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Dimension estimates on
circular (s, t)-Furstenberg sets

Jiayin Liu

Abstract. In this paper, we show that circular (s, t)-Furstenberg sets in R2 have Hausdorff
dimension at least

max{ t3 + s, (2t+ 1)s− t} for all 0 < s, t ≤ 1.

This result extends the previous dimension estimates on circular Kakeya sets by Wolff.

Furstenbergin (s, t)-ympyräjoukkojen ulottuvuuden arvioita

Tiivistelmä. Tässä työssä osoitetaan, että tason R2 Furstenbergin (s, t)-ympyräjoukkojen
Hausdorffin ulottuvuus on vähintään

max{ t3 + s, (2t+ 1)s− t} kaikilla 0 < s, t ≤ 1.

Tämä tulos yleistää Wolffin aiemmin todistamia Kakeyan ympyräjoukkojen ulottuvuusarvioita.

1. Introduction

Let F be a circular (s, t)-Furstenberg set in R2. That is, there exists a parameter
set K ⊂ R3

+ with Hausdorff dimension

dimHK ≥ t

such that for every (x, r) ∈ K,

(1.1) dimH(F ∩ S(x, r)) ≥ s

where R3
+ := {(x, r) = (x1, x2, r) | r > 0} and S(x, r) is the circle centered at x ∈ R2

with radius r. A special class of circular (1, 1)-Furstenberg sets is the family of
circular Kakeya sets, that is, Borel sets in R2 that contain circles of every radius.

The study on the Hausdorff dimension of Furstenberg sets was initiated from
their linear version. In this paper, we call a set F ⊂ R2 a linear (s, t)-Furstenberg
set if there exists a parameter set K in A(2, 1) with

dimHK ≥ t

such that for every L ∈ K,
dimH(F ∩ L) ≥ s

where A(n, k) denotes the family of k-dimensional affine subspaces in Rn.
In 1999, Wolff [16] showed that linear (s, 1)-Furstenberg sets with parameter set

K containing lines in every direction have Hausdorff dimension at least

(1.2) max{1
2

+ s, 2s} for all 0 < s ≤ 1.
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In the sequel, there is a series of works improving the above lower bound and providing
the one for linear (s, t)-Furstenberg sets with some of them only considering special
values of s, t. We refer the readers to [9, 1, 11, 10, 12, 7, 3, 2, 13] and references therein.
Moreover, in higher dimensions, one can similarly define linear (s, t)-Furstenberg sets
with parameter set K in A(n, k). See [5, 6] for some recent progress.

It is not clear whether the above lower bound estimates on the Hausdorff di-
mension for linear (s, t)-Furstenberg sets in R2 are sharp for any value of s and t
except s = 1. Hence determining the sharp lower bound remains open for Hausdorff
dimension of linear (s, t)-Furstenberg sets.

In terms of circular (s, t)-Furstenberg sets in R2, Wolff in [17, Corollary 3] showed
that circular Kakeya sets in R2 have full dimension 2 employing techniques from
harmonic analysis. Also, in [15, Corollary 3], Wolff proved that Borel sets in R2

consisting of circles with t-dimensional set of centers have Hausdorff dimension at
least 1 + t. Later, in [8], as an application of their techniques to prove a Marstrand-
type restricted projection theorem, Käenmäki–Orponen–Venieri were able to show
that the above lower bound 1 + t in [15] holds true for analytic t-dimensional family
of circles. Hence they provide an alternative method showing the dimension of sets
containing full circles. Since the above results concern special cases of circular (1, t)-
Furstenberg sets, these bounds are sharp. To the best of the author’s knowledge,
these works and earlier results on families of full circles are the only ones concerning
the Hausdorff dimension for circular Furstenberg sets.

In this paper, we extend the existing result to general 0 < s, t ≤ 1. We show the
following:

Theorem 1.1. For any 0 < s ≤ 1 and 0 < t ≤ 1, the Hausdorff dimension of a
circular (s, t)-Furstenberg set F in R2 is at least

(1.3) max{ t
3

+ s, (2s− 1)t+ s}.
We remark that for any 0 < t ≤ 1, if 0 < s ≤ 2

3
, then the maximum in (1.3)

is attained by t
3

+ s. Otherwise, it is achieved by (2s − 1)t + s. Indeed, these two
bounds are obtained by different approaches. Hence Theorem 1.1 is a combination
of the following two theorems.

Theorem 1.2. For any 0 < s ≤ 1 and 0 < t ≤ 1, the Hausdorff dimension of a
circular (s, t)-Furstenberg set F in R2 is at least

t

3
+ s.

Theorem 1.3. For any 1
2
< s ≤ 1 and 0 < t ≤ 1, the Hausdorff dimension of a

circular (s, t)-Furstenberg set F in R2 is at least

(2s− 1)t+ s.

Below, we briefly outline our ideas of the proof of Theorem 1.2 and Theorem 1.3,
which will imply Theorem 1.1. Here, we will focus on explaining some informal
ideas on obtaining the Minkowski dimension lower bounds for circular Furstenberg
sets. Then we can derive the Hausdorff dimension lower bounds from the Minkowski
dimension lower bounds in a standard way. To this end, in the proof, we will work
with a discretized version of the circular (s, t)-Furstenberg set F in the following sense.
That is, instead of studying the t dimensional parameter set K, we will concentrate
on a finite subset V ⊂ K which is a (δ, t)-set (See Definition 2.2). In brief, V is a
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δ-separated set with cardinality δ−t and satisfies a t-dimensional non-concentration
condition.

With this discretized circular Furstenberg set
⋃
z∈V S(z) ∩ F , we consider an

arbitrary cover U = {B(xi, ri)}i∈Ik1 of this set by balls of radii between δ/2 and δ

where δ = 2−k1 (k1 ∈ N) is sufficiently small. We will give a lower bound of #Ik1
independent of the choice of the cover U . Recall that the desired lower bound is t

3
+s

in Theorem 1.2 and (2t+ 1)s− t in Theorem 1.3, so we need to show that

(1.4) #Ik1 &
(

1

δ

) t
3

+s

in Theorem 1.2

and

(1.5) #Ik1 &
(

1

δ

)(2t+1)s−t

if 1
2
< s ≤ 1 in Theorem 1.3.

Indeed, this will imply∑
i∈Ik1

r
t
3

+s

i &

(
1

δ

) t
3

+s

δ
t
3

+s & 1 in Theorem 1.2

and ∑
i∈Ik1

r
(2t+1)s−t
i &

(
1

δ

)(2t+1)s−t

δ(2t+1)s−t & 1 if 1
2
< s ≤ 1 in Theorem 1.3,

which further imply that the t
3

+s (resp. (2t+1)s−t) dimensional Hausdorff measure
of F is positive and therefore the Hausdorff dimension of F is at least t

3
+ s (resp.

