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ARTICLE INFO ABSTRACT

Keywords: The NRF2 pathway is frequently activated in various cancer types, yet a comprehensive analysis of its effects
NRF2 across different malignancies is currently lacking. We developed a NRF2 activity metric and utilized it to conduct
KEAP1

a pan-cancer analysis of oncogenic NRF2 signaling. We identified an immunoevasive phenotype where high

l;;j::tlous NRF2 activity is associated with low interferon-gamma (IFNy), HLA-I expression and T cell and macrophage
T cells infiltration in squamous malignancies of the lung, head and neck area, cervix and esophagus. Squamous NRF2
Interferon gamma overactive tumors comprise a molecular phenotype with SOX2/TP63 amplification, TP53 mutation and CDKN2A
HLA-I loss. These immune cold NRF2 hyperactive diseases are associated with upregulation of immunomodulatory
SOX2 NAMPT, WNT5A, SPP1, SLC7A11, SLC2A1 and PD-L1. Based on our functional genomics analyses, these genes
TP63 represent candidate NRF2 targets, suggesting direct modulation of the tumor immune milieu. Single-cell mRNA
PD-L1 data shows that cancer cells of this subtype exhibit decreased expression of IFNy responsive ligands, and

increased expression of immunosuppressive ligands NAMPT, SPP1 and WNT5A that mediate signaling in
intercellular crosstalk. In addition, we discovered that the negative relationship of NRF2 and immune cells are
explained by stromal populations of lung squamous cell carcinoma, and this effect spans multiple squamous
malignancies based on our molecular subtyping and deconvolution data.

malignant growth — requires a cell to acquire a set of distinct hallmark
properties over time. These properties comprise functional changes in
pre-malignant cells, as well as in various proximate stromal cells
through intercellular crosstalk. From this standpoint, malignant tumors

1. Introduction

Carcinogenesis — the gradual path from normal cellular behavior to
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can be considered as complex organs harnessed to sustain neoplastic
growth [1]. Due to the increase in proliferation and cellular metabolism,
an inevitable consequence of malignant growth is increased oxidative
stress, which renders pathways with antioxidant effects under positive

Redox Biology 61 (2023) 102644

NRF2 drives PD-L1 expression and leads to reduced leukocyte infiltra-
tion in mouse allograft models of melanoma and lung adenocarcinoma
[9,10], but a comprehensive characterization of the effect of NRF2
overactivity on cancer immunity is currently lacking. The aim of this

Abbreviations

LAML  Acute Myeloid Leukemia

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

LGG Brain Lower Grade Glioma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical
adenocarcinoma

CHOL  Cholangiocarcinoma

LCML  Chronic Myelogenous Leukemia

COAD  Colon adenocarcinoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LIHC Liver hepatocellular carcinoma

LUAD  Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

MESO  Mesothelioma

ov Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM  Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THYM  Thymoma

THCA  Thyroid carcinoma

ucs Uterine Carcinosarcoma

UCEC Uterine Corpus Endometrial Carcinoma
UvM Uveal Melanoma

TCGA The Cancer Genome Atlas

CCLE Cancer Cell Line Encyclopedia

IFNy Interferon gamma

GTEx Genotype Tissue Expression Portal
SqCC Squamous cell carcinoma

ICB Immune-checkpoint blockade

TME Tumor microenvironment

selection [2]. The principal regulator of the cellular redox homeostasis is
the transcription factor Nuclear factor erythroid 2-related factor 2
(NRF2, NFE2L2 gene), which is frequently hyperactive in malignant
disease. Especially in non-small cell lung cancer, the oncogenic activa-
tion of NRF2 is highly frequent: somatic NRF2 activating mutations
alone are among the most frequently occurring subtype specific aber-
rations [3]. The cytoplasmic inhibitor of NRF2, Kelch-like ECH Associ-
ated Protein 1 (KEAP1), is an E3 ubiquitin ligase substrate adaptor
targeting NRF2 for proteasomal degradation under unstressed condi-
tions. In oxidative or electrophile stress, the interaction is disrupted and
de novo synthesized NRF2 is translocated to the nucleus to drive target
gene expression. NRF2 target genes have antioxidant and detoxifying
effects via various mechanisms including upregulation of glutathione
S-transferases, as well as NAD(P)H quinone oxidoreductase, which has
multiple roles in adaptive cellular responses to stress [4]. In cancer, the
regulation of NRF2 is disturbed rendering NRF2 constitutively active.
Mechanisms of NRF2 activation include somatic mutations and
copy-number variation in NFE2L2 (gain-of-function or amplification)
and KEAP1 (loss-of-function or deletion), as well as positive regulation
by p62 [5,6]. Along with its antioxidant effects, NRF2 hyperactivity is
known to promote cancer cell proliferation and survival via various
other mechanisms, for instance by promoting anabolic metabolism and
increasing chemoresistance via enhanced phase II enzyme and drug
efflux transporter expression [7].

One hallmark property of cancer is its ability to evade destruction by
the immune system [1]. The past decade has complemented
oncogene-centric targeted therapies with treatments that modulate the
antitumor immune response. However, current diagnostic approaches
fail to detect the clinical responders for immune-checkpoint blockade
(ICB) with reproducible precision [8]. From this viewpoint, the effects of
known oncogenic events on the crosstalk between cancer cells and im-
mune cells should be elucidated, as these events are often straightfor-
ward to identify, and if associated with altered immune responses, may
serve as predictive biomarkers for ICB. It has been previously shown that

study was therefore to characterize NRF2 hyperactivity at a pan-cancer
scale and interrogate unknown biological effects of oncogenic NRF2
activation, with a special emphasis on cancer immunity. To this end, we
utilized The Cancer Genome Atlas (TCGA) and Cancer Cell Line Ency-
clopedia (CCLE), which are publicly available multi-omics databases of
tumors and cell lines, respectively. Furthermore, the key findings of this
work were validated with independent clinical cohorts.

2. Results
2.1. NRF2 activity score improves detection of NRF2 driven malignancies

We developed a NRF2 activity scoring metric from experimentally
confirmed robust NRF2 target genes (Fig. 1A). The utility of such a score
is to overcome the limitations of using gold-standard mutations as a
classifier, namely low sample size and the lack of statistical power, as
well as ambivalent functionality of rare variants. Furthermore, alter-
native NRF2 activation mechanisms exist [5,6], highlighting the
importance of using NRF2 target gene expression as a marker of activity
instead of somatic variants. Our goal was to generate a metric that is: a)
based on expression of evident target genes with robust responses to
NRF2 activity; b) tissue-agnostic; and c¢) unbiased towards signal arising
from the TME. The score was developed as follows: first, we used A549
lung adenocarcinoma cells harboring the KEAP1 inactivating mutation
G333W rendering NRF2 overactive (A549—NRF20E) and knocked out
NRF2 with Cas9-sgNRF2 (comparison of A549 NRF2 overexpressed vs
knockout, hereafter referred to as A549-NRF2CEKO) to detect NRF2
dependent differentially expressed genes (Figs. S1A and S1B, list of
genes in Supplementary Table 1). Second, we used publicly available
functional genomics data (See materials & methods, Functional genomics
analysis of NRF2 target genes) to subset the genes that are directly regu-
lated by NRF2 (See Supplementary Table 2 for a complete reference of
candidate targets). Third, we utilized public tissue as well as stromal cell
transcriptomic data from Genotype Tissue Expression portal (GTEx) and
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Fig. 1. NRF2 score development, performance and distribution across TCGA malignancies.

