ(2)
ϕ

2 (∂µϕRb)2 − 1
2δ

(2)
µ ϕ2

Rb −
1
4!δ

(4)
λ ϕ4

Rb

]
(3.3)

and the inverse classical counterterm propagator

iδ∆−1
0,ab(x, y;ϕR) ≡ −

(
δ(0)
ϕ �x + δ(0)

µ + 1
2δ

(2)
λ ϕ2

Ra

)
δ(4)(x− y)δab, (3.4)

where δ(I)
ϕ ≡ Z(I) − 1 and the other effective counterterms are defined as:

δ(0)
λ ≡ Z

2
(0)

(
λ(0)

R + δλ(0))− λ(0)
R , (3.5a)

δ(2)
λ ≡ Z(0)Z(2)

(
λ(2)

R + δλ(2))− λ(2)
R , (3.5b)

δ(4)
λ ≡ Z

2
(2)

(
λ(4)

R + δλ(4))− λ(4)
R , (3.5c)

δ(I)
µ ≡ Z(I)

(
−µ2

R(I) + δµ2
(I)

)
+ µ2

R(I). (3.5d)

– 5 –



J
H
E
P
1
2
(
2
0
2
1
)
1
9
0

Also in the interaction term in (3.2) the renormalized couplings in the combination λ(I)
R +δ(I)

λ

follow the power of the classical field in the interaction term (2.4), rewritten in terms of
the renormalized quantities.

The renormalized equations of motion can now be derived from the renormalized ef-
fective action, or more directly from (2.11a) and (2.11b), by writing the non-renormalized
quantities in terms of the renormalized ones:[

Z(2)�x − µ2
R(2) + δ(2)

µ + 1
6
(
λ(4)

R + δ(4)
λ

)
ϕ2

R + 1
2
(
λ(2)

R + δ(2)
λ

)
∆R

]
ϕR = 0, (3.6a)[

Z(0)�x − µ2
R(0) + δ(0)

µ + 1
2
(
λ(2)

R + δ(2)
λ

)
ϕ2

R + 1
2
(
λ(0)

R + δ(0)
λ

)
∆R

]
i∆ab

R (x, y) = aδabδ(4). (3.6b)

Here we suppressed the arguments in the local functions ϕR(x) and ∆R(x, x), as well as in
δ(4)(x− y), for brevity. We now proceed to determine the various counterterms appearing
in these equations and in the end find the renormalized equations of motion that include
the effects of quantum corrections.

Auxiliary renormalization conditions. Because the operator acting on ∆ab
R in (3.6b)

is independent of branch indices, we can concentrate on the time ordered component ∆11
R of

the two-point function. We choose the mass-shell renormalization condition in the vacuum
configuration ϕR = vR, which simultaneously minimizes the effective action. That is, we set

i
(
∆11

R
)−1 = p2 −m2

R,
d

dp2 i
(
∆11

R
)−1 = 1, and δΓ2PI

δϕR

∣∣∣
ϕR=vR

= 0. (3.7)

These conditions imply that Z(0) = 1 in the Hartree approximation, and in our current
scheme we can also set Z(2) = 1 (see footnote 2 below). The renormalization conditions (3.7)
then become:

−µ2
R(2) + δ(2)

µ + 1
6
(
λ(4)

R + δ(4)
λ

)
v2

R + 1
2
(
λ(2)

R + δ(2)
λ

)
∆R(vR) = 0, (3.8a)

−µ2
R(0) + δ(0)

µ + 1
2
(
λ(2)

R + δ(2)
λ

)
v2

R + 1
2
(
λ(0)

R + δ(0)
λ

)
∆R(vR

)
= m2

R, (3.8b)

where ∆R(vR) refers to the still divergent local correlator computed at the renormaliza-
tion point. It should be noted that ∆ab

R is an auxiliary function and the parameter m2
R is

not yet related to any physical mass. Similarly, none of the couplings are yet related to
observables, and there is considerable amount of choice related to their definition. We will
choose the following conditions:1

δ(0)
λ = δ(2)

λ , (3.9a)

−µ2
R(0) + δ(0)

µ = −µ2
R(2) + δ(2)

µ , (3.9b)

λ(4)
R = λ(2)

R −
1
3δ

(4)
λ + δ(2)

λ . (3.9c)

1These choices are partly specific for the Hartree approximation, where the self-energy Πab is propor-
tional to the local correlation function. In any higher order 2PI truncation λ(0)

R and λ(2)
R would need to be

renormalized separately.
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Because Z(0,2) = 1 here, equation (3.9), together with eqs. (3.1) and (3.5) implies that
λ(0)

R = λ(2)
R . Equation (3.9b) is less restrictive: it merely states that both renormalized mass

terms are related to the same bare mass term. Conditions (3.9b) and (3.9c) still allow us
to choose δ(2)

µ and δ(4)
λ such that m2

R and λ(4)
R can be matched to a physical mass parame-

ter and a physical coupling. Using the conditions (3.9) and equation (3.8b) we can write
equation (3.8a) simply as

m2
R −

1
3λ

(4)
R v

2
R = 0. (3.10)

That is, we are able to keep the tree-level relation between the coupling λ(4)
R , the background

field vR and the mass parameter m2
R.

Cancelling the sub-divergences. In order to proceed, we need to find out the diver-
gence structure of the local correlation function. Using dimensional regularization we can
write

∆R(vR) = Qε
∫ ddp

(2π)d ∆11
R (p) = − m2

R
16π2

[2
ε

+ 1− ln
(
m2

R
Q2

)]
, (3.11)

where ε ≡ 4− d and 2/ε ≡ 2/ε− γE + ln(4π) and Q is an arbitrary renormalization scale.
We now separate ∆R into divergent and finite parts as follows:

∆R(vR) ≡ m2
R∆ε + ∆F0

(
m2

R, Q
)
, (3.12)

where ∆ε ≡ −1/
(
8π2ε

)
. In what follows we will suppress the Q-dependence of the function

∆F0 for brevity. Next we insert the decomposition (3.12) back into equation (3.8b), use
relations (3.9) and let the leading order terms define the renormalized mass independently
from the terms containing divergences or counterterms. In this way we get two equations
out of the equation (3.8b):

m2
R ≡ −µ2

R(2) + 1
2λ

(2)
R

[
v2

R + ∆F0
(
m2

R
)]
, (3.13)

0 = δ(2)
µ + 1

2δ
(2)
λ

[
v2

R + ∆F0
(
m2

R
)]

+ 1
2
(
λ(2)

R + δ(2)
λ

)
m2

R∆ε. (3.14)

Using definition (3.13) again in equation (3.14) and rearranging we get

δ(2)
µ −

1
2
(
λ(2)

R + δ(2)
λ

)
µ2

R(2)∆ε + 1
2
[
v2

R + ∆F0
(
m2

R
)][

δ(2)
λ + 1

2
(
λ(2)

R + δ(2)
λ

)
λ(2)

R ∆ε

]
= 0. (3.15)

This equation has a consistent solution where the leading constant terms and the terms
multiplying the combination (the sub-divergence part) v2

R+∆F0 cancel independently. This
gives two constraint equations,

δ(2)
λ + 1

2
(
λ(2)

R + δ(2)
λ

)
λ(2)

R ∆ε = 0, (3.16a)

δ(2)
µ −

1
2
(
λ(2)

R + δ(2)
λ

)
µ2

R(2)∆ε = 0, (3.16b)

from which we can finally solve the counterterms δ(2)
λ and δ(2)

µ :

δ(2)
λ = −

1
2
(
λ(2)

R
)2∆ε

1 + 1
2λ

(2)
R ∆ε

and δ(2)
µ = µ2

R(2)

1
2λ

(2)
R ∆ε

1 + 1
2λ

(2)
R ∆ε

. (3.17)
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Scale dependence. The scale dependence of the auxiliary couplings and the mass pa-
rameters can now be worked out as usual by requiring that the bare parameters do not
run: ∂Q

[
Qε
(
λ(2)

R + δ(2)
λ

)]
= 0 and ∂Q

[
Qε
(
µ2

R(I) − δ(I)
µ

)]
= 0. Using equations (3.17) one then

immediately finds:

Q
∂λ(2)

R
∂Q

=
(
λ(2)

R
)2

16π2 and Q
∂µ2

R(2)

∂Q
=
λ(2)

R µ
2
R(2)

16π2 . (3.18)

The latter equation applies for both mass parameters, assuming that δ(0)
µ and δ(2)

µ differ by
at most a finite and Q-independent term, which is the case in the Hartree approximation.
Equations (3.18) can be easily integrated:

λ(2)
R (Q) = λ(2)

R (Q0)

1 + λ
(2)
R (Q0)
32π2 ln

(
Q2

0
Q2

) and µ2
R(I)(Q) =

µ2
R(I)(Q0)

1 + λ
(2)
R (Q0)
32π2 ln

(
Q2

0
Q2

) . (3.19)

Remember that as a result of equation (3.9a) λ(0)
R = λ(2)

R . On the other hand, the coupling
λ(4)

R does not run at all; indeed, to keep λ(4)
R finite, we must have δ(4)

λ = 3δ(2)
λ up to finite

terms according to equation (3.9c), which implies

Q
∂λ(4)

R
∂Q

= 0 ⇒ λ(4)
R = constant. (3.20)

We shall see below that λ(4)
R can be further fixed by some physical condition.

3.1 Renormalized equations of motion

It is essential to impose a correct treatment of the local correlation function away from the
renormalization point in the equations of motion (3.6a) and (3.6b). Analogously to (3.13),
we first define a leading order mass function that contains all finite terms in equation (3.6b):

m2(ϕR,∆F) ≡ −µ2
R(2) + 1

2λ
(2)
R

(
ϕ2

R + ∆F
)
. (3.21)

Here ∆F is the finite part of the local correlation function, which must be defined analo-
gously to equation (3.12):

∆R ≡ m2(ϕR,∆F)∆ε + ∆F. (3.22)

Note that both the finite part and the divergence contain non-trivial contributions from
both the vacuum and the non-equilibrium fluctuations. Using definitions (3.21) and (3.22)
we can write equation (3.6b) as follows:[

�x +m2(ϕR,∆F) + δ(2)
µ + 1

2δ
(2)
λ

(
ϕ2

R + ∆F
)

+1
2
(
λ(2)

R + δ(2)
λ

)
m2(ϕR,∆F)∆ε

]
i∆ab

R (x, y) = aδabδ(4)(x− y).
(3.23)

Using definition (3.21) again one can show that all divergent terms in equation (3.23)
arrange as in equation (3.15) and cancel as a result of the renormalization conditions (3.16).
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Then, noting that λ(4)
R + δ(4)

λ = −2λ(4)
R +O(ε), the same manipulations can be done also in

equation (3.6a). This results in the final renormalized equations of motion:[
�x +m2(ϕR,∆F)

]
ϕR = 1

3λ
(4)
R ϕ

3
R, (3.24a)[

�x +m2(ϕR,∆F)
]
i∆ab

R (x, y) = aδabδ(4)(x− y). (3.24b)

These equations appear deceivingly simple: when written for the Wightman function ∆<

R =
∆+−

R , equation (3.24b) takes the form of a wave equation with a time-dependent mass and,
as we shall see in the next section, equation (3.24a) describes the motion of the one-
point function in a quantum corrected effective potential including backreaction from non-
equilibrium modes. However, despite their apparent simplicity, the equations are strongly
coupled through the local correlator in the gap equation (3.21) for the mass term.

