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Modern evolutionary game theory typically deals with the evolution of
continuous, quantitative traits under weak selection, allowing the incorpor-
ation of rich biological detail and complicated nonlinear interactions. While
these models are commonly used to find candidates for evolutionary
endpoints and to approximate evolutionary trajectories, a less appreciated
property is their potential to expose and clarify the causal structure of
evolutionary processes. The mathematical step of differentiation breaks
a nonlinear model into additive components which are more intuitive to
interpret, and when combined with a proper causal hypothesis, partial
derivatives in such models have a causal meaning. Such an approach has
been used in the causal analysis of game-theoretical models in an informal
manner. Here we formalize this approach by linking evolutionary game
theory to concepts developed in causal modelling over the past century,
from path coefficients to the recently proposed causal derivative. There is
a direct correspondence between the causal derivative and the derivative
used in evolutionary game theory. Some game theoretical models (e.g. kin
selection) consist of multiple causal derivatives. Components of these
derivatives correspond to components of the causal derivative, to path coef-
ficients, and to edges on a causal graph, formally linking evolutionary game
theory to causal modelling.

This article is part of the theme issue ‘Half a century of evolutionary
games: a synthesis of theory, application and future directions’.
1. Introduction
Game theory and its extensions have become a central part of the evolutionary
theorist’s toolkit over the last decades, having been explicitly defined in the
work of Maynard Smith & Price [1–3], but with precursors in earlier work (par-
ticularly in sex ratio theory [4,5]). Originating in economics [6] and later
imported into evolutionary biology, the central idea of evolutionary game
theory (EGT) is to model situations where the fitness consequences of a given
behaviour (or other trait) depend on what other individuals in the population
are doing. EGT has been very influential in our understanding of many central
questions in evolutionary biology, including sex ratio theory [7], the evolution-
ary origin of the two sexes [3,8] and its consequences [9,10] and many others
(see [11] for more examples).

EGT was first introduced in a pay-off matrix form with discrete strategies
[1–3], and while this form of EGT is still relevant in modern literature (e.g.
[12]), the form of EGT applied to contemporary biological problems is com-
monly concerned with continuous traits where individuals may take on any
trait value from some continuous range instead of a fixed set of discrete
values (lack of appreciation for this distinction has played a role in some
debates regarding evolutionary theory, as noted by [13]). Aspects of this con-
tinuous trait form of EGT were already present in Hamilton’s [5] work on sex
ratios, and it was more precisely defined in Maynard Smith’s classic treatment
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([3] their appendix H) in a simple static form. It has since been
mergedwith several other aspects of evolutionary theory, such
as models where one explicitly considers the evolutionary
dynamic as a sequence of successive allele replacements
(going by a variety of names e.g. adaptive dynamics, invasion
analysis, or trait substitution sequence models: [14–18]), quan-
titative genetics [19–21] and kin selection [17,22–24]. While
EGT was initially focused on finding stable endpoints [1,3]
for trait evolution, these subsequent extensions bring a
dynamic aspect to evolutionary game theory, characterize
equilibria (as well as limitations of equilibrium concepts:
[25,26]) in richer detail, and connect game theory to social
evolution theory. In this article we take these as organic
aspects of modern evolutionary game theory, focusing on
EGT as it is applied to continuous quantitative traits.

EGT has a dimension which is often left implicit: causal
analysis of fitness and natural selection in a potentially very
complicated theoretical model. On a more general level out-
side of game theory, the causal structure of evolutionary
theory has been a major topic of research interest in recent
years (e.g. [27–32]). Much of this research has focused on
additive causal effects with no frequency dependence,
while questions in adaptive evolution commonly hinge on
non-additive, frequency-dependent effects, and frequency
dependence is indeed central to EGT: in the absence of fre-
quency-dependence, a continuous EGT model effectively
reduces to a standard optimization model (‘simple optimiz-
ation’ in the language of [33]). It has been argued that
weak selection models and associated (partial) derivatives
can be a powerful aid for fine-grained causal analysis of natu-
ral selection that can supplement causal interpretation using
other methods and can incorporate non-additive causal
effects [34]. At the same time and in a different context, Hen-
shaw et al. [35] independently introduced the concept of the
‘causal derivative’. In this article, we combine these views,
examine the relationship between EGT and the theory of
causal modelling, and integrate EGT in its continuous form
with the causal derivative of Henshaw et al. [35]. This
unites the causal analysis of EGT with the framework of
tools used in causal modelling and permits the use of a
common language and common set of concepts that is used
in the causal analysis of theory as well as that of empirical
data [36].

From a practical perspective, this is not entirely new:
for example, the sex ratio model of Taylor [37] from more
than four decades ago presents an informal causal analysis
of partial derivatives arising in a game-theoretical model.
We will discuss this model in more detail later. In a paper
on kin selection, Frank [38] writes that one can study partial
derivatives to learn how biological assumptions translate into
effects on fitness (‘costs’ and ‘benefits’ in a kin selection con-
text, but the same idea applies to other models we discuss
below) and that these effects can be ‘impossible to obtain
intuitively, or by inspecting the mathematical expression for
fitness’. Indeed, the process of differentiation seems to
‘extract’ further insight from a model that ultimately the
researcher has set up themselves, which may seem counterin-
tuitive given that differentiation removes rather than adds
information [34]. A key reason why this works is that differ-
entiation resolves a potentially complicated, nonlinear,
frequency-dependent expression for fitness into additive
components, and such additive structure is intuitively
easier to understand and interpret.
Furthermore, as we see in the next section, under
common assumptions of EGT these additive components
of fitness appear in the same form in the expression for
evolutionary change, so that components of the additive
approximation for fitness simultaneously correspond to the
proportion of evolutionary change they cause (assuming
the absence of confounding in the causal model). Thus,
differentiation-based game theory methodology is intimately
connected to the recent ‘causal derivative’ introduced in
the literature of causal modelling for analysing nonlinear
interactions. Most previous causal analyses of EGT models
have been relatively informal, often without an explicit link
to causal modelling theory—by necessity, because some of
the relevant concepts have only been defined recently. We
aim to integrate such interpretations with the theoretical
framework that currently exists for causal analysis, thus
formally linking game-theoretical models and their com-
ponents to concepts that have been developed over the past
century, such as Wright’s [39,40] ‘path coefficients’ and the
closely related ‘causal derivative’ [35]. Recently, there has
been much progress and interest in causal modelling both
in terms of general theory [36], and in its application to
biological issues (e.g. [30,31]) We hope that by linking evol-
utionary game theory to some of these developments,
evolutionary game theory can be made more accessible to
researchers familiar with causal thinking, and similarly,
causal modelling can be made more accessible to researchers
familiar with evolutionary game theory.