(2t+ 1)s− t).
To show (1.4), we adapt the approach for showing the lower bound for the Haus-

dorff dimension of linear (s, 1)-Furstenberg sets used by Wolff in [16] together with
some geometric observations from planar geometry. The heuristic idea is that, since
three points determine a unique circle in the plane provided they are not collinear,
we can show that three well-separated δ-balls Bi, Bj, Bk determine a “unique” cir-
cle S(z) (not necessarily unique in reality, see the statement before (3.22)), z ∈ V ,
with the help of Lemma 2.5, which intuitively means that there exists a unique cir-
cle S(z) with z ∈ V such that S(z) ∩ Bl 6= ∅ for l = i, j, k. This further enables
us to identify the circle S(z) with the triple (i, j, k). Indeed, the above manipu-
lations are motivated by Wolff [16] to show the lower bound 1/2 + s in (1.2) for
the Hausdorff dimension of linear (s, 1)-Furstenberg sets where 1/2 appears from
the fact that two points determine a unique line in the plane. For circular (s, 1)-
Furstenberg sets, we can only get the lower bound 1/3 + s since we need three points
to determine a circle. On the other hand, since S(z) ∩ F has Hausdorff dimen-
sion no less than s, we need, roughly speaking, at least ∼ δ−s δ-balls in U to cover
S(z)∩F . Hence we can identify each S(z)∩F by the triples (i, j, k) ∈ Ik1×Ik1×Ik1
(or equivalently, (Bi, Bj, Bk) ∈ U × U × U) where S(z) ∩ Bl 6= ∅ for l = i, j, k.
Then each S(z) ∩ F gives rise to δ−s(δ−s − 1)(δ−s − 2) ∼ δ−3s many distinct triples
(i, j, k) ∈ Ik1 ×Ik1 ×Ik1 representing three distinct δ-balls in U and therefore we ob-
tain a total number #V × δ−3s = δ−3s−t many distinct triples. Finally, since all these
triples are contained in Ik1×Ik1×Ik1 , we deduce that (#Ik1)3 & δ−3s−t, which gives
(1.4). This is the rough idea behind the proof of the Minkowski dimesion version of
Theorem 1.2.
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On the other hand, inequality (1.5) is obtained by applying the result from
Käenmäki–Orponen–Venieri in [8] utilised to find the Hausdorff dimension of t-di-
mensional analytic sets of circles. Heuristically, as discussed above, since one needs
at least ∼ δ−s δ-balls in U to cover S(z) ∩ F for each z ∈ V , if each δ-ball in U only
intersects one S(z) ∩ F for some z ∈ V , then U consists of at least δ−s#V ∼ δ−s−t

many δ-balls. However, this may not be the case. In general, if each δ-ball in U
intersects no more than δ−ξ (0 < ξ ≤ t) many sets from the family {S(z) ∩ F}z∈V ,
then we can deduce that U consists of at least δ−s#V

δ−ξ
∼ δ−s−t

δ−ξ
many δ-balls. Actually,

by applying [8, Lemma 5.1], we can show that for more than half of points z in V ,
there exists S ′(z) ⊂ S(z)∩F with dimH S

′(z) = dimH[S(z)∩F ] ≥ s such that each δ-
ball in U intersects no more than δt(2s−2) many sets from the family {S ′(z)}z∈V where
t(2s−2) arises from the choice of the parameter λ when applying Lemma 5.1 in [8] to
guarantee (4.15) holds. We refer readers to the discussion around (4.17) in Section 4
for details. This fact will imply that there exist at least δ−s#V

δt(2s−2) ∼ δ−[(2t+1)s−t] many
δ-balls in U , which is equivalent to say #Ik1 & δ−[(2t+1)s−t]. Hence (1.5) holds and
this concludes a heuristic discussion regarding Theorem 1.3.

Finally, we remark that we do not know if the bound max{ t
3

+ s, (2s−1)t+ s} in
Theorem 1.1 is sharp and we here make a conjecture that the sharp lower bound for
Hausdorff dimension of circular (s, 1)-Furstenberg sets is 1

2
+ 3

2
s for 0 < s ≤ 1. Indeed,

in the following example, based on the example in [16], we construct a circular (s, 1)-
Furstenberg set whose Hausdorff dimension does not exceed 1

2
+ 3

2
s for all 0 < s ≤ 1.

Example 1.4. Due to the construction in [16, Section 1] by Wolff, for all 0 < s ≤
1, there exists a linear (s, 1)-Furstenberg set F ⊂ B(0, 4) \ B(0, 1) whose Hausdorff
dimension does not exceed 1

2
+ 3

2
s. Now considering R2 as the complex plane C,

using the map ω : C→ C, z 7→ 1
z
, all lines in C are mapped to circles through (0, 0).

Also noticing that ω|B(0,4)\B(0,1) is a biLipschitz homeomorphism, we deduce that
F ′ := ω(F ) is a circular (s, 1)-Furstenberg set with same dimension as F . That is,
dimH(F ′) ≤ 1

2
+ 3

2
s.

The paper is organised as follows. In Section 2, we clarify our notations and
symbols, as well as introduce definitions and results employed in the proof. Sections 3
and 4 are devoted to showing the proof of Theorem 1.2 and 1.3 respectively. In the
last section, Section 5, we complete the proof of some auxiliary lemmas needed in
the proof of Theorem 1.2 using planar geometry.

Acknowledgement. J. L. would like to thank K. Fässler and T. Orponen for
many motivating discussions and their constant support. J. L. would also like to
convey his gratitude to the anonymous referee for pointing out a mistake in the
proof of Theorem 1.2 and for providing many valuable suggestions which significantly
improved the final presentation of the paper.

2. Preliminaries

In this paper, we denote by Sδ(x, r) the δ-neighbourhood of S(x, r), i.e.

Sδ(x, r) := B(x, r + δ) \B(x, r − δ).

We also use the notation z = (x, r) ∈ R3. Moreover, we use the notation f . g (resp.
f .h g) for f ≤ kg (resp. f ≤ k(h)g) where k is a constant that depends only on the
ambient space (resp. the parameter h), and may change from line to line. Likewise,
f & g and f ∼ g are understood correspondingly.
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The notation Hs stands for the s-dimensional Hausdorff measure, and Hs
∞ stands

for s-dimensional Hausdorff content. The notation | · | and ‖ · ‖ will denote the
Lebesgue measure and the Euclidean distance respectively in R2 or R3. We also use
dist(A,B) to denote Euclidean distance between A and B where A and B can be
either points or sets. #A will denote the cardinality of a set A.

We have the following observation which makes it possible to restrict ourselves
to circular Furstenberg sets with bounded parameter set.

Remark 2.1. (i) Since we are concerned with the Hausdorff dimension of the
circular Furstenberg set F , we claim that it is enough to consider the case that F
has parameter set K ⊂ B0 where

(2.1) B0 = {(x, r) ∈ R3 | x ∈ B(0, 1
4
) and 1

2
≤ r ≤ 2}.

To see this, consider the following covering of the parameter space R3
+. For k, l,m ∈

Z, let
Dk,l,m := {(x, r) ∈ R3 | x ∈ B((22m−2k, 22m−2l), 22m−2) and 22m−1 ≤ r ≤ 22m+1}.

Then
R3

+ =
⋃
k,l,m

Dk,l,m

and
B0 = D0,0,0.

Hence for each ε > 0 sufficiently small, there exists kε, lε,mε such that

(2.2) dimH(K)− dimH(K ∩Dkε,lε,mε) < ε.

Let Fε be the circular Furstenberg set with parameter set K ∩Dkε,lε,mε . Denote by
Sy : R2 → R2, Sy(x) := x− y for any y ∈ R2 and by Dλ : R2 → R2, Dλ(x) := λx for
any λ > 0.

Then, letting y = (22mε−2kε, 2
2mε−2lε) and λ = 2−2mε , we observe that

F̃ε := D2−2mε ◦ S(22mε−2kε,22mε−2lε)(Fε)

is a circular Furstenberg set the parameter set K̃ε contained in B0 and satisfying

(2.3) dimH(K̃ε) = dimH(K ∩Dkε,lε,mε).

If F is a circular (s, t)-Furstenberg set, then by (2.2) and (2.3), for 0 < ε < t, we
know F̃ε is a circular (s, t− ε)-Furstenberg set and

(2.4) dimH F ≥ dimH F̃ε for every 0 < ε < t.

Now, assume Theorem 1.1 holds for circular Furstenberg sets with parameter set
contained in B0, then

(2.5) dimH F̃ε ≥ max{ t−ε
3

+ s, (2s− 1)(t− ε) + s} for every 0 < ε < t.

Combining (2.4) and (2.5), we deduce that

dimH F ≥ lim
ε→0

max{ t−ε
3

+ s, (2s− 1)(t− ε) + s} = max{ t
3

+ s, (2s− 1)t+ s}.

Hence to show Theorem 1.1, we only need to consider the case that F has parameter
set K ⊂ B0.

(ii) Note that |Sδ(x, r)| ≤ c0δ for all (x, r) ∈ B0 where c0 is an absolute constant.