A: Schematic of the score development procedure. NRF2 perturbation, functional genomics and tissue-specific expression data were integrated together and the NRF2
score was defined as a geometric mean of the mRNA expression of overlapping genes.

B: Receiver operating characteristic (ROC) curve for the NRF2 score in classifying functionally relevant somatic variants defined in OncoKB.

C: Differential log2 CPM gene expression distribution between NFE2L2/KEAP1 mutated and non-mutated NRF2 score comprising genes in TCGA cohorts.

D: NRF2 score with NFE2L2/KEAPI mutations shown as a boxplot across TCGA-cohorts sorted by variance. The cohorts chosen into subsequent analyses are colored
iAn black. The hyperactivity threshold was chosen with values of TPR >0.85 and FPR <0.1.

Database of Immune Cell Expression (DICE), respectively, to discard
genes that are clearly tissue specific or prominently expressed in
TME-populations (Fig. S1C and Fig. S1D). The final NRF2 signature
comprised genes CBR1, SRXN1, GCLC, GCLM, AKR1C3 and ME1 and the
final score was defined as a geometric mean of their linear TMM
normalized mRNA-expression. The score values were scaled within
disease entities (to density distribution peak) in TCGA-samples to
decrease variance between cancer types.

We assessed the score performance with ROC-analysis against
OncoKB [11] defined hotspots in NFE2L2 and KEAP1 and functional
variants (KEAPI-truncating aberrations) in TCGA-data (Fig. 1B). The
score exhibited excellent overall discrimination (AUC = 0.94) and genes
showed markedly different distributions in mRNA-expression in TCGA
KEAP1/NFE2L2 mutated vs wild type samples (Fig. 1C). Individual ROC
analyses for cohorts with somatic mutations in NFE2L2/KEAPI are
shown in Fig. S1E. We computed the correlations of NRF2 score to
NFE2L2 mRNA expression. Based on the correlation patterns, multiple
cancer types display significant positive correlations (Fig. S1F). As ca-
nonical NRF2 regulation is based on protein turnover, upregulation of
NFE2L2 mRNA and its correlation with target gene expression suggests
additional contribution of an upstream regulator or regulators. Score
variance correlated considerably with KEAP1/NFE2L2 mutation fre-
quency (r = 0.8, P < 0.0001), thereby predicting the oncogenicity of
NRF2 irrespective of activating mechanism (Fig. S1G). By this rationale,
diseases associated with >5% mutation frequency or 6® > 0.75 were
defined to harbor significant oncogenic NRF2 activity. From these ma-
lignancies, we discarded TCGA cohorts with N < 100 to maintain high
statistical power across the datasets. The score distribution and cohort
selection are shown in Fig. 1D (colored mutations above the specified
hyperactivity cutoff of TPR >0.85 are shown in Fig. S1H). NRF2 activity
scores for all TCGA samples are listed in Supplementary Table 3).
Notably, malignancies in the lung, uterus, bladder, kidney and those
with dominating squamous histology had a significant proportion of
high scoring samples.

2.2. Enriched pathways in NRF2 hyperactive cancers reveal differential
immunomodulatory association across cancer types

For TCGA cohorts meeting the inclusion criteria, as well as for the
A549-NRF2CE"KO and CCLE transcriptome and proteome data, we
conducted gene set enrichment analysis (GSEA) to assess the pathways
enriched with NRF2 hyperactivity (Fig. 2A. See Supplementary Table 4
for all data). Interestingly, two directly oncogenic signaling pathways,
MYC and WNT, showed prominent global positive enrichment. Other
global pathways associated with NRF2 hyperactivity were mainly
metabolic, drug efflux and redox-regulatory processes, whereas immune
microenvironment related processes were negatively enriched in NSCLC
and squamous diseases in contrast to other diseases, which exhibited
positive enrichment. With the curated data, cohorts clustered into two
populations based on the immune milieu associated gene sets. Notably,
IFNy response, HLA- and T cell signaling gene sets enriched to the
negative end in lung adenocarcinoma (LUAD), lung squamous cell car-
cinoma (LUSC), esophageal carcinoma (ESCA), cervical carcinoma
(CESC) as well as head and neck cancer (HNSC), while the same path-
ways had positive enrichment scores in kidney renal papillary cell car-
cinoma (KIRP), uterine corpus endometrial carcinoma (UCEC), bladder
carcinoma (BLCA) and liver hepatocellular carcinoma (LIHC)
(Fig. 2A-B). As the immunological gene sets were not enriched in the

pure cell populations (A549-NRF2°EVKC or CCLE), they likely emerge
from the crosstalk between cancer- and TME-cell populations. Of note,
downregulation of cytokines, HLA-I, IL-12, IFNy and TCR signaling are
all characteristic to ‘immune cold’ tumors with documented poor re-
sponses to ICB therapies [12]. Upon further characterization of the
pathways differing between the defined disease groups, we observed
further differences in TME-related enrichment terms (Fig. 2C). As the
pathways comprised largely lymphoid cell associated signatures, these
data suggest that oncogenic NRF2 signaling is, in the context of NSCLC
and squamous diseases, associated with less lymphocyte infiltration. The
data also shows a dichotomous association of NRF2 to IFNy response and
lymphocyte associated pathway enrichment between NSCLC and squa-
mous cancers vs kidney, uterine and liver cancer.

2.3. Squamous diseases comprise a NRF2 hyperactive subtype with SOX2
amplification, CDKN2A/B and TP53 loss and upregulated
immunosuppressive genes

