
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

A Completeness Proof for a Regular Predicate Logic with Undefined Truth Value

© 2023 University of Notre Dame

Accepted version (Final draft)

Valmari, Antti; Hella, Lauri

Valmari, A., & Hella, L. (2023). A Completeness Proof for a Regular Predicate Logic with
Undefined Truth Value. Notre Dame Journal of Formal Logic, 64(1), 61-93.
https://doi.org/10.1215/00294527-2022-0034

2023

A Completeness Proof for A Regular Predicate

Logic with Undefined Truth Value

Antti Valmari
Faculty of Information Technology, University of Jyväskylä, FINLAND

Lauri Hella
Faculty of Information Technology and Communication Sciences,

Tampere University, FINLAND

This is the Author’s accepted manuscript (with a different LATEX style file) of a paper in
Notre Dame J. Formal Logic 64(1): 61–93 (February 2023). Copyright © 2023 University of Notre Dame

doi:10.1215/00294527-2022-0034, link to the paper at Project Euclid

Abstract

We provide a sound and complete proof system for an extension of Kleene’s
ternary logic to predicates. The concept of theory is extended with, for each
function symbol, a formula that specifies when the function is defined. The
notion of “is defined” is extended to terms and formulas via a straightforward
recursive algorithm. The “is defined” formulas are constructed so that they
themselves are always defined. The completeness proof relies on the Henkin
construction. For each formula, precisely one of the formula, its negation,
and the negation of its “is defined” formula is true on the constructed model.
Many other ternary logics in the literature can be reduced to ours. Partial
functions are ubiquitous in computer science and even in (in)equation solving
at schools. Our work was motivated by an attempt to explain, precisely in
terms of logic, typical informal methods of reasoning in such applications.

2010 MSC: Primary 03B50 Many-valued logic, 03F03 Proof theory, general (including
proof-theoretic semantics); Secondary 03B10 Classical first-order logic
Keywords: ternary logic, partial functions, completeness

1 Introduction

Classical binary first-order logic assumes that all function symbols denote total
functions. This assumption repeatedly fails in everyday mathematics and in theo-
retical and practical computer science. As a consequence, there is extensive litera-
ture on how to deal with partial functions in logical reasoning, presenting surpris-
ingly many diverse approaches, including [1–3, 5, 6, 8–10, 13, 15, 16, 18, 22, 23, 25,
26, 28]. We faced the problem when developing computer support for school and

1

2 A. Valmari and L. Hella

elementary university mathematics education [27–29]. To introduce related work
and our motivation, it is useful to first present a somewhat artificial example.

Assume that a student has been asked to find the roots of 3
√

|x|−1 ≥ x+ 1
(that is, solve 3

√

|x|−1 ≥ x+ 1) in the case of real numbers. One possible way
to start is to get rid of the absolute value operator by splitting the problem to two
cases. Intuitively it seems that this can be expressed with logical connectives as
follows:

(x < 0∧3
√
−x−1 ≥ x+1)∨ (x ≥ 0∧3

√
x−1 ≥ x+1) (1)

The values x ≤−1 make 3
√
−x−1 ≥ x+1 yield T (that is, true), and −1 < x < 0

makes it undefined. Furthermore, 0 ≤ x < 1 makes 3
√

x−1 ≥ x+ 1 undefined,
1 ≤ x < 2 and x > 5 result in F (false), and 2 ≤ x ≤ 5 results in T. Therefore, the
student should answer something to the effect of x ≤−1∨2 ≤ x ≤ 5.

To formalize this reasoning in some logic, 3
√

|x|−1≥ x+1 should be in some
sense equivalent to x≤−1∨2≤ x≤ 5 in that logic. The trouble begins with the fact
that when −1 < x < 1, then 3

√

|x|−1 ≥ x+1 is undefined but x ≤−1∨2 ≤ x ≤ 5
yields F.

We could try to sort this out by declaring that the domain of discourse is not
R but {x ∈ R | |x|−1 ≥ 0}. Unfortunately, this idea would invalidate (1), because
every real number makes some atomic formula in it undefined, and we obviously
want the roots be in the domain of discourse. (A similar remark was made in [22].)
Furthermore, with this kind of exercises it is usually the student’s responsibility to
find out that some values are not roots because they make something undefined.
Those values must be in the domain of discourse of the reasoning whose purpose
is to find them. In brief, we want a logic that justifies, not bans, (1).

Perhaps the next idea is negative free logic: every atomic formula that contains
an undefined term yields F [8, 20, 22, 23]. It suffers from a problem illustrated by
the following example. If ≥ is a relation symbol in the core language and x < y

is defined as an abbreviation of ¬(x ≥ y), then 3
√

|x|−1 < x+ 1 yields T when
−1 < x < 1. It is against our intention. It is also clumsy: the user of the logic
would have to remember which predicate symbols yield F and which yield T when
applied to undefined terms. Defining both < and ≥ in the core language would
mean to axiomatize essentially the same thing twice. It would also result in the
loss of the permission to replace ¬(t ≥ t ′) and t < t ′ by each other when t and t ′

are potentially undefined terms.
In computer science, the idea of underspecification [10] is popular. In it every

function always yields a value in the intended range, but we refuse to say anything
else about the value when it would be undefined in the everyday mathematics sense.
From [10]: “The value of x/0 could be 2.4 or 20 · x or any value in R; we simply
don’t say what it is.” It has a variant where functions may be proper partial, but
every relation symbol always yields F or T. In the words of [26, Sect. 2.5]: “If one
or both of E1 and E2 are undefined, then we say that the predicates E1 = E2 and
E1 ∈ E2 are undetermined: we do not know whether they are true or false. This

A Complete Regular Predicate Logic with Undefined Truth Value 3

does not mean that the predicates have some intermediate status in which they are
‘neither true nor false’, simply that we have chosen not to say whether they are true
or not.”

While underspecification works well for proving programs correct, it is unsuit-
able for our purpose. By its very nature, it denies complete axiomatizations. It
explicitly leaves it open whether, for instance, 0 is a root of 3

√

|x|−1 ≥ x+ 1,
while in mainstream mathematics the intention is that it is not a root. On the other
hand, [10] makes 0 a root of 1

x
− x = 1

2x
.

Both underspecification and negative (and positive) free logics support a semi-
formal approach to dealing with undefined terms. Under mild assumptions, there
is a straightforward recursive algorithm that, for each term t, produces a formula
⌈t⌋ that yields T when t is defined, and F otherwise [3, 5, 10]. For instance,

√
x

x−2
is defined precisely when

√
x is defined, x− 2 is defined, and x− 2 6= 0, that is,

x ≥ 0∧ x 6= 2.

Let ϕ(X) be a first-order formula containing precisely one instance of the
nullary relation symbol X , and not containing other connectives and quantifiers
than ¬, ∧, ∨, ∀, and ∃. Let n be the number of those subformulas of ϕ(X) that
are of the form ¬ϕ ′, where ϕ ′ contains X . Let R(t) be a formula, and let ϕ(R(t))
denote the result of putting it in place of X .

If n is even, then for any interpretation of all other non-logical symbols than X ,
either ϕ(F) yields the same truth value as ϕ(T), or ϕ(F) yields F and ϕ(T) yields
T. In the former case, ϕ(R(t)), ϕ(⌈t⌋∧R(t)), and ϕ(¬⌈t⌋∨R(t)) yield the same
truth value. In the latter case, ϕ(⌈t⌋∧R(t)) yields F and ϕ(¬⌈t⌋∨R(t)) yields T

when t is undefined, and both agree with ϕ(R(t)) when t is defined. The case that n

is odd can be returned to the even case by considering ϕ(¬(¬R(t))). This makes it
possible to choose the outcome of undefined terms as appropriate, when translating
the practical problem at hand to logical formulas.

In the case of our running example, this approach asks someone to choose in-

formally between |x|−1 ≥ 0∧3
√

|x|−1 ≥ x+1 and ¬(|x|−1 ≥ 0)∨3
√

|x|−1 ≥
x + 1, after which the student should solve the chosen one formally. We wish
the choice be made by the student, on the basis that those values of x that make
√

|x|−1 undefined are not roots. Furthermore, the reasoning behind the choice
should be formalizable.

Many people share the intuition that an undefined formula is neither false nor
true, even if that results in the loss of the Law of Excluded Middle. For instance, [4]
reports on a survey that was participated by over 200 software developers. When
asked how various undefined situations should be interpreted, between 74 % and
91 % chose “error/exception”, the other options being “true”, “false”, and “other
(provide details)”. One of the situations was a programming analogue of 1

0 = 0∨
1
0 6= 0.

So we turn our attention to 3-valued logics. We denote the third truth value
with U and call it “undefined”. (Some authors talk of it as the absence of truth
value instead of a truth value.) Everybody seems to agree that ¬U yields U. Now

4 A. Valmari and L. Hella

neither 3
√

|x|−1 ≥ x+1 nor ¬(3
√

|x|−1 ≥ x+1) has 0 as a root, because both
of them yield U when x = 0. The definition of t < t ′ as a shorthand for ¬(t ≥ t ′)
works well.

In the presence of U, there are three major interpretations of ∧ and ∨. Fortu-
nately, we need not elaborate them now, because we will see in Section 8 that the
other two can be obtained from our choice in Definition 3.2(5) and (6) as short-
hands. Our choice is the same as Kleene’s [14] and Łukasiewicz’s [17]. Our ∀ and
∃ are analogous. The other versions of ∀ and ∃ that we encountered can be mim-
icked by them. What → should mean in this context is a tricky issue, as we will
argue in Section 8. We will mimic Kleene’s version in Section 3, and Łukasiewicz’s
version in Section 5.

The important issue regarding related work is how to say that a term or formula
is undefined. An obvious idea is to introduce a new atomic predicate ∗t or connec-
tive ∗ϕ that yields F if its input is undefined and T otherwise [2,6,9,13,18,20,23].
Alternatively, the idea of ⌈t⌋ discussed above can be used and naturally extended
to formulas [3, 5], at the cost of needing a new component in addition to the tra-
ditional signature and set of axioms. In the words of [3]: “we will assume that
included with every signature Σ is a set ∆ of domain formulas, one for each func-
tion and predicate symbol in Σ.” The difference is that ∗ is but ⌈⌋ is not a symbol in
the core language. Instead, ⌈t⌋ and ⌈ϕ⌋ are metalanguage expressions that denote
some formulas that typically only contain ¬, ∧, ∨, ∀, ∃, and atomic formulas. We
will adopt the latter approach in Section 5, and argue in Section 8 that it can mimic
the former.

The replacement of ϕ(R(t)) by ϕ(⌈t⌋∧R(t)) or ϕ(¬⌈t⌋∨R(t)) remains a pow-
erful practical reasoning method also in the presence of U, and then it takes place
within the formal logic. More generally, assume that no other connectives and
quantifiers are used than (our versions of) ¬, ∧, ∨, ∀, and ∃; ψ is a formula; and
ϕ(ψ) is a formula where ψ occurs within the scope of an even number of nega-
tions. Then every interpretation that makes ϕ(ψ) yield T, also makes ϕ(⌈ψ⌋∧ψ)
yield T, and vice versa. A similar claim holds for odd number of negations and
ϕ(¬⌈ψ⌋∨ψ). The hard part in proving these is ruling out the possibility that ψ

yields U, ϕ(ψ) yields T and ϕ(⌈ψ⌋∧ψ) or ϕ(¬⌈ψ⌋∨ψ) yields F or U. It becomes
easy by appealing to the notion of regularity proposed by Kleene and developed in
Section 4.

In our running example, ⌈3
√
−x−1⌋ is −x − 1 ≥ 0, ⌈3

√
x−1⌋ is x − 1 ≥

0, and there are no negations. Therefore, 3
√
−x−1 ≥ x+ 1 can be replaced by

x ≤ −1∧ 3
√
−x−1 ≥ x+ 1 and 3

√
x−1 ≥ x + 1 by x ≥ 1 ∧ 3

√
x−1 ≥ x + 1,

resulting in a formula that yields U for no value of x. In this way formulas can
be formally converted to a form where undefinedness plays essentially no role,
after which classical binary logic can be used for the rest of the reasoning (for
further discussion and sources, please see [5]). This approach can be used by both
humans and computers. It is simple to use, because ⌈t⌋ and ⌈ϕ⌋ are obtained with
an algorithm. The algorithm will be presented in Defnition 5.4.

If ϕ(ψ) is replaced by ϕ((∗ψ)∧ψ) instead of ϕ(⌈ψ⌋ ∧ψ), then the result

A Complete Regular Predicate Logic with Undefined Truth Value 5

contains ∗, which is not any of ¬, ∧, ∨, ∀, and ∃. As a consequence, doing a second
replacement is not necessarily sound. So the practical approach described above is
lost. On the other hand, if the original formula contains ∗, it can be replaced by ⌈⌋,
opening the way to the practical approach described above.

In the present study we develop a logic that uses U and ⌈⌋, present a proof
system for it, and prove that the system is sound and complete. The number of rules
in our proof system that differ from classical rules is small. We believe that this
is the first completeness proof for a proof system that relies on ⌈⌋. Furthermore,
we believe to be the first to point out the role of regularity in practice-oriented
reasoning in this context (one example was above and another will be in Section 4).

Also [13] claims completeness, but using ∗ and only for finite axiomatizations.
The source [9] presents a (in our opinion hard to read) tableaux-based completeness
proof for a logic that uses ∗. Its notion of |= is unusual in that both T and U are des-
ignated values on the right (but only T on the left). As a consequence, its proof sys-
tem would be only indirectly applicable to our purposes. The completeness claim
in [5] does not refer to Gödel’s sense, but to what in this study is Lemma 5.5(3)
and (4): “The procedure is complete [8,9], that is, the well-definedness condition
generated from a formula is provable if and only if the formula is well-defined.”

In terms of free logics, ours has neutral semantics [20]. Positive or negative
semantics only use the two truth values F and T, while neutral semantics and super-

valuation also use U. A recent study [23] covers positive and negative semantics,
but leaves out the latter two, mentioning that they “up to now still lack the rigorous
systematicity the other two family members enjoy”. Supervaluation makes 1

0 = 1
0

yield T on the basis that if 1
0 is given any value, no matter what, then 1

0 = 1
0 would

yield T in classical logic. In our logic 1
0 = 1

0 yields U. Neutral non-supervaluation
semantics were surveyed in [15]. Our logic disagrees with all the systems sum-
marized in the table on p. 328. For instance, unlike our logic, ∧ and ∨ are strict

in [16], that is, if ϕ or ψ or both are undefined, then ϕ ∧ψ and ϕ ∨ψ are undefined
as well.

The studies [19,24,30] discuss proof systems for Kleene’s logic, but only cover
propositional logic, while [1] focuses on equational logic without quantifiers.

The syntax and semantics of our core logic are presented in Sections 2 and 3.
We already mentioned that the notion of regularity is developed in Section 4, and ⌈⌋
in Section 5. Section 6 is devoted to a proof system for our logic, together with its
soundness proof. The system is proven complete (in the sense of Gödel, allowing
infinite sets of axioms) in Section 7. In Section 8 we argue that most, if not all,
other 3-valued logics for similar applications can be mimicked by ours.

2 Formal Languages

Our notion of a formal language is essentially the same as in classical binary first-
order logic. A couple of details are affected by the needs of the rest of this study.
We will comment on them after presenting the definition.

6 A. Valmari and L. Hella

The alphabet of a formal language is the union of the following five mutually
disjoint sets:

1. The set L of the following eleven symbols: () , = F T ¬ ∧ ∨ ∀ ∃

2. A countably infinite set V of variable symbols v1, v2, . . .

3. A countable set C of constant symbols c1, c2, . . .

4. A countable set F of function symbols f1, f2, . . .

5. A countable set R of relation symbols R1, R2, . . .

All formal languages have the same L and the same V , but not necessarily
the same C , F , or R. In particular, we will assume that the variable symbols are
literally v1, v2, and so on. To emphasize this, we write them as vi instead of vi.
When we want to refer to a variable symbol without saying which one, we use x,
y, x1, and so on, as metalanguage variable symbols.

Each function symbol f and each relation symbol R has an arity α(f) or α(R).
It is a positive integer. A signature is the quadruple (C ,F ,R,α).

Terms, atomic formulas, and formulas are defined recursively as follows.

Definition 2.1. Let a signature be fixed.

1. A term is either a variable symbol; a constant symbol; or of the form
f (t1, . . . , tα(f)), where f is a function symbol and t1, . . . , tα(f) are terms.

2. An atomic formula is either F; T; of the form (t1 = t2) where t1 and t2 are
terms; or of the form R(t1, . . . , tα(R)), where R is a relation symbol and t1,
. . . , tα(R) are terms.

3. A formula is either an atomic formula or of any of the following forms,
where ϕ and ψ are formulas and x is a variable symbol:

(¬ϕ) | (ϕ ∧ψ) | (ϕ ∨ψ) | (∀x ϕ) | (∃x ϕ)

An occurrence of a variable symbol x in a formula is bound if and only if it is
in a subformula of the form (∀x ϕ) or (∃x ϕ). The other occurrences of x are free.
A formula is closed if and only if it has no free occurrences of variable symbols,
and open in the opposite case.