We introduce the following:
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Definition 2.2. ((δ, q)-sets) Let δ ∈ (0, 1), q > 0, and let P ⊂ Rn be a finite
δ-separated set. We say that P is a (δ, q)-set, if it satisfies the estimate

(2.6) #{P ∩B(x, r)} .
(r
δ

)q
, x ∈ Rn, r > δ.

We recall from [4, Lemma 3.13] the following

Lemma 2.3. Let δ, q > 0, and let Q ⊂ Rn be any set with Hq
∞(Q) =: β > 0.

Then there exists a (δ, q)-set P ⊂ Q with cardinality #P & β · δ−q.
Remark 2.4. If Q ⊂ B0 and Hq

∞(Q) = β, by Lemma 2.3, we know that for any
δ > 0, there exists a (δ, q)-set P ⊂ Q with cardinality #P & βδ−q. Furthermore,
letting r = diamB0 in (2.6), we know #P . δ−q, if δ < diamB0. We conclude that

βδ−q . #P . δ−q.

To show Theorem 1.2, we need to establish the following result from planar
geometry. Since the proof relies on two more auxiliary lemmas, we postpone it to
the last section.

Lemma 2.5. Let A,B,C ∈ R2 such that min{‖A−B‖, ‖A−C‖, ‖B−C‖, 2} ≥
2c. For a > 0 such that a < 1

20
c2, define

(2.7) W :=

 b− a ≤ ‖x− A‖ ≤ b+ a,
(x, b) ∈ R2 × [1

2
, 2] : b− a ≤ ‖x−B‖ ≤ b+ a,

b− a ≤ ‖x− C‖ ≤ b+ a

 .

Then

(2.8) diamW .
a

c2
.

It is worth mentioning that Lemma 2.5 shares a very similar conclusion with the
one in [16, Lemma 3.2 (Mastrand’s 3-circle lemma)]. Indeed, if we let ε = δ = a,
r = b, λ = c, t = 1/2 − a and r1 = r2 = r3 = a therein, then the set W in Lemma
2.5 will be contained in Ωεtλ defined in [16, Lemma 3.2]. And the conclusion of [16,
Lemma 3.2] says that Ωεtλ is contained in the union of two ellipsoids in R3 with
diamΩεtλ . a

c2
. Since we only consider the case r1 = r2 = r3 = a (that is, Cδ(xi, ri)

become balls B(xi, 2a) for i = 1, 2, 3 in [16, Lemma 3.2]), we can deduce that W lies
in one cuboid in R3 based on an approach which differs completely from the one of
[16, Lemma 3.2].

Now, we start the preparation for the proof of Theorem 1.3. Let P ⊂ R3 be a
(δ, q)-set. For any p ∈ P , let ∆p be the Dirac measure centered at p. Then

(2.9) µP :=
1

#P

∑
p∈P

∆p

is a probability measure satisfying the Frostman condition µP (B(z, r)) . rq for all
z ∈ R3 and r > δ. Indeed, for any ball B(z, r) with r > δ we have

µP (B(z, r)) =
1

#P

(∑
p∈P

∆p

)
(B(z, r)) =

1

#P

∑
p∈P

∆p(B(z, r))

=
1

#P
#(P ∩B(z, r)) . rq.

Below in Section 3 and 4, thanks to Remark 2.1(i), we will assume the circular
(s, t)-Furstenberg set F has parameter set K ⊂ B0.
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3. Proof of Theorem 1.2

Proof of Theorem 1.2. Let F be a circular (s, t)-Furstenberg set with parameter
set K ⊂ B0. It suffices to show, for any ε > 0, 0 < s′ < s and 0 < t′ < t,

dimH(F ) ≥ t′

3
+ s′ − ε.

Hence in the following, we fix s′, t′ and 0 < ε < t′

3
+ s′.

We notice that there exists α > 0 and K1 ⊂ K such that Ht′
∞(K1) > α, where

(3.1) K1 := {z ∈ K | Hs′

∞(F ∩ S(z)) > α}.
Indeed, by the subadditivity of Hausdorff content, and the fact

K =
⋃
n

{z ∈ K | Hs′

∞(F ∩ S(z)) > 1
n
},

we deduce the existence of α such that Ht′
∞(K1) > α for K1 defined as in (3.1).

Next, since ε > 0, we can find δ0 = δ0(ε, s′) > 0 sufficiently small such that for
any 0 < δ < δ0, we have

(3.2) δ−ε
(

log
1

δ

)−( 8
3

+ 12
s′ )

> 1.

and

(3.3)
√

640δ < τ = τ(δ) := π−1

(
1

16

)1/s′ (
1

log 1
δ

)2/s′

< 1.

Then we choose k0 to be an integer larger than log( 1
δ0

) also satisfying

(3.4) α >
∞∑

k=k0

1

k2
.

Now, we outline the main steps of the proof. We start with an arbitrary cover
U = {B(xi, ri)}i∈I of F by balls of radius less than 2−k0 . In the sequel, we will derive
a lower bound ∑

i∈I

rσi &ε,t′,s′ 1

with σ = t′/3 + s′ − ε independent of the choice of the particular cover. This will
imply

Hσ(F ) > 0.

To this end, we divide the proof into 4 steps. Let

Ik := {i ∈ I | 2−(k+1) < ri ≤ 2−k}, Fk :=
{⋃

B(xi, ri) | i ∈ Ik
}
.

First, in Step 1, we will deduce that there exists k1 ≥ k0 and a (δ, t′)-set V ⊂ K
with δ = 2−k1 such that for every circle z = (x, r) ∈ V , we have

(3.5) Hs′

∞(S(z) ∩ Fk1) > k−2
1 .

Then, in Step 2, we modify Wolff’s approach for linear (s, 1)-Furstenberg sets to
fit our circular case. For each circle S(z) with z ∈ V , we will extract from S(z) three
τ -separated arcs h+

z , h
−
z , h

×
z such that

(3.6) Hs′

∞(h+
z ∩ Fk1) & k−2

1 , Hs′

∞(h−z ∩ Fk1) & k−2
1 , Hs′

∞(h×z ∩ Fk1) & k−2
1 .
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These arcs enable us to define an index set T ⊂ Ik1 × Ik1 × Ik1 × V whose
cardinality will be estimated in the following steps and will imply the lower bound
for #Ik1 .

Next, in Step 3, we will deduce that the cardinality of T is upper bounded by
the cardinality of Ik1 with the help of Lemma 2.5. Indeed, we will show

#T . (#Ik1)3τ−6.

Finally, in Step 4, we will estimate the lower bound of #T which also serves as the
one of #Ik1 , hence #I with the aid of (3.6). This will enable us to conclude the
proof.

Step 1. Let α be as in (3.4). Hence by pigeonhole principle we deduce that for
each S(z) ∈ K1, there exists k(z) ≥ k0 such that Hs′

∞(S(z) ∩ F ∩ Fk(z)) > k(z)−2.
Moreover, by applying pigeonhole principle again we obtain that there exists

k1 ≥ k0 such that

(3.7) Ht′

∞(K2) > k−2
1

where K2 := {z ∈ K1 : k(z) = k1}.
We remark that for every circle z ∈ K2, we have

(3.8) ∞ > Hs′

∞(S(z) ∩ Fk1) ≥ Hs′

∞(S(z) ∩ F ∩ Fk1) > k−2
1 .

By letting δ = 2−k1 , q = t′ and Q = K2 in Lemma 2.3, we know that there exists
a (δ, t′)-set V ⊂ K2 with cardinality

(3.9) #V & Ht′

∞(K2) · δ−t′ .

Hence for every z ∈ V , (3.8) implies (3.5), which concludes Step 1.

Step 2. We start the procedure of extracting three disjoint arcs for any S(z), z =
(x, r) ∈ V , which is illustrated in Figures 1, 2 and 3. Let

η := η(z) = Hs′

∞(S(z) ∩ Fk1).

