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Time Series Analysis

Klaus Nordhausen
Department of Mathematics and Statistics, University of Jyväskylä, Finland
klaus.k.nordhausen@jyu.fi

Definition

A time series is a collection of data taken sequentially over time and has therefore
a natural one-way order where it can be assumed that the current value is more
influenced by the recent past than by observations from a long time ago. Time
series analysis comprises methods for the analysis of time series which take this
structure into account when extracting meaningful statistics from the data. Time
series forecasting concerns the prediction of future values based on an observed
time series.

1 Time Series Data

In geosciences collecting data that depend on time has been measured for cen-
turies. For example, temperatures have been observed in standardizedways since
approximately 1860. But also recordings of river discharge have a long tradition.
Records of such phenomena varying irregularly in time and when sequentially
observed are called time series. If the measurements are recorded continuously,
like from a seismograph, the time series is called continuous time series. On the
other hand if the measurements are taken at certain, usually regular, intervals
like hourly, daily, monthly, or yearly they are denoted discrete time series. Dis-
crete time series with equally spaced intervals are themost common form of time
series data and also the focus of this article.
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At a given time point 𝑡 it is possible to observe a single observation like temper-
ature, a vector of observations like temperature, precipitation, and wind speed,
or a curve like the temperature curve at day 𝑡 . Then one distinguishes between
univariate, multivariate and functional time series respectively.
However, independent of the type of time series, the irregularly varying nature of
the recordings is addressed by assuming the observed time series is a realization
of a stochastic model. And the most convenient assumption is that the stochastic
model has some time invariant structures in which case it is called stationary. If
however the stochastic model itself depends on time it is called nonstationary.
The last differentiation between types of time series made here is between linear
and nonlinear time series. If the stochastic model can be expressed as the output
of a linear model, it is called a linear time series and if not a nonlinear time series.

2 Objectives of Time Series Analysis

Time Series Analysis has three main objectives:

1. Description: Methods that describe or summarize characteristics of the
time series. Thus this contains tools for visualization or appropriate sum-
mary statistics which help to capture the essential features of the time
series.

2. Modeling: To represent the stochastic nature of the observed time series
many different models have been suggested which help understanding the
nature of the process. An adequate model needs to be selected and its pa-
rameters need to be estimated. The choice of a model is often based on the
descriptive measures.

3. Prediction: Due to the serial nature of the time series future values can be
predicted based on the past and present values. To predict the future it is
important to have a model which represents the data well.

2.1 Descriptive Tools for Time Series

The first step of all time series analysis is its visualization. A typical time series
plot is given in Figure 1 which gives the monthly average temperatures in centi-
grade (C) at the airport of Jyväskylä in central Finland from 1960 to 2005.
Usually in such a figure for a time series 𝑥𝑡 , 𝑡 = 1, … , 𝑇 one evaluates if the mean
over time has a tendency, which is usually denoted as trend 𝑚𝑡 and if there are
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Figure 1: Average monthly temperature at the airport in Jyväskylä in
C from 1960 to 2005.

regularly appearing patterns known as seasonalities 𝑠𝑡 . If both are present one
can consider an additive decomposition of the time series

𝑥𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝑟𝑡 , 𝑡 = 1, … , 𝑇 ,

where 𝑟𝑡 represents the stochastic feature of data.
To obtain an idea of the trend, usually moving averages of order 𝑛 are used, which
are defined as