We make a distinction between variables and variable symbols, for the reason
illustrated by the classical binary first-order logic formula ∃v2 (v2 < v1∧∃v1 (v1 <
v2)) on real numbers. If, for instance, the free occurrence of v1 has the value 3,
then the formula can be shown to hold by letting v2 = 2 and the bound occurrences
of v1 have the value 1. Instead of thinking of the variable symbol v1 having si-
multaneously the values 3 and 1, we think of the free and bound occurrences of v1

as referring to two distinct variables which just happen to have the same name. In
general, there are two kinds of variables: free and bound. Every variable symbol

A Complete Regular Predicate Logic with Undefined Truth Value 7

that occurs free introduces a free variable, and every ∀ and every ∃ introduces a
bound variable.

We will use ϕ(x) as a synonym for ϕ , and ϕ(t) to denote the result of replacing
every free occurrence of x in ϕ by t. The purpose of the notation ϕ(x) is to make it
clear which is the variable symbol whose free occurrences are replaced. By t is free

for x in ϕ it is meant that no variable symbol in t becomes bound in ϕ(t). As is well
known, replacing x by t that is not free for x is often incorrect, because, intuitively
speaking, a free variable in t disappears and another, bound variable with the same
name takes its place.

The atomic formulas F and T, corresponding to the truth values false and true,
have been included in the language for technical convenience. Although we will
also talk about a third truth value U (undefined), we did not include a corresponding
atomic formula in the language. Thanks to this design choice, our theory reduces
to classical binary first-order logic when every function symbol is defined every-
where.

We will tell how to add Kleene’s versions of the symbols → and ↔ to the
language in Section 3, and Łukasiewicz’s version of → in Section 5.

We adopt some semiformal conventions to improve the readability of formulas.
To reduce the need of (and), we let ¬ have the highest precedence, then ∧, then ∨,
and finally the quantifiers ∀ and ∃. The connectives ∧ and ∨ associate to the left;
that is, ϕ ∧ψ ∧ χ denotes ((ϕ ∧ψ)∧ χ), and similarly for ∨. In examples we may
use the familiar syntax of the domain of discourse of the example. For instance, in
the case of natural numbers we may write

∀n (¬∃m (m ·m = n))∨
√

n ·
√

n = n

as a human-friendly semiformal representation of the formula

(∀v1 ((¬(∃v2 (·(v2,v2) = v1)))∨ (·(√(v1),
√
(v1)) = v1)))

Let ϕ , ψ , and χ denote any formulas. In the metalanguage, we use ϕ ∼= ψ to
denote that after unwinding all semiformal abbreviations, ϕ and ψ result in literally
the same formula. For instance, because we have chosen that both ϕ ∨ψ ∨ χ and
(ϕ ∨ψ)∨χ are abbreviations for ((ϕ ∨ψ)∨χ), we have ϕ ∨ψ ∨χ ∼= (ϕ ∨ψ)∨χ .
On the other hand, we have ϕ ∨ψ ∨χ 6∼= ϕ ∨ (ψ ∨χ), because (ϕ ∨ (ψ ∨χ)) is not
literally the same formula as ((ϕ ∨ψ)∨ χ).

3 Structures, Truth Values, and Models

Our notion of a structure differs from the standard one in that function symbols
may denote partial functions. More formally, a structure (D,) on a signature
(C ,F ,R,α) consists of the following:

1. A non-empty set D, called the domain of discourse.

8 A. Valmari and L. Hella

2. For each c ∈ C , an element C of D. (We reserve the symbol c for another
use.)

3. For each f ∈ F , a partial function f from D
α(f) to D.

4. For each R ∈ R, a subset R of Dα(R).

The standard approach would continue by defining an assignment of values for
variable symbols, and then defining a value for each term and a truth value for each
formula. We will proceed in the opposite order, by first interpreting terms as partial
functions and formulas as total functions, and then assigning values to variable
symbols. We do so to simplify the formulation of the notion of “regularity” that
will be presented in Definition 4.2.

In itself, reversing the order is insignificant, since it does not affect the funda-
mental ideas but only their formalization. However, because of the overall goal of
our study, we also introduce two significant changes. First, terms need not yield
a value. Second, the values of formulas are picked from among three truth values
false, undefined and true, denoted by F, U and T, respectively.

To interpret terms and formulas as functions, we need to map variable sym-
bols to argument positions. For instance, we need to decide whether v3 + v2 is
interpreted as the function D

2 → D;(d3,d2) 7→ d3 +d2 where di denotes the value
of vi, or as something else. We interpret it as D

3 → D;(d1,d2,d3) 7→ d3 + d2. In
general, we let the arguments correspond to v1, v2, and so on, in this order, as far
as needed by the term or formula. This will make many argument lists contain
positions whose corresponding variable symbol does not occur (free) in the term
or formula, such as the first position and v1 in D

3 →D;(d1,d2,d3) 7→ d3 +d2. This
will not be much of a problem, because interpretation as functions is only an auxil-
iary tool. After assigning values to free variables, a standard kind of interpretation
is obtained.

For each term t we define its arity α(t) as the biggest i such that vi occurs in t.
If no variable symbol occurs in t, then α(t) = 0. It is easy to see that the arity of
a compound term f (t1, . . . , tα(f)) is the maximum of the arities of its constituents
t1, . . . , tα(f). Similarly, we define that the arity of a closed formula is 0, and the
arity of an open formula is the biggest i such that vi occurs free in it. It is possible
that α((∀x ϕ))< α(ϕ) and α((∃x ϕ))< α(ϕ). Even so, the arity of a compound
formula is at most the maximum of the arities of its constituents.

Definition 3.1. Given a signature (C ,F ,R,α) and a structure (D,) on it, each
term t defines a partial function t from D

α(t) to D as follows. In the definition, d1,
. . . , dn are arbitrary elements of D.

1. If vn ∈ V , then vn is the total function from D
n to D that maps (d1, . . . ,dn)

to dn. That is, vn(d1, . . . ,dn) = dn.

2. If c ∈ C , then c is the function with arity zero such that c() = C. That is,
c : D0 → D;() 7→C.

A Complete Regular Predicate Logic with Undefined Truth Value 9

3. If f ∈ F and t1, . . . , tα(f) are terms, then let n = max{α(t1), . . . ,α(tα(f))}.
We define f (t1, . . . , tα(f)) as the following partial function from D

n to D.

– If for 1 ≤ i ≤ α(f), any of the ti(d1, . . . ,dα(ti)) is undefined, then
f (t1, . . . , tα(f))(d1, . . . ,dn) is undefined as well.

– Otherwise, for 1 ≤ i ≤ α(f) let ei = ti(d1, . . . ,dα(ti)). If f (e1, . . . ,eα(f))
is defined, then f (t1, . . . , tα(f))(d1, . . . ,dn) = f (e1, . . . ,eα(f)); and oth-

erwise f (t1, . . . , tα(f))(d1, . . . ,dn) is undefined.

The definition obeys the principle that if any subterm of a term is undefined,
then the term as a whole is undefined as well. That is, our partial functions are
strict.

Definition 3.2. Given a signature and a structure (D,) on it, each formula ϕ

defines a total function ϕ from D
α(ϕ) to {F,U,T} as follows. In the definition, d1,

. . . , dn are arbitrary elements of D. To avoid confusion with the formal symbol
=, we write ϕ(d1, . . . ,dα(ϕ)) ≍ F to denote that ϕ maps (d1, . . . ,dα(ϕ)) to F, and
similarly with U and T.

1. We define that F and T are the functions with arity zero whose values are F

and T, respectively.

2. Let n = max{α(t1),α(t2)}. We define (t1 = t2)(d1, . . . ,dn) ≍

U, if t1(d1, . . . ,dα(t1)) or t2(d1, . . . ,dα(t2)) is undefined

T, if t1(d1, . . . ,dα(t1)) and t2(d1, . . . ,dα(t2)) are defined, and

t1(d1, . . . ,dα(t1)) = t2(d1, . . . ,dα(t2))

F, if t1(d1, . . . ,dα(t1)) and t2(d1, . . . ,dα(t2)) are defined, and

t1(d1, . . . ,dα(t1)) 6= t2(d1, . . . ,dα(t2))

3. Let n = max{α(t1), . . . ,α(tα(R))}, and let ei = ti(d1, . . . ,dα(ti)) when the lat-
ter is defined. We define R(t1, . . . , tα(R))(d1, . . . ,dn) ≍

U, if for 1 ≤ i ≤ α(R), any of the ti(d1, . . . ,dα(ti)) is undefined

T, if for 1≤ i≤α(R), each ti(d1, . . . ,dα(ti)) is defined and (e1, . . . ,eα(R))∈
R

F, if for 1≤ i≤α(R), each ti(d1, . . . ,dα(ti)) is defined and (e1, . . . ,eα(R)) /∈
R

4. Clearly α((¬ϕ)) = α(ϕ). We define (¬ϕ)(d1, . . . ,dα((¬ϕ))) ≍

F, if ϕ(d1, . . . ,dα(ϕ))≍ T

T, if ϕ(d1, . . . ,dα(ϕ))≍ F

10 A. Valmari and L. Hella

U, if ϕ(d1, . . . ,dα(ϕ))≍ U

5. Let n = max{α(ϕ),α(ψ)}. We define (ϕ ∧ψ)(d1, . . . ,dn) ≍

T, if ϕ(d1, . . . ,dα(ϕ))≍ ψ(d1, . . . ,dα(ψ))≍ T

F, if ϕ(d1, . . . ,dα(ϕ))≍ F or ψ(d1, . . . ,dα(ψ))≍ F

U, otherwise

6. Let n = max{α(ϕ),α(ψ)}. We define (ϕ ∨ψ)(d1, . . . ,dn) ≍

F, if ϕ(d1, . . . ,dα(ϕ))≍ ψ(d1, . . . ,dα(ψ))≍ F

T, if ϕ(d1, . . . ,dα(ϕ))≍ T or ψ(d1, . . . ,dα(ψ))≍ T

U, otherwise

7. If i > α(ϕ), we define (∀vi ϕ) as ϕ . Otherwise 1 ≤ i ≤ α(ϕ), and we define
(∀vi ϕ)(d1, . . . ,dα((∀vi ϕ))) ≍

T, if for every ei ∈D we have ϕ(d1, . . . ,ei, . . . ,dα(ϕ))≍ T

F, if for at least one ei ∈ D we have ϕ(d1, . . . ,ei, . . . ,dα(ϕ))≍ F

U, otherwise

8. If i > α(ϕ), we define (∃vi ϕ) as ϕ . Otherwise 1 ≤ i ≤ α(ϕ), and we define
(∃vi ϕ)(d1, . . . ,dα((∃vi ϕ))) ≍

F, if for every ei ∈D we have ϕ(d1, . . . ,ei, . . . ,dα(ϕ))≍ F

T, if for at least one ei ∈ D we have ϕ(d1, . . . ,ei, . . . ,dα(ϕ))≍ T

U, otherwise

It follows from (2) that if both t1 and t2 are defined, then t1 = t2 compares their
values in the usual fashion, and if at least one of them is undefined, then (t1 = t2)≍
U. For instance, with real numbers,

√
−1 =

√
−1 is not true but undefined.

More generally, by (1), (2), and (3), an atomic formula yields U only if it
contains an undefined term. This restriction is only for technical convenience. It
may be circumvented by introducing a new function symbol f that is undefined
precisely when desired, making (d1, . . . ,dα(R)) ∈ R when f (d1, . . . ,dα(f)) is unde-
fined, and using R(x1, . . . ,xα(R))∧ (f (x1, . . . ,xα(f)) = f (x1, . . . ,xα(f))).

It is easy to check that (4), (5), and (6) make ¬, ∧, and ∨ match the correspond-
ing truth tables in Figure 1. Furthermore, Kleene’s conditional and biconditional
can be obtained by treating ϕ → ψ as a shorthand for ¬ϕ ∨ψ , and ϕ ↔ ψ as a
shorthand for (ϕ → ψ)∧ (ψ → ϕ). We will show in Section 4 that Łukasiewicz’s
conditional ։ cannot be expressed in our language. However, Section 5 will reveal
that any formula that contains it can be replaced by a formula in our language.

In (7) and (8), if i > α(ϕ), it is appropriate to define quantification so that it
has no effect, because then vi does not occur free in ϕ . The definitions for the case

A Complete Regular Predicate Logic with Undefined Truth Value 11

¬
F T

U U

T F

∧ F U T

F F F F

U F U U

T F U T

∨ F U T

F F U T

U U U T

T T T T

→ F U T

F T T T

U U U T

T F U T

↔ F U T

F T U F

U U U U

T F U T

։ F U T

F T T T

U U T T

T F U T

Figure 1: Truth tables of some propositional connectives. The symbols → and ↔
are Kleene’s conditional and biconditional, and ։ is Łukasiewicz’s conditional

i ≤ α(ϕ) are analogous to the definitions of ∧ and ∨. In them, vi may but need not
occur free in ϕ .

If every function symbol in a formula ϕ is defined everywhere, then every-
where ϕ(d1, . . . ,dα(ϕ)) 6≍ U. If all function symbols of the language are defined
everywhere, then Definitions 3.1 and 3.2 reduce to the classical binary first-order
logic semantics represented in a function form.

It is helpful to think of F being smaller than U which is smaller than T. Then
(ϕ ∧ψ)(d1, . . . ,dα((ϕ∧ψ))) yields the minimum of the results of ϕ(d1, . . . ,dα(ϕ))
and ψ(d1, . . . ,dα(ψ)), and (ϕ ∨ψ)(d1, . . . ,dα((ϕ∨ψ))) yields the maximum. Fur-
thermore, (∀vi ϕ(vi))(d1, . . . ,dα((∀vi ϕ(vi)))) yields the minimum of ϕ ′(e) for e∈D,
and (∃vi ϕ(vi))(d1, . . . ,dα((∃vi ϕ(vi)))) yields the maximum. Here ϕ ′ denotes the
function from D to {F,U,T} obtained by using d1, . . . , dα(ϕ) as other arguments
of ϕ than the ith. That is, if i > α(ϕ), then e 7→ ϕ(d1, . . . ,dα(ϕ)), and otherwise
e 7→ ϕ(d1, . . . ,e, . . . ,dα(ϕ)).

It is easy to check that De Morgan’s laws hold in our logic:

Lemma 3.3.

1. (¬(ϕ ∧ψ)) is the same function as ((¬ϕ)∨ (¬ψ)).

2. (¬(∀x ϕ)) is the same function as (∃x (¬ϕ)).

If a term is not free for a variable symbol in a formula, then the following
lemma can be used to change the names of the bound variables in the formula, so
that the term becomes free.

Lemma 3.4. If y does not occur in ϕ(x), then (∀y ϕ(y)) is the same function as

(∀x ϕ(x)), and (∃y ϕ(y)) is the same function as (∃x ϕ(x)).

Proof. If x and y are the same variable symbol, or if x does not occur free in ϕ(x),
then the claim is trivial. So we assume that they are distinct and x does occur free.

By construction, x does not occur free in ϕ(y). By assumption, y does not
occur free in ϕ(x). Therefore, ∀x ϕ(x) and ∀y ϕ(y) have the same free variables.
Let n = α((∀x ϕ(x))) = α((∀y ϕ(y))).

Because y does not occur in ϕ(x), all occurrences of y in ϕ(y) are free, and they
match precisely the free occurrences of x in ϕ(x). Let i and j be such that x is vi

and y is v j. The functions ϕ(x) and ϕ(y) have max{n, i} and max{n, j} arguments,

12 A. Valmari and L. Hella

respectively, but their values only depend on those arguments whose corresponding
variable occurs free. The values of x and y go in via different argument positions,
but are from then on treated identically. The values of all other free variables are
treated fully identically.

Therefore, ϕ(x)(d1, . . . ,dn;ei) ≍ ϕ(y)(d1, . . . ,dn;e j), where the notation has
the following meaning. The symbols d1, . . . , dmax{n,i−1, j−1}, and ei denote arbitrary
elements of D, and e j = ei. If i ≤ n, then (d1, . . . ,dn;ei) denotes (d1, . . . ,ei, . . . ,dn),
and if i > n, it denotes (d1, . . . ,di−1,ei). Furthermore, (d1, . . . ,dn;e j) is defined
similarly.

As a consequence, (∀x ϕ(x))(d1, . . . ,dn)≍ (∀y ϕ(y))(d1, . . . ,dn), and similarly
with ∃.

Definition 3.5. Let a signature be fixed.
Given a structure σ = (D,) on it, an assignment of values to free variables is a

total function ν from Z
+ to D. Given σ and ν , any term t yields t(ν(1), . . . ,ν(α(t))),

and any formula ϕ yields ϕ(ν(1), . . . ,ν(α(ϕ))).
A model of a formula ϕ is a pair (σ ,ν) such that ϕ(ν(1), . . . ,ν(α(ϕ))) ≍ T.

This is denoted with (σ ,ν) |= ϕ . If Γ is a set of formulas, then (σ ,ν) |= Γ means
that for every ϕ ∈ Γ we have (σ ,ν) |= ϕ .