We begin by presenting relevant concepts from EGT and
causal modelling. We next examine examples of game-theor-
etical models, placing them in a formal causal modelling
context. We will then discuss extensions of EGT to structured
populations (kin selection) and to trans-generational effects
(niche construction). Our examples all serve as examples of
different applications of causal modelling in EGT. Finally,
we will discuss confounding, the difference between the
causal derivative and that used in game-theoretical models,
and the relation of the ‘phenotypic gambit’ to these topics.
2. Unpacking fitness and the selection
differential

As we will see, causal models and causal graphs typically
model causal influences on fitness: roughly speaking, they
attempt to tease apart the causal influences of focal traits
on the number of offspring of a focal individual. While the
concept of fitness is central to evolutionary theory, when
we aim to understand adaptation it is equally important
to understand selection and the evolutionary response to selec-
tion. Fitness and selection are of course linked: variation in
fitness is necessary for selection to occur.

In this section, we show how fitness relates to the
response to selection under characteristic assumptions of con-
temporary continuous evolutionary game theory. In such a
model we begin with a function representing the fitness (or
expected fitness) of a focal individual expressing a mutant
trait value x in a population with mean trait value x*:

w(x,x�): ð2:1Þ

In EGT models x* is often called the ‘resident’ trait value,
stemming from a population genetic idea of a rare mutant
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individual with trait value x introduced into a large popu-
lation with a resident allele coding for trait value x*. Here
we will use these terms interchangeably: mean trait value
and resident trait value when describing x*. When fitness of
a focal individual depends on the traits of other individuals
in the population, we say that selection is frequency
dependent [11].

The fitness function is therefore a function of two
variables, x and x*. In evolutionary models we are commonly
interested in the evolutionary response (change in the
population mean phenotype x*) resulting from such a fitness
function, given certain simplifying assumptions. There are
alternative ways of transitioning from the fitness function
to an expression for evolutionary change, for example,
focusing on population genetics or quantitative genetics
(see [17–21]). We will use a quantitative genetic approach
here because it can be presented concisely while illuminating
some key simplifying assumptions made in evolutionary
game theory. Some of these assumptions could in fact
be relaxed: for example, there may be an environmental com-
ponent to the trait value x [19], and finite populations can be
considered [17,24] but equations of similar form can still be
recovered.

Here we assume that:

(i) the population is very large (idealized as an infinite
population), so that stochasticity in fitness outcomes
averages out over the population, and we can handle
the function for expected fitness as if it had a determi-
nistic effect on selection;

(ii) selection is δ-weak selection in the terminology of Wild
& Traulsen [12], where fitness may be strongly influ-
enced by the trait under consideration, but variance
in the trait value is small at any given time, so there
are only minor differences in fitness. We can then accu-
rately estimate fitness of a focal individual with trait
value x using a first-order Taylor polynomial [41]
about the current mean trait value in the population, x*:

w(x,x�) � w(x�,x�)þ @w
@x

����
x¼x�

(x� x�); ð2:2Þ

(iii) note that if the fitness function is itself linear in x (so
that its radius of curvature is infinite) the above
Taylor polynomial is exact and not an approximation;
more generally, the larger the local radius of curvature
of the fitness function (when compared to the variance
in x), the more accurate the approximation (for the
same reason we will later find that path coefficients
and causal derivatives coincide in linear models); and

(iv) the trait value is passed on faithfully from parent to
offspring (i.e. heritability equals one). This assumption
overlaps with the phenotypic gambit [42].

We can then derive an expression for evolutionary change
over a generation using the first covariance term of the Price
equation [43]:

Dx� ¼ 1
�w
cov(w(x,x�),x)

� 1
�w
cov w(x�,x�)þ @w

@x

����
x¼x�

(x� x�)
� �

,x
� �

¼ var(x)
�w

@w
@x

����
x¼x�

, ð2:3Þ
where we have used the observations that x*, w(x*, x*) and
∂w/∂x|x=x* are constants over the population (i.e. every indi-
vidual experiences the same population mean value x*, so
that covariance with x* and with functions of x* over the
population must equal zero) and that cov(x, ax) = a var(x)
where a is a constant. We could additionally use the approxi-
mation �w � w(x�,x�) when variance is small (see also [19–21]),
but in our analysis this is not necessary.

An equation of generally similar form arises from popu-
lation genetic and quantitative genetic considerations, and
from the ‘adaptive dynamics’ framework [15,17,21]. We can
see that because var(x)=�w is always non-negative, the deriva-
tive alone determines the direction of evolutionary change.
Using the symbol ∝ for proportionality, we can write

Dx� / @w
@x

����
x¼x�

: ð2:4Þ

The equations in this section, therefore, tell us that under
typical assumptions of EGT, variation in fitness and the
evolutionary response to selection are both proportional to
the derivative @w=@xjx¼x� . This expression of evolutionary
change tells us how we can expect a trait value to evolve,
given a hypothesis on how it is related to fitness, encapsu-
lated by the fitness function w. When the derivative in
equation (2.4) takes on a positive value, the trait value
increases and vice versa. When the derivative equals zero,
we have a candidate for an evolutionary endpoint. This
does not guarantee stability of these endpoints [3,11,21,44],
but in this article, we leave stability considerations aside
and focus on fitness, the expression for evolutionary change
(equation (2.3)), and their relation to concepts in causal
modelling theory.

We note that when the population is composed of differ-
ent classes (e.g. age classes, sexes, castes such as workers,
queens, etc), instead of a simple fitness function we must
use a weighted average over the different classes, where the
weights are reproductive values: this accounts for potential
differences in the long-term genetic contributions of different
classes while retaining focus on an expression of one-gener-
ation evolutionary change (e.g. [11,17,22,45]). Although not
the focus of our article, the concepts of class structure and
reproductive value will briefly appear in the example on
sex ratio evolution.
3. Path analysis, causal graphs, structural
equation modelling and the causal derivative

A common interpretation of the derivative @w=@x is that it
represents how strongly the focal trait x causally affects fit-
ness. This, however, is not necessarily the case in general.
For example, assume phenotype x (say, weight) is influenced
by rainfall u so that x = u, and fitness is also influenced by
rainfall so that w = u2, but there is no direct influence from
x to w. We could then write a valid equation stating w =
u2 = x2 for this system, and differentiation gives dw/dx = 2x.
But clearly this derivative says nothing about the causal
relationship between the phenotype and fitness, and instead
fitness and phenotype have a common cause and are said
to be confounded. Even in cases where the phenotype does
affect fitness, the derivative alone does not tell us how: it
may be direct or indirect, or mediated via multiple pathways.
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Specifying, incorporating, and explicitly analysing the causal
underpinning leads to a better understanding of how
selection in a game theoretic model works.

Causal relationships are represented by path diagrams,
where an arrow from one variable to another means that
the former is a direct cause (often called a ‘parent’) of the
latter. A sequence of arrows aligned in the same direction
(such that x1→…→ xn) is called a directed path. When there
is a directed path from x to y, x is a (possibly remote) cause
of y. We limit our attention to acyclic diagrams, which have
no directed path that ‘comes back’ to the same variable (so
no variable is a cause of itself ). There may be multiple
directed paths between two variables. Indeed, in many
game theoretic situations a focal trait can affect fitness
through multiple pathways. For instance offspring sex ratio
affects fitness via female and male offspring. Selection
along these paths may act concordantly or discordantly,
and in the latter case overall selection may even be zero if
the causal effects via each pathway cancel each other out.
One of the central motivations of this paper is to spell out
the causal assumptions of game theoretical models in parallel
both in graphical and mathematical terms, and to decompose
the total fitness and selective effect of a focal trait into the
path-specific effect of each of its paths.

