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A B S T R A C T

Electrochemical systems span a wide range of timescales, and several recent works have put forth the idea
that the reaction environment should remain frozen and out of equilibrium during electrochemical electron
or proton transfer reactions. Furthermore, simplified treatments of the electrochemical interface model the
solvent and ions as frozen molecules. However, the claims and practices of a frozen environment strongly
clash with most theoretical and simulation approaches developed to study electrochemical reaction rates.
It has also been suggested that the electrode potential should not be fixed when simulating reaction rates
due to conductivity limitations, which indicates constant potential simulations to be incorrect. In this critical
review, these claims re-analyzed from the perspective of non-ergodic rate theory, which provides a rigorous
framework to determine when or whether the reaction environment should appear frozen: it is shown that
in most activated electrochemical reactions in aqueous media, the reaction environment is completely mobile
and equilibrated under constant potential conditions. Only for ultrafast reactions or transient methods should
the environment be considered (partly) frozen and in a non-equilibrium state. For both metallic and practical
semiconductor electrodes the impact of electrode conductivity is minimal and constant potential calculations
are found reliable. The implications of these considerations are be discussed from a viewpoint of computational
and theoretical electrochemistry.
1. Introduction

Electrochemical interfaces (ECIs) are extremely complicated reac-
tion environments. Besides various competing interactions, [1] pro-
cesses at ECIs span several relevant timescales from sub-femtosecond
electron dynamics to diffusion and electrode disintegration taking place
on the microsecond or even year timescales, respectively. Simulating
the different time and lengthscales involved in these processes calls for
high-level multiscale methods.

Here I focus on timescales relevant to elementary reaction kinetics
in the sub-microsecond range. The goal of this perspective is to ana-
lyze in detail which timescales and processes should be included in
fully atomistic simulations of electrochemical interfaces. The analysis
is motivated by comments in recent theoretical and computational
electrochemistry literature questioning the validity of widely assumed
(local) equilibrium and the role of different timescales in the simulation
of electrochemical reaction kinetics. The general argument is that
because electron (ET) or proton transfer (PT) dynamics take place on
attosecond or femtosecond timescales, respectively, the reaction envi-
ronment should remain at least partially frozen and out of equilibrium
during the reaction [2,3]. From a computational perspective this would

E-mail address: marko.m.melander@jyu.fi.

mean that the nuclei of the reactants, solvent, and ions should not be
allowed to move during a reaction and e.g. reorganization of the nuclei
should not take place. Along these lines it has been argued that ions,
presented either using continuum Poisson–Boltzmann -type models
or explicit atomistic models, should not be allowed to move during
the reaction [2]. Dynamics of ECIs can be described with molecular
dynamics but it has recently been asserted that the solvent coordinates
are ‘‘oversampled’’ in enhanced molecular dynamics simulations and
that the solvent should appear partially frozen [4]. Besides physical
arguments, simplified treatments of ECIs are often based on ice-like
solvent structures and static ion environments [5]. It has also been
argued that the electrode potential should not retain a constant value
during a reaction event which in turn questions the application of
constant potential or grand canonical ensemble (GCE) DFT methods
[3].

It is certainly true that ET and PT are very fast because they gener-
ally proceed through tunneling. However, it needs to be emphasized
that the processes leading to a geometry, where tunneling can take
place, are substantially slower: ET and PT are generally considered ac-
tivated processes [6]. For instance, general ET and PT theories consider
vailable online 23 February 2023
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that solvent or reaction medium reorganization set the relevant reaction
timescale and that the reorganization energy determines the reaction
barrier while the actual ET/PT step is an infinitely fast tunneling event
[6]. Hence, the relevant timescale for electrochemical reactions is not
determined by an ET/PT transfer event but rather the solvent or ion
relaxation processes leading to a geometry where ET/PT can take place.
It is not, however, a priori clear how slow dynamics or long timescales
of the reaction environment should be considered important — are
there some processes which should be considered dynamically frozen
when modeling an electrochemical reaction?

More generally, the above discussion questions whether the reac-
tion environment remains in local equilibrium during the reaction or
whether some degrees of freedom are out of equilibrium on the reaction
timescale. In other words, is it correct to assume that nuclear or
electronic degrees of freedom react adiabatically to environment reor-
ganization and does the environment remain in equilibrium during the
reaction? In statistical mechanics these questions can be formulated in
terms of ergodicity [7–9]. During an ergodic reaction, the environment
is allowed to sample the entire relevant equilibrium phase space. In
non-ergodic reactions some parts of the phase space are not accessible
on the reaction timescale and consequently some configurations should
not be included in the sampling.

Non-ergodic rate theory [7–9] provides a general framework to
analyze which degrees of freedom appear dynamically frozen during
a reaction. Below, I apply this theoretical machinery to analyze when
and whether solvent, ion, and electron transfer dynamics remain in
equilibrium during electrocatalytic reactions. This facilitates a rigorous
analysis of previous arguments positing that the reaction environment
should be partially frozen during an ET/PT reaction. I will show that
simulations mimicking constant potential experiments in an aqueous
electrolyte should treat the reaction environment dynamically and com-
pletely equilibrated unless the reaction barrier is very small (≤ 0.25 eV).
For typical activated reactions, the environment must be treated in
equilibrium. On the other hand, simulations of transient experiments,
such as potential or current steps, should not in general allow the
environment to (fully) relax and the environment dynamics need to be
explicitly described.

2. Kinetics and dynamics, simulations and sampling

The present work implicitly assumes that ‘‘relevant’’ processes and
‘‘local’’ reaction environments have been appropriately chosen. Both
relevance and locality depend on the time and length scale of interest.
If one is interested in macroscopic electrodes used experimentally,
the electric potential difference between the electrode and solvent
are built during a few microseconds [10]. In this case the relevant
changes in the electrostatic potential and e.g. the double layer are
clearly macroscopic, and approach to equilibrium cannot be considered
fast from an atomistic perspective. On such scales the electron, sol-
vent, and ion relaxation take place simultaneously on an experimental
timescale. Equilibrium is achieved only when all components of the
electrochemical interface have relaxed to their equilibrium values.