Also let γ = ( η
16

)1/s′ . Divide S(z) into N arcs I1, · · · , IN such that
• the length of I1, · · · , IN−1 is γ,
• the length of IN is at most γ,
• and Nγ ≥ 2πr.

Since γ = ( η
16

)1/s′ ≤ 1
16

and z = (x, r) ∈ B0 implies r > 1
2
, we know

N ≥ 2πr

γ
≥ π

1
16

≥ 16.

Note that if I is an arc in S(z), then

(3.10) Hs′

∞(I) ≤ (diam I)s
′ ≤ (H1(I))s

′
.

This implies for all l = 1, · · · , N ,

(3.11) Hs′

∞(Il ∩ Fk1) ≤ Hs′

∞(Il) ≤ γs
′
=

η

16
.

See Figure 1 for N arcs.
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Figure 1. N arcs on S(z).

Since

η = Hs′

∞(S(z) ∩ Fk1) = Hs′

∞(
⋃N
l=1 Il ∩ Fk1)

≤ Hs′

∞(
⋃N−12
l=1 Il ∩ Fk1) +

∑N
l=N−11Hs′

∞(Il ∩ Fk1)

≤ Hs′

∞(
⋃N−12
l=1 Il ∩ Fk1) + 12 η

16

where in the last inequality we use (3.11), we obtain

Hs′

∞(
⋃N−12
l=1 Il ∩ Fk1) ≥ 1

4
η.

This guarantees that there exists N1 ∈ [2, N − 12] which is the smallest integer
satisfying

(3.12) Hs′

∞(
⋃N1

l=1 Il ∩ Fk1) ≥
1
8
η

and

(3.13) Hs′

∞(
⋃N1−1
l=1 Il ∩ Fk1) < 1

8
η.

Let h+
z :=

⋃N1

l=1 Il. By (3.12) and (3.13), we know

1

8
η ≤ Hs′

∞(h+
z ) ≤ Hs′

∞(
⋃N1−1
l=1 Il ∩ Fk1) +Hs′

∞(IN1 ∩ Fk1)

≤ 1

8
η +

1

16
η =

3

16
η.(3.14)

See Figure 2 for the construction of h+
z .
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Figure 2. The construction of h+z .

Hence the arc h+
z satisfies the first inequality in (3.6). We continue to construct

the other two arcs. Notice that

(3.15) Hs′

∞(
⋃N1+1
l=1 Il ∩ Fk1) ≤ Hs′

∞(h+
z ) +Hs′

∞(IN1+1 ∩ Fk1) ≤ 3
16
η + 1

16
η = 1

4
η.

We remark that since N1 ≤ N − 12, we know N1 + 1 ≤ N − 11. Combining this,
(3.15) and (3.11), we have

η = Hs′

∞(
⋃N
l=1 Il ∩ Fk1)

≤ Hs′

∞(
⋃N1+1
l=1 Il ∩ Fk1) +Hs′

∞(
⋃N−8
l=N1+2 Il ∩ Fk1) +

∑N
l=N−7Hs′

∞(Il ∩ Fk1)

≤ 1

4
η +Hs′

∞(
⋃N−8
l=N1+2 Il ∩ Fk1) + 8 η

16
,

which implies

Hs′

∞(
⋃N−8
l=N1+2 Il ∩ Fk1) ≥

1
4
η.

Hence we can find N2 ∈ [N1 + 3, N − 8] which is the smallest integer satisfying

(3.16) Hs′

∞(
⋃N2

l=N1+2 Il ∩ Fk1) ≥
1
8
η

and

(3.17) Hs′

∞(
⋃N2−1
l=N1+2 Il ∩ Fk1) <

1
8
η.

Let h−z :=
⋃N2

l=N1+2 Il. By (3.16) and (3.17), we know

1

8
η ≤ Hs′

∞(h−z ) ≤ Hs′

∞(
⋃N2−1
l=N1+2 Il ∩ Fk1) +Hs′

∞(IN2 ∩ Fk1)

≤ 1

8
η +

1

16
η =

3

16
η.(3.18)

The construction of the third arc h×z ⊂ S(z) is similar. See Figure 3 for an illustration.
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Figure 3. The construction of h−z and h×z .

That is, we can find h×z =
⋃N3

l=N2+2 Il for some integer N3 ∈ [N2 + 3, N − 2] such
that

1

8
η ≤ Hs′

∞(h×z ) ≤ 3

16
η.(3.19)

We omit the details here. By the construction, it is clear that

dist(h+
z , h

−
z ) = diamIN1+1, dist(h−z , h

×
z ) = diamIN2+1, and dist(h+

z , h
×
z ) ≥ diamIN3+1.

Recall for any 1 ≤ l ≤ N−1,H1(Il) = γ. Hence diamIl ≥ π−1γ for any 1 ≤ l ≤ N−1.
We conclude that

min{dist(h+
z , h

−
z ), dist(h−z , h

×
z ), dist(h+

z , h
×
z )} ≥ π−1γ.

Therefore, for each circle S(z), we have found three π−1γ-separated arcs h+
z , h

−
z ,

h×z ⊂ S(z) with the property in (3.14), (3.18) and (3.19) respectively. Furthermore,
recalling γ = ( η

16
)1/s′ and η > 1

k21
= 1

(log 1
δ

)2
, we deduce that h+

z , h
−
z , h

×
z are τ =

π−1( 1
16

)1/s′( 1
log 1

δ

)2/s′-separated. Hence by combining with (3.8), we have showed that
(3.6) holds.

We end Step 2 by defining

T :=

 h+
z ∩ Fk1 ∩Bi+ 6= ∅,

(i+, i−, i×, z) ∈ Ik1 × Ik1 × Ik1 × V : h−z ∩ Fk1 ∩Bi− 6= ∅,
h×z ∩ Fk1 ∩Bi× 6= ∅


where Bi+ = B(xi+ , ri+), Bi− = B(xi− , ri−), and Bi× = B(xi× , ri×). In the following,
we will write x+ instead of xi+ for short and other lower indices will be abbreviated
correspondingly.

Step 3. We estimate #T from above.
First we fix i+, i−, i× and estimate the upper bound of the number of z ∈ V such

that (i+, i−, i×, z) ∈ T , where V is chosen as explained above (3.9).
To this end, we observe that a necessary condition for (i+, i−, i×, z) ∈ T is that

(3.20) S(z) ∩Bi+ 6= ∅, S(z) ∩Bi− 6= ∅, S(z) ∩Bi× 6= ∅
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and

(3.21) min{‖x+ − x−‖, ‖x+ − x×‖, ‖x− − x×‖} ≥ τ − 2δ = τ −
√

4δ >
τ

2

since h+
z , h

−
z , h

×
z are τ -separated and Bi+ = B(x+, r+), Bi− = B(x−, r−), Bi× =

B(x×, r×) are balls of radius between δ/2 and δ. Moreover, in the last inequality of
(3.21) we recall (3.3).

Hence we will provide an upper bound of z satisfying (3.20) and (3.21) in the
following. Assume for some z = (x, r) ∈ V , (3.20) holds. Then we know

r − δ ≤ ‖x− x+‖ ≤ r + δ, r − δ ≤ ‖x− x−‖ ≤ r + δ, r − δ ≤ ‖x− x×‖ ≤ r + δ,

which implies

(x, r) ∈ Γ :=

 d− δ ≤ ‖y − x+‖ ≤ d+ δ,
(y, d) ∈ R2 × [1

2
, 2] : d− δ ≤ ‖y − x−‖ ≤ d+ δ,

d− δ ≤ ‖y − x×‖ ≤ d+ δ


by the fact that z ∈ B0 implies r ∈ [1

2
, 2]. Also by (3.21) and by δ < τ2

640
from (3.3),

we can apply Lemma 2.5 with 4ABC = 4x+x−x×, a = δ, b = r and c = τ
4
to

deduce that

diamΓ .
δ

τ 2
.