3.2 Effective potential and physical parameters

Let us now consider the adiabatic limit of the evolution equations, where ∆F is given purely
by vacuum fluctuations with no physical excitations. In this case definition (3.21) reduces to

m2(ϕR) ≡ −µ2
R(2) + 1

2λ
(2)
R

[
ϕ2

R + ∆F0
(
m2(ϕR)

)]
, (3.25)

and correspondingly
∆R(ϕR) ≡ m2(ϕR)∆ε + ∆F0

(
m2(ϕR)

)
. (3.26)

Note that m2(ϕR) and ∆R differ from definitions (3.21) and (3.22) only through a different
value of the background field ϕR. Using the equation of motion (3.6b) in the renormalized
2PI action (3.2) we can write down the 1PI effective potential in the Hartree approximation
as follows:

VH(ϕR) = − 1
V

ΓH
2PI
(
ϕR,∆

)
= V0(ϕR) + i

2V Tr
[
ln
(
∆R

)]
− 1

8
(
λ(2)

R + δ(2)
λ

)
∆2

R(ϕR), (3.27)

where V is the space-time volume and the tree-level effective potential is

V0(ϕR) = 1
2
(
−µ2

R(2) + δ(2)
µ

)
ϕ2

R + 1
4!
(
λ(4)

R + δ(4)
λ

)
ϕ4

R = −λ
(4)
R

12 ϕ
4
R, (3.28)

where in the last step we dropped all terms of order ε. Writing iTr
[
ln
(
∆R

)]
= V

∫
dm2 ∆R

and using equation (3.26) one finds that the divergences cancel between the two last terms
in equation (3.27) and the finite part of Tr

[
ln
(
∆R

)]
creates the one-loop correction to the

effective potential. After a little algebra one finds the result:

VH(ϕR) = −λ
(4)
R

12 ϕ
4
R + m4(ϕR)

2λ(2)
R
− m4(ϕR)

64π2

[
ln
(
m2(ϕR)
Q2

)
− 1

2

]
. (3.29)

This is the vacuum effective potential in the Hartree approximation, found for example in
reference [32]. Despite the apparent Q-dependence, VH(ϕR) is in fact scale-independent.
Indeed, one can first show from definition (3.25), using (3.18), that ∂Qm2(ϕR) = 0. Then by
a direct differentiation and using equations (3.18) and (3.20) one finds that ∂QVH(ϕR) = 0.
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Physical parameters. Differentiating (3.25) with respect to ϕR one can first derive the
identity

∂m2

∂ϕR

[
1− λ(2)

R
32π2 ln

(
m2

Q2

)]
= λ(2)

R ϕR. (3.30)

Using (3.30) it is simple to show that the first derivative of the potential can be written as

∂VH
∂ϕR

= −1
3λ

(4)
R ϕ

3
R +m2(ϕR)ϕR. (3.31)

Comparing equation (3.31) with equation (3.24a) we can see that in the case of pure vacuum
fluctuations the equation of motion can be written as ∂2

t ϕR +∂VH/∂ϕR = 0. Differentiating
equation (3.31) once more with respect to ϕR one finds

∂2VH
∂ϕ2

R
= m2(ϕR) +

[
λ(2)

R
(
m2(ϕR)

)
− λ(4)

R

]
ϕ2

R. (3.32)

Because m2(vR) = m2
R, we now see that the on-shell mass parameter mR of the auxiliary

propagator can be identified with a physical mass,2 if we at the same time define

λ(2)
R
(
m2

R
)
≡ λ(4)

R . (3.33)

This is the choice of parameters we shall use in the rest of this paper.
So far we have defined the counterterm δ(4)

λ only up to a finite constant. This, and other
remaining freedom in choosing the counterterms (see footnote 2) would allow us to further
match λ(4)

R to some observable. Given that λ(4)
R does not run, equations (3.33) and (3.32) are

enough to fix the parameters of the theory. Going beyond the Hartree approximation would
lead to more complicated calculations and relations between the auxiliary parameters, but
would not change the derivation conceptually.

3.3 Finite temperature effective potential

In our derivation in section 3.1 we did not specify the finite part of the local correlation
function ∆F, and in what follows we will compute it numerically from the equations of mo-
tion. Before that it is useful to make one more observation concerning thermal corrections.
Indeed, we can include thermal corrections by a simple generalization of equations (3.25)
and (3.26):

m2(ϕR, T ) ≡ −µ2
R(2) + 1

2λ
(2)
R

[
ϕ2

R + ∆F(ϕR, T )
]
, (3.34)

with ∆R(ϕR, T ) ≡ m2(ϕR, T )∆ε + ∆F(ϕR, T ) and

∆F(ϕR, T ) ≡ ∆F0
(
m2(ϕR, T )

)
+ T 2I

(
m2(ϕR, T )/T 2), (3.35)

2In fact these relations imply that mR corresponds to a mass defined at p2 = 0, but in the Hartree case
this is the same as the physical pole mass. Going beyond Hartree approximation, one can still make mR

agree with the physical on-shell mass using the remaining freedom in definitions (3.9) and in the definition
of the wave-function counterterm Z(2), which allow adding finite parts to δ(2)

ϕ , δ(2)
µ and δ(4)

λ .
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where I
(
x
)

= 2∂xJ
(
x
)
and J

(
x
)
is the dimensionless bosonic one-loop thermal integral

J (x) ≡ 1
2π2 Re

∫ ∞
0

dy y2 ln
(
1− e−

√
y2+x−iε

)
. (3.36)

Here the infinitesimal imaginary part iε defines the correct branch of the logarithm for
a negative m2. With these definitions one can go through the analysis of the previ-
ous paragraph and show that the equation of motion of the homogeneous field is now
∂2
t ϕR + ∂VH(ϕR, T )/∂ϕR = 0, where VH(ϕR, T ) is the thermally corrected, scale indepen-

dent effective potential in the Hartree approximation:

VH(ϕR, T ) = VH
(
ϕR
)∣∣∣
m→mT

− 1
2m

2
TT

2I
(
m2
T /T

2)+ T 4J
(
m2
T /T

2), (3.37)

where m2
T ≡ m2(ϕR, T ). Note that in the 2PI approach also the vacuum part VH(ϕR)

of the potential is computed with the thermally corrected mass, which is the solution to
equations (3.34) and (3.35). It is worth mentioning that in each special case considered
above, from the vacuum renormalization (3.12) to the quantum corrected effective action
with (3.35) and without (3.26) thermal corrections, and finally to the general case (3.22),
the divergence that gets removed by counterterms is different and depends on the value of
the background field, the temperature and the particle distribution. This is an unavoidable
feature of the 2PI equations with a finite order truncation. However, in all cases the
counterterms themselves remain the same, uniquely defined constants.

Comparison to ring-resummed potentials. Equations (3.34), (3.35) and (3.37) pro-
vide a consistent resummation of the thermal potential to super-daisy level. They can be
seen as a consistent generalization of the Parwani resummation method [33]. In these ap-
proaches the thermal corrections affect all modes on equal footing, while in the usual ring re-
summation method [34, 35] only the long wavelength modes are screened by the short wave-
length modes in a thermal plasma. The advantage of the potential (3.37) is that it provides
a consistently renormalized, smooth continuation between the non-relativistic and relativis-
tic regimes. In all other ring-resummed potentials this behaviour has to be put in by hand.

To effect a fair comparison of different approximations, we write all potentials using the
same renormalization conditions. To be concrete, we use the conditions ∂2

ϕV (vR) = m2
R and

∂4
ϕV (vR) = λR. With these conditions the standard one-loop corrected potential without

the ring-corrections becomes

V1L(ϕR, T ) ≡ −1
2µ

2
Rϕ

2
R + 1

4!λRϕ
4
R + V1−loop(ϕR) + T 4J

(
m2

0(ϕR)
T 2

)
, (3.38)

where m2
0(ϕR) = −µ2

R + 1
2λRϕ

2
R and the standard one-loop vacuum potential is (this

potential also satisfies the condition ∂ϕV1−loop(vR) = 0)

V1−loop(ϕR) = 1
64π2

{
m4

0(ϕR)
[
ln
(
m2

0(ϕR)
m2

R

)
− 3

2

]
+ 2m2

Rm
2
0(ϕR)

}
. (3.39)

In the Parwani approximation [33] one replaces m2
0(ϕR) with the lowest order thermal mass

m2
0(ϕR, T ) = m2

0(ϕR) + 1
24λRT

2 in equation (3.38) and in the ring approximation [34, 35],
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Figure 3. Left: the evolution of the second ϕ-derivatives of the different potentials at ϕR = 0.
Middle: the evolution of the ratio v(T )/T , where v(T ) is the position of the second minimum.
Right: the potential at critical temperature in each approximation. The critical temperatures are
Tc ≈ 169.20GeV in the ring, Tc ≈ 153.29GeV in the Parwani and Tc ≈ 155.67GeV in the Hartree
approximation. We used mR = 100GeV and λR = 6 (which implies λ(4)

R ' 5.2). The vertical line
in the left panel shows T0 =

√
12/λRmR, where the high-temperature limit approximated thermal

mass vanishes at ϕR = 0.

where only the zero-mode is dressed by thermal corrections, one finds:

VRing(ϕR, T ) ≡ V1L(ϕR, T ) + T

12πRe
(
m3

0(ϕR)−m3
0(ϕR, T )

)
. (3.40)

Above we wrote the Hartree potential in terms of the scale dependent variables. However,
since the potential is actually scale independent, we can rewrite it at the scale Q = mR,
explicitly in terms of the physical parameters:

VH(ϕR, T )=−λ
(4)
R

12 ϕ
4
R + m4

T

2λ(4)
R
− m4

T

64π2

[
ln
(
m2
T

m2
R

)
− 1

2

]
−m

2
TT

2

2 I
(
m2
T

T 2

)
+T 4J

(
m2
T

T 2

)
, (3.41)

where m2
T is the solution to the gap equation, which now becomes

m2
T ≡ m2

R + 1
2λ

(4)
R (ϕ2

R − v2
R) + λ(4)

R
32π2

[
m2
T ln

(
m2
T

m2
R

)
+m2

T −m2
R

]
+ T 2I

(
m2
T

T 2

)
, (3.42)

with m2
R = 1

3λ
(4)
R v

2
R and where finally λ(4)

R is related to the renormalized coupling λR ≡
∂4
ϕVH(vR, 0) by

λR = λ(4)
R

[
1 + 3

( 3λ(4)
R

32π2

)
+ 3

( 3λ(4)
R

32π2

)2 ]
, (3.43)

as can be shown by direct differentiation of equation (3.41).
In the left panel of figure 3 we show the evolution of the second ϕ-derivatives of the

potentials near the critical temperature at ϕR = 0. The sharp kinks seen in the ring
(green dashed line) and Parwani (red dash-dotted line) cases at T = T0 result from the
non-analytic dependence of the resummed potentials on the thermally corrected mass term
(we are using the high-temperature expansion for m2(ϕ, T ) in these schemes). The one-
loop result (blue dotted line) does not share this feature, because there we are using the
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non-resummed mass term. Interestingly, the Hartree result (black line) does not show signs
of similar non-analyticity. In the middle panel we show the evolution of the ratio v(T )/T ,
where v(T ) is the position of the asymmetric minimum as a function of T . There are
significant differences between the approximations: in all resummed potentials a metastable
minimum emerges, and it has the largest jump in the Hartree case. In the one-loop case
the metastability does not develop, but there is a jump in v(T )/T at T ≈ 120GeV due to
the non-analytic behaviour, now of the vacuum mass term as a function of ϕ. In the right
panel we show the potentials at the critical temperature (whose value for each model is
given in the figure caption). The transition strength is dramatically different in the different
approximations and it is by far the strongest in the Hartree case. Of course one should keep
in mind that this is a very simple model, with only a single scalar field. However, when one
compares the one-loop results with lattice calculations, one typically finds that both ring
and Parwani approximations give weaker transitions than the lattice or 3d-perturbation
theory calculations [36]. It would be interesting to see if the Hartree approximation was in
better agreement with these schemes when applied in more complex models.

4 Wigner space equations

We now proceed to solving the general equations (3.24b) and (3.24a) for homogeneous non-
equilibrium systems. Of these, equation (3.24a) is already in the desired form, when we
assume that field ϕR is homogeneous, but equation (3.24b) for the correlation function will
be easier to handle in the mixed representation. Because of the homogeneity an ordinary
Fourier transformation is sufficient for the spatial coordinates, but for the time variable we
need the Wigner transformation:

∆ab
Rk(k0, t) =

∫
dr0 ∆ab

Rk

(
t+ r0

2 , t−
r0
2

)
eik0r0 , (4.1)

where t ≡ 1
2(x0 + y0) and r0 ≡ x0 − y0. Because all correlation functions ∆ab(x, y) have

the same local limit, it suffices to consider the equation for the lesser Wightman function
∆+− ≡ ∆<. Starting from equation (3.24b), we find that in the Wigner representation it
satisfies the equation,[1

4∂
2
t − k2 − ik0∂t + e−

i
2∂
m
t ∂k0m2(ϕR,∆R

)]
∆<

Rk(k0, t) = 0. (4.2)

Here the index m in the derivative ∂mt signals that the time-derivative acts only on the
mass function and not on the propagator. Equation (4.2) is still equivalent to (3.24b) and
highly complicated because of the infinite tower of t- and k0-derivatives involved. It can
be recast into a simpler form by introducing a moment expansion. Following reference [27]
we first introduce the moment functions:

ρkn(t) =
∫ dk0

2π kn0 ∆<
Rk(k0, t). (4.3)

Then taking the real and imaginary parts of equation (4.2) integrated over k0 and the
imaginary part of the same equation integrated over k0 and weighted by k0, we get three
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equations coupling the moments ρnk with n = 0, 1, 2 to the field equation for a homogeneous
field ϕR(t):

1
4∂

2
t ρ0k − ρ2k + ω2

k(t) ρ0k = 0, (4.4a)

∂tρ1k = 0, (4.4b)

∂tρ2k −
1
2
[
∂t
(
m2

eff(t)
)]
ρ0k = 0, (4.4c)[

∂2
t +m2

eff(t)
]
ϕR = 1

3λ
(2)
R ϕ3

R. (4.4d)

We used the shorthand m2
eff(t) ≡ m2(ϕR,∆R) for the mass defined in (3.22) and (3.21) and

defined ω2
k(t) ≡ k2 +m2

eff(t). The gap equation (3.21), including the out-of-equilibrium (or
thermal) modes, can be written explicitly as

m2
eff(t) = −µ2

R(2) + 1
2λ

(2)
R

{
ϕ2

R + ∆F0
(
m2

eff(t)
)

+
∫

k

[
ρ0k(t)−

θ
(
ω2

k(t)
)

2ωk(t)

]}
, (4.5)

where we defined
∫

k ≡
1

2π2
∫∞

0 d|k||k|2, and the Heaviside theta-function θ
(
ω2

k(t)
)
ensures

that the vacuum does not contain the unstable spinodal modes.3

If ρ0k(t) is identified with a thermal distribution (including the vacuum part), equa-
tion (4.5) clearly reduces to (3.34). After discretizing the momentum variable, equa-
tions (4.4c), (4.4a), (4.4d) and (4.5) can be written as a closed set of coupled first order
differential equations, which include backreaction from the non-equilibrium modes into the
evolution of the homogeneous field ϕR. The gap equation (4.5) must be solved first at the
entry to the routine, after which the solution is advanced using (4.4c), (4.4a) and (4.4d).
In practice one must introduce a UV-cutoff for the magnitude of the momentum |k|, but
results should not depend on its precise value, because all non-trivial physics results from
gradient terms acting in the infrared region. We have indeed shown that this is the case
in our numerical examples.