In GCE-DFT and other atomistic simulations of electrochemical
systems only local or microscopic equilibrium can be reached. The
assumption of locality means that one is not attempting to simulate
an entire dynamic, macroscopic electrochemical interface but e.g. a
pecific nuclear motion or a reaction step of interest taking place on a
table surface in the presence of chosen atoms. Furthermore, only a sub-
et of all processes are considered ‘‘relevant’’ and the goal is to simulate
hem. The assumptions of locality and choice of relevant processes are
rucial because they allow the development of hierarchical atomistic
odels where a fast process can be considered to be in equilibrium on

he timescale of the slower processes. In turn, the slow process feels or
xperiences the faster process in its local equilibrium state. For example
nd as discussed in detail below, solvent reorganization takes place
uring ∼10 ps whereas the number of electrons and the Fermi level
2

electrode potential) reach local equilibrium on a 100 fs scale. Water re-
rganization therefore takes place at an effectively constant Fermi level.
imilarly, a reaction with a timescale longer than 100 ps experiences
n effective free energy surface where the solvent is equilibriated and
onstant electrode potential maintained. Such assumptions on locality
nd relevance allow partitioning of the total system to well-defined
ubsystems and processes — different processes are analyzed in detail
elow.

.1. Transition state theory, dynamics, and non-ergodicity

Electrochemical rate constants are almost invariably described
ithin classical transition state theory (TST) which relies on purely

tatistical arguments and no dynamical quantities are present. TST
ssumes that a reaction 𝐴 → 𝐵 takes place adiabatically through a
ividing surface or a transition state so that (local) thermodynamic
quilibrium is maintained throughout the transition. During such an
diabatic process the entire available phase space can and should be
ampled. As discussed above, the assumption of equilibrium rests on
separation of timescales since relaxation to local equilibrium within
is assumed to be faster than the 𝐴 → 𝐵 transition time [11]. The

ST rate under constant potential conditions is obtained from grand
anonical rate theory [12]

𝑇𝑆𝑇 =
𝑘𝐵𝑇
ℎ

𝛯‡

𝛯𝐴 = 1
𝛽ℎ

exp[−𝛽𝛥𝛺‡] (1)

where 𝛯‡ and 𝛯𝐴 are the transition and initial state grand canonical
partition functions, respectively, which are assumed fully ergodic in
TST. 𝛥𝛺‡ is the constant potential reaction barrier and 𝛽 = 1∕𝑘𝐵𝑇 .
The partition functions are restricted or constrained to include only the
phase space (𝛤𝑖) available to a given state 𝑖

𝛯 𝑖 =
∑

𝑁
∫𝛤𝑁

𝑖

𝑑𝛤 exp[−𝛽(𝐻(𝛤𝑁 ) − �̃�𝑁𝑁)] (2)

here 𝛤𝑁 denotes the phase space available to an 𝑁-electron state and
(𝛤𝑁 ) = 𝐻(𝐩𝑁 ,𝐪𝑁 ) is the classical Hamiltonian for momenta (𝐩𝑁 ) and

ositions (𝐪𝑁 ).1 �̃�𝑁 is the chemical potential of electrons which is fixed
nd equal to the absolute electrode potential.

The statistical origins of TST become even more evident when
he free energies are written as probabilities of being in the initial
𝜌(𝐴)) and at the dividing surface or the transition state (𝜌(‡)). The
robabilities obey the common Gibbsian distribution where 𝜌(𝑖) = 𝛯 𝑖∕𝛯
ith 𝛯 as the total partition function. Thus, the rate can be computed
irectly as the probability of being at the TST with a momentum in the
→ 𝐵 direction. This is an alternative but equivalent form of TST:

𝑇𝑆𝑇 =
𝜌(‡)
𝜌(𝐴)

𝑝𝐴→𝐵 (3)

This form explicitly tells that the TST rate constants does not
depend on time or system dynamics. Furthermore, all parts of the
restricted phase spaces contribute to the rate. These notions have
direct consequences for the simulation of reaction rates because in a
typical molecular dynamics simulation of reaction kinetics using TST,
the phase space is sampled and the ergodic hypothesis is expected
to hold. The ergodic hypothesis further states that time and phase
space integrals yield equivalent thermodynamic expectation values. For
instance, for grand free energies the ergodicity principle gives

𝛺𝑖 = ⟨𝛺𝑖⟩ = lim
𝑡→∞

1
𝑡 ∫

𝑡

0
𝑑𝑡′𝛺𝑖(𝑡′)𝛩(𝛤𝑖 − 𝛤 )

= ∫𝛤𝑖
𝑑𝛤𝜌(𝑖)𝛺𝑖(𝛤 )𝛩(𝛤𝑖 − 𝛤 )

(4)

here 𝛩(𝛤𝑖−𝛤 ) enforces the sampling of phase space 𝛤𝑖 and the angled
rackets denote thermodynamic averages. In typical reaction kinetic

1 A similar equation can also be derived for quantum systems [13]
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Fig. 1. Division of the X–Y phase space to ergodic and non-ergodic regions. For ergodic
reactions, the initial and final states can roam the entire phase space available to
them. The transition state sampling is restricted to the dividing surface. For non-ergodic
reactions, only the phase space within the dashed curve can be sampled in the initial,
transition, and final states.

simulations the time integral form is preferred as it allows efficient
use of molecular dynamics and extraction of ensemble averages along
trajectories. Long trajectories are needed to fulfill the ergodicity re-
quirements and more through sampling of the phase space improves
the accuracy of the partition functions and rates.

While TST is insensitive to timescales and dynamics, these do im-
pact kinetics in various ways. The reaction medium may have several
characteristic timescales which can be quantified using autocorrelation
functions [11,15]

𝐶𝐴𝐴(𝑡; 𝑡0) ≡ ⟨𝐴(𝑡0)𝐴(𝑡0 + 𝑡)⟩𝛤 (𝑡0)

= lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑑𝑡𝑓 (𝛤 ; 𝑡0)𝐴(𝑡0)𝐴(𝑡0 + 𝑡)

eq.
= lim

𝑇→∞
1
𝑇 ∫

𝑇

0
𝑑𝑡𝑓 (𝛤 ; 𝑡0 = 0)𝐴(0)𝐴(𝑡)

= ⟨𝐴(0)𝐴(𝑡)⟩𝛤 = 𝐶𝐴𝐴(𝑡)

(5)

where 𝑓 (𝛤 ; 𝑡0) is the (time-dependent) phase space distribution from
which the time-dependent sampling is initiated. 𝐴(𝑡) is a time-
dependent quantity of interest such as dipole moment direction for
rotational relaxation, position for diffusion, current for conductivity,
or probability to reside either on reactant/product basins for reaction
rates. Examples of different processes are shown in Fig. 2 for a solvated
Pt(111) ECI. In equilibrium, denoted by ‘‘eq’’., the correlation function
depends only on the time difference 𝑡 whereas in non-equilibrium
systems also the initial time 𝑡0 needs to be specified. In equilibrium the
sampling, denoted as ⟨⟩, is performed from a static, time-independent
phase space 𝛤 whereas for non-equilibrium systems the sampling is
taken from a time-dependent phase space distribution.