Recall V is a δ-separated set in B0 ⊂ R3. Then for any z, z′ ∈ V ∩ Γ,

B(z, δ
3
) ∩B(z′, δ

3
) = ∅,

which, together with diam(V ∩ Γ) . δτ−2, implies

#(V ∩ Γ)δ3 ∼ #(V ∩ Γ)|B(z, δ
3
)| =

∣∣∣∣∣ ⋃
z∈V ∩Γ

B(z, δ
3
)

∣∣∣∣∣ . [diam (V ∩ Γ)]3 . δ3τ−6.

Hence #(V ∩ Γ) . τ−6. We can deduce that there are at most only . τ−6 many
z ∈ V satisfying (3.20) for fixed i+, i− and i×. As a consequence, we have

(3.22) #T . #Ik1 ×#Ik1 ×#Ik1 × τ−6 . (#Ik1)3τ−6 .s′ (#Ik1)3(log 1
δ
)12/s′ ,

which completes the proof of Step 3.

Step 4. We estimate #T from below. To this end, recall Fk1 = ∪i∈Ik1B(xi, ri).
Hence for any z ∈ V , we have

h+
z ∩ Fk1 ⊂

⋃
i∈Ik1

B(xi, ri), h−z ∩ Fk1 ⊂
⋃
i∈Ik1

B(xi, ri), h×z ∩ Fk1 ⊂
⋃
i∈Ik1

B(xi, ri).

For each z ∈ V , define

I+
k1

(z) := {i ∈ Ik1 | h+
z ∩B(xi, ri) 6= ∅}, I−k1(z) := {i ∈ Ik1 | h−z ∩B(xi, ri) 6= ∅},

and
I×k1(z) := {i ∈ Ik1 | h×z ∩B(xi, ri) 6= ∅}.

With the help of (3.6), we have

(log
1

δ
)−2 .s′ Hs′

∞(h+
z ∩ Fk1) ≤

∑
i∈I+k1 (z)

(diamB(xi, ri))
s′ ∼

∑
i∈I+k1 (z)

δs
′ ≤ #I+

k1
(z)δs

′
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for all z ∈ V , which implies

(3.23) #I+
k1

(z) &s′
1

δs′
(log 1

δ
)−2 for all z ∈ V .

Similarly, we have

(3.24) #I−k1(z) &s′
1

δs′
(log 1

δ
)−2 and #I×k1(z) &s′

1

δs′
(log 1

δ
)−2 for all z ∈ V .

On the other hand, recalling the definition of T in thew end of Step 2, we know

T =
⋃
z∈V

I+
k1

(z)× I−k1(z)× I×k1(z)× {z}.

Employing the lower bounds in (3.23) and (3.24), we arrive at

#T ≥ min
z∈V

{
#I+

k1
(z)
}
×min

z∈V

{
#I−k1(z)

}
×min

z∈V

{
#I×k1(z)

}
×#V &s′

1

δ3s′
(log 1

δ
)−6#V.

Combining (3.7) and (3.9) we conclude

#T &s′
1

δ3s′+t′
(log 1

δ
)−8.

Recalling (3.22) we obtain

#Ik1 &s′
(

1

δ3s′+t′
(log 1

δ
)−8

)1/3

(log 1
δ
)−12/s′ =

1

δs′+t′/3
(log 1

δ
)−( 8

3
+ 12
s′ ).

We deduce that∑
i∈I

r
s′+t′/3−ε
i ≥

∑
i∈Ik1

r
s′+t′/3−ε
i &s′ 2−k1(s′+t′/3−ε) 1

δs′+t′/3
(log 1

δ
)−( 8

3
+ 12
s′ )

&s′ δ
−ε(log 1

δ
)−( 8

3
+ 12
s′ ) > 1.

where in the third inequality we recall δ = 2−k1 and in the last inequality we recall
(3.2). This enables us to deduce

dimH(F ) ≥ s′ +
t′

3
− ε

for any 0 < s′ < s, 0 < t′ < t and ε > 0. Therefore,

dimH(F ) ≥ s+
t

3
.

We conclude the proof. �

4. Proof of Theorem 1.3

To show Theorem 1.3, we define the multiplicity function mµ
δ (w) : R2 → [0, 1]

with respect to a finite measure µ on R3:

(4.1) mµ
δ (w) := µ({z ∈ R3 | w ∈ Sδ(z)}).

We recall [8, Lemma 5.1], which is a variant of Schlag’s weak type inequaltiy [14,
Lemma 8] and the main lemma in [15] by Wolff:
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Lemma 4.1. Fix t ∈ (0, 1], δ > 0, η > 0,C ≥ 1, and A ≥ Cη,C,t · δ−η, where
Cη,C,t ≥ 1 is a large constant depending only on η,C and t. Let µ be a probability
measure on R3 satisfying the Frostman condition µ(B(z, r)) ≤ Crt for all z ∈ R3 and
r > 0, and with D := spt µ ⊂ B0 where B0 is defined in (2.1). Then, for λ ∈ (0, 1],
there is a set G(A, δ, λ) ⊂ D with

µ(D \G(A, δ, λ)) < A−t/3

such that the following holds for all z ∈ G(A, δ, λ):

|Sδ(z) ∩ {w | mµ
δ (w) ≥ Atλ−2tδt}| ≤ λ|Sδ(z)|.

Remark 4.2. We remark that the assumptions on µ in Lemma 4.1 can be slightly
relaxed, which means we can apply Lemma 4.1 for measures µ satisfying that

(i) µ is a finite measure with total mass smaller or equal to 1 supported on B0;
(ii) µ enjoys Frostman condition

µ(B(z, r)) ≤ Crt for all z ∈ R3 and r > δ.

Indeed, in the proof of [8, Lemma 5.1], the fact that the total measure µ(D) = 1
was only used at the beginning to reduce the proof to the case that δ is small. See
the first paragraph of the proof therein. Moreover, the Frostman condition was only
applied to balls in R3 with radius δ < r ∈ [Cδ, 1] where C ≥ 1 in their proof. See the
inequality above (5.4), the definition of B below (5.22) and inequality (5.24) therein.
Hence we can reduce the assumptions in Lemma 4.1 to (i) and (ii) above for the
measure µ.

Proof of Theorem 1.3. Let F be a circular (s, t)-Furstenberg set with parameter
set K ⊂ B0. It suffices to show, for any ε > 0, 1

2
< s′ < s and 0 < t′ < t,

dimH(F ) ≥ (2s′ − 1)t′ + s′ − ε.

Hence in the following, we fix ε, s′, t′.
Let α > 0 and K1 be as in (3.1). Now we clarify the choices of parameters

appeared in the ensuing proof and we remind that all parameters are unrelated to
those in the proof of Theorem 1.2. First, we choose

(4.2) η = min{ε/2t′, (2s′ − 1)/2}.

Then there exists δ0 = δ0(ε, s′, t′) > 0 such that for any 0 < δ < δ0, we have

(4.3) δε−t
′η(log 1

δ
)6+4t′ ≤ δ

ε
2 (log 1

δ
)6+4t′ < 1,

(4.4) δ
ηt′
3 (log 1

δ
)2 <

1

4
,

and

(4.5) Cη,C,t′,s′ = (Cη,C,t′)
t′(2c04s

′
)2t′ ,

where C and Cη,C,t′ ≥ 1 are the constants appeared in Lemma 4.1 and c0 is as in
Remark 2.1(ii), i.e. |Sδ(x, r)| ≤ c0δ for all (x, r) ∈ B0.

Let k0 be the smallest integer larger than (log 1
δ0

) also satisfying

(4.6) α >

∞∑
k=k0

1

k2
.
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Now, we outline the main steps of the proof. We start with an arbitrary cover
U = {B(xi, ri)}i∈I of F by balls of radius less than 2−k0 . In the sequel, we will derive
a lower bound ∑

i∈I

rσi &ε,t′,s′ 1

with σ = (2t′ + 1)s′ − t′ − ε independent of the choice of the particular cover. This
will imply

Hσ(F ) > 0.