𝑚𝑛𝑡 = 1
𝑛

𝑡+𝑘
∑
𝑗=𝑡−𝑘

𝑥𝑗 ,

where 𝑛 = 2𝑘 + 1. The larger 𝑛 the smoother the trend estimate will be.
The seasonal component is assumed to reoccur regularly. For example, for our
monthly temperature data from Figure 1 visual inspection indicates no trend, but
the values every 𝑙 = 12 months appear to be similar.
To obtain an estimate for a seasonal component of length 𝑙 one usually estimates
first the trend with 𝑛 = 𝑙 if 𝑙 is odd like for weekly data or 𝑛 = 2𝑙 if 𝑛 is even as
for monthly data. The estimate of the monthly effect is then the average of each
month of the detrended series standardized so that their sum is zero.
The random reminder is then simply 𝑟𝑡 = 𝑥𝑡 − 𝑚𝑡 − 𝑠𝑡 .
For simplicity, we consider for now the observed time series 𝑥𝑡 as a realization of
a stochastic process 𝑋𝑡 𝑡 = 0, ±1, … , ±∞ without a trend or seasonal component,
like for example the reminder 𝑟𝑡 from above.
The mean value function of 𝑋𝑡 is 𝜇𝑡 = 𝐸(𝑋𝑡) and the autocovariance function
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at times 𝑡 and 𝑡 − 𝜏 is defined as 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝜏 ) = 𝐸((𝑋𝑡 − 𝜇𝑡)(𝑋𝑡−𝜏 − 𝜇𝑡−𝜏 )). For
𝜏 = 0 this reduces to the variance at time 𝑡 . Thus the serial dependence of time
series data is captured especially in the autocovariance function. However, when
all these characteristics depend on 𝑡 they are not very tractable and therefore a
common practical assumption is that

𝐸(𝑋𝑡) = 𝐸(𝑋𝑡+𝜏 ) = 𝜇, 𝑉 𝑎𝑟(𝑋𝑡) = 𝑉 𝑎𝑟(𝑋𝑡+𝜏 ) = 𝜎2

and
𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝜏 ) = 𝐶𝑜𝑣(𝑋𝑡−𝑙 , 𝑋𝑡−𝑙−𝜏 ) = 𝐶𝜏 ,

for all 𝜏 and all 𝑙. Thus the mean and variance do not depend on the time and the
autocovariance depends only on the distance between the observations. Such a
time series is called (weakly) stationary.
For an observed univariate time series 𝑥𝑡 , 𝑡 = 1, … , 𝑇 then summary statistics to
describe these time series features are under the stationarity assumption:

Empirical mean: �̂� = 1
𝑇 ∑𝑇

𝑖=1 𝑥𝑡 ,

Empirical variance: �̂�2 = 1
𝑇 ∑𝑇

𝑖=1(𝑥𝑡 − �̂�)2 and

Empirical autocovariance: �̂�𝜏 = 1
𝑇 ∑𝑇

𝑖=𝜏+1(𝑥𝑡 − �̂�)(𝑥𝑡−𝜏 − �̂�).

In addition, also the empirical autocorrelation ̂𝛾𝜏 = �̂�𝜏/�̂�2 is often considered.
When the analysis of the time series is based mainly on the autocorrelation struc-
ture one says one does the analysis in the time domain. Another approach is to
analyse the data in the frequency domain. Then by emplyoing spectral analysis
the time series is decomposed into trigonometric functions at each frequency and
its features are represented with the weights given to the periodic components.
If the autocovariance function 𝐶𝜏 rapidly decreases with increasing lag 𝜏 and
satisfies 𝜏=∞

∑
𝜏=−∞

|𝐶𝜏 | < ∞,

one can define the Fourier transform of 𝐶𝜏 . For frequencies −0.5 ≤ 𝑤 ≤ 0.5 the
power spectral density function is then

𝑝(𝑤) =
𝜏=∞
∑
𝜏=−∞

𝐶𝜏 𝑒−2𝜋𝑖𝜏𝑤 .
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For an observed time series 𝑥1, … , 𝑥𝑇 one uses then the natural frequencies 𝑤𝑗 =
𝑗/𝑇 , 𝑗 = 0, … , ⌊𝑁/2⌋ to obtain the periodogram

𝑝𝑗 =
𝑇−1
∑

𝜏=−𝑇+1
�̂�𝜏 𝑒−2𝜋𝑖𝜏𝑤𝑗 = �̂�0 + 2

𝑇−1
∑
𝜏=1

�̂�𝜏 cos(2𝜋𝜏𝑤𝑗),

which can be used to obtain the sample spectrum

̂𝑝(𝑤) =
𝑇−1
∑

𝜏=−𝑇+1
�̂�𝜏 𝑒−2𝜋𝑖𝜏𝑤𝑗

by extending the domain to the continuous interval [0, 0.5]. Thus, there is a direct
relation between the sample spectrum and the sample autocovariance

�̂�𝜏 = ∫
0.5

−0.5
̂𝑝(𝑤)𝑒2𝜋𝑖𝜏𝑤𝑑𝑤, 𝜏 = 0, … , 𝑇 − 1.