Assuming exponential decay of the timecorrelation function, a char-
acteristic timescale 𝜏𝐴 is obtained from

𝑀𝐴(𝑡) = 𝑀𝐴(𝑡 = 0) exp
(

−𝑡∕𝜏𝐴
)

(6)

For concreteness, let us consider the impact of solvent relaxation
dynamics on reaction kinetics. When the reaction barrier is very small,
the timescale 𝜏𝑘 = 1∕𝑘 for crossing the barrier region would also be
very small. In such cases, the solvent reorganization time 𝜏𝑟 around
the transition state becomes the slowest process: 𝜏𝑟 > 𝜏𝑘, and the
reaction rate is limited by the system reorganization time rather than
barrier crossing as computed from TST. Theories for 𝜏𝑟-limited reaction
rates are most often based on Kramers’ seminal work which treats
the reaction event as damped diffusion along an effective reaction
coordinate or the potential of mean force. The reaction rate constant
is obtain by solving the (generalized) Langevin equation for a diffu-
sion process from reactants to products across the dividing surface
3

or transition state. The Stokes-Einstein equation further relates the
diffusion coefficient to friction i.e. the coupling between the system
dynamics along the reaction coordinate and other degrees of freedom
such as solvent rotation. The theory provides a stochastic description
of reactive trajectories crossing the dividing surface (see Fig. 1) with
multiple barrier recrossings. Alternatively, the theory can be seen to
describe the impact of medium relaxation time (e.g. solvent rotation or
reorganization time 𝜏𝑟) on the reaction rate [16,17].

Following Kramers’ ideas, the theoretical foundations of dynamic
solvent effects on electrochemical and electron transfer reactions were
developed in the 1970s and 1980s [18]. While theories of varying
complexity were developed to capture the impact of 𝜏𝑟 on reaction
kinetics, in all these theories 𝜏𝑟 impacts only the prefactor while the
reaction barrier remains unaltered [6,19]. Hence, the reorganization
dynamics and timescale can be added as a prefactor correction to an
otherwise ergodic TST rate expression,

𝑘𝑑𝑦𝑛𝑇𝑆𝑇 (𝜏𝑟) =
𝑓 (𝜏𝑟)
𝛽ℎ

𝛯‡

𝛯𝐴 (7)

with a generic function 𝑓 to describe the impact of relaxation
dynamics. It needs to be re-emphasized that even here, the system is to
assumed fully ergodic. While the ergodic hypothesis seems deeply in-
grained in chemical kinetics, it does bring forth the issue of timescales.
For instance, condensed matter and electrochemical reactions typically
have several timescales from sub-femtosecond electron motion to bond
vibrations on the femtosecond scale, picosecond solvent reorganization,
or double layer dynamics on the microsecond scale as inferred from
impedance spectroscopy. In a strict TST perspective all these timescales
contribute to the partition functions, barrier, and kinetics, and should
therefore be included. While this is clearly impossible in practical
simulations, it is not at all clear which timescales are relevant to the
reaction kinetics and should be included in the simulation of reaction
rates. In other words, when is departure from ergodicity acceptable
and which timescales or processes are relevant to reaction kinetics?
Should some motions or degrees appear frozen on the timescale of an
electrochemical reaction?

This question has been analyzed only recently by Matyushov in a
series of works leading to the development of non-ergodic rate theory
[7–9]. While originally developed for protein electrochemistry, the
formalism is applicable more generally and also to ECIs. The key insight
of this theory is that some motions and degrees of freedom appear
dynamically frozen at the timescale of a reactive event. This leads
to ergodicity breaking and has a direct impact on the reaction barrier
since the barrier becomes a function of system dynamics. Qualitatively,
this means that the system does not have time to roam the entire
phase space on the reaction timescale as depicted in Fig. 1. More
quantitatively, the system dynamics taking place on a timescale (𝜏𝑠)
longer than the reaction itself become dynamically frozen when 𝜏𝑠 > 𝜏𝑘.
Hence, non-ergodicity becomes a relevant factor when 𝑘𝜏𝑠 > 1 and
the contributions from dynamic processes taking place on 𝜏𝑠 > 𝜏𝑘
timescales should be omitted.

Non-ergodicity places restrictions on which regions of the phase
space contribute to the partition function and reaction barrier as de-
picted in Fig. 1. In particular, non-ergodicity dictates that the phase
space averages and sampling times should be limited to regions fulfill-
ing the 𝜏𝑠 > 𝜏𝑘 condition. For the grand canonical free energy this is
enforced by constraining the phase space sampling as

𝛺𝑖(𝜏𝑠) = ⟨𝛺𝑖⟩𝜏𝑠 = lim
𝑡→𝜏𝑠

1
𝜏𝑠 ∫

𝑡

0
𝑑𝑡′𝛺𝑖(𝑡′)𝛩(𝛤𝑖 − 𝛤 )

= ∫𝜏𝑠𝑘<1
𝑑𝛤𝜌(𝑖)𝛺𝑖(𝛤 )

(8)

This equation tells that the system dynamics contribute to both
the prefactor and the barrier. The resulting equation is called the
non-ergodic TST (ne-TST):

𝑘𝑑𝑦𝑛 (𝜏𝑟, 𝜏𝑠) =
𝑓 (𝜏𝑟) 𝛯‡(𝜏𝑠) (9)
𝑛𝑒−𝑇𝑆𝑇 𝛽ℎ 𝛯𝐴(𝜏𝑠)
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Fig. 2. (a) Orientational and (b) hydrogen bond time correlation for bulk water. (c) Survival properties of adsorbed water on Pt(111) as a function of hydrogen coverage. (d)
Orientational and (e) hydrogen bond time correlation for adsorbed water.
Source: Reproduced with permission from Ref. [14].
© 2022 American Chemical Society.
Unlike 𝑘𝑇𝑆𝑇 or 𝑘𝑑𝑦𝑛𝑇𝑆𝑇 , the barrier of 𝑘𝑑𝑦𝑛𝑛𝑒−𝑇𝑆𝑇 depends on system
dynamics through 𝜏𝑠. The previous equation should be solved self-
consistently or iteratively to satisfy 𝜏𝑠 > 𝜏𝑘 to correctly sample the
partition functions. Also note that in the grand canonical picture of
electrochemical rates, the partition functions depend explicitly on the
electrode potential through the constant electron electrochemical po-
tential.