To this end, we divide the proof into 3 steps. Let

Ik := {i ∈ I | 2−(k+1) < ri ≤ 2−k}, Fk := {
⋃
B(xi, ri) | i ∈ Ik}.

First, in Step 1, we will deduce that there exists k1 ≥ k0 and a (δ, t′)-set V ⊂ K
with δ = 2−k1 such that

(4.7)
1

k2
1

· δ−t′ . #V . δ−t
′
,

and for every circle z = (x, r) ∈ V , we have

(4.8) Hs′

∞(S(z) ∩ Fk1) > k−2
1 .

Next, in Step 2, we associate a finite measure µ supported on V using (2.9).
Then we apply Lemma 4.1 to obtain that there exists G ⊂ V and Sδ2(z) contained in
the δ-neighbourhood of S(z) ∩ Fk1 , such that for every z ∈ G and w ∈ Sδ2(z),

(4.9) #{z′ ∈ G | w ∈ Sδ2(z′)} .t′ Cη,C,t′,s′δt
′(2s′−2−η)(log 1

δ
)4t′+2.

Finally, in Step 3, we will provide a lower bound of the cardinality #Ik1 by
combining the upper bound in Step 2 as well as the lower bounds on the cardinality
#G and the Lebesgue measure |Sδ2(z)|. Explicitly, we have

#Ik1 &ε,t′,s′
1

δ(2t′+1)s′−t′(1+η)

1

(log 1
δ
)6+4t′

.

This will enable us to conclude the proof.

Step 1. Employing the same arguments as in Step 1 in the proof of Theorem 1.2,
we can deduce the existence of k1 and V ⊂ K2 ⊂ K1 satisfying (4.8) and the first
inequality in (4.7). The second inequality in (4.7) is derived from Remark 2.4. Here,
we omit the details.

Step 2. Define µV as in (2.9) applied to P = V . Then we know µV is a probability
measure satisfying the Frostman condition

µV (B(z, r)) ≤ CHt′

∞(K2)−1rt
′
< Ck2

1r
t′ = C(log 1

δ
)2rt

′

for all z ∈ R3 and r > δ. Hence by setting

µ :=
µV

(log 1
δ
)2
,

we know that µ has total measure (log 1
δ
)−2 < 1, sptµ = V ⊂ B0 and

µ(B(z, r)) ≤ Crt
′
=: Crt

′

for all z ∈ R3 and r > δ.
Let mδ

µ be the corresponding multiplicity function with respect to µ defined as
in (4.1).
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Applying Lemma 4.1 with t = t′, δ = 2−k1 , η as in (4.2), µ = (log 1
δ
)−2µV , D = V

and

(4.10) λ = (2c04s
′
k2

1)−1δ1−s′ ,

we obtain that for A = Cη,C,t′ · δ−η, there is a set G = G(k1, s
′, t′, ε) ⊂ V with

(4.11) µ(V \G) < A−t
′/3

such that the following holds for all z ∈ G:

(4.12) |Sδ(z) ∩ {w | mµ
δ (w) ≥ At

′
λ−2t′δt

′}| ≤ λ|Sδ(z)|.
Because |Sδ(z)| ≤ c0δ for all z ∈ B0, (4.12) becomes

(4.13) |Sδ(z) ∩ {w | mµ
δ (w) ≥ At

′
λ−2t′δt

′}| ≤ c0λδ.

Moreover, recalling that δ = 2−k1 and k1 ≥ k0, we know that 0 < δ < δ0. Hence by
Cη,C,t′ ≥ 1, (4.4) and the choice of η in (4.2) we deduce

A−
t′
3 ≤ δ

ηt′
3 ≤ 1

4

1

(log 1
δ
)2

=
1

4
µ(V ).

Hence (4.11) becomes

(4.14) µ(V \G) <
1

4
µ(V ).

For z ∈ G, let S1(z) := S(z) ∩ Fk1 and Sδ1(z) be the δ-neighbourhood of S1(z).
Our next goal is to substitute the right hand side term λ|Sδ(z)| in (4.12) by the term
1
2
|Sδ1(z)| with the help of the proper choice of λ as in (4.10). This means, in the sense

of 2-dimensional Lebesgue measure, more than half of the points in Sδ1(z) have low
multiplicity. To this end, we claim that

(4.15) |Sδ1(z)| ≥ 1

4s′k2
1

δ2−s′ .

To see (4.15), let P (z) be a maximal 2δ-separated set in S1(z). Then
⋃
p∈P (z) B(p, 2δ)

forms a cover of S1(z). Hence

Hs′

∞(S1(z)) ≤ #P (z)(4δ)s
′
.

which, combined with (4.8), implies

#P (z) ≥ Hs′

∞(S1(z))
1

(4δ)s′
≥ 1

4s′k2
1

1

δs′
.

On the other hand, we have
⋃
p∈P (z) B(p, δ) ⊂ Sδ1(z). Hence by {B(p, δ)}p∈P (z) being

mutually disjoint, we deduce

|Sδ1(z)| ≥ |
⋃
p∈P (z)B(p, δ)| = #Pδ2π ≥ π

4s′k21
δ2−s′ > 1

4s′k21
δ2−s′ ,

which gives (4.15).
Noticing that |Sδ(z)| ≤ c0δ, S1(z) ⊂ S(z) and combining (4.13) as well as (4.15),

we arrive at

(4.16) |Sδ1(z) ∩ {w | mµ
δ (w) ≥ At

′
λ−2t′δt

′}| ≤ λc0δ ≤ λc04s
′
k2

1δ
s′−1|Sδ1(z)|.

Now recall A = Cη,C,t′ · δ−η and λ = (2c04s
′
k2

1)−1δ1−s′ = (2c04s
′
)−1(log 1

δ
)−2δ1−s′ .

Then (4.16) becomes

|Sδ1(z) ∩ {w | mµ
δ (w) ≥ Cη,C,t′,s′δ

t′(2s′−1−η)(log 1
δ
)4t′}| ≤ 1

2
|Sδ1(z)|
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where we recall Cη,C,t′,s′ defined in (4.5).
For each z ∈ G, define the low-multiplicity set

Sδ2(z) := {w ∈ Sδ1(z) | mµ
δ (w) < Cη,C,t′,s′δ

t′(2s′−1−η)(log 1
δ
)4t′}.

Then we have

(4.17) |Sδ2(z)| ≥ 1

2
|Sδ1(z)|.

See Figure 4 for an illustration of S1(z), Sδ1(z) and Sδ2(z).

Figure 4. An illustration of S1(z), Sδ1(z) and Sδ2(z).

Notice that mµ
δ (w) < Cη,C,t′,s′δ

t′(2s′−1−η)(log 1
δ
)4t′ is equivalent to

µ({z′ ∈ R3 | w ∈ Sδ(z′)}) < Cη,C,t′,s′δ
t′(2s′−1−η)(log 1

δ
)4t′ ,

which, combined with (4.7), indicates that for w ∈ Sδ2(z), it holds

#{z′ ∈ V | w ∈ Sδ(z′)} ≤ #V · Cη,C,t′,s′δt
′(2s′−1−η)(log 1

δ
)4t′+2

.t′ Cη,C,t′,s′δ
t′(2s′−2−η)(log 1

δ
)4t′+2.

Furthermore, by the inclusions G ⊂ V and Sδ2(z) ⊂ Sδ(z), we conclude (4.9), which
finishes Step 2.

Step 3. We will lower bound #Ik1 in the following. First notice that if {Sδ(z)}z∈G
were mutually disjoint, we could lower bound #Ik1 by summing up the number of
balls Bi (i ∈ Ik1) needed to cover each Sδ2(z) since no ball could simultaneously
intersect two of these sets. However, in general, {Sδ(z)}z∈G may not be mutually
disjoint, which needs a bit more efforts to get the lower bound of #Ik1 .

Let
F̃k1 :=

⋃
i∈Ik1

B(xi, 4ri).
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We deduce that

(4.18)
⋃
z∈G

Sδ2(z) ⊂ F̃k1 .