Notice that in practice the periodogram is usually computedwith the Fast Fourier
Transform (FFT) and in the time domain plots of the autocorrelation function are
often inspected while in the frequency domain the periodogram is considered.
Which approach is preferable often depends on the concrete application.
For more details on these topics see for example Gilge (2006); Kitagawa (2010);
Shumway & Stoffer (2017).

2.2 Time Series Modelling

Exploring the autocorrelation structure and/or the periodogram of a time series
provides the starting point for modelling.
A highly popular class of time series models are Autoregressive Moving Average
(ARMA)models. For this purpose, we define first a white noise process. A process
𝜖𝑡 is called white noise process if 𝐸(𝜖𝑡) = 0, 𝑉 𝑎𝑟(𝜖𝑡) = 𝜎2 and 𝐶𝑜𝑣(𝜖𝑡 , 𝜖𝑡−𝜏 ) = 0
for all 𝑡 and all 𝜏 > 0. Thus a white noise process is centered with constant
variance and serially uncorrelated. In the following, we will also assume that 𝜖𝑡
is Gaussian.
An ARMA model expresses then a time series 𝑥𝑡 as a linear combination of its
past values 𝑥𝑡−𝑖 and a white noise process 𝜖𝑡 :

𝑥𝑡 =
𝑝
∑
𝑖=1

𝛼𝑖𝑥𝑡−𝑖 + 𝜖𝑡 −
𝑞
∑
𝑖=1

𝛽𝑖𝜖𝑡−𝑖.
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In thismodel, 𝑝 is the autoregressive orderwith autoregressive coefficients 𝛼1, … , 𝛼𝑝
while 𝑞 is the moving average order with moving average coefficients 𝛽1, … , 𝛽𝑞 .
A times series 𝑥𝑡 which follows an ARMA model is called an ARMA process and
is usually denoted ARMA(p,q). The special case ARMA(p,0) is called simply an
autoregressive process AR(p) and ARMA(0,q) a moving average process MA(q).
It is meanwhile well established that almost all stationary time series can be mod-
elled using autoregressive processes.
Interesting is also that, under certain conditions, all ARMA(p,q) models can be
expressed as MA(∞) models, i.e. as linear combinations of present and past real-
izations of a white noise series

𝑥𝑡 =
∞
∑
𝑖=0

𝜙𝑖𝜖𝑡−𝑖.

The coefficients 𝜙𝑖 in this representation are called the impulse response function
and are given by the recursive expression

𝜙0 = 1 and 𝜙𝑖 =
𝑖

∑
𝑗=1

𝛼𝑗𝜙𝑖−𝑗 − 𝛽𝑖, 𝑖 = 1, 2, … ,

where 𝛼𝑗 = 0 for 𝑗 > 𝑝 and 𝛽𝑗 = 0 for 𝑗 > 𝑞.
The impulse response functions can then be used to express the autocovariance
function of an ARMA(p,q) model

𝐶0 =
𝑝
∑
𝑖=1

𝛼𝑖𝐶𝑖 + 𝜎2 (1 −
𝑞
∑
𝑖=1

𝛽𝑖𝜙𝑖)

and

𝐶𝜏 =
𝑝
∑
𝑖=1

𝛼𝑖𝐶𝜏−𝑖 − 𝜎2 (1 −
𝑞
∑
𝑖=1

𝛽𝑖𝜙𝑖−𝜏) , 𝜏 = 1, 2, … .

The power spectrum of the same model is analogously

𝑝(𝑓 ) = 𝜎2
|1 − ∑𝑞

𝑗=1 𝛽𝑗𝑒−2𝜋𝑖𝑗𝑓 |
2

|1 − ∑𝑝
𝑗=1 𝛼𝑗𝑒−2𝜋𝑖𝑗𝑓 |

2 .

Useful in this context is also the partial autocorrelation 𝛾𝜏 𝜏 of a stationary time
series 𝑥𝑡 which gives the correlation between 𝑥𝑡 and 𝑥𝑡−𝜏 where the linear depen-
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dence on {𝑥𝑡−1, … , 𝑥𝑡−(𝜏−1)} has been removed, i.e.