The iterative nature and electrode potential-dependency make the
previous equation very difficult to solve. Below I focus on a simpler
task and discuss in detail whether and when non-ergodicity should
be accounted for in the atomic-scale simulation of electrochemical
reaction rates. The main goal is to analyze which solvent, electrolyte,
and electron transfer processes should contribute to electrochemical
kinetics in aqueous electrolytes. I will first discuss the equilibrium case
where the electrode potential is kept constant and the grand canonical
ensemble for the electrons is valid. This is the appropriate framework
for constant potential electrolysis or cyclic voltammetry with slow
potential ramping. Finally, I address electronic transients, where the
electrode potential is suddenly changed as experimentally realized in
potential step methods.

2.2. Solvent

There are three main methodological approaches to modeling the
solvent at ECIs: microsolvation with a frozen solvent environment,
time-averages from molecular dynamics, or phase space averages used
in implicit solvation models such as dielectric continuum or statistical
liquid state theories [1,5]. A recent work argued that enhanced molecu-
lar dynamics simulations can potentially ‘‘oversample’’ the phase space
as all points along the reaction pathway are sampled for extended
periods of time [4]. The argument is that the ET and PT takes place
instantaneously when the transition state is reached and hence the
barrier region should be considered non-ergodic with a (partially)
frozen environment. The extreme case of non-ergodicity would then
be the frozen microsolvation method where the solvent would be
completely frozen on the reaction timescale. Implicit solvation mod-
els present the other extreme and correspond to the situation where
the entire solvent is ergodic and remains in (local) equilibrium at
all points along the reaction coordinate. Besides simulations, it has
been recently suggested that electrocatalytic reactions such as alkaline
4

hydrogen evolution might be controlled by double layer rigidity [20]
which can be understood in several ways: for small barriers the solvent
relaxation time 𝜏𝑟 might control reaction kinetics, the solvent might
appear frozen and non-ergodic on the reaction timescale, or the rigidity
impacts reaction time 𝜏𝑘 which would correspond to a larger solvent
reorganization energy and higher reaction barrier.

Non-ergodic rate theory can be used to answer whether a typical
solvent, such as water, should be considered frozen during an ele-
mentary reaction. For this it is beneficial to cast the phase space in
the frequency domain through a Fourier transform. The phase space
becomes 𝑑𝛤 = 𝛱𝜔𝛱𝑖𝑑𝑞𝑖(𝜔)𝑑𝑝𝑖(𝜔) and only frequencies higher than the
reaction rate or frequency are considered. Hence, only sufficiently high-
frequency motions of the environment contribute to the rate and free
energies are accordingly sampled with the constraint 𝜔𝑘 ≥ 𝜏𝑘:

𝛺𝑖(𝜔𝑘) = ∫𝛤𝑖
𝜌(𝑖)𝛺𝑖(𝛤 )𝛱𝜔𝑘>𝜏𝑘𝛱𝑖𝑑𝑞𝑖(𝜔)𝑑𝑝𝑖(𝜔) (10)

For water, the relevant timescales are the vibrational, rotational,
and translational or librational times which can be either measured
or simulated. As the current interest is on reactions take place at or
near the electrode, simulated values are used since these offer very
high spatial resolution of the ECI not achieved in experimentally. The
relevant timescales can then be computed from vibrational or velocity,
rotational, and translational time-correlation functions. Typical time-
correlation functions for water near Pt(111) are shown Fig. 2. These
time-correlation functions demonstrate that both in bulk and close to
the rather strongly binding Pt(111) surface the water reorganization,
vibrational, and librational time constants are 𝜏𝑟𝑜𝑡𝑠 ≈5 ps, 𝜏𝑣𝑖𝑏𝑠 ≈1 ps,
and 𝜏𝑙𝑖𝑏𝑠 ≈20ps, respectively. Even the slowest motion, water libration,
can be considered fast. The criterion in Eq. (8) for a reaction entering
non-ergodic region in water is computed from the 𝜏𝑠 > 𝜏𝑘 condition:
𝜏𝑙𝑖𝑏𝑠 𝑘 ≤ 1 → 𝑘 ≤ 1∕𝜏𝑙𝑖𝑏𝑠 → 1∕ℎ𝛽 exp[−𝛽𝛥𝛺‡] ≤ 1∕𝜏𝑙𝑖𝑏𝑠 → 𝛥𝛺‡ < 0.25 eV.
Put otherwise, the reaction barrier at room temperature should be
smaller than 0.25 eV for water non-ergodicity to contribute even on
the strongly binding pristine Pt(111) surface.

It is therefore rather safe to conclude that water should appear
completely ergodic and mobile on the timescale of a typical activated
electrochemical reaction; simulations should be allowed to sample the
entire phase space along the reaction pathway. There is very little risk
or possibility of oversampling water in enhanced sampling MD simu-
lations. The implicit continuum models capture this physical situation



Electrochimica Acta 446 (2023) 142095M.M. Melander

e
T
t
e
H
m
t
i
a
t
h
i

2

p
d
i
i
e
a
t
—
i
t
a
t
t
c
i
f

o
c
p
p
a
b
c
C
t
a
c
f
a
t
e
e
e
p
p

w
m
i

𝑘

w
𝑘
s
r
i
t

1
m
1
r
c
𝜏
t
t
𝑘
m
n
m

a
l
i
f
t
T
t
a
v
r
c
d

r
a
p
e

correctly whereas ice-like overlayers or static water molecules do not.
If static water models are used, at least the vibrational, rotational, and
translational partition functions should be evaluated to estimate the
corresponding contributions to free energies.

Besides simulations, the above analysis has some direct conse-
quences on understanding the origin and impact of the suggested
interfacial water rigidity in alkaline HER. Unless extremely small bar-
riers (<0.25 eV) are expected, water appears completely mobile and
dynamic in alkaline HER. For such small barriers, the slowest timescale
would no longer be barrier crossing but water relaxation dynamics
for which the slowest component is 𝜏𝑙𝑖𝑏𝑠 ∼ 20 ps corresponding to an
ffective barrier of ∼0.25 eV which can still be consider fairly small.
his indicates that water reorganization dynamics are not the origin of
he suspected rigidity. An alternative perspective was offered by Huang
t al. [21] who included rigidity as an energetic parameter in a model
amiltonian framework to address local water (reorganization) ther-
odynamics rather than its dynamics. Recent simulations also support

he perspective that interfacial rigidity is related to hydrogen bond-
ng network and thermodynamics rather dynamics [22]. The above
nalysis on water reorganization timescales and ergodicity supports
his energetic rigidity interpretation as water at the interface appears
ighly dynamic but the reorganization energy may be affected by high
nterfacial electric fields or chemical interactions.