If x denotes the variable vi, then by ν(x) we mean ν(i). Let d ∈D. By ν [x := d]
we denote the assignment such that ν [x := d](x) = d and ν [x := d](y) = ν(y) when
y is not the same variable as x. For brevity, we will often write t(ν) instead of
t(ν(1), . . . ,ν(α(t))) and ϕ(ν) instead of ϕ(ν(1), . . . ,ν(α(ϕ))). The following
lemma is immediate from Definition 3.1.

Lemma 3.6. Assume that t(ν) is defined and yields the value d. If t is free for x in

ϕ(x), then ϕ(t)(ν)≍ ϕ(x)(ν [x := d]).

4 Regularity

In this section we introduce and discuss a notion that needs different technical
background from the rest of this study. We first briefly introduce the necessary
background.

By a 3-valued propositional logic we mean a logic whose alphabet consists
of F, U, T, proposition symbols, and a choice of propositional connectives. Any
formula in the logic whose proposition symbols are among P1, . . . , Pn can be inter-
preted as a truth function from {F,U,T}n to {F,U,T}. Kleene’s 3-valued proposi-
tional logic [14,24] has the connectives ¬, ∧, ∨, →, and ↔ introduced in Figure 1.
Łukasiewicz’s 3-valued propositional logic [17] has ¬, ∧, ∨, ։, and a bicondi-
tional version of ։.

One can check from Figure 1 that the truth functions represented by P∨Q,
P → Q, and P ↔ Q can also be represented as ¬(¬P∧¬Q), ¬P∨Q, and (P →
Q)∧ (Q → P), respectively. On the other hand, we will soon see that P ։ Q

cannot be constructed from other connectives in the figure.

A Complete Regular Predicate Logic with Undefined Truth Value 13

Kleene’s 3-valued propositional logic has a useful property called regularity.
Intuitively, it says that if the truth value of a formula depends on the truth value
of Pi (while the truth values of the other proposition symbols remain unchanged),
then the truth value of the formula is U when the truth value of Pi is U.

Definition 4.1. Let π(P1, . . . ,Pn) be a truth function. It is regular if and only if for
each 1 ≤ i ≤ n, for each j such that 1 ≤ j ≤ n and j 6= i, and for each Pj ∈ {F,U,T}

1. either π(P1, . . . ,U, . . . ,Pn)≍ U

2. or π(P1, . . . ,F, . . . ,Pn)≍ π(P1, . . . ,U, . . . ,Pn)≍ π(P1, . . . ,T, . . . ,Pn),

where the explicitly shown truth value F, U, or T, is assigned to Pi.
A formula is regular if and only if the truth function represented by it is regular.

A propositional logic is regular if and only if all of its formulas are regular.

It is easy to see from Figure 1 that P ։ Q is not regular: U։ U≍ T 6≍ U, but
T ։ U ≍ U 6≍ U ։ U. Therefore, Łukasiewicz’s 3-valued propositional logic is
not regular.

In Figure 1, excluding ։, each row and each column either has U in the middle,
or its every entry is F or every entry is T. Therefore, ¬P, P∧Q, P∨Q, P → Q,
and P ↔ Q are regular. It is possible to prove (and we will de facto do so as part
of the proof of Theorem 4.3) that every propositional formula that is composed
only using proposition symbols, F, T, U, ¬, ∧, ∨, →, and ↔ is regular. As a
consequence, Kleene’s propositional logic is regular. Therefore, P ։ Q cannot
be constructed in it. It is also impossible to construct a formula ∗(P) such that
∗(U)≍ F and ∗(T)≍ ∗(F)≍ T, because it is irregular. (On the other hand, ∗(P)≍
¬((P ։ ¬P)∧ (¬P ։ P)), and P ։ Q ≍ ¬P∨Q∨¬(∗(P)∨∗(Q)).)

Next we adapt the notion of regularity to our predicate logic. Although the
value of a variable is never undefined, it is possible to assign an undefined term
in the place of each free occurrence of the variable symbol. We will need handy
notation for discussing such situations. Therefore, we introduce a new metalan-
guage symbol ⊥, to be used only in this section, to represent the missing value of
an undefined term.

We declare ⊥ /∈ D and define D⊥ = D∪ {⊥}. Then we extend each t to a

partial function t⊥ from D
α(t)
⊥ to D, and each ϕ to a total function ϕ⊥ from D

α(ϕ)
⊥

to {F,U,T}. (We do not follow the well-known approach of extending t to a total

function from D
α(t)
⊥ to D⊥, because we want to use ⊥ as little as possible.) The

desired effect is obtained by rewriting Definition 3.1 and 3.2 such that ⊥ is used
instead of , and 3.1(1) is replaced by the following:

If vn ∈ V , then vn⊥ is the partial function from D
n
⊥ to D such that

if en ∈ D, then vn⊥(e1, . . . ,en) = en, and otherwise vn⊥(e1, . . . ,en) is
undefined.

By an “extended value” of a free variable vi we mean an element of D⊥ as
the ith argument of t⊥ or ϕ⊥. Intuitively, regularity says that for any free variable

14 A. Valmari and L. Hella

vi, if the truth value of a formula depends on the extended value of vi (while the
extended values of the other free variables remain unchanged), then the truth value
of the formula is U when the extended value of vi is undefined.

Definition 4.2. Let ϕ be a formula and n = α(ϕ). The formula ϕ is regular if and
only if for each 1 ≤ i ≤ n, for each j such that 1 ≤ j ≤ n and j 6= i, and for each
e1 ∈ D⊥, . . . , ei−1 ∈ D⊥, ei+1 ∈ D⊥, . . . , en ∈ D⊥

1. either ϕ⊥(e1, . . . ,⊥, . . . ,en)≍ U

2. or ϕ⊥(e1, . . . ,ei, . . . ,en)≍ ϕ⊥(e1, . . . ,⊥, . . . ,en) for every ei ∈ D,

where the value ⊥ or ei is used as the ith argument.

The following theorem is from [28], but we have improved its proof.

Theorem 4.3. The logic in Definitions 2.1, 3.1, and 3.2 is regular.

Proof. Let ϕ , n, i, and e1, . . . , en be like in Definition 4.2. For brevity, if ψ is
any subformula of ϕ , we write ψ⊥(ei) instead of ψ⊥(e1, . . . ,eα(ψ)) both when
1 ≤ i ≤ α(ψ) and when i > α(ψ). We use induction on the structure of ϕ to show
that ϕ⊥(⊥)≍ U or ϕ⊥(ei) is the same for every ei ∈ D⊥.

The base case consists of atomic formulas. By Definition 3.2(1), F⊥(ei) ≍
F and T⊥(ei) ≍ T independently of ei. If vi occurs in neither t1 nor t2, then
(t1 = t2)⊥(ei) does not depend on ei. Otherwise, if ei is ⊥, then t1 or t2 is un-
defined, so by 3.2(2) (t1 = t2)⊥(⊥) ≍ U. By 3.2(3), similar reasoning applies to
R(t1, . . . , tα(R)). So the atomic formulas are regular.

The induction step consists of five cases. By the induction assumption, the
subformula(s) ψ , ψ1, and ψ2 of each case are regular.

Let ϕ be ¬ψ . By 3.2(4), if ψ⊥(⊥)≍ U, then also ϕ⊥(⊥)≍ U. If ψ⊥(ei)≍ F

independently of ei, then ϕ⊥(ei)≍ T independently of ei. If ψ⊥(ei)≍ T indepen-
dently of ei, then ϕ⊥(ei)≍ F independently of ei.

Let ϕ be ψ1∧ψ2. By 3.2(5), if ψ1⊥(ei)≍ψ2⊥(ei)≍T independently of ei, then
also ϕ⊥(ei)≍T independently of ei. If ψ1⊥(ei)≍ F or ψ2⊥(ei)≍ F independently
of ei, then also ϕ⊥(ei)≍ F independently of ei. In the remaining cases ψ1⊥(⊥) 6≍
F 6≍ ψ2⊥(⊥), and ψ1⊥(⊥)≍ U or ψ2⊥(⊥)≍ U. Then ϕ⊥(⊥)≍ U.

Let ϕ be ∀x ψ . We write ψ⊥(ei;d) to indicate that the value of x is d ∈ D.
By 3.2(7), if for every d ∈ D we have ψ⊥(ei;d) ≍ T independently of ei, then
also ϕ⊥(ei) ≍ T independently of ei. If for some d ∈ D we have ψ⊥(ei;d) ≍ F

independently of ei, then also ϕ⊥(ei) ≍ F independently of ei. In the remaining
cases at least one d ∈ D yields ψ⊥(⊥;d)≍ U, and no d ∈ D yields ψ⊥(⊥;d)≍ F.
Then ϕ⊥(⊥)≍ U.

The cases ψ1 ∨ψ2 and ∃x ψ are proven similarly using 3.2(6) and 3.2(8).

We gave an example in Section 1 that regularity is important in practical ap-
plication of our logic. Just to give another example that can be explained briefly:
let t and t ′ be terms such that they are free for x in ϕ(x), and when t is defined,

A Complete Regular Predicate Logic with Undefined Truth Value 15

then t = t ′. For instance, we may have t = x−2
x−2 and t ′ = 1. If the logic is regular,

then ϕ(t) implies ϕ(t ′). This is because when ϕ(t) ≍ T but t is undefined, then

ϕ(t ′)≍ T by regularity. This makes it correct to solve x−2
x−2 (x

2 −5x+7) = 1 by re-

placing x−2
x−2 by 1, solving 1(x2 −5x+7) = 1, and checking its roots 2 and 3 against

the original equation. The root 2 fails and 3 passes the check, so 3 is the only root
of x−2

x−2 (x
2 −5x+7) = 1.

From now on we will not use ⊥ explicitly. Instead, when we appeal to regular-
ity in the sequel, we will use the following corollary of Theorem 4.3.

Corollary 4.4. If t(ν) is undefined but ϕ(t)(ν)≍T or ϕ(t)(ν)≍ F, then for every

d ∈ D we have ϕ(x)(ν [x := d])≍ ϕ(t)(ν).

Proof. In the notation of Definition 4.2, ϕ(t)(ν) is ϕ⊥(ν(1), . . . ,⊥, . . . ,ν(n)) and
ϕ(x)(ν [x := d]) is ϕ⊥(ν(1), . . . ,d, . . . ,ν(n)).

5 Is Defined -Formulas

To understand the motivation of the topic of this section, consider adding a function
symbol for multiplicative inverses to the theory of real closed fields. The standard
axiom ∀x (x = 0∨x · 1

x
= 1) does most of the job. When x = 0, then (x · 1

x
= 1)≍U,

but (x = 0∨ x · 1
x
= 1) ≍ T by Definition 3.2(6). What this axiom fails to do is to

tell that 1
0 has been intentionally left undefined. It leaves open many possibilities,

including 1
0 = 0 and 1

0 = 1. It thus leaves the axiomatization incomplete.
In everyday mathematics it is natural to use a first-order formula to specify

the domain of a function. For instance, in the case of real numbers, y
x

is defined
precisely when x 6= 0;

√
x is defined precisely when x ≥ 0; and logx is defined

precisely when x > 0.
To formalize this idea, we assume that in a formal theory, each function symbol

f has an associated isdef-formula ⌈ f ⌋, defined soon. The name is an abbreviation of
“is defined -formula”. While in classical binary first-order logic a theory consists
of two components: a signature and a set of formulas on it (the axioms), in our
logic a theory consists of three components: the signature, the axioms, and the
isdef-formulas. The isdef-formulas will be defined so that they never yield U. We
use ⌈F⌋ to denote the mapping from the function symbols to their isdef-formulas,
and ⌈ f ⌋ denotes the image of f ∈F . The notation ⌈⌋ used in Section 1 applies the
idea to terms and formulas. It will be defined in terms of ⌈F⌋ in Definition 5.4.

As was discussed in more detail towards the end of Section 2, ϕ ∼= ψ means
that ϕ and ψ denote the literally same formula.

Definition 5.1. Isdef-formulas on a signature (C ,F ,R,α) are a function ⌈F⌋
from F to the formulas on the signature such that for every f ∈ F ,

1. ⌈ f ⌋ contains no other free variables than v1, . . . , vα(f), and

2. for every function symbol g in ⌈ f ⌋, we have ⌈g⌋ ∼= T.

16 A. Valmari and L. Hella

To improve readability, in examples we may write x, y, and z instead of v1, v2,
and v3. Here are some examples on familiar function symbols on real numbers:

⌈x+ y⌋ ∼= T, ⌈√x⌋ ∼= (x ≥ 0), and ⌈ x
y
⌋ ∼= (¬(y = 0)).

Because T, (x ≥ 0), and (¬(y = 0)) contain no function symbols at all, they vac-
uously satisfy Definition 5.1(2). Because multiplication is defined on all pairs of
natural numbers, we may choose ⌈x · y⌋ ∼= T. Then an isdef-formula of the square
root on natural numbers could be ∃y (y · y = x). It contains the function symbol ·.

The intention is that each function is defined precisely when its isdef-formula
yields T. The next definition expresses this property, and tells how isdef-formulas
are taken into account in the notions of model and logical consequence. The nota-
tion (σ ,ν) |= ϕ and (σ ,ν) |= Γ was introduced in Definition 3.5.

Definition 5.2. Let Γ be a set of formulas and ⌈F⌋ be the isdef-formulas.

1. A model of ⌈F⌋ is a structure (D,) such that for every function symbol f

and every d1 ∈ D, . . . , dα(f) ∈D, the following holds:

⌈ f ⌋(d1, . . . ,dα(⌈ f ⌋))≍ T if and only if f (d1, . . . ,dα(f)) is defined.

This is denoted by (D,) |= ⌈F⌋.

2. A model of (⌈F⌋,Γ) is a pair (σ ,ν) such that σ is a structure, ν is an as-
signment of values to free variables, σ |= ⌈F⌋, and (σ ,ν) |= Γ.

3. A formula ϕ is a logical consequence of ⌈F⌋ and Γ, denoted by (⌈F⌋,Γ) |=
ϕ , or Γ |=ϕ for brevity, if and only if every model of (⌈F⌋,Γ) also is a model
of ϕ .

To illustrate the contribution of ⌈F⌋ to the notion of logical consequence, let
α(f) = 1, ⌈ f ⌋1

∼= T, ⌈ f ⌋2
∼= F, and ϕ ∼= (f (x) = f (x)). We have (⌈F⌋1, /0) |= ϕ

but (⌈F⌋2, /0) 6|= ϕ .
In this study, given a signature, Γ will vary frequently, but ⌈F⌋ will remain the

same. As a consequence, Γ is informative but ⌈F⌋ is dead weight in the notation
(⌈F⌋,Γ) |= ϕ . Therefore, we prefer the notation Γ |= ϕ , but remind at places that
the concept also depends on ⌈F⌋.

Definition 5.3. A 3-valued first-order theory is a triple (S ,Γ,⌈F⌋), where:

1. S is a signature,

2. Γ is a set of formulas on S (known as the axioms), and

3. ⌈F⌋ is isdef-formulas on S .

A Complete Regular Predicate Logic with Undefined Truth Value 17

For instance, the function 1
x

can be added to the classical binary first-order
theory of real closed fields as follows. First, the isdef-formula T is introduced for
each original function symbol, to make the theory 3-valued. Then, the symbol 1

is added to the signature; the formula ¬(x = 0) is made its isdef-formula; and the
formula ∀x (x = 0∨ x · 1

x
= 1) is added to the axioms. The square root function

can be added to the theory of natural numbers by introducing the isdef-formulas T,
adding

√
to the signature, giving it the isdef-formula ∃y (y · y = x), and adding

the axiom (¬∃y (y · y = x))∨ (
√

x ·√x = x).

It is intuitively clear that, for instance, in the case of real numbers,
√

x+y

y+1 is
defined if and only if x+ y ≥ 0∧ y+ 1 6= 0. Next we present and show correct a
straightforward algorithm that implements this intuition. Given isdef-formulas, for
each term t it computes a formula ⌈t⌋ and for each formula ϕ it computes a formula
⌈ϕ⌋. Given a structure that models the isdef-formulas, ⌈t⌋ yields T if and only if
t is defined, and ⌈ϕ⌋ yields T if and only if ϕ does not yield U. The formulas ⌈t⌋
and ⌈ϕ⌋ themselves never yield U.

Definition 5.4. Assume that a signature and isdef-formulas on it are given.

1. If t is a variable symbol or a constant symbol, then ⌈t⌋ ∼= T.

2. ⌈ f (t1, . . . , tα(f))⌋ ∼= ⌈t1⌋∧ · · ·∧ ⌈tα(f)⌋∧⌈ f ⌋(t1, . . . , tα(⌈ f ⌋))
(Where necessary, rename bound variables in ⌈ f ⌋ as justified by Lemma 3.4,
so that t1, . . . , tα(⌈ f ⌋) become free for v1, . . . , vα(⌈ f ⌋).)

