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Abstract. We consider the inverse problem of determining a potential in a

semilinear elliptic equation from the knowledge of the Dirichlet-to-Neumann
map. For bounded Euclidean domains we prove that the potential is uniquely

determined by the Dirichlet-to-Neumann map measured at a single boundary

point, or integrated against a fixed measure. This result is valid even when
the Dirichlet data is only given on a small subset of the boundary. We also

give related uniqueness results on Riemannian manifolds.

1. Introduction

In this article we study inverse problems for semilinear elliptic equations, with
measurements given by the nonlinear Dirichlet-to-Neumann map (DN map) mea-
sured at a single point or integrated against a fixed measure. The method is based
on higher order linearizations of the DN map. This method was introduced in
inverse problems for hyperbolic PDE in [KLU18KLU18] where a source-to-solution map
was used. It was observed in [LLPMT22LLPMT22] that in the hyperbolic case it may be
sufficient to measure a DN map integrated against a suitable fixed function. The
work [Tzo21Tzo21] proved a result showing that measurements of the source-to-solution
map at a single point suffice (see [BKT21BKT21] for another single point measurement
result).

The higher order linearization method in inverse problems for nonlinear elliptic
PDE was introduced independently in [FO20FO20] and [LLLS21aLLLS21a]. We note that the first
linearization has been used extensively since the work [Isa93Isa93], see e.g. [IS94IS94, IN95IN95],
and the second linearization had also been used in [Sun96Sun96, SU97SU97, KN02KN02, CNV19CNV19,
AZ21AZ21]. The works [LLLS21bLLLS21b, KU20aKU20a, KU20bKU20b] studied related inverse problems for
semilinear elliptic equations with partial data, with [LLST22LLST22] addressing fractional
power nonlinearities. In [LZ20LZ20, KU22KU22, CF21CF21, KKU22KKU22, CFK+21CFK+21] the authors study
nonlinear conductivity or magnetic Schrödinger type equations. All these results
use the nonlinear DN map with data given on open subsets of the boundary.

In this note we observe that in some of the elliptic results above it is enough to
measure the DN map at a single point, or integrated against a fixed measure. Let
Ω ⊂ Rn, n ≥ 2, be a bounded domain with C∞ boundary, and let m ≥ 2 be an
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integer. Consider the semilinear elliptic equation{
∆u+ q(x)um = 0 in Ω,

u = f on ∂Ω,
(1.1)

where q ∈ Cα(Ω) is a potential, and Cα with 0 < α < 1 denotes the space of
α-Hölder continuous functions. Let f ∈ Uδ, where

Uδ := {f ∈ C2,α(∂Ω) : ‖f‖C2,α(∂Ω) < δ}.

If δ > 0 is small enough there is a unique small solution u = uf ∈ C2,α(Ω) of
(1.11.1), see e.g. [LLST22LLST22, Proposition 2.1]. One can then define the corresponding
nonlinear DN map Λq by

Λq : Uδ → C1,α(∂Ω), f 7→ ∂νuf |∂Ω ,

where ∂ν denotes the normal derivative on ∂Ω. In [FO20FO20, LLLS21aLLLS21a] it was proved
that the full DN map Λq uniquely determines q. This was extended in [KU20bKU20b,
LLLS21bLLLS21b] to the case where one knows Λq(f)|Γ1

for f supported in Γ2 where
Γ1,Γ2 ⊂ ∂Ω are open sets.

We show that it is enough to measure
∫
∂Ω

Λq(f) dµ for a fixed measure µ on ∂Ω.
When µ = δx0 this corresponds to measurements at a fixed point.

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 2, be a connected bounded open set with C∞

boundary, let m ≥ 2 be an integer, and let Γ ⊂ ∂Ω be a nonempty open set.
Suppose that µ 6≡ 0 is a fixed measure on ∂Ω. If q1, q2 ∈ Cα(Ω) for some 0 < α < 1
satisfy

(1.2)

∫
∂Ω

Λq1(f) dµ =

∫
∂Ω

Λq2(f) dµ

for all f ∈ Uδ with supp(f) ⊂ Γ where δ > 0 is sufficiently small, then

q1 = q2 in Ω.