Since we observed similar immune cold characteristics across the
TCGA squamous diseases, we proceeded to study subtype-effects within
the diseases using Uniform Manifold Approximation and Projection
(UMAP) and community detection-based clustering. We identified a
distinct pan-squamous subtype with hyperactive NRF2 (identified
communities are shown in Fig. 3A, TCGA cohorts in Fig. 3B and NRF2
activity in Fig. 3C). Associated to this subtype, we observed co-occurring
copy number variation (CNV) and a characteristic mutational landscape,
most notably amplified SOX2/TP63 (q-arm of chromosome 3) and loss of
CDKN2A/CDKN2B (9p21) (Fig. 3D and S2 A-D), as well as mutated TP53
and CDKN2A (Figs. S2E and F). Furthermore, we identified a group of
cell lines with similar genomic profiles using the CCLE/DepMap dataset,
confirming the genomic determinants of this subtype (Figs. S2G, H, I, J,
K, L, and M). There were no prominent peaks in chromosome 6, sug-
gesting that HLA-I loss events do not contribute to the phenotype. To
confirm this, we defined HLA-I loss as at least one shallow deletion or
LoF-mutation in major HLA-I genes and did not observe an association
between the two variables with Fisher’s test (OR = 0.40, P = 0.09). The
association of tumor mutational burden and NRF2 overexpression has
been reported before [13]. Thus, we assessed the prospect of immuno-
logical effects arising from differential neoantigen load by computing
mutational burden (log2 total mutation count) across the cluster
comprising cohorts with respect to NRF2 activity, and did not observe a
uniform trend between mutation count and NRF2 (Fig. S2N). To follow
up on amplified transcription factors SOX2 and TP63, we downloaded
publicly available ChIP-seq data (GSE46837) in squamous cancer cell
lines and generated a list of target genes (pipeline as in Fig. 1A, func-
tional genomics) to interrogate direct targets of these transcription
factors (see Supplementary Tables 5 and 6 for a complete reference of
targets). To specifically assess differentially expressed, putative direct
targets in immunomodulatory genes, we studied the overlap of the
differentially expressed genes in the squamous cluster and the target
gene list as well as curated genes from the CellPhoneDB framework [14]
and TISIDB [15] (Fig. 3E). From these results, SLC7A11, NAMPT,
SLC2A1 and MPP3 were identified to confer resistance to T cell mediated
killing by high-throughput screening. Moreover, the listed genes had
evidence for upstream activation by NRF2. SLC7A11, NAMPT and
SCL2A1 are genes attributed to metabolism, involved in cysteine uptake,
NAD -+ biosynthesis and glucose uptake, respectively. From the litera-
ture annotated genes, while most were ambivalent, SOX2 was shown to
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Fig. 2. NRF2 activity associates with disease specific immunoevasive characteristics.

A: Pan-cancer GSEA analysis. GSEA normalized enrichment scores for pathways correlated to NRF2 activity shown as a Heatmap for TCGA, A549-NRF2°EV*KO| CCLE
mRNA and CCLE protein. Significance of enrichment is shown as: <0.1, * <0.05, ** <0.01, *** <0.001, **** <0.0001. For TCGA, combined p-values (Stouffer’s
method) are shown. Redundant pathway terms were discarded, See Table S2 for full list of pathway terms. Pathways were curated to reflect cancer hallmarks that are
shown on the right.

B: Correlation of ssGSEA Hallmarks IFNy response and NRF2 score. Cohorts in blue, red and grey have negative, positive or insignificant correlation, respectively.
C: Top enrichment terms deviating between the defined cancer groups with differential enrichment scores in the IFNy response pathway. Normalized enrichment
scores are shown on the heatmap. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. NRF2 hyperactivity is associated with a distinct squamous subtype with SOX2/TP63 amplification, CDKN2A/CDKN2B loss and downregulated IFNy-response
in TCGA.

A: UMAP representation and Louvain clustering of included TCGA cohorts.

B: TCGA diseases in Louvain clusters.

C: NRF2 score in Louvain clusters.

D: Gistic2 copynumber profile of the NRF2 hyperactive cluster*. The G-score in gistic2 is CNV amplitude multiplied by CNV frequency, which measures the sig-
nificance of a CNV event in a dataset.

E: A heatmap of differentially expressed immunomodulatory genes between the NRF2 hyperactive cluster and other SQCC putatively regulated by NRF2, SOX2 or
TP63. From the TISIDB-database, genes colored with green indicate a literature cited effect, whereas genes colored in magenta depict a hit from CRISPR/Cas9
functional screens. Panel on the right depicts hits from a functional genomics target gene analysis on NRF2, SOX2 and TP63, mint green hits designate a direct target

based on the analysis (See methods for details).
F: Volcano plot of enriched pathways in the NRF2 hyperactive cluster*.

*All analyses were conducted against squamous samples; LUSC, HNSC, ESCA and CESC. (For interpretation of the references to color in this figure legend, the reader

is referred to the Web version of this article.)

<

be a) upregulated in the case of effector cell resistance in co-culture; b)
downregulate IFN type I response in vitro and c¢) decrease T cell infil-
tration in a HNSC murine model [16]. Interestingly, we observed
increased NFE2L2 mRNA in SOX2 amplified TCGA squamous cell car-
cinoma (SqCC) cases, suggesting the presence of an upstream regulator
in Chr3 q2 locus (Fig. S20). Finally, in the squamous NRF2 cluster, we
identified prominent downregulation of the IFNy response analogous to
the initial GSEA analysis (Fig. 3F). Taken together, these data support
the notion that downregulation of IFNy-response and/or HLA-I genes is
downstream of NRF2 or other co-expressed transcription factors (SOX2
or TP63). Based on the functional role of the identified immunomodu-
latory genes (Fig. 3E), modification of the tumor metabolic landscape
may contribute to the immune escape of NRF2 hyperactive cancer.

2.4. Interferon-gamma response pathway is downregulated in NRF2
hyperactive cancer cells in situ

To follow up on the identified targets, we proceeded to further
explore signaling between NRF2 hyperactive cancer cells and immune
cells in higher resolution in an in situ setting in a relevant cancer type.
Thereby, we assigned NRF2 activity score to cells in a publicly available
HNSC single-cell-RNAseq dataset (GSE103322). UMAP projection of
single cells revealed distinct clustering of cancer cells with high NRF2
score across patient samples, suggesting that NRF2 activation could be
linked to global shifts in cell phenotype (Fig. 4A and B). Similar to bulk
tumors, the cluster exhibited high expression of SOX2 (Fig. 4C). In
addition, TP63 was also overexpressed in the NRF2 hyperactive cancer
cell cluster, although its expression was also present in other clusters
(Fig. S3A). In further agreement with the bulk-tumor analysis, inflam-
matory response and IFNy-signaling were the most prominent nega-
tively enriched pathways in the NRF2 cluster relative to other cancer cell
clusters (Fig. 4D). The single cell analysis distinguished that the response
to interferon is downregulated in malignant cells with NRF2 hyperac-
tivity (Fig. S3B). These data suggest that the negative correlation be-
tween IFNy response and NRF2 in squamous cancer types originates
from the response in cancer cells, either due to low interferon ligand or
by intrinsic properties of NRF2 hyperactive cancer cells.

2.5. NRF2 hyperactive cancer cells are associated with less TME
interactions via HLA-I and increased interactions via NAMPT, SPP1 and
WNT5A

We used the statistical framework of CellPhoneDB to interrogate
putative intercellular ligand-receptor interactions between cancer- and
TME cells in the whole HNSC single-cell dataset. With integration of our
NRF2 target catalogue and a priori IFNy gene sets from MSigDB (Hall-
marks and Reactome), we identified multiple differential interactions
between the cancer clusters against TME clusters with either direct
NRF2 targets or genes involved in IFNy mediated signaling. The most
prominent hits were downregulated HLA type I interactions with cyto-
toxic T cells, and upregulated NAMPT, SPP1, WNT5A (Fig. 4E and F).