3. ⌈F⌋ ∼= ⌈T⌋ ∼= T

4. ⌈t1 = t2⌋ ∼= ⌈t1⌋∧⌈t2⌋

5. ⌈R(t1, . . . , tα(R))⌋ ∼= ⌈t1⌋∧ · · ·∧ ⌈tα(R)⌋

6. ⌈¬ϕ⌋ ∼= ⌈ϕ⌋

7. ⌈ϕ ∧ψ⌋ ∼= (⌈ϕ⌋∧⌈ψ⌋)∨ (⌈ϕ⌋∧¬ϕ)∨ (⌈ψ⌋∧¬ψ)

8. ⌈ϕ ∨ψ⌋ ∼= (⌈ϕ⌋∧⌈ψ⌋)∨ (⌈ϕ⌋∧ϕ)∨ (⌈ψ⌋∧ψ)

9. ⌈∀x ϕ⌋ ∼= (∀x ⌈ϕ⌋)∨∃x (⌈ϕ⌋∧¬ϕ)

10. ⌈∃x ϕ⌋ ∼= (∀x ⌈ϕ⌋)∨∃x (⌈ϕ⌋∧ϕ)

Lemma 5.5. Assume (D,) |= ⌈F⌋. Let t be a term and ϕ be a formula.

1. Every free variable in ⌈t⌋ also occurs in t, and every free variable in ⌈ϕ⌋
also occurs free in ϕ .

2. If for every function symbol f and every d1 ∈ D, . . . , dα(f) ∈ D we have

⌈ f ⌋(d1, . . . ,dα(⌈ f ⌋)) ≍ T, then for every term t, every formula ϕ , and every

d1 ∈ D, . . . we have ⌈t⌋(d1, . . . ,dα(⌈t⌋))≍ T and ⌈ϕ⌋(d1, . . . ,dα(⌈ϕ⌋))≍ T.

18 A. Valmari and L. Hella

3. Let d1 ∈D, . . . , dα(t) ∈D. If t(d1, . . . ,dα(t)) is defined, then ⌈t⌋(d1, . . . ,dα(⌈t⌋))
≍ T. Otherwise ⌈t⌋(d1, . . . ,dα(⌈t⌋))≍ F.

4. Let d1 ∈ D, . . . , dα(ϕ) ∈ D. If ϕ(d1, . . . ,dα(ϕ))≍ F or ϕ(d1, . . . ,dα(ϕ))≍ T,

then ⌈ϕ⌋(d1, . . . ,dα(⌈ϕ⌋))≍ T. Otherwise ⌈ϕ⌋(d1, . . . ,dα(⌈ϕ⌋))≍ F.

5. Assume that ⌈F⌋ is a computable function. Then the functions t 7→ ⌈t⌋ and

ϕ 7→ ⌈ϕ⌋ are computable.

Proof.

1. It is easy to check from Definition 5.4 that no case introduces other free
variables than those in t1, . . . , tn, ⌈t1⌋, . . . , ⌈tn⌋, ϕ , ψ , ⌈ϕ⌋, and ⌈ψ⌋, where
t1, . . . , tn are the proper subterms and ϕ and ψ are the proper subformulas of
the case. The claim follows from this immediately by induction.

2. Each case in Definition 5.4 is T, ⌈t1⌋ ∧ · · · ∧ ⌈tα(f)⌋ ∧ ⌈ f ⌋(t1, . . . , tα(⌈ f ⌋)),
⌈t1⌋ ∧ · · · ∧ ⌈tn⌋ for some n, or ⌈ϕ⌋; or contains the disjunct ⌈ϕ⌋ ∧ ⌈ψ⌋ or
∀x ⌈ϕ⌋. By induction and the assumption of the claim, each such formula or
disjunct, and thus each case, yields T everywhere.

3. We use induction on the structure of t. For brevity we drop parameter lists
of the form (d1, . . . ,dα()), but do show those that are of other forms.

The base case consists of variable and constant symbols. By Definition 3.1(1)
and (2), vi and c are defined, and by Definition 5.4(1) ⌈vi⌋ ≍ ⌈c⌋ ≍ T.

The induction step consists of terms of the form f (t1, . . . , tα(f)). By the in-
duction hypothesis and Definition 5.2(1), there are three cases, each of which
can be dealt with 3.1(3) and 5.4(2):

(a) At least one of the ti is undefined and ⌈ti⌋ ≍ F. Then f (t1, . . . , tα(f)) is

undefined and ⌈ f (t1, . . . , tα(f))⌋ ≍ F.

(b) Every ti is defined and has ⌈ti⌋ ≍ T; and f (d′
1, . . . ,d

′
α(f)) is defined,

where each d′
i is the value of ti. By 5.2(1) we have ⌈ f ⌋(d′

1, . . . ,d
′
α(⌈ f ⌋))

≍ T. Then f (t1, . . . , tα(f)) is defined and ⌈ f (t1, . . . , tα(f))⌋ ≍ T.

(c) Every ti is defined and has ⌈ti⌋ ≍ T; but f (d′
1, . . . ,d

′
α(f)) is undefined,

where each d′
i is the value of ti. By 5.2(1) we have ⌈ f ⌋(d′

1, . . . ,d
′
α(⌈ f ⌋))

≍ F. Then f (t1, . . . , tα(f)) is undefined and ⌈ f (t1, . . . , tα(f))⌋ ≍ F.

4. We use induction on the structure of ϕ , and again drop parameter lists of the
form (d1, . . . ,dα()). The base case consists of atomic formulas.

(a) By Definition 3.2(1) F≍F and T≍T, which matches Definition 5.4(3).

(b) If t1 or t2 is undefined, then by 3.2(2) t1 = t2 ≍U. By Claim 3, ⌈t1⌋ ≍ F

or ⌈t2⌋ ≍ F, so by 5.4(4) ⌈t1 = t2⌋ ≍ F. Otherwise t1 and t2 are defined.
Then by 3.2(2) t1 = t2 ≍ F or t1 = t2 ≍T. By Claim 3, ⌈t1⌋ ≍ ⌈t2⌋ ≍T,
so by 5.4(4) ⌈t1 = t2⌋ ≍ T.

A Complete Regular Predicate Logic with Undefined Truth Value 19

(c) The case R(t1, . . . , tα(R)) is proven similarly to (b) using 3.2(3) and 5.4(5).

The induction step consists of five cases.

(a) By 3.2(4), ¬ϕ ≍ U if and only if ϕ ≍ U. This matches 5.4(6).

(b) If ϕ ≍ ψ ≍ T, then by 3.2(5) ϕ ∧ψ ≍ T. By the induction assumption
and 5.4(7), ⌈ϕ⌋, ⌈ψ⌋, and ⌈ϕ ∧ψ⌋ yield T. If ϕ ≍ F, then ϕ ∧ψ ≍ F,
and ⌈ϕ⌋, (⌈ϕ⌋∧¬ϕ), and ⌈ϕ ∧ψ⌋ yield T. Similarly if ψ ≍ F, then
ϕ ∧ψ ≍ F and ⌈ϕ ∧ψ⌋ ≍ T. In the remaining cases, at least one of ϕ

and ψ yields U while the other yields T or U, ϕ ∧ψ ≍ U, at least one
of ⌈ϕ⌋ and ⌈ψ⌋ yields F, and ⌈ϕ ∧ψ⌋ ≍ F.

(c) The case ϕ ∨ψ is proven similarly to (b), but using 3.2(6) and 5.4(8),
and with F and T swapped except when yielded by ⌈⌋.

(d) To deal with ∀x ϕ , let ϕ(;e) abbreviate ϕ(d1, . . . ,dα(ϕ)), if x is none of
v1, . . . , vα(ϕ); and otherwise ϕ(;e) abbreviates ϕ(d1, . . . ,e, . . . ,dα(ϕ)),
where e is used in the place of x. If for every e ∈D we have ϕ(;e)≍T,
then by 3.2(7) ∀x ϕ ≍ T. By the induction assumption, for every e ∈D

we have ⌈ϕ⌋(;e) ≍ T. That is, ∀x ⌈ϕ⌋ ≍ T. By 5.4(9), ⌈∀x ϕ⌋ ≍ T.
If e ∈ D is such that ϕ(;e) ≍ F, then ∀x ϕ ≍ F and ⌈ϕ⌋(;e) ≍ T. So
∃x (⌈ϕ⌋∧¬ϕ)≍ T and ⌈∀x ϕ⌋ ≍ T. The case remains where ϕ(;e) ≍
U for at least one e ∈ D and ϕ(;e) ≍ F for no e ∈ D. Then ∀x ϕ ≍ U

and ⌈∀x ϕ⌋ ≍ F.

(e) The case ∃x ϕ is proven similarly to (d), but using 3.2(8) and 5.4(10),
and with F and T swapped except when yielded by ⌈⌋.

5. The algorithm is immediate from Definition 5.4, except perhaps the renam-
ing of bound variables in (2). A simple possibility starts by scanning t1, . . . ,
tα(f), to find the greatest i such that i = 0 or vi occurs in at least one of them.
Then it replaces the bound variables in ⌈ f ⌋ by vi+1, vi+2, and so on.

For example,
⌈√

x+y

y+1

⌋

∼= ⌈√x+ y⌋∧⌈y+1⌋∧ (¬(y+1 = 0))
∼= (⌈x+ y⌋∧ (x+ y ≥ 0))∧ (⌈y⌋∧⌈1⌋∧T)∧ (¬(y+1 = 0))
∼= ((⌈x⌋∧⌈y⌋∧T)∧ (x+ y ≥ 0))∧ (T∧T∧T)∧ (¬(y+1= 0))
∼= ((T∧T∧T)∧ (x+ y≥ 0))∧ (T∧T∧T)∧ (¬(y+1= 0))

By Definition 3.2(1) and (5) and the usual definition of 6=, this formula expresses
the same function as x+ y ≥ 0∧ y+1 6= 0.

We emphasize that there is no symbol ⌈⌋ in the formal language. Every instance
of ⌈⌋ is a metalanguage expression that represents the formal language expression
that is obtained by Definition 5.4.

20 A. Valmari and L. Hella

Now ϕ ։ ψ can be introduced as a shorthand for ¬ϕ ∨ψ ∨¬(⌈ϕ⌋ ∨ ⌈ψ⌋).
This is not in contradiction with the facts that our logic is regular and ։ cannot be
expressed in a regular logic, because ⌈ϕ⌋ only exists in the metalanguage. It does
not represent a truth function but a function from formulas to formulas.

6 Proof System and Its Soundness

Our proof system is loosely based on a proof system for classical binary first-
order logic in [7, Section 3.1]. The most important (but not only) difference is
that our system depends on the isdef-formulas ⌈ f ⌋ of the function symbols f ∈F .
Therefore, its soundness proof will use Lemma 5.5(3) and (4). Thanks to 5.5(5),
if the set of axioms is recursive and the function ⌈F⌋ is computable, then also the
proof system is recursive. If F is finite, then it is trivial that ⌈F⌋ is computable.

The notation (⌈F⌋,Γ) ⊢ ϕ means that ϕ can be proven from ⌈F⌋ and Γ using
the proof system. We usually write it more briefly as Γ ⊢ ϕ , just like we do with
|=, because ⌈F⌋ never changes during our argumentation. The meaning of Γ |= ϕ

was given in Definition 5.2(3). Given a signature and the isdef-formulas, a proof
system is sound if and only if for every Γ and ϕ , Γ ⊢ ϕ implies Γ |= ϕ .

In what follows, ϕ , ψ and χ are arbitrary formulas, Γ and ∆ are arbitrary sets of
formulas, t, t1, . . . , tn are arbitrary terms, and x and y are arbitrary variable symbols.
The rule schemas that differ from or are absent in classical binary first-order logic
have been marked with (*) at the end of the first line of the rule schema. After each
group of rule schemas, we show their soundness if it is not immediately obvious.
The soundness proof is by induction, where the induction assumption says that
every ⊢ in the if-part of the schema is sound.

The first three rule schemas allow thinking of proofs as maintaining a set of
axioms and proven formulas, which grows each time a new formula is proven.

P1 {ϕ} ⊢ ϕ

P2 If Γ ⊢ ϕ then Γ∪∆ ⊢ ϕ .

P3 If Γ ⊢ ϕ and Γ∪{ϕ} ⊢ ψ , then Γ ⊢ ψ .

Lemma 6.1. P1, P2, and P3 are sound.

Proof.

P1 For every σ and ν such that σ |= ⌈F⌋ and (σ ,ν) |= {ϕ}, obviously (σ ,ν) |=
ϕ . This means that by Definition 5.2(3), P1 is sound.

P2 If (σ ,ν) |= Γ∪∆, then clearly (σ ,ν) |= Γ. If, furthermore, σ |= ⌈F⌋ and
Γ ⊢ ϕ , then by the induction assumption (σ ,ν) |= ϕ , showing that P2 is
sound.

P3 If σ |= ⌈F⌋, (σ ,ν) |= Γ, and Γ ⊢ ϕ , then (σ ,ν) |= Γ∪{ϕ}. Then Γ∪{ϕ} ⊢
ψ yields (σ ,ν) |= ψ . Therefore, P3 is sound.

A Complete Regular Predicate Logic with Undefined Truth Value 21

The next rule schema expresses the Law of Excluded Fourth, which replaces
the Law of Excluded Middle in classical logic. The next two are the basis of proof
by contradiction. The fourth one says that if a formula is true, then it is also defined.

C1 /0 ⊢ (ϕ ∨¬ϕ)∨¬⌈ϕ⌋ (*)

C2 {F} ⊢ ϕ

C3 {ϕ ,¬ϕ} ⊢ F

D1 {ϕ} ⊢ ⌈ϕ⌋ (*)

Lemma 6.2. C1, C2, C3, and D1 are sound.

Proof. Assume σ |= ⌈F⌋. By Lemma 5.5(4), if ϕ(ν) yields neither T nor F, then
⌈ϕ⌋(ν) ≍ F. So C1 is sound. The soundness of D1 follows immediately from the
same lemma. The rule schemas C2 and C3 are vacuously sound, because there are
no σ and ν such that (σ ,ν) |= F or (σ ,ν) |= {ϕ ,¬ϕ}.

Here is an example of a rule instance generated by D1:

{

√
x

x−1
> 0

}

⊢
(

T∧ (x ≥ 0)
)

∧
(

T∧T∧T
)

∧
(

¬(x−1 = 0)
)

Here is an example of a rule instance generated by C1, made more human-readable
by dropping a number of parentheses and “T∧ ”:

/0 ⊢
(

√
x

x−1
> 0

)

∨¬
(

√
x

x−1
> 0

)

∨¬
(

(x ≥ 0)∧¬(x−1 = 0)
)

We now illustrate the use of some rule schemas introduced this far, and obtain
two results that are needed later. C4 is actually a theorem schema and its proof is
a proof schema. They become a theorem and a proof in our system by putting a
formula in the place of ϕ . Also C5 is a theorem schema. Our proof of it is not a
proof schema but a demonstration that the set of rules that C5 generates is a subset
of those generated by C4.

Lemma 6.3. For every formula ϕ , our proof system proves the following:

C4 {ϕ ,¬⌈ϕ⌋} ⊢ F

C5 {¬ϕ ,¬⌈ϕ⌋} ⊢ F

Proof.

C4 By D1, {ϕ} ⊢ ⌈ϕ⌋. By P2, {ϕ ,¬⌈ϕ⌋} ⊢ ⌈ϕ⌋. Let this be called (1). Using
⌈ϕ⌋ in the place of ϕ in C3, we get {⌈ϕ⌋,¬⌈ϕ⌋} ⊢ F. By P2, {ϕ ,¬⌈ϕ⌋,⌈ϕ⌋}
⊢ F. Let this be called (2). By (1), (2) and P3, {ϕ ,¬⌈ϕ⌋} ⊢ F.

22 A. Valmari and L. Hella

C5 With ¬ϕ in the place of ϕ , C4 yields {¬ϕ ,¬⌈¬ϕ⌋} ⊢ F. By Definition 5.4(6)
⌈¬ϕ⌋ is literally the same formula as ⌈ϕ⌋. Therefore, {¬ϕ ,¬⌈¬ϕ⌋} ⊢ F is
literally the same as {¬ϕ ,¬⌈ϕ⌋} ⊢ F.

It is clear that the above style of proof is clumsy indeed. Therefore, we now
argue that a finite sequence of subproofs and sets Γ0, . . . , Γn can also be thought
of as a proof, where n > 0, Γ0 = Γ, Γi = Γi−1 ∪ {ϕi}, and ϕi is obtained from
some subset of Γi−1 by some rule schema or subproof. We do that by verifying by
induction that if 0 ≤ k ≤ n, then Γn−k ⊢ ϕn. The claim then follows by choosing
k = n.

By P1 {ϕn} ⊢ ϕn. So by P2, Γn−0 ⊢ ϕn. Thus the claim holds for k = 0. By the
induction hypothesis Γn−k ⊢ ϕn. By P2 and the assumption on how ϕi is obtained,
Γ(n−k)−1 ⊢ ϕn−k. Since Γn−k = Γn−k−1 ∪{ϕn−k}, P3 yields Γn−(k+1) ⊢ ϕn.

By this observation, proofs can be presented in a compressed form Γ ⊢x1
ϕ1 ⊢x2

· · · ⊢xn
ϕn, where x1, . . . , xn are labels of rule schemas or lemmas, and ϕi can be

obtained by xi from some subset of Γ∪{ϕ1, . . . ,ϕi−1}. Furthermore, more infor-
mation can be added to the index xi, to tell about how the rule schema or lemma
is applied. In this representation, the proof of C4 may be written as {ϕ ,¬⌈ϕ⌋} ⊢D1

⌈ϕ⌋ ⊢C3 F.
The following rule schemas for conjunction and disjunction are mostly trivial.