The quantitative nature of each cause–effect relationship is
modelled by a structural equation that determines the value of
the effect variable from those of its parents, such that xi =
fi (PA(xi), ui), where PA(xi) is the set of all parents of xi and ui
is an unmodelled error term. Since in this paper, we are inter-
ested in explicating causal assumptions of a priori theoretical
models rather than empirical hypotheses about actual systems,
we assume that all relevant variables are modelled and error
terms are independent from each other.

Once the causal diagram and its structural equations
are specified, one may ask how a change or intervention
in a particular variable affects others through paths connect-
ing them. When all structural equations are linear, the
path-specific effect can be calculated by Sewall Wright’s
[39,40] method of path coefficients. Suppose there is a directed
path x1→…→ xn, and each causal link is linear so
that xiþ1 ¼ bixi þ f 0iþ1(PA(xiþ1)nxi, uiþ1)ð1 � i , nÞ where
PA(xi+1)\xi is the set of parents of xi+1 other than xi and
f 0iþ1 is a (possibly nonlinear) function. Then the path-specific
effect b of this path is given by multiplying all the linear
coefficients along the path, i.e. b ¼ Qn�1

i¼1 bi [39,40]. This
means that xn changes by b with a unit increment of x1
when every other path connecting them is held fixed. The
total effect of x1 on xn is then given by summing up path
specific effects over all the paths from x1 to xn.

This method was recently extended to nonlinear cases by
Henshaw et al. [35] (see also [46]) in order to calculate the
linear change in the effect variable induced by a small
change in the cause variable. Let us again consider the path
x1→…→ xn, but this time we allow the functional form of
the links constituting the path to be nonlinear (but differenti-
able). Then the path-specific causal derivative of xn on x1
through this path, which is the change in xn owing to a
small change in x1 when all other variables outside the
path are held fixed, is given by

Qn�1
i¼1 @xiþ1=@xi. Note that

this is an application of the chain rule [35,47] along the
path. When xi+1 is a nonlinear function of xi, its derivative ∂
xi+1/∂xi depends on the value of xi, so the causal derivative
is a function of the variables constituting the path; while in
the linear case, it is constant and reduces to Wright’s
method of path coefficients.

When there are multiple paths linking a cause x to an
effect w, the total causal derivative of w with respect to x is
given by summing up all the path-specific derivatives. Let
π(x, w) be the set of all directed paths from x to w, and for
each path P∈ π(x, w) denote the variables along the path as
(x = p0, …, pm(P) =w) where m(P) is the length of the path.
Then the total causal derivative is

dw
dx

¼
X

P[p(x,w)

Ym(P)�1

i¼0

@piþ1

@pi
, ð3:1Þ

where the notation using the symbol δ indicates a special
kind of partial derivative, where only non-descendants of x
(i.e. those with no directed path from x) are held fixed [35].
The summation holds even if there are nonlinear interactions
within each path or among paths in π(x, w).

The difference of the causal derivative from the standard
one is that the former measures only the change in the target
variable owing to a slight intervention on its causes. In the con-
text of the study of adaptive evolution where the variables in
question are fitness w (putative effect) and a trait x (putative
cause), this means the causal derivative measures only selec-
tion for x [48] and ignores all other side effects arising from
selection on correlated traits. This is not the case with the
standard derivative. For instance, if the true causal structure
is x← u→w for some (possibly unobserved) confounding
factor u, then w covaries with x, and thus the derivative
dw=dx is usually non-zero, as we noted above. But the causal
derivative dw=dx is zero everywhere, for there is no directed
path from x to w. This reflects the fact that one cannot change
the fitness value by intervening on x in this case (for their func-
tional relationship is spurious). We will return to this topic at
the end of this article.
4. A heuristic causal modelling scheme for
evolutionary game theory

Now back to evolutionary game theory, where our interest
is how, in a theoretical model, the fitness w of a focal individ-
ual changes in accordance with a slight change in a focal trait x
when selection is frequency-dependent. Recall that frequency-
dependence means that the fitness of a focal individual is
determined not just by its own traits but also by those of
others [11]. More specifically, in the types of models we
explore, the selective pressure on the focal trait x is regulated
by the population mean or resident quantity x*. A minimal
and abstract causal model template for game theoretic setups
then can be thought to include:

(i) the focal trait x and the population/resident trait x*,
both of which may affect fitness; and

(ii) one or more variables that mediate the fitness contri-
bution of the focal trait x. These ‘selective mediators’
regulate how x and x* affect fitness through nonlinear
interactions. In addition, these mediator variables are
themselves determined from x and x*.

Figure 1 is a simplified scheme of such causal models for
EGT. This captures an abstract, minimal model of frequency-
dependent selection, and is not meant to model any actual
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system. It should rather be considered as a heuristic template,
illustrating in an abstract manner the general features shared
by causal graphs that typically describe concrete models, as
we will see in examples that follow. In particular, the selective
mediators may take various forms which may be abstract, con-
crete, biotic, abiotic andsoon.Theymay represent the combined
outcome of the entries of a pay-off matrix (which may in turn
encapsulate outcomes of contests), survival probability, fertili-
zation rates, a ‘niche’, etc. There may also be multiple factors/
variables that act as mediators, in which case there may be
more than twodirectedpaths and terms in the causal derivative.
The mediators may be sequential or parallel, where the former
corresponds to multiplication (

Q
) and the latter to the sumPð Þ in equation (3.1). The first task of causal modelling is to

identify relevant causal mechanisms and express them in
terms of a causal diagram and structural equations.

Once the causal model is specified, one can calculate the
causal derivative of fitness w with respect to the focal trait x
as the sum of their respective path-specific derivatives; in this
simple case dw=dx ¼ @w=@xþ @s=@x @w=@s. To match the
expression of evolutionary change (equation (2.4)) the path-
specific derivatives are further evaluated at the population
value x ¼ x�, and candidate equilibria can be found by solving
the value of x* where the resulting expression vanishes.