Friction. Our main goal is to study the dynamical evolution of ϕR including the backre-
action from the modes excited during the zero-crossings (parametric resonance) and from
the unstable modes (spinodal, or tachyonic, instability). We would also like to study
dissipative interactions in our system. To do this correctly, we should go beyond the
Hartree approximation. This would be in principle a straightforward but very laborious
task. Some formal results can be found for example in [37]. Here we will instead add
phenomenological friction terms to our equations. Following references [27] and [28] we

3Spinodal modes are the unstable modes that appear when the effective mass function is negative. We
define them explicitly in equation (5.1) below. Note that the vacuum energy integral in the spinodal region,
computed with the Heaviside function, is identical with the integral computed taking the absolute value of
the mass squared function and integrating over all momenta.
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generalize equations (4.4a), (4.4b) and (4.4c) as follows:

1
4∂

2
t ρ0k − ρ2k + ω2

k(t)ρ0k = −c1∂tρ0k, (4.6a)

∂tρ1 = −c2
(
δρ1k − δρeq

1k

)
, (4.6b)

∂tρ2k −
1
2
[
∂t
(
m2

eff(t)
)]
ρ0k = −c2

(
δρ2k − δρeq

2k

)
, (4.6c)

where δρnk ≡ ρnk − ρvac
nk with ρvac

nk being the vacuum moments defined in equations (4.8)
below, and the explicit forms for the equilibrium distributions ρeq

nk have to be provided
externally depending on the problem. Collision integrals could be computed accurately
in the context of the cQPA formalism following reference [28] (see also [38]), but here we
are only interested in qualitative effects, for which the above phenomenological approach is
sufficient. Even then the coefficients ci could be some momentum dependent functions, but
for simplicity we will assume that they are constants. Note that ρnk and ρeq

nk in general have
different vacuum distributions due to different respective solutions to mass gap equations.

Number densities and coherence function. We can get a better understanding of
the physical meaning of the moments by comparing them with the spectral cQPA solutions
found in reference [27]. As explained in section 4.2 of reference [27], the moments are in
a one-to-one correspondence with the cQPA mass-shell functions fmk± and the coherence
function f ck. The former can be further related to the particle and antiparticle number
densities nk and nk, so that one eventually finds [27, 28]:

nk = 1
ωk
ρ2k + ρ1k, (4.7a)

nk = 1
ωk
ρ2k − ρ1k − 1, (4.7b)

f c±k = ωkρ0k −
1
ωk
ρ2k ±

i
2∂tρ0k. (4.7c)

The coherence functions f c±k measure the degree of quantum coherence, or squeezing,
between particle-antiparticle pairs with opposite 3-momenta [39]. A non-coherent vacuum
state must then be defined as a state with no squeezing in addition to having no particles.
This corresponds to setting nk = nk = f c±k ≡ 0, which is equivalent to:

ρvac
0k = Θk

2ωk
, ∂tρ

vac
0k = 0, ρvac

1k = −1
2 and ρvac

2k = ωk

2 Θk, (4.8)

where Θk ≡ θ
(
ω2

k(t)
)
. Because we are assuming that ϕR is a real scalar field we also have

nk = nk, which implies that ρ1k = −1/2 at all times, so that the equation for ρ1k is actually
redundant. This is indeed a consistent solution even with the friction terms included.

5 Numerical results

We shall now solve the coupled dynamical equations (4.6a), (4.6b), (4.6c), (4.5) and (4.4d)
in a few examples chosen to illustrate the rich physics of the strongly coupled system
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including the quantum backreaction. We will uncover some known results and find new
phenomena associated with spinodal and resonant particle production at phase transitions.4

We will show that a strong spinodal instability can cause a quantum assisted barrier pene-
tration without tunneling, and we emphasize the difficulty of giving any sensible definition
for the effective potential in a non-equilibrium system. Eventually, we will follow the full
thermalization process of a scalar field starting at rest in the vacuum potential until the end,
when the energy in the field is almost completely transformed into thermal fluctuations.5

5.1 Particle production and reheating via parametric resonance

We first consider a case where the field starts from a relatively large value and oscillates
several times between positive and negative field values. Because we are also interested
in the spinodal instability, we consider a tree-level potential with a negative mass term.
As physical parameters we use mR = 100GeV and λ(4)

R = 1, given which, µ2
R(2)(Q0) can

be solved from (3.13), while the running couplings and masses are defined in (3.19). We
compute the initial value for the effective mass function m2(ϕR,∆R) using the vacuum
Hartree approximation (3.25). We used running parameters everywhere in our calculations.
This served as a useful consistency check, since all final results must be (and indeed were)
scale independent. In this example we also set the friction terms to zero, ci = 0.

The essential results for this run are shown in figures 4 and 5. In the left panel of figure 4
we show the evolution of the classical field ϕR, which here displays an orderly oscillation
pattern with a slowly decaying amplitude. The middle panel of figure 4 shows the evolution
of the fluctuations in the zeroth moment integrated over the 3-momentum, which is the
non-equilibrium contribution to the local correlation function:

∫
k δρ0k =

∫
k

(
ρ0k − ρvac

0k

)
≡

δ∆F(t, t). These results are in good agreement with reference [16], where this problem
was studied earlier using the mode equation approach. The rapid increase of δ∆F(t, t) at
early times is caused by two non-perturbative processes, the spinodal instability and the
parametric resonance.

Spinodal instability. The presence of a spinodal instability is manifest in the right
panel of figure 4, where the effective mass term m2(ϕR,∆R) is seen to become periodically
negative in the region t . 0.25. Indeed, whenever the mass-function is negative, all k-modes
satisfying

k2 +m2(ϕR,∆R) < 0 (5.1)

4The use of the term phase transition is not very accurate here, as we do not have a phase transition
in the same sense as for example in the electroweak transition. Rather, we have a situation where the
universe evolves from a cold initial state to a hot final state. It is a common practice however to refer to
this phenomenon as a phase transition as well, and we will also do so in what follows.

5Let us make a note on units: in section 3.3, when discussing the thermal effective potentials, we gave
the mass parameter a value characteristic for the electroweak phase transition, mR = 100GeV. Below we
continue to use the same value as a benchmark, and we shall be measuring all dimensionful quantities in the
GeV-units. In particular, we will be measuring time in units GeV−1, while we will be suppressing time-units
in all plots. However, in all examples that we will consider below, the physical mass mR is the only mass
scale in the problem. Thus, all results are in fact valid as such for an arbitrary mass value, if only one
rescales all dimensionful parameters by a suitable power of mR/GeV.
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Figure 4. Shown is the evolution of the classical field as a function of time (left), evolution of the
integrated non-equilibrium part of the local correlation function (middle), and the effective mass
function m2(ϕR,∆R) (right). We used λ(4)

R = 1, mR = 100GeV, ϕR,in = 300GeV and ∂tϕR,in = 0.
The moment functions were initialized to the non-coherent vacuum values (4.8). We also assumed
no friction, setting ci to zero.

are unstable and can grow exponentially. This is the spinodal or tachyonic instability.
One might then be tempted to associate the growth in fluctuations in the period t . 0.25
fully to the spinodal instability. If this was true, the excited modes should satisfy the
condition (5.1), which here translates to |k| . 60GeV. However, from figure 5 we see
that this is not the case. The fast production of modes is clearly visible in the upper
panels which show the integrated particle number (left) and the integrated modulus of
the coherence functions (right). But from the lower panels, showing time-momentum heat
plots of the same quantities, we see that the excited modes are concentrated on a frequency
band which lies entirely above the spinodal region (5.1).

Parametric resonance. While our equations are highly non-linear and strongly self-
coupled, it is apparent that the structures seen in the heat plots in figure 5 correspond
to Mathieu instabilities associated with parametric resonance, familiar from the studies
of inflationary reheating [4]. This problem was also studied using 2PI methods in ref-
erence [7], albeit with a different set of approximations and a different potential. If we
identify the mass squared of the mode function in the Mathieu equation with our mass
function m2(ϕR,∆R), and follow the analysis of section V in reference [4], we can (very
roughly) estimate the Mathieu equation q-parameter in our case to be

q ∼ 2 ∆m2
eff

(2πν)2 ≈ 2, (5.2)

where ∆m2
eff ≈ 2 × 104 GeV2 is the instantaneous amplitude and ν ≈ 21GeV is the local

frequency of oscillations of the effective mass term m2(ϕR,∆R), shown in figure 4. The
value of the q-parameter, which remains roughly the same throughout the calculation,
suggests an intermediate resonance between the narrow and broad regimes. Similarly, the
expected position of the first resonance band is by and large estimated to be

|k|rb ∼
πν
4√2
≈ 60 GeV. (5.3)

This result, and the expected width of the resonance [4] ∆|k| ∼ |k|rb ≈ 60GeV are in quali-
tative agreement with our results. In figure 5 we can even observe a second, much narrower
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Figure 5. Shown is the evolution of the integrated number density (top left) and the absolute
value of the integrated coherence function

∣∣f c±
k

∣∣ (top right), defined in equations (4.7), for the
same parameters as in figure 4. The bottom row shows the heat plots in the momentum and time
variables for the unintegrated distributions multiplied by the phase space factors: k2

2π2nk (lower
left) and k2

2π2

∣∣f c±
k

∣∣ (lower right).
band below the first one, which dominates the particle production at t ≈ 1. While this is
again in agreement with the qualitative expectations, its interpretation via Mathieu equa-
tion methods becomes even more tenuous. At late times t & 0.3 the shape of the growth
pattern fits well in the standard picture [4], but in the spinodal region the resonant pro-
duction appears to be more efficient than usual: upon spinodal zero-crossings the resonant
production that normally shows (as it indeed does at later times also in our example) a pe-
riod of anti-correlation, is here always positively correlated. While individual growth bursts
are not enhanced, this positive correlation leads to particularly strong particle production.

Because we did not include interactions in this run, the fluctuation band structure
remains stable at all times. The system also remains highly coherent, as is evident both
from the increase of the integrated coherence function and the stability of the heat plot of
the coherence function shown in the right panels of figure 5.

5.2 Strong spinodal instability

In the above analysis we made little reference to the effective potential. Indeed, the one-
particle irreducible effective action is not a very useful quantity in an out-of-equilibrium
setting and it can even be defined only after the equations of motion have been solved.
Even then one cannot define it universally, but only as a quantity evaluated locally in
time. We will now study this question in the case of a very strong spinodal instability.
To be specific, we still use the values mR = 100GeV, λ(4)

R = 1 and ∂tϕR,in = 0, but we
take ϕR,in = 243.5GeV and include also friction. We assume that collisions drive the
system to the vacuum state, i.e. we take δρeq

nk ≡ 0, and we specify the coefficients to be
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Figure 6. The upper left panel shows the time evolution of ϕR (in units GeV) and the lower
left panel that of the effective mass function m2(ϕR,∆R) (in units GeV2) in the case of a strong
spinodal instability. In the right panel we show the time-evolution of the instantaneous effective
potential (5.4) (dashed black line), embedded in a plot of the vacuum Hartree potential (dashed red
line). The colored dots indicate select times at which the instantaneous potential was evaluated as
indicated in the left panels. The solid blue line shows the instantaneous value of the non-equilibrium
vacuum potential (5.5).

c1,2 = 0.6GeV.6 In this case the initial potential energy of the field is lower than the peak
of the vacuum potential at ϕR = 0. This can be seen in the right panel of figure 6, where
we plot the Hartree-resummed vacuum potential (red dashed line) and indicate the initial
field value by the black dot.