The schema ∨-E expresses the principle of proof by cases.

∧-I {ϕ ,ψ} ⊢ ϕ ∧ψ

∧-E1 {ϕ ∧ψ} ⊢ ϕ

∧-E2 {ϕ ∧ψ} ⊢ ψ

∨-I1 {ϕ} ⊢ ϕ ∨ψ

∨-I2 {ψ} ⊢ ϕ ∨ψ

∨-E If Γ∪{ϕ} ⊢ χ and Γ∪{ψ} ⊢ χ , then Γ∪{ϕ ∨ψ} ⊢ χ .

Lemma 6.4. ∧-I, ∧-E1, ∧-E2, ∨-I1, ∨-I2, and ∨-E are sound.

Proof. If σ |= ⌈F⌋ and (σ ,ν) |= Γ∪{ϕ∨ψ}, then (σ ,ν) |= Γ and either (σ ,ν) |=
ϕ or (σ ,ν) |= ψ or both. In the former case Γ∪{ϕ} ⊢ χ yields (σ ,ν) |= χ ; and
in the latter case Γ∪{ψ} ⊢ χ yields (σ ,ν) |= χ . Therefore, ∨-E is sound. The
soundness proofs of the other five are immediate.

The following lemma illustrates subproofs and proofs by cases, and gives an-
other five results that are needed later. The last three of them are examples of the
ability of the proof system of exploiting the commutativity and associativity of ∨.

Lemma 6.5. For every formula ϕ , ψ , and χ , our proof system proves the following:

A Complete Regular Predicate Logic with Undefined Truth Value 23

D2 /0 ⊢ ⌈ϕ⌋∨¬⌈ϕ⌋

C6 /0 ⊢ T

∨-C {ϕ ∨ψ} ⊢ ψ ∨ϕ

∨-A {(ϕ ∨ψ)∨ χ} ⊢ ϕ ∨ (ψ ∨ χ)

∨-A’ {(ϕ ∨ψ)∨ χ} ⊢ ϕ ∨ (χ ∨ψ)

Proof.

D2 Since {ϕ} ⊢D1 ⌈ϕ⌋ and {¬ϕ} ⊢D1 ⌈¬ϕ⌋ ∼=5.4(6) ⌈ϕ⌋, we get {ϕ ∨¬ϕ} ⊢∨-E

⌈ϕ⌋ ⊢∨-I1 ⌈ϕ⌋∨¬⌈ϕ⌋. On the other hand, {¬⌈ϕ⌋} ⊢∨-I2 ⌈ϕ⌋∨¬⌈ϕ⌋. There-
fore, /0 ⊢C1 (ϕ ∨¬ϕ)∨¬⌈ϕ⌋ ⊢∨-E ⌈ϕ⌋∨¬⌈ϕ⌋.

C6 Since {T} ⊢P1 T and {¬T} ⊢D1 ⌈¬T⌋ ∼= ⌈T⌋ ∼=5.4(3) T, we reason /0 ⊢D2

⌈T⌋∨¬⌈T⌋ ∼= T∨¬T ⊢∨-E T.

∨-C {ϕ} ⊢∨-I2 ψ ∨ϕ and {ψ} ⊢∨-I1 ψ ∨ϕ , thus {ϕ ∨ψ} ⊢∨-E ψ ∨ϕ .

∨-A {ϕ} ⊢∨-I1 ϕ ∨ (ψ ∨ χ) and {ψ} ⊢∨-I1 ψ ∨ χ ⊢∨-I2 ϕ ∨ (ψ ∨ χ), hence {ϕ ∨ψ}
⊢∨-E ϕ ∨ (ψ ∨χ). We also have {χ} ⊢∨-I2 ψ ∨χ ⊢∨-I2 ϕ ∨ (ψ ∨χ). Therefore,
{(ϕ ∨ψ)∨ χ} ⊢∨-E ϕ ∨ (ψ ∨ χ).

∨-A’ The proof is like the previous proof, but builds χ ∨ψ instead of ψ ∨ χ .

Lemma 6.6. If α ,β ,γ is any permutation of ϕ ,ψ ,χ , then {(ϕ ∨ψ)∨ χ} ⊢ α ∨
(β ∨ γ).

Proof. {(ϕ ∨ψ)∨ χ} ⊢∨-A ϕ ∨ (ψ ∨ χ) ⊢∨-C (ψ ∨ χ)∨ ϕ ⊢∨-A ψ ∨ (χ ∨ ϕ) ⊢∨-C

(χ ∨ϕ)∨ψ ⊢∨-A’ χ ∨ (ψ ∨ϕ) ⊢∨-C (ψ ∨ϕ)∨ χ ⊢∨-A ψ ∨ (ϕ ∨ χ) ⊢∨-C (ϕ ∨ χ)∨ψ

⊢∨-A ϕ ∨ (χ ∨ψ) ⊢∨-C (χ ∨ψ)∨ϕ ⊢∨-A’ χ ∨ (ϕ ∨ψ)

By Lemma 5.5(4) and Definition 3.2(4), for every formula ϕ and for each in-
terpretation, precisely one of ϕ , ¬ϕ and ¬⌈ϕ⌋ yields T. Our proof system reflects
the same idea in the following way. The set Γ is inconsistent if and only if Γ ⊢ F.
C3, C4, and C5 tell that if Γ is consistent, then at most one of ϕ , ¬ϕ , and ¬⌈ϕ⌋ can
be proven. The next lemma tells that if two of them lead to a contradiction, then
the third one can be proven.

Lemma 6.7. Assume that α ,β ,γ is any permutation of ϕ ,¬ϕ ,¬⌈ϕ⌋. If Γ∪{α} ⊢
F, then Γ ⊢ β ∨ γ . If Γ∪{α} ⊢ F and Γ∪{β} ⊢ F, then Γ ⊢ γ .

Proof. /0 ⊢C1 (ϕ ∨¬ϕ)∨¬⌈ϕ⌋, from which Lemma 6.6 yields /0 ⊢ α ∨ (β ∨ γ).
Assume Γ∪{α} ⊢ F. Then Γ∪{α} ⊢C2 β ∨ γ . On the other hand, Γ∪{β ∨ γ} ⊢P1

β ∨ γ . Thus Γ∪{α ∨ (β ∨ γ)} ⊢∨-E β ∨ γ , and Γ ⊢P3 β ∨ γ . If also Γ∪{β} ⊢ F, then
Γ∪{β} ⊢C2 γ and Γ∪{γ} ⊢P1 γ . So Γ∪{β ∨ γ} ⊢∨-E γ , and by Γ ⊢ β ∨ γ we get Γ

⊢P3 γ .

24 A. Valmari and L. Hella

Next we discuss rule schemas for equality. The first of them differs from classi-
cal binary first-order logic in that it insists the term in question be defined. Without
this restriction, we could, for instance, prove 1

0 = 1
0 using =-1.

=-1 {⌈t⌋} ⊢ (t = t) (*)

=-2 If ϕ(x1, . . . ,xα(ϕ)) is a formula, 1 ≤ i ≤ α(ϕ), and ti and t ′i are free for xi in
ϕ(x1, . . . ,xα(ϕ)), then {(ti = t ′i),ϕ(t1, . . . , tα(ϕ))} ⊢ ϕ(t1, . . . , t

′
i , . . . , tα(ϕ)).

Lemma 6.8. =-1 and =-2 are sound.

Proof.

=-1 Assume σ |= ⌈F⌋ and (σ ,ν) |= ⌈t⌋. The latter means that ⌈t⌋(ν) ≍ T. By
Lemma 5.5(3), t(ν) is defined. So (t = t)(ν) ≍3.2(2) T, that is, (σ ,ν) |=
(t = t).

=-2 If (σ ,ν) |=(ti = t ′i), then by Definition 3.2(2) both ti(ν) and t ′i(ν) are defined,
and they yield the same value. Because both ti and t ′i are free for xi in ϕ(xi),
the values yielded by ti(ν) and t ′i(ν) are treated in the same way in ϕ(ti)(ν)
and ϕ(t ′i)(ν). As a consequence, if (σ ,ν) |= ϕ(ti), then also (σ ,ν) |= ϕ(t ′i).

The next lemma tells that our proof system allows the substitution of a term
for an equal term inside a defined term. Furthermore, it can exploit symmetry and
transitivity of =.

Lemma 6.9. For every function symbol f , every 1 ≤ i ≤ α(f), and every term ti,

t ′i , t, t ′, t1, t2, and t3, our proof system proves the following:

=-3 {(ti = t ′i),⌈ f (t1, . . . , tα(f))⌋} ⊢ (f (t1, . . . , tα(f)) = f (t1, . . . , t
′
i , . . . , tα(f)))

=-4 {(t = t ′)} ⊢ (t ′ = t)

=-5 {(t1 = t2),(t2 = t3)} ⊢ (t1 = t3)

Proof.

=-3 Let ϕ(xi)∼= (f (t1, . . . , tα(f)) = f (t1, . . . ,xi, . . . , tα(f))). It contains no quanti-
fiers, so ti and t ′i are free for xi in it. We have {⌈ f (t1, . . . , tα(f))⌋} ⊢=-1 ϕ(ti)
and {(ti = t ′i),ϕ(ti)} ⊢=-2 ϕ(t ′i)

∼= (f (t1, . . . , tα(f)) = f (t1, . . . , t
′
i , . . . , tα(f))).

The claim now follows by P2 and P3.

=-4 Let ϕ(x)∼= (x = t). We reason {(t = t ′)} ⊢D1 ⌈t = t ′⌋ ∼=5.4(4) ⌈t⌋∧⌈t ′⌋ ⊢∧-E1

⌈t⌋ ⊢=-1 (t = t) ∼= ϕ(t). Clearly {(t = t ′),ϕ(t)} ⊢=-2 ϕ(t ′) ∼= (t ′ = t). The
claim now follows by P3.

=-5 Let ϕ(x)∼= (x = t3). By abuse of ∼= we reason {(t1 = t2),(t2 = t3)} ∼= {(t1 =
t2),ϕ(t2)} ⊢=-4 (t2 = t1) ⊢=-2 ϕ(t1) ∼= (t1 = t3).

A Complete Regular Predicate Logic with Undefined Truth Value 25

Rule schemas for quantifiers have one difference from classical binary first-
order logic: ∀-E insists that the term t must be defined. This prevents us from
deriving, for instance, 0 · 1

0 = 0 from ∀x (0 · x = 0). We will see that thanks to
Corollary 4.4, ∃-I does not need a similar condition.

∀-E If t is free for x in ϕ(x), then {⌈t⌋,(∀x ϕ(x))} ⊢ ϕ(t). (*)

∀-I If Γ ⊢ ϕ(x) and x does not occur free in Γ, then Γ ⊢ (∀x ϕ(x)).

∃-I If t is free for x in ϕ(x), then {ϕ(t)} ⊢ (∃x ϕ(x)).

∃-E If Γ∪{ϕ(y)} ⊢ ψ and y does not occur in Γ, (∃x ϕ(x)), nor in ψ , then Γ∪
{(∃x ϕ(x))} ⊢ ψ .

Lemma 6.10. ∀-E, ∀-I, ∃-I, and ∃-E are sound.

Proof.

∀-E If σ |= ⌈F⌋ and (σ ,ν) |= ⌈t⌋, then t(ν) is defined. Let its value be denoted
by d. If also (σ ,ν) |= (∀x ϕ(x)), then (σ ,ν [x := d]) |= ϕ(x). Because t is
free for x, also (σ ,ν) |= ϕ(t) by Lemma 3.6. Thus ∀-E is sound.

∀-I If (σ ,ν) |= Γ and x does not occur free in Γ, then for any d ∈ D we have
(σ ,ν [x := d]) |= Γ. If also σ |= ⌈F⌋ and Γ ⊢ ϕ(x), then (σ ,ν [x := d]) |=
ϕ(x). This means that (σ ,ν) |= (∀x ϕ(x)), implying that ∀-I is sound.

∃-I Assume (σ ,ν) |= ϕ(t). Because t is free for x in ϕ(x), if t(ν) is defined, then
(σ ,ν [x := t(ν)]) |= ϕ(x) by Lemma 3.6. Therefore, (σ ,ν) |= (∃x ϕ(x)).
Otherwise, t(ν) is undefined. Because (σ ,ν) |= ϕ(t), by Corollary 4.4
(σ ,ν [x := d]) |= ϕ(x) for every d ∈D. Because D 6= /0 by definition, this im-
plies (σ ,ν [x := d]) |=ϕ(x) for at least one d ∈D, that is, (σ ,ν) |=(∃x ϕ(x)).
So ∃-I is sound.

∃-E Assume (σ ,ν) |= Γ∪ {(∃x ϕ(x))}. So (σ ,ν [x := d]) |= ϕ(x) for at least
one d ∈ D. Because y does not occur in (∃x ϕ(x)), y is free for x in ϕ(x).
Thus also (σ ,ν [y := d]) |= ϕ(y). Because y does not occur in Γ, (σ ,ν) |= Γ

implies (σ ,ν [y := d]) |= Γ. If also σ |= ⌈F⌋ and Γ∪{ϕ(y)} ⊢ ψ , we get
(σ ,ν [y := d]) |= ψ . Because y does not occur in ψ , we have (σ ,ν) |= ψ .
This completes the soundness proof of ∃-E.

Altogether, there are only four differences from classical binary first-order
logic: two that make each closed formula yield precisely one of three truth values
instead of two; one that enforces that an undefined term is not equal to anything;
and one that reflects the principle that variables range over defined values only.

26 A. Valmari and L. Hella

7 Existence of Models and Completeness

Our proofs for the model existence theorem and completeness theorem mimic [21],
Proposition 5.7, pp. 107–110, which we have adapted to 3-valued first-order logic
and our proof system. We have also attempted to clarify many technicalities. Ulti-
mately the proofs are based on the well-known construction by Leon Henkin [12].

Let Γ be a set of formulas. Because it may be infinite, it is possible that every
variable symbol occurs in it. However, the Henkin construction needs infinitely
many additional variable symbols. Further headache is caused by the fact that a
term may be not free for a variable symbol in a formula. In what follows we cannot
rely on Lemma 3.4, because the Henkin construction uses the formula literally as
it is. Therefore, we will use a provably equivalent term instead that is substitutable
in the original formula. So for each finite set of variable symbols, each term must
have a provably equivalent term that contains none of the variable symbols. To deal
with these, we introduce a new indexing for the variable symbols and a modified Γ

called Γ′ as follows.
The function ι :Z+×Z

+→Z
+;(i, j) 7→ 1

2(i+ j−1)(i+ j−2)+ j is a bijection.
Therefore, we get an alternative indexing for the variable symbols by, for i ∈ Z

+

and j ∈ Z
+, defining that vi, j is the same variable symbol as vι(i, j). The set Γ′ is

obtained by replacing all variable symbols vi in Γ by the variable symbols v2i,1, and
then, for j > 1, adding the formulas (vi,1 = vi, j). The function ⌈F⌋ need not be
modified, because of the following. For each f , the only occurrence of ⌈ f ⌋ in our
formalism is in Definition 5.4(2). There the names of its variables are insignificant,
because free variables have been substituted by terms and bound variables have
been chosen so that the substitution is legal.

Let ϕ(x) be any formula, t any term, and vi, j any variable symbol that occurs in
t and becomes bound in ϕ(t). Because every formula is finite, only finitely many
variable symbols occur in ϕ(x). So there is some k ∈ Z

+ such that vi,k does not
occur in ϕ(x). Because j = 1 or (vi,1 = vi, j) ∈ Γ′, and k = 1 or (vi,1 = vi,k) ∈ Γ′,
the replacement of vi, j by vi,k in t results in a term that seems intuitively equivalent
to t. Based on this idea, we will be able to work around the “not free for x” problem
in the sequel.

The variable symbols v2i−1,1 are almost but not entirely unused, because they
occur in the formulas (v2i−1,1 = v2i−1, j) in Γ′. To discuss this, we introduce new
concepts. A duplicate of vi,1 is any vi, j with j > 1. Let ϒ be any superset of Γ′.
By vi,1 is vacant in ϒ we mean that for j ∈ Z

+, every occurrence of vi, j in ϒ is in
a formula of the form (vi,1 = vi, j). All v2i−1,1 are vacant in Γ′, but only those v2i,1

are vacant in Γ′ where vi does not occur in Γ.

Lemma 7.1. Let ϒ be a set of formulas such that Γ′ ⊆ ϒ.

1. Every variable symbol x has infinitely many variable symbols y such that

Γ′ ⊢ (x = y).

2. If ϒ\Γ′ is finite, then infinitely many variable symbols are vacant in ϒ.

A Complete Regular Predicate Logic with Undefined Truth Value 27

3. If i ∈ Z
+, ϒ ⊢ F, and for j > 1, no vi, j occurs in ϒ except in (vi,1 = vi, j), then

ϒ has a finite subset ∆ such that ∆ ⊢ F and no vi, j with j > 1 occurs in ∆.