̂𝛾𝜏 𝜏 = 𝑐𝑜𝑟(𝑥𝑡 , 𝑥𝑡−𝜏 |𝑥𝑡−1, … , 𝑥𝑡−(𝜏−1)).

Then plots of the autocorrelation and partial autocorrelations can give an indica-
tion of the AR and MA orders:

• For a stationary AR(p) process the autocorrelations decay exponentially
and the partial autocorrelations are zero for 𝜏 > 𝑝.

• For a stationary MA(q) process the autocorrelations are zero for 𝜏 > 𝑞 and
the partial autocorrelations decay exponentially.

• For a stationary ARMA(p,q) process both, autocorrelations and partial au-
tocorrelations, decay exponentially.

Figure 2 contains three samples of length 500 from anAR(1),MA(1) andARMA(1,1)
process with 𝛼1 = 𝛽1 = 0.6 together with the corresponding estimates autocorre-
lation and partial autocorrelation functions. Values within the blue lines in the
autocorrelation and partial autocorrelation plots are usually considered not dif-
fer significantly from zero. Thus, the figure clearly shows how these functions
can assist in order selection. Such visualizations of the (partial) autocorrelation
function (acf) are often refereed to as (partial) autocorrelogram.
As the periodogram contains the same information also its visualization can be
used to get an idea of the order of ARMAprocesses, here the peaks and through of
log( ̂𝑝(𝑓 )) are of interest. See Kitagawa (2010) for details. Rather than a graphical
selection of the orders 𝑝 and 𝑞 more common is to use model selection criteria
such as AIC or BIC to select the order, and for example R (R Core Team 2020) has
many tools to select ARMA orders and to estimate the coefficients.
Two concepts for AR and MA processes are still relevant. For an AR(p) process

1 − 𝛼1𝑥 − 𝛼2𝑥2 − … − 𝛼𝑝𝑥𝑝 = 0

is called the AR characteristic equation. Similarly, for an MA(q) process

1 − 𝛽1𝑥 − 𝛽2𝑥2 − … − 𝛽𝑞𝑥𝑝 = 0

denotes the MA characteristic equation. An MA process is called invertible if all
roots of the MA characteristic equation have an absolute value larger than 1. An
AR process is only stationary when all roots of the AR characteristic equation
also have absolute values exceeding 1. Thus in practical ARMAmodelling towork
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Figure 2: The top row shows from left to right a sample of T=500 ob-
servations from an AR(1) process, a MA(1) process and an ARMA(1,1)
process where 𝛼1 = 𝛽1 = 0.6. The second row shows the correspond-
ing sample autocorrelation functions and the third the partial sample
autocorrelation functions.
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in a stationary framework it is required that the AR part is stationarity and the
MA part invertible. Invertability for a time series means that we can transform it
into an AR process, which means the time series can be expressed as a function
of its past values. This is a key requirement when one is interested in predicting
future values.

When we started out the modelling part we assumed that the mean of the time
series is constant and does not contain a trend. In many situations, however,
where the non-stationary of the time series comes from the non-constant mean,
taking differences of the time series makes it more stationary. The first-order
difference is defined as ∇𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 and the 𝑑th-order difference repeats
this 𝑑 times and is denoted ∇𝑑𝑥𝑡 . Using this approach to yield stationary ARMA
processes was incorporated in the so called integrated autoregressive moving
average (ARIMA) models of order (p,d,q) which means that 𝑑th difference ∇𝑑𝑥𝑡
follows a ARMA(p,q) model. In most practical situations 𝑑 is either 1 or 2.
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Figure 3: The left panel shows a sample of size 200 from anARIMA(1,1,1)
process with 𝛼1 = 𝛽1 = 0.6. The right panel shows the first-order dif-
ference of the same process.