Obviously, if the potential was held fixed, the field would simply oscillate around the
positive minimum with a decaying amplitude. However, when backreaction is included, the
picture changes dramatically. The actual field evolution is shown in the upper left panel of
figure 6. Curiously, the field stays around the positive minimum during only one oscillation
cycle, after which it apparently passes through the potential barrier, spending a rather long
time near the middle of the potential with the effective mass function close to zero. Of
course what happens is that in the first passage of the field into the spinodal region, an
explosive creation of fluctuations takes place. This is clearly demonstrated in figure 7,
which shows the integrated fluctuations in the moment functions (upper panels) and the
associated heat plots in the time-momentum plane (lower panels). These fluctuations
absorb a large amount of entropy, which decreases the free energy in the system and lowers
the barrier between the minima allowing the field to pass to the negative side. The key
issue is to not confuse the total internal energy of the system and the free energy, which
may vary strongly depending on the entropy production.

6Although we gave the friction terms only in a qualitative form, we can provide an estimate for the
magnitude of the ci-coefficients. From equations (4.6) it is clear that ci have the dimensions of mass. The
lowest order contribution to the collision integrals arises at the second order in coupling in the 2PI expansion.
Hence the naïve scale of the coefficients ci is given by

(
λ

4π

)2
m, which for λ(4)

R = 1 and mR = 100GeV gives
ci ' 0.6GeV.
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Figure 7. The upper panels: shown are the integrated non-equilibrium fluctuations of the moment
functions,

∫
k
δρ0,2k. The colored dots have the same interpretation as in figure 6. The lower panels:

heat plots showing the momentum distributions 1
2π2 k2δρnk corresponding to the upper panels. The

left panels show the zeroth moment n = 0 and the right panels the second moment n = 2.

Non-equilibrium effective potentials. While the effective potential cannot be defined
a priori, it is illustrative to construct it a posteriori as a time dependent potential that
reproduces the equation of motion (4.4d) at all times. This potential can be constructed
as the definite integral

V1PI(t;ϕR) ≡
∫ t

tin

[
−1

3λ
(2)
R ϕ3

R +m2(ϕR,∆R)ϕR

]
(∂t̃ϕR)dt̃, (5.4)

where ϕR and ∆R are the solutions of the equations of motion. We show this potential
as the dashed black line in figure 6. After the crossing to the negative side, the shape
of the potential function settles and the field oscillates around the negative minimum
with a decaying amplitude. We stress that V1PI is only useful for the visualization and
interpretation of results and there is no unique definition of the effective potential in the
non-equilibrium case.

As was already mentioned in section 3.3, in any finite truncation the renormalized 2PI
vacuum becomes dependent on the IR-physics. Another interesting potential7 function
then is the equivalent of the vacuum Hartree potential in the presence of fluctuations. This
potential is defined as

VH∆(ϕR,∆R) ≡ VH(ϕR,∆R)− 1
2m

2(ϕR,∆R)
∫

k
δρ0k, (5.5)

where VH(ϕR,∆R) is the 2PI vacuum potential (3.29) evaluated replacing the vacuum mass
function m2(ϕR) with the general mass function m2(ϕR,∆R). Note that the integral term

7In reference [16] yet another dynamical potential was defined as the difference between the total energy
of the system and the kinetic energy of the classical field.

– 20 –



J
H
E
P
1
2
(
2
0
2
1
)
1
9
0

0 1 2 3 4 5 6
-400

-200

0

200

400

0 1 2 3 4 5 6

0

5

10

15
10

7

Figure 8. Shown is the time-evolution of the classical field (left panel) and that of the total energy
in the fluctuations and the classical field (right panel). Hϕ(t) is the energy in the classical field
and H∆(t) is the energy in the fluctuations. The physical parameters and the specific form of the
collision integrals used in this run are described in the text.

over the fluctuations of the zeroth moment is a part of the vacuum Hartree potential,
similarly to the case with the thermal potential (3.37). The potential (5.5) is shown with
the blue solid line in the right panel of figure 6. It represents changes in the 2PI Hartree
vacuum energy including the backreaction effects, and like the instantaneous V1PI-potential,
its barrier around ϕR = 0 is temporarily lowered by the backreaction. This example
demonstrates that the final stages of a phase transition may involve very complicated
quantum dynamics, where classical expectations and constraints do not hold.

We conclude this subsection by stressing on the difference of the fluctuation spectra in
the present case, shown in the lower panels of figure 7, and in the parametric resonance case
shown in figure 5. Even though we used the same mass and coupling parameters, essentially
all fluctuations are here created by the spinodal instability. Indeed, they occupy a region
in the phase space which is consistent with the instability constraint (5.1), continues all
the way to zero momentum and lies entirely below the parametric resonance band.

5.3 Self-thermalization

As our final example we study thermalization of the scalar field energy in a self-interacting
system. We use the same physical parameters and initial conditions as in section 5.1
but include collision terms with the friction coefficients c0,1 = 0.6GeV, and assume that
the collisions drive the system to thermal equilibrium, i.e. we take δρeq

nk ≡ δρth
nk. With

rigorously computed collision terms the thermal state would emerge automatically as an
attractor solution, but in our phenomenological approach we need to give a definition for
the instantaneous temperature. In thermal equilibrium a general moment can be written as

ρth
nk = 1

2 ω
n−1
k

[
nBE(ωk) + (−1)n

(
1 + nBE(ωk)

)]
, (5.6)

where nBE(k0) = (ek0/T − 1)−1 is the Bose-Einstein distribution function. In particular

δρth
0k = 1

ωk
nBE(ωk) and δρth

2k = ωknBE(ωk). (5.7)
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Figure 9. Shown are the evolution of the number density (left) and the modulus of the coherence
functions (right). In the upper panels the quantities are integrated over momentum. We used the
same parameters as in figure 5, except for non-zero friction coefficients ci = 0.6GeV in the collision
integrals with thermal equilibrium solutions.

while δρth
1k = 0. We define the equivalent temperature T = T (t) by requiring that the

thermal state has the same energy as what is stored in the fluctuations:

H∆(t) ≡
∫

k
δρ2k(t) ≡

∫
k
ωknBE(ωk). (5.8)

In all these equations ω2
k = k2 + m2(ϕR,∆R) is a function of time. The energy stored in

the classical field is

Hϕ(t) ≡ 1
2
(
∂tϕR(t)

)2 + VH∆(ϕR(t),∆R(t)). (5.9)

With our definitions of the temperature and the collision integrals the total energy H =
Hϕ +H∆ should be conserved, and we checked that this is indeed the case to a high accu-
racy in our calculations. For more details on this, and on the numerical setup in general,
see appendix A.

Spinodal slowing. In the left panel of figure 8 we show the evolution of the classical
field ϕR. Initially ϕR evolves as in the collisionless case, oscillating with a nearly constant
frequency and a large amplitude, but around t ∼ 2 the frequency starts to decrease until
it reaches a minimum around t ∼ 3. After this the field gets trapped around the positive
minimum while the oscillation frequency increases again. This spinodal slowing effect was
already seen in connection with the barrier crossing in section 5.2. The bearing of the
spinodal modes is revealed in the inset in the left panel of figure 11, which shows that the
effective mass term m2(ϕR,∆R) repeatedly becomes negative in this region. In the right
panel of figure 8 we show the energy components Hϕ and H∆. Initially all energy is stored
in the classical field, but the fraction of energy in the fluctuations increases until the system
is reheated, with almost all of the energy contained in the fluctuations.
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Figure 10. Shown are the momentum distributions k2

2π2 δρ2k (left) and k2

2π2

∣∣f c±
k

∣∣ (right) for three
different times: t = 0.2 (solid blue lines) t = 1.3 (red dotted lines) and t = 6 (black dashed lines).
Also shown in the left plot is the weighted thermal distribution k2

2π2ωknBE(ωk) for the equivalent
temperature T (t = 6) = 144.9GeV (black dotted line).

Mode transfer and decoherence. In figure 9 we again show the evolution of the
number density and coherence functions, including both the integrated quantities and the
time-momentum heat plots. There are striking, but expected differences between these
plots and the corresponding non-interacting results shown in figure 5. First, the number
density stops growing already at t ∼ 1 and eventually starts to decrease for t & 2. As
is seen from figure 8, fluctuations dominate the total energy already for t & 1, and the
subsequent decrease of particle number results from a transfer of modes to higher energies.
Thermalization process should also lead to decoherence, and this is indeed clearly visible in
the upper right panel of figure 9, which shows the integrated function

∣∣f c±k ∣∣. From the heat
plots we see that particle production gets progressively less efficient and moves to smaller
frequencies, as less and less energy is left in the classical field. From the heat plot in the
lower right panel we see that coherence is erased throughout the phase space at late times.

Thermalization. In figure 10 we show the |k|-distributions of δρ2k (left panel) and the
coherence function

∣∣f c±k ∣∣ (right panel) weighted by the phase space factor, for selected times
during the evolution. At a relatively early time t = 0.2 the distributions shown in solid
blue still display a clear parametric resonance band structure. At a later time t = 1.3
(red dotted lines) the resonant spectrum is already much more complex, apparently with
contributions from many narrow bands. Also a significant mode-transfer to the thermal
region has already taken place. Indeed, from the main plot in the left panel of figure 11
we see that the equivalent temperature at t = 1.3 is roughly 140GeV, and as the field
is relatively light, 〈m2

eff〉1/2/T . 1 with 〈m2
eff〉 being the local average of the oscillating

effective mass function, the expected maximum of the thermal spectrum is located at
〈|k|〉 ≈ 3T ≈ 400GeV. At the end of the simulation, t = 6 (black dashed curve), the
system has essentially thermalized. Almost all energy is in the fluctuations and very little
particle production activity remains. The particle number in the resonance bands is small
and the coherence is almost vanishing everywhere and in particular in the thermal region.
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Figure 11. In the left panel we show the equivalent temperature defined through equation (5.8) as
a function of time. The inset shows the parameter xeff ≡ sgn

(
m2

eff
)∣∣m2

eff
∣∣1/2

/T . In the right panel
we show the EOS-parameter of the system defined in equation (5.10). The black arrows indicate
the limiting cases of vacuum (w = −1) and kinetic (w = 1) energy dominance as well as matter
(w = 0) and radiation (w = 1/3) EOS’s, shown by horizontal lines. In all graphs shown the red
arrow points the region of maximal spinodal slowing.

Also the fluctuations in the equivalent temperature have but a small residual amplitude
left. For the final time we also plotted (black dotted line in the left panel of figure 10)
the equivalent thermal spectrum k2

2π2ωknBE(ωk) with T = 144.9GeV, corresponding to the
equivalent temperature at t = 6. The close agreement between the actual and thermal
distributions shows that the system has indeed thermalized to a very high accuracy.

Equation of state. Let us finally study the evolution of the equation of state (EOS) in
the system. The EOS-parameter is defined as

w ≡ P
H
, (5.10)

where H = Hϕ+H∆ is the total energy and the total pressure P = Pϕ+P∆ is similarly the
sum of the pressures in the classical field and in the fluctuations. The former is given by

Pϕ = 1
2(∂tϕR)2 − VH∆(ϕR,∆R), (5.11)

where VH∆ was defined in (5.5). The pressure contained in the fluctuations can be com-
puted as the spatial component of the energy-momentum tensor [27], and it can be written
in terms of the moment functions as follows:

P∆(ϕR,∆R) =
∫

k

[
δρ2k(t) +

(1
3k2 − ω2

k

)
δρ0k(t)

]
. (5.12)

It is easy to see that in the thermal limit (5.12) reduces to the negative of the thermal part
of the effective potential in the Hartree approximation: P∆ = −T 4J

(
m2
T /T

2).
We plot the EOS-parameter w in the right panel of figure 11. The EOS-parameter

starts from w = −1 and initially oscillates between w = −1, corresponding to total vac-
uum energy dominance, and w = 1, corresponding to kinetic energy dominance (kina-
tion) in the classical field sector. However, as the energy is moved out from the field
and the system thermalizes, the EOS-parameter moves to the band 0 < w < 1/3 corre-
sponding to normal matter. From the inset of the left panel we see that the average value
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〈|xeff |〉 = 〈|m2
eff |1/2/T 〉 ≈ 0.6 at late times. This indicates that the reheated thermal plasma

is almost relativistic and indeed, the EOS-parameter is asymptoting close to w = 1/3 at
late times. (In a purely thermal plasma with xeff = 0.6 one would get w ≈ 0.315.) The
periodic deviation below this value seen in figure 11 is due to the field contributions to
energy and pressure.