4. If Γ′ ⊢ F, then Γ ⊢ F.

5. If (⌈F⌋,Γ′) has a model (Definition 5.2(2)), then (⌈F⌋,Γ) has a model.

Proof.

1. The claim follows from the (vi,1 = vi, j) by =-4 and =-5.

2. All the v2i−1,1 are vacant in Γ′. Each additional formula in ϒ can make only
a finite number of them non-vacant, because formulas are finite.

3. Because every proof is finite, the proof ϒ ⊢ F only uses a finite number of
elements of ϒ. There is thus a finite ϒ′ ⊆ ϒ such that ϒ′ ⊢ F. Because it is
finite, it has a minimal subset ∆ such that ∆ ⊢ F. It remains to be proven
that no vi, j with j > 1 occurs in ∆. We prove it by deriving a contradiction
from the assumption that ∆ contains a formula of the form (vi,1 = vi, j) where
j > 1.

Let ∆′ = ∆ \ {(vi,1 = vi, j)}. By definition, ∆′ ∪ {(vi,1 = vi, j)} = ∆ ⊢ F.
Because /0 ⊢C6; ∧-I T ∧T, we have ∆′ ∪ {¬⌈vi,1 = vi, j⌋} ⊢P1 ¬⌈vi,1 = vi, j⌋
∼=5.4(4,1) ¬(T∧T) ⊢C3 F. By Lemma 6.7 we have ∆′ ⊢ ¬(vi,1 = vi, j). By
construction, vi, j does not occur in ∆′. Therefore, ∆′ ⊢∀-I ∀x ¬(vi,1 = x) ⊢∀-E

¬(vi,1 = vi,1) ⊢=-1; C3 F, where ⌈vi,1⌋ ∼= T by 5.4(1). This contradicts the
minimality of ∆.

4. By (3), there is ∆ ⊆ Γ′ such that ∆ ⊢ F and no variable symbol of the form
vi, j, where i ≥ 1 and j > 1, occurs in ∆. It implies that ∆ does not contain any
v2i−1,1 either. Because every proof is finite, ∆ ⊢ F only uses a finite number
of variable symbols. So all occurrences of variable symbols of other forms
than v2i,1 in ∆ ⊢ F can be replaced by so far unused variable symbols of the
form v2i,1, resulting in a proof of F from ∆ that only uses variable symbols
of the form v2i,1. Now replacing each v2i,1 by vi results in a proof of F from
Γ.

5. If (σ ,ν ′) |=Γ′, then (σ ,ν) |=Γ, where for i∈Z
+ we have ν(i)= ν ′(ι(2i,1)).

It is our goal to prove that if Γ 6⊢ F, then (⌈F⌋,Γ) has a model. It follows from
Lemma 7.1(4) and (5) that it suffices to prove that if Γ′ 6⊢ F, then (⌈F⌋,Γ′) has a
model. In that proof, we may assume what Lemma 7.1(1), (2), and (3) state.

Next we extend Γ′ so that the extended set Γω is consistent and for each formula
ϕ , precisely one of ϕ , ¬ϕ and ¬⌈ϕ⌋ is in Γω . Furthermore, for each formula of
the form ∃x ψ(x) in Γω it contains a formula of the form ψ(y) as well, so that later
in this section we can appeal to ψ(y) to justify ∃x ψ(x). Similarly every ¬∀x ψ(x)

28 A. Valmari and L. Hella

in Γω is accompanied by ¬ψ(y) for some y. The y are called Henkin witnesses.
Technically they are free variables. However, our eventual goal is to build a model
(σ ,ν) for Γ′, and in it each free variable vi will have a single value ν(i). So the
Henkin witnesses will eventually represent constant values.

The set Γω is built by processing all formulas ϕ (also those that are in Γ′) in
some order ϕ1, ϕ2, . . . and forming a sequence Γ0, Γ1, Γ2, . . . of sets of formulas
as follows. Let Γ0 := Γ′. For i > 0, we construct Γi from Γi−1 and ϕi according to
the first item in the list below whose condition is satisfied by ϕi (we will later show
that at least one item matches). Please notice that each Γi \Γi−1 contains at most
two formulas, and thus each Γi \Γ′ is finite. (Conditions of Cases 4 and 5 mention
facts that could be derived from the failure of earlier conditions. This is to simplify
subsequent discussion.)

1. If Γi−1 ∪{⌈ϕi⌋} ⊢ F, then Γi := Γi−1 ∪{¬⌈ϕi⌋}.

2. If Γi−1∪{ϕi} 6⊢F and ϕi is of the form ∃x ψ(x), then Γi :=Γi−1 ∪ {ϕi,ψ(y)},
where y is a variable symbol that is vacant in Γi−1 and does not occur nor its
duplicates occur in ϕi. By Lemma 7.1(2) such an y exists.

3. If Γi−1 ∪{¬ϕi} 6⊢ F and ϕi is of the form ∀x ψ(x), then Γi := Γi−1 ∪ {¬ϕi,
¬ψ(y)}, where y is a variable symbol that is vacant in Γi−1 and does not
occur nor its duplicates occur in ϕi nor ⌈ψ(x)⌋. By Lemma 7.1(2) such an y

exists.

4. If Γi−1 ∪{ϕi} 6⊢ F and ϕi is not of the form ∃x ψ(x), then Γi := Γi−1 ∪{ϕi}.

5. If Γi−1 ∪ {¬ϕi} 6⊢ F and ϕi is not of the form ∀x ψ(x), then Γi := Γi−1 ∪
{¬ϕi}.

Clearly Γ′ = Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ ·· · . We choose Γω := Γ0 ∪Γ1 ∪

Lemma 7.2. If Γ′ 6⊢ F, then Γω 6⊢ F.

Proof. We prove first by induction that each Γi is consistent. The assumption Γ′ 6⊢
F gives the base case Γ0 6⊢ F. The induction assumption is that Γi−1 6⊢ F. The
induction step is divided into five cases according to how Γi is formed. In Cases 4
and 5 Γi 6⊢ F by the condition of the case. In the remaining cases we assume Γi ⊢ F

and derive a contradiction.
In Case 1 Γi−1 ∪{⌈ϕi⌋} ⊢ F. If Γi ⊢ F, then Γi−1 ∪{¬⌈ϕi⌋} ⊢ F. These yield

Γi−1 ⊢D2 ⌈ϕi⌋∨¬⌈ϕi⌋ ⊢∨-E F, contradicting the induction assumption.
If in Case 2 Γi ⊢ F, then Γi−1 ∪ {(∃x ψ(x)),ψ(y)} ⊢ F. Because y does not

occur in ∃x ψ(x), it is free for x in ψ(x). Therefore, {ψ(y)} ⊢∃-I ∃x ψ(x). Hence
Γi−1 ∪ {ψ(y)} ⊢P3 F. By 7.1(3) there is a finite subset ∆ of Γi−1 such that ∆∪
{ψ(y)} ⊢ F and y does not occur in ∆. Thus the assumptions of ∃-E hold such that
Γ, ϕ , and ψ are ∆, ψ(y), and F, respectively. We obtain ∆∪{∃x ψ(x)} ⊢∃-E F. So
Γi−1 ∪{∃x ψ(x)} ⊢P2 F, contradicting the condition of the case.

A Complete Regular Predicate Logic with Undefined Truth Value 29

In Case 3 we denote by Γ′
i the set Γi−1 ∪{¬∀x ψ(x)}. So Γi = Γ′

i ∪{¬ψ(y)}.
If Γi ⊢ F, then Γ′

i ∪{¬ψ(y)} ⊢ F. Again, by 7.1(3) there is a finite subset ∆ of Γ′
i

such that ∆∪{¬ψ(y)} ⊢ F and y does not occur in ∆. Because y does not occur in
¬∀x ψ(x), we may assume (¬∀x ψ(x)) ∈ ∆. Lemma 6.7 yields

∆ ⊢ ψ(y)∨¬⌈ψ(y)⌋. (2)

On the other hand, ∆ ⊢D1 ⌈¬∀x ψ(x)⌋ ∼=5.4(6,9) (∀x ⌈ψ(x)⌋)∨∃x (⌈ψ(x)⌋∧¬ψ(x)).
We show that both ∆∪{∀x ⌈ψ(x)⌋} and ∆∪{∃x (⌈ψ(x)⌋∧¬ψ(x))} prove F. They
imply ∆ ⊢∨-E F and Γ′

i ⊢P2 F, which contradicts the condition of the case.
First consider ∆∪{∀x ⌈ψ(x)⌋}. We have ⌈y⌋ ∼= T by 5.4(1). Because y does

not occur in ⌈ψ(x)⌋, we get {∀x ⌈ψ(x)⌋} ⊢∀-E ⌈ψ(y)⌋. Since {⌈ψ(y)⌋}∪ {ψ(y)}
⊢P1 ψ(y) and {⌈ψ(y)⌋}∪{¬⌈ψ(y)⌋} ⊢C3 F ⊢C2 ψ(y), we obtain ∆∪{∀x ⌈ψ(x)⌋}
⊢(2); ∨-E ψ(y) ⊢∀-I ∀y ψ(y), since y does not occur in ∆ or ⌈ψ(x)⌋. Because ψ(y)
is obtained from ψ(x) by substituting y for x, we have {∀y ψ(y)} ⊢∀-E ψ(x) ⊢∀-I

∀x ψ(x). Therefore, ∆∪{∀x ⌈ψ(x)⌋} ⊢ ∀x ψ(x) ⊢C3 F, because (¬∀x ψ(x)) ∈ ∆.
To deal with ∆∪{∃x (⌈ψ(x)⌋∧¬ψ(x))}, let z be a variable symbol that does

not occur in it. We obtain ∆ ⊢(2); ∀-I ∀y (ψ(y) ∨¬⌈ψ(y)⌋) ⊢∀-E ψ(z) ∨¬⌈ψ(z)⌋.
Clearly {⌈ψ(z)⌋∧¬ψ(z)}∪{ψ(z)} ⊢ F and {⌈ψ(z)⌋∧¬ψ(z)}∪{¬⌈ψ(z)⌋} ⊢ F,
which implies ∆∪{⌈ψ(z)⌋∧¬ψ(z)} ⊢∨-E F. Thus ∆∪{∃x (⌈ψ(x)⌋∧¬ψ(x))} ⊢∃-E

F.
This completes the proof of Γi 6⊢ F for all i ∈ N.
We still have to prove that Γω 6⊢ F. If Γω ⊢ F, let Γ′

ω be the set of formulas in Γω

that occur in the proof of the contradiction. The set Γ′
ω is finite because all proofs

are finite. Therefore, there is such an index i ∈ N that Γ′
ω ⊆ Γi. By construction,

Γ′
ω ⊢ F. This and P2 imply Γi ⊢ F, which contradicts the earlier result.

Lemma 7.3. Assume Γ′ 6⊢ F. For each formula ϕ , the set Γω contains exactly one

of the formulas ϕ , ¬ϕ , and ¬⌈ϕ⌋.

Proof. If, when ϕi is processed in the construction of Γω , none of the conditions of
Cases 2, 3, 4, and 5 holds, then by Lemma 6.7 Γi−1 ⊢ ¬⌈ϕi⌋, and thus the condition
of Case 1 holds. So Γω contains, for each ϕ , at least one of ¬⌈ϕ⌋, ϕ , and ¬ϕ . By
Lemma 7.2, C3, C4, and C5, Γω contains at most one of ϕ , ¬ϕ , and ¬⌈ϕ⌋.

Lemma 7.4. Assume Γ′ 6⊢ F. Then Γω ⊢ ϕ if and only if ϕ ∈ Γω .

Proof. If ϕ ∈ Γω , then Γω ⊢P1 ϕ .
Assume Γω ⊢ ϕ . If (¬ϕ) ∈ Γω , then Γω ⊢C3 F, which contradicts Lemma 7.2.

Therefore, (¬ϕ) /∈ Γω . A similar reasoning using C4 yields (¬⌈ϕ⌋) /∈ Γω . By
Lemma 7.3 at least one of ϕ , ¬ϕ , ¬⌈ϕ⌋ is in Γω . So ϕ ∈ Γω .

Lemma 7.5. Assume Γ′ 6⊢ F. For each formula ϕ , the set Γω contains exactly one

of ⌈ϕ⌋ and ¬⌈ϕ⌋. For each term t, the set Γω contains exactly one of ⌈t⌋ and ¬⌈t⌋.

30 A. Valmari and L. Hella

Proof. If ϕ ∈ Γω or (¬ϕ) ∈ Γω , then Γω ⊢D1 ⌈ϕ⌋ ∼= ⌈¬ϕ⌋. By Lemma 7.4 we
have ⌈ϕ⌋ ∈ Γω . Otherwise, Lemma 7.3 yields (¬⌈ϕ⌋) ∈ Γω . By C3 we have
{⌈ϕ⌋,(¬⌈ϕ⌋)} 6⊆ Γω , completing the proof of the first claim.

If ⌈t = t⌋ ∈ Γω , then ⌈t⌋ ∈ Γω , because ⌈t = t⌋ ∼=5.4(4) ⌈t⌋∧ ⌈t⌋. Otherwise,
by the first claim (¬⌈t = t⌋) ∈ Γω . We use Lemma 6.7 to show {¬⌈t = t⌋} ⊢
¬⌈t⌋. Clearly ¬⌈t = t⌋ ∼= ¬(⌈t⌋ ∧ ⌈t⌋), so {¬⌈t = t⌋} ∪ {⌈t⌋} ⊢∧-I ⌈t⌋ ∧ ⌈t⌋ ⊢C3

F. Furthermore, {¬⌈t = t⌋} ⊢D1 ⌈¬⌈t = t⌋⌋ ∼= ⌈⌈t = t⌋⌋ ∼= ⌈⌈t⌋ ∧ ⌈t⌋⌋ ∼=5.4(7)
(⌈⌈t⌋⌋ ∧ ⌈⌈t⌋⌋)∨ (⌈⌈t⌋⌋ ∧¬⌈t⌋)∨ (⌈⌈t⌋⌋ ∧¬⌈t⌋), so {¬⌈t = t⌋} ∪ {¬⌈⌈t⌋⌋} ⊢∨-E

F.

By Lemma 7.3, we may unambiguously assign each formula χ a truth value χ

as follows:

χ ≍ T, if χ ∈ Γω (3)

χ ≍ F, if ¬χ ∈ Γω

χ ≍ U, if ¬⌈χ⌋ ∈ Γω

We show next that these truth values respect the propositional constants and con-
nectives.

Lemma 7.6. If Γ′ 6⊢ F, then F≍ F, T≍T, ¬ϕ ≍¬ϕ , ϕ ∧ψ ≍ ϕ ∧ψ , and ϕ ∨ψ ≍
ϕ ∨ψ.

Proof.

T, F By C6 and Lemma 7.4, T ∈ Γω , so T ≍ T. Because ¬⌈F⌋ ∼= ¬T by Def-
inition 5.4(3), we cannot have (¬⌈F⌋) ∈ Γω . Lemmas 7.2 and 7.4 rule out
F ∈ Γω . The only remaining possibility is (¬F) ∈ Γω , so F≍ F.

¬ϕ Let χ ∼=¬ϕ . If ϕ ≍ F, then (¬ϕ)∈ Γω . That is, χ ∈ Γω , so χ ≍T. If ϕ ≍U,
then (¬⌈ϕ⌋) ∈ Γω . By Definition 5.4(6) ⌈χ⌋ ∼= ⌈ϕ⌋. So (¬⌈χ⌋) ∈ Γω and
χ ≍ U. Finally, let ϕ ≍ T, that is, ϕ ∈ Γω . If χ ≍ T, then {ϕ ,¬ϕ} ⊆ Γω ⊢C3

F. If χ ≍ U, then {ϕ ,¬⌈¬ϕ⌋} = {ϕ ,¬⌈ϕ⌋} ⊆ Γω ⊢C4 F. Thus χ ≍ F.

ϕ ∧ψ Let χ ∼= ϕ ∧ψ . If ϕ ≍ T and ψ ≍ T, then {ϕ ,ψ} ⊆ Γω ⊢∧-I ϕ ∧ψ . By
Lemma 7.4 ϕ ∧ψ ≍ T.

By Definition 5.4(7) ⌈ϕ ∧ψ⌋ ∼= (⌈ϕ⌋∧⌈ψ⌋)∨ (⌈ϕ⌋∧¬ϕ)∨ (⌈ψ⌋∧¬ψ). If
ϕ ≍U and ψ ≍T, then {(¬⌈ϕ⌋),ψ} ⊆ Γω and Γω ∪{⌈ϕ∧ψ⌋} ⊢∧-E1; ∧-E2; C3; ∨-E

F. So by Lemma 7.5 (¬⌈ϕ ∧ψ⌋)∈ Γω , that is, ϕ ∧ψ ≍U. Similar reasoning
applies to ϕ ≍ T and ψ ≍ U, and to ϕ ≍ U and ψ ≍ U.

If ϕ ≍ F then ¬ϕ ∈ Γω ⊢D1 ⌈¬ϕ⌋ ∼= ⌈ϕ⌋ ⊢∧-I ⌈ϕ⌋ ∧¬ϕ ⊢∨-I2; ∨-I1 ⌈ϕ ∧ψ⌋,
ruling out ϕ ∧ψ ≍ U. Also ϕ ∧ψ ≍ T is impossible, because {ϕ ∧ψ} ⊢∧-E1

ϕ . So ϕ ∧ψ ≍ F. Similarly, if ψ ≍ F, then ϕ ∧ψ ≍ F.

