ICTV Virus Taxonomy Profile: *Sphaerolipoviridae* 2023

Tatiana A. Demina¹, Mike Dyall-Smith²,³, Matti Jalasvuori⁴, Shishen Du⁵ and Hanna M. Oksanen⁶,*

Abstract

Members of the family *Sphaerolipoviridae* have non-enveloped tailless icosahedral virions with a protein-rich internal lipid membrane. The genome is a linear double-stranded DNA of about 30 kbp with inverted terminal repeats and terminal proteins. The capsid has a pseudo triangulation $T=28$ dextro symmetry and is built of two major capsid protein types. Spike complexes decorate fivefold vertices. *Sphaerolipoviruses* have a narrow host range and a lytic life cycle, infecting haloarchaea in the class *Halobacteria* (phylum Euryarchaeota). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family *Sphaerolipoviridae*, which is available at ictv.global/report/sphaerolipoviridae.

Table 1. Characteristics of members of the family *Sphaerolipoviridae*

<table>
<thead>
<tr>
<th>Example</th>
<th>Haloarcula californica icosahedral virus 1 (KT809302), species Alphasphaerolipovirus HCIV1, genus Alphasphaerolipovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virion</td>
<td>Non-enveloped, tailless icosahedral virion with an internal lipid membrane, diameter 80 nm, capsid is pseudo $T=28$ dextro, two types of major capsid protein, horn-shaped or propeller-shaped fivefold vertex spike complexes, membrane-associated proteins</td>
</tr>
<tr>
<td>Genome</td>
<td>Linear dsDNA, 28–31 kbp, with inverted terminal repeats and terminal proteins attached</td>
</tr>
<tr>
<td>Replication</td>
<td>Possibly protein-primed</td>
</tr>
<tr>
<td>Translation</td>
<td>Prokaryotic translation using viral mRNA and host ribosomes</td>
</tr>
<tr>
<td>Host range</td>
<td>Archaea, euryarchaeal Haloarcula and Halorubrum strains</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>Realm Varidnaviria, kingdom Helvetiavirae, phylum Dividoviricota, class Laserviricetes, order Halopanivirales: one genus Alphasphaerolipovirus with several species</td>
</tr>
</tbody>
</table>

VIRION

Sphaerolipoviruses have tailless icosahedral virions with an internal protein-rich membrane vesicle (Table 1; Fig. 1) [1–5]. The virion is typically about 80 nm in diameter with major and minor capsid proteins, internal membrane proteins and vertex complex proteins (Fig. 1). The capsid has a pseudo $T=28$ dextro triangulation number [4]. The two major capsid proteins (MCPs) VP4 and VP7 have a vertical single jelly-roll fold. The capsid lattice is built of pseudohexameric capsomers with either two or three towers (Fig. 1) made of VP4–VP4 homodimers and VP4–VP7 heterodimers [4]. The vertices are occupied by penton proteins forming the binding position for the spike complex. Vertex complexes are either horn-shaped or propeller-shaped [4]. MCPs, the major membrane protein, and the putative packaging...
Members of the family *Sphaerolipoviridae* have a linear double-stranded DNA genome of 28–31 kbp with a GC content of 67–68% and inverted terminal repeats of about 300 bp with terminal proteins attached [2, 3, 5]. Genomes contain about 50 predicted genes, arranged in a conserved synteny (Fig. 2) [2, 3, 5]. The overall nucleotide identity between sphaerolipovirus genomes is 56–76% [6].

REPLICATION

Replication is probably protein-primed [5], but the genome does not encode a canonical DNA polymerase. The genome of SH1 virus has genes organized in seven major transcripts, some of which overlap [5]. Six early transcripts encode structural genes, while one late transcript encodes proteins of unknown function. Sphaerolipoviruses originate from hypersaline environments, and their host range is limited to a few haloarchaeal strains belonging to the genera *Haloarcula* and *Halorubrum* [6]. Sphaerolipoviruses bind to their hosts most probably by spike complexes at the virion vertices. Adsorption is relatively slow and the infection cycle is lytic, lasting 6–12 h [1–3]. Several putative proviral regions related to sphaerolipoviruses are found in the chromosomes of halophilic archaea [6].

TAXONOMY

Current taxonomy: ictv.global/taxonomy. The family *Sphaerolipoviridae* together with the families *Matsushitaviridae* (species *Hukuchivirus* P2377 and *Hukuchivirus* IN93) and *Simuloviridae* (species *Yingchengivirus* SNJ1, *Yingchengivirus* NVIV1 and *Yingchengivirus* HJIV1) are assigned to the order *Halopanivirales*.

RESOURCES

Funding information

Production of this Profile, the ICTV Report and associated resources was supported by the Microbiology Society.

Acknowledgements

Stuart G. Siddell, Elliot J. Lefkowitz, Sead Sabanadzovic, Peter Simmonds, F. Murió Zerbini, Evelien Adriaenssens. Mart Krupovic, Jens H. Kuhn, Luisa Rubino, Arvind Varanasi (ICTV Report Editors) and Donald B. Smith (Managing Editor, ICTV Report).

ATPase are the most conserved structural proteins among sphaerolipoviruses [3, 4]. The lipids of the internal membrane vesicle are selectively acquired from host-cell membranes. Membrane vesicles are rich in virus-specific proteins. Major phospholipid species are phosphatidylglycerol, phosphatidyglycerophosphate methyl ester and phosphatidylglycerosulfate [3].

References