.3. Electrolyte

This section discusses electrolyte dynamics under constant electrode
otential conditions without any notable transients which are to be
iscussed in subsequent sections. As such, the question addressed here
s different from Refs. [3] or [23] treating the ion dynamics after
nstantaneous electron transfer — these studies correspond to transient
xperiments. This section considers whether the electrolyte ions should
ppear completely mobile during an elementary reaction step where
he electrode charge may change but its potential remains constant

these correspond to steady-state experiments. The main goal here
s to answer whether an instantaneous ion redistribution or frozen ion
reatment is more appropriate. In other words, we consider times scales
t which ions move during the reaction, and in particular whether
he electrolyte ions should be considered non-ergodic or frozen on
he timescale of an elementary reaction step. This is an important
onsideration to establish the validity explicit ion simulations and
mplicit Poisson–Boltzmann -type electrolyte models which treat ions
ully equilibrated.

The treatment below is restricted to simple but widely used in-
rganic electrolytes, and organic electrolytes or ionic liquids are not
onsider. It has already been shown that e.g. ionic liquid electrolytes are
rone to non-ergodicity and appear at least partially frozen [8]. Com-
ared to these complex electrolytes, dynamics of simple electrolytes
re mostly related to their translational motion. Ion dynamics can then
e described using their conductivities which are available from the
urrent or velocity autocorrelation functions [24,25] or experiments.
onductivity, in turn, defines ion mobility [26]. In dilute electrolytes,
he ion dynamics can be treated with the Nernst–Planck equation which
ccounts for diffusion, electromigration, and convection [26]. While
onvection is important in bulk electrolyte, near an interface the fluid
low is greatly diminished and typically non-slip boundary conditions
re applied even for hydrodynamic simulations. It is therefore assumed
hat convection can be neglected in the below analysis of interfacial
lectrochemical kinetics. Within these limitations, ion dynamics and
lectrolyte relaxation times can be quantified using the Nernst–Planck
quation for ion diffusion and migration fluxes (𝐽 ). The flux is directly
roportional to ion mobility and the gradient of ion electrochemical
otential (�̃�𝑖)
𝜕𝑐𝑖(𝑥, 𝑡) = −∇ ⋅ 𝐽 = −∇ ⋅ [−𝑀 𝑐 (𝑥, 𝑡)∇�̃� (𝑥, 𝑡)] (11)
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𝜕𝑡 𝑖 𝑖 𝑖 𝑖
where 𝑐𝑖(𝑥, 𝑡) is the time-dependent spatial concentration of 𝑖 and 𝑀𝑖
is the corresponding mobility. The previous equation shows that ion
dynamics can be treated using a generalized diffusion equation. Even
more generally, the diffusion equation can be extended to include
free energy barriers using non-equilibrium thermodynamics [27] or
concentrated solution theory [28]. This is beneficial for the description
of (partial) ion desolvation taking place e.g. during specific adsorption
or ion-coupled ET/PT reactions. The effective rate for the total ion flux
can be written as

𝑘𝑒𝑙𝑖 (𝑥) = 𝑘0,𝑒𝑙𝑖 exp
[

−𝛽
(

�̃�‡
𝑖 (𝑥) − �̃�0

𝑖

)]

(12)

here �̃�‡
𝑖 (𝑥) is the spatially varying electrochemical barrier for ion

ovement while �̃�0
𝑖 is the corresponding bulk value. The prefactor 𝑘0𝑖

s the bulk ion transfer rate related to ion mobility as

0,𝑒𝑙
𝑖 =

𝑀𝑖𝑐0𝑑𝑦𝑑𝑧
𝑑𝑥

(13)

where 𝑐0 is the standard state concentration and 𝑑𝑥∕𝑑𝑦𝑑𝑧 denotes space
discretization.

After establishing an effective rate expression for electrolyte dy-
namics, the impact of ion mobility on reaction rate constant is ad-
dressed. The total apparent rate constant (𝑘𝑎𝑝𝑝) depends on both the
electrocatalytic reaction (𝑘𝑒𝑐), which is a function local ion concen-
tration 𝑐(𝑥), and the electrolyte dynamics 𝑘𝑒𝑙𝑖 (𝑥). When both contribu-
tions are included, 𝑘𝑎𝑝𝑝 is analogous to the rate constant of partially
diffusion-controlled reactions

1
𝑘𝑎𝑝𝑝(𝑥)

= 1
𝑘𝑒𝑐 (𝑐(𝑥))

+ 1
𝑘𝑒𝑙𝑖 (𝑥)

(14)

hich is directly related to the timescale of electrolyte transfer: 𝜏𝑒𝑙(𝑥) =
𝑎𝑝𝑝(𝑥)−1. The previous equation can be rigorously derived from e.g. the
table states picture [29] or as a stationary limit for diffusion-influenced
eaction rates [30–32]. For explicitly time-dependent reactions, a sim-
lar expression can be derived from a generalized Smoluchovski equa-
ion [33,34].

In bulk electrolyte the diffusion coefficients are ∼0.1 Å2 /ps or
0−5 cm2/s in more conventional units [2]. One Å2 ion ‘‘hop’’ or
ovement corresponds to a hopping rate constant of 𝑘0,𝑒𝑙𝑖 ≈ 1011s−1 for
molar solution and can be considered faster than most electrocatalytic

eactions. Alternatively, the electrochemical effective diffusion constant
an be analytically estimated from the double layer charging time as
𝐸𝐷𝐿 = 𝜆𝐷 ∗ 𝐿∕𝐷2, with 𝜆𝐷 being the Debye length, 𝐿 the thickness of
he diffusion layer, and 𝐷 diffusion coefficient [10]. An ion would then
raverse across a typical DFT simulation cell of 10 × 10 Å, with a rate
0,𝑒𝑙
𝑖 ≈ 109s−1. Hence, the diffuse double layer, where free diffusion and
igration take place, treated in a typical DFT simulation relaxes on a
anosecond (109s−1) timescale corresponding to an effective electrolyte
obility barrier of ∼ 0.2 eV.