6 Conclusions

We have studied the non-equilibrium evolution of a system consisting of a classical scalar
field coupled to the two-point function describing quantum fluctuations. We derived renor-
malized evolution equations for the system using 2PI methods in the Hartree approxima-
tion. We derived the effective potential for this system in vacuum and in thermal equi-
librium and compared the latter with the known one-loop-resummed effective potentials.
We showed that the Parwani-resummed thermal potential [33] is closest in spirit to the
Hartree-resummed effective potential. We showed that in a non-equilibrium situation the
2PI method, in any finite truncation, leads to an effective vacuum potential (the vacuum
state) that depends on the infrared physics. Indeed, even though the renormalization pro-
cedure provides unique and constant counterterms, the split of the system into divergent
and non-divergent parts depends on the IR-physics.

We wrote our renormalized evolution equations as a set of coupled moment-equations
for the correlation function and a field equation for the one-point function in the mixed
representation and included phenomenological collision integrals describing friction. We
used this system to study the non-perturbative particle production and spinodal instabil-
ity at the end of phase transitions. We found out that quantum backreaction can have
significant effects on the evolution of the system and addressed the problems in trying to
define any practical effective potential for such dynamical systems. In particular we were
able to follow the full thermal history of a self-interacting system starting from a cold
initial state where all energy in the system was stored in the classical potential, until the
end when the system was reheated and thermalized and the field stayed at the minimum
of the thermal (Hartree) effective potential.

In this work we assumed that the quantum system lived in the Minkowski space-time.
Generalization to an expanding FRLW space-time is straightforward by a simple transform
to conformal coordinates [40]. Moreover, in many realistic systems the time scales involved
in the phase transition are much faster than the Hubble expansion. In those cases our
results are representative of the physics as such. Also, we used only a phenomenological
form for the collision integrals. It would be interesting to derive more realistic collision
terms using the methods developed in [28, 39]. Also it would be interesting to couple the
scalar field also to other quantum fields. This should be straightforward by combining the
current results with the quantum transport equations for fermions developed in [41]. In
this way one should be able to study reheating at the end of inflation in a realistic setup.
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A Numerical implementation

In this appendix we discuss some technical points that are relevant for an accurate and
efficient solution of the evolution equations. The first one concerns identifying a conserved
quantity in the non-interacting limit. The equations rewritten using this variable are much
more stable than the original equations. The second point concerns discretization. In
a naïve binning of the momentum variable, the discrete integral of the vacuum term in
equation (4.5) is badly behaved numerically near the edges of the spinodal regions. This
problem can be avoided by a more careful definition of the binned variables. Finally, we
show how our numerical setup conserves the total energy of the solved system to a high
accuracy with the self-thermalizing system as a case study.

Stabilized equations. It was noted already in reference [27] that the moment equa-
tions (4.4a), (4.4b) and (4.4c) can be written in a form that is more resistant to numerical
instabilities, using the variable

Xk ≡ 2ρ0kρ2k − ω2
k(t)ρ2

0k −
1
4(∂tρ0k)2. (A.1)

Indeed, if we multiply (4.4a) by 2∂tρ0k and (4.4c) by 2ρ0k and subtract the resulting
equations, we can show that Xk is conserved in the collisionless limit: ∂tXk = 0. With non-
vanishing friction terms Xk is no longer conserved, but the derivation with equations (4.6)
including friction proceeds analogously, and one finds:

1
4∂

2
t ρ0k − ρ2k + ω2

k(t)ρ0k = −c1∂tρ0k, (A.2a)

∂tρ1k = −c2
(
δρ1k − δρeq

1k

)
, (A.2b)

∂tXk = 2c1
(
∂tρ0k

)2 − 2c2ρ0k

(
δρ2k − δρeq

2k

)
. (A.2c)

We have thus replaced ρ2k by Xk as a dynamical variable. We will use (A.1) to set the
initial condition for Xk in terms of the initial values for ρ0k, ∂tρ0k and ρ2k, and at any
point during and at the end of the calculation we can compute ρ2k from Xk using the
inverse relation

ρ2k = 1
2ρ0k

[
Xk + 1

4(∂tρ0k)2 + ω2
k(t)ρ2

0k

]
. (A.3)

Coarse-grained binning. Whenever the effective mass term is negative there is a mo-
mentum for which m2(ϕR,∆R) = −k2 and at this point the zeroth momentum vacuum
function ρvac

0k = Θk/(2ωk) diverges. This is a mild, integrable singularity that does not
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Figure 12. Shown is the relative change in energy δH = H/H0 − 1 during calculation in
the self-thermalization case studied in section 5.3. Inset shows a close-up on the first spinodal
instability region.

affect the continuum limit, but it can cause overflows and numerical inaccuracy in a sys-
tem with a finite discretization. This problem can be avoided by a careful choice of binned
variables for the vacuum distribution. That is, we replace the vacuum distribution by a
coarse-grained distribution defined by an integration over each momentum bin q ∈ [qi, qi+1]:

1
2ωqci

→ 1
2q2
ci∆qi

[
i0(qi+1)− i0(qi)

]
, (A.4)

where qci ≡ 1
2(qi + qi+1), ∆qi ≡ qi+1 − qi and

i0(q) ≡ 1
2

[
qωq −m2artanh

(
q

ωq

)]
. (A.5)

When the bin width goes to zero, the replacement (A.4) does not make any difference.
However, for a finite discretization it avoids the singularity that would occur in the spinodal
region when the effective mass function coincides with one of the bin-momenta squared,
m2(ϕR,∆R) = −q2

ci.

Energy conservation. In figure 12 we show the relative change in the total energy
δH ≡ H/H0−1 in the example we studied in section 5.3. The total energy is H = Hϕ+H∆,
where partial energies in the fluctuations H∆ and in the classical field Hϕ were defined in
equations (5.8) and (5.9). In this example the total energy should be conserved, and
this is indeed true to a very high accuracy. In this run we used a discretized momentum
|k| ∈ [0, 2000]GeV with 1000 grid points. As can be seen in the figure, the error is essentially
negligible between the spinodal regions. Within the spinodal regions there is some residual
noise at early times. This arises from the integrable singularity near m2(ϕR,∆R) = 0, even
with the coarse grained binning, but even this error is small and can be further reduced by
reducing the bin width. We conclude that numerical errors are well under control in our
calculations.
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1 Introduction

Classical scalar fields coupled to out-of-equilibrium quantum matter play an important
role in various settings in cosmology. Some key examples include non-perturbative particle
production processes during the reheating after inflation, via a parametric resonance [1–
5] or via spinodal instability [6–14], as well as the processes leading to the electroweak
baryogenesis [15–22] and the leptogenesis mechanism [23–32]. Finding a complete solution
of such problems often requires non-perturbative methods and non-equilibrium quantum
field theory. In particular in the case of resonant particle production the backreaction
of the newly created quanta may have significant effects on the evolution of the coupled
system [33–38].

In this work we study tachyonic dark matter production during the reheating epoch in
a setup proposed in [13, 14]. Non-minimally coupled scalar fields may undergo a tachyonic
instability, or spinodal decomposition, when an effective mass term ξRχ2 periodically takes
negative values, driven by the oscillating Ricci scalar R during reheating. In [13] it was
shown that for stable scalar fields with sufficiently weak couplings to visible matter the
tachyonic particle production induced by the curvature coupling produces adiabatic dark
matter, whose abundance can be made to agree with the observed value over a wide range
of coupling values. The results of [13] and later in [14] are based on perturbative studies
of the particle production similar to those applied to the so called tachyonic reheating
in [9–11]. In [39], the dynamics of non-minimally coupled scalars were studied using classical
lattice simulations. Here we revisit the tachyonic dark matter production of [14] applying
a fully non-perturbative 2PI-approach using methods introduced in [38] (for earlier work
see [40–44]).

The 2PI-framework is a powerful tool for studying dynamical non-equilibrium problems.
It results in evolution equations which naturally include the backreaction from out-of-
equilibrium modes on the evolution of the one-point function. We derive the renormalized
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2PI equations of motion in an on-shell scheme in terms of physical parameters in the lowest
non-trivial loop approximation. We then solve for the coupled dynamics of the one- and
two-point functions of the scalar field and investigate the momentum structure of the
two-point function. We identify the non-perturbative processes of parametric resonance
and spinodal instability taking place during the reheating stage. The efficiency of these
processes is found to sensitively depend on the parameters of the theory, such as the
spectator self-interaction strength and the inflaton decay rate. Also, the tachyonic and
subsequent parametric processes may be coupled in a very intricate way. We note that the
methods and their numerical implementation discussed here are not limited to the particular
example at hand, but similar techniques can be carried also to more general setups.

This paper is organized as follows. In section 2 we introduce the model and in section 3
we derive the renormalized 2PI equations of motion in the comoving frame in the Hartree
approximation. In section 4 we recast the equation for the two-point function into a form of
moment equations in the mixed representation. In section 5 we apply the numerical approach
introduced in [38] to the physical setup of [14], which included backreaction but assumed
adiabatic expansion for the mode functions and some further technical approximations.
Finally, section 6 contains our conclusions and outlook.

2 The model

Following [13, 14], we study a Z2-symmetric scalar singlet model where the singlet χ has no
couplings to other matter fields. The singlet action is given by

Sχ =
∫

d4x
√
−g
[1

2(∇µχ)(∇µχ)− 1
2m

2χ2 + ξ

2Rχ
2 − λ

4χ
4
]
. (2.1)

We use the particle physics convention for the metric signature: ds2 = dt2 − a2dx2. We
will assume that the singlet is energetically subdominant during inflation and reheating,
ρχ � 3H2M2

P, and treat it as a test field in a classical background space-time, whose
evolution is determined by the inflaton field φ. It should be noted that the non-minimal
coupling ξRχ2 of the field χ quantized in a classical curved space-time acquires radiative
corrections already at the one loop level in the presence of the self-interaction [45]. Therefore,
although ξ can be renormalized to zero at any given scale, it cannot be made to vanish on
all scales.

Rescaling the field χ by the scale factor,

σ ≡ a(t)χ, (2.2)

and switching to the conformal time η defined through adη ≡ dt, we can recast the action
(2.1) for the χ-field into an effectively flat space form:

Sσ =
∫

dη d3x

[1
2(∂ησ)2 − 1

2(∇σ)2 − 1
2m

2
eff(η)σ2 − λ

4σ
4
]
, (2.3)

where the time-dependent effective mass term is defined as

m2
eff(η) ≡ a2(η)

[
m2 −

(
ξ − 1

6

)
R(η)

]
. (2.4)
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This action is the starting point for our derivation of the coupled evolution equations for
the one- and two-point functions of the χ-field.

Equation of motion for the inflaton and the scale factor. We will treat the inflaton
at the classical level and assume a quadratic inflaton potential. Because we wish to study
the χ-evolution beyond the decay of the inflaton, we also add a coupling between the
inflaton and a radiation component. The radiation energy density is set to zero before the
end of inflation. Moreover, we will treat χ as a test field, so that the Hubble rate and
the evolution of the Ricci scalar are determined solely by the inflaton and the radiation
component. We then have

φ̈+ 3Hφ̇+ Γφ̇+m2
φφ = 0,

ρ̇rad + 4Hρrad = Γφ̇2,
(2.5)

where the dots denote differentiation with respect to the cosmic time t.
The above equations are solved together with the Friedmann equation ȧ/a = H , where

the Hubble rate is given by

H = 1√
6MP

(
φ̇2 +m2

φφ
2 + 2ρrad

)1/2
, (2.6)

with MP being the reduced Planck mass. The time-dependent Ricci scalar in this setup is
given by

R = 1
M2

P

(
φ̇2 − 2m2

φφ
2
)
, (2.7)

as the conformally invariant radiation component gives no contribution at the classical level.
These equations can be solved independently of the equations of motion for the spectator
field. In the latter the scale factor a and the Ricci scalar R then appear as external functions
that source the non-trivial behaviour of the χ-field.