Note that the causal derivative in evolutionary biology is
typically used on relative fitness [35], but in this article, we
will not be concerned with the distinction between relative
and absolute fitness. We are not studying absolute magni-
tudes of path coefficients, but instead we are interested in
their biological meaning, the insight we can gain from them
on the causes of fitness and selection, and their relative mag-
nitudes. For these purposes we can work with either relative
or absolute fitness.
5. A causal model of a simple game
Let us illustrate the above generalized heuristic model struc-
ture in a simple two-player matrix game (which could, for
example, represent the Hawk–Dove game [3] if appropriate
pay-offs are chosen). Although explicit causal modelling
and differential calculus do not bring new insight to this
well-known example, they serve to illustrate how causal
underpinnings of even very simple games with discrete strat-
egies can be interpreted in line with the above heuristic
template. Assume that in the two-player game the pay-off
matrix is given as follows:
H
 D
H
 a
 b
D
 c
 d
where each cell indicates the fitness pay-off (changes of fitness
arising from the encounter) to an individual adopting the
strategy indicated on the left, upon encounter with an
opponent with the strategy above (e.g. Hawk or Dove: [3]).
We can transform this matrix game into a continuous game
by letting x be the probability of a mutant individual playing
H, while x* is the same probability for the residents. Then the
expected fitness of the mutant is

wðx,x�Þ ¼ w0 þ axx� þ bx(1� x�)þ c(1� x)x�

þ d(1� x)(1� x�), ð5:1Þ
where w0 is baseline fitness. This can be rearranged as:

wðx,x�Þ ¼ w0 þ x(ax� þ b(1� x�)� cx� � d(1� x�))
þ x�(c� d)þ d ¼ xS(x�)þ T(x�),

ð5:2Þ

where S(x�) ¼ ax� þ b(1� x�)� cx� � d(1� x�) and T(x�) ¼
x�(c� d)þ dþ w0.

In the light of the causal diagram in figure 1, the
resulting equation can be interpreted as a structural equation
that shows that the resident value x*, given the pay-off
matrix, affects fitness of the focal individual in two ways:
one as an intermediate selective factor S acting multiplica-
tively with x, and second as an independent ‘base rate’
(denoted by T(x*)). It also tells that S does not depend on x
in this particular example, so there is no arrow from x to S
(figure 2).

Assuming that the directed path from x to w is not con-
founded, the causal derivative in this example coincides
with the standard derivative:

dw
dx

¼ @w
@x

¼ ax� þ b(1� x�)� cx� � d(1� x�) ¼ S(x�): ð5:3Þ

Equation (5.3) yields the direction of evolutionary change,
and a necessary condition for the strategy x* to be an evolu-
tionarily stable strategy is that this equation equals zero (note
that usually we would need to additionally evaluate the
derivative at x ¼ x�, but since x does not appear in equation
(5.3), this would not change anything), with the solution

x� ¼ b� d
bþ c� a� d

: ð5:4Þ

This is just a reproduction of the classical result [3], but
our presentation places it in the context of the general
causal scheme of figure 1. The pay-off matrix can be seen
as a kind of ‘environment’ that, combined with the resident
value, determines selection on the focal trait. In EGT, this
factor arises in the derivative of fitness with respect to the
focal trait evaluated at the resident value. In the above
simple example, the factor S was exactly equal to the deriva-
tive, since fitness is multiplication of x and S. Hence, causal
analysis of this example using the causal derivative is not
necessary to expose the causal structure, but it helps us by
revealing a unified structure underlying a wide range of
models. In general, the fitness function and the relevant
causal factors may be much more complex, nonlinear, com-
posed of multiple pathways and some selective mediators
may be given only in abstract form with some general prop-
erties, rather than explicit functional form. In such cases,
decomposing the complex causal nexus underlying the non-
linear fitness structure yields insight into how selection acts
on the focal trait.
6. Exposing the logic of sex ratio models
The evolution of the sex ratio is a classic example of a problem
that is game theoretical in nature, despite having been solved
prior to the formal definition of EGT. The explanation for the
prevalence and evolution of a 1 : 1 sex ratio is often attributed
to Düsing [49] and Fisher [4], although several researchers
played a role in the early decades of sex allocation
theory [50] (see also [51] for a historical overview of Düsing’s
work, and [7] for a general exposition of sex ratio theory).
Later (and already using some game-theoretic language)



x x*

s

w

Figure 1. A heuristic model template that we use to analyse EGT models in the
article. In frequency-dependent selection, the fitness effect of x is typically regu-
lated by a selective mediator s, which in turn is determined by both the focal
trait x and the resident quantity x* (which may or may not affect fitness by
itself ). Each solid edge (arrow) in the graph corresponds to a component of
the causal derivative of x. The fitness function is commonly nonlinear in both
x and x*. The selective mediator s may consist of multiple variables, and corre-
spondingly there may be multiple pathways from x to w. Spelling out such
mechanisms is the first task of building a causal model for EGT. Note that if
there were no pathways (direct or indirect) from x* to w, the model would col-
lapse to a simple optimization model (in the meaning of [33]). When we
evaluate the game-theoretical derivative of equation (2.4), as well as the
causal derivative of equation (3.1) with respect to x, only the solid paths
appear explicitly as partial derivatives in the expression. In game theoretical ter-
minology, we evaluate selection on x in an environment determined by the
resident trait value. In causal modelling terminology, only the descendants of
x are included in a causal derivative of w with respect to x.

x x*

s

w

Figure 2. A causal diagram of the simple two-player (e.g. Hawk–Dove)
game. x is the probability of a mutant individual playing Hawk, while x*
is the same probability for the residents.
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Hamilton [5] showed how female-biased sex ratios can evolve
in a populationwheremating takes place in small, local groups
before dispersal. Hamilton’s work, however, led to a pro-
tracted uncertainty about the underlying causal explanation
for the evolution of skewed sex ratios in his model, and this
debate remained unresolved for years until a publication by
Taylor [37] clarified the issue. Although not presented using
the language of explicit causal modelling, the core of the
paper amounts to an analysis of the causal derivative and an
interpretation of partial derivatives it is composed of.

Here we will explicitly interpret Taylor’s model using
causal graphs and the causal derivative concept. While this
does not change Taylor’s results, it grounds it in formal
theory of causal modelling, from the path coefficients pre-
sented by Wright [39] more than a century ago, to the
recent causal derivative concept of Henshaw et al. [35].
With x indicating the evolving sex ratio, Taylor begins with
a model of fitness of a mother producing nd daughters and
ns sons:

wðx,x�Þ ¼ nd(x)D(n�d(x
�),n�s (x

�),nd(x),ns(x))

þ ns(x)S(n�d(x
�),n�s (x

�),nd(x),ns(x)): ð6:1Þ

Here,D and S represent ‘selectivemediators’ comparable to
S in figure 1. These selective mediators determine how the
number of daughters nd, and sons ns, contribute to fitness. In
Taylor’s model, these mediators are the ‘expected ultimate
genetic contribution’ per daughter and per son, which are
effectively the individual reproductive values of newly con-
ceived individuals belonging to the female or male classes
[45,52]. D and S are affected by the number of daughters and
sons produced by resident individuals, as well as potentially
by those produced by the focal individual. Finally, the
number of daughters and sons are determined by the focal
trait x, which is the proportion of reproductive resources allo-
cated by the mother to the production of sons (equivalent to
r in Taylor’s notation), so that nd is proportional to 1-x and ns
is proportional to x. These causal assumptions can be summar-
ized by the causal graph in figure 3.