When an ion approaches the surface and becomes quasi-specifically
dsorbed, it partially loses its solvation shell. This causes an additional
ocally varying barrier for ion transfer. These barriers depend on the
on, surface, and the electrode potential and are not widely available
or different combinations but Schmickler et al. [35] recently evaluated
hese systematically for monovalent ions at a gold–water interface.
hey found the desolvation barriers to be 0.1–0.3 eV which means that
he local cation transfer rate 𝑘𝑒𝑙𝑖 (𝑥) for a 1 Å hop varies between 108 𝑠−1

nd 105 𝑠−1 or 𝜏𝑒𝑙 ∼ 10 ns and 𝜏𝑒𝑙 ∼ 0.1 μs, respectively. With these
alues one can study the apparent rate constant from Eq. (14) for a
ange of effective ion transfer barriers as shown in Fig. 3. This figure
learly shows that the impact of electrolyte mobility on the overall rate
epends sensitively on the intrinsic reaction rate, 𝑘𝑒𝑐 .

Two particular examples are considered in more detail: (i) a surface
eaction where both the initial and final states are adsorbed and (ii)
pproach or adsorption of a molecule to a surface from the liquid
hase while electron transfer takes place. Type (i) is the most common
lectrocatalytic reaction treated with DFT methods. Type (ii) reactions
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Fig. 3. 𝑘𝑎𝑝𝑝 as a function of the reaction free energy barrier without ions, ions in
the diffuse layer, and for mobilities with two different ion diffusion barriers at room
temperature.

are relevant for e.g. CO2 or O2 adsorption processes where a molecule
travels from a bulk solution to an interface. Recent studies show that
such reactions are often accompanied by charge transfer and can be
coupled to ion transfer [36,37]. For option (ii), two distinct cases
emerge: either ions remain in the inner- or outer-Helmholtz regions
throughout the adsorption/charge transfer process or they travel with
the reacting molecule from the bulk solution to the inner-Helmholtz
layer. In the former case no ion solvation–desolvation processes are
expected whereas in the latter desolvation may take place.

In both (i) and (ii) reaction types the ions can be treated in two
different ways: quasi-specifically adsorbed and partially desolvated ion
need to be treated explicitly while non-adsorbed ions in the diffuse dou-
ble layer can be described using either explicit or continuum models.
The adsorbed ions are usually kept frozen or allowed to move only
at the surface. The above discussion on adsorption/desorption barriers
and the results in Fig. 3 demonstrate that freezing the adsorbed ions
is a reasonable approximation if the reaction barrier is smaller than
0.4–0.6 eV. For higher barriers, even adsorbed ions should be allowed
to desorb and ion exchange between the inner- and outer-Helmholtz
layers with the corresponding solvation–desolvation processes should
be permitted.

Electrolytes in the diffuse or outer-Helmholtz double layer do not
undergo desolvation processes and are significantly more mobile than
the adsorbed ions. As discussed above, the diffuse double layer of a
typical DFT simulation cell is expected to completely reorganize on a
sub-nanosecond timescale. This claim is supported by the analysis of
the analytical double layer charging time estimate 𝜏𝐸𝐷𝐿 = 𝜆𝐷 ∗ 𝐿∕𝐷2

[10]. 𝜏𝐸𝐷𝐿 ≈ 10 ms under typical experimental conditions meaning that
the electrochemical double is out of equilibrium on the macroscopic
scale. However, on the length scale of typical DFT calculations (∼10 Å),
𝜏𝐸𝐷𝐿 is in the sub-ns times scale. Fig. 3 shows that the double layer
diffusion limitations are important only when the reaction barrier is
smaller than ∼ 0.25 eV which corresponds to very fast reactions at room
temperature. Hence, unlike concluded in Ref. [2], ions in the diffuse
double layer should be allowed to completely relax when simulating the
reaction barrier of an activated process — based on non-ergodic rate theory
and diffusion timescales the nuclear, electronic, and ionic motion associated
with reaction events should adiabatically follow medium reorganization
unless the reaction barrier is very small.

The above conclusion has a direct impact on how electrolyte effects
should be simulated. Especially related to the CO2 reduction reaction,
electrolyte effects are often explained in terms of a local electric field
which at the DFT-level is often evaluated from a single frozen configu-
ration where an ion is in the electrolyte near a reactant [38]. Naturally,
a large electric field is generated around the frozen ion. This can be
easily understood using a simple image charge picture [39] which
6

affords an analytic formula for the electric field (𝐹 ) generated by an
ion with charge 𝑄 at distance 𝑟 from the surface:

𝐹 (𝑟, 𝑎) =

[

𝑄
2𝜋𝜖

(

𝑟2 + 𝑎2
)

][

𝑟
√

𝑟2 + 𝑎2

]

(15)

with an offset 𝑎 measured along the surface between the ion and
reactant position, where the field is measured (see Fig. 4).2 The image
charge picture shows that when the ion is right above the reactant,
e.g. CO2, 𝑎 = 0 and reactant feels a very high electric field. This is
in a very good qualitative agreement with the static DFT simulations
of electrolyte effects [38]. The field, however, decreases very quickly
when the ion is displaced away from the reactant as shown in Fig. 4.
Furthermore, accounting for ion mobility in the diffuse double layer
drastically changes the field felt by the reactant. The thermodynami-
cally relevant field generated by a mobile ion is obtained by averaging
the field along the simulation cell 𝑎-coordinate:

⟨𝐹 (𝑟)⟩ = 1
𝐿 ∫

𝐿

0
𝐹 (𝑟, 𝑎)𝑑𝑎 = 𝑄

2𝜋𝜖

(

1

𝑟
√

𝐿2 + 𝑟2

)

(16)

𝐿 could be computed from the local ion concentration as the mean
average distance between the ions. As an example, we consider a typical
DFT simulation setup consisting of a 3 × 3 surface unit cell 𝐿 ≈ 8Å and
a single mobile ion. For such a system the resulting average field is
vanishingly small as can be seen from Fig. 4. The results from this
simple image charge approach show that the local field is very weak
if the ion is treated as a mobile, diffusing particle; as discussed, this
is the relevant situation for most activated electrocatalytic reactions if
explicit ion adsorption does not take place.