In particular, choosing µ = δx0
for some fixed x0 ∈ ∂Ω, we see that the condition

Λq1(f)(x0) = Λq2(f)(x0) for all f ∈ Uδ with supp(f) ⊂ Γ

implies that q1 = q2.

We can give a similar result for semilinear elliptic PDE on manifolds. Let (M, g)
be a compact Riemannian manifold with smooth boundary, let q ∈ C∞(M), and
let m ≥ 2. We consider the Dirichlet problem{

∆gu+ q(x)um = 0 in M,

u = f on ∂M.
(1.3)

Again, if Uδ := {f ∈ C2,α(∂M) : ‖f‖C2,α(∂M) < δ}, then for any f ∈ Uδ with δ

small enough the Dirichlet problem has a unique small solution u ∈ C2,α(M) (see
e.g. [LLLS21aLLLS21a, Proposition 2.1]). We may define the DN map

Λq : Uδ → C1,α(∂M), f 7→ ∂νuf |∂M ,

where ∂ν denotes the normal derivative with respect to the metric g on ∂M . We
have the following result where f can be supported on all of ∂M , but we only
measure the DN map at a single point or integrated against a fixed measure.
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Theorem 1.2. Let (M, g) be a compact Riemannian n-manifold with smooth bound-
ary, let m ≥ 2 be an integer, and let µ 6≡ 0 be a fixed measure on ∂M . Assume that
one of the following conditions is satisfied:

(1) (M, g) is transversally anisotropic as in [LLLS21aLLLS21a, Definition 1.1], and m ≥
4; or

(2) (M, g) is a complex manifold satisfying the conditions in [GST19GST19, Theorem
1.4].

If q1, q2 ∈ C∞(M) are such that q1 = q2 to infinite order on ∂M and

(1.4)

∫
∂Ω

Λq1(f) dµ =

∫
∂Ω

Λq2(f) dµ

for all f ∈ Uδ where δ > 0 is sufficiently small, then q1 = q2 in M .

The proofs of Theorems 1.11.1–1.21.2 are based on the higher order linearization
method in [FO20FO20, LLLS21aLLLS21a]. From [LLLS21aLLLS21a, Proposition 2.2] one obtains the
identity

(1.5)

∫
∂M

((DmΛq1)0 − (DmΛq2)0)(f1, . . . , fm)fm+1 dS

= −(m!)

∫
M

(q1 − q2)v1 · · · vm+1 dV

where (DmΛq)0 denotes the mth Fréchet derivative on Λq at 0 considered as an
m-linear form, fj are Dirichlet data, and vj are solutions of the linearized equation
∆gvj = 0 in M with vj |∂M = fj . The single point measurement case formally
corresponds to choosing fm+1 = δx0

with x0 ∈ ∂M . The corresponding solution
vm+1 is in L1(Ω) but it is not bounded, and this will require some additional
arguments.

If one has equality of the DN maps for q1 and q2 as in Theorems 1.11.1–1.21.2, the
identity (1.51.5) implies that ∫

M

fv1v2 dV = 0

where f := (q1− q2)v3 · · · vmvm+1 and vj are as above. We choose v3, . . . , vm to be
smooth nonvanishing solutions, and vm+1 will be the (nonvanishing) L1(Ω) solution
whose Dirichlet data is a measure. It is then enough to show that f = 0, which will
imply q1 = q2. For the partial data result in Theorem 1.11.1, we need the following
extension given in [CGU21CGU21, Section 4] of the fundamental result of [DSFKSU09DSFKSU09] on
the linearized local Calderón problem that was originally proved for f ∈ L∞(Ω).