3 The renormalized 2PI equations of motion

In this section we derive the renormalized equations of motion for the mean σ-field and
its two-point function corresponding to the action (2.3), using the 2PI effective action
technique of non-equilibrium quantum field theory [46, 47]. The generic form of the 2PI
effective action of a scalar field is

Γ2PI[σ̄,∆σ] = S[σ̄]− i
2TrC

[
ln(∆σ)

]
+ i

2TrC
[
∆−1

0σ ∆σ
]

+ Γ2[σ̄,∆σ], (3.1)

where S is the classical action, σ̄(x) is the classical field and ∆σ(x, y) is the connected
two-point function of the scaled σ-field and the trace contains integration over the Keldysh
contour C [48] and summation over possible field indices. The classical, real-time inverse
propagator is

i∆−1
0σ,ab(x, y; σ̄) = −

[
�x +m2

eff(η) + 3λσ̄2
a

]
δ(4)(x− y)δab, (3.2)
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where �x = ∂2
η − ∂2

x and a, b ∈ {1, 2} are the time path indices of the Keldysh contour.
The interaction term Γ2[σ̄,∆σ] consists of all two-particle irreducible vacuum graphs with
lines corresponding to the full propagator ∆σ and interactions derived from the shifted
Lagrangian density L[σ → σ̄+σq], where σq is the quantum fluctuation around the classical
field configuration σ̄.

The equations of motion of the one- and two-point functions are then obtained as the
stationary conditions of the 2PI effective action:

δΓ2PI
δσ̄a

= 0 and δΓ2PI
δ∆ab

σ

= 0. (3.3)

We will be restricting our attention to the lowest non-trivial order in the 2PI-expansion,
called the Hartree approximation. In this case the interaction term is just

Γ2[σ̄,∆σ] ≡ −3λ
4

∫
dη d3x∆2

σ(x, x). (3.4)

The non-renormalized equations of motion then become[
�x +m2

eff(η) + λσ̄2(x) + 3λ∆σ(x, x)
]
σ̄(x) = 0, (3.5a)[

�x +m2
eff(η) + 3λσ̄2(x) + 3λ∆σ(x, x)

]
i∆ab

σ (x, y) = aδabδ(4)(x− y). (3.5b)

In particular the bare local correlation function ∆σ(x, x) is a divergent quantity and
equations (3.5) clearly need to be renormalized. We shall now show how this can be done
in the 2PI-context, generalizing the derivation of [38] to a non-static space-time.

3.1 Renormalization

A systematic renormalization in the 2PI-context was developed in [49], but we shall follow
an equivalent, more intuitive method introduced in [50] and extended to curved space-time
in [51] (see also [52, 53]). A crucial difference between the 1PI- and the 2PI-cases is that in
the latter an infinite number of counterterms and loop diagrams get resummed and mix at
high orders in the perturbative expansion. This introduces a number of sub-divergences that
may depend on finite temperature or even on the out-of-equilibrium quantum corrections
and gives rise to auxiliary n-point functions, where some or all of the external field lines
are replaced by internal propagators. Each auxiliary function needs a new renormalization
condition, but the final equations of motion are independent of the particular choices. We
shall closely follow the treatment of [38], extending it to the case of non-zero curvature.

The renormalized quantities are defined from the bare ones through

σ ≡ Z1/2
(2) σR, ∆σ ≡ Z(0)∆R,

m2
(i) ≡ m2

R(i) + δm2
(i), λ(i) ≡ λ(i)

R + δλ(i), ξ(i) ≡ ξ(i)
R + δξ(i).

(3.6)

The index enclosed in parenthesis tells how many lines in the vertex function corresponding
to the coupling or mass parameter in question are associated with external fields, as
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explained in [38, 50]. Note that both the bare and the renormalized couplings in general
are different for different i, as we shall see below. We then define accordingly:

δ(0)
λ ≡ Z

2
(0)

(
λ(0)

R + δλ(0))− λ(0)
R , (3.7a)

δ(2)
λ ≡ Z(0)Z(2)

(
λ(2)

R + δλ(2))− λ(2)
R , (3.7b)

δ(4)
λ ≡ Z

2
(2)

(
λ(4)

R + δλ(4))− λ(4)
R , (3.7c)

δ(i)
m ≡ Z(i)

(
m2

R(i) + δm2
(i)

)
−m2

R(i), (3.7d)

δ(i)
ξ ≡ Z(i)

(
ξ(i)

R −
1
6 + δξ(i))− ξ(i)

R + 1
6 . (3.7e)

Given these definitions we can write the unrenormalized equations of motion in terms of
the renormalized quantities as follows:[

Z(2) �x + a2
(
m2

R(2) + δ(2)
m

)
− a2

(
ξ(2)

R −
1
6 + δ(2)

ξ

)
R

+ 3
(
λ(4)

R + 1
3δ

(4)
λ

)
σ2

R + 3
(
λ(2)

R + δ(2)
λ

)
∆R(x, x)

]
σR(x) = 2λ(4)

R σ3
R ,

(3.8a)

[
Z(0) �x + a2

(
m2

R(0) + δ(0)
m

)
− a2

(
ξ(0)

R −
1
6 + δ(0)

ξ

)
R

+ 3
(
λ(2)

R + δ(2)
λ

)
σ2

R + 3
(
λ(0)

R + δ(0)
λ

)
∆R(x, x)

]
i∆bc

R (x, y) = bδbcδ(4)(x− y).
(3.8b)

Here and in what follows we drop the bar when referring to the classical field σR.

Renormalization conditions. To proceed, we must now define the renormalization
conditions. We start by setting on-shell conditions for the auxiliary two-point function ∆11

R
at a vanishing external vacuum expectation value, σR = vR = 0, and some finite R = R0,
along with the requirement that the quantum corrections vanish at the minimum of the
effective action:

i
(
∆11

R
)−1

∣∣∣∣σR=0
R=R0

≡ k2 − a2m2
∆,

d
dk2 i

(
∆11

R
)−1

∣∣∣∣σR=0
R=R0

≡ 1 and δΓ2PI
δσR

∣∣∣∣σR=0
R=R0

≡ 0. (3.9)

Note that we are using the comoving units, so k is also the comoving 4-momentum.
These conditions imply that Z(0) = 1. Furthermore, one finds Z(2) = 1 in the Hartree
approximation, when the renormalization is performed at σR = 0 [38]. As a result, one can
set also m2

∆ = m2
ph, where mph refers to the usual mass parameter defined at the off-shell

momentum p2 = 0. The renormalization conditions (3.9), together with the equation of
motion (3.8b), then give

m2
R(0) + δ(0)

m −
(
ξ(0)

R −
1
6 + δ(0)

ξ

)
R0 + 3

(
λ(0)

R + δ(0)
λ

)
a−2∆R = m2

ph. (3.10)

Here ∆R is computed at the renormalization point. The a−2-factor multiplying ∆R arises
from the scaling of the field σ. In physical units it is absorbed to the correlation function.

In the Hartree approximation we can renormalize λ(0)
R and λ(2)

R similarly, by setting

δ(0)
λ ≡ δ

(2)
λ . (3.11)
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From Z(0,2) = 1 it then follows that λ(0)
R = λ(2)

R . So, both bare and renormalized couplings
can be chosen equal for these vertex functions. Next we set the bare mass parameters m2

(i)

and the ξ(i)-parameters equal for i ∈ {0, 2}, which gives

m2
R(0) + δ(0)

m = m2
R(2) + δ(2)

m and ξ(0)
R + δ(0)

ξ = ξ(2)
R + δ(2)

ξ , (3.12)

and we finally define
λ(4)

R + 1
3δ

(4)
λ ≡ λ

(0)
R + δ(0)

λ . (3.13)

This condition ensures that the renormalized effective potential has the same first derivative
as the tree level potential for a finite σR (for more details, see [38]). Note that the bare
coupling λ(4) is then different from λ(0,2), but this has no consequence for the renormalized
low-energy theory. Finally, we could relate ξ(0)

R to a physical mass measured in a background
with a non-zero R, but we simply define it as an MS-parameter instead.

Cancellation of the sub-divergences. Next we impose the conditions on the cancella-
tion of the sub-divergences [50]. To this end we must work out the primitive divergence
in the local correlation function, which in the Hartree approximation is given just by the
momentum integral over the renormalized correlator i∆11

R defined in the conditions (3.9):

∆R = Qε
∫ ddp

(2π)d ∆11
R (p) = −

a2m2
ph

16π2

[2
ε

+ 1− ln
(
a2m2

ph
Q2

)]
≡ a2m2

ph∆ε + ∆F0
(
amph, Q

)
, (3.14)

where ∆ε ≡ −1/
(
8π2ε

)
and Q is the comoving momentum scale used for the MS-renormali-

zation. Substituting this expression back into equation (3.10) and requiring that the finite
and divergent parts cancel separately, we find the following two equations:

m2
ph ≡ m2

R(0) −
(
ξ(0)

R −
1
6

)
R0 + 3λ(0)

R a
−2∆F0, (3.15)

0 = δ(0)
m −R0δ

(0)
ξ + 3δ(0)

λ a−2∆F0 + 3
(
λ(0)

R + δ(0)
λ

)
m2

ph∆ε. (3.16)

Using equation (3.15) one can rewrite equation (3.16) as

δ(0)
m + 3m2

R(0)

(
λ(0)

R + δ(0)
λ

)
∆ε + 3

[
δ(0)
λ + 3

(
λ(0)

R + δ(0)
λ

)
λ(0)

R ∆ε

]
a−2∆F0

−
[
δ(0)
ξ + 3

(
ξ(0)

R −
1
6

)(
λ(0)

R + δ(0)
λ

)
∆ε

]
R0 = 0.

(3.17)

This equation can hold for arbitrary R0 and ∆F0 only if the coefficients multiplying each of
these terms vanish separately. This gives us three constraints between the counterterms:

δ(0)
m + 3m2

R(0)

(
λ(0)

R + δ(0)
λ

)
∆ε = 0, (3.18a)

δ(0)
λ + 3

(
λ(0)

R + δ(0)
λ

)
λ(0)

R ∆ε = 0, (3.18b)

δ(0)
ξ + 3

(
ξ(0)

R −
1
6

)(
λ(0)

R + δ(0)
λ

)
∆ε = 0. (3.18c)
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From these we find the explicit expressions for the counterterms δ(0)
λ , δ(0)

m and δ(0)
ξ :

δ(0)
λ = −

3
(
λ(0)

R
)2∆ε

1 + 3λ(0)
R ∆ε

, δ(0)
m = −

3m2
R(0)λ

(0)
R ∆ε

1 + 3λ(0)
R ∆ε

, δ(0)
ξ = −

3
(
ξ(0)

R −
1
6
)
λ(0)

R ∆ε

1 + 3λ(0)
R ∆ε

. (3.19)

The running of the renormalized parameters now follows from requiring that the corre-
sponding bare parameters are constants: ∂Q

[
Qε
(
λ(0)

R + δ(0)
λ

)]
= 0, ∂Q

[
Qε
(
m2

R(0) + δ(0)
m

)]
= 0

and ∂Q
[
Qε
(
ξ(0)

R −
1
6 + δ(0)

ξ

)]
= 0. For the running of λ(0)

R and ξ(0)
R one then finds

λ(0)
R (Q) = λ(0)

R0

1 + 3λ(0)
R0

8π2 ln
(
Q0
Q

) and ξ(0)
R (Q)− 1

6 =
ξ(0)

R0 −
1
6

1 + 3λ(0)
R0

8π2 ln
(
Q0
Q

) , (3.20)

where λ(0)
R0 ≡ λ(0)

R (Q0) and ξ(0)
R0 ≡ ξ(0)

R (Q0) and our previous choices imply that λ(2)
R = λ(0)

R .
The running of the mass terms is analogous to the running of the couplings [38]. On the
other hand, the coupling λ(4)

R does not run at all. Indeed, λ(4)
R remains finite because of the

condition δ(4)
λ = 3δ(0)

λ up to finite terms, which implies that ∂Qλ(4)
R = 0.

Renormalized equations of motion. Next we show that the full evolution equa-
tions (3.8) get renormalized by the counterterms we have defined. We begin by defining a
finite effective mass term, which includes general corrections from R, σR and ∆F, as follows:

M2
eff(σR,∆F) ≡ a2

[
m2

R(0) −
(
ξ(0)

R −
1
6

)
R
]

+ 3λ(0)
R

(
σ2

R + ∆F
)
. (3.21)

The finite part ∆F of the local correlation function ∆R is defined similarly to equation (3.14):

∆R ≡M2
eff(σR,∆F)∆ε + ∆F. (3.22)

We furthermore split ∆F ≡ ∆F0(Meff , Q) + δ∆F, where ∆F0 was defined in equation (3.14)
and δ∆F represents the remaining non-equilibrium fluctuations. Using this expression, the
equation of motion for the two-point function becomes[

�x +M2
eff + a2

(
δ(0)
m −Rδ

(0)
ξ

)
+ 3δ(0)

λ

(
σ2

R + ∆F
)

+ 3
(
λ(0)

R + δ(0)
λ

)
M2

eff∆ε

]
i∆bc

R (x, y) = bδbcδ(4)(x− y).
(3.23)

Using the definition (3.21) again in the term proportional to ∆ε, we can write equa-
tion (3.23) as{

�x +M2
eff − a2

[
δ(0)
ξ + 3

(
ξ(0)

R −
1
6

)(
λ(0)

R + δ(0)
λ

)
∆ε

]
R

+ 3
[
δ(0)
λ + 3

(
λ(0)

R + δ(0)
λ

)
λ(0)

R ∆ε

](
σ2

R + ∆F
)

+ a2
[
δ(0)
m + 3m2

R(0)

(
λ(0)

R + δ(0)
λ

)
∆ε

]}
i∆bc

R (x, y) = bδbcδ(4)(x− y).