With this set-up, we are interested in the nature of the
causal pathways driving x* towards an equilibrium value.
In the causal graph of the sex ratio model (figure 3) there
are six solid paths, composed of 10 edges. Correspondingly,
the game-theoretical causal derivative consists of six terms,
which are composed of 10 partial derivatives combined in
various ways. Each of these 10 partial derivatives corre-
sponds to a path coefficient in the graph above. They are
@nd=@x, @ns=@x, @D=@nd, @D=@ns, @S=@nd, @S=@ns, D, S, nd
and ns. Note that while the last four do not immediately
look like partial derivatives, they are actually @w=@nd,
@w=@ns, @w=@D and @w=@S respectively from equation (6.1).

The full game-theoretical causal derivative is

dw
dx

����
x¼x�

¼ @nd
@x

Dþ @ns
@x

Sþ @nd
@x

@D
@nd

nd þ @ns
@x

@D
@ns

nd þ @nd
@x

@S
@nd

ns þ @ns
@x

@S
@ns

ns

� �����
x¼x�

ð6:2Þ

An omission in the original publication has been cor-
rected here where the factors nd and ns were missing in the
last four terms (but this does not affect the results of the orig-
inal paper). The causal modelling approach does not change
the conclusions of Taylor’s paper, but we now have a formal
link to path coefficients and other concepts of causal model-
ling. All these aspects together are helpful in reasoning about
the causal structure of the sex ratio problem. The causal
derivative decomposes the causal factors affecting fitness
into several additive components, which are further com-
posed of multiplicative components (path coefficients), and
this kind of structure is considerably easier to read and
understand as an additive causal model than a nonlinear fit-
ness function. These various components are not just causal
factors influencing fitness, but also causal factors influencing
selection and evolutionary change which is also proportional
to the causal derivative under the assumptions of EGT.

Taylor [37] gave the various partial derivatives appearing
in equation (6.2) a causal interpretation (though not using
formal language of causal modelling), and greatly clarified
our understanding of the drivers of sex ratio evolution. The
central insight was that the first two terms of equation (6.2)
correspond to the classic, panmictic ‘Fisherian’ model, and
that it is the last four terms that may cause deviations from
1 : 1 sex ratios. In the panmictic model the last four terms
are all zero, while in Hamilton’s [5] local mate competition
model the last two deviate from zero, and cause female-
biased sex ratios. In general, any of the last four terms in
the equation can differ from zero if the focal mother’s
number of daughters or sons influences the long-term genetic
contribution of her own daughters or sons. For these details,
we refer readers to the original publication [37]. What our



x

nd

w

ns

D S

x*

nd
* ns

*

Figure 3. Taylor’s sex ratio model. The expected genetic contribution D and S
determines how daughters and sons contribute to fitness, and at the same
time are determined by the numbers of daughters and sons of the focal and
of resident individuals (nd, ns, n�d , n

�
s ). There are in total six directed paths

from x to w, denoted by solid lines.
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analysis adds to this is a clear, formal correspondence to
causal derivatives, and hence path coefficients in a causal
graph. These together can then be used to categorize and
understand sex ratio models in a manner that would be far
less intuitive using a nonlinear fitness function alone, and
the combination of a game theoretical and causal modelling
approach makes the analysis more broadly accessible.

We arrive at the same equation (6.2) by using the causal
derivative formula (equation (3.1)), or by deriving the game
theoretical derivative (equation (2.4)) for the sex ratio model.
This does not, however, imply that the causal derivative is
‘just’differentiation: instead, it is an equivalent of differentiation
in a causal modelling context, whose components formally cor-
respond to the path coefficients ofWright [39], and to the causal
graph visually depicting the process (figure 2), and it can alter-
natively be defined as a limit using Pearl’s [36] do-calculus (see
the electronic supplementary materials for [35]).
7. Comparing the relative strengths of two
causal pathways: sperm competition versus
sperm limitation, and path-specific causal
derivatives

Many long-standing and central game-theoretical questions
relate to the causes and consequences of the evolution of
gametic traits, such as their size and number [53,54]. For
example, the evolutionary divergence of female and male
gamete sizes (i.e. the evolution of anisogamy) has inspired
mathematical models since the 1930s [55], many of them
game-theoretical in nature [3,8]. These models gave rise to a
recent debate on the relative importance of two components
of selection in gamete evolution: gamete limitation and
gamete competition. Gamete limitation refers to selection
for improved fertilization success of gametes, while gamete
competition refers to selection for increased share of fertiliza-
tions without necessarily increasing total fertilization success
(e.g. [56]). Using anthropomorphic terminology, selection via
gamete limitation has a cooperative streak to it while gamete
competition is a more selfish selective agent [57], and the
debate between these two aspects of selection reflects to
some extent the debate between group selection and individ-
ual selection in evolutionary theory [58]. However,
commonly models include only one or the other of these
two aspects of selection, making it difficult to draw conclu-
sions about their relative contributions to gamete evolution.
When combined in a single model, both can drive selection
in the same direction, selecting for increased numbers of
gametes [59], but by itself this says nothing about their
relative strengths.

The nature of these models is game-theoretical because
when a mutant producing a deviant gamete size or number
appears in a resident population, it interacts and competes
with these resident individuals and their gametes. Thus
causal derivatives in the game-theoretical context described
above, and more specifically, path-specific causal derivatives
[35] are a natural tool to compare the strengths of the two
causal pathways. This kind of comparison has previously
been done informally [60]. However, similar to Taylor’s [37]
sex ratio model, identifying model components with causal
derivatives, and thus with path coefficients on a causal
graph, gives the analysis a formal theoretical justification in
a causal modelling context.

The basic model is set up so that male gametes (sperm)
compete [61] for fertilizations of female gametes (eggs), an
asymmetric perspective which is often justified when
gametes are sufficiently diverged [62]. Though not shown
here, a similar model can be applied in a symmetrical fashion,
so that the mathematical form of equations does not differ for
males and females [60].

Consider a rare mutant male competing for a set of e
eggs with N− 1 resident males. This could be an external
fertilizer with broadcast spawning that takes place in groups
containing N males, or it could be an internal fertilizer with
sperm storage,where each female receivesNdifferent ejaculates
which mix such that each spermatozoon competes equally for
fertilization of her e eggs. However, not all eggs are necessarily
fertilized, and this fertilization success may depend on the total
number or concentration of sperm s. Each residentmale releases
x* gametes, but a rare mutant instead releases x gametes. Our
focal trait is x, whose fitness contribution is determined by
the total number of eggs e as well as the total sperm number
s, which in turn is a function of x and x*. We are interested in
two factors mediating selection. The first is the total number
of successful fertilizations f, which is a function of the total
sperm number s and egg number e. The second mechanism
through which the total sperm number affects the fertilization
rate is sperm competition, denoted by c. The resulting causal
diagram is shown in figure 4.