A Complete Regular Predicate Logic with Undefined Truth Value 31

ϕ ∨ψ Let χ ∼= ϕ ∨ψ . If ϕ ≍ T, then ϕ ∈ Γω ⊢∨-I1 ϕ ∨ψ , so ϕ ∨ψ ≍ T. Similarly
if ψ ≍ T, then ϕ ∨ψ ≍ T.

By Definition 5.4(8) ⌈ϕ ∨ψ⌋ ∼= (⌈ϕ⌋∧⌈ψ⌋)∨ (⌈ϕ⌋∧ϕ)∨ (⌈ψ⌋∧ψ). Like
above, it yields a contradiction with any combination of ϕ and ψ , where one
of them is U and the other is U or F. Therefore, these combinations make
ϕ ∨ψ ≍ U.

If ϕ ≍ F and ψ ≍ F, then (¬ϕ)∈ Γω ⊢D1 ⌈ϕ⌋ and (¬ψ)∈ Γω ⊢D1 ⌈ψ⌋, so Γω

⊢∧-I ⌈ϕ⌋∧⌈ψ⌋ ⊢∨-I1; ∨-I1 ⌈ϕ ∨ψ⌋. This rules out ϕ ∨ψ ≍U. Clearly Γω ∪{ϕ}
⊢C3 F and Γω ∪{ψ} ⊢C3 F, so Γω ∪{ϕ ∨ψ} ⊢∨-E F, ruling out ϕ ∨ψ ≍ T.
Therefore, ϕ ∨ψ ≍ F.

Assuming that Γ′ is consistent, we next build a model for Γω . By Definition
5.2(2), it has to obey Definition 3.5 and 5.2(1). The former will be proven now,
and the latter as Lemma 7.8.

Lemma 7.7. If Γ′ 6⊢ F, then there are σ = (D,) and ν such that (σ ,ν) |= Γω .

Proof. Let us define the set of defined terms as Tdef = {t | ⌈t⌋ ∈ Γω}. If t ∈ Tdef

and if (t = t ′) ∈ Γω or (t ′ = t) ∈ Γω , then also t ′ ∈ Tdef , because {t1 = t2} ⊢D1

⌈t1 = t2⌋ ∼= ⌈t1⌋∧⌈t2⌋ by Definition 5.4(4). By Lemma 7.4, =-1, =-4, and =-5, the
relation {(t1, t2) | (t1 = t2) ∈ Γω} is an equivalence on Tdef . For each t ∈ Tdef , let t

be the equivalence class that t belongs to. That is, t = {t ′ | (t = t ′) ∈ Γω}. We let D
be the set of these equivalence classes, that is, D= {t | ⌈t⌋ ∈ Γω}. It is non-empty,
because each variable symbol is a defined term. If t /∈ Tdef , we leave t undefined.
To summarize:

• ⌈t⌋ ∈ Γω if and only if t ∈D; furthermore, every element of D is of this form.

• ⌈t⌋ /∈ Γω if and only if t is undefined.

• (t = t ′) ∈ Γω if and only if t = t ′; furthermore, then both t and t ′ are defined.

We need to define and ν so that (σ ,ν) |= Γω (Definition 3.5) and σ |= ⌈F⌋
(Definition 5.2(1)). We will choose them so that we can prove by induction that

t(ν) = t for each t ∈ Tdef , and (4)

t(ν) is undefined for each t /∈ Tdef . (5)

By Definition 5.4(1) and C6, variable and constant symbols are defined. For
each n ∈ Z

+ we let ν(n) = vn. Then vn(ν) = vn by 3.1(1). To make 3.1(2) yield
c(ν) = c, we choose C = c. This is the base case of the induction proof.

Our next task is, for each function symbol f , to define f so that it makes t(ν)
be undefined or t as appropriate. Let t1 ∈D, . . . , tα(f) ∈ D. We choose

f (t1, . . . , tα(f))

{

= f (t1, . . . , tα(f)) if ⌈ f (t1, . . . , tα(f))⌋ ∈ Γω

is undefined otherwise.

32 A. Valmari and L. Hella

To show that this definition does not depend on the choice of the ti ∈ ti, choose
any 1 ≤ i ≤ α(f). Let t ′i ∈ ti, that is, (ti = t ′i) ∈ Γω . We leave terms out for brevity;
for instance, f (ti) means f (t1, . . . , tα(f)). If ⌈ f (ti)⌋ ∈ Γω , then =-3 yields (f (ti) =

f (t ′i)) ∈ Γω . So f (ti) = f (t ′i). If ⌈ f (ti)⌋ /∈ Γω then also ⌈ f (t ′i)⌋ /∈ Γω , because
otherwise =-3 yields (f (t ′i) = f (ti)) ∈ Γω , implying ⌈ f (ti)⌋ ∈ Γω .

We now complete the induction proof regarding t(ν) and t. There are three
cases.

• Assume that ti is defined for every 1 ≤ i ≤ α(f), and ⌈ f (t1, . . . , tα(f))⌋ ∈
Γω . By Definition 3.1(3), the induction assumption, and the definition of
f we have f (t1, . . . , tα(f))(ν) = f (t1(ν), . . . , tα(f)(ν)) = f (t1, . . . , tα(f)) =

f (t1, . . . , tα(f)).

• Assume that ti is defined for every 1 ≤ i ≤ α(f), but ⌈ f (t1, . . . , tα(f))⌋ /∈
Γω . By the definition of t, f (t1, . . . , tα(f)) is undefined. On the other hand,
f (t1, . . . , tα(f)) is undefined by the definition of f . By the induction assump-
tion, ti = ti(ν) for 1 ≤ i ≤ α(f), so f (t1(ν), . . . , tα(f)(ν)) is undefined. By

3.1(3) f (t1, . . . , tα(f))(ν) is undefined.

• Assume that ti is undefined for some 1 ≤ i ≤ α(f). We have ⌈ti⌋ /∈ Γω ,
from which ⌈ f (t1, . . . , tα(f))⌋ /∈ Γω by 5.4(2), ∧-E1, and ∧-E2. By the defi-

nition of t, f (t1, . . . , tα(f)) is undefined. On the other hand, by the induction
assumption ti(ν) is undefined, so f (t1, . . . , tα(f))(ν) is undefined by 3.1(3).

This completes the proof of (4) and (5).
In (3) we defined that if ϕ is a formula, then ϕ yields T, F, or U according to

which one of ϕ , ¬ϕ , and ¬⌈ϕ⌋ is in Γω . We will show by induction that

ϕ(ν)≍ ϕ for every ϕ .

This will imply that if ϕ ∈ Γω , then ϕ(ν) ≍ ϕ ≍ T. As a consequence, (σ ,ν) |=
Γω .

The base case of the induction consists of the atomic formulas. Definition
3.2(1) and Lemma 7.6 tell that F(ν) ≍ F ≍ F and T(ν) ≍ T ≍ T. Next we show
(t1 = t2)(ν) ≍ t1 = t2.

• If t1 is undefined, then ⌈t1⌋ /∈ Γω . We have ⌈t1 = t2⌋ ∼= (⌈t1⌋ ∧ ⌈t2⌋) /∈ Γω

by Definition 5.4(4) and ∧-E1. By Lemma 7.5, (¬⌈t1 = t2⌋) ∈ Γω , that is,
(t1 = t2)≍ U. On the other hand, because t1 is undefined also t1(ν) is unde-
fined by (5), so (t1 = t2)(ν) ≍ U by 3.2(2). The same argument applies if t2
is undefined.

• If t1 and t2 are defined, then t1(ν) = t1 and t2(ν) = t2 by (4).

If t1 = t2, then (t1 = t2) ∈ Γω , that is, (t1 = t2) ≍ T. On the other hand,
t1(ν) = t2(ν), so by 3.2(2) we have (t1 = t2)(ν) ≍ T.

A Complete Regular Predicate Logic with Undefined Truth Value 33

If t1 6= t2, then (t1 = t2) /∈ Γω . Furthermore, ⌈t1⌋ ∈ Γω and ⌈t2⌋ ∈ Γω . By ∧-I
we have ⌈t1 = t2⌋ ∈ Γω , implying (¬⌈t1 = t2⌋) /∈ Γω . By Lemma 7.3 we have
(¬(t1 = t2)) ∈ Γω , that is, (t1 = t2)≍ F. On the other hand, t1(ν) 6= t2(ν), so
by 3.2(2) we have (t1 = t2)(ν) ≍ F.

By Definition 5.4(5), R(t1, . . . , tα(R)) ≍ U (that is, (¬⌈R(t1, . . . , tα(R))⌋) ∈ Γω)
precisely when at least one of the ti is undefined. This is in harmony with 3.2(3),
according to which R(t1, . . . , tα(R))(ν) ≍ U if and only if at least one ti(ν) is unde-

fined. When all the ti are defined, we define R= {(t1, . . . , tα(R)) | (R(t1, . . . , tα(R)))∈
Γω}. This makes R(t1, . . . , tα(R)) yield T and F when it should by 3.2(3). By =-2,
whether or not (R(t1, . . . , tα(R))) ∈ Γω , is independent of the choice of the repre-
sentatives t1, . . . , tα(R) of the equivalence classes. Because R(x1, . . . ,xα(R)) is an
atomic formula, it contains no bound variables, so the “free for xi” condition in
=-2 is satisfied. We have shown R(t1, . . . , tα(R))(ν) ≍ R(t1, . . . , tα(R)).

The base case of the induction proof is now complete. The induction assump-
tion is that subformulas obey ϕ(ν) ≍ ϕ . Our proof of the induction step follows a
pattern that we now illustrate with ∧. We have ϕ ∧ψ(ν)≍ϕ(ν)∧ψ(ν)≍ϕ ∧ψ ≍
ϕ ∧ψ by Definition 3.2(5), the induction assumption, and Lemma 7.6. The cases
¬ and ∨ follow similarly from 3.2(4) and (6), respectively.

We still have to deal with the quantifiers. By the induction assumption, (4), and
Lemma 3.6 we have the following:

If t ∈ D and t is free for x in ψ(x), then ψ(t)≍ ψ(t)(ν)≍ ψ(x)(ν [x := t]). (6)

If ∀x ψ(x) ≍ T, then (∀x ψ(x)) ∈ Γω . Assume t is an arbitrary element of D.
Then ⌈t⌋ ∈ Γω . By Lemma 7.1(1), t ∈ t can be chosen so that it is free for x in
ψ(x). Then {∀x ψ(x)} ⊢∀-E ψ(t). Therefore, ψ(t) ∈ Γω , that is, ψ(t) ≍ T. So
ψ(x)(ν [x := t])≍ T by (6). By Definition 3.2(7) ∀x ψ(x)(ν)≍ T.

If ∀x ψ(x) ≍ F, then (¬∀x ψ(x)) ∈ Γω . When ∀x ψ(x) was dealt with in the
construction of Γω , Case 1 was not chosen, because otherwise we would have
{(¬∀x ψ(x)),(¬⌈∀x ψ(x)⌋)} ⊆ Γω ⊢C5 F. Case 2 was not chosen since ∀x ψ(x)
is of wrong form for it. The condition of Case 3 was satisfied, as otherwise Γω

would be inconsistent. In Case 3, the formula ¬ψ(y) was added to Γω , making
ψ(y)≍ F. By 5.4(1) y ∈ Tdef , so by (6) ψ(x)(ν [x := y])≍ F. By Definition 3.2(7)
∀x ψ(x)(ν)≍ F.

If ∀x ψ(x)≍U, then (¬⌈∀x ψ(x)⌋) ∈ Γω . If (¬ψ(t))∈ Γω for any t ∈Tdef that
is free for x in ψ(x), then Γω ⊢D1; ∧-I ⌈¬ψ(t)⌋∧¬ψ(t) ⊢5.4(6); ∃-I ∃x (⌈ψ(x)⌋∧¬ψ(x))
⊢∨-I2 ⌈∀x ψ(x)⌋ ⊢C3 F, because by 5.4(9), ⌈∀x ψ(x)⌋ ∼= (∀x ⌈ψ(x)⌋)∨∃x (⌈ψ(x)⌋∧
¬ψ(x)). So there is no t ∈ D such that ψ(t) ≍ F, that is, ψ(x)(ν [x := t]) ≍ F.
By 3.2(7), to show ∀x ψ(x)(ν) ≍ U, it remains to be proven that there is t ∈ Tdef

that is free for x in ψ(x) such that ψ(x)(ν [x := t]) ≍ U, that is, ψ(t) ≍ U, that is,
(¬⌈ψ(t)⌋)∈ Γω . We have (∀x ⌈ψ(x)⌋) /∈ Γω , because otherwise Γω ⊢∨-I1 ⌈∀x ψ(x)⌋
⊢C3 F. On the other hand, /0 ⊢D2 ⌈ψ(x)⌋∨¬⌈ψ(x)⌋ ⊢D1; ∨-E ⌈⌈ψ(x)⌋⌋ ⊢∀-I ∀x ⌈⌈ψ(x)⌋⌋

34 A. Valmari and L. Hella

⊢∨-I1 ⌈∀x ⌈ψ(x)⌋⌋, so (¬⌈∀x ⌈ψ(x)⌋⌋) /∈ Γω . By Lemma 7.3, (¬∀x ⌈ψ(x)⌋) ∈ Γω .
It is of the form (¬∀x . . .) ∈ Γω that was discussed above, so there is a variable
symbol y such that (¬⌈ψ(y)⌋) ∈ Γω , that is, ψ(x)(ν [x := y])≍ ψ(y)≍ U.

If ∃x ψ(x) ≍ T, then (∃x ψ(x)) ∈ Γω . Consider the step ϕi
∼= ∃x ψ(x) in the

construction of Γω . Case 1 was not chosen, because otherwise both ϕi ∈ Γω and
(¬⌈ϕi⌋) ∈ Γω . Because (∃x ψ(x)) ∈ Γω 6⊢ F, Case 2 was chosen. There the for-
mula ψ(y) was added to Γω , making ψ(y) ≍ T. Thus ∃x ψ(x)(ν) ≍ T by Defini-
tion 3.2(8).

If ∃x ψ(x) ≍ F, then (¬∃x ψ(x)) ∈ Γω . Assume t is an arbitrary element of D.
By Definition 3.2(8) we get ∃x ψ(x)(ν) ≍ F, if we show ψ(t)(ν) ≍ F. We have
⌈t⌋ ∈ Γω . By Lemma 7.1(1), t can be chosen so that it is free for x in ψ(x) and
⌈ψ(x)⌋. We show ψ(t)≍ F, that is, (¬ψ(t)) ∈ Γω , by ruling out the other two pos-
sibilities. If ψ(t)∈Γω , then Γω ⊢∃-I ∃x ψ(x) ⊢C3 F. The case (¬⌈ψ(t)⌋)∈Γω can be
split to two via Γω ⊢D1 ⌈¬∃x ψ(x)⌋ ∼=5.4(10) (∀x ⌈ψ(x)⌋)∨∃x (⌈ψ(x)⌋∧ψ(x)). We
have Γω ∪{∀x ⌈ψ(x)⌋} ⊢∀-E ⌈ψ(t)⌋ ⊢C3 F. Furthermore, Γω ∪{∃x (⌈ψ(x)⌋∧ψ(x))}
⊢∃-E F, since {(⌈ψ(z)⌋∧ψ(z)),¬∃x ψ(x)} ⊢∧-E2; ∃-I F.

If ∃x ψ(x)≍ U, then (¬⌈∃x ψ(x)⌋) ∈ Γω . There cannot be any t ∈ D such that
ψ(t) ∈ Γω (where t is chosen so that it is free for x in ψ(x)), because otherwise
Γω ⊢D1; ∧-I ⌈ψ(t)⌋∧ψ(t) ⊢∃-I ∃x (⌈ψ(x)⌋∧ψ(x)) ⊢∨-I2 ⌈∃x ψ(x)⌋ ⊢C3 F. By Defini-
tion 3.2(8), it remains to be proven that there is t ∈ D such that (¬⌈ψ(t)⌋) ∈ Γω .
We have (∀x ⌈ψ(x)⌋) /∈ Γω , because otherwise Γω ⊢∨-I1 ⌈∃x ψ(x)⌋ ⊢C3 F. The rest
of the proof is the same as in the case ∀x ψ(x)≍ U.

Lemma 7.8. The D and defined in the proof of Lemma 7.7 satisfy (D,) |= ⌈F⌋.

Proof. By Definition 5.2(1) and the choice of D in the proof of 7.7, for every
function symbol f and t1 ∈ Tdef , . . . , tα(f) ∈ Tdef we have to show the following:

⌈ f ⌋(t1, . . . , tα(⌈ f ⌋))≍ T if and only if f (t1, . . . , tα(f)) is defined.