Figure 3 shows a sample of size 200 from an ARIMA(1,1,1) process with 𝛼1 = 𝛽1 =
0.6 together with the first-order difference of the time series. While the original
time series seems highly non-stationary the differences look much more stable.
ARIMAmodels nowadays the standard tool when starting time series models and
can also extended to allow for seasonal components. For further details about
parameter estimation, model selection and inference in the context of ARIMA
models see Brockwell & Davis (2020); Shumway & Stoffer (2017); Hassler (2019).
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2.3 Time Series Forecasting

One of the primary reasons for time series analysis is the prediction of future
values, which is usually called forecasting. Based on the available history of the
process, 𝑥1, … , 𝑥𝑡 , the goal is thus to forecast the value 𝑥𝑡+𝑙 , where 𝑡 is denotes
the forecast origin and 𝑙 the lead time. The forecast itself is then denoted �̂�𝑡+𝑙 and
should be preferably the minimum square error forecast given by:

�̂�𝑡+𝑙 = 𝐸(𝑥𝑡+𝑙 |𝑥1, … , 𝑥𝑡).

Clearly, without strong assumptions such a prediction is difficult. However if
the process is Gaussian it is known that the best predictor is a linear function of
the available history. Assuming in addition an ARIMA process yields practical
expressions for the predictions and the possibility to evaluate the uncertainties
in the predictions by providing confidence intervals.
For stationary ARMA processes with 𝐸(𝑥𝑡) = 𝜇 it holds that �̂�𝑡+𝑙 − 𝜇 decays to
zero as lead 𝑙 increases. Which means that the further one wants to predict the
future the more naive the forecast, approaching simply the mean value. This is
however natural as the dependence in an ARMA process dies out and only for
shorter leads we can improve the naive forecast and benefit from the available
data. Details about ARIMA predictions are found in Brockwell & Davis (2020);
Shumway & Stoffer (2017); Hassler (2019).
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Figure 4: The predicted average monthly temperature for the airport
in Jyväskylä in C for 2006 and 2007 (blue line). The shaded area corre-
sponds to the 95% prediction interval and the dashed black line are the
observed average temperatures.

Using the average monthly temperature data from Figure 1 a seasonal ARIMA
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prediction for the years 2006 and 2007 is shown in Figure 4 as the blue line. The
shaded grey area reflects the uncertainty of the predictions. The actual observed
average temperatures are given as the dashed black line and shows that the pre-
dictions quite well, just forecasted less cold winters, but the true values are still
within the grey areas.

2.4 Various extensions for univariate time series

The ARIMAmodel with 𝑑 ∈ {0, 1, 2}with a possible seasonal adjustment is one of
the standard tools in time series analysis. They are however not always suitable
and in the following some different time series settings andmodels are discussed.

Time Series with Long Memory In the ARIMA model as discussed above it as-
sumed that the time series has a short memory which means that autocorrelation
drops to zero after a certain lag or has an exponential rate of decay. For hydro-
logical or meteorological time series like annual average rainfall, temperature
or river flow data it can be however often observed that the autocorrelations
are persistent over many lags. This persistence is then often denoted long mem-
ory. The extend of long memory is often quantified with the Hurst coefficient
𝐻 ∈ (0, 1) where 0.5 indicates the absence of long memory and a value larger
than 0.5 indicates a persistent behaviour. Long memory time series modeling
can be embedded in an ARIMA framework by allowing the parameter 𝑑 to take
also fractional values, i.e. 𝑑 ∈ (0, 1) which is in detail discussed in Hassler (2019)
and often denoted as fractional ARIMA modelling.

Nonlinear time series The ARMA model introduced above is linear in its terms
which is mathematically convenient and proved to be able to approximate many
natural phenomena, however not all. Some processes in nature are just not linear.
The literature on nonlinear time series models is quite large and an overview of
different applications of nonlinear time series models in geosciences is for exam-
ple given in Donner & Barbosa (2008). In the following only two popular nonlin-
ear time series models are introduced.

The simplest class of nonlinear models are piecewise linear models which are
known as threshold models. In this class of models it is thought that there is a
set of 𝐾 linear submodels and a mechanism that switches between the differ-
ent submodels. A popular variant in this context is the threshold autoregressive
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(TAR) model which has the form