These hits were also differentially expressed genes in the earlier pan-
SqCC bulk tumor analysis and in CCLE cell lines mRNA, while SPP1
and WNT5A proteins were also upregulated (Figure S3C, D and E).
Furthermore, NAMPT and SPP1 were differentially expressed in
A549%EKO and all of the hits were in our NRF2 target catalogue
(Fig. S3F). Moreover, in line with earlier observations, PD-L1 - PD1
interaction between NRF2 hyperactive cancer cells and T cells was sta-
tistically significant, further corroborating the role of PD-L1 in NRF2
driven immune-escape and suggesting that its effect extends the previ-
ously studied melanoma [10] (Fig. S3G). From the direct targets,
NAMPT is the rate-limiting enzyme in the biosynthesis of NAD+. While
its interaction with P2RY6 in CellPhoneDB was inferred with protein
pulldown and lacks functional data, NAMPT knockdown was recently
shown to increase CD8" T cell infiltration in murine tumors via atten-
uating inducible PD-L1 expression [17]. The second hit, Osteopontin
(SPP1), has been shown to inhibit T cell proliferation and IFNy pro-
duction in vitro [18]. The third hit, WNT5A with frizzled receptors, also
has implications in tumor immunity: WNT5a signaling in cancer cells
has been attributed to immunosuppressive metabolite induction via
dendritic cells through FZD [19]. To assess the clinical relevance of these
findings, we downloaded a publicly available targeted
mRNA-expression dataset of PD-1 inhibitor treated HNSC and NSCLC
patients and established SPP1 mRNA as a negative predictive biomarker
to treatment-response (Odds ratio = 0.20 for response with high SPP1
expression; P < 0.05, Fisher’s test) and therapy associated
progression-free survival (mPFS 2.8 vs mPFS 12.33 months, P < 0.01) in
pan HNSC-LUSC-LUAD (n = 5; n = 22; n = 13, respectively) (Fig. 4G).
The inferior survival may either be directly caused by effects of SPP1 or
arise from NRF2 activation where SPP1 mRNA acts as a surrogate
marker. This clinical observation might prove relevant in classifying
non-responders to ICB, as the current biomarkers suffer from inadequate
reproducibility. In summary, these data demonstrate that NRF2 hyper-
active cancer cells overexpress unique TME interacting ligands NAMPT,
SPP1 and WNT5A, which have been shown to cause immunoevasion in
cancer.

2.6. NRF2 hyperactivity associates with reduced stromal lymphocyte and
macrophage infiltration and increased inducible cancer cell PD-L1
expression in squamous cancers

Finally, to explore the relationship between NRF2 activity and the
immune milieu in greater detail, we performed deconvolution for the
TCGA gene expression data with CIBERSORT [20] to infer immune cell
content and correlated the cell fractions to the NRF2 score. In the NRF2
hyperactive IFNy negative malignancies (Fig. 5A, cohorts color coded as
cadet blue), many lymphocyte populations and different macrophage
polarization states correlated negatively with NRF2 activity, while the
correlations of cell subsets varied between cancer types. In the NRF2
hyperactive IFNy positive cancers (cohorts color coded as coral), we
observed mostly positive correlations to different immune cells with
variability in the correlating cell types between diseases: in KIRP, there
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was a strong association to macrophages and in UCEC to other antigen
presenting cells (Fig. 5A). Different malignancies have variability in
their immune cell contents [21]. Therefore, we compared the overall
distribution of each immune cell type using Mann-Whitney U tests be-
tween the IFNy response curated NRF2 hyperactive cancers and
observed that the NRF2 hyperactive [FNy negative malignancies often
had a higher disease-intrinsic proportion of immune cells, including
macrophages, lymphocytes and dendritic cells (Fig. 5A, side panel). To
evaluate the relationship of NRF2 and total T lymphocyte content, we
calculated the sum of T cell fractions and observed fewer bulk

lymphocytes in all of the IFNy-negative NRF2 hyperactive cancers
(Fig. 5B). We proceeded to validate the result in LUSC with a different
approach utilizing a publicly available TIL dataset generated from TCGA
H&E images with deep learning [22] and observed a decrease in the
median percentage of tumor-infiltrating lymphocytes (TILs) in the NRF2
hyperactive cases (P < 0.05, Fig. 5C). To corroborate this, we stained an
independent tissue-microarray dataset of NSCLC (obtained from Auria
Biobank, 117 and 211 cases of LUSC and LUAD, respectively) with
NQO1 (a marker of NRF2 activity) and the universal T cell marker CD3,
and observed a similar result in LUSC, that is, NQO1 positive tumors
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Fig. 5. NRF2 hyperactive tumors display negative correlations to overall lymphocytes in pan-squamous diseases.

A: Correlation matrix of NRF2 score vs CIBERSORT cell types. Right annotation panel depicts the distributions of respective immune cells in the IFNy pathway
classified diseases. Statistical significance is shown as: *P < 0.05, **P < 0.01, ***P < 0.001. Negative correlations in lymphocytes and macrophages are largely
present in squamous cancers and lung adenocarcinoma.

B: Violin plots for CIBERSORT bulk T lymphocyte fractions. Less bulk T lymphocytes were observed in silico in squamous cancers and lung adenocarcinoma, while in
KIRP, UCEC, BLCA and LIHC there was no association.

C: Percentage of tumor-infiltrating lymphocytes (TIL) in digitized TCGA LUSC H&E images.

D: Tissue microarray IHC staining of NQO1 (NRF2 activity marker) and CD3™ cells.

E: Representative images of the NQO1-stained groups.

F: Schematic of the mIHC workflow.

G: AKR1B10 vs stromal immune cell correlations in mIHC LUSC TMAs.

H: Representative pseudofluorescence images of mIHC LUSC tumor cores. Cancer AKR1B10, macrophages, T cells and granulocytes are shown in magenta, red, green
and cyan, respectively.

I: Tumor purity by AKR1B10 groups in LUSC tumor cores.

J: Scatter plot of mean cancer AKR1B10 expression and macrophage PD-L1.

K: Representative image of macrophage PD-L1 expression from AKR1B10-high samples.

L: Scatter plot of mean cancer AKR1B10 expression and the fraction of PD-L1+ cancer cells.

M: Representative image of PD-L1 expression from a high AKR1B10 expressed CD8" T-cell infiltrated sample. Upper image comprises PD-L1+ and CD8", and lower
shows AKR1B10 pseudofluorescence for the matching area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web
\‘/ersion of this article.)