Given the causal diagram for this model (figure 4), our aim
is to compare the relative contributions of paths passing via c
to those passing via f. We proceed by assigning structural
equations for each variable, based on reasonable biological
assumptions. Since the competition occurs in a group of N
males, of which N− 1 are residents, we have s ¼ xþ
(N � 1)x�. To model c, the assumption that each sperm has
an equal chance to fertilize a given egg implies ‘fair raffle’
sperm competition [61], so that c(x,s) ¼ x=s ¼ x=ðxþ
(N � 1)x�Þ. Of f we need only make a minimal assumption
that it is a concave (decelerating or saturating) function of s,
which is strongly implied by theoretical work spanning several
decades (reviewed in [62]). For instance, a commonly used fer-
tilization function is f(s,e) ¼ e(1� exp(�as)), where a is a
positive parameter. However, we do not need to assume this
or any other particular form, beyond the requirement of con-
cavity, to make progress in the analysis. Under these
assumptions the fitness function becomes:

w(x,x�) ¼ f(s,e)c(x,s) ¼ f(s,e)
x
s

� �
, ð7:1Þ
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where the resident trait value acts via the total sperm number
s ¼ xþ (N � 1)x�. While the fitness function (7.1) might seem
superficially relatively simple, it is in fact difficult to directly
assess the relative effects of gamete limitation and gamete
competition on fitness and selection: fitness is a product of
two functions c and f, which are typically both nonlinear.
However, we can again examine the causal derivative and its
decomposition consisting of partial derivatives (path coeffi-
cients) for each edge in figure 4. We can then compare the
sum of the paths from x to w passing via c to the single path
from x to w passing via f, or in other words compare the
path-specific causal derivative of w on x via paths that pass
through c to those that pass through f. By definition, the
path-specific causal derivative for a set of paths (say, H ) tells
us the rate at which fitness changes owing to changes in x,
while holding all paths outside of H fixed [35]. The full
causal derivative for this model is:

dw
dx

����
x¼x�

¼ @s
@x

@f
@s

cþ @c
@x

f þ @s
@x

@c
@s

f
� �����

x¼x�
, ð7:2Þ

and we can identify the first term in the brackets as that corre-
sponding to the path passing via f in figure 4, while the sum of
the last two terms corresponds to the paths passing through c.
In other words, the two path-specific causal derivatives we are
interested in are @s=@x ð@f=@sÞ c and (ð@c=@xÞf þ @s=@x
ð@c=@sÞf), evaluated at x ¼ x�. We haven’t explicitly defined
f, but surprisingly it can be shown that as long as f is a concave
function of s, the sum of the last two terms exceeds the first
term providedN � 2. In other words, as long as the focal indi-
vidual faces competition from at least one other individual,
selection via sperm competition tends to prevail over selection
via sperm limitation. Details of the derivation are found in [60].
Again, the informal and intuitive justification of the original
model is transferred to a more rigorous causal modelling con-
text with concrete interpretations of model components as
edges and paths in a causal graph and corresponding path
coefficients (figure 4).
8. A causal modelling perspective on kin
selection in continuous games

In the preceding sections we have assumed that when a rare
mutant individual appears in the population, its fitness
is influenced by the resident (or average) population
strategy: fitness-affecting interactions take place with
random population members of average phenotype x*. In
other words, a rare mutant arising in the population has a
negligibly low probability of interacting with another rare
mutant (though its own gametes or offspring may interact
with each other, as in the preceding examples). This assump-
tion is broken if interactions are structured in a non-random
manner so that rare mutants have an elevated probability of
interacting with each other. For example, dispersal could be
limited, so that related individuals tend to stay close to
each other, or (extended) family members could otherwise
non-randomly interact with each other [17,23,24,63]. In such
cases, fitness of the focal individual is affected not only by
its own and the resident phenotype, but potentially also by
the phenotypes of its neighbours who may have an inflated
likelihood of carrying the same mutation as the focal individ-
ual, resulting in correlated genotypes and phenotypes among
interacting individuals. This is the idea behind kin selection
[63] which is perhaps best known for providing an expla-
nation for the evolution of altruistic behaviours, but which
is now a central part of mathematical evolutionary theory
and well-integrated with many other aspects of evolutionary
theory in general ([23,24,34,64,65], to mention just a few from
an enormous literature).

Kin selection theory has always had a game theoretical
element to it, as both game theory and kin selection are
built on the premise that the trait value of one individual
can influence the fitness of another. Kin selection was never-
theless not well integrated with EGT until an influential
paper by Taylor & Frank [22] showed how continuous
game theory extends in a straightforward way to kin selection
models. Taylor & Frank’s method is an example of a ‘direct
fitness’ [52] or ‘neighbour-modulated fitness’ [63] approach
to kin selection, as opposed to an ‘inclusive fitness’ [52,63]
approach. Inclusive fitness is an actor-centred approach,
which focuses on the effect that the trait of the focal individ-
ual (actor) may have on related individuals (recipients).
Direct or neighbour-modulated fitness, in contrast, is a recipi-
ent-centric approach and focuses on the effect that the traits
of related individuals (actors) may have on the fitness of
the focal individual (the recipient) [22,24,52,64]. Direct fitness
is the perspective on kin selection that integrates more
seamlessly with EGT, and it will be our focus here.

In a direct fitness kin selection model, we focus on the
fitness of a focal individual, similar to the usual game theoreti-
cal model. However, in addition to the fitness effect owing to
the focal value x itself and owing to the resident trait value
x*, we must account for the effect that neighbours with corre-
lated phenotypes (y) may have on the fitness of the focal
individual. This correlation is denoted by a double-headed
arrow. The resulting causal model is given in figure 5.

To derive the selection differential in this set-up, one must
consider two causal derivatives dw=dx and dw=dy each corre-
sponding to fitness effects caused by x and by y (which may
be correlated with x). In the absence of confounding, these
correspond to the partial derivatives @w=@x and @w=@y of a
first order multivariable Taylor polynomial [41] about the
current mean trait value in the population (x�):

w(x,y,x�) � w(x�,x�x�)þ @w
@x

����
x¼y¼x�

(x� x�)

þ @w
@y

����
x¼y¼x�

(y� x�): ð8:1Þ

Analogous to equation (2.4), the change in the mean trait
value over a generation is

D�x � 1
�w
@w
@x

����
x¼y¼x�

cov(x,x)þ 1
�w
@w
@y

����
x¼y¼x�

cov(y,x)

¼ var(x)
�w

@w
@x

����
x¼y¼x�

þ @w
@y

����
x¼y¼x�

cov(y,x)
var(x)

( )

¼ var(x)
�w

{�cþ br},

ð8:2Þ

where the last equality follows from noting that
cov(y,x)=var(x) ¼ byx ¼ r is a regression coefficient of related-
ness [64,66,67], and denoting @w=@xjx¼y¼x� ¼ �c and
@w=@yjx¼y¼x� ¼ b. These are commonly called the ‘cost’ and
‘benefit’ terms of the famous ‘Hamilton’s rule’, which states
that there is positive selection for a trait if �cþ br . 0, and



x x*

s

w

c

e

f

Figure 4. A causal model for gamete evolution. Sperm numbers of the focal
and other individuals (x and x*) affect fitness through two distinct selection
mechanisms, gamete limitation f and competition c, both of which are
affected by the total sperm number s. The number of eggs the males are
competing over is indicated by e.