𝑥𝑡 = 𝛼 (𝑗)0 +
𝑝
∑
𝑖=1

𝛼 (𝑗)𝑖 𝑥𝑡−𝑖 + 𝛽(𝑗)𝜖𝑡 ,

where 𝑗 ∈ {1, … , 𝐾} is an indicator for the active submodel and the submodels
have the parameters 𝛼 (𝑗)0 , … , 𝛼 (𝑗)𝑝 and 𝛽(𝑗) and 𝜖𝑡 is a white noise process. Which
submodel is active is indicated by the series 𝑧𝑡 which takes values in {1, … , 𝐾}. If
the state of 𝑍𝑡 depends only on the past values of 𝑥𝑡 , i.e., 𝑧𝑡 = 𝑗 if 𝑥𝑡−𝜏 ∈ 𝑅𝑗 for
some fixed 𝜏 > 0 with

𝐾
⋃
𝑗=1

𝑅𝑗 = ℝ then is a self-exciting TAR model. If however

𝑧𝑡 = 𝑗 if and only if 𝑦𝑡−𝜏 ∈ 𝑅𝑗 where 𝑦𝑡 is an observable or unobservable covariate
time series one says the TAR model is excited by 𝑦𝑡 .

Another popular nonlinear model is the generalized autoregressive conditional
heteroscedastic (GARCH) model. It can be formulated as

𝑥𝑡 = 𝜎𝑡𝜖𝑡 ,

where 𝜖𝑡 is a white noise process and

𝜎2𝑡 = 𝛼0 +
𝑝
∑
𝑖=1

𝛼𝑖𝑥2𝑡−𝑖 +
𝑞
∑
𝑖=1

𝛽𝑖𝜎2𝑡−𝑖

with model parameters 𝛼𝑖 ≥ 0, 𝑖 = 0, … , 𝑝, and 𝛽𝑖 ≥ 0, 𝑖 = 1, … , 𝑞. Thus an
ARMA(p,q) process is assumed for the variance of 𝑥𝑡 and for the series 𝑥𝑡 small
values and large values should cluster.
Tests if nonlinear models are needed are well-established but have usually spe-
cial nonlinear models as the alternative in mind. Similarly, parameter estimation
and model selection for the above models are well investigated together with
appropriate forecasting tools. For details about the above non-linear models as
well as many other methods see for example Fan & Yao (2003).

Univariate time series methods from a geoscience perspective are for example
also discussed in Gilge (2006).
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3 Multivariate Time Series

So far we have assumed that only one variable is measured at time 𝑡 . For multi-
variate time series at the time 𝑡 a 𝑚-variate vector 𝑥 𝑡 = (𝑥1, … , 𝑥𝑚)⊤ is observed.
Thus, besides the serial dependence, also the dependence between the different
variables need to be considered. The characteristics of the underlying stochastic
process are then described using the expected value 𝐸(𝑋 𝑡), the covariance ma-
trix Cov(𝑋 𝑡) = 𝐸((𝑋 𝑡 − 𝐸(𝑋 𝑡))(𝑋 𝑡 − 𝐸(𝑋 𝑡))⊤) and the autocovariance matrix
𝐶𝜏 (𝑋 𝑡) = 𝐸((𝑋 𝑡 − 𝐸(𝑋 𝑡))(𝑋 𝑡−𝜏 − 𝐸(𝑋 𝑡−𝜏 ))⊤). A key assumption is again that
these quantities do not depend on the time and multivariate (weak) stationarity
is given when

𝐸(𝑋 𝑡) = 𝜇, Cov(𝑋 𝑡) = Σ
and

𝐶𝜏 (𝑋 𝑡) = 𝐸((𝑋 𝑡 − 𝜇)(𝑋 𝑡−𝜏 − 𝜇)⊤) = 𝐸((𝑋 𝑡−𝑙 − 𝜇)(𝑋 𝑡−𝑙−𝜏 − 𝜇)⊤) = 𝐶𝜏 ,

for all 𝜏 and 𝑙. For an observed time series 𝑥 𝑡 , 𝑡 = 1, … , 𝑇 the corresponding
sample statistics are:

Empirical mean: �̂� = 1
𝑇 ∑𝑇

𝑖=1 𝑥 𝑡 ,

Empirical coariance: Σ̂ = 1
𝑇 ∑𝑇

𝑖=1(𝑥 𝑡 − �̂�)(𝑥 𝑡 − �̂�)⊤ and

Empirical sutocovariance matrix: �̂�𝜏 = 1
𝑇 ∑𝑇

𝑖=𝜏+1(𝑥 𝑡 − �̂�)(𝑥 𝑡−𝜏 − �̂�)⊤.