(above the upper quartile of the mean intensity distribution) harbored present with low E-CD8™ suggesting that proinflammatory stimulation is
less CD3™ cells (P < 0.05, Fig. 5D and E). In our TMA data, the cytotoxic needed to induce NRF2 driven PD-L1 (Fig. S4J). Of note, only one of
T cell marker CD8 showed a similar trend but did not reach statistical these E-CD8™ infiltrated samples exceeded our cutoff to be defined as
significance (P = 0.09, Fig. S4A), and in LUAD, the relationship was not NRF2 hyperactive (intensity of 180 A U.) and the fraction of E-CD8"
observed (Data not shown). In addition, the contribution of NFE2L2 and infiltrated samples was less than 25% (Fig. S4K). In order to corroborate
KEAPI mutations was assessed separately in TCGA LUSC cohort, and a the positive association between PD-L1 and NRF2, we computed purity
lower median fraction of total lymphocyte infiltration was present in all corrected CD274 mRNA between the NRF2 basal and hyperactive groups
groups, irrespective of mutated gene (Fig. S4B). As the earlier methods of TCGA LUSC and observed increased median expression in the NRF2
did not differentiate between stromal and epithelia infiltrating pop- hyperactive group (P < 0.0001, Fig. S4L). We did not discover similar
ulations (defined as cells within the malign epithelial component), we associations between NRF2 and PD-L1 in LUAD in either our mIHC-data
next sought to assess the relationship between NRF2 activity and or TCGA (data not shown). The effects of NRF2 signaling to the immune
intraepithelial immune cells with multiplexed immunohistochemistry milieu in LUAD remain largely elusive, as our data did not indicate
(mIHC, Fig. 5F) in a separate NSCLC-cohort of resected cases (obtained similar differences between the groups. However, the PD-L1 association
from Central Finland Biobank, final sample sizes after quality control was present in other TCGA squamous cancers (Fig. S4M). Taken
filtering, 67 and 53 for LUSC and LUAD, respectively), using AKR1B10 together, these data suggest that overactive NRF2 associates with less
as a marker for NRF2 activation (cutoffs for groups are presented in overall stromal cell infiltration in pan-squamous cell carcinoma, mainly
Fig. S4C). Surprisingly, we did not observe differences in the intra- lower lymphocyte and macrophage density as well as a decline in stro-
epithelial populations in either LUSC or LUAD, except AKR1B10 high mal cell occupied area of the tumor. The TMA data and the tumor purity
LUSC harbored fewer intraepithelial granulocytes (Supplementary associations suggest that the differences observed in TCGA deconvolu-
Figs. S4D-E). However, in LUSC, most of the stromal population den- tion data may arise specifically from the stroma occupied populations,
sities from the total core area, that is CD8" and CD4 " positive T cells as which is expected as large proportion of the immune cells reside in the
well as M2 macrophages and granulocytes were decreased (Fig. 5G and stroma instead of epithelium. Moreover, these results indicate that
H). Expectedly, also tumor purity, defined as the relative tumor area to overall PD-L1 expression is associated with increased cancer cell NRF2
total area had a positive relationship to NRF2 activity (Fig. 5I). We activity, both in cancer cells and stromal macrophages, suggesting a
validated this result with TCGA using ABSOLUTE quantifications global PD-L1 immunosuppressive milieu across the stromal and tumoral

(Fig. S4F). Similar effects on tumor purity were observed in the rest of landscapes of NRF2 hyperactive LUSC. The CD274 mRNA expression
the NRF2 immune cold TCGA cancer types, HNSC, CESC, ESCA and distributions imply that this effect extends to other squamous malig-
LUAD. In LUAD mIHC, we did not observe differences in lymphocytes, nancies (Fig. S4M).

but there were fewer unspecified macrophages in the AKR1B10-high

group. In addition, median tumor purity was greater in LUAD 3. Discussion

AKR1B10-high but not at a statistically significant level (Supplementary

Figs. 5G-E). Interestingly, in the LUSC stromal macrophages, the ratio of Cancer immunotherapies, especially ICB, has become a mainstay in
PD-L1+ cells correlated significantly with mean cancer cell AKR1B10 cancer care. Despite its undeniable success, biomarkers to stratify re-
expression (Fig. 5J and K). Given the observed effect on stromal mac- sponders and non-responders are currently elusive. Recently, the rela-
rophages and the earlier observations of PD-L1 as a downstream target tionship between oncogenic pathways and the TME have been explored.
of NRF2 [9,10], we asked whether NRF2 activity would contribute to For instance, the effect of MYC and WNT signaling, as well as the loss of
inducible PD-L1 expression in LUSC. In cancer cells, intraepithelial TP53, LKB1 and PTEN on tumor immune responses have been previ-
CD8" T cell infiltration (E-CD8") had a positive correlation to PD-L1 ously characterized [23]. In this work, we identified a phenotype of high
expression, which is an expected effect from proximal proin- NRF2 activity accompanied with low lymphocyte content, HLA-I and
flammatory signaling (Supplementary Fig. 5I). Given this baseline ef- IFNy, spanning multiple cancer types. Since the negative relationship
fect, we grouped the samples to E-CD8" infiltrated and deserted cases between immune infiltration and immunotherapy responses has been
(that is, high density of CD8™ cells adjacent to cancer cells, cutoff in red clearly established before, it is reasonable to assume that NRF2 hyper-
in Supplementary Fig. 51) and observed that in infiltrated samples, mean active cases of the characterized malignancies would associate with
of cancer cell AKR1B10 expression correlated positively with the frac- weaker responses, and that alternative strategies to activate the anti-
tion of PD-L1+ cancer cells (R = 0.69, P < 0.001, Fig. S5L-M). The cor- tumor immune response should be studied. Indeed, during the course of
relation between cancer cell AKR1B10 and PD-L1 expression was not this study, an association between NRF2 pathway mutations and inferior
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ICB-response was shown in NSCLC [24]. The present study, to our un-
derstanding, is the first attempt to provide pan-cancer wide perspective
to NRF2 signaling and tumor immunity, with important implications for
future studies: first, immune checkpoint inhibitor treatment efficacy
should be assessed prospectively across all squamous malignancies with
NRF2 hyperactivity and eligibility for ICB; and second, if proven infe-
rior, alternative first-line or effective adjuvant treatment options should
be explored.

Characterizing cancers by mutational profiling of large datasets has
been invaluable in gaining insight into the biological processes enabling
and governing malignant growth. However, profiling only by mutational
status has limitations: The functional consequences of individual mu-
tations may be ambivalent, other mechanisms for perturbation of the
same pathway are overlooked, or the frequency of events is too low for
robust statistical inference. Relevant to NRF2 mediated oncogenic
signaling, mutation-independent means of activation are common,
necessitating the use of gene expression classifier to deduct NRF2 acti-
vation [25]. Herein, we introduce a robust NRF2 scoring metric
comprising genes that have minimal tissue specificity and sound evi-
dence for direct, prominent activation. The score performs well in all of
the tested TCGA cohorts (Fig. S1E) and it can be applied to bulk tissue
and single cell data. Moreover, the metric was constructed to support
ease of use by utilizing a low number of genes and prioritizing global,
robust targets. Finally, we demonstrated the utility of the score by
predicting a distinct immunological phenotype in NRF2 hyperactive
cases in an external dataset using IHC staining as an alternative method
for NRF2 activity assessment.