Theorem 1.3. Let Ω ⊂ Rn, n ≥ 2, be a connected bounded open set with C∞

boundary, and let Γ ⊂ ∂Ω be a nonempty open set. Suppose that f ∈ L1(Ω) is such
that ∫

Ω

fv1v2 dx = 0

for all vj ∈ C∞(Ω) solving ∆vj = 0 in Ω with supp(vj |∂Ω) ⊂ Γ. Then f = 0 in Ω.

For Theorem 1.21.2 we will invoke the results in [LLLS21aLLLS21a, GST19GST19] instead.
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2. Proof of Theorem 1.11.1

For the proof of Theorem 1.11.1, we give a lemma related to solving the Dirichlet
problem when the boundary value is a finite Borel measure µ on ∂Ω. We use the
norm given by the total variation,

‖µ‖M(∂Ω) = |µ|(∂Ω) = sup
‖ϕ‖C(∂Ω)=1

∣∣∣∣∫
∂Ω

ϕdµ

∣∣∣∣ .
We say that Ψ ∈ L1(Ω) solves the Dirichlet problem{

∆Ψ = 0 in Ω,

Ψ = µ on ∂Ω,
(2.1)

if for any w ∈ C2(Ω) with w|∂Ω = 0 one has

(2.2)

∫
∂Ω

∂νw dµ =

∫
Ω

(∆w)Ψ dx.

In fact, there is a solution in Lr(Ω) for 1 ≤ r < n
n−1 .

Lemma 2.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C∞ boundary, and
let µ be a finite complex Borel measure on ∂Ω. Consider the function

Ψ(x) =

∫
∂Ω

P (x, y) dµ(y), x ∈ Ω,

where P (x, y) is the Poisson kernel for ∆ in Ω. Then Ψ ∈ Lr(Ω) where 1 ≤ r <
n
n−1 , and it solves the Dirichlet problem (2.12.1).

Proof. By applying a partition of unity, boundary flattening transformations and
convolution approximation, we can produce a sequence ψj ∈ C∞(∂Ω) such that

‖ψj dS − µ‖M(∂Ω) → 0. Let Ψj ∈ C∞(Ω) solve ∆Ψj = 0 in Ω with Ψj |∂Ω = ψj . If

w is as in the statement of the lemma, integration by parts gives∫
∂Ω

(∂νw)ψj dS =

∫
Ω

(∆w)Ψj dx.

It is thus sufficient to show that Ψ ∈ Lr(Ω) and Ψj → Ψ in Lr(Ω) for 1 ≤ r <
n
n−1 . We apply the Poisson kernel estimate (see e.g. [Kra05Kra05])

P (x, y) ≤ C dist(x, ∂Ω)

|x− y|n
≤ C

|x− y|n−1
, x ∈ Ω, y ∈ ∂Ω,

for some C > 0. If Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, the Minkowski inequality in
integral form gives

‖Ψ(x)‖Lr(Ωδ)
≤
∫
∂Ω

‖P ( · , y)‖Lr(Ωδ)
d|µ|(y)

≤

[
sup
y∈∂Ω

(∫
Ωδ

C

|x− y|(n−1)r
dx

)1/r
]
‖µ‖M(∂Ω) .
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The quantity in brackets is finite uniformly over δ > 0 when r < n
n−1 . Thus we

may let δ → 0 to obtain that Ψ ∈ Lr(Ω). Applying the same argument to

Ψj(x)−Ψ(x) =

∫
∂Ω

P (x, y)(ψj(y) dS(y)− dµ(y))

shows that Ψj → Ψ in Lr(Ω). �

Proof of Theorem 1.11.1. Let first q ∈ Cα(Ω) be fixed. Consider Dirichlet data of
the form fε = ε1h1 + . . . + εmhm where hj ∈ C∞(∂Ω) satisfy supp(hj) ⊂ Γ, and
ε = (ε1, . . . , εm) where εj are sufficiently small. Let uε be the solution of (1.11.1)
with Dirichlet data fε. By [LLST22LLST22, Proposition 2.1] the map ε 7→ uε is smooth.
By uniqueness of small solutions one has u0 = 0, and by differentiating (1.11.1) with
respect to εj one has ∂εjuε|ε=0 = vj where vj is the solution of{