The empirical autocorrelation matrix is obtained as Γ̂𝜏 = 𝐷−1/2�̂�𝜏𝐷−1/2 where
the diagonal matrix 𝐷 contains the diagonal elements of Σ̂.

The univariate ARMA model has been extended to the multivariate case and is
usually referred to as vector autoregressive moving avervage (VARMA) model

𝑥 𝑡 =
𝑝
∑
𝑖=1

𝐴𝑖𝑥 𝑡−𝑖 + 𝜖 𝑡 −
𝑞
∑
𝑖=1

𝐵𝑖𝜖 𝑡−𝑖,

where 𝜖 𝑡 is an𝑚-variate white noise process and the𝑚×𝑚matrices𝐴1, … , 𝐴𝑝 and
𝐵1, … , 𝐵𝑞 are autoregressive and moving average coefficients, respectively. The
special cases VARMA(p,0) is correspondingly referred to as vector autorgressive
process VAR(p) and VARMA(0,q) as vector moving average process VMA(q). The
conditions for stationarity and invertibility translate similarly to the multivariate
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case as do order determination and one can choose again to consider the problem
from a time or frequency point of view. For details see for example Wei (2019)
and references therein. A big challenge in multivariate time series is however
that already for small values of 𝑚 the number of parameters to estimate is quite
considerable.
Therefore often dimension reduction methods are of interest in a time series con-
text. On the one side is the dynamic factor model which is especially popular for
financial data and for details we refer to Hallin et al. (2020). The approach pre-
sented here is based on blind source separation (BSS). In BSS it is assumed that
the observable 𝑚-variate time series 𝑥 𝑡 is a linear mixture of 𝑚 latent unobserv-
able processes 𝑠𝑡 = (𝑠1, … , 𝑠𝑚)⊤. The model can thus be written as

𝑥 𝑡 = Ω𝑠𝑡 + 𝜇,

where the full rank 𝑚 × 𝑚 matrix Ω is the mixing matrix and 𝜇 is the 𝑚-variate
location vector. The goal in BSS is to estimate 𝑠𝑡 based on 𝑥 𝑡 alone. Clearly, for
that more assumptions are needed. The two basic assumptions are 𝐸(𝑠𝑡) = 0 and
Cov(𝑠𝑡) = 𝐼𝑚. However, a third assumption is required and this third assumption
distinguishes between different BSS approaches. A review of BSS methods in the
context of time series is for example Pan et al. (2021) and in the following only
the main principles are introduced.
In the first approach it is assumed that all 𝑚 latent processes are weakly station-
ary linear time series which have different autocovariance functions, i.e. 𝐶𝜏 (𝑠𝑡) =
𝐷𝜏 where 𝐷𝜏 is a diagonal matrix where the diagonal elements depend on 𝜏 . This
model is called the second order source separation (SOS) model as the separation
can be based on second moments alone. For example AMUSE finds an unmixing
matrix Γ as the matrix which simultaneously diagonalizes the covariance matrix
and one autocovariance 𝐶𝜏 in the sense that

ΓCov(𝑥 𝑡)Γ⊤ = 𝐼 𝑝 and Γ𝐶𝜏 (𝑥 𝑡)Γ⊤ = Λ𝜏 ,

whereΛ𝜏 is a diagonalmatrix depending on 𝜏 . Such simultaneous diagonalization
of two matrices can be solved via a generalized eigenvector-eigenvalue decom-
position. The decomposition is however only unique if the autocovariances of 𝑠𝑡
are all distinct at the chosen lag 𝜏 and therefore the performance of AMUSE de-
pends a lot on its choice. To be less dependent on this choice, the SOBI method
suggests to jointly diagonalize 𝐾 autocovariance matrices plus the covariance
matrix. This is nowadays considered a better approach and the added computa-
tional complexity is then negligible.