x x*

s

w

y

Figure 5. A causal model for kin selection, following the heuristic scheme of
figure 1. The general model derivation in the main text does not explicitly
include the intermediate mechanism s, but it is implicitly included in the
total fitness effect of x and y.
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this can happen even if the trait is costly to its bearer (c . 0)
provided this cost is countered by a sufficiently high benefit
(b . 0) bestowed upon sufficiently close relatives (rb . c).
These coefficients may be further decomposed into path-
specific effects in line with the causal diagram in figure 5.
Note the similarity of the equations (8.2) versus (2.3) as well
as the causal graphs (figure 5 versus figure 1) of ‘standard’
game theory and kin selection in a game-theoretical frame-
work. Again, if there are no causal pathways from y to w and
x* to w (implying they also do not appear in the fitness func-
tion), the graph reduces to simple optimization (sensu [33]).

Taylor & Frank [22] showed how kin selection merges
with game theory in this way, and made the application of
the direct fitness method much easier than it had been pre-
viously. Their method also provided powerful tools for
incorporating class-structure into kin selection models, thus
offering a general recipe for analysing a range of complicated
model scenarios. Interestingly, in their original publication,
Taylor & Frank [22] seem to treat y as if it was actually a des-
cendant of x: if we replace the double-headed arrow in
figure 4 with a single-headed arrow pointing from x to y,
we find that the causal derivative of w with respect to x col-
lects all the effects included in the selection differential above,
with the relatedness coefficient r replaced by the partial
derivative @y=@x. In terms of a causal graph, then, the
substitution @y=@x ¼ r in Taylor & Frank [22] follows from
calculating a causal derivative of w with respect to x on the
causal graph such as that in figure 5 as if x is a cause of y.
In practice, this computational trick leads to the same
result. In a different paper Taylor [20] points out that the
method of Taylor & Frank [22] treats y as if it is causally influ-
enced by x which is not necessarily the case, and in general it
only covaries with x.
9. Trans-generational kin selection games
The fitness effects related individuals can have on each other
need not be confined to one generation. The fitness of an indi-
vidual existing now can be influenced by the actions of
another individual in the past via modifications of the
environment. In fact, the possibility of modification of the
environment is built into the very first causal graph of EGT
we presented (figure 1, right side): the selective mediator s
can represent an environmental factor which is potentially
altered by the focal individual and/or the population at
large via the resident value x*. This viewpoint is emphasized
in particular by the ‘adaptive dynamics’ approach [15,68],
where a separation of evolutionary and ecological timescales
is one of the central assumptions [69] and allows the environ-
ment (as influenced by the resident population) to reach an
equilibrium state over several generations and subsequently
influence selection on the focal trait. This property of EGT
is closely connected to the concept of niche construction. If
we take a common, broad definition of niche construction
as the modification of selective environments by organisms
[70,71], niche construction is present even in the basic form
of evolutionary game theory (figure 1) when s is considered
as ‘the selective environment’. However, in this case there is
little scope for selection to shape the environment in an adap-
tive fashion in the long term, or for ‘caring about the future’
in terms of altruism that extends across generations: after any
alteration of the environment, selection again acts in a short-
sighted and selfish fashion with no regard for the past or the
future, often leading to outcomes where competition deterio-
rates the environment on which everyone depends (the
’tragedy of the commons’: [72]).

A more interesting example of ‘niche construction’ can
arise when kin selection acts across generations: individuals
that exist at different points in time can still share genes
and phenotypes owing to shared ancestry, permitting the
evolution of trans-generational altruism [73] and the evol-
ution of adaptive niche constructing traits [74], thus
reducing the tragedy of the commons. Again, this can be con-
sidered an extension of game theory where the current
environment is altered not only by those relatives living in
the current generation (as in figure 5), but also by relatives
who lived in past generations [73,74].

Figure 6 is a diagrammatic representation of a trans-
generational kin selection model discussed in Lehmann
[73]. In this model, individuals live in finite demes, from
which juveniles disperse with probability m. Limited disper-
sal results in inflated relatedness between individuals in a
deme, both within and between generations. The fecundity
f of the focal individual with trait x is positively affected by
the trait values y0 of individuals living in the same deme at
the same time and yt of their ancestors at generation t. Vari-
ables fR and fD are average relative fecundities of individuals
in the focal and non-focal (resident) demes respectively,
which also have inputs from the past generations. In each
deme, exactly N juveniles can reach adulthood so the
population is held at a constant size, and this implies compe-
tition for breeding spots between juveniles. This competition
is in turn influenced by the fecundities of individuals in the
local deme, as well as ‘resident’ individuals immigrating
from other demes, and we therefore denote the competition
term as a ‘selective mediator’ indicated by S. In Lehmann’s
model, fitness is given by w ¼ f S( fR, fD), where S is a non-
linear function of fR and fD. The focal individual is related
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to individuals in the same deme with the relatedness coeffi-
cient r0, and also to their ancestors in the t-th generation
with rt.

With this model, the relevant causal derivatives are

dw
dx

¼ @f
@x

@w
@f

; ð9:1Þ

dw
dyt

¼ @f
@yt

@w
@f

þ @fR
@yt

@S
@fR

@w
@S

ð9:2Þ

and the selection differential is proportional to

dw
dx

þ dw
dy0

r0 þ
Xn
t¼1

dw
dyt

rt, ð9:3Þ

where the first term is the direct cost for a focal individual,
the second term contains the benefit from other individuals
in the same generation as well as the negative effect of
increased competition in the patch owing to overall increased
fecundity, and the third term includes the accumulated
benefits from prior generations as well as the effect of
increased competition owing to the intergenerational fecund-
ity benefit. If each partial derivative is evaluated according to
figure 6 and accounting for the corresponding path coeffi-
cients, this reproduces Lehmann’s [73] equation (3.1) which
gives the direction of selection on a mutant allele. The main
advantage of an explicit causal analysis for this model is
the increased transparency it presents particularly for readers
unfamiliar with the mathematical methods used in the study.
In this model the transmission of benefits from the past is not
explicitly described, but alterations of the model can make
this transmission more explicit; for details on the space–
time relatedness coefficients rt, as well as model extensions
we refer the reader to Lehmann [73,74].