(3.24)

The renormalization conditions (3.18) set all the terms in the square brackets to zero
leaving behind only the finite mass term M2

eff . It should be appreciated how the constant
counterterms cancel infinities that depend on the dynamical variables σR, R and ∆F.
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Similar manipulations can be done, crucially dependent on the definition (3.13), in the
equation (3.8a) for the one-point function. Our final equations then become[

�x +M2
eff(σR,∆F)

]
σR = 2λ(4)

R σ
3
R, (3.25a)[

�x +M2
eff(σR,∆F)

]
i∆ab

R (x, y) = bδbcδ(4)(x− y). (3.25b)

Let us finally point out that these equations are independent of the renormalization scale
for the auxiliary renormalization conditions: one can show that ∂Q(M2

eff) = 0 using the gap
equation (3.21) together with the running equations (3.20).

Physical parameters. We have now renormalized our equations of motion, but we still
have not related our parameters to observable quantities. We now address this problem for
completeness, even though none of the parameters in the problem are directly observable.
We start by specifying the Hartree-corrected effective potential in the limit of constant
curvature, consistent with our renormalization conditions. The calculation is identical to
the one given in [38] and we only quote the final result, first found in [54]:

VH(σR) = −λ
(4)
R
2 σ4

R + m4(σR)
12λ(0)

R
− m4(σR)

64π2

[
ln
(
m2(σR)
Q2

)
− 1

2

]
, (3.26)

where m2 is the solution to equation (3.21) for R = R0 and ∆F = ∆F0
(
m2). Now,

differentiating the effective potential twice, we find

Γ(2)
1PI
(
p2 = 0, σR

)
= ∂2VH(σR)

∂σ2
R

= m2(σR) + 6
[
λ(0)

R
(
m(σR)

)
− λ(4)

R

]
σ2

R. (3.27)

Because m2(0) ≡ a2m2
ph, we see that the mass parameter mph of the auxiliary propagator

equals the value of the full two-point function Γ(2)
1PI
(
p2 = 0, σR = 0

)
. Equation (3.27) also

suggests that it is natural to define λ(0)
R (mph) ≡ λ(4)

R .
Finally, one can easily show that λ(4)

R coincides with the four-point function measured
at zero momentum:

λR ≡ Γ(4)
1PI(pi = 0, σR = 0) = 1

6
∂4VH(σR)
∂σ4

R

∣∣∣∣
σR=0

= λ(4)
R . (3.28)

The mass mph and the coupling λR can be related to an on-shell mass and a four-point
function in the physical region without further reference to the 2PI-methods. Finally,
we define the parameter ξ(0)

R as the MS-parameter at scale mph: ξ̄R ≡ ξ(0)
R (mph). These

considerations now uniquely define all the parameters in our model.

4 Wigner-space and moment equations

The direct numerical implementation of equations (3.25) would be very difficult and we
shall use the phase space picture instead. To this end we define the Wigner transform of a
generic function of two variables O(u, v) as follows:

O(k,X) ≡
∫

d4r eik·rO
(
X + r

2 , X −
r

2

)
, (4.1)
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where r = u− v and X = 1
2(u+ v) are the relative and average coordinates, respectively.

For a homogeneous and isotropic system relevant here, the transformation with respect
to spatial coordinates reduces to the ordinary Fourier transformation. In this case the
equation (3.25b) for the two-point function in Wigner-space becomes just[1

4∂
2
η − k2 − ik0∂η +M2

eff
(
η − i

2∂k0

)]
i∆bc

k (k0, η) = bδbc, (4.2)

where we denoted M2
eff(σR,∆F) ≡M2

eff(η).
To study the dynamics of the coupled system of the one- and two-point functions it

suffices to concentrate on any of the four components of the propagator ∆ab. We choose to
work with ∆+− = ∆< and define its nth moment as

ρnk ≡
∫ dk0

2π kn0 ∆<
k (k0, η). (4.3)

Integrating equation (4.2) over k0, weighted by 1 and by k0, and taking real and imaginary
parts of the resulting equations one finds a closed set of equations for the three lowest
moments with n ∈ {0, 1, 2} [38, 43]. The equation for ρ1k is simple: ∂ηρ1k = 0, which
implies that ρ1k is a constant. In addition we observe that the quantity

Xk ≡ 2ρ0kρ2k −
(
|k|2 +M2

eff

)
ρ2

0k − 1
4 (∂ηρ0k)2 (4.4)

is conserved in our setup: ∂ηXk = 0. This is no longer true in an interacting system [38, 43],
but even then using Xk as a variable instead of ρ2k leads to numerically more stable
equations.

In the end we then have the following equations for the homogeneous field σR and the
moments ρnk: (

∂2
η +M2

eff

)
σR = 2λRσ

3
R,(

1
4∂

2
η + |k|2 +M2

eff

)
ρ0k = ρ2k,

(4.5)

where ρ2k is evaluated using equation (4.4). The non-trivial nature of the evolution equations
is hidden in the gap equation (3.21), which couples all the variables. Using the moments
and the fact that M2

eff is actually Q-independent, we can write the gap equation directly in
terms of our chosen physical parameters, choosing Q = amph:

M2
eff = a2m2

ph − a2
(
ξ̄R − 1

6

)
(R−R0) + 3λRσ

2
R + 3λR

∫
k

(
ρ0k −

Θk

2ωk

)

+ 3λR
16π2

[
M2

eff ln
(
M2

eff
a2m2

ph

)
−M2

eff + a2m2
ph

]
,

(4.6)

where we defined
∫
k ≡

1
2π2

∫∞
0 d|k||k|2, Θk ≡ θ

(
ω2
k(t)

)
, ω2

k ≡ |k|2 + M2
eff , ξ̄R ≡ ξ(0)

R (mph)
and R0 is the background Ricci scalar at the renormalization point.1 We assume that
renormalization is performed in a background with no curvature and set R0 = 0 here.

1To get to equation (4.6) one uses for example the relation m2
R(0) = m2

ph
(
1 + 3λR

16π2

)
+
(
ξ̄R − 1

6

)
R0, which

can be derived from equation (3.15) and the running equations for the mass and the couplings.
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Finally, we define the particle number density and the quantum coherence functions in
terms of the moments as follows [38, 43]:

nk ≡
1
ωk
ρ2k + ρ1k, (4.7a)

nk ≡
1
ωk
ρ2k − ρ1k − 1, (4.7b)

f c±k ≡ ωkρ0k −
1
ωk
ρ2k ±

i
2∂tρ0k. (4.7c)

We will denote the momentum-integrated versions of these functions by n ≡
∫
k nk and

f c ≡
∫
k |f

c±
k |. In our case of a real field with no collisions ρ1k = −1/2 throughout, so that

nk and nk actually coincide. The functions f c±k in turn measure the degree of quantum
coherence, or squeezing, between particle-antiparticle pairs with opposite 3-momenta [44],
and particle production can only take place when f c±k 6= 0. The unique vacuum which
corresponds to a state with no particles nor any coherence can then be defined as

ρvac
0k ≡

Θk

2ωk
, ∂tρ

vac
0k ≡ 0, ρvac

1k ≡ −
1
2 and ρvac

2k ≡
ωk
2 Θk. (4.8)

The Heaviside theta function Θk ensures that no spinodal modes are included in the vacuum.
Finally, we define the non-equilibrium fluctuations in the moments as δρnk ≡ ρnk − ρvac

nk .

5 Results

We numerically solve the equations (4.5) and (4.6), following the methods of [38]. We focus
on a setup where the energy density of σ stays negligible compared to the total energy
density, ρσ � 3H2M2

P, during the entire simulation time. The scale factor a and the Ricci
scalar R are therefore entirely set by the inflaton and its decay products via equations (2.5),
and they appear as externally given functions in equations (4.5) and (4.6). We choose
mφ = 1.5× 1013 GeV and set slow roll initial conditions with φin = 15MP on the inflaton
sector. On the spectator sector we set mph = 150GeV, initialize the two-point function
∆R,in by giving the Minkowski vacuum values (4.8) for the moments, and give a small
non-zero initial value for the one-point function σR,in. In the following, we denote by η0 the
moment when εH ≡ −Ḣ/H2 = 1 for the first time. Our main results are summarized in the
figures of this section.

Case I: ξ̄R = 50,Γ = 0. We will first discuss a case with a non-minimal coupling
ξ̄R = 50 and a non-interacting inflaton, Γ = 0, where the results can be directly compared
with those obtained in [14]. The left panel in figure 1 shows the time evolution of the
fluctuation in the contact limit for the comoving two-point function 〈σ2

R〉: δ∆F ≡ ∆F−∆F0.
The right panel shows the effective mass function M2

eff given by equation (4.6). In both
panels the self-coupling is given the values λR = 10−7 (blue lines), 10−4 (red lines) and 10−1

(orange lines). There are three components of different origin contributing to the effective
mass function M2

eff :

M2
R ≡ −a2(ξ̄R − 1

6
)
R (curvature), (5.1a)

M2
∆ ≡ 3λRδ∆F = 3λR

∫
k
δρ0k (fluctuations), (5.1b)
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Figure 1. The two-point function δ∆F (left panel) and the effective mass function M2
eff (right

panel). The results are shown for λR ∈ {10−7, 10−4, 10−1}, ξ̄R = 50 and Γ = 0.

Figure 2. The effective mass function M2
eff (blue) and its component functions M2

R (red), M2
∆

(violet) and M2
σ (yellow), defined in equations (5.1), for λR ∈ {10−7, 10−4, 10−1}, ξ̄R = 50 and Γ = 0.

M2
σ ≡M2

eff −M2
R −M2

∆ (field and background). (5.1c)

The evolution and magnitudes of these components are displayed in figure 2.
For all three values of λR shown in the figures, the field-dependent mass term M2

σ is
very small compared to the curvature and fluctuation corrections. In all cases the initial
evolution is characterized by a rapid growth of the fluctuation contribution to the two-point
function δ∆F, which is driven by periodic tachyonic instabilities that occur when M2

eff < 0.
The growing two-point function gives a positive definite contribution to the fluctuation
part M2

∆ in the effective mass function, which is known to eventually terminate the strong
tachyonic growth [9].
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As seen in figure 2, for λR = 10−7 the growth of δ∆F stops while the effective mass
is still dominated by the curvature term, 〈M2

∆ + M2
σ〉osc≈〈M2

∆〉osc�〈M2
R〉osc, where the

brackets 〈. . . 〉osc denote averaging over an oscillation cycle of the mean field σR. The reason
for this ending of the tachyonic growth is that the windows with M2

eff < 0 become too narrow
to generate a coherent net particle production. This effect is controlled by the evolution
of R, whose oscillation period is a constant in physical time, proportional to the inverse
inflaton mass m−1

φ , but whose magnitude decreases rapidly, R ∝ a−3. The time available
for tachyonic evolution per oscillation period then shrinks, while the oscillatory evolution
between pulses grows, mixing growing and decaying modes. Eventually the tachyonic pulses
lose all coherence and no net growth is registered. As a result our final value of δ∆F is about
an order of magnitude smaller than in [14],2 where the tachyonic growth was observed to
continue up to 〈M2

∆〉osc ∼ 〈M2
R〉osc. This effect is spurious however, following from the use

in [14] of the adiabatic expansion in the regions where the adiabaticity condition |ω̇/ω2| � 1
for the mode function frequencies no longer holds between the tachyonic windows.

The case with larger couplings λR = 10−4 and 10−1 is markedly different. Here the
(mostly) tachyonic growth does continue until 〈M2

∆〉osc ∼ 〈M2
R〉osc, after which δ∆F starts to

backreact into the dynamics of the system. The evolution of R is exactly the same as in the
previous case but the larger coupling λR makes 〈M2

∆〉osc bigger, and the backreaction limit
〈M2

∆〉osc ∼ 〈M2
R〉osc is reached before the tachyonic windows become too narrow to support

coherent particle production. After the tachyonic growth stops, the strongly non-linear
system still undergoes a transient period of resonant particle production driven by the
two-point function δ∆F itself, during which M2

eff remains positive. The resonant nature of
the particle production can be seen in figure 3, which will be discussed further below. At
the onset of the resonance, M2

eff receives roughly equal contributions from the fluctuation
term M2

∆ = 3λRδ∆F and from the curvature term M2
R = a2(ξ̄R − 1/6

)
R, but as the latter

redshifts as a−1, it eventually becomes smaller than the fluctuation term. The resonance
turns off after the effective mass becomes fully dominated by M2

∆, and δ∆F on average
settles to a constant value. For λR = 10−4 and 10−1, we find that δ∆F at the end of the
tachyonic stage agrees relatively well with the adiabatic expansion results of [14]. However,
the subsequent strongly non-linear resonant stage is not at all captured in the treatment
of [14] and, as seen in figures 1 and 2, this stage gives the dominant contribution to δ∆F
for λR = 10−4 and 10−1.