If the ion and reactant interact strongly, the above integral needs to
be modified to include the ion-reactant probability distribution function
when computing the average value. The local field effects are notable
only if a frozen ion configuration on top of the reactant can be justified
— this situation can arise when the reactant and ion form e.g. coor-
dination complexes [37] but even then direct (chemical) interactions
are expected to be more dominant than field effects. This conclusion
is supported by recent theoretical works of the oxygen evolution [40]
and CO2 reduction [41] reactions for which the electrostatic or electric
field effects were shown to be minor.

2.4. Electron conductivity limitations

Compared to reaction rate theories in the canonical, constant charge
ensemble, the grand canonical rate theory in Eqs. (1)–(2), [12] requires
that also the number of electrons responds very quickly to changes
in the system. From the perspective of non-ergodic rate theory, this
requirement is satisfied when the electron transfer within the electrode
is faster than the reaction or any relevant reorganization processes.
Consequently, the electrode potential should be kept constant only
when electron transfer within the electrode is the fastest process in
the studied system. This means that the number of electrons must
adiabatically react to all relevant nuclear rearrangements. Below, I test
when the constant electrode potential treatment is valid and when
electron transfer rate within the electrode can be assumed adiabatic
on the reaction timescale. This analysis presents a new dimension to
both non-ergodic and grand canonical rate theories.

The conductivity of metallic electrodes is very high, on the order
of 105 S/cm [42]. The effective electron diffusion constant can be
computed from conductivity and the number of states at the Fermi-
level: [43] the effective diffusion coefficient for electrons in metallic
electrodes is at least 1 cm2/s, that is 𝐷𝑒𝑓𝑓 > 105Å2/ps, [43] which

2 The electrostatic potential due to the electrode generates an additional
electrostatic field (𝑉 (𝑟)) which would modify the field to 𝐹 ′(𝑟, 𝑎) = 𝐹 (𝑟, 𝑎) −
𝜕𝑉 (𝑟)
𝜕𝑟

. Here the impact of 𝑉 (𝑟) is neglected as it is not strictly related to ion
effects.
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Fig. 4. Left: Schematic of the electric field created by an ion at an interface. Right: The field as a function of distance from surface (𝑟) and the offset along the surface (𝑎)
computed from Eq. (15). The ion charge is +1 and the interfacial dielectric constant is 6.
is around six orders of magnitudes larger than the ion diffusion co-
efficient. The electron transfer within metals is therefore significantly
faster than any relevant reaction and the number of electrons can be
treated adiabatically in constant potential calculations. Hence, Eqs. (1)–
(2) can be reliably applied to compute reaction rates at fixed electrode
potentials.

Semiconducting electrodes are notably more challenging as the
conductivity depends on several factors such as electronic structure,
intrinsic charge transfer dynamics such as hole/electron hopping rate,
semiconductor thickness, and the number of charge carriers. The in-
trinsic charge transfer rate is quantified by charge carrier mobility
which for typical semiconductor electrodes varies in the range of
102–104 cm2V−1s−1 [44]. While these charge mobilities are higher
than electrolyte mobilities, [44] the low number of carriers limits
semiconductor conductivity. Experimentally, the low semiconductor
conductivity manifests as a inseparability of Faradaic (reaction) and
semiconductor charging currents [45,46].

In what follows, it is assumed that carrier diffusion takes place
through polaronic conduction which is relevant for e.g. TiO2, CeO2,
GaAs, and Fe2O3 electrodes. This assumption does not invalidate the
generality of the analysis but makes quantification easier because car-
rier diffusion constants can be used to quantify the relevant timescale
for charge transfer dynamics in complete analogy to electrolyte mobil-
ity. In general, the diffusion coefficient (𝐷) is related to conductivity
(𝜎) and mobility (𝜈) through [44,47]

𝜎 = 𝑞𝜈 = 𝑞𝛽𝐷 = 𝑞𝛽𝑅2𝑘𝑐𝑡 (17)

where 𝑞 is the carrier charge, 𝑅 the hopping distance, and 𝑘𝑐𝑡 the
charge transfer coefficient and the elementary charge is taken as unity.
The electron diffusion coefficients vary significantly across different
materials. For CeO2, [48] 𝛼-Fe2O3, [49], and Ta3N5 [50] the electron
polaron diffusion coefficients are ∼ 3 × 10−4 cm2/s, ∼ 10−4 cm2/s, and
∼ 2 × 10−5 cm2/s respectively. For anatase TiO2, the effective electron
diffusion constant is > 10−2 cm2/s but both the carrier concentration
and temperature affect mobility and conduction mechanism [51]. The
overall conductivity is determined by the competition between band
and polaron conduction mechanisms, and polaron conductivity is ex-
pected to provide a lower bound for electron conductivity or diffusion
at room temperature.

The question whether the electrode potential should remain con-
stant when simulating semiconductor electrodes cannot be answered
with complete certainty: due to material and carrier concentration
effects, a general conclusion cannot be given. However, the above
values for effective electron diffusion coefficients for a range of relevant
semiconductor electrodes are of similar magnitude or higher than bulk
electrolyte diffusion coefficients [2]. In analogy to electrolyte diffusion
timescales, the electrons in relevant semiconductor electrodes move as
fast as or faster than electrolyte ions. This is consistent with the ap-
proximation by Bisquert [52] showing that even in a poorly conducting
7

semiconductor electrode (𝜈 ∼ 10−2 cm2/Vs) charge transfer across a
50 nm nanoparticle occurs in ∼ 100 ps. These estimates imply that even
in semiconductor electrode simulations the electrode potential should
be kept fixed if the studied reaction is an activated process with a
barrier higher than ∼0.2–0.3 eV.

2.5. Non-equilibrium effects and transients

While the previous sections assumed the system to be under con-
stant potential conditions, here the focus is shifted to non-equilibrium
systems where either the electrode potential or charge is rapidly
changed. Such sudden changes lead to transient behavior as the sys-
tem relaxes to a new equilibrium state. The relaxation dynamics and
correlation functions in such systems depend on time 𝑡0 in contrast
to equilibrium systems where only time differences are important (see
Eq. (5)). In contrast to equilibrium systems, non-equilibrium partition
functions, correlation functions, dynamics, etc. depend explicitly on
time.