Indeed, for any w ∈ Sδ2(z), there exists w′ ∈ S(z) ∩ Fk1 such that

‖w − w′‖ < δ.

On the other hand, we know that w′ ∈ B(xi, ri) for some xi ∈ Ik1 and ri > 2−(k1+1) =
δ/2, which implies

‖w′ − xi‖ < ri
and hence

‖w − xi‖ < δ + ri < 3ri.

In addition, by (4.7) and (4.14), we can infer that

(4.19) #G & #V &
1

δt′
1

(log 1
δ
)2
.

Moreover by recalling (4.9) we obtain that for every w ∈
⋃
z∈G S

δ
2(z),

N (w) := #{z′ ∈ G | w ∈ Sδ2(z′)} .t′ Cη,C,t′,s′δt
′(2s′−2−η)(log 1

δ
)4t′+2

and hence combining (4.19), we can estimate∣∣∣∣∣⋃
z∈G

Sδ2(z)

∣∣∣∣∣ =
∑
z∈G

ˆ
χSδ2(z)(w)

1

N (w)
dw

&t′ (Cη,C,t′,s′δ
t′(2s′−2−η)(log

1

δ
)4t′+2)−1

∑
z∈G

∣∣Sδ2(z)
∣∣

&t′ (Cη,C,t′,s′)
−1 1

δt′(2s′−2−η)

1

(log 1
δ
)4t′+2

1

δt′
1

(log 1
δ
)2

min
z∈G
{|Sδ2(z)|}

&η,t′,s′
1

δt′(2s′−2−η)

1

(log 1
δ
)4t′+2

1

δt′
1

(log 1
δ
)2
δ2−s′ 1

(log 1
δ
)2

(4.20)

where in the last inequality we employ (4.15) and (4.17). Therefore, combining (4.18)
and (4.20) we arrive at

#Ik1δ2 &
∣∣∣F̃k1∣∣∣ ≥

∣∣∣∣∣⋃
z∈G

Sδ2(z)

∣∣∣∣∣ &η,t′,s′ 1

δt′(2s′−2−η)

1

(log 1
δ
)4t′+2

1

δt′
1

(log 1
δ
)2
δ2−s′ 1

(log 1
δ
)2
,

which implies

#Ik1 &η,t′,s′
1

δ(2t′+1)s′−t′(1+η)

1

(log 1
δ
)6+4t′

.

Since Ik1 ⊂ I, we deduce that∑
i∈I

r
(2t′+1)s′−t′−ε
i ≥

∑
i∈Ik1

r
(2t′+1)s′−t′−ε
i

&η(ε,t′,s′),t′,s′ 2−k1((2t′+1)s′−t′−ε) 1

δ(2t′+1)s′−t′(1+η)

1

(log 1
δ
)6+4t′

&η(ε,t′,s′),t′,s′ δ
t′η−ε 1

(log 1
δ
)6+4t′

&ε,t′,s′ δ
−ε/2 1

(log 1
δ
)6+4t′

> 1,
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where in the third inequality we recall δ = 2−k1 and in the fourth as well as the last
inequality we recall (4.3). This enables us to deduce

dimH(F ) ≥ (2t′ + 1)s′ − t′ − ε

for any 1
2
< s′ < s, 0 < t′ < t and ε > 0. Therefore,

dimH(F ) ≥ (2t+ 1)s− t = (2s− 1)t+ s.

We conclude the proof. �

5. Proof of Lemma 2.5

This section is devoted to the proof of Lemma 2.5. For the readers’ convenience,
we restate Lemma 2.5 in the following.

Lemma 5.1. Let A,B,C ∈ R2 such that min{‖A−B‖, ‖A−C‖, ‖B−C‖} ≥ 2c
with c < 1. For a > 0 such that a < 1

20
c2, define

W :=

 b− a ≤ ‖x− A‖ ≤ b+ a,
(x, b) ∈ R2 × [1

2
, 2] : b− a ≤ ‖x−B‖ ≤ b+ a,

b− a ≤ ‖x− C‖ ≤ b+ a

 .

Then

diamW .
a

c2
.

We briefly explain the approach. We will decompose W as

W =
⋃

b∈I⊂[1/2,2]

W (b)× {b}.

Then for each fixed b,

W (b) :=

 b− a ≤ ‖x− A‖ ≤ b+ a,
x ∈ R2 : b− a ≤ ‖x−B‖ ≤ b+ a,

b− a ≤ ‖x− C‖ ≤ b+ a

 = Sa(A, b)∩Sa(B, b)∩Sa(C, b)

is a subset in R2 formed by the intersection of three annuli. We will show that
W (b) 6= ∅ only for b ranging in a set I with diameter . a

c2
. Moreover, if W (b) 6=

∅, then A,B,C form a non-degenerate 4ABC with circumcenter M and W (b) is
contained in a rhombus centered at M with diameter . a

c2
. This will imply

diamW .
a

c2
.

The above justification is contained in next two auxiliary lemmas. In what follows,
given A,B ∈ R2 and 0 < a < c2

20
, we denote by Ra,c

AB the rectangle centered at the
middle point of AB whose short sides have length 9a

c
and long sides have length 6

parallel to the bisector of AB.

Lemma 5.2. Let A,B ∈ R2 and b ∈ [1
2
, 2]. If c < min{1, ‖A−B‖

2
} and 0 < a <

c2

20
< 1, then

Sa(A, b) ∩ Sa(B, b) ⊂ Ra,c
AB.
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Proof. Let ‖A − B‖ = 2u. Without loss of generality, we assume A = (−u, 0)
and B = (u, 0). It is easy to see that

Sa(A, b) ∩ Sa(B, b)
= {x ∈ R2 | b− a ≤ ‖x− A‖ ≤ b+ a, b− a ≤ ‖x−B‖ ≤ b+ a}
⊂ U := {x = (x1, x2) ∈ R2 | max{‖x− A‖, ‖x−B‖} ≤ 3,

− 2a ≤ ‖x− A‖ − ‖x−B‖ ≤ 2a}.

Since u = ‖A−B‖
2

> c > a, from planar geometry we know that the set

{x ∈ R2 | ‖x− A‖ − ‖x−B‖ = ±2a}

consisting of points, whose absolute difference of distances to the two fixed points A
and B is the constant 2a, is a hyperbola in R2 determined by the equation

y(x) = y(x1, x2) = 1

where y : R2 → R is defined by

y(x) = y(x1, x2) 7→ x2
1

a2
− x2

2

u2 − a2
.

Then we observe that

{x ∈ R2 | −2a ≤ ‖x− A‖ − ‖x−B‖ ≤ 2a} = {x ∈ R2 | y(x1, x2) ≤ 1}

and hence

U = [B((−u, 0), 3) ∩B((u, 0), 3)] ∩ {x ∈ R2 | y(x1, x2) ≤ 1},

which implies
U ⊂ {x ∈ R2 | |x2| ≤ 3, y(x1, x2) ≤ 1}.

Figure 5 shows the case that u = 2 and a = 0.75.

Figure 5. The case u = 2 and a = 0.75.
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Letting |x2| = 3 in the equation y(x1, x2) = 1, we have |x1| = a
√

1 + 9
u2−a2 . Since

20a < c2 < 1 and u > c, it holds

(5.1) a

√
1 +

9

u2 − a2
< a

√
1 +

9

c2 − a2
< a

√
1 +

9
8
9
c2
< a

√
81

4c2
=

9

2

a

c
< 3.