Our study provided several leads towards elucidating the mecha-
nisms by which NRF2 overactivity affects the host immune response. We
ruled out the contribution of HLA-I loss and neoantigen effects. We
identified a distinct squamous cell subtype that was characterized by
NRF2 overactivation together with SOX2/TP63 amplification and im-
mune cold TME. SOX2 is a key driver of malignant transformation and
stemness in squamous type cancers [26]. Our analysis showed the
metabolic genes SLC2A1, SLC7A11 and NAMPT that associate with
functional evidence in driving resistance to T cell mediated killing as
downstream candidates of NRF2. Previous work shows that the
expression of SLC2A1 - a glucose transporter - is enhanced by p63 and
SOX2 [27]. Our work implicates functional synergy of NRF2 and
p63/SOX2 in SLC2A1 driven glucose uptake. Increased glucose uptake
via SLC2A1 has been shown to result in weaker anti tumoural immune
responses in a murine model [28], supporting the functional role of this
gene identified by the TISIDB high-throughput CRISPR-screen.
SLC7A11, a well characterized NRF2 target gene [29], is a
glutamate-cystine antiporter that increases intracellular cystine while
exporting glutamate. IFNy has been reported to downregulate the
glutamate-cystine antiporter members SLC7A11 and SLC3A2, lowering
intracellular cystine resulting in increased T cell induced ferroptosis
[30]. Thus, the higher expression of SLC7A11 in NRF2 overactive can-
cers may render the cells resistant to immune destruction by this
mechanism. NAMPT driven NAD + metabolism is involved in tumor
immunity: increased NAD + by NAMPT enables inducible PD-L1
expression by epigenetic regulation of Irfl, restricting the antitumor
action of cytotoxic T cells [17]. To conclude, the results suggest meta-
bolic crosstalk between NRF2 overexpressing and TME cells through
multiple mechanisms.

SPP1 and WNT5A were hits in both the bulk tumor and single cell
analysis. Both genes have implications in tumor immunity. In line with
the immunoevasive phenotype, soluble SPP1 has been shown to directly
inhibit T cell proliferation, decrease T cell activation and IFNy produc-
tion in vitro [18]. The observed interaction of WNT5A and frizzled re-
ceptors in the single-cell data has implications in dendritic cell (DC)
function: paracrine WNT5A signaling was shown to induce IDO1 in DCs,
which increased extracellular kynurenine, supporting an immunosup-
pressive TME [19].

Our mIHC TMA data indicated that in LUSC, the stromal populations
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explain the negative relationship between NRF2-signaling and multiple
immune cell types. The purity associations in other squamous cohorts
suggest that this effect extends to HNSC, ESCA and possibly squamous
CESC. Interestingly, macrophage as well as inducible cancer cell PD-L1
correlated positively with cancer NRF2 activity. PD-L1 expression has
been shown to decrease tumor infiltrating lymphocytes over time and
may thus partly explain the observed phenotype [31]. Interestingly, the
ICB-responses in NRF2 hyperactive NSCLC have been inferior despite of
our observation of correlating inducible PD-L1 expression in LUSC,
while PD-L1 serves as the gold-standard predictive marker for immu-
notherapy in NSCLC. Based on our findings, these seemingly conflicting
observations may have multiple explanations. First, WNT signaling has
been indicated to drive immunosuppression in the TME, and reversal of
the WNT5A driven immunotolerant microenvironment augmented PD-1
blockade response in a murine melanoma model [19]. As we found
soluble WNT5A and WNT signaling gene sets upregulated in NRF2 hy-
peractive SqCC, this confounding factor in therapy response might
extend to squamous cancers. Of note, WNT pathway activation has been
shown to upregulate PD-L1 [32], and thus paracrine WNT5A could
additionally explain the upregulated PD-L1 in stromal macrophages.
Secondly, the other immunosuppressive ligands identified in this study
could serve as confounding factors, as, for instance, high SPPI
expressing cases had worse response rates in ICB-treatment. Finally, as
the intraepithelial CD8" infiltrated cases comprised a small subpopu-
lation of the whole cohort and having intraepithelial CD8™ infiltration
and oncogenic NRF2 hyperactivity is exceedingly rare, they may
constitute a unique subcategory responsive to PD-L1 blockade, as they
do harbor both CD8" cells and PD-L1+ cancer cells [33]. To this end,
currently the contributions of stromal vs intraepithelial CD8" cells to
clinical response metrics are unclear, as the spatial information is often
overlooked and cannot be accounted for with the current deconvolution
methods or conventional single-cell RNAseq. Due to today’s predictive
markers for ICB being clearly elusive and to the diversity of mechanisms
in immune escape, a robust predictive metric will likely require multiple
accounted factors, analogous to the immunoscore in prognostic evalu-
ation [34]. Given the similarities between NRF2 signaling and the mo-
lecular and TME phenotypes across squamous malignancies, these
questions should span all cancer types with squamous histology.

In summary, our results provide an integrated NRF2-centric resource
in cancer biology, and establish a connection between immune cold
tumors and NRF2 signaling across squamous carcinomas from a pan-
cancer wide perspective. Finally, these data highlight multiple ave-
nues to pursue in future studies aiming to mechanistically characterize
NRF2 signaling and its effect to the tumor immune milieu, including
direct regulation via immunosuppressive ligands or immunosuppressive
metabolites.

4. Materials and methods
4.1. Processing of genome-wide multilevel data

4.1.1. TCGA

Processed multiomics data, sample level analysis results and clinical
data, were retrieved from https://gdc.cancer.gov/about-data/pub
lications/panimmune (Thorsson et al., 2018) and https://gdc.cancer.
gov/node/905/(PanCanAtlas) for 33 cancer types available in TCGA
cohort.

4.1.2. CCLE

Preprocessed CCLE data was downloaded from https://portals.
broadinstitute.org/ccle/data and https://depmap.org/portal/.

4.2. Functional genomics analysis of NRF2 target genes

4.2.1. Enhancer and promoter catalogue generation
A549 and ENCODE genomic data for other cell types were used as
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reference to generate broad catalogue of candidate regulatory elements,
that could be linked with NRF2 regulation. DNAse hotspots and
ChromHMM classified genomic sites were downloaded from ENCODE
for A549. In addition, DNAse clustered sites version 3 were downloaded
from ENCODE for all cell types. Promoters were defined primarily based
on A549 ChromHMM annotation, but if the annotation was missing from
the data, promoters were defined as 500 bp upstream and 1500 bp
downstream from each transcription start sites. Next, A549 DNAse
hotspot sites were integrated with ENCODE DNAse clusters for various
cell types, with score above 400 and cluster identified in at least 20 cell
types. Promoters were intersected with DNAse hotspots to identify
regulatory sites at promoters.

4.2.2. GRO-seq regression analysis of enhancer elements

eRNA can be used to detect active enhancers and it correlates with
the gene expression of the target gene [35]. To infer enhancer-gene
pairs, we utilized publicly available GRO-seq data curated from Gene
Expression Omnibus (GEO, GSE51225, GSE51633, GSE53964,
GSE60454, GSE62046, GSE62296, GSE52642, GSE66448, GSE84432,
GSE67519, GSE67540, GSE101803, GSE96859, GSE102819, GSE86165,
GSE91011, GSE67295, GSE154427, GSE136813, GSE118530,
GSE94872, GSE92375 and GSE117086). The final dataset comprised
336 samples representing 45 cell types. Homer analyzeRepeats.pl soft-
ware was used for GRO-seq quantification of nascent RNA gene
expression using gene introns as coordinates, with parameters: strand +
-noadj -noCondensing -pc 3. For enhancers, in case of intragenic en-
hancers, quantification was performed from the opposite strand and for
intergenic enhancers from both strands, using the same parameters as
before. Enhancers’ start and end coordinates were expanded by 500bp.
Gene end coordinates were expanded by 5000bp for annotating intra-
genic gene enhancers and account for transcription at the end of tran-
scripts. A linear model was fitted for each gene-enhancer pair in the
same topologically associating domain that had Spearman’s Rho >0 and
P-value <0.05. R? value was used to estimate, how much of the gene
expression could be explained by the eRNA expression. The
enhancer-gene pairs were defined as features with regression P-value
<0.05 and R? > 0.1, and the maximum distance was set to 500kbp.