For concreteness, one can consider an electrode potential step ex-
periment. The initial state is taken from the equilibrium phase space
distribution corresponding to the electrode potential 𝑈0 at 𝑡0 = 0.
At 𝑡0 = 0, the potential is suddenly changed to a new value 𝑈1 and
the system now evolves on the space phase belonging to 𝑈1. In an
equilibrium system only the phase space available at 𝑈0 would be
explored. This indicates that the simulation or experimental interpre-
tation of equilibrium and non-equilibrium quantities need to differ.
In general, the crucial difference between equilibrium and transient
simulations is the way the system is prepared and sampled. The rates of
an equilibrium system can be quantified from (non-ergodic) statistical
properties using Eq. (9). But in a non-equilibrium system only the initial
state is probed statistically while the reaction is initiated by a non-
adiabatic charge or potential step after which the reaction rates need
to be computed from dynamic trajectories initiated from the initial
equilibrium state according to Eq. (5).

The atomic scale simulation of electrochemical reaction kinetics
in transient systems remains practically unexplored. Very recently,
Schmickler and Santos simulated hydrogen desorption from graphene
to water following sudden charge injection [3]. It was observed that hy-
drogen desorption following positive charge injection is almost imme-
diate and takes place within a picosecond; the reaction is much faster
than water rotation, diffusion, or libration and takes place under both
non-equilibrium and non-ergodic conditions. The system does not have
time to relax to any new equilibrium state before the reaction takes
place. Accordingly, Schmickler and Santos highlight that the ‘‘reaction
experiences the local field, not the thermodynamic average’’ [3]. The
studied desorption step clearly takes place under non-equilibrium con-
ditions and explicit simulation of system dynamics and relaxation are
required. Note that to obtain a thermodynamically consistent view of
the desorption time, the simulations should be initiated and propagated
from different initial conditions according to Eq. (5).
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The fast hydrogen desorption provides an extreme example of a re-
action that is much faster than solvent relaxation and is even potentially
limited by electrode conductivity. The relevant dynamic quantities for
describing such sudden reactions are the relaxation timescales follow-
ing charge injection. For the double layer relaxation, i.e. solvent and
electrolyte dynamics, the timescale can be inferred from the simula-
tions of outer-sphere electron transfer on a metallic electrode [23].
Depending on the surface charge and electrolyte concentration, the
double layer relaxation time varies in the range 50–400 ps which is
clearly slower than the hydrogen desorption. These values are close to
the estimates for electrolyte relaxation evaluated from the quasi-free
diffusion model treated in a previous section where it was shown that
a ∼ 10 Å displacement of non-adsorbed ion the double layer takes place
on a ∼1 ns timescale. Fig. 3 further shows that diffusive relaxation times
longer than ∼1 ns start to limit the reaction rate when the barrier is
elow 0.2 eV. If the reaction is faster than solvent or electrolyte relax-
tion, the reaction rate cannot be estimated without explicit simulation
f dynamics leading to a reactive event. In such cases, the reaction
ppears to be basically barrierless and transition state theory cannot
e utilized. Instead, approaches based on diffusive dynamics, such as
ramers’ theory discussed above, should be considered.

Compared to the solvent and ions relaxation, electron and electrode
otential relaxation in metals is much faster than that of the double
ayer. For instance, a recent study modeled electron or potentiostat
elaxation with a 100fs timescale [53] which is close to the charge
elaxation of graphene during hydrogen desorption [3]. Hence, in
ltrafast non-equilibrium reactions taking place on ∼100fs timescales

even the electrode potential appears to be out of equilibrium and con-
stant potential calculations should not be used. Furthermore, in such
fast reactions the electron motion appears to take place on the same
timescale as nuclear motion and the two cannot be fully separated: in
such cases, one should account for electronic non-adiabaticity using an
explicit evolution of both the electron and nuclear degrees of freedom
using e.g. Ehrenfest dynamics [54].

3. Discussion and conclusions

The theory and simulation of electrochemical and electrocatalytic
kinetics has been built around transition state theory which assumes the
system be and remain in (local) equilibrium and that system dynamics
do not impact reaction rates. In recent literature this premise has been
questioned. It has been purported that the reaction environment, i.e.
the solvent and electrolyte, should remain frozen and unequilibrated
during electrochemical ET and PT steps. In similar vein, it has been
questioned whether the electrode potential should be kept fixed when
simulating reaction kinetics. This is a crucial question for constant
potential or grand canonical ensemble simulations which require the
electric conductivity to be fast compared to all other system timescales.
As these viewpoints question the applicability of most theoretical and
simulation approaches developed and used to study electrochemical
reaction rates, their validity needs careful assessment. In this critical
review, I have reviewed and re-analyzed these claims from the perspec-
tive of non-ergodic rate theory which provides a rigorous framework to
study when or whether the reaction environment should appear frozen.

The analysis shows that in most activated electrochemical reactions
with a barrier higher than 0.2–0.3 eV, the reaction environment is com-
pletely mobile and equilibrated under constant potential conditions in water.
This finding strongly supports that the ergodicity and adiabaticity
assumptions of transition state theory are valid in typical electrochem-
ical and electrocatalytic reactions in aqueous electrolytes; both water
and ions should be treated as (locally) equilibriated and mobile. For
comparison, the small reaction barriers of 0.2–0.3 eV correspond to ∼
0.8–1.2 eV reorganization energies typical for small redox couples in
water. However, for larger solutes and more complex, such as ionic
liquids, the reorganization energy can be as small as 0.3 eV [55] and
non-ergodic effects are expected to be more prominent than for small
8

molecules in water. For both metallic and relevant semiconductors
electrodes the impact of electrode conductivity is minimal and constant
potential calculations within GCE-DFT offer reliable representation of
constant potential experiments. Only for ultrafast reactions or transient
methods should the environment be considered (partly) frozen and out
of equilibrium.

The simulations and theory of electrochemical reactions under fixed
potential conditions should therefore treat an aqueous electrolyte com-
pletely dynamically and the electrode potential strictly constant (apart
from fluctuations due to the fluctuation–dissipation theorem). Hence,
enhanced sampling simulations cannot oversample water or ion con-
figuration space, and longer sampling will improve the accuracy of
reaction rate estimates. This also means that the local equilibrium
assumption of implicit solvent or electrolyte models, such as Poisson–
Boltzmann methods, is correct and that insight from frozen water/ion
calculations should be approached cautiously. These perspectives also
highlight the necessity of treating solvent/electrolyte reorganization
under fixed electrode potential conditions. Hence, approaches such as
diabatic model Hamiltonians [6,56] or valence bond -based electro-
chemical reaction rate theories [1,12] highlighting the role of reor-
ganization are expected to become increasingly more important and
applicable to electrochemical kinetics.
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