By the construction in the proof of 7.7, f (t1, . . . , tα(f)) is defined if and only if

⌈ f (t1, . . . , tα(f))⌋ ∈ Γω , that is, ⌈ f (t1, . . . , tα(f))⌋ ≍ T. We have

⌈ f (t1, . . . , tα(f))⌋ ≍ ⌈ f ⌋(t1, . . . , tα(⌈ f ⌋))≍ ⌈ f ⌋(t1, . . . , tα(⌈ f ⌋))(ν)≍
⌈ f ⌋(t1(ν), . . . , tα(⌈ f ⌋)(ν))≍ ⌈ f ⌋(t1, . . . , tα(⌈ f ⌋))

by the following. The first step follows from t1 ∈ D, . . . , tα(f) ∈ D and 5.4(2). The
second and last step hold because by the proof of 7.7, for every formula ϕ we have
ϕ(ν) = ϕ and for every defined term t we have t(ν) = t. The third step follows
from 3.2(2), 3.2(3), and the fact that each ti is free for xi in ⌈ f ⌋(x1, . . . ,xα(⌈ f ⌋)) by
5.4(2).

Theorem 7.9. If (⌈F⌋,Γ) 6⊢ F, then (⌈F⌋,Γ) has a model. If (⌈F⌋,Γ) |= ϕ , then

(⌈F⌋,Γ) ⊢ ϕ .

A Complete Regular Predicate Logic with Undefined Truth Value 35

Proof. If Γ 6⊢ F, then Lemma 7.1(4) yields Γ′ 6⊢ F. By Lemma 7.7 and 7.8 Γω

has a model. It is a model of Γ′ as well, because Γ′ ⊆ Γω . So Γ has a model by
Lemma 7.1(5).

If Γ 6⊢ ϕ , then by Lemma 6.7 there is ψ ∈ {¬ϕ ,¬⌈ϕ⌋} such that Γ∪{ψ} 6⊢ F.
By the previous claim Γ∪{ψ} has a model. By Definition 5.2(3) it contradicts the
assumption Γ |= ϕ .

8 Discussion

Let us first discuss the mimicking of other logics by ours. Some logics [6, 16] use
strict logical connectives; that is, if ϕ or ψ or both are undefined, then also ϕ ∧ψ

and ϕ ∨ψ are undefined. They can be reduced to our system by interpreting them
as shorthands for (ϕ ∧¬ϕ)∨ (ψ ∧¬ψ)∨ (ϕ ∧ψ) and (ϕ ∨¬ϕ) ∧ (ψ ∨¬ψ) ∧
(ϕ ∨ ψ), respectively. The ∀x ϕ(x) and ∃x ϕ(x) of [6, 18] are our (∀x ϕ(x))∨
∃x (ϕ(x)∧¬ϕ(x)) and (∃x ϕ(x))∧∀x (ϕ(x)∨¬ϕ(x)), respectively.

Some logics [18] (a variant in [6]) interpret ϕ ∧ψ and ϕ ∨ψ like ϕ ∧ (¬ϕ ∨ψ)
and ϕ ∨ (¬ϕ ∧ψ), respectively, are interpreted in our logic. It corresponds to how
“and” and “or” work in many programming languages, assuming that U represents
program crash or undefined behavior. In the case of “and”, if ϕ yields F, then F is
returned without evaluating ψ ; if the evaluation of ϕ crashes, then the evaluation
of “and” has crashed; and if ϕ yields T, then ψ is evaluated resulting either in a
crash or a truth value F or T that is returned. “Or” is computed analogously. In
programming literature, this is often called “short-circuit evaluation”.

Relation symbols R′ that are not defined everywhere can be simulated as fol-
lows. A new function symbol f is introduced that is undefined precisely when
desired. We choose (d1, . . . ,dα(R)) ∈ R when f (d1, . . . ,dα(f)) is undefined, and use
R(x1, . . . ,xα(R)) ∧ (f (x1, . . . ,xα(f)) = f (x1, . . . ,xα(f))) in the place of R′.

The sources [3, 9, 25] introduce an if-then-else operator for terms. It is obvi-
ously useful for defining functions in a recursive fashion, which is common practice
in computer science. The atomic formula R(if χ then t1 else t2) can be treated as
an abbreviation of (χ ∧R(t1)) ∨ (¬χ ∧R(t2)) ∨ (χ ∧¬χ). This was exemplified
in (1), where |x| = (if x < 0 then −x else x), and (χ ∧¬χ) was omitted because
in this case it always yields F. This makes it also possible to introduce non-strict
functions, such as (if x = 0 then 0 else if y = 0 then 0 else x ·y), which is a version
of multiplication that yields 0 also when one argument is 0 and the other argument
is undefined. (A function is strict if and only if an undefined argument always
makes the result undefined.)

Some logics contain a non-strict unary connective that inputs a truth value and
yields T if the input is F or T, and F if the input is U. That is, it is otherwise like
our ⌈ϕ⌋, but it is a connective while ⌈⌋ is an abbreviation. In [6] it is #ϕ , in [9, 13]
it is ∆ϕ , and in [18] it is ∗ϕ . Let us use ∗. In the presence of ∗ and some way
to express the constant U, any truth function of arity n+1 (including the irregular
ones) can be expressed recursively as (Pn+1∧∗Pn+1∧ϕT)∨(¬Pn+1∧∗Pn+1∧ϕF)∨

36 A. Valmari and L. Hella

(¬∗Pn+1 ∧ϕU), where ϕT, ϕF, and ϕU express truth functions of arity n. In our
logic, this can be mimicked by using ⌈ϕ⌋ instead of ∗ϕ . To obtain U one may
declare a unary function symbol f with ⌈ f ⌋ ∼= F (that is, f is defined nowhere),
and use f (x) = f (x). In this way, any propositional connective can be mimicked.

If the axiom system that is to be mimicked does not contain a natural counter-
part for ⌈ f ⌋, then a new relation symbol R f may be introduced and used as ⌈ f ⌋.
This is not void of content, because information about R f may then follow from
other axioms. Let us illustrate this with an example. Assume (∀x (x = 0∨ x · 1

x
=

1)) ∈ Γ. We have {x · 1
x
= 1} ⊢D1 ⌈x · 1

x
= 1⌋ ⊢5.4(4); ∧-E1 ⌈x · 1

x
⌋ ⊢5.4(2); ∧-E1; ∧-E2 ⌈1

x
⌋ ∼=

R 1
x
(x). Thus Γ∪{¬(x = 0)} ⊢∀-E; ∨-E R 1

x
(x). Assume that originally ¬∗(1

0 = 1
0) was

used to express that 1
0 is undefined. We mimic it by letting (¬⌈1

0 = 1
0⌋) ∈ Γ. Then

Γ ⊢ ¬R 1
x
(0), because {R 1

x
(0)} ⊢ T∧T∧R 1

x
(0) ∼= ⌈1

0⌋ ⊢=-1
1
0 = 1

0 ⊢D1 ⌈1
0 = 1

0⌋.

The E!t, where t is a term, of free logics can be mimicked with ⌈t⌋. The ∃x ϕ(x)
of [16] can be mimicked with ∃x (⌈ϕ(x)⌋∧ϕ(x)).

The observations above suggest that most, if not all, ternary first-order logics
for partial functions can be mimicked by our logic. On the other hand, our com-
pleteness result can be generalized to also cover ∗. Because ¬∗(1

0 = 0) is true but
∃x ¬∗(x = 0) is false on real numbers, ∃-I is not sound in the presence of ∗. There-
fore, we replace it by “If t is free for x in ϕ(x), then {⌈t⌋,ϕ(t)} ⊢ ∃x ϕ(x)”. This
makes the soundness proof go through despite the fact that due to ∗, the logic is no
longer regular. Then ∗ is given proof rules as suggested by Definition 5.4. It is not
hard to check that every instance of ∃-I in our completeness proof uses as t either
a variable symbol or a term such that t ∈ D, that is, ⌈t⌋ ∈ Γω . Therefore, also the
completeness proof goes through.

Let us now briefly discuss which familiar laws must be changed when switch-
ing from binary to our logic. We have already mentioned that C1, D1, =-1, ∀-E,
and the modified ∃-I differ from the binary case. Of the 21 propositional laws
in [11, Table 6.3] that do not use → or ↔, only the following four fail in our
logic: P∨¬P equals T (Law of Excluded Middle), P∧¬P equals F (Law of Non-
contradiction), P∧ (¬P∨Q) equals P∧Q, and P∨ (¬P∧Q) equals P∨Q (short-
circuit vs. ordinary conjunction and disjunction). All of the 14 quantifier laws
in [11, (7.1), (7.6), p. 380] that do not use → or ↔ are valid in our logic.

The situation with → is less clear, starting from the question what it should
mean. All the 3-valued logics that we checked use either Kleene’s [3, 9, 13],
strict [6, 16, 18], or no [5, 15] →. (Some denote it with ⇒.) In classical bi-
nary first-order logic, → is closely linked to ⊢ via Modus Ponens ({(ϕ → ψ),ϕ}
⊢ ψ) and Deduction Theorem (if Γ ∪ {ϕ} ⊢ ψ , then Γ ⊢ ϕ → ψ). Kleene’s,
Łukasiewicz’s, and strict implication satisfy the former, but, as we now show, not
the latter. Let c be a constant symbol, f be a unary function symbol with ⌈ f ⌋ ∼= F,
ϕ ∼=(f (c) = c), and ψ ∼=¬(c= c). Then in any model ϕ(ν)≍U and ψ(ν)≍ F, and
ϕ → ψ(ν)≍U by Figure 1 or strictness. Furthermore, /0∪{ϕ} ⊢D1 ⌈ϕ⌋ ∼=5.4(4),(2)
⌈c⌋∧⌈ f ⌋(c)∧⌈c⌋ ∼=5.4(1) T∧F∧T ⊢∧-E1, ∧-E2 F ⊢C2 ψ . If Deduction Theorem holds,
we get /0 ⊢ ϕ → ψ , demonstrating that the proof system is unsound.

A Complete Regular Predicate Logic with Undefined Truth Value 37

Both Modus Ponens and Deduction Theorem hold in our logic if we define
ϕ → ψ as a shorthand for ¬(ϕ ∧ ⌈ϕ⌋)∨ψ or ¬(ϕ ∧ ⌈ϕ⌋)∨ (ψ ∧ ⌈ψ⌋). On the
other hand, of the 8 laws in [11, Table 6.3] that contain →, Kleene’s implication
violates only the law that P → P equals T, while Łukasiewicz’s violates 3 laws,
¬(ϕ∧⌈ϕ⌋)∨ψ violates 4, ¬(ϕ∧⌈ϕ⌋)∨(ψ∧⌈ψ⌋) violates 5, and strict implication
violates 6. As a consequence, maintaining Deduction Theorem and maintaining as
many familiar practical laws as possible seem conflicting goals. Therefore, we
leave it open what → should mean in the context of our logic.

The main message of this section is the following. It is often possible to use
⌈⌋ instead of ∗ without losing completeness. By doing so other connectives than
¬, ∧, ∨, ∀, and ∃ can be eliminated, facilitating some useful practical reasoning
methods.

Acknowledgements. We thank Esko Turunen for the help he gave in checking
earlier versions of our proofs; Cliff Jones, Scott Lehmann and Fred Schneider for
helpful discussions on the topic; and the anonymous reviewers for their hard work.
Our special thanks go to the reviewer who pointed out that for the proof system to
be recursive, also the function from function symbols to their isdef-formulas must
be recursive.

References

[1] H. Andréka, W. Craig, and I. Németi. A system of logic for partial functions
under existence-dependent Kleene equality. J. Symbolic Logic, 53(3):834–
839, 1988.

[2] H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering undefinedness
in program proofs. Acta Inform., 21(3):251–269, 1984.

[3] Sergey Berezin, Clark Barrett, Igor Shikanian, Marsha Chechik, Arie
Gurfinkel, and David L. Dill. A practical approach to partial functions in
CVC Lite. In Selected papers from the workshops on disproving and the sec-

ond international workshop on pragmatics of decision procedures (PDPAR

2004), Cork, Ireland, 2004, pages 13–23. Amsterdam: Elsevier, 2005.

[4] Patrice Chalin. Logical foundations of program assertions: What do prac-
titioners want? In Third IEEE International Conference on Software Engi-

neering and Formal Methods (SEFM 2005), 7-9 September 2005, Koblenz,

Germany, pages 383–393. IEEE Computer Society, 2005.

[5] Ádám Darvas, Farhad Mehta, and Arsenii Rudich. Efficient well-definedness
checking. In Automated reasoning. 4th international joint conference, IJCAR

2008, Sydney, Australia, August 12–15, 2008 Proceedings, pages 100–115.
Berlin: Springer, 2008.

38 A. Valmari and L. Hella

[6] Hans de Nivelle. Theorem proving for classical logic with partial functions
by reduction to Kleene logic. J. Logic Comput., 27(2):509–548, 2017.

[7] David A. Duffy. Principles of automated theorem proving. Wiley Profes-
sional Computing. John Wiley & Sons, Ltd., Chichester, 1991.

[8] William M. Farmer and Joshua D. Guttman. A set theory with support for
partial functions. Studia Logica, 66(1):59–78, 2000. Partiality and modality
(Montréal, QC, 1995).

[9] Antonio Gavilanes-Franco and Francisca Lucio-Carrasco. A first order logic
for partial functions. Theoret. Comput. Sci., 74(1):37–69, 1990.

[10] David Gries and Fred B. Schneider. Avoiding the undefined by underspecifi-
cation. In Computer science today, volume 1000 of Lecture Notes in Comput.

Sci., pages 366–373. Springer, Berlin, 1995.

[11] James L. Hein. Discrete Structures, Logic, and Computability. Boston, MA:
Jones and Bartlett Publishers, 1995.

[12] Leon Henkin. The completeness of the first-order functional calculus. J.

Symbolic Logic, 14:159–166, 1949.

[13] C. B. Jones and C. A. Middelburg. A typed logic of partial functions recon-
structed classically. Acta Inform., 31(5):399–430, 1994.

[14] Stephen Cole Kleene. Introduction to metamathematics. D. Van Nostrand
Co., Inc., New York, N. Y., 1952.

[15] Scott Lehmann. Strict Fregean free logic. J. Philos. Logic, 23(3):307–336,
1994.

[16] Scott Lehmann. “no input, no output” logic. In New essays in free logic.

In honour of Karel Lambert, pages 147–155. Dordrecht: Kluwer Academic
Publishers, 2001.

[17] J. Łukasiewicz. Philosophische Bemerkungen zu mehrwertigen Systemen
des Aussagenkalküls. C. R. Soc. Sci. Varsovie, Cl. III, 23:51–77, 1931.

[18] John McCarthy. Predicate calculus with “undefined” as a truth-value. Tech-
nical report, Stanford Artificial Intelligence Project Memo 1, 1963.

[19] Maurizio Negri. An algebraic completeness proof for Kleene’s 3-valued
logic. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5(2):447–467, 2002.

[20] John Nolt. Free logic. In The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, Stanford University, Winter 2020 edition, 2020.

[21] Christos H. Papadimitriou. Computational complexity. Addison-Wesley Pub-
lishing Company, Reading, MA, 1994.

A Complete Regular Predicate Logic with Undefined Truth Value 39

[22] David Lorge Parnas. Predicate logic for software engineering. IEEE Trans.

Software Eng., 19(9):856–862, 1993.

[23] Edi Pavlović and Norbert Gratzl. A more unified approach to free logics. J.

Philos. Logic, 50(1):117–148, 2021.

[24] Yaroslav Petrukhin. Natural deduction for three-valued regular logics. Log.

Log. Philos., 26(2):197–206, 2017.

[25] Birgit Schieder and Manfred Broy. Adapting calculational logic to the unde-
fined. Comput. J., 42(2):73–81, 1999.

[26] J. M. Spivey. The Z Notation. A Reference Manual. New York etc.: Prentice
Hall, 1989.

[27] Antti Valmari. Automated checking of flexible mathematical reasoning in the
case of systems of (in)equations and the absolute value operator. In Proceed-

ings of the 13th International Conference on Computer Supported Education,

CSEDU 2021, Online Streaming, April 23-25, 2021, Volume 2, pages 324–
331. SCITEPRESS, 2021.

[28] Antti Valmari and Lauri Hella. The logics taught and used at high schools are
not the same. In Proceedings of the Fourth Russian Finnish Symposium on

Discrete Mathematics, volume 26 of TUCS Lecture Notes, pages 172–186,
Turku, Finland, 2017. Turku Centre for Computer Science. editors: Juhani
Karhumäki and Yuri Matiyasevich and Aleksi Saarela.

[29] Antti Valmari and Johanna Rantala. Arithmetic, logic, syntax and Math-
Check. In Proceedings of the 11th International Conference on Computer

Supported Education, CSEDU 2019, Heraklion, Crete, Greece, May 2-4,

2019, Volume 2., pages 292–299, Setúbal, Portugal, 2019. SciTePress. ed-
itors: H. Lane and Susan Zvacek and James Uhomoibhi.

[30] Stefan Wintein. On all strong Kleene generalizations of classical logic. Studia

Logica, 104(3):503–545, 2016.

	1 Introduction
	2 Formal Languages
	3 Structures, Truth Values, and Models
	4 Regularity
	5 Is Defined -Formulas
	6 Proof System and Its Soundness
	7 Existence of Models and Completeness
	8 Discussion