As in the previous section, this is again a ‘direct fitness’
approach where we focus on the fitness of one recipient and
collect the effects on their fitness of other individuals living
in the same or past generations (figure 6). As before, we
could take an ‘inclusive fitness approach’, where we focus on
a single actor in the current generation and sum up its effects
on fitnesses of relatives in the current and future generations.
Both calculations result in the same evolutionary change [74].
10. Confounding, the causal derivative, the
game-theoretical derivative and the
phenotypic gambit

While to an evolutionary biologist it may seem almost
obvious that the game-theoretical derivative @w=@xjx¼x� has
an explicit causal meaning, it may be far from obvious to
an expert in causal modelling (conversations between the
authors of this article serve as evidence). Indeed, given the
possibility of confounding discussed above, a causal theorist
is entirely justified in their scepticism towards the causal
meaning of a derivative. However, the evolutionary biologist
may equally justifiably say that the whole point of a game
theoretical model is to construct a causal hypothesis on the
cause of fitness and analyse the consequences of this hypoth-
esis. The focal trait is assumed a priori to have a fitness effect
without confounding. The idea of a causal model (starting
with the additive fitness pay-offs in a matrix model) is
perhaps so deeply ingrained in EGT that it is rarely explicitly
mentioned. Possibly for this very reason the causal basis of
EGT is not usually given much attention in a formal sense
(although exceptions exist: see Frank [23] and Queller [66]
for examples in kin selection theory).

Both viewpoints are therefore valid. It is true that lack of
confounding is almost implicit in evolutionary game theory,
but it is nevertheless a substantive assumption about the
causal structure of the problem. The fact that we can write
w as a mathematical function of x does not imply a causal
relationship between the two. In EGT we assume such a
causal relationship does exist, and the fitness function or
pay-off rule represents this causal relationship. Under this
assumption, the identification of the game-theoretical
derivative with the causal derivative is justified.

Put another way, none of this is a problem in the theoreti-
cal world which was built by the modeller, which may only
exist on pen and paper, and where the modeller decides the
rules, some less consciously than others. However, when
we try to apply this model to an actual population, we do
not know a priori that there is no confounding that may
cause the real world to deviate from the theoretical world.
It is at this intersection of the theory world and real world
where the distinction between the standard derivative and
causal derivative becomes crucial.

A more commonly discussed aspect of the theory–reality
interface in EGT (and phenotypic models in general) is the so-
called phenotypic gambit [42,75,76]. In essence, the phenotypic
gambit is the research strategy of studying organismal
evolution with little or no knowledge of the actual genetic
architecture of the trait in question [75]. We assume we can
get precise enough predictions and explanations by working
with the phenotype alone. The assumptions inherent in
the phenotypic gambit therefore relate to the genotype–
phenotype map. By contrast, the problem of confounding
concerns the causal relationship between the phenotype
and fitness. These are distinct assumptions about the causal
structure of a target population, and our point here is that
the confoundedness may bias predictions of a game theoretic
model in a way different from phenotypic gambit.
11. Conclusion
Our aim with this article has been to build a bridge between
evolutionary game theory of continuous quantitative traits
on one hand, and formal theory of causal modelling on the
other. In this way, the causal structure and meaning of game
theoretical models in evolutionary biology becomes more
readily understandable to those unfamiliarwith themathemat-
ical side of the modelling method; conversely, our intention is
also to bring the tools and concepts of causal modelling within
reach of game theoreticians. Game theoretical models in
evolutionary biology have been analysed from a causal
perspective previously, either in description of generalmethod-
ology (e.g. the use of path diagrams in kin selection models of
[23,77]), or implicitly in clarifying the nature of debated issues
in evolutionary theory and in picking apart the detailed bio-
logical mechanisms driving selection in a given model (e.g.
the analysis of sex ratio evolution in [37]; interpretation of dis-
persal models in [38]; comparison of causes of selection in
gamete evolution in [60]). However, such approaches have
often been informal, and the justification for drawing causal



x

fR

w

y0

yt

f fD

s

x*0

x*t

–C
B0

B
0  – C

Bt

r0

rt

–(1 – m)2

Bt

1
1

Figure 6. Trans-generational kin selection, where the fitness of the focal
individual is influenced not only by contemporary relatives, but also by
those who lived in previous generations and altered the environment. The
relatedness between individuals in different generations can be computed
as space–time relatedness coefficients [73,74] corresponding to each
double-headed arrow in the graph. Our notation differs slightly from that
of Lehmann [73]. Here, x is the phenotype of the focal individual, while
yt is the average phenotype of individuals living in the focal deme t gener-
ations prior to the focal generation and rt is the relatedness between the focal
individual and an individual living t generations prior to the focal generation
in the same deme. x*t is the population resident value t generations prior to
the focal generation. Bt is the fecundity benefit received from all actors
expressing acts of helping in the focal deme t generations prior to the
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conclusions from mathematical expressions in a given model
may remain vague: partial derivatives and their combinations
seem to have a causalmeaning and yield biological insight, and
their relative magnitudes can inform us about the relative con-
tribution of different pathways to selection, but it is difficult to
pin down exactly why this works.

We have shown that there is scope to unify evolutionary
game theory and causal modelling in a more formal fashion,
which clarifies the nature of modelling methods, facilitates
the use of unified, common language across such analyses,
and justifies the use of explicitly causal language in game
theoretical research. The same concepts used in e.g. disentan-
gling causal relationships from empirical data apply to the
causal analysis of a game theoretical model. A causal diagram
is often more readily understandable than a sum of the pro-
ducts of partial derivatives, while mathematical expressions
carry more detailed information than a causal diagram. Their
combination can be more than the sum of their parts. The use
of causal graphs makes the structure of various types of
game-theoretical models more readily understandable and
approachable to non-specialists, from the basic set-up of
figure 1 to the kin selection model of figure 5 and the intra-
generational kin selection and niche construction model of
figure 6. The causal approach thus helps us categorize model-
ling methods and understand their relationships to each other.

We have seen how the causal derivative recently introduced
by Henshaw et al. [35] is typically implicit in game theoretical
models: confounding effects are usually assumed to be absent,
so that the game-theoretical derivative corresponds to the
causal derivative. This in turn gives formal justification for the
interpretation of partial derivatives in a game theoretical
model as Wright’s path coefficients [39,40] of the corresponding
edges in a causal graph,while products of these path coefficients
make up path-specific effects (path-specific causal derivatives:
[35]). We can then recast, for example, Taylor’s [37] exposition
of the logic of sex allocation models as a visually intuitive path
diagram where partial derivatives become path coefficients.
Similarly, we can interpret sums of products of partial deriva-
tives as path-specific effects passing through a particular node
in a causal graph, as was done informally in a game-theoretical
comparison of the drivers of gamete evolution [60].

Evolutionary game theory with its extensions into kin
selection [22], class-structured populations [22,45], the evol-
ution of niche-constructing traits [73,74] and with its ever-
increasing scope [11] has become one of the foremost methods
for illuminating the nature of adaptation and the appearance of
‘design’ in nature, linking amodel of evolutionary change over
one generation to a long-term view of adaptation [17]. One of
its most attractive features is that it makes the analysis of
almost arbitrarily complex nonlinear models with frequency
dependence tractable. A causal analysis of the mathematical
components (partial derivatives) of such a model can yield
insight that can be next to impossible to gain otherwise [38].
Recent advances in the causal analysis of nonlinear interactions
[35] fit organically into this framework and provide a formal
bridge between methods of modern evolutionary game
theory, and those of causal modelling.
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