∆vj = 0 in Ω,

vj = hj on ∂Ω.
(2.3)

Moreover, applying ∂ε1 . . . ∂εm to (1.11.1) and evaluating at ε = 0 implies that w :=
∂ε1 . . . ∂εmuε|ε=0 solves the equation{

∆w = −(m!)qv1 · · · vm in Ω,

w = 0 on ∂Ω.
(2.4)

By elliptic regularity, vj ∈ C∞(Ω) and w ∈ C2,α(Ω). The DN map satisfies

(2.5) ∂ε1 . . . ∂εm(Λq(fε))|ε=0 = ∂ε1 . . . ∂εm(∂νuε)|ε=0 = ∂νw|∂Ω.

Now assume that q1, q2 ∈ Cα(Ω) are such that (1.21.2) holds. Let wj be the solution
of (2.42.4) for q = qj . By (1.21.2) and (2.52.5), one has∫

∂Ω

∂ν(w1 − w2) dµ = 0.

Let Ψ ∈ Lr(Ω) with r < n
n−1 be the solution of ∆Ψ = 0 in Ω with Ψ|∂Ω = µ in the

sense of Lemma 2.12.1. It follows from (2.22.2) that

0 =

∫
Ω

∆(w1 − w2)Ψ dx = −(m!)

∫
Ω

(q1 − q2)v1 . . . vmΨ dx.

Now choose h3, . . . , hm ∈ C∞(∂Ω) so that supp(hj) ⊂ Γ, hj ≥ 0, and hj > 0
somewhere. By the strong maximum principle vj > 0 in Ω for 3 ≤ j ≤ m. We
obtain that

(2.6)

∫
Ω

[(q1 − q2)v3 · · · vmΨ]v1v2 dx = 0

for any h1, h2 ∈ C∞(∂Ω) with supp(hj) ⊂ Γ. Note that the function in brackets
is in Lr(Ω) for r < n

n−1 . Now we invoke Theorem 1.31.3, which implies that (q1 −
q2)v3 · · · vmΨ = 0 in Ω. Since v3, . . . , vm are positive we must have (q1 − q2)Ψ = 0
in Ω. Finally, since µ 6≡ 0, the solution Ψ cannot vanish in any open subset of Ω by
unique continuation (otherwise one would have Ψ = 0 a.e. in Ω by standard unique
continuation for solutions of ∆Ψ = 0 in Ω, and (2.22.2) would imply that µ ≡ 0 by
varying w). Thus Ψ is nonzero in a dense set of points in Ω. Since qj are continuous,
this shows that q1 = q2. �
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3. Proof of Theorem 1.21.2

We now describe how to prove Theorem 1.21.2. The proof is very similar to that
of Theorem 1.11.1 and we indicate the required modifications. First we note that
Lemma 2.12.1 extends to the case where Ω is replaced by a compact Riemannian
manifold (M, g) with smooth boundary and ∆ is replaced by ∆g. This relies on
estimates for the Poisson kernel P (x, y) on compact manifolds with boundary:

(3.1) |∇kxP (x, y)| ≤ Ck
dg(x, y)n−1+k

, x ∈M, y ∈ ∂M.

In fact the case k = 0 follows e.g. from [HWY09HWY09, Lemma 2.2]. The general case
follows by writing ε = dg(x, y) and by inserting u( · ) = P ( · , y) into the elliptic
estimate

‖∇ku‖L∞(Bε/4(x)∩M) ≤ Ckε−k ‖u‖L∞(Bε/2(x)∩M) .

The last estimate is valid by standard elliptic regularity after rescaling into a ball
of radius one.