4.2.3. NRF2 target gene identification

To infer NRF2 bound regions at the enhancer sites, the preprocessed
ENCODE ChIP-seq data for NFE2L2 was downloaded from GEO (Datasets
GSE91997, GSE91894, GSE91809, GSE91565). The ARE-motif from
JASPAR database (NFE2L2, MA0150.1) was queried across the ChIP-
peaks with Homer annotatePeaks, and NRF2 motif score cutoff for a
binding site was set to 6. From these data, the minimum amount of ChIP-
seq datasets with the given peak was set to two. Using this analysis
framework 3000 bidirectional and 2000 intragenic enhancers were
identified for NRF2.

4.3. Development of the NRF2 score

A computational NRF2 score was developed by utilizing multiple
datasets. The final gene set was derived by applying the following
rationale: a) ChIP-seq peaks must be present at ChromHMM-promoters
across the ENCODE NFE2L2 ChIP-seq data b) the gene must be differ-
entially expressed in A549-NRF2CEVKO (log2 fold-change >1.5, Bon-
ferroni adjusted p < 1e-5); and ¢) mRNA-expression must be observed
across tissues in GETxportal data (https://www.gtexportal.org/home
/datasets) and expression must be uniform across cell types in DICE-
database (https://dice-database.org/), to counter variance arising
from tissue specific expression and the immune-milieu, respectively.

Differential expression analysis for A549-NRF2°EVSKO was conducted
with limma. Direct NRF2 targets were defined as having a NRF2 binding
in the NRF2 ChIP-seq data in the ChromHMM promoters: the peaks were
narrowed down to regions that intersect all four datasets and include an
ARE-sequence (motif score >6).
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Genes with tissue-specific expression patterns were excluded based
on the expression profiles in the GETxportal data: median tissue
expression cutoff was set to 1.5 log2 TPM for binary filtering (Fig. S1A).
Genes exhibiting high values or observable variance in median expres-
sion in immune-cells were excluded heuristically (Fig. S1B).

Genes passing all these steps were defined as the NRF2 signature. The
samples were scored with a geometric mean from the genes’ linear
mRNA-expression. For TCGA samples, the score was normalized within
each disease to the peak of the score distribution (mode). Performance of
the scores was evaluated with receiver operating characteristic against
functional NRF2 activating somatic variants (defined in OncoKB) using
the ROCR-package for R.

4.4. Gene set enrichment analysis

GSEA (Java-GSEA) was performed for the selected TCGA-cohorts and
CCLE cell lines of the matching diseases using NRF2 score as a contin-
uous feature. Pan-cancer analysis for TCGA cancer types was conducted
by calculating Stouffer’s statistic for each gene set across the selected
cohorts. For the A549 cells, GSEA was conducted with a binary feature of
NRF2~/~ vs NRF2*/*. Multiple-comparison corrections were performed
with the Benjamini-Hochberg (BH) —method.

4.5. UMAP analysis and Louvain clustering of TCGA and CCLE data

UMAP dimensionality reduction analysis was performed for 750
most variable genes using uwot R package, with parameters set to n.
neighbors = 12 and min. dist = 0.4. Community detection based clus-
tering for the same 750 most variable genes was performed using the
Louvain algorithm, with k = 4 implemented in igraph R package.
Similarly, for CCLE 750 most variable genes were used with n. neigh-
bors = 6 and min. dist = 0.3 and k = 4. Various number of most variable
genes were used for UMAP to confirm robustness of sample group
detection.

4.6. Functional genomics analysis of SOX2 and TP63 target genes

Target genes for SOX2 and TP63 were inferred from ChIP-seq data of
the respective transcription factors (GEO dataset GSE46837). All pa-
rameters were set as in the analysis for NRF2 target genes (NRF2 target
gene identification) using the enhancer and promoter catalogues defined
earlier.

4.7. Differential expression analysis for the NRF2 squamous cluster

Fold-differences across the transcriptome were computed between
the NRF2 squamous cluster vs other squamous samples, and the statis-
tical significance of differentials of gene-expression distributions were
assessed with two-sided Wilcoxon tests, and subsequently multiple-
comparison corrected with the BH-method. The result was filtered
with FDR <0.001 and a logFC threshold of 1 for absolute values. The
overlap of the resulting genes was assessed with a) CCLE gene-
expression and protein correlation to NRF2-score; b) genes in Cellpho-
neDB and TISIDB (literature annotation and CRISPR-screen resistance
genes); and c) the candidate target gene catalogues of NRF2, TP63 and
SOX2. High-confidence hits (shown in Fig. 3E) were defined as genes
that correlate in CCLE protein or mRNA (FDR <0.1, R > 0.25), are listed
in CellPhoneDB or TISIDB and are listed in the target gene catalogues for
at least one of the transcription factors.

4.8. In vitro experiments

4.8.1. Cell culture

Cells were incubated in 37 °C and 5% CO, throughout the experi-
ments and the passage number was kept under 10 over the course of this
study. Cell passaging was conducted before reaching confluency.
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4.8.2. CRISPR/Cas9 NRF2 knockout

A549 cells were transfected with a 20bp single-guide-RNA
(CAAGCTGGTTGAGACTACCA) targeting exon 5 of NFE2L2
(ENST00000446151) and scramble-sequence including plasmid vectors
(SpCas9(BB)-2 A-GFP (Addgene, PX458). NRF2 knockout and control
cells were generated via CRISPR-Cas9-mediated non-homologous end-
joining (NHEJ). Transfection-positive cells were sorted with
fluorescence-activated cell sorting (FACS) to obtain clonal populations.
Validation of the clones was conducted with NRF2 western blot
(Fig. S1A), Sanger sequencing (Data not shown) and RT-qPCR (Fig. S1B).
Sequencing confirmed a truncating homozygous frameshift mutation
(c.562delA, p. T188fs*) in exon 5 of NFE2L2 (ENST00000446151).

4.8.3. Sanger sequencing and western blot

DNA was extracted with Genejet Genomic DNA purification kit
(Thermo Scientific, catalog. no: K0702) and using the GENEWIZ Sanger
Sequencing Services.

Cells were lysed and protein concentration measured using BCA kit
(Pierce). 30 pg of total protein with 1X SDS-PAGE sample buffer (Biorad)
was loaded in 4-20% mini-Protean TGX gels (Biorad) and the gel elec-
trophoresis was done using Tris glycine running buffer containing SDS.
Proteins were then transferred onto nitrocellulose membrane (0.2 pm,
Biorad) using Owl Hep-1 semi-dry transfer system (Thermo scientific)
following manufacturer’s instructions. The blots were blocked with 5%
milk-TBST solution for 1 h at room temperature (RT). Blots were stained
overnight at 4 °C with NRF2 (1:5000 dilution, catalog no.16396-1-AP,
Proteintech) and beta-actin (1:5000 dilution, catalog no. sc-47778,
Santa Cruz, USA) antibodies in 5% milk-TBST solution. And secondary
staining was done for 1 h at RT using Alexafluor 488- or 680- labelled
anti-rabbit and anti-mouse antibodies (Invitrogen) in 2% milk-TBST
solution. The blots were then visualized using Biorad documentation
system.