This implies that the rectangle with four vertices (±9
2
a
c
,±3) has short side length 9a

c

and long side length 6. By recalling the definition of Ra,c
AB, we have

Sa(A, b) ∩ Sa(B, b) ⊂ U ⊂ Ra,c
AB = {x ∈ R2 | |x1| ≤ 9

2
a
c
, |x2| ≤ 3},

which concludes the proof. �

Lemma 5.3. Let A,B,C ∈ R2 such that min{‖A−B‖, ‖A−C‖, ‖B−C‖, 2} ≥
2c. Let b ∈ [1

2
, 2]. Then for a > 0 such that a < 1

20
c2 < b, define

(5.2) W (b) :=

 b− a ≤ ‖x− A‖ ≤ b+ a,
x ∈ R2 : b− a ≤ ‖x−B‖ ≤ b+ a,

b− a ≤ ‖x− C‖ ≤ b+ a


If the triangle 4ABC is degenerate, then

(5.3) W (b) = ∅ for all b ∈ [
1

2
, 2].

If 4ABC is non-degenerate, let M be the circumcenter of 4ABC and

h := ‖M − A‖ = ‖M −B‖ = ‖M − C‖.
Then, we have

(5.4) W (b) ⊂ B
(
M,K a

c2

)
for all b ∈

[
1
2
, 2
]
.

In addition, if W (b) 6= ∅, then
(5.5) b ∈

[
h−K a

c2
, h+K a

c2

]
∩
[

1
2
, 2
]
.

Here in (5.4) and (5.5), K is an absolute constant.

Proof. Without loss of generality, we assume the side BC of4ABC has maximal
length. Then ∠A := ∠BAC ≥ π/3. Since W (b) = Sa(A, b) ∩ Sa(B, b) ∩ Sa(C, b),
from Lemma 5.2 we know

(5.6) W (b) ⊂ Ra,c
AB ∩R

a,c
AC .

Below we estimate diam(Ra,c
AB ∩R

a,c
AC) from above.

Denote by L1 and L2 the bisector of AB and AC respectively. Hence D :=
L1 ∩ AB is the middle point of AB and E := L2 ∩ AC is the middle point of AC.
See Figure 6 for an illustration.

Let d = 9
2
a
c
. Since 20a < c2, we have

(5.7) d =
9

2

a

c
<

9

40
c <

1

4
c.

Case 1. ∠A = π. That is, 4ABC degenerates. By (5.7), it is easy to see
Ra,c
AB ∩R

a,c
AC = ∅, which, with help of (5.6), implies

W (b) = ∅ for all b ∈ [1
2
, 2].

That is, (5.3) holds.
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Figure 6. An illustration for L1, L2, Ra,cAB and Ra,cAC .

Case 2. ∠A ∈ (π − arctan(2c/9), π). We will show that

(5.8) Ra,c
AB ∩R

a,c
AC = ∅.

Denote ‖A − B‖ = 2u and ‖A − C‖ = 2v. Since M is the circumcenter of 4ABC,
it is the intersection of lines L1 and L2. Then the line L3 passing through A and
M divides R2 into two connected components. Since the center D of Ra,c

AB and the
center E of Ra,c

AC are contained in different connected components above and d < 1
4
c

by (5.7), a sufficient condition for Ra,c
AB ∩R

a,c
AC = ∅ is that

(5.9) Ra,c
AB ∩ L3 = ∅ and Ra,c

AC ∩ L3 = ∅.

See Figure 7 for an illustration.

Figure 7. An illustration for Case 2.

Recall that half of the length of the short sides ofRa,c
AB andRa,c

AC is d = 9
2
a
c
. By as-

sumption ∠A ∈ (π−arctan(2c/9), π), this implies ∠DMA+∠EMA ≤ arctan(2c/9).
Hence

(5.10) tan∠DMA <
2c

9
≤ c− d

3
≤ u− d

3
and tan∠EMA <

2c

9
≤ c− d

3
≤ v − d

3

where in the second inequality we apply d < c
3
from (5.7). Now we explain how (5.10)

implies (5.9). Let D′ be the intersection of the line segment AD and the long side of
the triangle Ra,c

AB. Also, let L′1 := L1 + (D′ −D). That is, line L′1 is the translation
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of line L1 by the vector D′ −D in R2. Denote the intersection of L′1 and L3 by M ′.
See Figure 8 for an illustration.

Figure 8. An illustration for D′, M ′ and L′1.

We observe that

(5.11) ∠D′M ′A = ∠DMA and tan∠D′M ′A =
‖A−D′‖
‖D′ −M ′‖

=
u− d

‖D′ −M ′‖
where in the last inequality we recall that ‖A−D′‖ = ‖A−D‖−‖D−D′‖, ‖A−D‖ = u
and ‖D −D′‖ = d. Combining (5.10) and (5.11), we deduce that

u− d
‖D′ −M ′‖

(5.11)
= tan∠D′M ′A

(5.10)
<

u− d
3

,

which implies
‖D′ −M ′‖ > 3.

This, combined with the fact that half of the length of the long sides of Ra,c
AB is 3,

shows that
Ra,c
AB ∩ L3 = ∅.

By a similar argument, we also have Ra,c
AC ∩ L3 = ∅ with the help of (5.10). This

shows that (5.9) is true and hence (5.8) holds.

Case 3. ∠A ∈ [π/3, π − arctan(2c/9)]. In this case, W (b) may not be empty.
Now, we assume that W (b) 6= ∅, which implies that Ra,c

AB ∩ R
a,c
AC 6= ∅. Moreover,

denote by VdLi the closed d-neighbourhood of lines Li, i = 1, 2. Then VdL1
∩ VdL2

is a
rhombus TM centered at M satisfying Ra,c

AB ∩R
a,c
AC ⊂ TM . We will show that

(5.12) diam TM ≤ 324
a

c2
.

See Figure 9 for an illustration.
Denote the length of two diagonals of TM by d1 and d2 and the the length of four

sides of TM by l. We have

diam TM = max{d1, d2},(5.13)

d2
1 + d2

2 = 4l2(5.14)

and

(5.15) l =
2d

sin∠A
.
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Figure 9. An illustration for the estimate ‖y −M‖.

Since ∠A ∈ [π/3, π − arctan(2c/9)], we have

(5.16) sin∠A ≥ sin

(
arctan

2c

9

)
≥ sin

c

9
≥ c

18

where in the second last inequality we use the fact that arctan y > y
2
if 0 < y < 1

and in the last inequality we use the fact that sin y > y
2
if 0 < y < 1.

Combining (5.13), (5.14), (5.15) and (5.16), we obtain

(5.17) diam TM ≤ 2l ≤ 72d

c
= 324

a

c2

where in the last equality we recall d = 9
2
a
c
. Therefore, we conclude (5.12).

Combining Case 2 and Case 3, we conclude (5.4).
Finally, we show (5.5). Let x ∈ W (b). By (5.2) and (5.13), we have

|b− h| = |b− ‖M − A‖| ≤ |b− ‖x− A‖|+ ‖x−M‖ . a+
a

c2
.

a

c2
.

The proof is complete. �

Now, we are in a position to show:

Proof of Lemma 2.5. For b ∈ [1
2
, 2], define

W̃ (b) := W (b)× {b}

=

 b− a ≤ ‖x− A‖ ≤ b+ a,
(x1, x2, x3) = (x, x3) ∈ R3 : b− a ≤ ‖x−B‖ ≤ b+ a, x3 = b

b− a ≤ ‖x− C‖ ≤ b+ a,

 .

First we assume 4ABC degenerates. Then by (5.3), we know

W̃ (b) = ∅ for all b ∈ [1
2
, 2].

Hence the lemma holds for this case.
Next, we assume 4ABC is non-degenerate. Then by (5.4), we have

(5.18) W̃ (b) ⊂ B((M, b), K a
c2

) ∩ {x3 = b} ⊂ R3 for all b ∈ [1
2
, 2],

where M is the circumcenter of the triangle 4ABC.
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Since W̃ (b) 6= ∅ implies h−K a
c2
≤ b ≤ h+K a

c2
from Lemma 5.3, we know

(5.19) W ⊂
⋃

{b|W̃ (b) 6=∅}

W̃ (b) ⊂
⋃

b∈[h−K a
c2
,h+K a

c2
]

W̃ (b).

Then combining (5.18) and (5.19), we deduce (2.8), i.e.

diamW .
a

c2
,

which finishes the proof. �
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