14
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However, for example, in the case of GARCH processes there is no information in
the secondmoments and higher order moments are of interest. The third assump-
tion is then generalized in that way that the 𝑚 latent processes are uncorrelated
at all second and fourth (cross)moments, where cross-moments mean comput-
ing these moments between observations measured at different time points. In
that case methods like vSOBI and gSOBI extend SOBI by taking higher order
moments into account in the joint diagonalization process.
The third approach assumes that all 𝑚 latent components have a constant mean
but their variances change over time and the constraint of identity holds only
on average for the observed time span 1, … , 𝑇 . In that case the model is called
nonstationary source separation (NSS) and the idea for an unmixing matrix is
to divide the observed time series into 𝐾 ≥ 2 non-overlapping intervals. The
method NSS-JD then jointly diagonalizes the 𝐾 covariance matrices obtained
from the intervals under the constraint that the total covariance matrix must
be the identity. Similarly, NSS-JD-TD chooses, in addition to the 𝐾 covariance
matrices, from the intervals additional autocovariance matrices for selected lags
computed on the separate intervals to be jointly diagonalized under the same
constraint.
Given an unmixing matrix estimate, the components ̂𝑠𝑡 = Γ̂(𝑥 𝑡 −�̂�) are computed.
Note that none of the BSS methods can recover actually the order of the compo-
nents and their signs but this is not relevant for the purpose of BSS which is three
fold:

1. The estimated components might be easier to interpret and might give an
better impression of the different underlying dynamics. For interpretations
in relation to 𝑥 𝑡 the loadings from the unmixing matrix can be interpreted
similarly as the loadings for example in PCA.

2. As the components are assumed uncorrelated, and often even the stronger
assumption of independence is made, it is possible to model the 𝑚 latent
components separately from the others. Thus, nomultivariatemodels need
to be fitted but one fits𝑚 univariate models. This is often considered easier
and more flexible.

3. It is often the case that not all 𝑚 latent components are of interest and
some might be simply noise. Thus dimension reduction can be performed
by concentrating in the remaining analysis on the interesting components.

One type of data that is by definition multivariate is compositional data. Nat-
urally, compositional data can also be observed over time which is usually de-
noted then as a compositional time series (CTS). To address the special nature of
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compositional observations, usually the compositions are first transformed into
a coordinate system that follows a Euclidean representation, and then standard
multivariate methods can be applied. The same strategy is usually also used for
CTS. Kynclova et al. (2015) discuss vector autoregressive models in the context of
CTS while Nordhausen et al. (2021) investigate the use of blind source separation
models in that context.

4 Functional Time Series

If an almost continuous time series can be divided into natural non-overlapping
consecutive intervals one can consider it as a series of ordered curves. Such a
series of curves is known then as functional time series. Consider for example
data coming from a magnetometer. Such a device measures almost continuously
the magnetic field which depends heavily on the rotation of the earth. Hence
it seems natural to look at the shape of these values based on the time of the
day, i.e. the position of the sun, and therefor one has for each day one curve.
Such a curve is then denoted 𝒳𝑡(𝑢), where 𝑡 indicates the day and 𝑢 the time of
the day. Usually, it is assumed that the 𝒳𝑡 ’s are elements of Hilbert spaces and
descriptive statistics are the functional mean, the covariance operator, and the
autocovariance operator which can often be obtained by pointwise evaluations.
While the standard ARMA model has been extended to the functional setting,
research mainly focuses on functional autoregressive (FAR) models for which
order estimation and forecasting tools are well established. For further details,
we refer to Kokoszka & Reimherr (2017) and references therein.

5 Software

As time series analysis is a common task in many fields most statistical software
packages provide tools to visualize, summarize time series. Similarly estimation
and forecasting tools are usually also available. All the methods described here
are for example available in R R Core Team (2020) and there is an R TASK VIEW
dedicated to time series analysis listing the most important functions and pack-
ages, see https://CRAN.R-project.org/view=TimeSeries.
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Summary

In geosciences many measurements are taken at regular intervals and of interest
is to understand the dynamics in the underlying processes and to have an idea
of what will happen in the future. Depending on the nature of the data there
is a large selection of time series methods available. For simplicity usually the
modelling starts with stationary linear models. If these models are then not ad-
equately describing the phenomena under consideration, different possibilities
exist to address possible flaws like relaxing the requirements of stationarity and
or linearity.

Cross References

Autoregressive Moving Average Process, Stationarity, Stochastic Process, Time
Series Analysis, Power Spectral Density, Spectral Analysis, Fourier Transform,
Fast Fourier Transform, Compositional Data
*
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