4.9. Copy-number analysis

Copy-number analysis was conducted for firehose-derived TCGA
segment-files for HNSC, LUSC, ESCA, and CESC, stratified by the NRF2
subtype (cluster 8) with Gistic2 using the following parameters: ta 0.1
-Peakpeel 1 -brlen 0.7 -cap 1.5 -conf 0.99 -td 0.1 -genegistic 1 -gcm extreme
-js 4 -maxseg 2000 -qvt 0.25 -rx 0 -savegene 1 -broad 1.

4.10. Processing of single cell data

The HNSC single cell dataset was downloaded from GEO
(GSE103322) and processed with Seurat R-package v3. Cells with more
than 8000 detected genes were filtered out. Seurat SCTransform with
3000 variable features was used for data normalization. 25 principal
components and default parameters were used for UMAP projection and
Louvain clustering. SingleR 1.0.1 [36] was used for the automated cell
type annotation. These annotations were manually refined according to
cell types identified in Puram et al., 2017 [37].

4.11. CellPhoneDB analysis

The HNSC single-cell dataset was analyzed with CellPhoneDB sta-
tistical analysis method using 1000 iterations and an expression
threshold of 0.1. To assess the differential interactions, the data was
visualized as a ratio of interactions means in the NRF2 cluster vs other
cancer clusters, only including interactions that were exclusively sta-
tistically significant in either the NRF2 cluster (positive ratio) or the
other clusters (negative ratio). Statistically non-significant ratios were
removed from the heatmap for clarity.

4.12. Survival analysis

A pan-HNSC-NSCLC-SKCM dataset was downloaded from GEO
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(GSE110390) and the associated clinical data was obtained from TIDE-
database (http://tide.dfci.harvard.edu/). SKCM samples were excluded
from the analysis, and the nCounter PanCancer Immune Profiling Panel
targets were normalized to 40 housekeeping genes with Nano-
StringNorm R-package. Mean normalized log2 mRNA expression was
used as a cutoff to dissect SPP1 high and low expressing samples. Sur-
vival analysis was performed with survival R-package. The Kaplan-
Meier curve was plotted with survminer R-package.

4.13. CIBERSORT analysis for TCGA data

CIBERSORT was run for the TCGA data with the CIBERSORT R-
package separately for each cancer type with the absolute method (sig.
score), using 100 permutations and without quantile normalization.
Correlations to NRF2 score were assessed with Pearson’s method. The
bulk lymphocyte analysis was conducted by taking the sum of all T
lymphocyte fractions, and using a cutoff for NRF2 hyperactivity as TPR
>0.85 from the ROC-analysis. The statistics were computed with Mann-
Whitney U.

4.14. Conventional immunohistochemistry

NSCLC tissue microarray sections (LUAD n = 211, LUSC n = 117)
were obtained from Auria Biobank, Turku University Hospital, Turku,
Finland. NQO1 (Cell Signaling NQO1 A180 Mouse mAb, 1:250; catalog.
no. 3187S) was stained by incubating overnight at +4C°. NQO1 signal
was quantified as the mean of relative positive-stained area across rep-
licates, and NQO1-positive samples were defined as Q3 of the mean
NQO1-signal across biological replicates. For T lymphocyte immuno-
histochemistry, TMA sections were stained with anti-CD3 (LN10, 1:200;
Novocastra) and anti-CD8 (SP16, 1:400; Thermo Scientific) using a
LabVision Autostainer 480 (ImmunoVision Technologies Inc.). Antigen
retrieval was done with Tris-EDTA buffer at pH 9 by microwaving the
slides in 98° Celsius for 15 min. Samples were incubated with diluted
antibodies for 30 min at room temperature. Diaminobenzidine (DAB)
was used as a chromogen and haematoxylin as a counterstain. Positive
control tissue for CD3 and CD8 immunohistochemistry was normal
tonsil. The slides were digitized with a slide scanner (Nano Zoomer XR,
Hamamatsu) and quantification of CD3% and CD8" T cells was per-
formed using QuPath, an open-source bioimage analysis software
(version 0.1.2) (Bankhead, P., Loughrey, M.B., Fernandez, J.A. et al.
QuPath: Open source software for digital pathology image analysis [38].

4.15. Multiplex immunohistochemistry

4.15.1. Staining

NSCLC tissue microarray sections were obtained from the Biobank of
Central Finland. We designed a panel of 10 markers to a) quantify PD-L1
expression (E1L3N), and b) identify macrophages (CD68, KP1), T cells
(CD3, LN10), granulocytes (CD66b, G10F5) and tumor cells (Pan-cyto-
keratin, BS5 & AKR1B10). T cells were further characterized to CD8"
and CD4™" cells with the respective markers (clones 4B11 and EP204,
respectively), and macrophages to M1 and M2 polarization states with
CD86 (E2G8P) and CD206 (E2LIN), respectively. The multiplex staining
was conducted with Bond-III automated IHC stainer (Leica Biosystems)
and Bond Refine Detection kit (DS9800, Leica Biosystems). InmPACT
AMEC Red (SK-4285, Vector Laboratories) was used as the chromogen,
except for AKR1B10 which was stained with DAB on the final round.
AKR1B10 was used instead of NQO1 based on antibody validation for
Bond-III, where AKR1B10 outperformed NQO1. The slides were moun-
ted with VectaMount AQ Aqueous Mounting Medium (H-5501, Vector
Laboratories), scanned with NanoZoomer XR (Hamamatsu) with a 20x
objective. De-staining was conducted with ethanol and heating was
applied between all cycles to remove prior antibodies.
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4.15.2. Image analysis

Digitized images of the mIHC-slides were processed with QuPath
(version 0.2.3), and individual cores were recognized with TMA-dear-
rayer function to obtain single core images. We excluded cores that were
folded or detached. Single core images were stacked into one multi-
channel image with pseudofluorescence colors using Fiji [39]. We
further discarded cores that were misaligned in the stack images. The
staining intensities were consistent between the TMA slides indicating
uniform performance of the protocol.

4.15.3. Data analysis

Total sum of tissue areas and cell counts of the core replicates were
used to collapse the dataset to true biological replicates. Cutoffs for
markers and AKR1B10 groups were chosen based on density distribu-
tions across the patient merged TMA cores (intensities for LUSC and
LUAD 180 A U. and 165 A U,, respectively). Macrophage M1 and M2
polarization was assessed by normalizing the CD206 and CD86 values to
percentiles and calculating the difference between the normalized
values. Quantiles of this polarization index were determined as M1 and
M2 populations. Cell counts were normalized to the area (mm?) of the
tumor (for epithelia infiltrating densities) and total area of the core (for
stromal cells occupying the core). Statistical testing between the groups
were conducted with two-sided Mann-Whitney U tests. Pearson’s cor-
relations were computed for linear relationship assessment between
continuous variables.
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