The momentum space structure of δρ0k is shown in figure 3. For all three coupling
values λR ∈ {10−7, 10−4, 10−1}, the leftmost continuous vertical structures, extending from
|k| = 0 to a finite cutoff set by the effective mass (and of the order of the Hubble scale),
are states populated by the tachyonic instability.

For λR = 10−7 the ultraviolet region develops, around a/a0 ' 3, discrete bands which
reach to higher |k|-modes than the initial structures, while the evolution is still dominated
by M2

R (see figure 2). These bands appear to signal a resonant particle production sourced
by the ξRχ2-term, which can coexist with the tachyonic production [9, 12, 55]. We note

2Note that our results are expressed in terms of the comoving field σ = aχ while [14] uses the physical
field χ. We have normalized the scale factor to a0 = 12.6.
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Figure 3. The zeroth moment δρ0k of the two point function for λR ∈ {10−7, 10−4, 10−1} with
ξ̄R = 50 and Γ = 0.

that δρ0k continues to be strongly dominated by the lowest band but its peak shifts from
|k| ≈ 0 towards the middle of the band.

For λR = 10−4 and 10−1 the momentum space evolution looks quantitatively similar as
above until the moment when the effective mass gets dominated by the two-point function,
〈M2

∆〉osc > 〈M2
R〉osc, and δ∆F starts to grow rapidly (see figures 2 and 1). At this point,

pronounced band structures emerge in figure 3, which we interpret to signal the onset of
resonant particle production driven by the coherent condensate δ∆F itself. These resonance
bands carry significant power and extend considerably above the |k|-region populated
during the M2

R-dominated stage. Furthermore, it can be seen that the moment at which the
resonant growth effectively stops in figure 1 corresponds to a further splitting and narrowing
down of the resonance bands in figure 3. After this band splitting the resonant particle
production loses efficiency and the average value of δ∆F becomes essentially a constant.
While the δ∆F-driven resonance is qualitatively similar to resonances driven by coherently
oscillating classical fields, its origin from highly non-linear dynamics makes it difficult to
develop a parametric understanding of its efficiency or time scale.

The evolution of the comoving particle number density n and the coherence function
f c are shown in figure 4. For λR = 10−7 both n and f c settle to constant values after the
end of the tachyonic growth. Comparing with [14], we find an order of magnitude smaller
final number density for λR = 10−7, the reason being the same as for the difference in δ∆F
discussed above. On the other hand, for λR ∈ {10−4, 10−1} the tachyonic stage is followed
by a transient resonance, during which n and f c grow further, and the resonant contribution
actually dominates their final values. In these cases our results for the net particle number
density exceed the corresponding results of [14] by an order of magnitude. Note that the
particle production is necessarily associated with a growing coherence function [44]. The
fact that coherence remains constant after particle production ends shows that the final
state is highly squeezed. This is a special feature of our non-interacting system. In an
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Figure 4. The integrated comoving particle number density n (left panel) and the integrated
absolute value of the coherence functions f c (right panel) for λR ∈ {10−7, 10−4, 10−1} with ξ̄R = 50
and Γ = 0.

Figure 5. A contour plot of the comoving particle number density nk for λR = 10−4 (left
panel), and the final comoving particle number density nk(ηend) as a function of momentum for
λR ∈ {10−7, 10−4, 10−1} (right panel). Both plots have ξ̄R = 50 and Γ = 0.

interacting system the coherence function would eventually tend to zero, reducing the
quantum system to a non-coherent statistical state, even if the interactions were conserving
the particle number. Such behaviour was indeed observed and studied in detailed in a toy
model in [38].

In figure 5 we show the comoving particle number density per momentum nk. The
right panel shows the final spectrum nk at the final time of our numerical simulation for all
couplings considered: λR ∈ {10−7, 10−4, 10−1}. The left panel shows the full time evolution
of nk for the coupling λR = 10−4. Apart from the oscillatory features, the structure of nk
is qualitatively in agreement with the results of [14], which, we recall, are obtained using a
semianalytical adiabatic expansion approximation for the tachyonic particle production [9]
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Figure 6. The two-point function δ∆F (left panel) and the effective mass function M2
eff (right

panel). The results are shown for λR ∈ {10−7, 10−4, 10−1}, ξ̄R = 50 and Γ ' 0.1H0.

and neglecting all resonant particle production (see also [55] for an analysis of resonant
production through the ξRχ2-term in the absence of self-couplings). The oscillatory features
in nk seen in our results arise from the transient resonance after the first tachyonic stage.
As seen in the left panel of figure 5, nk displays strong peaks coinciding with the onset of
the resonance, located at the resonance bands and with the peak heights varying from band
to band. Interestingly, the peaks begin to flatten out while the resonance is still ongoing.
This effect is caused by non-linear processes mediated by the self-coupling which, combined
with the redshifting, can efficiently redistribute the momenta.

Case II: ξ̄R = 50,Γ ' 0.1H0. For comparison, we also present results for the case
with ξ̄R = 50 and a non-zero inflaton decay rate Γ ' 0.1H(η0) ≡ 0.1H0. As explained in
section 2, inflaton decays into radiation, as a result of which the universe evolves from
effective matter domination to radiation domination where R = 0. The evolution of δ∆F
and M2

eff , and the components of M2
eff defined in equations (5.1), are shown in figures 6 and

7 for this case. As is seen in figure 7, the initial scaling 〈R〉osc ∝ a−3 is now followed by an
exponential decay of 〈R〉osc once the inflaton decay becomes efficient. This decreases the
efficiency of tachyonic particle production compared to case I.

The evolution of δ∆F seen in figure 6 is now almost identical for the couplings λR = 10−7

and 10−4. This is due to the fast decrease of R resulting from the inflaton decay, which ends
the tachyonic growth before the two-point function starts to backreact into the dynamics
also for λR = 10−4. This can also be seen from figure 7, which shows that in both these
cases δ∆F stops growing before the two-point function backreacts into the dynamics. The
evolution of δ∆F for λR = 10−7 is qualitatively similar to case I, but the final value of δ∆F
is about two orders of magnitude smaller. For λR = 10−4, the evolution of δ∆F substantially
differs from case I as the resonant stage that dominated the final value of δ∆F in case I
is absent in case II. For the largest coupling λR = 10−1 the difference compared to case I
is smallest as the tachyonic growth in this case still terminates via the backreaction when
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Figure 7. The effective mass function M2
eff (blue) and its component functions M2

R (red), M2
∆

(violet) and M2
σ (yellow), defined in equations (5.1), for λR ∈ {10−7, 10−4, 10−1} in the case ξ̄R = 50

and Γ ' 0.1H0.

Figure 8. The zeroth moment δρ0k of the two point function for λR ∈ {10−7, 10−4, 10−1} with
ξ̄R = 50 and Γ ' 0.1H0.

〈M2
∆〉osc ∼ 〈M2

R〉, and this happens before the exponential decrease of R sets in. In this
case, the tachyonic stage is followed by resonant amplification of δ∆F driven by δ∆F itself,
but the resonance is somewhat less efficient than in case I, leading to a factor of two smaller
final value for δ∆F.

Finally, the momentum structure of δρ0k is shown in figure 8. For λR = 10−7 the
result looks qualitatively similar to case I but the band structures generated during the
M2
R-dominated epoch are more pronounced in case II. In particular, in case II the tachyonic

region splits into two discrete bands at a/a0 ' 3. The results for λR = 10−4 look almost
identical to those for λR = 10−7, and the δ∆F-driven resonance that dominated the final
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δρ0k in case I is now completely absent. For λR = 10−1 the structure looks qualitatively
similar to case I but it can be seen that the δ∆F-driven resonance is less efficient and does
not extend to as high momenta as in case II.

All in all, the results of cases I and II manifest the presence of complicated non-linear
dynamics after the initial tachyonic particle production which can substantially affect the
final value of δ∆F. In particular, our results indicate that when the two-point function
grows large enough to backreact into the dynamics, the tachyonic instability is followed by
resonant particle production driven by the two-point function itself. In all cases studied
here, we find that if the resonance takes place it also gives a dominant contribution to the
final value of δ∆F. However, the amount by which δ∆F grows during the resonance after
the tachyonic stage appears to depend quite sensitively on the non-linear evolution of the
two-point function coupled to R.

Finally, we note that in [39] classical lattice simulations were used to study a related non-
minimally coupled spectator setup. They investigate a self-interacting massless spectator
with λ = 10−5 and ξ = 100, which remains energetically subdominant like in our case, but
their results do not seem to show the resonant growth phase driven by δ∆F. However, the
inflaton potential in [39] differs from the quadratic form we use, which leads to different
evolution of the curvature scalar R. A direct comparison of our respective results is therefore
not possible, because the existence and efficiency of the resonant growth depends sensitively
on the detailed interplay between R and the two-point function. It would be very interesting
to make a detailed comparison between the 2PI-approach and classical lattice simulations in
exactly the same setup, also going beyond the Hartree approximation, as it is not clear to
what extent the quantum dynamics can be approximated by a classical system. Investigation
of this topic however lies beyond the scope of our current work.

6 Conclusions

We have studied particle production at the end of inflation with a non-minimally coupled
spectator scalar field that contributes to dark matter. We first introduced consistently
renormalized coupled equations for the one- and two-point functions of the spectator field
in the Hartree approximation using 2PI-methods. These equations correctly account for the
backreaction of the out-of-equilibrium quantum modes created by the spinodal instability
triggered by the oscillating Ricci scalar as well as for the subsequent parametric resonances.
This model was studied earlier in [14] with an adiabatic treatment of the spinodal effects.
Our results show that the interplay between the backreacting two-point function and the
oscillating curvature sector lead to highly non-trivial dynamics which can have a significant
effect on the net particle number density.

We solved numerically the coupled equations for the one- and two-point functions of
the spectator field (the latter expressed as moment equations in the Wigner representation)
together with the dynamical evolution of the inflaton sector for different values of the
spectator field self-coupling λR and for the minimal coupling ξ̄R = 50. We studied first the
case of a non-interacting inflaton field and found that for a small coupling λR = 10−7 the
generated particle number density is an order of magnitude smaller than that found in [14],
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whereas for λR = 10−4 and 10−1 it becomes and order of magnitude larger. For λR = 10−7

this is due to the tachyonic particle production shutting off already before the competing
mass contributions from the curvature and the two-point function become comparable,
while for the larger couplings the difference is due to efficient resonant particle production
occurring after the tachyonic stage. In particular the resonant production, which actually
dominates the contribution to the particle number density for larger couplings, is completely
absent in the adiabatic approach of [14].

We also included a coupling between the inflaton and a radiation component to study
the evolution under the transition from effective matter domination to radiation domination
with R = 0. We found that the exponential decay of R induced by the radiation coupling
renders both the spinodal and the resonant particle production processes much less efficient
compared to the case with a non-interacting inflaton. For the tachyonic processes this is
easy to understand as the oscillating curvature term, which is responsible for the tachyonic
bursts in the particle number density, is rapidly driven to zero. Our results suggest the
presence of an R-assisted resonance enhancement, where the resonant particle production
driven by the two-point function is boosted by the decaying ξRχ2-term after the tachyonic
stage has come to an end. This is a highly non-linear phenomenon which, when present,
appears to dominate the net particle production. It cannot be properly captured without a
full treatment of the backreaction effects.

The final momentum distribution of the dark relics generated by the non-perturbative
processes is highly non-thermal. This could lead to characteristic and potentially observable
imprints in the structure formation, as pointed out in [14]. The evolution of the relic
distribution after the epoch of reheating depends on dark sector interactions, possibly
including new types not considered here. Although this would be an interesting problem in
itself, we do not investigate it further here.

It would obviously be interesting to extend our setup to the case of a spectator field
coupled to other matter fields. This could be done rather easily by combining the current
results with the quantum transport formalism for interacting fermions introduced in [56].
Also, it would be interesting to extend our classical treatment of the inflaton to quantum
level. It would then be particularly interesting to study the gravitational wave production
during the reheating stage in the most general computational framework described above.
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