Assuming the conditions in Theorem 1.21.2, the same argument that leads to (2.62.6)
yields the identity

(3.2)

∫
M

(q1 − q2)v1 · · · vmΨ dVg = 0

where vj ∈ C∞(M) are arbitrary solutions of the equation ∆gvj = 0 in M , and
Ψ ∈ Lr(M) for 1 ≤ r < n

n−1 is the solution of{
∆gΨ = 0 in M,

Ψ = µ on ∂M.

Note that by elliptic regularity, Ψ is smooth in M int and it is also smooth up
to the boundary near points z ∈ ∂M so that µ = 0 near z. To study the situation
near supp(µ), we observe using (3.13.1) that for any x ∈M int one has

|Ψ(x)| ≤
∣∣∣∣∫
∂M

P (x, y) dµ(y)

∣∣∣∣ ≤ C ∫
∂M

1

dg(x, y)n−1
d|µ|(y).

Write f := (q1− q2)Ψ. Using the assumption that q1 = q2 to infinite order on ∂M ,
for any N ≥ 0 there is CN > 0 such that

|f(x)| ≤ CNdg(x, ∂M)N
∫
∂M

1

dg(x, y)n−1
d|µ|(y)

≤ CNdg(x, ∂M)N−(n−1)|µ|(∂M).

Choosing N ≥ n gives that f is bounded in M and vanishes on ∂M . Applying
similar estimates to derivatives of f in M int proves that f is actually C∞ up to the
boundary in M and it vanishes to infinite order on ∂M .

We rewrite (3.23.2) in the form∫
M

fv1 . . . vm dVg = 0

where f = (q1− q2)Ψ and vj ∈ C∞(M) are any solutions of ∆gvj = 0 in M . It now
follows from [LLLS21aLLLS21a, Proposition 5.1], if (M, g) is transversally anisotropic and
m ≥ 4, or from [GST19GST19, Theorem 1.4], if (M, g) is a complex manifold satisfying
the assumptions of that theorem, that f = 0. Since µ 6≡ 0 and M is connected, Ψ
cannot vanish in any open set in M int by the unique continuation principle. Indeed,
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if Ψ would vanish in an open set, then Ψ = 0 in M int by unique continuation for
solutions of ∆gΨ = 0 in M int (see e.g. [Ler19Ler19, Theorem 3.8]), and the analogue of
(2.22.2) for ∆g in M would imply that µ ≡ 0 by varying w. Thus we must also have
q1 − q2 = 0 in M , which concludes the proof of Theorem 1.21.2.

Remark 3.1. Under assumption (1) in Theorem 1.21.2, the condition that q1 = q2

to infinite order on ∂M can be weakened. In fact it would be enough to suppose
that q1 = q2 to suitable finite order near supp(µ) on ∂M , since in that case the
argument above shows that (q1−q2)Ψ is in C1(M) and hence [LLLS21aLLLS21a, Proposition
5.1] applies. In a similar vein, under assumption (1) and in the special case µ = δx0 ,
it would be enough to assume that ∇kq1(x0) = ∇kq2(x0) for finitely many k.
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[CNV19] Cătălin I. Cârstea, Gen Nakamura, and Manmohan Vashisth, Reconstruction for
the coefficients of a quasilinear elliptic partial differential equation, Appl. Math.

Lett. 98 (2019), 121–127. MR 3964222

[DSFKSU09] David Dos Santos Ferreira, Carlos E. Kenig, Johannes Sjöstrand, and Gunther
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MR 2483810
[IN95] Victor Isakov and Adrian I. Nachman, Global uniqueness for a two-dimensional

semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347 (1995), no. 9,
3375–3390. MR 1311909

[IS94] Victor Isakov and John Sylvester, Global uniqueness for a semilinear elliptic inverse
problem, Comm. Pure Appl. Math. 47 (1994), no. 10, 1403–1410. MR 1295934

[Isa93] V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations,
Arch. Rational Mech. Anal. 124 (1993), no. 1, 1–12. MR 1233645

[KKU22] Yavar Kian, Katya Krupchyk, and Gunther Uhlmann, Partial data in-
verse problems for quasilinear conductivity equations, Math. Ann. (2022),
https://doi.org/10.1007/s00208-022-02367-y.

[KLU18] Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann, Inverse problems for

Lorentzian manifolds and non-linear hyperbolic equations, Invent. Math. 212
(2018), no. 3, 781–857. MR 3802298



8 SALO AND TZOU

[KN02] Kyeonbae Kang and Gen Nakamura, Identification of nonlinearity in a conductivity

equation via the Dirichlet-to-Neumann map, Inverse Problems 18 (2002), no. 4,

1079–1088. MR 1929283
[Kra05] Steven G. Krantz, Calculation and estimation of the Poisson kernel, J. Math. Anal.

Appl. 302 (2005), no. 1, 143–148. MR 2107352

[KU20a] Katya Krupchyk and Gunther Uhlmann, Partial data inverse problems for semi-
linear elliptic equations with gradient nonlinearities, Math. Res. Lett. 27 (2020),

no. 6, 1801–1824. MR 4216606

[KU20b] , A remark on partial data inverse problems for semilinear elliptic equations,
Proc. Amer. Math. Soc. 148 (2020), no. 2, 681–685. MR 4052205

[KU22] Katya Krupchyk and Gunther Uhlmann, Inverse problems for nonlinear magnetic

Schrödinger equations on conformally transversally anisotropic manifolds, Anal.
PDE (2022), arXiv:2009.05089.

[Ler19] Nicolas Lerner, Carleman inequalities. an introduction and more, Grundlehren
der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-

ences], vol. 353, Springer, Cham, 2019. MR 3932103

[LLLS21a] Matti Lassas, Tony Liimatainen, Yi-Hsuan Lin, and Mikko Salo, Inverse problems
for elliptic equations with power type nonlinearities, J. Math. Pures Appl. (9) 145

(2021), 44–82. MR 4188325

[LLLS21b] , Partial data inverse problems and simultaneous recovery of boundary and
coefficients for semilinear elliptic equations, Rev. Mat. Iberoam. 37 (2021), no. 4,

1553–1580. MR 4269409

[LLPMT22] Matti Lassas, Tony Liimatainen, Leyter Potenciano-Machado, and Teemu Tyni,
Uniqueness, reconstruction and stability for an inverse problem of a semi-linear

wave equation, J. Differential Equations 337 (2022), 395–435. MR 4473034
[LLST22] Tony Liimatainen, Yi-Hsuan Lin, Mikko Salo, and Teemu Tyni, Inverse problems for

elliptic equations with fractional power type nonlinearities, J. Differential Equations

306 (2022), 189–219. MR 4332042
[LZ20] Ru-Yu Lai and Ting Zhou, Partial data inverse problems for nonlinear magnetic

Schrödinger equations, arXiv:2007.02475 (2020).

[SU97] Ziqi Sun and Gunther Uhlmann, Inverse problems in quasilinear anisotropic media,
Amer. J. Math. 119 (1997), no. 4, 771–797. MR 1465069

[Sun96] Ziqi Sun, On a quasilinear inverse boundary value problem, Math. Z. 221 (1996),

no. 2, 293–305. MR 1376299
[Tzo21] Leo Tzou, Determining Riemannian manifolds from nonlinear wave observations

at a single point, arXiv:2102.01841 (2021).

Department of Mathematics and Statistics, University of Jyvaskyla, Jyvaskyla, Fin-
land

Email address: mikko.j.salo@jyu.fi

Korteweg-de Vries Institute, University of Amsterdam, Amsterdam, Netherlands
Email address: leo.tzou@gmail.com


	1. Introduction
	Acknowledgments.

	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	References

